The invention relates to a novel prognostic method for determining at least one, or a combination, of the following: time to first treatment, response to treatment or overall survival for a patient presenting with a disease including or characterised by telomere shortening, comprising an assessment of the longest mean telomere length at which telomere end-end fusion events can be detected and then a determination of the mean telomere length in the fusogenic range (i.e. the range below said mean telomere length at which telomere end-end fusion events can be detected) and the subsequent use of the mean telomere length in the fusogenic range as a prognostic indicator. The invention also relates to the use of said method in a treatment regimen.
Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia, characterised by the accumulation of immuno-incompetent, monoclonal CD5+ B-lymphocytes. CLL has a very heterogeneous clinical course with survival ranging from a few months to many decades. Treatment strategies vary with staging and disease progression and include chemotherapy, radiotherapy, monoclonal antibody therapy or bone marrow transplantation, with early stage patients often receiving no treatment. Early clinical intervention is required for patients with an aggressive form of the disease, whereas patients with more benign forms simply need monitoring for disease progression at which point appropriate treatment may be administered. In this latter respect, it has been shown that early stage CLL intervention does not improve survival rates. It is therefore inappropriate to expose someone presenting with a disease that is unlikely to be life-threatening for up to 30 years with highly dangerous chemotherapeutic drugs. A reliable method for distinguishing the various forms of the disease is therefore desirable. Although the Binet and Rai staging systems are reliable predictors of clinical outcome between the staging groups, they fail to identify good and poor prognostic subsets within each stage. Since most patients present with early stage disease at diagnosis, a number of laboratory tests have been developed to try and predict the clinical course of these patients, most notably, immunoglobulin variable heavy chain somatic mutation status, CD38 expression, T-cell tyrosine kinase (ZAP-70) expression and cytogenetic abnormalities. Unmutated IGHV genes, high CD38 expression, high ZAP-70 expression and the presence of 17p and 11q deletions are all associated with a poor prognosis. The exploitation of this sort of laboratory data to provide a prognostic assay is described in US 2008/0026383. However, none of these individual markers can provide definitive prognostic information alone and when used in combination offer only a reasonable prognostic prediction.
Breast cancer is another very common tumour type in the western world. Breast tumours can be surgically removed but remnants of the tumour can remain resulting in the reoccurrence of the disease. Patients therefore have adjuvant treatments that have toxic side effects, and the suspicion is that many patients receive treatment that will not be beneficial to them. The usual approach is to tailor the aggressiveness of the chemotherapy to the risk of recurrence. As compared with standard chemotherapy, aggressive chemotherapy is associated with a greater benefit, but also with more acute and long-term toxic effects such as leukaemia and heart failure. As with CLL, there is thus a requirement for markers that allow prognostication following surgery for breast cancer. Gene expression arrays have been employed to identify specific gene expression signatures that are indicative of prognosis; these provide hazard ratios of up to 3.4 for overall survival in node negative breast cancer patients. Gene expression arrays are amongst the best markers of prognostication currently available for Breast cancer.
Myelodysplastic syndromes (MDS) are a heterogeneous collection of disorders of the bone marrow haematopoietic stem cells characterised by disruption to haematopoiesis ultimately leading to bone marrow failure. This condition was previously known as ‘pre-leukaemia’ because one third of patients progress to acute myeloid leukaemia (AML). There is therefore a clinical need to distinguish patients that progress to AML, and thus may require therapy from those that manifest a more benign form of the disease. Like CLL, MDS is characterised by large-scale unbalanced chromosomal rearrangements; these types of rearrangements are consistent with telomere dysfunction. Furthermore, there is evidence of telomere erosion in MDS and that mutation in the telomerase RNA components can confer MDS in children.
It follows from the above, that there is a range of diseases for which relatively early stage prognostication would be advantageous. Moreover, many of these diseases are characterised by genetic abnormalities and, specifically telomere shortening. These diseases include alzheimer's disease1, brain infarction1, heart disease1, chronic HIV infection1, chronic hepatitis1, skin diseases1, chronic inflammatory bowel disese1 including ulcerative colitis, anaemia1, atherosclerosis1, Barrett's oesophagus and cancers1 including pre-cancerous conditions. The invention therefore has application to all of these diseases.
Telomeres are nucleoprotein structures composed of repetitive DNA sequences that cap the ends of linear eukaryotic chromosomes, protecting them from deterioration or fusion with adjacent chromosomes. During replication of DNA, the ends of chromosomes cannot be processed, and as a result during cell division the chromosome ends would be lost; telomeres however prevent this by themselves being consumed during each stage of cell division, essentially ‘capping’ the chromosome. Telomere ends are, however, maintained in certain cell types such as germ cells, stem cells and certain white blood cells, by the reverse transcriptase telomerase that catalyses the RNA templated addition of telomere repeats. Telomere length is a key determinant of telomeric function and it has been shown that short dysfunctional telomeres can drive genomic instability and tumourigenesis in mouse models. Furthermore, deregulation of telomerase has been shown to drive oncogenesis. Additionally, the loss of telomeres in somatic cells has been linked to replicative senescence preventing genomic instability and cancer. Conversely, it has also been shown that malignant cells can bypass this senescence and become immortalised by telomere extension by aberrant activation of telomerase.
Consistent with the role of telomere biology in tumour progression, there is now a substantial body of evidence indicating that telomere length can provide prognostic information in many human malignancies including CLL2-9. However, there is a lack of resolution in the currently available technologies and this has hampered progress in translating telomeric assays into clinical practice. For example, a putative role of telomere dysfunction during the progression of breast cancer has been shown,10 and low-resolution telomere length has been shown to provide limited prognostic information11,12. A key problem with these technologies is that they are based on hybridisation of DNA probes to telomere repeat units. Consequently, as telomeres get shorter there is less probe target, and thus short telomeres are not detectable13,14. This is important because it is the shortest telomeres that become dysfunctional and are subject to fusion, causing genomic instability that can drive the progression of human cancers15-17. Q-PCR-based methods have also been described for the estimation of telomere repeat content (WO 2004068110US), these allow for high throughput analysis. However the linearity of these methods for the detection of short telomeres (<4 kb) has not been established18, this, coupled with the reported high CV values of up to 28%, renders the Q-PCR methods inappropriate for the detection of short telomeres and using this information as a prognostic tool for clinical decision making19. Hitherto, telomere analysis using existing low-resolution techniques is not a sufficiently informative prognostic marker.
To address this problem, we have previously developed single-molecule technologies that allow us to detect the presence of critically shortened telomeres20,21 and to characterise telomere end-end fusions16,17. Single telomere length analysis (STELA) allows complete resolution of telomere lengths at specific chromosome ends, including telomeres in the length range in which telomere end-end fusions can occur16,20. It therefore permits detection of short telomeres that are potentially dysfunctional and capable of fusion. In part of this study the XpYp telomere was chosen for use in STELA because in contrast to 13q, 6q, 17p and 11q, there is no evidence to implicate the loss of this telomere in the pathology of CLL in particular. Furthermore our previous data indicate that the XpYp telomere length is representative of the genome-wide telomere length20,22, and that telomerase-expressing cells can homogenise telomere lengths at different chromosome ends15,23. Using these tools, we have demonstrated a link between short telomeres, telomere end-end fusion events and genomic instability in diseases such as, but not limited to, CLL breast cancer and MDS.
In our investigations, we have used telomere length and fusion analysis to provide a definition of telomere dysfunction and then we have used this as a prognostic tool. Specifically, we have identified the longest mean telomere length at which telomere end-end fusion events can be detected for a selected chromosome, examples are shown in Table 1. Using this upper limit for fusion event detection we have been able to show that the mean telomere length in the fusogenic range (i.e. ≦the upper limit) provides a biological parameter that is highly prognostic for at least one of the following: time to first treatment, response to treatment or overall survival. Furthermore, this biological parameter can also be used to provide remarkable prognostic resolution in early stage disease patients in terms of time to first treatment, response to treatment or overall survival; indeed, patients in the longer telomere subset showed an overall survival rate of 96% at 10 years. The longest mean telomere length at which telomere end-end fusion events can be detected therefore represents an indication of the mean telomere length at which telomeres become dysfunctional and capable of fusion. Knowledge of the length of an individual's telomeres and so the likelihood of end-end fusion events enables one to predict where the individual is placed with respect to disease progression and so ensures the individual receives treatment commensurate with their requirements; no less and no more. Further, the test to assess the length of an individual's telomeres can be repeated periodically to monitor disease progression.
We have been able to show that by applying a telomere length threshold based on telomere dysfunction, we are surprisingly able to transform the prognostic power of telomere length analysis. Thus in contrast to previous reports using low-resolution telomere length analysis (i.e. those methods described above that measure telomere length at 4 kb and above), our data indicate that high-resolution telomere length analysis (i.e. using, e.g. the STELA method, or any other method which can measure the full range of telomere length from one TTAGGG repeat to over 25 kb of telomere length) coupled with a definition of telomere dysfunction or a knowledge of our biological parameter, is sufficient for accurate prognostication in various diseases characterised by telomere shortening, including cancers.
According to a first aspect of the invention there is provided a prognostic method for determining the progression of a disease including or characterised by telomere shortening comprising:
The invention therefore involves the identification of a specific methodology that permits critical telomeric parameters to be defined for a particular disease or, typically, malignancy. These parameters are the upper telomeric threshold for end-end fusion events, as in i) above, and a subsequent prognostic mean telomere length below the said threshold or in the fusogenic range, as in ii) above. Further, the invention also involves an analysis of patient telomere distribution, as in iii) or iv) above, and by relating this to the determined threshold and said prognostic mean, the invention predicts whether a patient will require treatment and it also predicts progression-free or overall survival of each patient at the time the method is undertaken.
In a preferred method of the invention said fusion event in part i) above is verified as being such by direct DNA sequence analysis before the data relating to same is included in the method.
Additionally or alternatively, in a further preferred method of the invention, said prognostic mean telomere length of a sample of tissue from a number of individuals presenting with said disease is determined by taking those samples that exhibit telomere fusion and averaging the mean telomere length of those samples. This preferred method therefore includes samples whose mean telomere length is less than said threshold and also samples whose mean telomere length is greater than said threshold but, regardless of this fact, only samples exhibiting fusion are used to generate an average telomere length. As those skilled in the art will appreciate, the fact that the method can be worked using this additional or alternative set of samples indicates that any telomere length below said threshold is prognostic; the mean thereof particularly so.
In a further preferred method of the invention said disease including or characterised by telomere shortening comprises a disease where telomeres are shortened, as herein described, particularly where telomerase has reduced activity (statistically significant at the P<0.05 level) having regard to the average activity in immortalsied cell lines, and most preferably comprises one or more of the following diseases: ageing, alzheimer's disease; brain infarction; heart disease; chronic HIV infection; chronic hepatitis; skin diseases; chronic inflammatory bowel disease; ulcerative colitis; anaemia; atherosclerosis; Barrett's oesophagus; and cancer, including pre-cancerous conditions.
Preferably said cancer is either a haematological malignancy or a solid tumour.
Yet more preferably said cancer is CLL, MDS or breast cancer.
Yet more preferably, said telomere length at which telomere end-end fusion events can be detected is, ideally but not necessarily, determined for a selected single chromosome. Examples of chromosomes on which this analysis has been undertaken are shown in Table 1 along with the value of the upper limit for end-end fusion detection for each chromosome. Using five examples we have shown that the upper limit for detecting end-end fusion events in different chromosomes is very similar i.e. between 3.81 and 5.01 kb. The mean is 4.52 kb with a standard deviation of only 0.46 kb. Similarly, we have also shown that the mean telomere length in the fusogenic range for these five chromosomes is also very similar i.e. between 2.26 and 3.01 kb. The mean is 2.69 kb with a standard deviation of only 0.30 kb.
In an alternative preferred method of the invention, said telomere length at which telomere end-end fusion events can be detected is determined for a number of different chromosomes. Indeed, any chromosome could be used that can be subjected to high-resolution telomere length analysis. In this instance, the average upper limit for detecting end-end fusion events in the different chromosomes is used in part i) above; and the average mean telomere length in the fusogenic range for these different chromosomes in part ii) above is also used.
In a preferred method of the invention, in the case where said disease is CLL, time to first treatment is poor means an individual has a median time to treatment of less than 2 years (i.e. 1.84 years) with a hazard ratio of 23.2 indicating that they are 23.2 times more likely to require treatment in unit time than an individual with telomere length above the threshold. Response to treatment is poor means a median time from first treatment to death of less than 5 years (i.e. 4.1 years) with a hazard ratio of 6.4 and overall survival is poor means a median survival time from diagnosis of less than 8 years (i.e. 7.49 years) with a hazard ratio of 71.3.
In a preferred method of the invention, in the case where said disease is CLL, time to first treatment is good means an individual will not need treatment and can be monitored conventionally; and response to treatment is good means that the mean time to treatment will not be reached within 10 years; and overall survival is good means that the median survival is greater than 10 years with 96% of the cohort surviving to this censor point and can be monitored conventionally.
In a preferred method of the invention, in the case where said disease is MDS, overall survival is poor means a median survival time from diagnosis of less than 1.5 years (i.e. 1.15 years) with a hazard ratio of 9.5.
In a preferred method of the invention, in the case where said disease is MDS, overall survival is good means that the median survival is 4.9 years and can be monitored conventionally.
In a preferred method of the invention, in the case where said disease is breast cancer, overall survival is poor means a median survival time of less than 1 year (i.e. 0.95 years) with a hazard ratio of 87080.
In a preferred method of the invention, in the case where said disease is breast cancer, overall survival is good means that the median survival is greater than 6 years and can be monitored conventionally.
According to a second aspect of the invention there is provided a prognostic method for determining the progression of a disease including or characterized by telomere shortening comprising:
In this second embodiment of the invention, preferably, said prognostic mean telomere length is determined using a 4.06 kb threshold (i.e. 4.52−0.46 kb) or a 4.98 kb threshold (i.e. 4.52+0.46 kb) at which telomere end-end fusion events can be detected.
In a preferred embodiment of the second aspect of the invention said disease is cancer and, typically, said cancer is CLL, breast cancer or MDS and, ideally, said prognostic mean telomere length value of 2.26 kb is used for CLL and breast cancer and said prognostic mean telomere length value of 2.5 kb is used for MDS.
Yet more preferably, in this second aspect of the invention said telomere length at which telomere end-end fusion events can be detected is determined for a number of chromosomes. Ideally, the chromosomes are XpYp, 17p, 2p, 16p and 18q, although any other combination of chromosomes may be used and their average upper threshold at which telomere end-end fusion events can be detected is used in the above method.
According to a third aspect of the invention there is provided a prognostic method for determining the progression of a disease including or characterized by telomere shortening comprising:
In this third embodiment of the invention, preferably, said prognostic mean telomere length is either 2.39 kb (i.e. 2.69−0.3 kb) or 2.99 kb (i.e. 2.69+0.3 kb).
In a preferred embodiment of the third aspect of the invention said disease is a haematological cancer, and typically said cancer is CLL or MDS and, more ideally still, said prognostic mean telomere length is 2.26 kb for the former and 2.5 kb for the latter.
In a preferred embodiment of the third aspect of the invention said disease is breast cancer and, more ideally still, said prognostic mean telomere length is 2.26 kb.
Yet more preferably, in this third aspect of the invention said prognostic mean telomere length is determined for a number of chromosomes. Ideally, the chromosomes are XpYp, 17p, 2p, 16p and 18q, although any other combination of chromosomes may be used and their average prognostic mean telomere length is used in the above method.
According to a further aspect of the invention there is provided one or more, including combinations thereof, of the primers described herein.
According to a yet further aspect of the invention there is provided a treatment regimen including or comprising said afore prognostic method according to any aspect or embodiment of the invention.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprises”, or variations such as “comprises” or “comprising” is used in an inclusive sense i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
All references, including any patent or patent application, cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. Further, no admission is made that any of the prior art constitutes part of the common general knowledge in the art.
Preferred features of each aspect of the invention may be as described in connection with any of the other aspects.
Other features of the present invention will become apparent from the following examples. Generally speaking, the invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including the accompanying claims and drawings). Thus, features, integers, characteristics, compounds or chemical moieties described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein, unless incompatible therewith.
Moreover, unless stated otherwise, any feature disclosed herein may be replaced by an alternative feature serving the same or a similar purpose.
The invention will now be described by way of example only with reference to the following tables and figures:
Table-1 shows the longest mean telomere length at which telomere end-end fusion events can be detected for a range of chromosomes, including the mean thereof and the prognostic mean telomere length for each one of said chromosomes, including the mean thereof.
Table-2 shows a comparison of prognostic factors in univariate analysis, in terms of time to first treatment and overall survival.
Table-3 shows the clinical characteristics of the 184 CLL patient cohort.
Table-4 shows the analysis of concordant datasets combining telomere length analysis with known prognostic markers.
Peripheral blood samples from 184 CLL consenting patients, in accordance with the Declaration of Helsinki and as approved by the South East Wales local research ethics committee (LREC#02/4806). CLL was defined by clinical criteria as well as cellular morphology, and also the co-expression of CD19 and CD5 in lymphocytes simultaneously displaying restriction of light-chain rearrangement. Comprehensive clinical information was available for all patients with a median follow-up of 5.8 years. All of the samples were collected at, or close to, the time of diagnosis from two centers, Cardiff and Birmingham, and staging was based on the Binet classification system24. The clinical characteristics of the CLL patient cohort are presented in Table-2.
Genomic DNA, together with clinical follow up data, from a panel of 28 invasive breast ductal carcinomas was obtained from the Wales Cancer bank, under approval from the Wales MREC.
Bone marrow samples were obtained from 63 patients diagnosed with myelodysplastic syndrome (MDS), as classified according to the French-American-British system. Of these, 40 patients were male and 23 were female, with a mean age at diagnosis of 67.5 years; the median follow-up for the cohort was 5.6 years. IPSS criteria were available for 55/63 patients with 15 high, 20 intermediate and 20 low.
Isolation of Peripheral Blood Mononuclear Cells from CLL Patients
Peripheral blood mononuclear cells (PBMCs) were isolated from EDTA venous blood of the 184 CLL patients by density centrifugation using Ficoll-Hypaque (Invitrogen). B-cells were subsequently positively isolated using CD19-labeled Dynabeads (Invitrogen)25. Cells were stored at −20° C. as dry pellets prior to DNA extraction.
DNA was extracted from human cells using standard proteinase K, RNase A, phenol/chloroform protocols26. For telomere length analysis at the XpYp, 17p, 2p, 16p and 18q telomeres, we used a modification of the single telomere length analysis (STELA) assay as previously described16,20. Briefly, genomic DNA was solubilized by dilution in 10 mM Tris-HCl (pH 7.5), quantified by using Hoechst 33258 fluorometry (BioRad, Hercules, USA), and diluted to 10 ng/μl in 10 mM Tris-HCl (pH 7.5). DNA (10 ng) was further diluted to 250 pg/μl in a volume of 40 μl, containing Telorette2 linker (1 μM) and Tris-HCl (1 mM; pH 7.5). Multiple PCR reactions (typically 6 reactions per sample) were carried out for each test DNA, in 10 μl volumes. The reaction mixture consisted of DNA (250 pg), telomere-adjacent and Teltail primers (0.5 μM), Tris-HCl (75 mM; pH8.8), (NH4)2SO4 (25 mM), 0.01% Tween-20, MgCl2 (1.5 mM), and 0.5 U of Taq (ABGene, Epsom, UK) and Pwo polymerase (Roche Molecular Biochemicals, Lewes, UK) in a 10:1 ratio. The reactions were cycled with an MJ PTC-225 thermocycler (MJ research, Watertown, USA). The DNA fragments were resolved by 0.5% TAE agarose gel electrophoresis, and detected by two separate Southern hybridizations, with random-primed α-33P labeled (Amersham Biosciences, Little Chalfont, UK) TTAGGG repeat probe and a telomere-adjacent probe, together with a probe to detect the 1 kb (Stratagene, La Jolla, USA) and 2.5 kb (BioRad) molecular weight marker. The hybridized fragments were detected by phosphorimaging with a Molecular Dynamics Storm 860 phosphorimager (Amersham Biosciences, Little Chalfont, UK). The molecular weights of the DNA fragments were calculated using the Phoretix 1D quantifier (Nonlinear Dynamics, Newcastle-upon-Tyne, UK).
Telomere fusion was detected using the previously described single molecule telomere fusion assays16,17. PCR reactions containing 100 ng of DNA were performed, each containing the XpYpM, 17p6 and 21q1 PCR primers. Fusion molecules were detected, and the frequencies quantified by Southern blotting and hybridization with the XpYp telomere-adjacent probes as described previously15. In order to determine the chromosomes participating in the fusion events for subsequent sequence characterization, further hybridisations were undertaken with the 17p and 21q telomere adjacent probes; the 21q probe yields additional non-specific products and thus was not used for quantification. Any fusion products were then re-amplified for direct sequence analysis using nested PCR primers (XpYpO, 17p7 and 21qseq1).
The oligonucleotides utilised were: XpYpM (5′-ACCAGGTTTTCCAGTGTGTT-3′), 17p6 (5′-GGCTGAACTATAGCCTCTGC-3′), 21q1 (5′-CTTGGTGTCGAGAGAGGTAG-3′) for fusion PCR; XpYpO (5′-CCTGTAACGCTGTTAGGTAC-3′), 17p7 (5′-CCTGGCATGGTATTGACATG-3′), 21qseq1 (5′-TGGTCTTATACACTGTGTTC-3′) for re-amplification of fusion products; 21qseq1 (5′-TGGTCTTATACACTGTGTTC-3′), 21qseq1rev (5′-AGCTAGCTATCTACTCTAACAGAGC-3′), XpYpO (5′-CCTGTAACGCTGTTAGGTAC-3′), XpYpB2 (5′-TCTGAAAGTGGACC(A/T)ATCAG-3′), 17p7 (5′-CCTGGCATGGTATTGACATG-3′), 17pseq3 (5′-AGAATCCTGTCCTCAACAAGT-3′) to generate hybridisation probes for fusion analysis.
Primers that can be used for STELA analysis (the ones that are typically used emboldened):
TTGTCTCAGGGTCCTAGTG
GGTTATCAACCAGGTGCTCT
GGTTATCGACCAGGTGCTCC
GAATCCACGGATTGCTTTGTGTAC
GTGAATAATCAAGGTCAGAGCA
CCTGTGGGTCTAAAACCAGAAGG
GAGCTGCGTTTTGCTGAGCAC
CAGACCTTGGAGGCACGGCCTTCG
GGGAGATCCACACCGTAGCA
ACAGCCTTTTGGGGTACCGC
Statistical analysis was carried out using Prism 3.0 (Graphpad) and SAS version 9.1.3 software (SAS Institute).
The relationship between telomere length, known prognostic factors, time to first treatment (TTFT) and overall survival (OS) were explored through Wilcoxon rank sum tests for the categorical variables Binet stage, CD38, ZAP-70, IGHV gene mutation status, β2-microglobulin and FISH cytogenetics. Unstratified univariate comparisons of survival between the prognostic subsets were conducted with the log-rank test, with survival data displayed using Kaplan-Meier curves. Multivariate analysis, which adjusted for other prognostic features, was performed using forward selection to define significant co-variables with Cox regression. A P-value <0.05 was considered significant.
We analyzed the telomere length distribution in 184 CLL patients using single telomere length analysis (STELA) at the XpYp telomere (
In keeping with previous studies, mean telomere length was prognostic in our cohort of patients for TTFT (P<0.001; HR=5.5) and OS (p=0.0017; HR4.2) (
Stage a Patients with Short Telomeres have More Aggressive Disease
Given that the majority of CLL patients present with early stage disease and this group represent the greatest challenge in terms of prognostication, we performed a subset analysis of only the Binet stage A patients. 130/184 (70.6%) of our cohort was Binet stage A at diagnosis of which 15 (11.5%) had ≦2.26 kb telomere length for the XpYp telomere.
Expansion of the dataset to 144 Stage A patients, provided further verification that the specific telomere length of 2.26 kb provided the maximal prognostic power for this assay in CLL and the HR for overall survival increased to 1353 (
Although we had experimentally determined the telomere length for telomere dysfunction in CLL and shown that this was highly prognostic, we wanted to establish if this represented the optimal telomere length cutoff for predicting survival in our cohort. By performing recursive partitioning on our data set, we found 2.26 kb represented the optimum telomere length, and was the most prognostic threshold for the total cohort and the Stage A cohort (
We considered that this mean fusogenic telomere length may be conserved at other chromosome ends and thus we analyzed telomere length at 17p (
We next investigated the impact of dysfunctional telomeres on other known prognostic markers in CLL, including cytogenetics, IGHV mutation status, CD38 expression, ZAP-70 expression and Beta-2 microglobulin (β2M). The combined analysis of telomere length with FISH cytogenetics, IGHV mutation status, CD38 expression, ZAP-70 expression are shown in
In multivariate analysis forward selection identified telomere dysfunction (≦2.26 kb) as the most significant parameter for TTFT (HR=4.2; CI 1.9-8.8, P=0.0002) and OS (HR=10.9; CI 3.8-31.2, P<0.0001). Only IGHV mutation status and Binet stage retained independent prognostic significance as co-variables in the model for TTFT and only CD38 in terms of OS. It is of particular interest that IGHV mutation status and ‘high-risk’ cytogenetics were not independently prognostic in terms of OS. To our knowledge, this is the first time that these parameters have failed to prove significant for OS in this disease.
Given that we have shown that telomere length provides powerful prognostic information in CLL, we further considered that telomere length may also provide information about the ability of patients to respond to treatment. We therefore undertook a subset analysis (n=75) of our CLL patient cohort for those that had received treatment. Telomere length was highly prognostic for response to treatment with a HR of 6.4 (P=0.0002) (
We examined a cohort of 28 patients with invasive ductal carcinoma of the breast. We analyzed XpYp telomere length using STELA and categorized the patients based on the 2.26 kb telomere length cutoff defined in CLL. Despite a limited follow up period of 4.6 years, the 2.26 kb mean fusogenic telomere length provided remarkable levels of prognostication for overall survival in this disease with a hazard ratio of 112 (P=0.0056), and a median survival in the poor prognostic group of 301 days (
As with CLL, recursive partitioning of the Breast Cancer Cohort data showed that the optimum telomere length as defined by HR was 2.26 kb (
We also examined telomere length in MDS using STELA and used the mean fusogenic telomere length defined in CLL to provide prognostic information in MDS. We analysed a panel of 63 MDS patients for which we had survival data. The 2.26 kb mean fusogenic telomere length as defined in CLL, provided some prognostic power in MDS with a HR of 4.7 (P=0.09) for overall survival (
The main findings of this study can be summarised as follows:
Telomere length analysis, as defined by telomere dysfunction, provides a highly prognostic tool in human diseases, such as CLL and other human malignancies, permitting considerable discrimination for clinical outcome following treatment. Prognostic power should enable clinicians to confidently predict the clinical course of these heterogeneous diseases.
Moreover, telomere dysfunction provides remarkable prognostic resolution in early disease stage.
Only telomeres in the lower portion of the length distribution profile have the propensity for end-end fusion; using the XpYp chromosome a telomere length of ≦2.26 kb is a mean fusogenic telomere length for telomere dysfunction in a primary human tumor, below which patients of human malignancies show poor prognostic outcome. Using a number of chromosomes a telomere length ≦2.69 kb is a predictor for telomere dysfunction.
Patients with XpYp telomeres longer than 2.26 kb have remarkably stable and indolent disease (98% of these patients were alive at 5 years and 96% at the 10-year censor point).
Consistent telomere analysis in MDS and breast cancer shows that high-resolution telomere length analysis is likely to be highly prognostic in other haematological malignancies but importantly also in solid tumours.
By applying a telomere length threshold based on telomere dysfunction, this transforms the prognostic power of telomere analysis into the most prognostic parameter ever described in both univariate and multivariate analysis.
72.4 (14.4-365.5)
Number | Date | Country | Kind |
---|---|---|---|
1113968.0 | Aug 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/051936 | 8/9/2012 | WO | 00 | 4/23/2014 |