Programmed microorganisms to attenuate a disease

Information

  • Patent Grant
  • 11898183
  • Patent Number
    11,898,183
  • Date Filed
    Thursday, June 10, 2021
    2 years ago
  • Date Issued
    Tuesday, February 13, 2024
    3 months ago
  • Inventors
    • Murali; Panchapagesa Muthuswamy
    • Kumar; Arumbuliyur Sathish
    • Raghavan; Shriram
  • Examiners
    • Rao; Manjunath N
    • Lee; Jae W
    Agents
    • BakerHostetler
Abstract
The present disclosure discloses a recombinant microbe producing podophyllotoxin, or its derivatives, comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), cytochrome P450 oxidoreductase CYP719, O-methyltransferase (OMT), cytochrome P450 oxidoreductase CYP71, and 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD). Also disclosed herein is a method for producing podophyllotoxin or its derivatives. Moreover, a method of treating cancer is also disclosed.
Description
FIELD OF INVENTION

The present disclosure broadly relates to the field of genetically engineered microorganisms, and in particular the present disclosure discloses genetically engineered microorganisms capable of producing podophyllotoxin, and/or derivatives, and/or precursors thereof.


BACKGROUND OF THE INVENTION

Disease or disorders are treated at present by either surgical or non-surgical methods. Non-surgical methods include administering a therapy that could be either or a combination of chemical, biological or physical methods, given to the patient via various possible delivery routes as applicable for the disease and as found suitable by a qualified physician.


Many of these methods have short-comings, especially while treating terminally ill patients. This is due to the difficulty in managing the right dosages given to the patient. Many drug compounds are known to exert adverse effects on the patient, ranging from mild to severe, amplified by dosages over a prolonged period of drug intake while treating the disease.


Targeted therapies using innovative drug delivery systems mitigate the adverse reaction by precise delivery of dosages to the target site and organ and by reducing the dosages in the circulatory system. One such method includes treating a disease using immunotherapy.


One of the major limitations of immunotherapies is the limited number of responders to such therapies. In some terminal diseases, there are only one in five patients who responds positively to the immunotherapy. This is postulated due to variations of several factors, some of which are difficult to enumerate and have a complex association with an ecosystem as a whole.


Other innovative therapies such as gene therapy and cell therapy continue to be promising, but their lacunae include scalability and reproducibility in results. In some cases, patients have also developed severe side effects.


Few other physical targeted therapies, such as the use of electromagnetic pulse waves are futuristic at this point, leaving a huge unmet need in treating patients by minimizing adverse effects.


Therefore, studies focussing on different techniques for targeted drug delivery for treating diseases are the need of the hour.


SUMMARY OF INVENTION

In an aspect of the present disclosure, there is provided a recombinant microbe producing podophyllotoxin, or its derivatives, comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), cytochrome P450 oxidoreductase CYP719, O-methyltransferase (OMT), cytochrome P450 oxidoreductase CYP71, and 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD).


In another aspect of the present disclosure, there is provided a method for producing podophyllotoxin or its derivatives, said method comprising: (a) obtaining the recombinant microbe as described herein; and (b) culturing the recombinant microbe in a medium under suitable conditions for producing podophyllotoxin or its derivatives.


In another aspect of the present disclosure, there is provided a recombinant microbe producing etoposide, or its derivatives, comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), cytochrome P450 oxidoreductase CYP719, O-methyltransferase (OMT), cytochrome P450 oxidoreductase CYP71, 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), cytochrome P450 oxidoreductase CYP82D, UDP glucosyl transferase, and 2-Deoxy-d-ribose-5-phosphate aldolase.


In another aspect of the present disclosure, there is provided a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives.


In another aspect of the present disclosure, there is provided a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of at least one regulatory circuit.


In another aspect of the present disclosure, there is provided a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a hypoxia-responsive regulatory circuit.


In another aspect of the present disclosure, there is provided a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a nitric oxide-responsive regulatory circuit.


In another aspect of the present disclosure, there is provided a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of an arabinose-responsive regulatory circuit.


In another aspect of the present disclosure, there is provided method for treating cancer in a subject, said method comprising: administering a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a hypoxia-responsive regulatory circuit, to a subject, wherein the expression of genes is induced by hypoxic conditions to enable the recombinant microbe to secrete etoposide, or its derivatives for treating cancer in the subject.


In another aspect of the present disclosure, there is provided a method for treating cancer in a subject, said method comprising: administering a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a nitric oxide-responsive regulatory circuit, to a subject, wherein the expression of genes is induced by the presence of nitric oxide to enable the recombinant microbe to secrete etoposide, or its derivatives for treating cancer in the subject.


In another aspect of the present disclosure, there is provided a method for treating cancer in a subject, said method comprising: administering a recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of an arabinose-responsive regulatory circuit, to a subject, wherein the expression of genes is induced by the presence of arabinose to enable the recombinant microbe to secrete etoposide, or its derivatives for treating cancer in the subject


In another aspect of the present disclosure, there is provided a composition comprising: (a) the recombinant microbe as described herein; and (b) at least one pharmaceutically acceptable carrier.


In another aspect of the present disclosure, there is provided a method for treating cancer, said method comprising: administering the composition as described herein to a subject for treating cancer.


These and other features, aspects, and advantages of the present subject matter will be better understood with reference to the following description and appended claims. This summary is provided to introduce a selection of concepts in a simplified form. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF ACCOMPANYING DRAWINGS

The following drawings form a part of the present specification and are included to further illustrate aspects of the present disclosure. The disclosure may be better understood by reference to the drawings in combination with the detailed description of the specific embodiments presented herein.



FIG. 1 depicts production of etoposide under the control of AraC regulatory unit by recombinant E. coli Nissle, in accordance with an embodiment of the present disclosure.



FIG. 2 depicts production of etoposide under the control of NorR regulatory unit by recombinant E. coli Nissle, in accordance with an embodiment of the present disclosure.



FIG. 3 depicts production of etoposide under the control of FNR regulatory unit by recombinant E. coli Nissle, in accordance with an embodiment of the present disclosure.



FIG. 4 depicts the calcein AM stained tumour cells for showing the effect of culturing recombinant E. coli Nissle capable of producing etoposide along with tumour cells, in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION

Those skilled in the art will be aware that the present disclosure is subject to variations and modifications other than those specifically described. It is to be understood that the present disclosure includes all such variations and modifications. The disclosure also includes all such steps, features, compositions, and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any or more of such steps or features.


Definitions

For convenience, before further description of the present disclosure, certain terms employed in the specification, and examples are delineated here. These definitions should be read in the light of the remainder of the disclosure and understood as by a person of skill in the art. The terms used herein have the meanings recognized and known to those of skill in the art, however, for convenience and completeness, particular terms and their meanings are set forth below.


The articles “a”, “an” and “the” are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.


The terms “comprise” and “comprising” are used in the inclusive, open sense, meaning that additional elements may be included. It is not intended to be construed as “consists of only”.


Throughout this specification, unless the context requires otherwise the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated element or step or group of element or steps but not the exclusion of any other element or step or group of element or steps.


The term “including” is used to mean “including but not limited to”. “Including” and “including but not limited to” are used interchangeably. The term “recombinant” refers to the microbe which is constructed artificially, and such a microbe does not occur in nature. The term “programmed microbe” refers to the microbe which is recombinantly constructed or programmed to fulfil a specific purpose. The term “derivatives” refers to any derivative of the molecule disclosed in the present disclosure. The term “precursor” refers to any molecule that is produced earlier in the pathway as compared to the final product. The term “pharmaceutically acceptable carrier” refers to carrier or a diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered bacterial or viral compound.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the disclosure, the preferred methods, and materials are now described. All publications mentioned herein are incorporated herein by reference.


As discussed in the background section, the main problems that are faced with the current treatment modalities for cancer are: (a) lack of targeted therapies; and (b) use of higher dosage of the drug leading to adverse effects. In order to solve the problems existing in the art, the present disclosure discloses recombinant microbe which is used for producing podophyllotoxin or its derivatives like etoposide, Further, the recombinant microbes as disclosed herein are used for treating cancer. As per one of the implementations, the recombinant microbe is administered to a subject such that the microbe lodges itself near the affected area. Post administration, the microorganism is designed to produce the drug compound at the intended site of action within the human lungs. This is expected to bring down the circulating dosage of the drug to considerably low level to mitigate adverse effects of the drug.


Recombinant Microbes and the Genes for Construction of the Same


In an implementation of the present disclosure, there is provided a recombinant microbe for producing podophyllotoxin, or its derivatives, comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), cytochrome P450 oxidoreductase CYP719, O-methyltransferase (OMT), cytochrome P450 oxidoreductase CYP71, and 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), wherein the derivative produced is deoxypodophyllotoxin. It is further disclosed that the recombinant microbe further comprising gene encoding cytochrome P450 oxidoreductase CYP82D produces desmethylepipodophyllotoxin. In another implementation, the recombinant microbe further comprising gene encoding UDP glucosyl transferase produces desmethylepipodophyllotoxin glucopyranoside. In yet another implementation, the recombinant microbe further comprising gene encoding 2-Deoxy-d-ribose-5-phosphate aldolase produces etoposide.


In another implementation of the present disclosure, two or more genes are fused together to encode the respective fusion proteins. As per one implementation the genes encoding cinnamate-4-hydroxylate (C4H) and 4-coumaroyl CoA-ligase (4CL) are fused, and wherein the genes encoding hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT) and p-coumaroyl quinate 3′-hydroxylase (C3H) are fused to encode the fusion proteins. It can be contemplated that genes as described herein if amenable to fusion can be fused to obtain the recombinant microbe of the present disclosure. As per an implementation, the genes are fused using a flexible linker—GGGGSGGGGSGGGGS. Other linkers can also be used in order to perform the fusion of the genes.


In another implementation of the present disclosure, the genes are separated by a ribosome binding sequence (RBS) in order to obtain enhanced translation efficiency.


The RBS can have a nucleic acid sequence as set forth in SEQ ID NO: 61 (TCTTAATCATGCACAGGAGACTTTCTA) or the nucleic acid sequence as set forth in SEQ ID NO: 62 (AAGTTCACTTAAAAAGGAGAGATCAACA). Further, a person skilled in the art can use any other well-known RBS sequences in order to increase the translation efficiency.


As per an implementation, the genes encoding: PAL having an amino acid sequence as set forth in SEQ ID NO: 2, C4H4CL having an amino acid sequence as set forth in SEQ ID NO: 12, HCTC3H having an amino acid sequence as set forth in SEQ ID NO: 14, CCoAOMT having an amino acid sequence as set forth in SEQ ID NO: 18, DIRPLR having an amino acid sequence as set forth in SEQ ID NO: 20, SDH having an amino acid sequence as set forth in SEQ ID NO: 22, and CYP719 having an amino acid sequence as set forth in SEQ ID NO: 26 were assembled in pRSF vector. The next six genes of the pathway were selected as follows: the genes encoding OMT having an amino acid sequence as set forth in SEQ ID NO: 30, CYP71 having an amino acid sequence as set forth in SEQ ID NO: 32, 2-ODD having an amino acid sequence as set forth in SEQ ID NO: 36, CYP82D having an amino acid sequence as set forth in SEQ ID NO: 40, UGT having an amino acid sequence as set forth in SEQ ID NO: 46, DERA having an amino acid sequence as set forth in SEQ ID NO: 50 were assembled in p15A vector.


As per an implementation, there is provided a recombinant vector comprising at least one nucleic acid fragment encoding phenyl alanine ammonia-lyase (PAL), Cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, at least one gene encoding a protein transporter selected from the group consisting of ATP-Binding Cassette (ABC) transporter, Major Facilitator Superfamily (MFS) transporters, SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family, and at least one regulatory circuit selected from the group consisting of nitric oxide (NO) operon, arabinose (AraC) operon, fumarate and nitrate reductase (FNR) operon, thiosulphate-responsive regulatory circuit, and tetrathionate-responsive regulatory circuit. Also, there is provided a method for obtaining recombinant vector as described herein, said method comprises method comprising: (a) obtaining one or more recombinant vector, said recombinant vector encoding a repertoire of genes encoding phenyl alanine ammonia-lyase (PAL), Cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, UDP glucosyl transferase, at least one gene encoding a protein transporter selected from the group consisting of ATP-Binding Cassette (ABC) transporter, Major Facilitator Superfamily (MFS) transporters, SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family, and at least one regulatory circuit selected from the group consisting of nitric oxide (NO) operon, arabinose (AraC) operon, fumarate and nitrate reductase (FNR) operon, thiosulphate-responsive regulatory circuit, and tetrathionate-responsive regulatory circuit; and (b) transforming a host microbe with the recombinant vector obtained in step (a), to obtain the recombinant microbe.


Microbe as Per the Present Disclosure


In an implementation of the present disclosure, the recombinant microbe refers to any microbe as per the requirement. As per one implementation, the microbe is a bacterium including, but not limited to the genus Escherichia, Bacillus, Bacteroides, Bifidobacterium, Brevibacteria, Clostridium, Enterococcus, Lactobacillus, Lactococcus, Saccharomyces, Staphylococcus, Klebsiella, Citrobacter, Pseudobutyrivibrio, and Ruminococcus. The bacterium can be a species including, but not limited to Escherichia coli, Bacillus coagulans, Bacillus subtilis, Bacteroides fragilis, Bacteroides subtilis, Bacteroides thetaiotaomicron, Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacterium lactis, Bifidobacterium longum, Clostridium butyricum, Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus johnsonii, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactococcus lactis, Firmicutes (including species of Eubacterium), Roseburia, Faecalibacterium, Enterobacter, Faecalibacterium prausnitzii, Clostridium difficile, Subdoligranulum, Clostridium sporogenes, Campylobacter jejuni, Clostridium saccharolyticum.


As per another implementation, the recombinant microbe can be any one selected from commensal bacteria.


As per another implementation, the microbe is E. coli Nissle 1917 strain. The genetically engineered bacteria are Escherichia coli strain Nissle 1917 (E. coli Nissle), a Gram-negative bacterium of the Enterobacteriaceae family that has evolved into one of the best characterized probiotics (Ukena et al., 2007). The strain is characterized by its complete harmlessness (Schultz, 2008), and has GRAS (generally recognized as safe) status (Reister et al., 2014, emphasis added). Genomic sequencing confirmed that E. coli Nissle lacks prominent virulence factors (e.g., E. coli a-hemolysin, P-fimbrial adhesins) (Schultz, 2008). In addition, it has been shown that E. coli Nissle does not carry pathogenic adhesion factors, does not produce any enterotoxins or cytotoxins, is not invasive, and is not uropathogenic. (Sonnenborn et al., 2009). As early as in 1917, E. coli Nissle was packaged into medicinal capsules, called Mutaflor, for therapeutic use. E. coli Nissle has since been used to treat ulcerative colitis in humans in vivo (Rembacken et al., 1999), to treat inflammatory bowel disease, Crohn's disease, and pouchitis in humans in vivo (Schultz, 2008), and to inhibit enteroinvasive Salmonella, Legionella, Yersinia, and Shigella in vitro (Altenhoefer et al., 2004). It is commonly accepted that E. coli Nissle's therapeutic efficacy and safety have convincingly been proven (Ukena et al., 2007).



E. coli Nissle 1917 was isolated in 1917 by the German physician Alfred Nissle from the stool of a German soldier who, unlike his comrades, survived an outbreak of enterocolitis. This strain is widely used as a probiotic, produced under the trade name of Mutoflor™, to treat intestinal disorders including diarrhoea, irritable bowel disease, ulcerative colitis and Crohn's disease (Altenhoefer et al., 2004; Lodinova-Zadnikova et al., 1997; Rembacken et al., 1999). E. coli Nissle 1917 is furthermore of interest due to its specific ability to grow in tumours. Bacteriolytic tumor-therapy was first described in the 1950s (Parker et al., 1947; Malmgren and Flanigan, 1955), based on the fact that some types of anaerobic bacteria can selectively propagate in tumours but not in other organs. These bacterial strains include Bifidobacterium (Yi et al., 2005), Clostridia species (Agrawal et al., 2004), Corynebacterium parvum (Fisher et al., 1990), Salmonella typhimurium (Zhao et al., 2005, 2006), Salmonella choleraesuis (Lee et al., 2004, 2005a,b) and Bordetella pertussis (Pawelek, 2005). Most anticancer drugs are delivered into patients orally or somatically, which results in prolonged side-effects. Therefore, it will be greatly advantageous to specifically deliver anticancer drugs into tumours to increase the effect of the drugs on the tumour and to reduce side-effects on other organs. Many trials have been performed to express anticancer peptides and RNAi in the bacterial strains selectively growing in tumours (Jia et al. 2005; Dang et al. 2001; Loeffler et al. 2007). However, so far, no work has been performed using these strains to express anticancer drugs like podophyllotoxin derivatives such as etoposide. E. coli in general is extremely easy to culture and is highly amenable to experimentation and manipulation. E. coli Nissle 1917 is particularly useful due to its non-pathogenic nature and its ability to specifically grow in tumours. Therefore, Escherichia coli Nissle 1917 is a particularly suitable heterologous host for the expression of genes capable of etoposide biosynthesis, according to the present invention.


Etoposide pathway may be integrated into the bacterial chromosome at one or more integration sites. For example, one or more copies of the gene cassette may be integrated into the bacterial chromosome. Having multiple copies of the gene cassette integrated into the chromosome allows for greater production of the Etoposide and also permits fine-tuning of the level of expression. As per one implementation, exemplary integration sites within the E. coli 1917 Nissle chromosome are NupG, AslB, AraC, LacZ, dapA, Cea, YfeD, ThyA, malP, GalK, GTP. One skilled in the art can identify other safe harbour sites where the genes can be integrated without interfering with expression of essential genes.


Transporter Proteins to Enable Secretion of Podophyllotoxin or its Derivatives Outside the Recombinant Microbe


In an implementation of the present disclosure, apart from the genes encoding the enzymes for podophyllotoxin pathway, the recombinant microbe further comprises at least one gene encoding a protein transporter. The protein transporter is selected from the group consisting of ATP-Binding Cassette (ABC) transporter, Major Facilitator Superfamily (MFS) transporters, SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family. The protein transporter as disclosed herein is capable of secreting the end product outside the cell. Typically, ABC family transporters are multicomponent primary active transporters, capable of transporting molecules in response to ATP hydrolysis. Non-limiting examples of endogenous ABC transporter genes include the genes at the loci PDRS, PDR10, PDR15, SNQ2, YOR1, YOL075c and PDR18 (or a functional homolog thereof). The Major Facilitator Superfamily (MFS) transporters are polypeptides that can transport small solutes in response to chemiosmotic ion gradients. Saier, Jr. et al., J. Mol. Microbiol. Biotechnol. 1:257-279 (1999). The MFS transporter family is sometimes referred to as the uniporter-symporter-antiporter family. MFS transporters function, inter alia, in sugar uptake and drug efflux systems. MFS transporters typically contain conserved MFS-specific motifs. Non-limiting examples of endogenous MFS transporter genes include the genes at the TPO1, TPO3, and FLR1 loci (or a functional homolog thereof).


Other transporter families include the SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family. The SMR family members are integral membrane proteins characterized by four alpha-helical transmembrane strands that confer resistance to a broad range of antiseptics, lipophilic quaternary ammonium compounds (QAC), and aminoglycoside resistance in bacteria. See, Bay and Turner, BMC Evol Biol., 9: 140 (2009).


As per an implementation, the ABC transporter genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, and SEQ ID NO: 58 can be used for constructing the recombinant microbe as disclosed herein.


Regulatory Circuits for Controlling the Expression of Genes of Podophyllotoxin Pathway


Transcriptional repressors and activators bind to operator sequences in DNA and respectively inhibit and enhance the transcription of genes by RNA polymerase, thus increasing or decreasing output signal flux. The transcription rate can be controlled by varying the concentration of regulator. For example, in addition to classical examples of inducible promoters controlled by regulators that bind to metabolites (e.g. LacI, AraC), signalling molecules (e.g. LuxR), and metal ions (e.g. ArsR), more recent CRISPR (clustered regularly interspaced short palindromic repeats)-based tools which require binding of guide RNA (gRNA) sequences have been developed (Qi et al, 2013, Kiani et al, 2014). Nuclease inactive Cas9 protein can function as a repressor that works by steric hindrance of RNAP at the promoter, or Cas9 can also be fused with other repressors or activators. Synthetic promoters and genes can be designed to contain multiple different regulator binding sites in order to increase the number of inputs that control the transcriptional output (Stanton et al, 2013). Recently, the interlinked relationship between the microbiome and pH of the niches they occupy have been under investigation in regard to conditions such as acne and bacterial vaginosis. In order to provide some growth or survival advantage in acidic conditions, the PcadC region of the cadBA operon in E. coli activates transcription under external acidic pH and in the presence of lysine. Using b-galactosidase assays, it was shown that PcadC could significantly increase expression when the pH was decreased from 7.6 to 5.4. A system like this could be used to design a biosensor circuit to only activate in predetermined locations or to detect dysbiotic pH at microbial niches. Propionate inducible system (pPro) was identified and characterised from the prpBCDE operons of E. coli and Salmonella enterica. It was shown that after intake into the cell, propionate is activated to propionyl-CoA by prpE-encoded propionyl-CoA synthetase. the prpR transcriptional activator gene, the PprpB promoter region can be used to create the pPro inducible expression system as sensing circuit (Lee and Keasling, 2005).


In an implementation of the present disclosure, the recombinant microbe as described herein further comprises at least one regulatory circuit selected from the group consisting of nitric oxide (NO) operon, arabinose (AraC) operon, fumarate and nitrate reductase (FNR) operon, thiosulphate-responsive regulatory circuit, and tetrathionate-responsive regulatory circuit. The presence of a regulatory circuit is important to control the expression of the genes responsible for the synthesis of podophyllotoxin or its derivatives.


Once the recombinant microbe is administered to a subject in need thereof, the expression of the genes can be controlled. As per one implementation, to create inducible systems for use in E. coli Nissle 1917, parts from a large repertoire of systems that govern carbohydrate utilization are used, which include cytoplasmic transcription factors, extracytoplasmic function sigma/anti-sigma pairs, and hybrid two-component systems (HTCS), among others. In E. coli nissle, arabinose and rhamnose metabolism is mediated by the AraC/Xy1S-family transcriptional activator, RhaR, which activates transcription at the Pbad promoter. The AraC operon can be cloned upstream of the genes responsible for synthesis of podophyllotoxin or its derivatives in such a manner that on providing arabinose or rhamnose, the genes could be induced and the absence of arabinose or rhamnose would ensure that the genes are not expressed.


Nitric oxide is a natural marker of inflammation in lung cancer, making it an ideal input signal for this engineered microorganism. Inflamed lung epithelial cells produce nitric oxide by up-regulating inducible nitric oxide synthase (iNOS), an enzyme that produces nitric oxide from L-arginine. Therefore, as per another implementation, nitric oxide sensing can be combined through NorR regulatory unit with podophyllotoxins pathway biosynthesis genes. The recombinant microbes harboring the genes controlled by NorR circuitry would ensure the secretion of podophyllotoxin or its derivatives in the presence of nitric oxide and would limit unnecessary production of the compound.


Since hypoxia is a prevalent condition in the tumour microenvironment, the recombinant microbe can also be engineered with an FNR regulatory operon. Under oxygen rich conditions binding of the transcription factor FNR to the hypoxia-inducible promoter will be impeded, leading to repressed expression of the downstream gene. In tumor microenvironment with relatively low levels of oxygen the FNR transcription factor can bind to the promoter, leading to the expression of the downstream gene.


Treatment Modalities with the Recombinant E. coli Nissle Capable of Producing Etoposide


As per one implementation of the present disclosure, there is provided a recombinant microbe capable of treating cancer. The recombinant microbe is capable of producing podophyllotoxin, or its precursor, or its derivatives. In another aspect, the recombinant microbe is E. coli Nissle 1917 genetically engineered to produce etoposide which can be used for treating cancer in a subject. The recombinant microbe is capable of targeting cancer cells. The targeting can be done by low oxygen condition such as hypoxic environment prevalent among cancerous cells.


As per another implementation, the recombinant microbe is capable of producing one or more anti-cancer molecule, and said anti-cancer molecule can be any derivative, or precursor of podophyllotoxin or any molecule from the podophyllotoxin pathway. The recombinant microbe can be administered locally at the site of tumour (intratumoral administration). The recombinant microbe can be administered orally through aerosol formulation, such a route of administration will provide the opportunity for the recombinant bacteria to lodge in the lung and produce the anti-cancer molecules for treating lung cancer. In order to ensure targeted production of etoposide, or podophyllotoxin derivative (anti-cancer molecule), the recombinant microbe can be cloned under a regulatory circuit such that the production of the anti-cancer molecules can be restricted to the presence of the relevant inducer. The inducer can be hypoxic conditions, or the presence of nitric oxide which are the hallmarks of the conditions prevalent in cancerous cells such that the production of the anti-cancer molecule takes place only in the niche of cancerous cells.


In another implementation, the inducer can also be provided externally in form of arabinose for inducing production of the anti-cancer molecule, the genes for which are cloned under the control of AraC regulatory operon.


In one another implementation, the treatment regime can be decided based on the survival of the recombinant microbe inside the human subject. A fresh dose of the recombinant microbe can be provided at a pre-decided interval of a few days to few weeks to few months depending on the requirement of the anti-cancer molecule and the stage of the tumour. The formulation for oral administration can be prepared as per the technique well known in the art. The dosage of the recombinant microbe can be adjusted based on the requirement of the anti-cancer molecule and the type and stage of the tumour. The administration technique can be adjusted as per the requirement.


In some implementations, the treatment regimen can include one or more intratumoral administrations. In some implementations, a treatment regimen can include an initial dose, followed by at least one subsequent dose. One or more doses can be administered sequentially in two or more cycles. For instance, a first dose may be administered at day 1, and a second dose may be administered after 1, 2, 3, 4, 5, 6, days or 1, 2, 3, or 4 weeks or after a longer interval. Additional doses may be administered after 1, 2, 3, 4, 5, 6, days or after 1, 2, 3, or 4 weeks or longer intervals. In some implementations, the first and subsequent administrations have the same dosage. In other implementations, different doses are administered. In some implementations, more than one dose is administered per day, for example, two, three or more doses can be administered per day.


As per one implementation of the present disclosure, the recombinant microbe capable of producing at least one derivative, or at least one pre-cursor of podophyllotoxin is capable of killing cancerous cells. The recombinant microbe is capable of killing 10%, or 20%, or 30%, or 40%, or 50%, or 60%, or 70%, or 80%, or 90% cancerous cells over a particular site.


In an implementation of the present disclosure, there is provided a composition comprising the recombinant microbe as disclosed in the present disclosure, and a pharmaceutically acceptable carrier. The carrier can be any pharmaceutically acceptable substance well described in the art. The carriers can be selected from the group consisting of thickeners, diluents, buffers, buffering agents, surface active agents, neutral or cationic lipids, lipid complexes, liposomes, and penetration enhancers. For example, the pharmaceutical composition may include, but is not limited to, the addition of calcium bicarbonate, sodium bicarbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols, and surfactants, including, for example, polysorbate 20. In some embodiments, the genetically engineered bacteria of the present disclosure may be formulated in a solution of sodium bicarbonate, e.g., 1 molar solution of sodium bicarbonate (to buffer an acidic cellular environment, such as the stomach, for example). The genetically engineered bacteria may be administered and formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.


Although the subject matter has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternate embodiments of the subject matter, will become apparent to persons skilled in the art upon reference to the description of the subject matter. It is therefore contemplated that such modifications can be made without departing from the spirit or scope of the present subject matter as defined


EXAMPLES

The disclosure will now be illustrated with working examples, which is intended to illustrate the working of disclosure and not intended to take restrictively to imply any limitations on the scope of the present disclosure. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein. It is to be understood that this disclosure is not limited to particular methods, and experimental conditions described, as such methods and conditions may vary.


The present section highlights the examples of the present disclosure. The criticality of the disclosure is mentioned in this section and the method of using the recombinant microbe has been disclosed herein.


Example 1

Sequences Used in the Present Disclosure.


Several nucleic acid sequences encoding different enzymes of the podophyllotoxin were studied for their ability to encode the respective enzymes for showing the desirable enzyme activity. As is mentioned in the later part of the examples, that not all genes are able to encode the proteins (enzymes) having desirable enzyme activity. Therefore, Table 1 depicts the nucleic acid sequence of the genes which provided desirable results in terms of expressing a protein having the desirable enzyme activity. The nucleic acid sequences of different genes were codon optimised to achieve optimal expression in E. coli Nissle 1917 cell. Table 1 provides the sequence of the codon optimised genes. Table 2 depicts the amino acid sequence of the corresponding nucleic acid sequences listed in Table 1.


Genes from different microbes that encode ABC transporter proteins were studied, and interestingly it was found that not all ABC transporter proteins were able to provide the desirable secretion of etoposide outside the cell. Therefore, Table 3 lists the codon optimised nucleic acid sequences of the genes which provided the desirable results. Similarly, Table 4 lists the amino acid sequences encoded by the nucleic acid mentioned in the Table 3.









TABLE 1







List of nucleic acid sequences encoding enzymes of podophyllotoxin pathway













SEQ




Ref.

ID




No.
Genes
NO:
Organism
Sequence (codon optimized)














1
Phenylalanine
1

Rhodosporidium

ATGGCGCCGTCTCTGGACTCTATCTCTCACTCTTTCGCGAACGGT



ammonia-


toruloides

GTTGCGTCTGCGAAA



lyase


CAGGCGGTTAACGGTGCGTCTACCAACCTGGCGGTTGCGGGTTC



(PAL)


TCACCTGCCGACCACC






CAGGTTACCCAGGTTGACATCGTTGAAAAAATGCTGGCGGCGCC






GACCGACTCTACCCTG






GAACTGGACGGTTACTCTCTGAACCTGGGTGACGTTGTTTCTGCG






GCGCGTAAAGGTCGT






CCGGTTCGTGTTAAAGACTCTGACGAAATCCGTTCTAAAATCGAC






AAATCTGTTGAATTC






CTGCGTTCTCAGCTGTCTATGTCTGTTTACGGTGTTACCACCGGTT






TCGGTGGTTCTGCG






GACACCCGTACCGAAGACGCGATCTCTCTGCAGAAAGCGCTGCT






GGAACACCAGCTGTGC






GGTGTTCTGCCGTCTTCTTTCGACTCTTTCCGTCTGGGTCGTGGTC






TGGAAAACTCTCTG






CCGCTGGAAGTTGTTCGTGGTGCGATGACCATCCGTGTTAACTCT






CTGACCCGTGGTCAC






TCTGCGGTTCGTCTGGTTGTTCTGGAAGCGCTGACCAACTTCCTG






AACCACGGTATCACC






CCGATCGTTCCGCTGCGTGGTACCATCTCTGCGTCTGGTGACCTG






TCTCCGCTGTCTTAC






ATCGCGGCGGCGATCTCTGGTCACCCGGACTCTAAAGTTCACGTT






GTTCACGAAGGTAAA






GAAAAAATCCTGTACGCGCGTGAAGCGATGGCGCTGTTCAACCT






GGAACCGGTTGTTCTG






GGTCCGAAAGAAGGTCTGGGTCTGGTTAACGGTACCGCGGTTTC






TGCGTCTATGGCGACC






CTGGCGCTGCACGACGCGCACATGCTGTCTCTGCTGTCTCAGTCT






CTGACCGCGATGACC






GTTGAAGCGATGGTTGGTCACGCGGGTTCTTTCCACCCGTTCCTG






CACGACGTTACCCGT






CCGCACCCGACCCAGATCGAAGTTGCGGGTAACATCCGTAAACT






GCTGGAAGGTTCTCGT






TTCGCGGTTCACCACGAAGAAGAAGTTAAAGTTAAAGACGACGA






AGGTATCCTGCGTCAG






GACCGTTACCCGCTGCGTACCTCTCCGCAGTGGCTGGGTCCGCTG






GTTTCTGACCTGATC






CACGCGCACGCGGTTCTGACCATCGAAGCGGGTCAGTCTACCAC






CGACAACCCGCTGATC






GACGTTGAAAACAAAACCTCTCACCACGGTGGTAACTTCCAGGC






GGCGGCGGTTGCGAAC






ACCATGGAAAAAACCCGTCTGGGTCTGGCGCAGATCGGTAAACT






GAACTTCACCCAGCTG






ACCGAAATGCTGAACGCGGGTATGAACCGTGGTCTGCCGTCTTG






CCTGGCGGCGGAAGAC






CCGTCTCTGTCTTACCACTGCAAAGGTCTGGACATCGCGGCGGCG






GCGTACACCTCTGAA






CTGGGTCACCTGGCGAACCCGGTTACCACCCACGTTCAGCCGGC






GGAAATGGCGAACCAG






GCGGTTAACTCTCTGGCGCTGATCTCTGCGCGTCGTACCACCGAA






TCTAACGACGTTCTG






TCTCTGCTGCTGGCGACCCACCTGTACTGCGTTCTGCAGGCGATC






GACCTGCGTGCGATC






GAATTCGAATTCAAAAAACAGTTCGGTCCGGCGATCGTTTCTCTG






ATCGACCAGCACTTC






GGTTCTGCGATGACCGGTTCTAACCTGCGTGACGAACTGGTTGA






AAAAGTTAACAAAACC






CTGGCGAAACGTCTGGAACAGACCAACTCTTACGACCTGGTTCC






GCGTTGGCACGACGCG






TTCTCTTTCGCGGCGGGTACCGTTGTTGAAGTTCTGTCTTCTACCT






CTCTGTCTCTGGCG






GCGGTTAACGCGTGGAAAGTTGCGGCGGCGGAATCTGCGATCTC






TCTGACCCGTCAGGTT






CGTGAAACCTTCTGGTCTGCGGCGTCTACCTCTTCTCCGGCGCTG






TCTTACCTGTCTCCG






CGTACCCAGATCCTGTACGCGTTCGTTCGTGAAGAACTGGGTGTT






AAAGCGCGTCGTGGT






GACGTTTTCCTGGGTAAACAGGAAGTTACCATCGGTTCTAACGTT






TCTAAAATCTACGAA






GCGATCAAATCTGGTCGTATCAACAACGTTCTGCTGAAAATGCT






GGCG





3
Phenylalanine
3

Populus

ATGGAATTCTGCCAGGACTCTCGTAACGGTAACGGTTCTCCGGGT



ammonia-


kitakamiensis

TTCAACACCAACGAC



lyase


CCGCTGAACTGGGGTATGGCGGCGGAATCTCTGAAAGGTTCTCA



(PAL)


CCTGGACGAAGTTAAA






CGTATGATCGAAGAATACCGTAACCCGGTTGTTAAACTGGGTGG






TGAAACCCTGACCATC






GGTCAGGTTACCGCGATCGCGTCTCGTGACGTTGGTGTTATGGTT






GAACTGTCTGAAGAA






GCGCGTGCGGGTGTTAAAGCGTCTTCTGACTGGGTTATGGACTCT






ATGTCTAAAGGTACC






GACTCTTACGGTGTTACCACCGGTTTCGGTGCGACCTCTCACCGT






CGTACCAAACAGGGT






GGTGAACTGCAGAAAGAACTGATCCGTTTCCTGAACGCGGGTAT






CTTCGGTAACGGTACC






GAATCTTCTCACACCCTGCCGCGTTCTGCGACCCGTGCGGCGATG






CTGGTTCGTACCAAC






ACCCTGCTGCAGGGTTACTCTGGTATCCGTTTCGAAATGCTGGAA






GCGATCACCAAAATG






ATCAACCACAACATCACCCCGTGCCTGCCGCTGCGTGGTACCATC






ACCGCGTCTGGTGAC






CTGGTTCCGCTGTCTTACATCGCGGGTCTGCTGACCGGTCGTCCG






AACTCTAAAGCGGTT






GGTCCGAACGGTGAACCGCTGACCCCGGCGGAAGCGTTCACCCA






GGCGGGTATCGACGGT






GGTTTCTTCGAACTGCAGCCGAAAGAAGGTCTGGCGCTGGTTAA






CGGTACCGCGGTTGGT






TCTGGTCTGGCGTCTATGGTTCTGTTCGAAGCGAACGTTCTGGCG






ATCCTGTCTGAAGTT






CTGTCTGCGATCTTCGCGGAAGTTATGCAGGGTAAACCGGAATT






CACCGACCACCTGACC






CACAAACTGAAACACCACCCGGGTCAGATCGTTGCGGCGGCGAT






CATGGAACACATCCTG






GACGGTTCTGCGTACGTTAAAGAAGCGCAGAAACTGCACGAAAT






CGACCCGCTGCAGAAA






CCGAAACAGGACCGTCACGCGCTGCGTACCTCTCCGCAGTGGCT






GGGTCCGCTGATCGAA






GTTATCCGTACCTCTACCAAAATGATCGAACGTGAAATCAACTCT






GTTAACGACAACCCG






CTGATCGACGTTTCTCGTAACAAAGCGCTGCACGGTGGTAACTTC






CAGGGTACCCCGATC






GGTGTTTCTATGGACAACACCCGTCTGGCGATCGCGTCTATCGGT






AAACTGATGTTCGCG






CAGTTCTCTGAACTGGTTAACGACCTGTACAACAACGGTCTGCCG






TCTAACCTGACCGGT






GGTCGTAACCCGTCTCTGGACTACGGTTTCAAAGGTGCGGAAAT






CGCGATGGCGTCTTAC






TGCTCTGAACTGCAGTTCCTGGACCAGTCTTGCACCAACCACGTT






CAGTCTGCGGAACAG






CACAACCAGGACGTTAACTCTCTGGGTCTGATCTCTTCTCGTAAA






ACCGCGGAAGCGATC






GACATCCTGAAACTGATGTCTACCACCTTCCTGGTTGGTCTGTGC






CACTCTGTTGACCTG






CGTCACATCGAAGAAAACCTGAAAAACACCGTTAAAATCTCTGT






TTCTCAGCTGCCGCGT






GTTCTGACCATGGGTTTCAACGGTGAACTGCACCCGTCTCGTTTC






TGCGAAAAAGACCTG






CTGAAAGTTGTTGACCGTGAACACGTTTTCTCTTACATCGACGAC






CCGTGCTCTGCGACC






TACCCGCTGATGCAGAAACTGCGTCAGGTTCTGGTTGAACACGC






GCTGGTTAACGGTGAA






AAAGTTCGTAACTCTACCACCTCTATCTTCCAGAAAATCGGTTCT






TTCGAAGAAGAACTG






AAAACCCTGCTGCCGAAAGAAGTTGAATCTGCGCGTCTGGAAGT






TGAAAACGGTAACCCG






GCGATCCCGAACCGTATCAAAGAATGCCGTTCTTACCCGCTGTAC






AAATTCGTTCGTGAA






GAACTGGGTACCTCTCTGCTGACCGGTGAAAAAGTTAAATCTCC






GGGTGAAGAATTCGAC






AAAGTTTTCACCGCGATCTGCGCGGGTAAACTGATCGACCCGCT






GCTGGAATGCCTGAAA






GAATGGGACGGTGCGCCGCTGCCGATCTGC





5
Phenylalanine
5

Strobilurus

ATGCCGATCACCCACGAACAGCCGAACGGTTTCCACTCTAAACA



ammonia-


tenacellus

GCTGAACGGTTCTGGT



lyase


ATCGCGAAAGCGAAAGCGATGCCGTACCCGTCTGACCTGCTGTC



(PAL)


TCACTTCGTTAAACAG






CACCTGGAACTGGAATCTTACAAAAACGGTCAGGAAATCGAAAT






CGACGGTTACTCTCTG






TCTATCTCTGCGGTTTCTGCGGCGGCGCGTTACAACGCGCCGGTT






ATCCTGCGTGACTCT






TCTACCATCCGTGACCGTCTGGAAAAAGCGCGTTCTGTTATCGTT






GAAAAAATCGAAGGT






TCTAAATCTGTTTACGGTGTTTCTACCGGTTTCGGTGGTTCTGCG






GACACCCGTACCTCT






AACACCCTGGCGCTGGGTAACGCGCTGCTGCAGCACCAGCACTC






TGGTGTTCTGCCGTCT






ACCACCAACACCCTGTCTGTTCTGCCGCTGCTGGACCCGATCGCG






TCTACCTCTATGCCG






GAATCTTGGGTTCGTGGTGCGATCCTGATCCGTATCAACTCTCTG






ATCCGTGGTCACTCT






GGTGTTCGTTGGGAACTGATCGCGAAAATGGTTGAACTGCTGCA






GGCGAACATCACCCCG






CTGGTTCCGCTGCGTGGTTCTATCTCTGCGTCTGGTGACCTGTCTC






CGCTGTCTTACGTT






GCGGGTACCCTGATGGGTAACCCGTCTATCCGTGTTTTCGACGGT






CCGGCGGCGTTCGGT






GCGCGTCAGATCGTTTCTTCTGTTAAAGCGCTGGAAGAACACAA






CATCACCCCGATCTCT






CTGCTGGCGAAAGAACACCTGGGTATCCTGAACGGTACCGCGTT






CTCTGCGTCTGTTGCG






TCTCTGGTTCTGTCTGACGTTACCCACCTGGCGATGCTGGCGCAG






GTTTGCACCGCGATG






GGTACCGAAGTTCTGCTGGGTGAACGTATGAACTACGCGCCGTT






CATCCACGCGGTTGCG






CGTCCGCACCCGGGTCAGACCGAAGCGGCGCGTACCATCTGGGA






CCTGCTGTCTGGTTCT






AAACTGGCGCACGGTCACGAAGAAGAAGTTACCATCGACCAGG






ACCAGGGTGAACTGCGT






CAGGACCGTTACCCGCTGCGTACCGCGCCGCAGTTCCTGGGTCC






GCAGATCGAAGACATC






CTGTCTGCGCTGAACACCGTTACCCTGGAATGCAACTCTACCACC






GACAACCCGCTGATC






GACGGTGAAACCGGTGACATCCACCACGGTGGTAACTTCCAGGC






GATGTCTGTTTCTAAC






GCGATGGAAAAAACCCGTCTGTCTCTGCACCACATCGGTAAACT






GCTGTTCGCGCAGTGC






GCGGAACTGGTTCACCCGGACATGAACCGTGGTCTGCCGCCGTC






TCTGGCGGCGACCGAC






CCGTCTATCAACTACCACGGTAAAGGTATCGACATCGGTATCGC






GGCGTACGTTTCTGAA






CTGGGTTACCTGGCGAACCCGGTTTCTACCCACATCCAGTCTGCG






GAACTGCACAACCAG






GCGGTTAACTCTCTGGCGCTGATCTCTGCGCGTGCGACCATCAAC






TCTCTGGAAGTTCTG






TCTCTGCTGACCTCTTCTTACCTGTACATGCTGTGCCAGGCGTAC






GACCTGCGTGCGCTG






CAGGCGGACTTCCGTCAGGGTCTGGCGGAAATCGTTCAGGAAGA






ACTGCGTGCGCACTTC






TCTGCGCACATCGAATCTCTGGACGAATCTCCGCTGTTCGACAAA






GTTATCTCTTCTATG






TACAAAGAACTGAACCACACCACCACCATGGACGCGGTTCCGCG






TATGGTTAAAGTTGCG






GGTGCGTCTACCTCTCTGCTGGTTGACTTCTTCATGGCGAACCAG






ACCTCTGACGCGATG






TCTGTTGCGGCGCTGACCGCGCTGCCGAAATTCCGTGAAACCGTT






GCGCTGCGTGCGGCG






GCGAAACTGGTTGCGCTGCGTGAAGAATACCTGCTGGGTGCGCG






TGGTCCGGCGCCGGCG






TCTGCGTGGCTGGGTCGTACCCGTCCGATCTACGAATTCATCCGT






GTTACCCTGGGTATC






CGTATGCACGGTACCGAAAACCTGGGTGTTTTCCAGCAGGGTCT






GGGTGTTCAGGACGTT






ACCATCGGTCAGAACGTTTCTCTGATCCACGAAGCGATCCGTGA






CGGTAAAATGCGTGGT






GTTGTTGTTGGTCTGTTCGCG





7
Phenylalanine
7

Penicillium

ATGTCTCCGGCGTCTTACACCGCGACCCCGGTTTCTTCTCTGGTT



ammonia-


antarcticum

ACCCCGTCTCACCCG



lyase


ACCCCGCACAAAGACGAAACCCTGAAATCTTGGGCGAAAATCGG



(PAL)


TTCTCTGGTTCACCGT






GGTGTTGTTAACGTTGACGGTGAAACCCTGGACATCGCGTCTGTT






GTTGCGGTTGCGCGT






TTCGAAGGTTGCGGTGCGAAAGTTTCTAAAGACACCAAAGTTAC






CGAACGTGTTGAAGCG






GGTATCGAAACCTTCAACGACTACCTGTACAAAGGTTACTGCAT






CTACGGTGTTAACACC






GGTTTCGGTGGTTCTGCGGACACCCGTACCTCTGACGTTATCCGT






CTGCAGCAGTCTCTG






CTGCAGCTGACCCAGTCTGGTATCCTGTCTGGTTCTGACTTCTCT






CCGCGTATGGGTGAC






TACAACCTGTCTTCTCACGCGATGCCGGTTACCTGGGTTCGTGCG






ACCATGCTGGTTCGT






TGCAACCACCTGCTGCGTGGTCACTCTGGTGTTCGTCTGGAAATC






ATCGACACCGTTCTG






CGTCTGCTGCGTGCGGGTCTGACCCCGATCATCCCGCTGCGTGGT






TCTATCTCTGCGTCT






GGTGACCTGATGCCGCTGTCTTACCTGGTTGGTATCCTGGAAGGT






AACCCGGACATCAAA






GTTTACTGGGACCGTAAACCGGAAGCGGCGATCGTTTCTGCGAC






CAAAGCGCTGGAAATC






ATCGGTATCCCGCCGTTCATCCTGAAACCGAAAGAAGGTCTGTCT






CTGATCAACGGTTCT






GCGGCGTCTGCGGCGGTTGCGTCTCTGGCGGCGCACGAAGCGTC






TCAGCTGGTTCTGCTG






GCGCAGGGTCTGACCGCGCTGACCTGCGAAGCGATGATGGGTAA






CGCGGAAAACTACCAC






GAATTCCCGGCGAAAATCCGTCCGCACCCGGGTCAGATCGAAGT






TGCGGCGAACATCCGT






AAAGGTATCATCAACTCTAAACTGATCGAAACCTCTGGTACCAA






AGACCGTCTGCGTCAG






GGTCTGATCCAGGACCGTTACGCGCTGCGTGGTGCGTCTCAGTG






GCTGGGTCCGGTTGTT






GAAGACCTGCGTCTGGCGATCCAGCAGCTGACCACCGAACTGAA






CTCTACCCAGGACAAC






CCGGTTATCGACTCTGAATCTGGTGAAGTTTACTTCTGCTCTAAC






TTCCAGGCGGCGTCT






GTTTCTATGGCGATGGAAAAAACCCGTGGTGGTCTGCAGATGAT






CGGTAAACTGCTGTTC






TCTTACTCTTCTGAACTGATCAACCCGGACATGAACAAAGGTCTG






CCGGCGAACCTGGCG






GCGGACGACCCGTCTCTGTCTTTCACCATGAAAGGTGTTGACATC






AACATGGCGGCGTAC






ATGTCTGAACTGGGTTTCCTGGCGAACTCTGTTACCTCTCACGTT






CAGTCTGCGGAAATG






AACAACCAGCCGATCAACTCTCTGGCGCTGATCTCTGCGCGTTAC






ACCCTGCAGGCGGTT






GAACTGGTTTCTATGATGTCTGCGGCGCTGCTGTACGTTACCTGC






CAGGCGGTTGACCTG






CGTATCCTGCACGAAACCTTCCTGGAAAACCTGTACTCTGTTCTG






TACCTGGCGTTCGAC






TCTGTTCAGATGCGTCAGGACAAATCTTCTGCGATCCGTACCGAA






CTGCTGCAGGCGCTG






CGTAACTCTTGGGGTCACTCTGCGCGTGACGACCTGTCTGTTCGT






ATCCAGGCGCTGTCT






ACCGCGATGGCGCCGGTTCTGCTGGCGAACGCGAAAGAACTGTC






TACCGAAGACCCGTTC






GCGGTTATCGAACACCTGCAGAAAGAAATCCGTCAGGAAGCGAA






AACCCTGTTCCTGGGT






CTGCGTGTTAAATCTTTCTGCGGTGACCTGAACGCGGAATCTTCT






CTGGGTCCGGCGGCG






AAAGCGCTGTACCGTTTCGTTCGTCGTGAACTGGACGTTCCGTTC






CACTGCGGTATCGGT






GAACACCCGACCGGTGACACCGAAGCGGCGGCGGACATCCCGCC






GCGTCCGCGTAAAACC






GTTGGTTCTTGGATCTCTATCATCTACGACGCGATCCGTGACGGT






CGTATCCGTCAGCCG






CTGGGTGACGACTGGCGTTGCTGCAACGGTTTC





8
Phenylalanine
9

Ganoderma

ATGCCGGGTTACACCCTGACCAAAACCCAGTCTACCTCTACCTTC



ammonia-


sinense

GAACCGTCTCCGGTT



lyase


ACCCTGAAAAAAGCGGCGGTTTCTTCTCCGCTGCACGCGGAACC



(PAL)


GGAACTGCCGAAACAG






TCTTCTGCGCCGACCCTGCTGCACAAATTCGTTGAAGCGCACCGT






GCGCTGAACAACTAC






AAACAGGGTCAGCCGATCGTTGTTGACGGTCAGACCCTGTCTAT






CCCGGCGGTTGCGGCG






GTTGCGCGTTACAACGCGGACGTTGTTCTGGACGACTCTTCTGAC






ATCCAGACCCGTGTT






CTGAAATCTCGTCAGGTTATCGTTGACAAAGTTTCTTCTCAGAAA






TCTGTTTACGGTGTT






TCTACCGGTTTCGGTGGTTCTGCGGACACCCGTACCTCTGACCCG






CTGACCCTGGGTCTG






GCGCTGTTCCAGCACCAGCACTGCGGTGTTCTGCCGTCTGACACC






GACTCTGTTCCGGTT






GCGCTGCCGCTGCTGGACCCGCTGACCTCTACCTCTATGCCGGAA






TCTTGGGTTCGTGGT






GCGATCCTGATCCGTATGAACTCTCTGATCCGTGGTCACTCTGGT






GTTCGTTGGGAACTG






ATCGAACGTATGTCTGCGCTGCTGCGTGAAAACATCGTTCCGCTG






GTTCCGCTGCGTGGT






TCTATCTCTGCGTCTGGTGACCTGTCTCCGCTGTCTTACATCGCG






GGTCTGCTGATCGGT






AACCCGTCTATCCGTGTTTTCGACGGTCCGTCTACCTTCCGTGGT






CGTCGTATCGTTTCT






TCTCGTGAAGCGCTGTCTGCGCACCACATCGAACCGATCTCTCTG






GGTTCTAAAGAACAC






CTGGGTATCCTGAACGGTACCGCGTTCTCTGCGTCTGTTGGTGCG






CTGGCGGTTCACGAA






GCGGTTCACCTGTCTCTGCTGGGTCAGGTTTGCACCGCGATGTGC






ACCGAAGCGATGCTG






GGTGCGAAAGGTTCTTTCGCGCCGTTCATCCACTCTGTTGCGCGT






CCGCACCCGGGTCAG






GTTGAAGTTGCGGAAACCGTTACCGACCTGCTGGAAGGTTCTCA






CTTCGCGGTTACCGCG






GAAGAAGAAAAACACATCTCTGCGGACATCGGTGAACTGCGTCA






GGACCGTTACCCGCTG






CGTACCTCTGCGCAGTTCCTGGGTCCGCAGGTTGAAGACGTTCTG






TCTGCGTTCGCGGCG






ATCACCATCGAATGCAACTCTACCACCGACAACCCGCTGATCGA






CGGTGAAACCGGTGAA






GTTCACCACGGTGGTAACTTCCAGGCGATGTCTGTTACCAACGCG






ATGGAAAAAACCCGT






CTGGCGATGCACCACATCGGTAAACTGCTGTTCGCGCAGTGCAC






CGAACTGCTGAACCCG






TCTATGAACCGTGGTCTGCCGCCGAACCTGGCGGCGACCGACCC






GTCTCACAACTACTTC






GCGAAAGGTGTTGACATCCACGCGGCGGCGTACGTTGGTGAACT






GGGTTACCTGGCGAAC






CCGGTTTCTACCCACGTTCAGTCTGCGGAAATGCACAACCAGGC






GGTTAACTCTCTGGCG






CTGATCTCTGCGCGTGCGACCCTGAACTCTCTGGAAGTTCTGTCT






ATCCTGACCTCTTCT






TTCCTGTACGTTCTGTGCCAGGCGCTGGACCTGCGTGCGATGCAG






CACGAATTCGAACTG






GAAGTTGACGGTATCCTGCGTCAGCAGCTGGCGCTGTCTTTCGGT






CGTCACCTGTCTGCG






GCGGACCTGGACGCGCTGTTCTCTGTTCTGTCTCGTCACGTTCGT






CGTTCTCTGGAAACC






ACCTCTACCATGGACGCGGCGCTGCGTATGCGTACCGTTGCGGC






GGCGACCACCACCCCG






TTCGTTGACTTCTGCGCGAAACGTAACACCTCTCTGGACCTGGAC






GAAATCGTTGCGTTC






CGTGCGGGTCTGTCTGAAGGTATGGTTGGTTCTCTGGTTCGTCTG






CGTGAAGAATACCTG






CGTGGTTCTAAAGGTCCGGCGCCGGCGGCGAAATACCTGGGTCG






TTCTCGTGCGGTTTAC






GAATTCGTTCGTGTTACCCTGGGTATCCGTATGCACGGTTCTGAA






AACCTGCACGACTTC






AAAGAAGGTCCGGGTGTTGAAGACCCGACCATCGGTCAGGACAT






CGCGCTGATCCACGAA






GCGATCCGTGACGGTAAAATGCAGGACGTTGTTGTTGGTATCTTC






GCG





12
Cinnamte
11

Azospirillum

ATGGACCTGCTGCTGCTGGAAAAAACCCTGCTGGCGCTGTTCATC



4

sp.
GCGGCGACCATCGCG



hydroxylase 4


ATCACCATCTCTAAACTGCGTGGTAAACGTTTCAAACTGCCGCCG



coumarate


GGTCCGATCCCGGTT



coenzyme


CCGGTTTTCGGTAACTGGCTGCAGGTTGGTGACGACCTGAACCA



ligase


CCGTAACCTGACCGAC



fusion


CTGGCGAAACGTTTCGGTGACATCTTCCTGCTGCGTATGGGTCAG



(C4H4CL)


CGTAACCTGGTTGTT






GTTTCTTCTCCGGAACTGGCGAAAGAAGTTCTGCACACCCAGGG






TGTTGAATTCGGTTCT






CGTACCCGTAACGTTGTTTTCGACATCTTCACCGGTAAAGGTCAG






GACATGGTTTTCACC






GTTTACGGTACCCTGGCGGAAATGCGTCGTATCATGACCGTTCCG






TTCTTCACCAACAAA






GTTGTTCAGCAGTACCGTTTCGGTTGGGAATTCGAAGCGCAGTCT






GTTGTTGACGACGTT






AAAAAAAACCCGGAAGCGTGCTCTTCTGGTATCGTTCTGCGTCGT






CGTCTGCAGCTGATG






ATGTACAACATCATGTACCGTATCATGTTCGACCGTCGTTTCGAA






TCTGAAGAAGACCCG






CTGTTCGTTAAACTGAAAGCGCTGAACGGTGAACGTTCTCGTCTG






GCGCAGTCTTTCGAA






TACAACTACGGTGACTTCATCCCGATCCTGCGTCCGTTCCTGAAA






GGTTACCTGAAACTG






TGCAAAGAAGTTAAAGACCGTCGTCTGCAGCTGTTCAAAGACTA






CTTCGTTGACGAACGT






AAAAAACTGGGTTCTACCAAATCTACCACCAACGAAGGTCTGAA






ATGCGCGATCGACCAC






ATCCTGGACGCGCAGCAGAAAGGTGAAATCAACGACGACAACG






TTCTGTACATCGTTGAA






AACATCAACGTTGCGGCGATCGAAACCACCCTGTGGTCTATCGA






ATGGGGTATCGCGGAA






CTGGTTAACCACCAGAAAATCCAGAACAAAGTTCGTGAAGAAAT






CGACCGTGTTCTGGGT






CCGGGTCACCAGGTTACCGAACCGGACCTGCAGAAACTGCCGTA






CCTGCAGGCGGTTATC






AAAGAAACCCTGCGTCTGCGTATGGCGATCCCGCTGCTGGTTCC






GCACATGAACCTGCAC






GACGCGAAACTGTCTGGTTTCGACATCCCGGCGGAATCTAAAAT






CCTGGTTAACGCGTGG






TGGCTGGCGAACAACCCGGCGCAGTGGAAAAAACCGGAAGAAT






TCCGTCCGGAACGTTTC






CTGGAAGAAGAATCTCACGTTGAAGCGAACGGTAACGACTTCCG






TTACCTGCCGTTCGGT






GTTGGTCGTCGTTCTTGCCCGGGTATCATCCTGGCGCTGCCGATC






CTGGGTATCACCCTG






GGTCGTCTGGTTCAGAACTTCGAACTGCTGCCGCCGCCGGGTCA






GTCTAAAATCGACACC






GCGGAAAAAGGTGGTCAGTTCTCTCTGCACATCCTGAAACACTC






TACCATCGTTTGCAAA






CCGCGTTCTTTCAACGGTGGTGGTGGTTCTGGTGGTGGTGGTTCT






GGTGGTGGTGGTTCT






ATGACCATCCAGCGTTGGTGGCGTAACCGTGAATCTCTGAACCG






TGTTCTGTGCGACCTG






CTGGCGGGTGAATTCGCGCGTCTGCGTCCGGGTGGTTCTCCGCCG






GCGCACCCGCACCGT






TGGCCGGAAACCCTGCCGCTGGGTCCGGACGGTGTTGGTGCGGA






CTCTCTGGACCTGCTG






CAGCTGGCGGCGGCGCTGAACGAAGCGCTGCACCTGCACCGTTC






TGGTATCGAAGACTAC






CTGCTGATGCACCGTACCGTTGGTGACTGGCTGGACGTTTGCGAA






GCGGCGCTGGGTCGT






TTCGACGGTGCGCTGTCTTTCCGTACCTCTGGTTCTACCGGTGAA






GGTAAACGTTGCGAA






CACCCGCTGGCGGCGCTGGAAGAAGAAGCGGACGCGCTGGCGG






CGCTGCTGTCTGGTGGT






GCGGAAGCGCCGCGTCGTGTTGTTTCTGTTGTTCCGGCGCACCAC






ATCTACGGTTTCCTG






TTCACCGTTCTGCTGCCGGACCGTCTGGCGGTTCCGGTTGTTGAC






GGTCGTGGTACCTCT






CCGGGTGGTCTGGCGGCGCGTCTGGGTCCGGGTGACCTGGTTGTT






GCGCACCCGGACTGG






TGGGGTGCGCTGCTGCGTTCTGGTGCGGCGCTGCCGGACGGTGTT






ACCGGTACCTCTTCT






ACCGCGCCGTGCCCGCCGGACACCGCGCGTGGTGTTCGTGGTGT






TGGTCTGGCGCGTCTG






GTTGAAGTTTTCGGTTCTTCTGAAACCGCGGGTCTGGGTTGGCGT






GAATCTCCGGACGCG






CCGTTCCGTCCGTTCCCGTGGTGGCGTTTCGGTGACGACGGTCGT






GTTACCCGTCGTCTG






GCGGACGGTACCGTTCTGTCTGCGACCCTGCAGGACCGTCTGTCT






CACGACGAAGAAGGT






TTCCGTCCGTCTGGTCGTCTGGACACCGTTGTTCAGGTTGGTGGT






GTTAACGTTTCTCTG






GCGGGTGTTCAGGCGCACCTGGCGGGTCACCCGGACGTTGAAGC






GGCGGCGGTTCGTCTG






ATGCGTCCGGAAGAAGGTACCCGTCTGAAAGCGTTCATCGTTCC






GGCGCGTACCGCGCCG






CCGCGTGAAGAACTGTACCGTCGTCTGACCGACTGGATCGAAGC






GACCCTGCCGGCGCCG






CACCGTCCGCGTGCGCTGGCGTTCGGTCCGGCGCTGCCGGTTAAC






GGTATGGGTAAACCG






TGCGACTGGCCGCTGGCGACCTGCCGT





17
hydroxycinnamoyl-
13

Coffea

ATGAAAATCGAAGTTAAAGAATCTACCATGGTTCGTCCGGCGCA



CoA:


canephora

GGAAACCCCGGGTCGT



quinate


AACCTGTGGAACTCTAACGTTGACCTGGTTGTTCCGAACTTCCAC



hydroxycinnamoyl-


ACCCCGTCTGTTTAC



transferase


TTCTACCGTCCGACCGGTTCTTCTAACTTCTTCGACGCGAAAGTT



p-


CTGAAAGACGCGCTG



coumaroyl


TCTCGTGCGCTGGTTCCGTTCTACCCGATGGCGGGTCGTCTGAAA



quinate 3′-


CGTGACGAAGACGGT



hydroxylase


CGTATCGAAATCGAATGCAACGGTGAAGGTGTTCTGTTCGTTGA



fusion


AGCGGAATCTGACGGT



(HCTC3H)


GTTGTTGACGACTTCGGTGACTTCGCGCCGACCCTGGAACTGCGT






CGTCTGATCCCGGCG






GTTGACTACTCTCAGGGTATCTCTTCTTACGCGCTGCTGGTTCTG






CAGGTTACCTACTTC






AAATGCGGTGGTGTTTCTCTGGGTGTTGGTATGCGTCACCACGCG






GCGGACGGTTTCTCT






GGTCTGCACTTCATCAACTCTTGGTCTGACATGGCGCGTGGTCTG






GACGTTACCCTGCCG






CCGTTCATCGACCGTACCCTGCTGCGTGCGCGTGACCCGCCGCAG






CCGCAGTTCCAGCAC






ATCGAATACCAGCCGCCGCCGGCGCTGAAAGTTTCTCCGCAGAC






CGCGAAATCTGACTCT






GTTCCGGAAACCGCGGTTTCTATCTTCAAACTGACCCGTGAACAG






ATCTCTGCGCTGAAA






GCGAAATCTAAAGAAGACGGTAACACCATCTCTTACTCTTCTTAC






GAAATGCTGGCGGGT






CACGTTTGGCGTTGCGCGTGCAAAGCGCGTGGTCTGGAAGTTGA






CCAGGGTACCAAACTG






TACATCGCGACCGACGGTCGTGCGCGTCTGCGTCCGTCTCTGCCG






CCGGGTTACTTCGGT






AACGTTATCTTCACCGCGACCCCGATCGCGATCGCGGGTGACCT






GGAATTCAAACCGGTT






TGGTACGCGGCGTCTAAAATCCACGACGCGCTGGCGCGTATGGA






CAACGACTACCTGCGT






TCTGCGCTGGACTACCTGGAACTGCAGCCGGACCTGAAAGCGCT






GGTTCGTGGTGCGCAC






ACCTTCAAATGCCCGAACCTGGGTATCACCTCTTGGGTTCGTCTG






CCGATCCACGACGCG






GACTTCGGTTGGGGTCGTCCGATCTTCATGGGTCCGGGTGGTATC






GCGTACGAAGGTCTG






TCTTTCATCCTGCCGTCTCCGACCAACGACGGTTCTATGTCTGTT






GCGATCTCTCTGCAG






GGTGAACACATGAAACTGTTCCAGTCTTTCCTGTACGACATCGGT






GGTGGTGGTTCTGGT






GGTGGTGGTTCTGGTGGTGGTGGTTCTATGGCGCTGCTGCTGATC






CTGCTGCCGGTTGCG






TTCATCTTCCTGGCGTACTCTCTGTACGAACGTCTGCGTTTCAAA






CTGCCGCCGGGTCCG






CGTCCGAAACCGGTTGTTGGTAACATCTACGACATCAAACCGGT






TCGTTTCAAATGCTAC






GCGGAATGGTCTAAACTGTACGGTCCGATCTTCTCTGTTTACTTC






GGTTCTCAGCTGAAC






ACCGTTGTTAACACCGCGGAACTGGCGAAAGAAGTTCTGAAAGA






CAACGACCAGCAGCTG






GCGGACCGTTACCGTTCTCGTCCGTCTGCGCGTATGTCTCGTAAC






GGTCAGGACCTGATC






TGGGCGGACTACGGTCCGCACTACGTTAAAGTTCGTAAACTGTG






CAACCTGGAACTGTTC






ACCCCGAAACGTCTGGAAGGTCTGCGTCCGCTGCGTGAAGACGA






AGTTACCGCGATGGTT






GACTCTATCTTCAAAGACTGCACCAAACCGGAAAACAAAGGTAA






ATCTCTGCTGATGCGT






AACTACCTGGGTTCTGTTGCGTTCAACAACATCACCCGTCTGACC






TTCGGTAAACGTTTC






ATGAACTCTGAAGGTGTTGTTGACGAACAGGGTCAGGAATTCAA






AGGTATCGTTTCTAAC






GGTATCCGTATCGGTGCGAAACTGTCTGTTGCGGACCACATCCCG






TGGCTGCGTTGGATG






TTCGTTGGTGAAAACGAAGACCTGGACAAACACAACGCGCGTCG






TGACAAACTGACCCGT






ATGATCATGGAAGAACACACCCTGGCGCGTCAGAAATCTGGTAA






CACCAAACAGCACTTC






GTTGACGCGCTGCTGACCCTGCAGAAACAGTACGAACTGTCTGA






CGACACCGTTATCGGT






CTGCTGTGGGACATGATCACCGCGGGTATGGACACCACCACCAT






CTCTGTTGAATGGGCG






ATGGCGGAACTGGTTAAAAACCCGCGTGTTCAGCAGAAAGCGCA






GGAAGAACTGGACCGT






GTTATCGGTTCTGACCGTATCATGACCGAAGCGGACTTCGCGAA






ACTGCCGTACCTGCAG






TGCGTTGCGAAAGAAGCGCTGCGTCTGCACCCGCCGACCCCGCT






GATGCTGCCGCACCGT






GCGAACGCGAACGTTAAAATCGGTGGTTACGACATCCCGAAAGG






TTCTATCGTTCACGTT






AACGTTTGGGCGATCGCGCGTGACCCGGCGGCGTGGAAAAACCC






GCTGGAATTCCGTCCG






GAACGTTTCCTGGAAGAAGACGTTGACATCAAAGGTCACGACTA






CCGTCTGCTGCCGTTC






GGTGCGGGTCGTCGTATCTGCCCGGGTGCGCAGCTGGCGCTGAA






CCTGGTTACCTCTATG






CTGGGTCACCTGCTGCACCACTTCACCTGGTCTCCGCCGCCGGGT






GTTCGTCCGGAAGAA






ATCGACCTGGAAGAATCTCCGGGTACCGTTACCTACATGCGTAC






CCCGCTGCAGGCGGTT






GCGACCCCGCGTCTGCCGGCGCACCTGTACAACCGTGTTCCGGTT






GAA





20
Caffeoyl
15

Eleocharis

ATGTCTACCACCACCACCACCCAGACCAAAACCGAAACCCAGTC



CoA O-


dulcis

TCAGACCGGTGCGCAG



methyhransferase


AACGGTGCGGAACAGCAGACCCGTCACTCTGAAGTTGGTCACAA



(CCoAO


ATCTCTGCTGCAGTCT



MT)


GACGCGCTGTACCAGTACATCCTGGAAACCTCTGTTTACCCGCGT






GAACCGGAATGCATG






AAAGAACTGCGTGACATCACCGCGAAACACCCGTGGAACCTGAT






GACCACCTCTGCGGAC






GAAGGTCAGTTCCTGAACCTGCTGCTGAAACTGATCGGTGCGAA






AAAAACCATGGAAATC






GGTGTTTACACCGGTTACTCTCTGCTGGCGACCGCGCTGGCGATC






CCGGAAGACGGTACC






ATCCTGGCGATGGACATCAACCGTGAAAACTACGAACTGGGTCT






GCCGGTTATCGAAAAA






GCGGGTGTTGCGCACAAAATCGACTTCCGTGAAGGTCCGGCGCT






GCCGGTTCTGGACCAG






CTGATCGAAGACCCGGCGAACCTGGGTTCTTTCGACTTCATCTTC






GTTGACGCGGACAAA






GACAACTACCTGAACTACCACAAACGTCTGATCGAACTGGTTAA






AGTTGGTGGTGTTATC






GGTTACGACAACACCCTGTGGAACGGTTCTGTTGTTCTGCCGGCG






GACGCGCCGATGCGT






AAATACATCCGTTACTACCGTGACTTCGTTCTGGAACTGAACAAA






GCGCTGGCGGCGGAC






CCGCGTATCGAAATCTCTCAGCTGCCGGTTGGTGACGGTATCACC






CTGTGCCGTCGTGTT






AAA





21
Caffeoyl
17

Chamaecyparis

ATGGCGACCGTTGAAGCGACCAAAGACTCTACCCAGCAGGTTTC



CoA O-


formosensis

TCGTCACCAGGAAGTT



methyhransferase


GGTCACAAATCTCTGCTGCAGTCTGACGCGCTGTACCAGTACATC



(CCoAO


CTGGAAACCTCTGTT



MT)


TACCCGCGTGAACCGGAACCGATGCGTGAACTGCGTGAAATCAC






CGCGAAACACCCGTGG






AACCTGATGACCACCTCTGCGGACGAAGGTCAGTTCCTGCACCT






GCTGCTGAAACTGATC






AACGCGAAAAACACCATGGAAATCGGTGTTTACACCGGTTACTC






TCTGCTGTCTACCGCG






CTGGCGCTGCCGGACGACGGTAAAATCCTGGCGATGGACATCAA






CCGTGAAAACTACGAA






CTGGGTCTGCCGGTTATCCAGAAAGCGGGTGTTGCGCACAAAAT






CGACTTCCGTGAAGGT






CCGGCGCTGCCGGTTCTGGACCAGATGCTGGAAAACAAAGAAAT






GCACGGTTCTTTCGAC






TTCATCTTCGTTGACGCGGACAAAGACAACTACCTGAACTACCA






CAAACGTCTGATCGAC






CTGGTTAAAATCGGTGGTGTTATCGGTTACGACAACACCCTGTGG






AACGGTTCTGTTGTT






GCGCCGCCGGACGCGCCGATGCGTAAATACGTTCGTTACTACCG






TGACTTCGTTATCGAA






CTGAACAAAGCGCTGGCGGCGGACCCGCGTATCGAAATCTCTCA






GATCCCGGTTGGTGAC






GGTATCACCCTGTGCCGTCGTATCATC





24
Bifunctional
19

Linum

ATGGGTCGTTGCCGTGTTCTGGTTGTTGGTGGTACCGGTTACATC



pinoresinol-


usitatissimum

GGTAAACGTATCGTT



lariciresinol


AAAGCGTCTATCGAACACGGTCACGACACCTACGTTCTGAAACG



reductase


TCCGGAAACCGGTCTG



(DIRPLR)


GACATCGAAAAATTCCAGCTGCTGCTGTCTTTCAAAAAACAGGG






TGCGCACCTGGTTGAA






GCGTCTTTCTCTGACCACGAATCTCTGGTTCGTGCGGTTAAACTG






GTTGACGTTGTTATC






TGCACCGTTTCTGGTGCGCACTCTCGTTCTCTGCTGCTGCAGCTG






AAACTGGTTGAAGCG






ATCAAAGAAGCGGGTAACGTTAAACGTTTCATCCCGTCTGAATT






CGGTATGGACCCGGCG






CGTATGGGTGACGCGCTGGAACCGGGTCGTGAAACCTTCGACCT






GAAAATGGTTGTTCGT






AAAGCGATCGAAGACGCGAACATCCCGCACACCTACATCTCTGC






GAACTGCTTCGGTGGT






TACTTCGTTGGTAACCTGTCTCAGCTGGGTCCGCTGACCCCGCCG






TCTGACAAAGTTACC






ATCTACGGTGACGGTAACGTTAAAGTTGTTTACATGGACGAAGA






CGACGTTGCGACCTAC






ACCATCATGACCATCGAAGACGACCGTACCCTGAACAAAACCAT






GTACTTCCGTCCGCCG






GAAAACGTTATCACCCACCGTCAGCTGGTTGAAACCTGGGAAAA






ACTGTCTGGTAACCAG






CTGCAGAAAACCGAACTGTCTTCTCAGGACTTCCTGGCGCTGATG






GAAGGTAAAGACGTT






GCGGAACAGATCGTTATCGGTCACCTGTACCACATCTACTACGA






AGGTTGCCTGACCAAC






TTCGACATCGACGCGGACCAGGACCAGGTTGAAGCGTCTTCTCT






GTACCCGGAAGTTGAA






TACACCCGTATGAAAGACTACCTGATGATCTACCTG





27
Secoisolar
21

Juglans

ATGAACGGTACCTCTTCTCTGCTGGCGCCGATCGCGAAACGTCTG



iciresinol


regia

GCGGGTAAAGTTGCG



dehydrogenase


CTGATCACCGGTGGTGCGTCTGGTATCGGTGAATCTACCGCGCGT



(SDH)


CTGTTCGCGGAACAG






GGTGCGAAAGTTATCATCGCGGACGTTCAGGACGAACTGGGTTT






CTCTGTTTCTCAGGAC






AAATCTATCAACGGTGCGATCTCTTACATCCACTGCGACGTTACC






TCTGAATCTGACGTT






CAGAACGCGGTTAACACCGCGGTTTCTAAACACGGTAAACTGGA






CATCATGTTCAACACC






GCGGGTTGCACCGGTCAGAACAAAGCGTCTATCCTGGACCACGA






ACAGAAAGACTACAAA






ACCGTTTTCGACGTTAACGTTCTGGGTTCTTTCCTGGGTGCGAAA






CACGCGGCGAAAGTT






ATGATCCCGGTTAAACGTGGTACCATCCTGTTCACCGCGTCTTGC






GTTACCGAATCTCAC






GGTCTGGCGTCTCACTCTTACACCGCGTCTAAACACGCGGTTGTT






GGTCTGACCAAAAAC






CTGTGCGTTGAACTGGGTCAGTACGGTATCCGTGTTAACTGCATC






TCTCCGTACGGTGCG






GCGACCCCGCTGTTCCTGAAAGGTATGGGTATCGACAAAAAAGA






AAAAGCGGAAGAAATC






CTGTCTTCTGCGGCGAACCTGAAAGGTCCGGTTCTGGAAGCGGG






TGACCTGGCGGAAGCG






GCGCTGTTCCTGGCGTCTGAAGAATCTAAATACGTTTCTGTTCTG






AACCTGGTTGTTGAC






GGTGGTTACTCTGCGACCAACGTTGCGTTCACCGAAACCATCCA






GAAATTCTTCACC





32
CYP719
23

Papaver

ATGATCATGTCTAACCTGTGGATCCTGACCCTGATCTCTACCATC






somniferum

CTGGCGGTTTTCGCG






GCGGTTCTGATCATCTTCCGTCGTCGTATCTCTGCGTCTACCACC






GAATGGCCGGTTGGT






CCGAAAACCCTGCCGATCATCGGTAACCTGCACATCCTGGGTGG






TACCGCGCTGCACGTT






GTTCTGCACAAACTGGCGGAAGTTTACGGTTCTGTTATGACCATC






TGGATCGGTTCTTGG






AAACCGGTTATCATCGTTTCTGACTTCGACCGTGCGTGGGAAGTT






CTGGTTAACAAATCT






TCTGACTACTCTGCGCGTGAAATGCCGGAAATCACCAAAATCGG






TACCGCGAACTGGCGT






ACCATCTCTTCTTCTGACTCTGGTCCGTTCTGGGCGACCCTGCGT






AAAGGTCTGCAGTCT






GTTGCGCTGTCTCCGCAGCACCTGGCGTCTCAGACCGCGCACCA






GGAACGTGACATCATC






AAACTGATCAAAAACCTGAAAGACGAAGCGGCGTCTGGTATGGT






TAAACCGCTGGACCAC






CTGAAAAAAGCGACCGTTCGTCTGATCTCTCGTCTGATCTACGGT






CAGGACTTCGACGAC






GACAAATACGTTGAAGACATGCACGACGTTATCGAATTCCTGAT






CCGTATCTCTGGTTAC






GCGCAGCTGGCGGAAGTTTTCTACTACGCGAAATACCTGCCGGG






TCACAAACGTGCGGTT






ACCGGTGCGGAAGAAGCGAAACGTCGTGTTATCGCGCTGGTTCG






TCCGTTCCTGCAGTCT






AACCCGGCGACCAACACCTACCTGCACTTCCTGAAATCTCAGCT






GTACCCGGAAGAAGTT






ATCATCTTCGCGATCTTCGAAGCGTACCTGCTGGGTGTTGACTCT






ACCTCTTCTACCACC






GCGTGGGCGCTGGCGTTCCTGATCCGTGAACCGTCTGTTCAGGA






AAAACTGTACCAGGAA






CTGAAAAACTTCACCGCGAACAACAACCGTACCATGCTGAAAGT






TGAAGACGTTAACAAA






CTGCCGTACCTGCAGGCGGTTGTTAAAGAAACCATGCGTATGAA






ACCGATCGCGCCGCTG






GCGATCCCGCACAAAGCGTGCAAAGACACCTCTCTGATGGGTAA






AAAAGTTGACAAAGGT






ACCAAAGTTATGGTTAACATCCACGCGCTGCACCACACCGAAAA






AGTTTGGAAAGAACCG






TACAAATTCATCCCGGAACGTTTCCTGCAGAAACACGACAAAGC






GATGGAACAGTCTCTG






CTGCCGTTCTCTGCGGGTATGCGTATCTGCGCGGGTATGGAACTG






GGTAAACTGCAGTTC






TCTTTCTCTCTGGCGAACCTGGTTAACGCGTTCAAATGGTCTTGC






GTTTCTGACGGTGTT






CTGCCGGACATGTCTGACCTGCTGGGTTTCGTTCTGTTCATGAAA






ACCCCGCTGGAAGCG






CGTATCGTTCCGCGT





33
CYP719
25

Cinnamomum

ATGGAAGCGATCTGGACCGCGGTTGCGATCGGTATCGCGGCGGC






micranthum

GGTTCTGATGGCGTTC






CGTGGTCGTCAGCGTCAGCGTCTGTCTCGTAAACCGACCCAGTG






GCCGCCGGGTCCGACC






CGTCTGCCGCTGATCGGTAACATGCACCAGATCCTGCTGAAAGG






TGGTGACCCGTTCCAC






GTTGCGATCAACAAACTGGCGCAGGTTTACGGTCCGCTGATGAC






CGTTTGGTTCGGTACC






CGTCAGCCGACCATCATCGTTTCTGACCACAACCTGGTTTGGGAA






GTTCTGGTTTCTAAA






TCTGCGGACTACGCGGCGCGTGAAATCCCGATCACCCTGAAACC






GTCTCTGGCGGACTTC






CGTACCATCGTTTCTTCTAACGCGGGTCCGCTGTGGCACTCTCTG






CGTCGTGGTCTGCAG






AACGGTGCGATCGGTCCGCACTCTCTGTCTCTGCAGGCGCCGTTC






CAGGAATCTGACATG






GCGCAGATGATCAACAACATGATCAAAGAAGCGAACCTGAACG






GTGGTGTTGTTAAACCG






TTCCCGCACATCCGTCGTGCGATCATCAAACTGCTGGCGCGTATC






TGCTTCGGTTGCGAC






TTCTCTGACGAAGAATTCGACGCGACCATGGACTTCATGGTTGA






AGAAGCGCTGCGTTAC






TCTGACGACTCTCGTATCCTGGACACCTTCCCGCCGGCGCGTTTC






CTGCCGTCTGTTAAA






CGTGCGGTTATGCAGATGGAAAAAGTTAAACTGCGTCTGATGGA






ATGCATCGGTCGTCCG






CTGGACTCTCCGCTGCCGCCGACCTGCTACGCGCACTTCCTGCTG






TCTCAGTCTTTCCCG






CGTGAAGTTGCGATCTTCTCTATCTTCGAACTGTTCCTGCTGGGT






GTTGACTCTACCGGT






TCTACCACCATGTGGGGTCTGGGTCTGCTGATGCAGAACCAGGA






AGCGCAGCAGAAACTG






TACCAGGAAATCCGTGAACACGCGTCTTGCAACGAAAAAGGTGT






TGTTAAAGTTGAAGAA






CTGGGTAAACTGGAATACCTGCAGGCGGTTGCGAAAGAAACCAT






GCGTATGAAACCGATC






GCGCCGCTGGCGGTTCCGCACCAGGCGGCGCGTGACACCACCCT






GGACGGTCTGCACGTT






GCGGAAGGTACCACCGTTCTGGCGAACCTGTACGCGCTGCACTA






CGACCCGAAAGTTTGG






GACGAACCGGAACGTTTCAAACCGGAACGTTTCCTGGAATCTTC






TAAAGAATTCCTGGGT






AAACGTGGTCAGTACTCTTTCCTGCCGTTCGGTGCGGGTATGCGT






GCGTGCGCGGGTATG






GAAGTTGGTAAACTGCAGCTGCCGTTCGCGATCTGCAACCTGGTT






AACGCGTTCAACTGG






TCTAACGTTGTTGAAAAAGAAGCGCCGAAACTGATCGAAGGTTT






CTCTTTCATCCTGTCT






ATGAAAACCCCGCTGGAAGCGCGTATCGTTCCGCGTGGTATC





34
O-
27

Papaver

ATGGAAGTTGTTTCTAAAATCGACCAGGAAAACCAGGCGAAAAT



methyhransferase


somniferum

CTGGAAACAGATCTTC



3


GGTTTCGCGGAATCTCTGGTTCTGAAATGCGCGGTTCAGCTGGAA



(OMT)


ATCGCGGAAACCCTG






CACAACAACGTTAAACCGATGTCTCTGTCTGAACTGGCGTCTAA






ACTGCCGGCGCAGCCG






GTTAACGAAGACCGTCTGTACCGTATCCTGCACTTCCTGGTTCAC






ATGAAACTGTTCAAC






AAAGACGCGACCACCCAGAAATACTCTCTGGCGCCGCCGGCGAA






ATACCTGCTGAAAGGT






TGGGAAAAATCTATGGTTCCGTCTATCCTGTCTGTTACCGACAAA






GACTTCACCGCGCCG






TGGAACCACCTGGGTGACGGTCTGACCGGTAACTGCAACGCGTT






CGAAAAAGCGCTGGGT






AAAGGTATCCGTGTTTACATGCGTGAAAACCCGGAAAAAGACCA






GCTGTTCAACGAAGGT






ATGGCGTGCGACACCCGTCTGTTCGCGTCTGCGCTGGTTAACGAA






TGCAAATCTATCTTC






TCTGACGGTATCAACACCCTGGCGGGTGTTGGTCGTGGTACCGGT






ACCGCGGTTAAAGCG






ATCTCTAAAGCGTTCCCGGACATCAAATGCACCATCCACGACCT






GCCGGAAGTTACCTCT






AAAAACTCTAAAATCCCGCGTGACGTTTTCAAATCTGTTCCGTCT






GCGGACGCGATCTTC






ATGAAATCTATCCTGCACGAATGGAACGACGAAGAATGCATCCA






GATCCTGAAACGTTGC






AAAGAAGCGATCCCGAAAGGTGGTAAAGTTATCATCGCGGACGT






TGTTATCGACATGGAC






TCTACCCACCCGTACTCTAAATCTCGTCTGGCGATGGACCTGGCG






ATGATGCTGCACACC






GGTGGTAAAGAACGTACCGAAGAAGACTGGAAAAAACTGATCG






ACGCGGCGGGTTTCGCG






TCTTGCAAAATCACCAAACTGTCTGCGCTGCAGTCTGTTATCGAA






GCGTACCCGCAC





37
O-
29

Sinopodophyllum

ATGGAAATGGCGCCGACCATGGACCTGGAAATCCGTAACGGTAA



methyhransferase


hexandrum

CGGTTACGGTGACTCT



3


GGTGAAGAACTGCTGGCGGCGCAGGCGCACATCTACAACCACAT



(OMT)


CTTCAACTTCATCTCT






TCTATGGCGCTGAAATGCGCGGTTGAACTGAACATCCCGGAAAT






CCTGCACAACCACCAG






CCGAAAGCGGTTACCCTGTCTGAACTGGTTCAGGCGCTGCAGAT






CCCGCAGGCGAAATCT






GCGTGCCTGTACCGTCTGCTGCGTATCCTGGTTCACTCTGGTTTCT






TCGCGATCACCAAA






ATCCAGTCTGAAGGTGACGAAGAAGGTTACCTGCCGACCCTGTC






TTCTAAACTGCTGCTG






AAAAACCACCCGATGTCTATGTCTCCGTGCCTGCTGGGTCTGGTT






AACCCGACCATGGTT






GCGCCGATGCACTTCTTCTCTGACTGGTTCAAACGTTCTGACGAC






ATGACCCCGTTCGAA






GCGACCCACGGTGCGTCTCTGTGGAAATACTTCGGTGAAACCCC






GCACATGGCGGAAATC






TTCAACGAAGCGATGGGTTGCGAAACCCGTCTGGCGATGTCTGT






TGTTCTGAAAGAATGC






AAAGGTAAACTGGAAGGTATCTCTTCTCTGGTTGACGTTGGTGGT






GGTACCGGTAACGTT






GGTCGTGCGATCGCGGAAGCGTTCCCGAACGTTAAATGCACCGT






TCTGGACCTGCCGCAG






GTTGTTGGTAACCTGAAAGGTTCTAACAACCTGGAATTCGTTTCT






GGTGACATGTTCCAG






TTCATCCCGCCGGCGGACGTTGTTTTCCTGAAATGGATCCTGCAC






GACTGGAACGACGAA






GAATGCATCAAAATCCTGAAACGTTGCAAAGAAGCGATCCCGTC






TAAAGAAGAAGGTGGT






AAACTGATCATCATCGACATGGTTGTTAACGACCACAACAAAGG






TTCTTACGAATCTACC






GAAACCCAGCTGTTCTACGACCTGACCCTGATGGCGCTGCTGAC






CGGTACCGAACGTACC






GAAACCGAATGGAAAAAACTGTTCGTTGCGGCGGGTTTCACCTC






TTACATCATCTCTCCG






GTTCTGGGTCTGAAATCTATCATCGAAGTTTTCCCG





39
CYP71
31

Cinnamomum

ATGGCGCTGCTGCTGTCTCTGCTGTTCTTCGCGTCTGCGCTGATCT






micranthum

TCCTGCTGAAACTG






AACGGTCAGCGTGCGAACAAAACCGACGTTCCGCCGTCTCCGCC






GAAACTGCCGCTGATC






GGTAACCTGCACCAGCTGGGTACCCTGCCGCACCGTTCTCTGCGT






TCTCTGGCGGGTAAA






TACGGTCCGCTGATGCTGCTGTACCTGGGTCGTATCCCGACCCTG






ATCGTTTCTTCTGAA






GAAATGGCGGAACAGATCATGAAAACCCACGACCTGATCTTCGC






GTCTCGTCCGTCTATC






ACCGCGGCGAAAGAACTGCTGTACGGTTGCACCGACCTGGCGTT






CGCGTCTTACGGTGAA






TACTGGCGTCAGGTTCGTAAAATGTGCGTTCTGGAACTGCTGTCT






ATCAAACGTGTTAAC






TCTTTCCGTTCTATCATGGAAGAAGAAGTTGGTCTGATGATCGAA






CGTATCTCTCAGTCT






TCTTCTACCGGTGCGGCGGTTAACCTGGCGGAACTGTTCCTGTCT






CTGACCGGTGGTACC






ATCGCGCGTGCGGCGCTGGGTAAAAAATACGAAGGTGAAGCGG






AAGAAGGTCGTAACAAA






TACGCGGACCTGGTTAAAGAACTGCACGCGCTGCTGGGTGCGTT






CTCTGTTGGTGACTAC






TTCCCGTCTCTGGCGTGGGTTGACGTTGTTACCGGTCTGCACGGT






AAACTGAAACGTAAC






TCTCGTGAACTGGACCGTTTCCTGGACCAGGTTATCGAACACCAC






CTGATGCGTCCGCTG






GACGGTTGCGACGTTGGTGAACACACCGACCTGGTTGACGTTAT






GCTGCAGGTTCAGAAA






GACTCTAACCGTGACATCCACCTGACCCGTGACAACATCAAAGC






GATCATCCTGGACATG






TTCTCTGCGGGTACCGACACCACCGCGCTGACCCTGGAATGGGTT






ATGGCGGAACTGGCG






AAACACCCGAACGTTATGAAAAAAGCGCAGGGTGAAGTTCGTCG






TGTTGTTGACGTTAAA






GCGAACATCTCTGAAGAACACCTGTGCCAGCTGAACTACATGAA






ATCTATCATCAAAGAA






ACCCTGCGTCTGCACCCGCCGGCGCCGCTGCTGGTTCCGCGTGAA






TCTACCACCAACGTT






AAAATCCAGAACTTCCACATCCCGCCGAAAACCCGTGTTTTCATC






AACGCGTACGCGATC






GGTCGTGACCCGACCTCTTGGGAAAACCCGGAAGAATTCCTGCC






GGAACGTTTCGCGAAC






AACTCTGTTGACTTCAAAGGTCAGGACTTCCAGTTCATCCCGTTC






GGTGCGGGTCGTCGT






GGTTGCCCGGGTCTGTCTTTCGCGATCACCTCTCTGGAACTGGCG






CTGGCGAACCTGCTG






TACTGGTTCGACTGGGAACTGCCGCAGGGTGTTACCGAAGAAGA






CCTGGACATGTCTGAA






GCGCTGGGTATCACCGTTCACAAAAAACTGCCGCTGTACCTGGTT






CCGAAAAACCACTTC






TCT





46
2-
33

Microcystis

ATGACCACCGACTTCATCGAAATCTACGAACGTGCGCTGCGTCG



oxoglutarate/


viridis

TGAACTGTGCGAAGAA



Fe(II)-


ATCCGTCACCGTTTCGAAGCGTCTAACCGTAAATCTGACGGTCGT



dependent


ATCGGTCACGGTGTT



dioxygenase


GACAAATCTAAAAAAAACTCTACCGACATCACCATCACCGGTCT



(2-


GTCTGAATGGTCTGAC



ODD)


CTGCACTCTCAGATCCTGGACTCTACCCTGCGTCACCTGATGCTG






TACATCCGTAAATAC






CCGTACCTGATCACCTCTGCGTTCGCGCTGTCTCTGCAGGAACCG






GCGACCGGTCTGGTT






CGTCCGCTGACCGCGTCTGACGTTGGTGCGGCGTCTGACCTGGA






ACTGGGTGAATACCTG






TTCCGTGTTTTCCGTCCGGGTGCGATCAACGTTCAGAAATACTCT






AAATCTCTGGGTGGT






TACTACTACTGGCACTCTGAAATCTACCCGCGTGACCCGGCGGC






GGAAACCCTGCACCGT






GTTCTGCTGTTCATGTTCTACCTGAACGACGTTGAACGTGGTGGT






GAAACCGAATTCCTG






TACCAGGAACGTAAACTGAAACCGACCTCTGGTACCATGGTTAT






CGCGCCGGCGGGTTTC






ACCCACACCCACCGTGGTAACGTTCCGGAATCTCACGACAAATA






CATCCTGACCTCTTGG






ATCCTGTTCAACCGTGCGGAACAGCTGTACCCGCGTAAACCGAA






CCCGGCG





48
2-
35

Nitrospira

ATGGTTTCTAACATGGCGATGGGTATCACCGAAGCGGTTGACCG



oxoglutarate/


moscoviensis

TGCGGTTGCGGCGCTG



Fe(II)-


GACGTTGACCGTCTGCACCGTGAATACTGGGAACAGAACGAATT



dependent


CCTGGTTATCCGTCAG



dioxygenase


TTCCTGCCGCGTGCGTTCGTTGAAGAAGTTCTGGTTCCGCAGGCG



(2-


CAGGGTGTTAAAACC



ODD)


GAACTGAACCGTAACTACATCCCGGGTCACAAAAAAGGTGGTTC






TGTTTCTTACTACACC






GTTCGTCGTCGTGCGCCGCTGTTCCTGGACCTGTACCGTTCTGAC






TCTTTCCGTGCGTTC






CTGGACCGTCTGGTTGACGCGAAACTGCTGCTGTGCCCGGAAAA






CGACCCGCACTCTTGC






GCGCTGTACTACTACACCGAACCGGGTGACCACATCGGTTTCCA






CTACGACACCTCTTAC






TACAAAGGTGCGCGTTACACCATCCTGATGGGTCTGGTTGACCGT






TCTACCCAGTGCAAA






CTGGTTTGCGAACTGTTCAAAGACCACCCGACCAAAGCGCCGCA






GCGTCTGGAACTGATC






ACCGAACCGGGTGACATGGTTATCTTCAACGGTGACAAACTGTG






GCACGCGGTTACCCCG






CTGGGTGAAGGTGAAGAACGTATCGCGCTGACCATGGAATACGT






TACCAACCCGGAAATG






GGTGCGTTCAAACGTCTGTACTCTAACCTGAAAGACTCTTTCGCG






TACTTCGGTCTGAAA






ACCGTTTTCAAACAGGCGCTGGCGAAAAAATCTTCT





49
2-
37

Nifrospira

ATGATGGGTGGTGCGATGACCACCCAGACCCTGGACACCATCGC



oxoglutarate/


japonica

GGAAGCGGTTGACCAG



Fe(II)-


GCGGTTGCGCGTCTGGACTTCGACCGTCTGCACCGTGAATACTGG



dependent


GAACAGAACGAATTC



dioxygenase


CTGGTTATCCCGCAGTTCCTGGACCGTGCGATGGTTGAAGAATG



(2-


GCTGGTTCCGCAGGCG



ODD)


CAGGGTGTTAAAGGTGACCTGAACCGTAACTACATCCCGGGTCA






CAAAAAAGGTGGTTCT






GTTTCTTACTACACCGTTATGGAAAAAGCGCCGCGTTTCCTGGAC






CTGTACCGTTCTCAG






GTTTTCATCGAATTCCTGTCTCGTCTGTCTCACGCGAAACTGCGT






CTGTGCCCGGACAAC






GACCCGCACTCTTGCGCGCTGTACTACTACACCGAACCGGGTGA






CCACATCGGTTTCCAC






TACGACACCTCTTACTACAAAGGTTCTCGTTACACCATCCTGATG






GGTCTGGTTGACCAG






TCTACCCACTGCAAACTGGTTTGCGAACTGTTCAAAGACGACCC






GGTTCGTCCGTCTAAA






CGTCTGGAACTGATCACCCAGCCGGGTGACATGGTTATCTTCAAC






GGTGACAAACTGTGG






CACGCGGTTACCCCGCTGGGTCCGAACGAAGAACGTATCGCGCT






GACCATGGAATACGTT






ACCAACCCGGACATGGGTACCTTCAAACGTCTGTACTCTAACCTG






AAAGACTCTTTCGCG






TACTTCGGTCTGCGTGCGGTTTTCAAACGTGCGCTGTCTCTGCCG






CGTCGT





52
CYP82D
39

Panax

ATGGAAACCTTCCTGGCGCAGCTGTACTCTACCACCACCATCGCG






ginseng

GCGCTGTTCGTTCTG






CTGGTTCTGTACTACTTCTCTCCGTGGACCCGTATCAACAAAAAA






AACGTTGCGCCGGAA






GCGGGTGGTGGTTGGCCGATCATCGGTCACCTGCACCTGCTGGG






TGGTTCTAAACTGCCG






CACCTGGTTTTCGGTTCTATGGCGGACAAATACGGTCCGATCTTC






ACCGTTCGTCTGGGT






GTTCAGCGTTCTCTGGTTGTTTCTTCTTGGGAAATGGTTAAAGAC






ATCTTCACCACCAAC






GACGTTATCGTTTCTGGTCGTCCGAAATTCCTGGCGGCGAAACAC






CTGTCTTACAACTAC






GCGATGTTCGGTTTCTCTCCGTACGGTTCTTTCTGGCTGGAACTG






CGTAAAATCACCTCT






CTGCAGCTGCTGTCTAACCGTCGTCTGGAACTGCTGAAACACGTT






CGTGTTTCTGAAATG






GAAATCTCTATGCGTCAGCTGTACAAACTGTGGTCTGAAAAAAA






AAACGGTTCTGGTCGT






GTTCTGATGGACATGAAAAAATGGTTCGGTGAACTGAACCTGAA






CGTTACCTTCCGTATG






GTTGCGGGTAAACGTTACTTCGGTGGTGGTGCGGCGTCTAACGA






CGAAGAAGCGCGTCGT






TGCCGTCGTGTTGTTCGTGAATTCTTCCGTCTGCTGGGTGTTGTTG






TTGTTGCGGACTCT






CTGCCGTTCCTGCGTTGGCTGGACCTGGGTGGTTACGAACGTGCG






ATGAAAGAAACCGCG






CGTGAAATGGACTCTATCGTTTCTGTTTGGCTGGAAGAACACCGT






ATCAAATCTGACTCT






TCTGGTGACGACGCGAACATGGAACAGGACTTCATGGACGTTAT






GCTGTCTGCGGTTAAA






AACGTTGACCTGTGCGGTTTCGACGCGCACACCGTTATCAAAGC






GACCTGCATGGTTATC






ATCTCTTCTGGTACCGACACCACCACCGTTGAACTGACCTGGGCG






CTGTGCCTGCTGCTG






AACAACCGTCACGTTCTGAAAAAAGCGCAGGAAGAACTGGACA






ACGTTGTTGGTAAACAG






CGTCGTGTTAAAGAATCTGACCTGAACAACCTGATCTACCTGCA






GGCGATCGTTAAAGAA






ACCCTGCGTCTGTACCCGGCGGGTCAGCTGGGTGGTCAGCGTGA






ATTCTCTGACGACTGC






ACCGTTGGTGGTTACCACGTTCCGAAACGTACCCGTCTGGTTGTT






AACCTGTGGAAACTG






CACCGTGACCCGCGTATCTGGTCTGACCCGACCGAATTCCGTCCG






GAACGTTTCCTGGAA






CGTCACAAAGAAATCGACGTTAAAGGTCAGCACTTCGAACTGAT






CCCGTTCGGTGCGGGT






CGTCGTGTTTGCCCGGGTATCACCTTCGGTCTGCAGATGTTCCAC






CTGGTTCTGGCGTCT






CTGCTGCACGGTTTCGACATCTCTACCCCGTCTGACGCGCCGGTT






GACATGGCGGAAGGT






GCGGGTCTGACCAACGCGAAAATCACCCCGCTGGAAATCCTGAT






CGCGCCGCGTCTGTCT






CCGTCTCTGTACGAA





57
Glycosyltransferase
41

Malus

ATGAAAAAAGTTGAACTGGTTTTCATCCCGTCTCCGGGTGCGGGT



(UGT)


domestica

CACCACCTGCCGACC






CTGCAGTTCGTTAAACGTCTGATCGACCGTAACGACCGTATCTCT






ATCACCATCCTGGCG






ATCCAGTCTTACTTCCCGACCACCCTGTCTTCTTACACCAAATCT






ATCGCGGCGTCTGAA






CCGCGTATCCGTTTCATCGACGTTCCGCAGCCGCAGGACCGTCCG






CCGCAGGAAATGTAC






AAATCTCGTGCGCAGATCTTCTCTCTGTACATCGAATCTCACGTT






CCGTCTGTTAAAAAA






ATCATCACCAACCTGGTTTCTTCTTCTGCGAACTCTTCTGACTCTA






TCCGTGTTGCGGCG






CTGGTTGTTGACCTGTTCTGCGTTTCTATGATCGACGTTGCGAAA






GAACTGAACATCCCG






TCTTACCTGTTCCTGACCTCTAACGCGGGTTACCTGGCGTTCATG






CTGCACCTGCCGATC






CTGCACGAAAAAAACCAGATCGCGGTTGAAGAATCTGACCCGGA






CTGGTCTATCCCGGGT






ATCGTTCACCCGGTTCCGCCGCGTGTTCTGCCGGCGGCGCTGACC






GACGGTCGTCTGTCT






GCGTACATCAAACTGGCGTCTCGTTTCCGTGAAACCCGTGGTATC






ATCGTTAACACCTTC






GTTGAACTGGAAACCCACGCGATCACCCTGTTCTCTAACGACGA






CCGTGTTCCGCCGGTT






TACCCGGTTGGTCCGGTTATCGACCTGGACGACGGTCAGGAACA






CTCTAACCTGGACCAG






GCGCAGCGTGACAAAATCATCAAATGGCTGGACGACCAGCCGCA






GAAATCTGTTGTTTTC






CTGTGCTTCGGTTCTATGGGTTCTTTCGGTGCGGAACAGGTTAAA






GAAATCGCGGTTGGT






CTGGAACAGTCTGGTCAGCGTTTCCTGTGGTCTCTGCGTATGCCG






TCTCCGAAAGGTATC






GTTCCGTCTGACTGCTCTAACCTGGAAGAAGTTCTGCCGGACGGT






TTCCTGGAACGTACC






AACGGTAAAAAAGGTCTGATCTGCGGTTGGGCGCCGCAGGTTGA






AATCCTGGCGCACTCT






GCGACCGGTGGTTTCCTGTCTCACTGCGGTTGGAACTCTATCCTG






GAATCTCTGTGGCAC






GGTGTTCCGATCGCGACCTGGCCGATGTACGCGGAACAGCAGCT






GAACGCGTTCCGTATG






GTTCGTGAACTGGGTATGGCGCTGGAAATGCGTCTGGACTACAA






AGCGGGTTCTGCGGAC






GTTGTTGGTGCGGACGAAATCGAAAAAGCGGTTGTTGGTGTTAT






GGAAAAAGACTCTGAA






GTTCGTAAAAAAGTTGAAGAAATGGGTAAAATGGCGCGTAAAGC






GGTTAAAGACGGTGGT






TCTTCTTTCGCGTCTGTTGGTCGTTTCATCGAAGACGTTATCGGTC






AGAAC





58
Glycosyltransferase
43

Lycium

ATGGGTCACCTGGTTTCTACCGTTGAAATGGCGAAACAGCTGGTT



(UGT)


barbarum

GACCGTGAAGACCAG






CTGTCTATCACCGTTCTGATCATGACCCTGCCGACCGAAACCAAA






ATCCCGTCTTACACC






AAATCTCTGTCTTCTAACTACACCTCTCGTATCCGTCTGCTGGAA






CTGACCCAGCCGGAA






ACCTCTGTTAACATGGGTTCTGCGACCCACCCGATGAAATTCATG






TCTGAATTCATCACC






TCTTACAAAGGTCGTGTTAAAGACGCGGTTGCGGACATGTTCTCT






TCTCTGTCTTCTGTT






AAACTGGCGGGTTTCGTTATCGACATGTTCTGCACCGCGATGATC






GACGTTGCGAACGAC






TTCGGTGTTCCGTCTTACCTGTTCTACACCTCTGGTGCGGCGATG






CTGGGTCTGCAGTTC






CACTTCCAGTCTCTGATCTCTCAGAACGTTCTGTCTTACCTGGAC






TCTGAATCTGAAGTT






CTGATCCCGACCTACATCAACCCGGTTCCGGTTAAATTCCTGCCG






GGTCTGATCCTGGAC






AACGACGAATACTCTATCATGTTCCTGGACCTGGCGGGTCGTTTC






AAAGAAACCAAAGGT






ATCATGGTTAACACCTTCGTTGAAGTTGAATCTCACGCGCTGAAA






GCGCTGTCTGACGAC






GAAAAAATCCCGCCGATCTACCCGGTTGGTCCGATCCTGAACCT






GGGTGGTGGTAACGAC






GGTCACGGTGAAGAATACGACTCTATCATGAAATGGCTGGACGG






TCAGCCGAACTCTTCT






GTTGTTTTCCTGTGCTTCGGTTCTATGGGTTCTTTCGAAGAAGAC






CAGGTTAAAGAAGTT






GCGAACGCGCTGGAATCTTCTGGTTACCAGTTCCTGTGGTCTCTG






CGTCAGCCGCCGCCG






AAAGACAAACTGCAGTTCCCGTCTGAATTCGAAAACCTGGAAGA






AGTTCTGCCGGAAGGT






TTCCTGCAGCGTACCAAAGGTCGTGGTAAAATGATCGGTTGGGC






GCCGCAGGTTGCGATC






CTGTCTCACCCGTCTGTTGGTGGTTTCGTTTCTCACTGCGGTTGGA






ACTCTACCCTGGAA






TCTGTTCGTTCTGGTGTTCCGATGGCGACCTGGCCGATGTACGCG






GAACAGCAGTCTAAC






GCGTTCCAGCTGGTTAAAGACCTGGAAATGGCGGTTGAAATCAA






AATGGACTACCGTAAA






GACTTCATGACCATCAACCAGCCGGTTCTGGTTAAAGCGGAAGA






AATCGGTAACGGTATC






CGTCAGCTGATGGACCTGGTTAACAAAATCCGTGCGAAAGTTCG






TAAAATGAAAGAAAAA






TCTGAAGCGGCGATCATGGAAGGTGGTTCTTCTTACGTTGCGCTG






GGTAACTTCGTTGAA






ACCGTTATGAAATCT





61
Glycosyltransferase
45

Cicer

ATGAAAAAAATCGAAGTTGTTTTCATCCCGTCTCCGGGTGTTGGT



(UGT)


arietinum

CACCTGATCTCTACC






CTGGAATTCGCGAACCTGCTGATCAACCGTAACAACCGTCTGAA






CATCACCGTTCTGGTT






ATCAACTTCCCGAAAACCGTTGAAAAACAGACCAACTACTCTCT






GACCGAATCTGAAAAC






CTGCACGTTATCAACCTGCCGCAGACCACCACCCACGTTCCGTCT






ACCTCTGACGTTGGT






AACTCTATCTCTGCGCTGGTTGAAACCCAGAAATCTAACGTTAAA






CAGGCGGTTTCTAAC






CTGACCGGTACCCTGGCGGCGTTCGTTGTTGACATGTTCTGCACC






ACCATGATCGACGTT






GCGAACGAACTGGGTGTTCCGTCTCTGGTTTTCTTCACCTCTGGT






GTTGCGTTCCTGGGT






CTGATGCTGCACCTGCACACCATCTGGGAACAGCAGGACACCGA






ACTGCTGCTGCAGCAG






GACGAACTGGACATCCCGTCTTTCGCGAACCCGGTTGCGACCAA






CACCCTGCCGACCCTG






GTTCTGCGTAAAGAATGGGAATCTTCTTTCATCAAATACGGTAAC






GGTCTGAAAAAAGCG






TCTGGTATCATCGTTAACTCTTTCCACGAACTGGAACCGCACGCG






GTTCGTTCTTTCCTG






GAAGACCCGACCCTGCGTGACCTGCCGATCTACCCGGTTGGTCC






GATCCTGAACCCGAAA






TCTAACGTTGACTCTGACGACGTTATCAAATGGCTGGACGACCA






GCCGCCGTCTTCTGTT






GTTTTCCTGTGCTTCGGTTCTATGGGTACCTTCGACGAAGAACAG






GTTCGTGAAATCGCG






CTGGCGATCGAACGTTCTGGTGTTCGTTTCCTGTGGTCTCTGCGT






AAACCGCAGCCGCAG






GGTACCATGGTTCCGCCGTCTGACTACACCCTGTCTCAGATGCTG






GAAGTTCTGCCGGAA






GGTTTCCTGGACCGTACCGCGAACATCGGTCGTGTTATCGGTTGG






GCGCCGCAGGTTCAG






GTTCTGGCGCACCAGGCGACCGGTGGTTTCGTTTCTCACTGCGGT






TGGAACTCTACCCTG






GAATCTATCTACTACGGTGTTCCGATCGCGACCTGGCCGCTGTTC






GCGGAACAGCAGACC






AACGCGTTCGAACTGGTTCGTGAACTGAAAATCGCGGTTGAAAT






CGCGCTGGACTACCGT






CTGGAATTCGACATCGGTCGTAACTACCTGCTGGACGCGGACAA






AATCGAACGTGGTATC






CGTGGTGTTCTGGACAAAGACGGTGAAGTTCGTAAAAAAGTTAA






AGAAATGTCTCAGAAA






TCTCGTAACGTTCTGCTGGAAGGTGGTTCTTCTTACACCTACCTG






GGTCAGCTGATCGAC






TACATCACCAACCAGGTT





63
Glycosyltransferase
47

Barbarea

ATGAAATCTGAACTGGTTTTCATCCCGTACCCGGGTATCGGTCAC



(UGT)


vulgaris

CTGCGTCCGACCGTT






GAAGTTGCGAAACTGCTGGTTGACCGTGAACCGCGTCTGTCTATC






TCTGTTTTCATCCTG






CCGTTCATCTCTGGTGACGAAGTTGGTGCGTCTGACTACATCTCT






GCGCTGTCTGCGGCG






TCTAACGACCGTCTGCGTTACAAAGTTATCTTCACCGGTGACCAG






GAAACCGCGGAACCG






ACCAAACTGACCCTGCACATCGAAAACCAGGTTCCGAAAGTTCG






TACCGCGGTTGCGAAA






CTGATCGACGAATACTCTAAACTGCTGGACTCTCCGAAAATCGTT






GGTTTCGTTCTGGAC






ATGTTCTGCACCTCTATGATCGACGTTGCGAACGAATTCGAACTG






CCGTCTTACATGTTC






TTCACCTCTTCTGCGGGTATCCTGGCGGTTTCTTTCCACGTTCAGG






TTCTGTACGACGAA






AAAAAATGCAACTTCTCTGAAACCATGTTCGAAGACTCTGAAGC






GGAACTGATCCTGCCG






TCTCTGACCCGTCCGTACCCGGTTAAATCTCTGCCGTACGCGCTG






TTCCGTACCGAAATG






CTGATCATGCACGTTAACCTGGCGCGTCGTTTCCGTGAACTGAAA






GGTATCCTGGTTAAC






ACCGTTGACGAACTGGAACCGCACGCGCTGAAATTCCTGCTGTC






TGGTATCACCCCGCCG






GCGTACCCGGTTGGTCCGCTGCTGCACCTGGAATCTAACCAGGA






CGACGAATCTGAAGAC






GAAAAACGTTCTGAAATCATCATGTGGCTGGACGAACAGCCGGC






GTCTTCTGTTGTTTTC






CTGTGCTTCGGTTCTATGGGTGGTTTCTCTGAAGAACAGACCCGT






GAAATCGCGATCGCG






CTGGAACGTTCTGGTCACCGTTTCCTGTGGTCTCTGCGTCGTGAA






TCTCCGAACATCGAC






AAAGAACTGCCGGGTGAATTCACCAACCTGGAAGAAGTTCTGCC






GGAAGGTTTCTTCGAC






CGTACCAAAGGTATCGGTAAAGTTATCGGTTGGGCGCCGCAGGT






TGCGGTTCTGGAAAAC






CCGGCGATCGGTGGTTTCGTTACCCACGGTGGTTGGAACTCTGTT






CTGGAATCTCTGTGG






TTCGGTGTTCCGACCGCGATGTGGCCGCTGTACGCGGAACAGAA






ATTCAACGCGTTCGTT






ATGGTTGAAGAACTGGGTCTGGCGGTTGAAATCAAAAAATACTG






GCGTGGTGACCTGCTG






CTGGGTCGTTCTGCGATGGAAATCGTTACCGCGGACGAAATCGA






ACGTGGTATCACCTGC






CTGATGCAGCAGGACTCTGACGTTCGTAAACGTGTTAAAGAAAT






GAAAGGTAAATGCCAC






GTTGCGCTGATGGACGGTGGTTCTTCTACCCTGGCGCTGGACAAA






TTCGTTGAAGACGTT






ACCAAAAACATC





66
2-Deoxy-
49

Desulfatibacillum

ATGACCGGTCCGAAAATCTGCGTTGTTGGTGCGTGCAACATCGA



d-ribose-


aliphaticiyorans

CCTGATCTCTTACGTT



5-


GAACGTCTGCCGGTTCTGGGTGAAACCCTGCACGGTAAAAAATT



phosphate


CTCTATGGGTTTCGGT



aldolase


GGTAAAGGTGCGAACCAGGCGGTTATGGCGGCGAAACTGGGTG



(DERA)


GTGAAGTTGCGATGGTT






GGTAAACTGGGTCGTGACGTTTTCGGTGAAAACACCCTGGCGAA






CTTCAAAAAACTGGGT






GTTAACGTTTCTCACGTTCACTTCACCGAAGAAGCGTTCTCTGGT






GTTGCGCCGATCGCG






GTTGACGACAACGGTGCGAACTCTATCATCATCGTTACCGGTGC






GTCTGACCTGCTGTCT






GCGGAAGAAATCCGTGCGGCGGAAAACGCGATCGCGAAATCTA






AAGTTCTGGTTTGCCAG






CTGGAAATCCCGATGGAACAGAACCTGGAAGCGCTGCGTATCGC






GCGTAAAAACAACGTT






CCGACCATCTTCAACCCGGCGCCGGCGCGTCCGGGTCTGCCGGA






CGAACTGTACCAGCTG






TCTGACATCTTCTGCCCGAACGAATCTGAAACCGAAATCCTGACC






GGTATGCCGGTTGAA






ACCATGGAACAGGCGGAACAGGCGGCGAAAGCGCTGCTGGAAC






GTGGTCCGAAAACCGTT






ATCCTGACCCTGGGTGAACGTGGTTGCCTGCTGGTTGACGCGAA






CGGTGCGCGTCACATC






CCGACCCGTAAAGTTGAAGCGATCGACACCACCGGTGCGGGTGA






CTGCTTCGTTGGTTCT






CTGGCGTTCTTCCTGGCGGCGGGTAAATCTCTGGAAGACGCGAT






CAACCGTGCGAACAAA






ATCGCGGCGGTTTCTGTTTGCGGTCAGGGTACCCAGTCTTCTTTC






CCGGGTGCGTCTGAA






CTGGACCCGGAAATCCTGTCTGACATCCAGCCGGCGGAATCTCA






GGCGCCGGCGATGTCT






GCGAAAGACCTGGCGCAGTACATCGACCACACCCTGCTGAAACC






GGAAGCGCCGCTGTCT






GCGTTCGACAAAATCTGCGAAGAAGCGATCCTGCACCAGTTCCG






TTCTGTTTGCGTTAAC






TCTTGCAAAATCTCTTACATCGCGAAAAAACTGAAAGGTACCGG






TGTTGACGCGTGCGCG






GTTATCGGTTTCCCGCTGGGTGCGATGTCTACCGCGGCGAAAGC






GTTCGAAGCGAAACAG






GCGGTTATGGACGGTGCGGCGGAACTGGACATGGTTATCAACGT






TGGTGCGCTGAAATCT






GGTGACTTCGACGCGGTTTTCGACGACATCAAAGCGGTTCGTGA






CGCGGCGCCGCTGCCG






ATCATCCTGAAAGTTATCATCGAAACCTGCCTGCTGACCGACGA






AGAAAAAGCGCGTGCG






TGCCGTATCGCGAAAGCGGCGGACGCGGACTTCGTTAAAACCTC






TACCGGTTTCTCTACC






GGTGGTGCGACCCTGGAAGACATCGCGCTGATGCGTGACACCGT






TGGTCCGTACATGGGT






GTTAAAGCGTCTGGTGGTATCAAAGACGCGAAAACCGCGATCGC






GATGATCGAAGCGGGT






GCGACCCGTATCGGTGCGGGTGCGGGTGTTGAAATCGTTTCTGGT






CTGCAGTCTGACGCG






GACGGTTCTTAC









Table 2 depicts the amino acid sequence of the enzymes which the recombinant microbe expresses in order to produce podophyllotoxin and its derivates. The table only depicts the sequences of those proteins which provided the desirable results.









TABLE 2







List of proteins (enzymes) of the podophyllotoxin pathway













SEQ




Ref.

ID




No.
Genes
NO:
Organism
Sequence














1
Phenylalanine
2

Rhodosporidium

MAPSLDSISHSFANGVASAKQAVNGASTNLAVAGSHLPTTQVTQVD



ammonia-


toruloides

IVEKMLAAPTDSTLELDGYSLNLGDVVSAARKGRPVRVKDSDEIRSKI



lyase


DKSVEFLRSQLSMSVYGVTTGFGGSADTRTEDAISLQKALLEHQLCG



(PAL)


VLPSSFDSFRLGRGLENSLPLEVVRGAMTIRVNSLTRGHSAVRLVVLE






ALTNFLNHGITPIVPLRGTISASGDLSPLSYIAAAISGHPDSKVHVVHEG






KEKILYAREAMALFNLEPVVLGPKEGLGLVNGTAVSASMATLALHD






AHMLSLLSQSLTAMTVEAMVGHAGSFHPFLHDVTRPHPTQIEVAGNI






RKLLEGSRFAVHHEEEVKVKDDEGILRQDRYPLRTSPQWLGPLVSDLI






HAHAVLTIEAGQSTTDNPLIDVENKTSHHGGNFQAAAVANTMEKTRL






GLAQIGKLNFTQLTEMLNAGMNRGLPSCLAAEDPSLSYHCKGLDIAA






AAYTSELGHLANPVTTHVQPAEMANQAVNSLALISARRTTESNDVLS






LLLATHLYCVLQAIDLRAIEFEFKKQFGPAIVSLEDQHFGSAMTGSNLR






DELVEKVNKTLAKRLEQTNSYDLVPRWHDAFSFAAGTVVEVLSSTSL






SLAAVNAWKVAAAESAISLTRQVRETFWSAASTSSPALSYLSPRTQIL






YAFVREELGVKARRGDVFLGKQEVTIGSNVSKIYEAIKSGRINNVLLK






MLA





3
Phenylalanine
4

Populus

MEFCQDSRNGNGSPGFNTNDPLNWGMAAESLKGSHLDEVKRMIEE



ammonia-


kitakamiensis

YRNPVVKLGGETLTI



lyase


GQVTAIASRDVGVMVELSEEARAGVKASSDWVMDSMSKGTDSYG



(PAL)


VTTGFGATSHRRTKQG






GELQKELIRFLNAGIFGNGTESSHTLPRSATRAAMLVRTNTLLQGYS






GIRFEMLEAITKM






INHNITPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPNGEPLTP






AEAFTQAGIDG






GFFELQPKEGLALVNGTAVGSGLASMVLFEANVLAILSEVLSAIFAE






VMQGKPEFTDHLT






HKLKHHPGQIVAAAIMEHILDGSAYVKEAQKLHEIDPLQKPKQDRH






ALRTSPQWLGPLIE






VIRTSTKMIEREINSVNDNPLIDVSRNKALHGGNFQGTPIGVSMDNT






RLAIASIGKLMFA






QFSELVNDLYNNGLPSNLTGGRNPSLDYGFKGAEIAMASYCSELQF






LDQSCTNHVQSAEQ






HNQDVNSLGLISSRKTAEAIDILKLMSTTFLVGLCHSVDLRHIEENLK






NTVKISVSQLPR






VLTMGFNGELHPSRFCEKDLLKVVDREHVFSYIDDPCSATYPLMQK






LRQVLVEHALVNGE






KVRNSTTSIFQKIGSFEEELKTLLPKEVESARLEVENGNPAIPNREKEC






RSYPLYKFVRE






ELGTSLLTGEKVKSPGEEFDKVFTAICAGKLIDPLLECLKEWDGAPL






PIC





5
Phenylalanine
6

Strobilurus

MPITHEQPNGFHSKQLNGSGIAKAKAMPYPSDLLSHFVKQHLELES



ammonia-


tenacellus

YKNGQEIEIDGYSL



lyase


SISAVSAAARYNAPVILRDSSTIRDRLEKARSVIVEKIEGSKSVYGVS



(PAL)


TGFGGSADTRTS






NTLALGNALLQHQHSGVLPSTTNTLSVLPLLDPIASTSMPESWVRGA






ILIRINSLIRGHS






GVRWELIAKMVELLQANITPLVPLRGSISASGDLSPLSYVAGTLMGN






PSIRVFDGPAAFG






ARQIVSSVKALEEHNITPISLLAKEHLGILNGTAFSASVASLVLSDVT






HLAMLAQVCTAM






GTEVLLGERMNYAPFIHAVARPHPGQTEAARTIWDLLSGSKLAHGH






EEEVTIDQDQGELR






QDRYPLRTAPQFLGPQIEDILSALNTVTLECNSTTDNPLIDGETGDIH






HGGNFQAMSVSN






AMEKTRLSLHHIGKLLFAQCAELVHPDMNRGLPPSLAATDPSINYH






GKGEDIGIAAYVSE






LGYLANPVSTHIQSAELHNQAVNSLALISARATINSLEVLSLLTSSYL






YMLCQAYDLRAL






QADFRQGLAEIVQEELRAHFSAHIESLDESPLFDKVISSMYKELNHT






TTMDAVPRMVKVA






GASTSLLVDFFMANQTSDAMSVAALTALPKFRETVALRAAAKLVA






LREEYLLGARGPAPA






SAWLGRTRPIYEFIRVTLGIRMHGTENLGVFQQGLGVQDVTIGQNV






SLIHEAIRDGKMRG






VVVGLFA





7
Phenylalanine
8
Penicillium
MSPASYTATPVSSLVTPSHPTPHKDETLKSWAKIGSLVHRGVVNVD



ammonia-

antarcticum
GETLDIASVVAVAR



lyase


FEGCGAKVSKDTKVTERVEAGIETFNDYLYKGYCIYGVNTGFGGSA



(PAL)


DTRTSDVIRLQQSL






LQLTQSGILSGSDFSPRMGDYNLSSHAMPVTWVRATMLVRCNHLL






RGHSGVRLEIIDTVL






RLLRAGLTPIIPLRGSISASGDLMPLSYLVGILEGNPDEKVYWDRKPE






AAIVSATKALEI






IGIPPFILKPKEGLSLINGSAASAAVASLAAHEASQLVLLAQGLTALT






CEAMMGNAENYH






EFPAKIRPHPGQIEVAANERKGIINSKLIETSGTKDRLRQGLIQDRYAL






RGASQWLGPVV






EDLRLAIQQLTTELNSTQDNPVIDSESGEVYFCSNFQAASVSMAMEK






TRGGLQMIGKLLF






SYSSELINPDMNKGLPANLAADDPSLSFTMKGVDINMAAYMSELGF






LANSVTSHVQSAEM






NNQPINSLALISARYTLQAVELVSMMSAALLYVTCQAVDLRILHETF






LENLYSVLYLAFD






SVQMRQDKSSAIRTELLQALRNSWGHSARDDLSVRIQALSTAMAPV






LLANAKELSTEDPF






AVIEHLQKEIRQEAKTLFLGLRVKSFCGDLNAESSLGPAAKALYRFV






RRELDVPFHCGIG






EHPTGDTEAAADIPPRPRKTVGSWISIIYDAIRDGRIRQPLGDDWRCC






NGF





8
Phenylalanine
10

Ganoderma

MPAPSDTRTTPRRSYSISGGHMMRDTTVLKPEKSTAPPSPTTYLATP



ammonia-


sinense

VLPSSQGRPTALV



lyase


EKFIQNFKDIESHKNGKAIVVDGQNLSIAAVTAAARYNAPVVLDESF



(PAL)


AVAVKLEKSRKVV






TDKMSNGTSVYGVSTGFGGSATTRTDEPILLGNALLQHQHSGVLPS






STKKLEALPLLDPI






ASTSMPESWVRGAILIRMNSLIRGHSGVRRELIEKMGDLLRENITPL






VPLRGSISASGDL






SPLSYIAGTLIGNPSIRVFDGPTAFGARQIVSSRKALEAHGIAPLPLAS






KEHLGILNGTA






FSASVASLVLNDAVHMGLLAQVCTAMGTEALNGTRLSFDSFINCTA






RPHPGQIETARNMVV






NLLEGSKFAVTEEEEVSIKEDGGVLRQDRYPLRTAPQFIGPQVEDLL






HAVETITIECNST






TDNPLVDGETGTVHHGGNFQAMAVSNAMEKTRLALHHLGKILFAQ






CAELMDPAMNRGLPP






SLAATDPSLDYHCKGIDIGTAAYVAELGYLANPVSTHIQSAEMEINQ






AVNSMALVSGRATI






NSLEVLSILISSYLYALCQALDLRALQSEFMDGLVNVVSEEFDAAFG






LSPSEAAPVKIAL






FKELKKTFEETSILDAGERMVKVAASATVIIVDHFTGPAAKEENVSS






LSSLPSFRSKVAS






RLTTLLDQLRRDYLLGARGPAPASRFLNKTRPVYEFVRLTLGIRMH






GSENYHRFANGLGV






EDITVGGNVSLIHEAIRDGKLQSVVANLFS





12
Cinnamte
12

Azospirillum

MDLLLLEKTLLALFIAATIAITISKLRGKRFKLPPGPIPVPVFGNWLQ



4

sp.
VGDDLNHRNLTD



hydroxylase


LAKRFGDIFLLRMGQRNLVVVSSPELAKEVLHTQGVEFGSRTRNVV



4


FDIFTGKGQDMVFT



coumarate


VYGTLAEMRRIMTVPFFTNKVVQQYRFGWEFEAQSVVDDVKKNPE



coenzyme


ACSSGIVLRRRLQLM



ligase


MYNIMYRIMFDRRFESEEDPLFVKLKALNGERSRLAQSFEYNYGDFI



fusion


PILRPFLKGYLKL



(C4H4CL)


CKEVKDRRLQLFKDYFVDERKKLGSTKSTTNEGLKCAEDHILDAQQ






KGEINDDNVLYIVE






NINVAAIETTLWSIEWGIAELVNHQKIQNKVREEIDRVLGPGHQVTE






PDLQKLPYLQAVI






KETLRLRMAIPLLVPHMNLHDAKLSGFDIPAESKILVNAWWLANNP






AQWKKPEEFRPERF






LEEESHVEANGNDFRYLPFGVGRRSCPGIILALPILGITLGRLVQNFE






LLPPPGQSKEDT






AEKGGQFSLHILKHSTIVCKPRSFNGGGGSGGGGSGGGGSMTIQRW






WRNRESLNRVLCDLLAGEFARLRPGGSPPAHPHRWPETLPLGPDGVG






ADSLDLL






QLAAALNEALHLHRSGIEDYLLMHRTVGDWLDVCEAALGRFDGAL






SFRTSGSTGEGKRCE






HPLAALEEEADALAALLSGGAEAPRRVVSVVPAHHIYGFLFTVLLP






DRLAVPVVDGRGTS






PGGLAARLGPGDLVVAHPDWWGALLRSGAALPDGVTGTSSTAPCP






PDTARGVRGVGLARL






VEVFGSSETAGLGWRESPDAPFRPFPWWRFGDDGRVTRRLADGTV






LSATLQDRLSHDEEG






FRPSGRLDTVVQVGGVNVSLAGVQAHLAGHPDVEAAAVRLMRPEE






GTRLKAFIVPARTAP






PREELYRRLTDWIEATLPAPHRPRALAFGPALPVNGMGKPCDWPLA






TCR





17
hydroxycinnamoyl-
14

Coffea

MKIEVKESTMVRPAQETPGRNLWNSNVDLVVPNFHTPSVYFYRPTG



CoA:


canephora

SSNFFDAKVLKDAL



quinate


SRALVPFYPMAGRLKRDEDGRIEIECNGEGVLFVEAESDGVVDDFG



hydroxycinnamoyl-


DFAPTLELRRLIPA



transferase


VDYSQGISSYALLVLQVTYFKCGGVSLGVGMRHHAADGFSGLHFIN



p-


SWSDMARGLDVTLP



coumaroyl


PFIDRTLLRARDPPQPQFQHIEYQPPPALKVSPQTAKSDSVPETAVSIF



quinate 3′-


KLTREQISALK



hydroxylase


AKSKEDGNTISYSSYEMLAGHVWRCACKARGLEVDQGTKLYIATD



fusion


GRARLRPSLPPGYFG



(HCTC3H)


NVIFTATPIAIAGDLEFKPVWYAASKIHDALARMDNDYLRSALDYL






ELQPDLKALVRGAH






TFKCPNLGITSWVRLPIHDADFGWGRPIFMGPGGIAYEGLSFILPSPT






NDGSMSVAISLQ






GEHMKLFQSFLYDIGGGGSGGGGSGGGGSMALLLILLPVAFIFLAYS






LYERLRFKLPPGPRPKPVVGNIYDIKPVRFKCYAEWSKLYGP






IFSVYFGSQLNTVVNTAELAKEVLKDNDQQLADRYRSRPSARMSRN






GQDLIWADYGPHYV






KVRKLCNLELFTPKRLEGLRPLREDEVTAMVDSIFKDCTKPENKGK






SLLMRNYLGSVAFN






NITRLTEGKRFMNSEGVVDEQGQEFKGIVSNGIRIGAKLSVADHIPW






LRWMFVGENEDLD






KHNARRDKLTRMIMEEHTLARQKSGNTKQHFVDALLTLQKQYELS






DDTVIGLLWDMITAG






MDTTTISVEWAMAELVKNPRVQQKAQEELDRVIGSDRIMTEADFA






KLPYLQCVAKEALRL






HPPTPLMLPHRANANVKIGGYDIPKGSIVHVNVWAIARDPAAWKNP






LEFRPERFLEEDVD






EKGHDYRLLPFGAGRRICPGAQLALNLVTSMLGHLLHHFTWSPPPG






VRPEEIDLEESPGT






VTYMRTPLQAVATPRLPAHLYNRVPVE





20
Caffeoyl
16

Eleocharis

MSTTTTTQTKTETQSQTGAQNGAEQQTRHSEVGHKSLLQSDALYQ



CoA O-


dulcis

YILETSVYPREPECM



methyltransferase


KELRDITAKHPWNLMTTSADEGQFLNLLLKLIGAKKTMEIGVYTGY



(CCoAO


SLLATALAIPEDGT



MT)


ILAMDINRENYELGLPVIEKAGVAHKIDFREGPALPVLDQLIEDPAN






LGSFDFIFVDADK






DNYLNYHKRLIELVKVGGVIGYDNTLWNGSVVLPADAP1VIRKYIRY






YRDFVLELNKALAAD






PRIEISQLPVGDGITLCRRVK





21
Caffeoyl
18

Chamaecyparis

MATVEATKDSTQQVSRHQEVGHKSLLQSDALYQYILETSVYPREPE



CoA O-


formosensis

PMRELREITAKHPW



methyltransferase


NLMTTSADEGQFLHLLLKLINAKNTMEIGVYTGYSLLSTALALPDD



(CCoAO


GKILAMDINRENYE



MT)


LGLPVIQKAGVAHKIDFREGPALPVLDQMLENKEMHGSFDFIFVDA






DKDNYLNYHKRLID






LVKIGGVIGYDNTLWNGSVVAPPDAPMRKYVRYYRDFVIELNKAL






AADPRIEISQIPVGD






GITLCRRII





24
Bifunctional
20

Linum

MGRCRVLVVGGTGYIGKRIVKASIEHGHDTYVLKRPETGLDIEKFQ



pinoresinol-


usitatissimum

LLLSFKKQGAHLVE



lariciresinol


ASFSDHESLVRAVKLVDVVICTVSGAHSRSLLLQLKLVEAIKEAGN



reductase


VKRFIPSEFGMDPA



(DIRPLR)


RMGDALEPGRETFDLKMVVRKAIEDANIPHTYISANCFGGYFVGNL






SQLGPLTPPSDKVT






IYGDGNVKVVYMDEDDVATYTIMTIEDDRTLNKTMYFRPPENVITH






RQLVETWEKLSGNQ






LQKTELSSQDFLALMEGKDVAEQIVIGHLYHIYYEGCLTNFDIDADQ






DQVEASSLYPEVE






YTRMKDYLMIYL





27
Secoisolar
22

Juglans

MNGTSSLLAPIAKRLAGKVALITGGASGIGESTARLFAEQGAKVIIA



iciresinol


regia

DVQDELGFSVSQD



dehydrogenase


KSINGAISYIHCDVTSESDVQNAVNTAVSKHGKLDIMFNTAGCTGQ



(SDH)


NKASILDHEQKDYK






TVFDVNVLGSFLGAKHAAKVMIPVKRGTILFTASCVTESHGLASHS






YTASKHAVVGLTKN






LCVELGQYGIRVNCISPYGAATPLFLKGMGIDKKEKAEEILSSAANL






KGPVLEAGDLAEA






ALFLASEESKYVSVLNLVVDGGYSATNVAFTETIQKFFT





32
CYP719
24

Papaver

MIMSNLWILTLISTILAVFAAVLIIFRRRISASTTEWPVGPKTLPIIGNL






somniferum

HILGGTALHV






VLHKLAEVYGSVMTIWIGSWKPVIIVSDFDRAWEVLVNKSSDYSAR






EMPEITKIGTANWR






TISSSDSGPFWATLRKGLQSVALSPQHLASQTAHQERDIIKLIKNLKD






EAASGMVKPLDH






LKKATVRLISRLIYGQDFDDDKYVEDMHDVIEFLIRISGYAQLAEVF






YYAKYLPGHKRAV






TGAEEAKRRVIALVRPFLQSNPATNTYLHFLKSQLYPEEVIIFAIFEA






YLLGVDSTSSTT






AWALAFLIREPSVQEKLYQELKNFTANNNRTMLKVEDVNKLPYLQ






AVVKETMRMKPIAPL






AIPHKACKDTSLMGKKVDKGTKVMVNIHALHHTEKVWKEPYKFIP






ERFLQKHDKAMEQSL






LPFSAGMRICAGMELGKLQFSFSLANLVNAFKWSCVSDGVLPDMS






DLLGFVLFMKTPLEA






RIVPRL





33
CYP719
26

Cinnamomum

MEAIWTAVAIGIAAAVLMAFRGRQRQRLSRKPTQWPPGPTRLPLIG






micranthum

NMHQILLKGGDPFH






VAINKLAQVYGPLMTVWFGTRQPTIIVSDHNLVWEVLVSKSADYA






AREIPITLKPSLADF






RTIVSSNAGPLWHSLRRGLQNGAIGPHSLSLQAPFQESDMAQMINN






MEKEANLNGGVVKP






FPHIRRAIIKLLARICFGCDFSDEEFDATMDFMVEEALRYSDDSRILD






TFPPARFLPSVK






RAVMQMEKVKLRLMECIGRPLDSPLPPTCYAHFLLSQSFPREVAIFSI






FELFLLGVDSTG






STTMWGLGLLMQNQEAQQKLYQEIREHASCNEKGVVKVEELGKLE






YLQAVAKETMRMKPI






APLAVPHQAARDTTLDGLHVAEGTTVLANLYALHYDPKVWDEPER






FKPERFLESSKEFLG






KRGQYSFLPFGAGMRACAGMEVGKLQLPFAICNLVNAFNWSNVVE






KEAPKLIEGFSFILS






MKTPLEARIVPRGI





34
O-
28

Papaver

MEVVSKIDQENQAKIWKQIFGFAESLVLKCAVQLEIAETLHNNVKP



methyltranserase


somniferum

MSLSELASKLPAQP



3


VNEDRLYRILHFLVHMKLFNKDATTQKYSLAPPAKYLLKGWEKSM



(OMT)


VPSILSVTDKDFTAP






WNHLGDGLTGNCNAFEKALGKGIRVYMRENPEKDQLFNEGMACD






TRLFASALVNECKSIF






SDGINTLAGVGRGTGTAVKAISKAFPDIKCTIHDLPEVTSKNSKIPRD






VFKSVPSADAIF






MKSILHEWNDEECIQILKRCKEAIPKGGKVIIADVVIDMDSTHPYSKS






RLAMDLAMMLHT






GGKERTEEDWKKLIDAAGFASCKITKLSALQSVIEAYPH





37
O-
30
Sinopodophyllum
MEMAPTMDLEIRNGNGYGDSGEELLAAQAHIYNHIFNFISSMALKC



methyltranserase

hexandrum
AVELNIPEILHNHQ



3


PKAVTLSELVQALQIPQAKSACLYRLLRILVHSGFFAITKIQSEGDEE



(OMT)


GYLPTLSSKLLL






KNHPMSMSPCLLGLVNPTMVAPMHFFSDWFKRSDDMTPFEATHGA






SLWKYFGETPHMAEI






FNEAMGCETRLAMSVVLKECKGKLEGISSLVDVGGGTGNVGRAIA






EAFPNVKCTVLDLPQ






VVGNLKGSNNLEFVSGDMFQFIPPADVVFLKWILHDWNDEECEKIL






KRCKEAIPSKEEGG






KLIIIDMVVNDHNKGSYESTETQLFYDLTLMALLTGTERTETEWKK






LFVAAGFTSYIISP






VLGLKSIIEVFP





39
CYP71
32

Cinnamomum

MALLLSLLFFASALIFLLKLNGQRANKTDVPPSPPKLPLIGNLHQLGT






micranthum

LPHRSLRSLAGK






YGPLMLLYLGRIPTLIVSSEEMAEQIMKTHDLIFASRPSITAAKELLY






GCTDLAFASYGE






YWRQVRKMCVLELLSIKRVNSFRSIMEEEVGLMIERISQSSSTGAAV






NLAELFLSLTGGT






IARAALGKKYEGEAEEGRNKYADLVKELHALLGAFSVGDYFPSLA






WVDVVTGLHGKLKRN






SRELDRFLDQVIEHHLMRPLDGCDVGEHTDLVDVMLQVQKDSNRD






IHLTRDNIKAIILDM






FSAGTDTTALTLEWVMAELAKHPNVMKKAQGEVRRVVDVKANIS






EEHLCQLNYMKSIIKE






TLRLHPPAPLLVPRESTTNVKIQNFHIPPKTRVFINAYAIGRDPTSWE






NPEEFLPERFAN






NSVDFKGQDFQFIPFGAGRRGCPGLSFAITSLELALANLLYWFDWEL






PQGVTEEDLDMSE






ALGITVHKKLPLYLVPKNHFS





46
2-
34

Microcystis

MTTDFIEIYERALRRELCEEIRHRFEASNRKSDGRIGHGVDKSKKNS



oxoglutarate/


viridis

TDITITGLSEWSD



Fe(II)-


LHSQILDSTLRHLMLYERKYPYLITSAFALSLQEPATGLVRPLTASDV



dependent


GAASDLELGEYL



dioxygenase


FRVFRPGAINVQKYSKSLGGYYYWHSEIYPRDPAAETLHRVLLFMF



(2-


YLNDVERGGETEFL



ODD)


YQERKLKPTSGTMVIAPAGFTHTHRGNVPESHDKYILTSWILFNRAE






QLYPRKPNPA





48
2-
36

Nitrospira

MVSNMAMGITEAVDRAVAALDVDRLHREYWEQNEFLVIRQFLPRA



oxoglutarate/


moscoviensis

FVEEVLVPQAQGVKT



Fe(II)-


ELNRNYIPGHKKGGSVSYYTVRRRAPLFLDLYRSDSFRAFLDRLVD



dependent


AKLLLCPENDPHSC



dioxygenase


ALYYYTEPGDHIGFHYDTSYYKGARYTILMGLVDRSTQCKLVCELF



(2-


KDHPTKAPQRLELI



ODD)


TEPGDMVIFNGDKLWHAVTPLGEGEERIALTMEYVTNPEMGAFKR






LYSNLKDSFAYFGLK






TVFKQALAKKSS





49
2-
38

Nitrospira

MMGGAMTTQTLDTIAEAVDQAVARLDFDRLHREYWEQNEFLVIPQ



oxoglutarate/


japonica

FLDRAMVEEWLVPQA



Fe(II)-


QGVKGDLNRNYIPGHKKGGSVSYYTVMEKAPRFLDLYRSQVFIEFL



dependent


SRLSHAKLRLCPDN



dioxygenase


DPHSCALYYYTEPGDHIGFHYDTSYYKGSRYTILMGLVDQSTHCKL



(2-


VCELFKDDPVRPSK



ODD)


RLELITQPGDMVIFNGDKLWHAVTPLGPNEERIALTMEYVTNPDMG






TFKRLYSNLKDSFA






YFGLRAVFKRALSLPRR





52
CYP82D
40

Panax

METFLAQLYSTTTIAALFVLLVLYYFSPWTRINKKNVAPEAGGGWPI






ginseng

IGHLHLLGGSKLP






HLVFGSMADKYGPIFTVRLGVQRSLVVSSWEMVKDIFTTNDVIVSG






RPKFLAAKHLSYNY






AMFGFSPYGSFWLELRKITSLQLLSNRRLELLKHVRVSEMEISMRQL






YKLWSEKKNGSGR






VLMDMKKWFGELNLNVTFRMVAGKRYFGGGAASNDEEARRCRR






VVREFFRLLGVVVVADS






LPFLRWLDLGGYERAMKETAREMDSIVSVWLEEHREKSDSSGDDA






NMEQDFMDVMLSAVK






NVDLCGFDAHTVIKATCMVIISSGTDTTTVELTWALCLLLNNRHVL






KKAQEELDNVVGKQ






RRVKESDLNNLIYLQAIVKETLRLYPAGQLGGQREFSDDCTVGGYH






VPKRTRLVVNLWKL






HRDPRIWSDPTEFRPERFLERHKEIDVKGQHFELIPFGAGRRVCPGIT






FGLQMFHLVLAS






LLHGFDISTPSDAPVDMAEGAGLTNAKITPLEILIAPRLSPSLYE





57
Glycosyltransferase
42

Malus

MKKVELVFIPSPGAGHHLPTLQFVKRLIDRNDRISITILAIQSYFPTTL



(UGT)


domestica

SSYTKSIAASE






PRIRFIDVPQPQDRPPQEMYKSRAQIFSLYIESHVPSVKKIITNLVSSS






ANSSDSIRVAA






LVVDLFCVSMIDVAKELNIPSYLFLTSNAGYLAFMLHLPILHEKNQI






AVEESDPDWSIPG






IVHPVPPRVLPAALTDGRLSAYIKLASRFRETRGIIVNTFVELETHAIT






LFSNDDRVPPV






YPVGPVIDLDDGQEHSNLDQAQRDKIIKWLDDQPQKSVVFLCFGSM






GSFGAEQVKEIAVG






LEQSGQRFLWSLRMPSPKGIVPSDCSNLEEVLPDGFLERTNGKKGLI






CGWAPQVEILAHS






ATGGFLSHCGWNSILESLWHGVPIATWPMYAEQQLNAFRMVRELG






MALEMRLDYKAGSAD






VVGADEIEKAVVGVMEKDSEVRKKVEEMGKMARKAVKDGGSSFA






SVGRFIEDVIGQN





58
Glycosyltransferase
44

Lycium

MGHLVSTVEMAKQLVDREDQLSITVLIMTLPTETKIPSYTKSLSSNY



(UGT)


barbarum

TSRIRLLELTQPE






TSVNMGSATHPMKFMSEFITSYKGRVKDAVADMFSSLSSVKLAGF






VEDMFCTAMIDVAND






FGVPSYLFYTSGAAMLGLQFHFQSLISQNVLSYLDSESEVLIPTYINP






VPVKFLPGLILD






NDEYSIMFLDLAGRFKETKGIMVNTFVEVESHALKALSDDEKIPPIY






PVGPILNLGGGND






GHGEEYDSIMKWLDGQPNSSVVFLCFGSMGSFEEDQVKEVANALE






SSGYQFLWSLRQPPP






KDKLQFPSEFENLEEVLPEGFLQRTKGRGKMIGWAPQVAILSHPSVG






GFVSHCGWNSTLE






SVRSGVPMATWPMYAEQQSNAFQLVKDLEMAVEIKMDYRKDFMT






INQPVLVKAEEIGNGI






RQLMDLVNKIRAKVRKMKEKSEAAIMEGGSSYVALGNFVETVMKS





61
Glycosyltransferase
46

Cicer

MKKIEVVFIPSPGVGHLISTLEFANLLINRNNRLNITVLVINFPKTVEK



(UGT)


arietinum

QTNYSLTESEN






LHVINLPQTTTHVPSTSDVGNSISALVETQKSNVKQAVSNLTGTLAA






FVVDMFCTTMIDV






ANELGVPSLVFFTSGVAFLGLMLHLHTIWEQQDTELLLQQDELDIPS






FANPVATNTLPTL






VLRKEWESSFIKYGNGLKKASGIIVNSFHELEPHAVRSFLEDPTLRDL






PIYPVGPILNPK






SNVDSDDVIKWLDDQPPSSVVFLCFGSMGTFDEEQVREIALAIERSG






VRFLWSLRKPQPQ






GTMVPPSDYTLSQMLEVLPEGFLDRTANIGRVIGWAPQVQVLAHQ






ATGGFVSHCGWNSTL






ESIYYGVPIATWPLFAEQQTNAFELVRELKIAVEIALDYRLEFDIGRN






YLLDADKIERGI






RGVLDKDGEVRKKVKEMSQKSRNVLLEGGSSYTYLGQLIDYITNQ






V





63
Glycosyltransferase
48

Barbarea

MKSELVFIPYPGIGHLRPTVEVAKLLVDREPRLSISVFILPFISGDEVG



(UGT)


vulgaris

ASDYISALSAA






SNDRLRYKVIFTGDQETAEPTKLTLHIENQVPKVRTAVAKLEDEYSK






LLDSPKIVGFVLD






MFCTSMIDVANEEELPSYMFFTSSAGILAVSFHVQVLYDEKKCNFSE






TMFEDSEAELILP






SLTRPYPVKSLPYALFRTEMLIMHVNLARRFRELKGILVNTVDELEP






HALKFLLSGITPP






AYPVGPLLHLESNQDDESEDEKRSEIIMWLDEQPASSVVFLCFGSMG






GFSEEQTREIAIA






LERSGHRFLWSLRRESPNIDKELPGEFTNLEEVLPEGFFDRTKGIGKV






IGWAPQVAVLEN






PAIGGFVTHGGWNSVLESLWFGVPTAMWPLYAEQKFNAFVMVEEL






GLAVEIKKYWRGDLL






LGRSAMEIVTADEIERGITCLMQQDSDVRKRVKEMKGKCHVALMD






GGSSTLALDKFVEDV






TKNI





66
2-Deoxy-
50

Desulfatibacillum

MTGPKICVVGACNIDLISYVERLPVLGETLHGKKFSMGFGGKGANQ



d-ribose-


aliphaticivorans

AVMAAKLGGEVAMV



5-


GKLGRDVFGENTLANFKKLGVNVSHVHFTEEAFSGVAPIAVDDNG



phosphate


ANSIIIVTGASDLLS



aldolase


AEEIRAAENAIAKSKVLVCQLEIPMEQNLEALRIARKNNVPTIFNPAP



(DERA)


ARPGLPDELYQL






SDIFCPNESETEILTGMPVETMEQAEQAAKALLERGPKTVILTLGER






GCLLVDANGARHI






PTRKVEAIDTTGAGDCFVGSLAFFLAAGKSLEDAINRANKIAAVSVC






GQGTQSSFPGASE






LDPEILSDIQPAESQAPAMSAKDLAQYIDHTLLKPEAPLSAFDKICEE






AILHQFRSVCVN






SCKISYIAKKLKGTGVDACAVIGFPLGAMSTAAKAFEAKQAVMDG






AAELDMVINVGALKS






GDFDAVFDDIKAVRDAAPLPIILKVIIETCLLTDEEKARACRIAKAAD






ADFVKTSTGFST






GGATLEDIALMRDTVGPYMGVKASGGIKDAKTAIAMIEAGATRIGA






GAGVEIVSGLQSDA






DGSY









Table 3 depicts the nucleic acid sequence of different types of ABC transporter genes that provided desirable results as per the present disclosure.









TABLE 3







List of ABC transporter genes providing the desirable results









SEQ ID




NO
Organism
Nucleic acid sequence





51

Trichophyton

ATGGTTGAAGTTTCTGAAAAACCGAACACCCAGGACGACGGTGT




equinum

TTCTAAACAGGAAAAC




CGTAACCCGGCGTCTTCTTCTTCTTCTACCTCTGACAAAGAAAAA




GTTGCGAAAAAAGGT




AACTCTGACGCGACCAAATCTTCTACCCCGGAAGACCTGGACGC




GCAGCTGGCGCACCTG




CCGGAACACGAACGTGAAATCCTGAAACAGCAGCTGTTCATCCC




GGACGTTAAAGCGACC




TACGGTACCCTGTTCCGTTACGCGACCCGTAACGACATGATCTTC




CTGGCGATCGTTTCT




CTGGCGTCTATCGCGGCGGGTGCGGCGCTGCCGCTGTTCACCGTT




CTGTTCGGTTCTCTG




GCGGGTACCTTCCGTGACATCGCGCTGCACCGTATCACCTACGAC




GAATTCAACTCTATC




CTGACCCGTAACTCTCTGTACTTCGTTTACCTGGGTATCGCGCAGT




TCATCCTGCTGTAC




GTTTCTACCGTTGGTTTCATCTACGTTGGTGAACACATCACCCAG




AAAATCCGTGCGAAA




TACCTGCACGCGATCCTGCGTCAGAACATCGGTTTCTTCGACAAA




CTGGGTGCGGGTGAA




GTTACCACCCGTATCACCGCGGACACCAACCTGATCCAGGACGGT




ATCTCTGAAAAAGTT




GGTCTGACCCTGACCGCGCTGTCTACCTTCTTCTCTGCGTTCATCA




TCGGTTACGTTCGT




TACTGGAAACTGGCGCTGATCTGCTCTTCTACCATCGTTGCGATG




ATCCTGGTTATGGGT




GGTATCTCTCGTTTCGTTGTTAAATCTGGTCGTATGACCCTGGTTT




CTTACGGTGAAGGT




GGTACCGTTGCGGAAGAAGTTATCTCTTCTATCCGTAACGCGACC




GCGTTCGGTACCCAG




GAAAAACTGGCGCGTCAGTACGAAGTTCACCTGAAAGAAGCGCG




TAAATGGGGTCGTCGT




CTGCAGATGATGCTGGGTATCATGTTCGGTTCTATGATGGCGATC




ATGTACTCTAACTAC




GGTCTGGGTTTCTGGATGGGTTCTCGTTTCCTGGTTGGTGGTGAA




ACCGACCTGTCTGCG




ATCGTTAACATCCTGCTGGCGATCGTTATCGGTTCTTTCTCTATCG




GTAACGTTGCGCCG




AACACCCAGGCGTTCGCGTCTGCGATCTCTGCGGGTGCGAAAATC




TTCTCTACCATCGAC




CGTGTTTCTGCGATCGACCCGGGTTCTGACGAAGGTGACACCATC




GAAAACGTTGAAGGT




ACCATCGAATTCCGTGGTATCAAACACATCTACCCGTCTCGTCCG




GAAGTTGTTGTTATG




GAAGACATCAACCTGGTTGTTCCGAAAGGTAAAACCACCGCGCT




GGTTGGTCCGTCTGGT




TCTGGTAAATCTACCGTTGTTGGTCTGCTGGAACGTTTCTACAAC




CCGGTTTCTGGTTCT




GTTCTGCTGGACGGTCGTGACATCAAAACCCTGAACCTGCGTTGG




CTGCGTCAGCAGATC




TCTCTGGTTTCTCAGGAACCGACCCTGTTCGGTACCACCATCTTCG




AAAACATCCGTCTG




GGTCTGATCGGTTCTCCGATGGAAAACGAATCTGAAGAACAGAT




CAAAGAACGTATCGTT




TCTGCGGCGAAAGAAGCGAACGCGCACGACTTCATCATGGGTCT




GCCGGACGGTTACGCG




ACCGACGTTGGTCAGCGTGGTTTCCTGCTGTCTGGTGGTCAGAAA




CAGCGTATCGCGATC




GCGCGTGCGATCGTTTCTGACCCGAAAATCCTGCTGCTGGACGAA




GCGACCTCTGCGCTG




GACACCAAATCTGAAGGTGTTGTTCAGGCGGCGCTGGACGCGGC




GTCTCGTGGTCGTACC




ACCATCGTTATCGCGCACCGTCTGTCTACCATCAAATCTGCGGAC




AACATCGTTGTTATC




GTTGGTGGTCGTATCGCGGAACAGGGTACCCACGACGAACTGGT




TGACAAAAAAGGTACC




TACCTGCAGCTGGTTGAAGCGCAGAAAATCAACGAAGAACGTGG




TGAAGAATCTGAAGAC




GAAGCGGTTCTGGAAAAAGAAAAAGAAATCTCTCGTCAGATCTC




TGTTCCGGCGAAATCT




GTTAACTCTGGTAAATACCCGGACGAAGACGTTGAAGCGAACCT




GGGTCGTATCGACACC




AAAAAATCTCTGTCTTCTGTTATCCTGTCTCAGAAACGTTCTCAG




GAAAACGAAACCGAA




TACTCTCTGGGTACCCTGATCCGTTTCATCGCGGGTTTCAACAAA




CCGGAACGTCTGATC




ATGCTGTGCGGTTTCTTCTTCGCGGTTCTGTCTGGTGCGGGTCAGC




CGGTTCAGTCTGTT




TTCTTCGCGAAAGGTATCACCACCCTGTCTCTGCCGCCGTCTCTGT




ACGGTAAACTGCGT




GAAGACGCGAACTTCTGGTCTCTGATGTTCCTGATGCTGGGTCTG




GTTCAGCTGGTTACC




CAGTCTGCGCAGGGTGTTATCTTCGCGATCTGCTCTGAATCTCTG




ATCTACCGTGCGCGT




TCTAAATCTTTCCGTGCGATGCTGCGTCAGGACATCGCGTTCTTC




GACCTGCCGGAAAAC




TCTACCGGTGCGCTGACCTCTTTCCTGTCTACCGAAACCAAACAC




CTGTCTGGTGTTTCT




GGTGCGACCCTGGGTACCATCCTGATGGTTTCTACCACCCTGATC




GTTGCGCTGACCGTT




GCGCTGGCGTTCGGTTGGAAACTGGCGCTGGTTTGCATCTCTACC




GTTCCGGTTCTGCTG




CTGTGCGGTTTCTACCGTTTCTGGATCCTGGCGCAGTTCCAGACC




CGTGCGAAAAAAGCG




TACGAATCTTCTGCGTCTTACGCGTGCGAAGCGACCTCTTCTATC




CGTACCGTTGCGTCT




CTGACCCGTGAACAGGGTGTTATGGAAATCTACGAAGGTCAGCT




GAACGACCAGGCGAAA




AAATCTCTGCGTTCTGTTGCGAAATCTTCTCTGCTGTACGCGGCGT




CTCAGTCTTTCTCT




TTCTTCTGCCTGGCGCTGGGTTTCTGGTACGGTGGTGGTCTGCTGG




GTAAAGGTGAATAC




AACGCGTTCCAGTTCTTCCTGTGCATCTCTTGCGTTATCTTCGGTT




CTCAGTCTGCGGGT




ATCGTTTTCTCTTTCTCTCCGGACATGGGTAAAGCGAAATCTGCG




GCGGCGGACTTCAAA




CGTCTGTTCGACCGTGTTCCGACCATCGACATCGAATCTCCGGAC




GGTGAAAAACTGGAA




ACCGTTGAAGGTACCATCGAATTCCGTGACGTTCACTTCCGTTAC




CCGACCCGTCCGGAA




CAGCCGGTTCTGCGTGGTCTGAACCTGACCGTTAAACCGGGTCAG




TACATCGCGCTGGTT




GGTCCGTCTGGTTGCGGTAAATCTACCACCATCGCGCTGGTTGAA




CGTTTCTACGACACC




CTGTCTGGTGGTGTTTACATCGACGGTAAAGACATCTCTCGTCTG




AACGTTAACTCTTAC




CGTTCTCACCTGGCGCTGGTTTCTCAGGAACCGACCCTGTACCAG




GGTACCATCCGTGAC




AACGTTCTGCTGGGTGTTGACCGTGACGAACTGCCGGACGAACA




GGTTTTCGCGGCGTGC




AAAGCGGCGAACATCTACGACTTCATCATGTCTCTGCCGGACGGT




TTCGGTACCGTTGTT




GGTTCTAAAGGTTCTATGCTGTCTGGTGGTCAGAAACAGCGTATC




GCGATCGCGCGTGCG




CTGATCCGTGACCCGAAAGTTCTGCTGCTGGACGAAGCGACCTCT




GCGCTGGACTCTGAA




TCTGAAAAAGTTGTTCAGGCGGCGCTGGACGCGGCGGCGAAAGG




TCGTACCACCATCGCG




GTTGCGCACCGTCTGTCTACCATCCAGAAAGCGGACATCATCTAC




GTTTTCGACCAGGGT




CGTATCGTTGAATCTGGTACCCACCACGAACTGCTGCAGAACAAA




GGTCGTTACTACGAA




CTGGTTCACATGCAGTCTCTGGAAAAAACCCAG





53

Mucor

ATGACCGGTTCTATCTCTATCGACGCGTGGCTGTCTGGTGCGCTG




ambiguus

GCGCTGGTTACCTGC




GGTTCTGCGTTCGTTCTGTCTCTGCAGCGTACCTACCTGCACAAAT




CTCAGCAGAAAGAC




CGTGCGCCGCTGGTTTTCGACAAACAGCGTGACACCTCTGTTCCG




GTTGCGGACGACGAC




GCGCGTTTCGTTCGTCTGACCTTCGGTACCCTGACCCTGACCCTGC




TGTCTGCGCTGGAC




TTCTACCACACCGTTATCCAGCAGCAGCAGCAGACCTCTGACTGG




TGGATCACCGCGTCT




GCGTGCACCCAGTTCGTTGCGTGGCTGTACGCGTCTGTTCTGGTT




CTGGTTGCGCGTCGT




TACCGTTTCCCGTCTGAATGGGGTTGGATCCTGAACGTTCACCTG




TGCGTTTTCTACTGC




ATGATCTGGTGCATCGCGGTTTACGACGTTTACGACGCGTACGTT




ATCAACCCGTCTGAC




AACTGGATCCACATGCTGCCGCGTCTGCTGGCGCTGATCCTGGGT




TCTGACCTGGTTTTC




ACCACCGCGACCACCCCGCGTGGTGCGCCGTTCCTGGACGAAAA




CGGTCGTAAAGTTGCG




GCGATCGACGTTGCGTCTATCTACTCTTTCCTGTACTTCTCTTGGG




TTACCCCGCTGATC




AACCTGGCGTACAAAAACAAAAAACTGACCGACGAAGACCTGCC




GACCCTGCCGCCGCTG




TACCGTGGTCACAACCTGTACTACATCTTCGGTGCGACCCGTAAC




AAATCTCTGCTGAAA




CGTATCTACACCACCAACAAACGTGCGATCACCATCCAGGTTGTT




CTGGCGTTCACCACC




TCTCTGGTTTACTACGTTCCGGCGTACTTCGTTAACCGTCTGCTGA




CCCTGATCCAGGAC




ATGCACGGTGTTGAAGACGACGTTTCTATCCGTAAAGGTTTCGTT




CTGGTTGCGTCTCTG




GGTGCGACCATCCTGATCCTGGGTATCCTGGTTGGTCAGCTGTGG




TACTACGCGTCTTCT




TCTCTGCAGGTTCGTGTTAAAGCGATGCTGAACATCGAAATCTAC




CGTAAAACCCTGCGT




CGTCGTGACCTGGCGGTTGAATCTCCGAAACTGGACGACGACGA




AGACACCGACAAAAAA




AAAGACGACGACGAAGCGTCTGACAAAAAAGGTGAATCTGACGA




AAAAGAAGACGTTTCT




TCTTCTACCGGTACCATCGTTAACCTGATGTCTACCGACTCTAACC




GTATCTCTGAATTC




TCTGTTTGGTGGTTCTCTATCCTGGCGGCGCCGACCGAACTGGCG




GTTGGTATCTACTTC




CTGTACCAGCTGCTGGGTAAATCTTGCTTCCTGGGTCTGCTGGTT




ATGATCGTTGTTCTG




CCGATCAACCACTACAACGCGAAAACCTTCGCGAAAACCCAGGA




CAAACTGATGGAAGCG




CGTGACAAACGTGTTTCTCTGATGAACGAAGTTCTGCAGGGTATC




CGTCAGATCAAATTC




TTCGCGTGGGAAAAACGTTGGGAAAAACGTGTTATGGAAGCGCG




TGAAGTTGAACTGCAC




CACCTGGGTGTTACCTACATGACCGAAGTTCTGTTCACCCTGCTG




TGGCAGGGTTCTCCG




ATCCTGGTTACCCTGCTGTCTTTCTACTCTTTCTGCAAACTGGAAG




GTAACGAACTGACC




GCGCCGATCGCGTTCACCTCTATCACCGTTTTCAACGAACTGCGT




TTCGCGCTGAACGTT




CTGCCGGAAGTTTTCATCGAATGGCTGCAGGCGCTGATCTCTATC




CGTCGTATCCAGACC




TACCTGGACGAAGACGAAATCGAACCGCCGTCTAACGAAGACGA




AATCGACCCGCTGACC




GGTCACATCCCGGAACACATCACCATCGGTTTCAAAGACGCGAC




CGTTGGTTGGTCTAAA




CACAACTACACCGACCAGGTTACCGACGAATCTGACAACATCAC




CTCTGAAGCGTCTTCT




ACCTCTTTCATCCTGAAAGACCTGAACATCGAATTCCCGCCGAAC




GAACTGTCTCTGATC




TCTGGTGCGACCGGTTCTGGTAAAACCCTGATGATGCTGGGTCTG




CTGGGTGAAGCGATC




GTTCTGAAAGGTACCGCGCACTGCCCGCGTCAGGCGGTTGTTGAC




ACCGTTTCTGACGAC




TTCGTTACCTCTAAAGACATCGACCCGAAAGACTGGCTGCTGCCG




TACGCGCTGGCGTAC




GTTTCTCAGACCGCGTGGCTGCAGAACGCGTCTATCCGTGACAAC




ATCCTGTTCGGTCTG




CCGTACGTTGAATCTCGTTACCGTGACACCCTGACCGCGTGCGCG




CTGGACAAAGACCTG




GAAATCCTGGAAGACGGTGACCAGACCGAAATCGGTGAAAAAGG




TATCACCCTGTCTGGT




GGTCAGAAAGCGCGTGTTTCTCTGGCGCGTGCGGTTTACTCTCGT




GCGCAGAACGTTCTG




ATGGACGACGTTCTGTCTGCGGTTGACGCGCACACCGCGAAACA




CCTGTACGAAAAATGC




CTGCTGGGTCCGCTGATGAAAGAACGTACCCGTGTTCTGATCACC




CACCACGTTAAACTG




TGCGTTAAAGGTTCTGGTTACATCGTTCACATCGACGCGGGTCGT




GCGTCTCTGGTTGGT




ACCCCGAACGAACTGCGTCAGAACGGTCAGCTGGCGTCTATCTTC




GAATCTGAAGAAGAA




GAAGTTGCGCAGGAAGAAGACGCGGAAGAAGAAAAAGCGATCG




AAGAAGTTCTGCCGGCG




GTTGCGAACAAAGACCTGAAAAAACCGCGTGCGCTGGTTGAAGA




AGAAACCCGTGCGACC




GGTATGGTTAAAGTTCGTCTGTACAAACTGTACGTTTCTATGGTT




GGTTCTCCGTTCTTC




TGGTTCGTTATGGTTGCGCTGGTTCTGGGTTCTCGTGGTCTGGACG




TTATCGAAAACTGG




TGGATCAAACAGTGGTCTCAGTCTTACCAGACCAAACACAACGA




CAACGCGACCAACAAC




GACTACATGTTCCAGCAGCAGTCTATCATCTCTCAGTCTAAACCG




ATGTTCGCGTACCAG




CCGGTTGTTGCGTCTGAATCTGACAACGACCTGGCGTCTATCATG




GACGCGAAAGACGAC




CGTCTGAACTACTACCTGGGTATCTACTGCCTGATCACCCTGACC




AACATCGTTGTTGGT




ACCGCGCGTTTCGCGGTTCTGTACTGGGGTGTTCTGGGTGCGAAC




CGTGCGCTGTACGCG




GAACTGCTGCACCGTGTTTTCCGTGCGCCGCTGCGTTTCTTCGAC




ACCACCCCGATCGGT




CGTATCCTGAACCGTTTCTCTAAAGACTTCGAAACCATCGACTCT




AACATCCCGAACGAC




CTGCTGAACTTCGTTATCCAGTGGGTTATCATCGTTTCTTCTATGA




TCACCGTTTCTTCT




GTTCTGCCGATCTTCCTGGTTCCGATGCTGGCGGTTGCGCTGGTTA




ACGTTTACCTGGGT




ATGATGTTCGTTTCTGCGTCTCGTGAACTGAAACGTATGGACTCT




GTTTCTCGTTCTCCG




CTGTTCTCTAACTTCACCGAAACCATCATCGGTGTTGCGACCATC




CGTGCGTTCGGTGCG




ACCCGTCAGTTCCTGCAGGACATGCTGACCTACATCGACACCAAC




ACCCGTCCGTTCTAC




TACCAGTGGCTGGTTAACCGTTGGGTTTCTGTTCGTTTCGCGTTCT




CTGGTGCGCTGATC




AACATGTTCACCTCTACCATCATCCTGCTGTCTGTTGACAAAATG




GACGCGTCTCTGGCG




GGTTTCTGCCTGTCTTTCGTTCTGCTGTTCACCGACCAGATGTTCT




GGGGTATCCGTCGT




TACACCTCTCTGGAAATGTCTTTCAACGCGGTTGAACGTGTTGTT




GAATTCATGGAAATG




GACCAGGAAGCGCCGGCGATCACCGAAGTTCGTCCGCCGCACGA




ATGGCCGACCCGTGGT




CGTATCGACGTTAAAGACCTGGAAATCAAATACGCGGCGGACCT




GGACCCGGTTCTGAAA




GGTATCTCTTTCTCTGTTAAACCGCAGGAAAAAATCGGTGTTGTT




GGTCGTACCGGTTCT




GGTAAATCTACCCTGGCGCTGTCTTTCTTCCGTTTCGTTGAAGCGT




CTCAGGGTTCTATC




GTTATCGACAACATCGACATCAAAGACCTGGGTACCGAAGACCT




GCGTTCTAACCTGACC




ATCATCCCGCAGGACCCGACCCTGTTCTCTGGTTCTCTGCGTTCTA




ACATGGACCCGTTC




GACCAGTTCACCGACCAGGACATCTTCACCGCGCTGCGTCGTGTT




CACCTGCTGCCGATC




GAAGAAGGTGACAACTCTGCGGAAACCGTTGTTTCTGACTCTACC




CTGGACGAAGTTAAC




GCGAACGTTTTCAAAGACCTGACCACCAACGTTACCGAAGGTGG




TAAAAACTTCTCTCAG




GGTCAGCGTCAGCTGCTGTGCCTGGCGCGTGCGCTGCTGAAACGT




TCTCGTATCGTTCTG




ATGGACGAAGCGACCGCGTCTGTTGACTTCGAAACCGACAAAGC




GATCCAGAAAACCATC




GCGACCGAATTCGCGGACTCTACCATCCTGTGCATCGCGCACCGT




CTGCACACCGTTATC




GAATACGACCGTATCCTGGTTCTGGACCAGGGTCAGATCCTGGAA




TTCGACTCTCCGCTG




ACCCTGATCACCAACCCGGAATCTTCTTTCTACAAAATGTGCCGT




AACTCTGCGTCTCAG




AACAAAGCGCTGGCGGCGAAAAAAGCGGCGCTGAAAGGTGTTCA




CGGTAAAGCGGTTCGT




AAAATCCGTACCTCTACCCACTTCCACATCCCGAAAACCCTGGTT




CTGAACCGTGCGCCG




AAATACGCGCGTAAATCTGTTGCGCACGCGCCGCGTATGGACCA




GTACCGTGTTATCCGT




CAGCCGCTGAACACCGAAACCGCGATGAAAAAAATCGAAGAACA




CAACACCCTGACCTTC




CTGGTTGACGTTAAAGCGAACAAAAACCAGATCAAAGACGCGGT




TAAACGTCTGTACGAC




GTTGAAGCGGCGAAAATCAACACCCTGATCCGTCCGGACGGTTA




CAAAAAAGCGTTCGTT




CGTCTGACCGCGGACGTTGACGCGCTGGACGTTGCGAACAAAAT




CGGTTTCATC





55

Cutibacterium

ATGTCTGAACAGCGTGACGGTATCCGTCGTACCGCGTCTGGTCGT




granulosum

GAAACCTACGAACCG




GACGGTCTGCCGGACCACGGTGTTGAACCGCGTGAAGACGTTGA




AGAAAAAACCTTCGTT




GAAGAAGAAGACGACTCTAAAGAATACATGCCGATCCGTACCGG




TGCGCGTCACGCGGCG




TCTGACACCTCTATGACCGACGTTGAAAACGAACGTTTCGACCTG




TACAAATGGCTGCGT




TTCTTCATGCGTTCTATGGACGAATCTGACATCAAAGTTTCTCGTG




CGGGTGTTCTGTTC




CGTAACCTGAACGTTTCTGGTTCTGGTTCTGCGCTGAACCTGCAG




AAAAACGTTGGTTCT




ATCCTGATGACCCCGTTCCGTCTGCAGGAATACCTGGGTCTGGGT




CAGAAAAACGAAAAA




CGTATCCTGAAAAACTTCGACGGTCTGCTGAAATCTGGTGAACTG




CTGATCGTTCTGGGT




CGTCCGGGTTCTGGTTGCTCTACCCTGCTGAAAACCATCTGCGGT




GAACTGCACGGTCTG




GCGCTGGACGGTGACTCTACCATCAACTACAACGGTATCCCGCAG




CGTCAGATGCTGAAA




GAATTCAAAGGTGAAGTTGTTTACAACCAGGAAGTTGACAAACA




CTTCCCGCACCTGACC




GTTGGTCAGACCCTGGAAATGGCGGCGGCGTACCGTACCCCGTCT




AACCGTATCGAAGGT




CAGACCCGTGAAGACGCGATCAAAATGGCGGCGCGTGTTGTTAT




GGCGGTTTTCGGTCTG




TCTCACACCTACAACACCAAAGTTGGTAACGACTTCATCCGTGGT




GTTTCTGGTGGTGAA




CGTAAACGTGTTTCTATCGCGGAAATGGCGCTGTCTGCGGCGCCG




ATCGCGGCGTGGGAC




AACTCTACCCGTGGTCTGGACGCGGCGACCGCGCTGGAATTCGTT




AAAGCGCTGCGTATC




ATGTCTGACCTGGCGGGTGCGGCGCAGGCGGTTGCGATCTACCA




GGCGTCTCAGGCGATC




TACGACGTTTTCGACAAAGCGGTTGTTCTGTACGAAGGTCGTCAG




ATCTACTTCGGTCCG




ACCGGTGCGGCGAAACAGTTCTTCGAAGAACAGGGTTGGTACTG




CCCGCCGCGTCAGACC




ACCGGTGACTTCCTGACCTCTGTTACCAACCCGGGTGAACGTCAG




CCGCGTAAAGGTATG




GAAAACAAAGTTCCGCGTACCCCGGACGAATTCGAAGCGTACTG




GCGTCAGTCTGCGGCG




TACAAAGCGCTGCAGGCGGAAATCGACGAACACGAACAGGAATT




CCCGGTTGGTGGTGAA




GTTGTTTCTCAGTTCCAGGAAAACAAACGTCTGGCGCAGTCTAAA




CACTCTCGTCCGACC




TCTCCGTACCTGCTGTCTGTTCCGATGCAGGTTAAACTGAACACC




AAACGTGCGTACCAG




CGTATCTGGAACGACAAAGCGGCGACCCTGACCATGGTTCTGTCT




CAGATCATCCAGGCG




CTGATCATCGGTTCTCTGTTCTACGGTACCCCGGCGGCGACCCAG




GGTTTCTTCTCTCGT




AACGCGGCGATCTTCTTCGGTGTTCTGCTGAACGCGCTGGTTGCG




ATCGCGGAAATCAAC




GCGCTGTACGACCAGCGTCCGATCGTTGAAAAACACGCGTCTTAC




GCGTTCTACCACCCG




TTCACCGAAGCGGTTGCGGGTGTTGTTGCGGACATCCCGGTTAAA




TTCGCGATGGCGACC




TGCTTCAACCTGATCTACTACTTCATGACCGGTTTCCGTCGTGAAC




CGTCTCAGTTCTTC




ATCTACTTCCTGATCTCTTTCATCGCGATGTTCGTTATGTCTGCGG




TTTTCCGTACCATG




GCGGCGATCACCAAAACCGTTTCTCAGGCGATGATGTTCGCGGGT




GTTCTGGTTCTGGCG




ATCGTTGTTTACACCGGTTTCGCGATCCCGGAATCTTACATGGTT




GACTGGTTCGGTTGG




ATCCGTTGGATCAACCCGATCTTCTACGCGTTCGAAATCCTGATC




GCGAACGAATACCAC




GGTCGTGAATTCACCTGCTCTGGTTTCATCCCGGCGTACCCGAAC




CTGGAAGGTGACTCT




TTCATCTGCAACATGCGTGGTGCGGTTGCGGGTGAACGTACCGTT




TCTGGTGACGACTAC




ATCTGGGCGAACTACAAATACTCTTACTCTCACGTTTGGCGTAAC




TTCGGTATCCTGCTG




GCGTTCCTGTTCTTCTTCATGTTCATCTACTTCCTGGCGGTTGAAC




TGAACTCTTCTACC




ACCTCTACCGCGGAAGTTCTGGTTTTCCGTCGTGGTCACGTTCCG




GCGTACATGACCGAA




AACCCGAAAGGTAACGCGAACGACGAAGAAATCGCGGCGCCGG




ACGCGGCGGGTCGTGCG




GGTGCGGAAGGTGGTGACGTTAACATGATCCCGGCGCAGAAAGA




CATCTTCACCTGGCGT




GACGTTGTTTACGACATCGAAATCAAAGGTGAACCGCGTCGTCTG




CTGGACCACGTTTCT




GGTTGGGTTAAACCGGGTACCCTGACCGCGCTGATGGGTGTTTCT




GGTGCGGGTAAAACC




ACCCTGCTGGACGTTCTGGCGCAGCGTACCTCTATGGGTGTTATC




ACCGGTGACATGCTG




GTTAACGGTCGTCCGCTGGACTCTTCTTTCCAGCGTAAAACCGGT




TACGTTCAGCAGCAG




GACCTGCACCTGGCGACCGCGACCGTTCGTGAATCTCTGCGTTTC




TCTGCGATGCTGCGT




CAGCCGAAAAACGTTTCTACCGAAGAAAAATACACCTACGTTGA




AGACGTTATCAAAATG




CTGAACATGGAAGACTTCGCGGAAGCGGTTGTTGGTGTTCCGGGT




GAAGGTCTGAACGTT




GAACAGCGTAAACTGCTGACCATCGGTGTTGAACTGGCGGCGAA




ACCGAAACTGCTGCTG




TTCCTGGACGAACCGACCTCTGGTCTGGACTCTCAGTCTTCTTGG




GCGATCTGCGCGTTC




CTGCGTAAACTGGCGAACTCTGGTCAGGCGATCCTGTGCACCATC




CACCAGCCGTCTGCG




ATCCTGTTCCAGGAATTCGACCGTCTGCTGTTCCTGGCGAAAGGT




GGTCGTACCGTTTAC




TTCGGTGACATCGGTACCAACTCTCGTACCCTGCTGGACTACTAC




GAACGTAACGGTTCT




CGTAAATGCGGTGACGACGAAAACCCGGCGGAATTCATGCTGGA




AATCGTTGGTGCGGGT




GCGTCTGGTAAAGCGACCCAGGACTGGCACGAAGTTTGGAAAAA




CTCTAACGAAGCGCGT




GCGGTTCAGGACGAACTGGACCGTATCCACCGTGAAAAACAGAA




CGAACCGGCGGCGGGT




GACGACGAAGTTGGTGGTACCGACGAATTCGCGATGCCGTTCAC




CCAGCAGCTGTACCAC




GTTACCTACCGTGTTTTCCAGCAGTACTGGCGTATGCCGGGTTAC




ATCTGGGCGAAAATG




CTGCTGGGTTTCGCGTCTGCGTTCTTCATCGGTTTCTCTTTCTGGG




ACTCTGACTCTTCT




CAGCAGGGTATGCAGAACGTTATCTACTCTGTTTTCATGGTTGCG




GCGATCTTCTCTACC




ATCGTTGAACAGATCATGCCGCTGTTCCTGACCCAGCGTTCTCTG




TACGAAGTTCGTGAA




CGTCCGTCTAAAGCGTACTCTTGGAAAGCGTTCCTGATCGCGAAC




ATCTCTGTTGAAATC




CCGTACCAGATCCTGGTTGGTATCATCGTTTACGCGTCTTACTACT




ACGCGGTTAACGGT




GTTCAGTCTTCTGACCGTCAGGGTCTGGTTCTGCTGTACTGCGTTC




AGTTCTTCATCTAC




GCGTCTACCTTCGCGCACATGTGCATCGCGGCGGCGCCGGACGCG




GAAACCGCGGCGGGT




ATCGTTACCCTGCTGTTCTCTATGATGATCGCGTTCAACGGTGTTA




TGCAGCCGCCGCAG




GCGCTGCCGGGTTTCTGGATCTTCATGTACCGTGTTTCTCCGCTGA




CCTACTGGATCTCT




GGTATCGTTGCGACCGAACTGCACGACCGTCCGGTTCAGTGCACC




GCGGTTGAAACCTCT




ACCTTCAACCCGCCGTCTGGTCAGACCTGCCAGCAGTACCTGGGT




GAATTCCTGCGTGCG




GCGGGTGGTAACCTGCAGAACCCGGCGGACACCGCGGACTGCCG




TTACTGCTCTATCACC




GTTGCGGACGAATACATCGGTGGTTCTAAAATCTTCTGGACCGAC




CGTTGGCGTAACTTC




GGTCTGGTTTGGGCGTACGTTGTTTTCAACATCTTCGCGGCGACC




ATGCTGTACTACCTG




TTCCGTGTTCGTAAATCTTCTGGTAAAGGTCTGAAAGAACGTGTT




GCGGGTCTGTTCGGT




GGTAAAAAAAAACAG





57

Magnetospirillum 

ATGCACTGGCTGAAAAACGAACACTGGGTTCGTCCGGACCTGAA




magneticum

ACGTTACCGTGGTCTG




CTGTTCTGGTCTCTGATCCTGGGTGTTATGACCTTCGTTTTCGCGG




GTGCGCTGATGTTC




ACCTCTGGTTTCCTGATCGACAAATCTGCGACCAAACCGCTGTTC




GCGGCGATCTACGTT




ACCGTTGTTCTGACCCGTGCGTTCGGTATCGGTCGTCCGGTTTTCC




AGTACATCGAACGT




CTGACCTCTCACAACTGGGTTCTGCGTATCACCTCTCACATGCGT




CGTAAACTGTACAAA




GTTCTGGAAACCGACGCGGCGTTCGTTTCTGAACACCACCAGACC




GGTGACATCCTGGGT




CTGCTGGCGGACGACATCGGTCACATCCAGAACCTGTACCTGCGT




ATGATCTTCCCGACC




GTTGTTGGTGCGGGTCTGACCGTTATCGCGACCCTGCTGCTGGGT




TGGTTCAACTGGGGT




TTCGCGCTGTGGATCATGCTGCTGCTGCTGTTCCAGGTTCTGATCC




TGCCGTGGTGGGGT




CTGGTTGTTGAACGTTTCCGTAAAGCGGAACAGAAACAGCTGAA




CCACGACGCGTACGTT




TCTCTGACCGACTCTGTTCTGGGTCTGTCTGACTGGGTTATCACCC




ACCGTGAAAAAGAC




TTCATGTCTCAGTCTCTGGCGGCGCCGAAAAAACTGGCGGCGTCT




ACCGTTAAATCTAAA




CGTTTCCAGTGGCGTCGTGACTTCGTTGGTCAGCTGCTGTTCGTTC




TGATCGTTATCTCT




ATGCTGATCTGGACCAACCTGGAATGGACCGGTAACCAGGCGTC




TGCGAACTGGGTTGGT




GCGTTCGTTCTGGTTGTTTTCCCGCTGGACCAGGCGTTCTCTGGTA




TCGCGCAGGGTGTT




GGTGAATGGCCGACCTACCGTGACGCGATCCGTCACCTGAACGA




CCTGCAGCCGGTTACC




CGTCAGCTGCCGCAGCAGCAGGCGGTTCCGACCCAGTTCAAAGA




AATGACCCTGCAGCAC




CTGTCTTTCCAGTACACCCCGAAAGACCCGGAACTGATCACCGAC




ATCGACCTGACCGTT




CACTCTGGTGAAAAAATCGCGATCCTGGGTCCGTCTGGTATGGGT




AAAACCACCCTGCTG




CAGCTGGTTCTGGGTGACCTGACCCCGACCACCGGTAACGTTCTG




GTTGACGGTCAGGAC




GTTCTGACCTACCAGCAGCACCGTACCAACCTGTTCGCGGTTCTG




GACCAGTCTCCGTTC




CTGTTCAACACCTCTATCGTTAACAACGTTCGTCTGGGTAACGAA




CAGGCGTCTGACGCG




GACGTTGCGGCGGCGCTGAAAGCGGTTAAACTGGACCAGCTGGT




TGCGCAGCTGCCGAAC




GGTATCAACTCTTCTGTTGAAGAAGCGGGTTTCGGTTTCTCTGGT




GGTGAACGTCAGCGT




CTGTCTCTGGCGCGTATCCTGCTGCAGGACGCGCCGATCGTTCTG




CTGGACGAACCGACC




GTTGGTCTGGACCCGATCACCGAACAGGCGCTGCTGGAAACCAT




GTTCACCGTTCTGCAG




GGTAAAACCATCCTGTGGGTTACCCACCACCTGCAGGGTGTTAAC




CAGACCGACCGTGTT




ATCTTCCTGGAAGACGGTCGTCTGACCATGAACGACACCCCGTCT




CACCTGGCGAAACAC




GACGAACGTTACCAGAACCTGTACGCGCTGGACGCGGGTCTGCG




T
















TABLE 4







Depicts the amino acid sequence of ABC transporter providing the desirable


results as per the present disclosure.









SEQ




ID




NO
Organism
Amino acid sequence





52

Trichophyton

MVEVSEKPNTQDDGVSKQENRNPASSSSSTSDKEKVAKKGNSDATKSSTPED




equinum

LDAQLAHL




PEHEREILKQQLFIPDVKATYGTLFRYATRNDMIFLAIVSLASIAAGAALPLFT




VLFGSL




AGTFRDIALHRITYDEFNSILTRNSLYFVYLGIAQFILLYVSTVGFIYVGEHITQ




KIRAK




YLHAILRQNIGFFDKLGAGEVTTRITADTNLIQDGISEKVGLTLTALSTFFSAFI




IGYVR




YWKLALICSSTIVAMILVMGGISRFVVKSGRMTLVSYGEGGTVAEEVISSIRN




ATAFGTQ




EKLARQYEVHLKEARKWGRRLQMMLGIMFGSMMAIMYSNYGLGFWMGSR




FLVGGETDLSA




IVNILLAIVIGSFSIGNVAPNTQAFASAISAGAKIFSTIDRVSAIDPGSDEGDTIE




NVEG




TIEFRGIKHIYPSRPEVVVMEDINLVVPKGKTTALVGPSGSGKSTVVGLLERF




YNPVSGS




VLLDGRDIKTLNLRWLRQQISLVSQEPTLFGTTIFENIRLGLIGSPMENESEEQI




KERIV




SAAKEANAHDFIMGLPDGYATDVGQRGFLLSGGQKQRIAIARAIVSDPKILLL




DEATSAL




DTKSEGVVQAALDAASRGRTTIVIAHRLSTIKSADNIVVIVGGRIAEQGTHDE




LVDKKGT




YLQLVEAQKINEERGEESEDEAVLEKEKEISRQISVPAKSVNSGKYPDEDVEA




NLGRIDT




KKSLSSVILSQKRSQENETEYSLGTLIRFIAGFNKPERLIMLCGFFFAVLSGAG




QPVQSV




FFAKGITTLSLPPSLYGKLREDANFWSLMFLMLGLVQLVTQSAQGVIFAICSE




SLIYRAR




SKSFRAMLRQDIAFFDLPENSTGALTSFLSTETKHLSGVSGATLGTILMVSTTL




IVALTV




ALAFGWKLALVCISTVPVLLLCGFYRFWILAQFQTRAKKAYESSASYACEAT




SSIRTVAS




LTREQGVMEIYEGQLNDQAKKSLRSVAKSSLLYAASQSFSFFCLALGFWYGG




GLLGKGEY




NAFQFFLCISCVIFGSQSAGIVFSFSPDMGKAKSAAADFKRLFDRVPTIDIESPD




GEKLE




TVEGTIEFRDVHFRYPTRPEQPVLRGLNLTVKPGQYIALVGPSGCGKSTTIAL




VERFYDT




LSGGVYIDGKDISRLNVNSYRSHLALVSQEPTLYQGTIRDNVLLGVDRDELP




DEQVFAAC




KAANIYDFIMSLPDGFGTVVGSKGSMLSGGQKQRIAIARALIRDPKVLLLDEA




TSALDSE




SEKVVQAALDAAAKGRTTIAVAHRLSTIQKADIIYVFDQGRIVESGTHHELLQ




NKGRYYE




LVHMQSLEKTQ





54

Mucor

MTGSISIDAWLSGALALVTCGSAFVLSLQRTYLHKSQQKDRAPLVFDKQRDT




ambiguus

SVPVADDD




ARFVRLTFGTLTLTLLSALDFYHTVIQQQQQTSDWWITASACTQFVAWLYAS




VLVLVARR




YRFPSEWGWILNVHLCVFYCMIWCIAVYDVYDAYVINPSDNWIHMLPRLLA




LILGSDLVF




TTATTPRGAPFLDENGRKVAAIDVASIYSFLYFSWVTPLINLAYKNKKLTDED




LPTLPPL




YRGHNLYYIFGATRNKSLLKRIYTTNKRAITIQVVLAFTTSLVYYVPAYFVNR




LLTLIQD




MHGVEDDVSIRKGFVLVASLGATILILGILVGQLWYYASSSLQVRVKAMLNI




EIYRKTLR




RRDLAVESPKLDDDEDTDKKKDDDEASDKKGESDEKEDVSSSTGTIVNLMS




TDSNRISEF




SVWWFSILAAPTELAVGIYFLYQLLGKSCFLGLLVMIVVLPINHYNAKTFAKT




QDKLMEA




RDKRVSLMNEVLQGIRQIKFFAWEKRWEKRVMEAREVELHHLGVTYMTEV




LFTLLWQGSP




ILVTLLSFYSFCKLEGNELTAPIAFTSITVFNELRFALNVLPEVFIEWLQALISIR




RIQT




YLDEDEIEPPSNEDEIDPLTGHIPEHITIGFKDATVGWSKHNYTDQVTDESDNI




TSEASS




TSFILKDLNIEFPPNELSLISGATGSGKTLMMLGLLGEAIVLKGTAHCPRQAV




VDTVSDD




FVTSKDIDPKDWLLPYALAYVSQTAWLQNASIRDNILFGLPYVESRYRDTLT




ACALDKDL




EILEDGDQTEIGEKGITLSGGQKARVSLARAVYSRAQNVLMDDVLSAVDAH




TAKHLYEKC




LLGPLMKERTRVLITHHVKLCVKGSGYIVHIDAGRASLVGTPNELRQNGQLA




SIFESEEE




EVAQEEDAEEEKAIEEVLPAVANKDLKKPRALVEEETRATGMVKVRLYKLY




VSMVGSPFF




WFVMVALVLGSRGLDVIENWWIKQWSQSYQTKHNDNATNNDYMFQQQSII




SQSKPMFAYQ




PVVASESDNDLASIMDAKDDRLNYYLGIYCLITLTNIVVGTARFAVLYWGVL




GANRALYA




ELLHRVFRAPLRFFDTTPIGRILNRFSKDFETIDSNIPNDLLNFVIQWVIIVSSMI




TVSS




VLPIFLVPMLAVALVNVYLGMMFVSASRELKRMDSVSRSPLFSNFTETIIGVA




TIRAFGA




TRQFLQDMLTYIDTNTRPFYYQWLVNRWVSVRFAFSGALINMFTSTIILLSVD




KMDASLA




GFCLSFVLLFTDQMFWGIRRYTSLEMSFNAVERVVEFMEMDQEAPAITEVRP




PHEWPTRG




RIDVKDLEIKYAADLDPVLKGISFSVKPQEKIGVVGRTGSGKSTLALSFFRFVE




ASQGSI




VIDNIDIKDLGTEDLRSNLTIIPQDPTLFSGSLRSNMDPFDQFTDQDIFTALRRV




HLLPI




EEGDNSAETVVSDSTLDEVNANVFKDLTTNVTEGGKNFSQGQRQLLCLARA




LLKRSRIVL




MDEATASVDFETDKAIQKTIAIEFADSTILCIAHRLHTVIEYDRILVLDQGQIL




EFDSPL




TLITNPESSFYKMCRNSASQNKALAAKKAALKGVHGKAVRKIRTSTHFHIPK




TLVLNRAP




KYARKSVAHAPRMDQYRVIRQPLNTETAMKKIEEHNTLTFLVDVKANKNQI




KDAVKRLYD




VEAAKINTLIRPDGYKKAFVRLTADVDALDVANKIGFI





56

Cutibacterium

MSEQRDGIRRTASGRETYEPDGLPDHGVEPREDVEEKTFVEEEDDSKEYMPI




granulosum

RTGARHAA




SDTSMTDVENERFDLYKWLRFFMRSMDESDIKVSRAGVLFRNLNVSGSGSA




LNLQKNVGS




ILMTPFRLQEYLGLGQKNEKRILKNFDGLLKSGELLIVLGRPGSGCSTLLKTIC




GELHGL




ALDGDSTINYNGIPQRQMLKEFKGEVVYNQEVDKHFPHLTVGQTLEMAAAY




RTPSNRIEG




QTREDAIKMAARVVMAVFGLSHTYNTKVGNDFIRGVSGGERKRVSIAEMAL




SAAPIAAWD




NSTRGLDAATALEFVKALRIMSDLAGAAQAVAIYQASQAIYDVFDKAVVLY




EGRQIYFGP




TGAAKQFFEEQGWYCPPRQTTGDFLTSVTNPGERQPRKGMENKVPRTPDEF




EAYWRQSAA




YKALQAEIDEHEQEFPVGGEVVSQFQENKRLAQSKHSRPTSPYLLSVPMQVK




LNTKRAYQ




RIWNDKAATLTMVLSQIIQALIIGSLFYGTPAATQGFFSRNAAIFFGVLLNALV




AIAEIN




ALYDQRPIVEKHASYAFYHPFTEAVAGVVADIPVKFAMATCFNLIYYFMTGF




RREPSQFF




IYFLISFIAMFVMSAVFRTMAAITKTVSQAMMFAGVLVLAIVVYTGFAIPESY




MVDWFGW




IRWINPIFYAFEILIANEYHGREFTCSGFIPAYPNLEGDSFICNMRGAVAGERT




VSGDDY




IWANYKYSYSHVWRNFGILLAFLFFFMFIYFLAVELNSSTTSTAEVLVFRRGH




VPAYMTE




NPKGNANDEEIAAPDAAGRAGAEGGDVNMIPAQKDIFTWRDVVYDIEIKGE




PRRLLDHVS




GWVKPGTLTALMGVSGAGKTTLLDVLAQRTSMGVITGDMLVNGRPLDSSF




QRKTGYVQQQ




DLHLATATVRESLRFSAMLRQPKNVSTEEKYTYVEDVIKMLNMEDFAEAVV




GVPGEGLNV




EQRKLLTIGVELAAKPKLLLFLDEPTSGLDSQSSWAICAFLRKLANSGQAILC




TIHQPSA




ILFQEFDRLLFLAKGGRTVYFGDIGTNSRTLLDYYERNGSRKCGDDENPAEF




MLEIVGAG




ASGKATQDWHEVWKNSNEARAVQDELDRIHREKQNEPAAGDDEVGGTDEF




AMPFTQQLYH




VTYRVFQQYWRMPGYIWAKMLLGFASAFFIGFSFWDSDSSQQGMQNVIYSV




FMVAAIFST




IVEQIMPLFLTQRSLYEVRERPSKAYSWKAFLIANISVEIPYQILVGIIVYASYY




YAVNG




VQSSDRQGLVLLYCVQFFIYASTFAHMCIAAAPDAETAAGIVTLLFSMMIAF




NGVMQPPQ




ALPGFWIFMYRVSPLTYWISGIVATELHDRPVQCTAVETSTFNPPSGQTCQQY




LGEFLRA




AGGNLQNPADTADCRYCSITVADEYIGGSKIFWTDRWRNFGLVWAYVVFNI




FAATMLYYL




FRVRKSSGKGLKERVAGLFGGKKKQ





58

Magnetospirillum

MHWLKNEHWVRPDLKRYRGLLFWSLILGVMTFVFAGALMFTSGFLIDKSAT




magneticum

KPLFAAIYV




TVVLTRAFGIGRPVFQYIERLTSHNWVLRITSHMRRKLYKVLETDAAFVSEH




HQTGDILG




LLADDIGHIQNLYLRMIFPTVVGAGLTVIATLLLGWFNWGFALWIMLLLLFQ




VLILPWWG




LVVERFRKAEQKQLNHDAYVSLTDSVLGLSDWVITHREKDFMSQSLAAPKK




LAASTVKSK




RFQWRRDFVGQLLFVLIVISMLIWTNLEWTGNQASANWVGAFVLVVFPLDQ




AFSGIAQGV




GEWPTYRDAIRHLNDLQPVTRQLPQQQAVPTQFKEMTLQHLSFQYTPKDPEL




ITDIDLTV




HSGEKIAILGPSGMGKTTLLQLVLGDLTPTTGNVLVDGQDVLTYQQHRTNLF




AVLDQSPF




LFNTSIVNNVRLGNEQASDADVAAALKAVKLDQLVAQLPNGINSSVEEAGF




GFSGGERQR




LSLARILLQDAPIVLLDEPTVGLDPIIEQALLETMFTVLQGKTILWVTHHLQG




VNQTDRV




IFLEDGRLTMNDTPSHLAKHDERYQNLYALDAGLR









Example 2

Enzyme Identification for Obtaining Recombinant Microbe as Per the Present Disclosure


In order to identify highly active, stereo specific enzymes for the pathway steps, functional homologs from various species were shortlisted for each of the pathway step. Shortlisted pathway genes were codon optimized for E. coli and gene synthesized (Table 1 and Table 2).


Functional homologs of the polypeptides described above are also suitable for use in producing etoposide in a recombinant host. A functional homolog is a polypeptide that has sequence similarity to a reference polypeptide, and that carries out one or more of the biochemical or physiological function(s) of the reference polypeptide. A functional homolog and the reference polypeptide may be naturally occurring polypeptides, and the sequence similarity may be due to convergent or divergent evolutionary events. As such, functional homologs are sometimes designated in the literature as homologs, or orthologs, or paralogs. Variants of a naturally occurring functional homolog, such as polypeptides encoded by mutants of a wild type coding sequence, may themselves be functional homologs. Functional homologs can also be created via site-directed mutagenesis of the coding sequence for a polypeptide, or by combining domains from the coding sequences for different naturally-occurring polypeptides (“domain swapping”). Techniques for modifying genes encoding functional polypeptides described herein are known and include, inter alia, directed evolution techniques, site-directed mutagenesis techniques and random mutagenesis techniques, and can be useful to increase specific activity of a polypeptide, alter substrate specificity, alter expression levels, alter subcellular location, or modify polypeptide:polypeptide interactions in a desired manner. Such modified polypeptides are considered functional homologs. The term “functional homolog” is sometimes applied to the nucleic acid that encodes a functionally homologous polypeptide. Functional homologs can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologs of etoposide biosynthesis polypeptides. Sequence analysis can involve BLAST, Reciprocal BLAST, or PSI-BLAST analysis of nonredundant databases using a known podophyllotoxin biosynthesis gene sequence as the reference sequence. Amino acid sequence is, in some instances, deduced from the nucleotide sequence.









TABLE 5







Enzymes screened for constructing recombinant E. coli













Enzyme activity


Recombinant E. coli BL21


in terms of


clones expressing pathway


product


enzymes
Organism
Substrate tested
formation (in %)





Phenylalanine ammonia-lyase

Rhodosporidium

Phenyl alanine
61% 


(PAL) (SEQ ID NO: 2)

toruloides



Phenylalanine ammonia-lyase

Phoma sp.

Phenyl alanine
14% 


(PAL)


Phenylalanine ammonia-lyase

Populus

Phenyl alanine
52% 


(PAL) (SEQ ID NO: 4)

kitakamiensis



Phenylalanine ammonia-lyase

Trifolium

Phenyl alanine
10% 


(PAL)

subterraneum



Phenylalanine ammonia-lyase

Strobilurus

Phenyl alanine
73% 


(PAL) (SEQ ID NO: 6)

tenacellus



Phenylalanine ammonia-lyase

Cicer arietinum

Phenyl alanine
23% 


(PAL)


Phenylalanine ammonia-lyase

Penicillium

Phenyl alanine
52% 


(PAL) (SEQ ID NO: 8)

antarcticum



Phenylalanine ammonia-lyase

Ganoderma

Phenyl alanine
98% 


(PAL) (SEQ ID NO: 10)

sinense



Phenylalanine ammonia-lyase

Psathyrella

Phenyl alanine
34% 


(PAL)

aberdarensis



Cinnamte 4 hydroxylase 4

Vanilla planifolia

Cinnamate
31% 


coumarate coenzyme ligase


fusion (C4H4CL)


Cinnamte 4 hydroxylase 4

Capsicum

Cinnamate
5%


coumarate coenzyme ligase

annuum



fusion (C4H4CL)


Cinnamte 4 hydroxylase 4

Azospirillum sp.

Cinnamate
97% 


coumarate coenzyme ligase


fusion (C4H4CL)


(SEQ ID NO: 12)


Cinnamte 4 hydroxylase 4

Rhodobacter

Cinnamate
21% 


coumarate coenzyme ligase

johrii



fusion (C4H4CL)


hydroxycinnamoyl-CoA: quinate

Arabidopsis

Coumaroyl coA
2%


hydroxycinnamoyltransferase p-

thaliana



coumaroyl quinate 3′-


hydroxylase fusion (HCTC3H)


hydroxycinnamoyl-CoA: quinate

Selaginella

Coumaroyl coA
12% 


hydroxycinnamoyltransferase p-

moellendorffii



coumaroyl quinate 3′-


hydroxylase fusion (HCTC3H)


hydroxycinnamoyl-CoA: quinate

Lonicera

Coumaroyl coA
0%


hydroxycinnamoyltransferase p-

japonica



coumaroyl quinate 3′-


hydroxylase fusion (HCTC3H)


hydroxycinnamoyl-CoA: quinate

Coffea canephora

Coumaroyl coA
89% 


hydroxycinnamoyltransferase p-


coumaroyl quinate 3′-


hydroxylase fusion (HCTC3H)


(SEQ ID NO: 14)


Caffeoyl CoA O-

Dictyostelium

Caffeoyl coA
0%


methyltransferase (CCoAOMT)

discoideum



Caffeoyl CoA O-

Plagiochasma

Caffeoyl coA
8%


methyltransferase (CCoAOMT)

appendiculatum



Caffeoyl CoA O-

Eleocharis dulcis

Caffeoyl coA
61% 


methyltransferase (CCoAOMT)


(SEQ ID NO: 16)


Caffeoyl CoA O-

Chamaecyparis

Caffeoyl coA
95% 


methyltransferase (CCoAOMT)

formosensis



(SEQ ID NO: 18)


Caffeoyl CoA O-

Bambusa

Caffeoyl coA
24% 


methyltransferase (CCoAOMT)

emeiensis



Caffeoyl CoA O-

Taiwania

Caffeoyl coA
0%


methyltransferase (CCoAOMT)

cryptomerioides



Bifunctional pinoresinol-

Linum

Coniferyl alcohol
98% 


lariciresinol reductase

usitatissimum



(DIRPLR) (SEQ ID NO: 20)


Secoisolariciresinol

Dysosma

Secoisolariciresinol
0%


dehydrogenase (SDH)

pleiantha



Secoisolariciresinol

Dysosma

Secoisolariciresinol
0%


dehydrogenase (SDH)

versipellis



Secoisolariciresinol

Juglans regia

Secoisolariciresinol
99% 


dehydrogenase (SDH)


(SEQ ID NO: 22)


Secoisolariciresinol

Cladophialophora

Secoisolariciresinol
17% 


dehydrogenase (SDH)

carrionii



CYP719

Argemone

Matairesinol
0%




mexicana



CYP719

Eschscholzia

Matairesinol
18% 




californica



CYP719

Coptis japonica

Matairesinol
0%


CYP719 (SEQ ID NO: 24)

Papaver

Matairesinol
76% 




somniferum



CYP719 (SEQ ID NO: 26)

Cinnamomum

Matairesinol
97% 




micranthum



O-methyltransferase 3 (OMT)

Papaver

Pluviatolide
88% 


(SEQ ID NO: 28)

somniferum



O-methyltransferase 3 (OMT)

Plumulus lupulus

Pluviatolide
15% 


O-methyltransferase 3 (OMT)

Dictyostelium

Pluviatolide
0%




discoideum



O-methyltransferase 3 (OMT)

Sinopodophyllum

Pluviatolide
99% 


(SEQ ID NO: 30)

hexandrum



O-methyltransferase 3 (OMT)

Vanilla planifolia

Pluviatolide
0%


CYP71 (SEQ ID NO: 32)

Cinnamomum

Bursehernin
94% 




micranthum



CYP71

Persea

Bursehernin
0%




americana



CYP71

Populus

Bursehernin
0%




trichocarpa



CYP71

Juglans regia

Bursehernin
10% 


CYP71

Actinidia

Bursehernin
35% 




chinensis



CYP71

Acer yangbiense

Bursehernin
0%


2-oxoglutarate/Fe(II)-dependent

Stigmatella

Yatein
0%


dioxygenase (2-ODD)

aurantiaca



2-oxoglutarate/Fe(II)-dependent

Microcystis

Yatein
45% 


dioxygenase (2-ODD)

viridis



(SEQ ID NO: 34)


2-oxoglutarate/Fe(II)-dependent

Candidates

Yatein
0%


dioxygenase (2-ODD)

Nitrospira



2-oxoglutarate/Fe(II)-dependent

Nitrospira

Yatein
96% 


dioxygenase (2-ODD)

moscoviensis



(SEQ ID NO: 36)


2-oxoglutarate/Fe(II)-dependent

Nitrospira

Yatein
88% 


dioxygenase (2-ODD)

japonica



(SEQ ID NO: 38)


CYP82D

Scutellaria

Deoxypodophyllotoxin
0%




baicalensis



CYP82D

Cucumis melo

Deoxypodophyllotoxin
0%


CYP82D (SEQ ID NO: 40)

Panax ginseng

Deoxypodophyllotoxin
93% 


CYP82D

Fallopia

Deoxypodophyllotoxin
0%




sachalinensis



CYP82D

Juglans regia

Deoxypodophyllotoxin
0%


CYP82D

Eschscholzia

Deoxypodophyllotoxin
0%




californica



Glycosyltransferase (UGT)

Arabidopsis

Desmethylepipodophyllotoxin
23% 




thaliana



Glycosyltransferase (UGT)

Mates domestica

Desmethylepipodophyllotoxin
54% 


(SEQ ID NO: 42)


Glycosyltransferase (UGT)

Lycium barbarum

Desmethylepipodophyllotoxin
67% 


(SEQ ID NO: 44)


Glycosyltransferase (UGT)

Centella asiatica

Desmethylepipodophyllotoxin
0%


Glycosyltransferase (UGT)

Centella asiatica

Desmethylepipodophyllotoxin
12% 


Glycosyltransferase (UGT)

Cicer arietinum

Desmethylepipodophyllotoxin
97% 


(SEQ ID NO: 46)


Glycosyltransferase (UGT)

Lycium barbarum

Desmethylepipodophyllotoxin
15% 


Glycosyltransferase (UGT)

Barbarea

Desmethylepipodophyllotoxin
43% 


(SEQ ID NO: 48)

vulgaris



Glycosyltransferase (UGT)

Isatis tinctoria

Desmethylepipodophyllotoxin
0%


2-Deoxy-d-ribose-5-phosphate

Rhodococcus

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

erythropolis

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Desulfatibacillum

Desmethylepipodophyllotoxin
83% 


aldolase (DERA)

aliphaticivorans

glucopyranoside


(SEQ ID NO: 50)


2-Deoxy-d-ribose-5-phosphate

Ruminococcaceae bacterium

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Thermo sulfurimonas

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

dismutans

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Aquifex aeolicus

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Kocuria

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

rhizophila

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Alkaliphilus

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

oremlandii

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Gloeothece

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

citriformis

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Rhizobium

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

meliloti

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Photobacterium

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

profundum

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Synechocystis sp.

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Proteus mirabilis

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Pyrobaculum

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

islandicum

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Lactobacillus

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

sakei

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Desulfotalea

Desmediylepipodophyllotoxin
0%


aldolase (DERA)

psychrophila

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Exiguobacterium

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

sibiricum

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Crocosphaera

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

subtropica

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Pasteurella

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

multocida

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Nocardia

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

farcinica

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Pelobacter

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

carbinolicus

glucopyranoside


2-Deoxy-d-ribose-5-phosphate

Trichormus

Desmethylepipodophyllotoxin
0%


aldolase (DERA)

variabilis

glucopyranoside









It can be observed from Table 5, that not all homologs of a particular enzyme provide the desirable efficacy while being expressed in E. coli host cell.


PAL—In the case of Phenylalanine ammonia-lyase, the protein sequence of Ganoderma sinense provides the maximum enzyme activity in terms of 98%, whereas the protein sequence from Phoma sp., Trifohum subterraneum, Cicer arietinum, and Psathyrella aberdarensis did not provide satisfactory enzyme activity. Therefore, the sequence from Ganoderma sinense was considered for constructing the recombinant microbe.


C4CHL fusion—It can be observed from Table 5 that the fusion protein of Azospirillum sp. provides the maximum enzyme activity (97%), whereas the fusion protein from other organisms mentioned in Table 5 did not provide desirable results.


HCTC3H fusion—The maximum enzyme activity observed was from the fusion protein of Coffea canephora (89%), whereas, very little or no enzyme activity was observed from other microbes.


Caffeoyl CoA O-methyltransferase (CCoAOMT)—The maximum activity observed was from the protein of Chamaecyparis formosensis (95%). Further, the protein of Eleocharis dulcis also provided reasonable enzyme activity of 61%, whereas, the protein from other organisms did not yield desirable results.


Bifunctional pinoresinol-lariciresinol reductase (DIRPLR)—The desirable enzyme activity was observed for the protein from the microorganism Linum usitatissimum.


Secoisolariciresinol dehydrogenase (SDH)—Of the results described in Table 5, the protein from the microbe Juglans regia provided the desirable results of 99% enzyme activity.


CYP719—The highest enzyme activity was observed for the protein from the microbe Cinnamomum micranthum. Further, the enzyme activity of the protein from the microbe Papaver somniferum also provided satisfactory results.


O-methyltransferase 3 (OMT)—The results obtained with protein from Papaver somniferum and Sinopodophyllum hexandrum provided desirable enzyme activity of 88%, and 99%, respectively.


CYP71—The enzyme activity of the protein from Cinnamomum micranthum provided the desirable result of 94%.


2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD)—The results obtained with protein from Nitrospira moscoviensis and Nitrospira japonica provided desirable enzyme activity of 96%, and 88%, respectively.


CYP82D—The enzyme activity of the protein from Panax ginseng was desirable around 93%, whereas the protein from other microbes failed to show any enzyme activity.


Glycosyltransferase (UGT)—Of the many proteins tested, the enzyme activity of the protein from Cicer arietinum was the highest (97%).


2-Deoxy-d-ribose-5-phosphate aldolase (DERA)—It can be observed from Table 5 that proteins of many microbes were tested for the enzyme activity, amongst them, the protein from Desulfatibacillum ahphaticivorans showed the highest enzyme activity of 83%.


Example 3

Construction of Fusion Enzymes


As per one of the possible implementations of the present disclosure, two proteins—cinnamate-4-hydroxylate (C4H) and 4-coumaroyl CoA-ligase (4CL) were expressed as one fusion protein. Also, other two proteins which were expressed as one fusion protein were hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT) and p-coumaroyl quinate 3′-hydroxylase (HCTC3H). The fusion gene and the corresponding fusion protein was prepared using the following method. A flexible (GGGGS)3 (SEQ ID NO: 64) linker was inserted between the C-terminal of the upstream protein and the 15 N-terminal of the downstream protein i.e., (upstream protein C-terminal)-GGGGSGGGGSGGGGS (SEQ ID NO: 63)-(downstream protein N-terminal). The enzyme fusion constructs were made for the selected genes (Table 5). Pathway genes and the fusion constructs were individually cloned in E. coli expression vector pET28+ under T7 promoter and transformed in E. coli BL21 cells. Recombinant bacterial cells were induced with IPTG and enzyme functionality was tested with pathway specific substrates (Table 5) using lysed E. coli cell extracts. HPLC analysis was carried out to quantify the product formation and in turn shortlisting of efficient enzymes for functional pathway assembly towards Etoposide in E. coli.


The E. coli transformants were grown overnight at 37° C. in 1 ml of M9 minimal media containing ampicillin (100 mg/1), in 96-well format. The next day, 150 μl of each culture was inoculated into 3 ml M9 minimal media containing ampicillin (100 mg/1), IPTG 0.1 mM in 24-well format, and incubated at 30° C. and 200 rpm for ˜20 hours. The following day, cells were spun down and pellets were resuspended in 100 μl of lysis buffer containing 10 mM Tris-HCl pH 8, 5 mM MgCl2, 1 mM CaCl2) and complete mini protease inhibitor EDTA-free (3 tablets/100 ml) (Hoffmann-La Roche, Basel, Switzerland) and frozen at −80° C. for at least 15 minutes to promote cell lysis. Pellets were thawed at room temperature and 50 μl of DNase mix (1 μl of 1.4 mg/ml DNase in H2O (˜80000 u/ml), 1.2 μl of MgCl2 500 mM and 47.8 μl of 4×PBS buffer solution) was added to each well. Plates were shaken at 500 rpm for 5 min at room temperature to allow degradation of genomic DNA. Plates were spun down at 4000 rpm for 30 min at 4° C. and six μl of the lysates were used in in vitro using appropriate substrates for enzymes as per Table 6. In each case, the resulting compounds were measured by HPLC. Results were analysed in comparison with the lysates expressing the corresponding controls (the empty plasmid).


For extraction, 1 mL of the culture was centrifuged at maximum speed (>13,000 RPM) to pellet cells. Media was decanted to a fresh 1.5 mL microfuge tube and the pH was adjusted by addition of 50 μl hydrochloric acid (1N), followed by overnight freezing at −20° C. Tubes were thawed at room temperature and extracted twice with an equal volume (1 ml) of ethyl acetate. Ethyl acetate was dried under nitrogen gas, and the dried residue was resuspended in 100 μL methanol. All samples were stored at −20° C. prior to HPLC.


Example 4

Etoposide Pathway Assembly in E. coli Nissle 1917


Co-expression of multiple target genes in E. coli is advantageous for studying multi enzymatic pathways. Co-expression often achieves optimal yield, solubility, and activity and may protect individual subunits from degradation. The vectors used in the present disclosure carry compatible replicons and antibiotic resistance markers and may be used together in appropriate host strains to co-express multiple proteins either as monocistronic or polycistronic expression. The capability of vectors to be co-transformed, propagated, and induced for robust target protein co-expression makes them ideal for the analysis of multi enzymatic biosynthesis pathways. The vectors are designed with compatible replicons and drug resistance genes for effective propagation and maintenance of four plasmids in a single cell.


To facilitate constitutive production of Etoposide in Escherichia coli Nissle 1917, the first seven genes of the pathway (PAL, C4H4CL, HCTC3H, CCoAOMT, DIRPLR, SDH, and CYP719) are assembled in pRSF vector and next six genes of the pathway (OMT, CYP71, 2-ODD, CYP82D, UGT, DERA) are assembled in p15A vector.


As can be observed from Table 5, it can be appreciated that certain enzymes of the pathway when produced from recombinant E. coli Nissle 1917 performed better in terms of enzyme activity as compared to the others. In similar lines, the enzyme homolog providing the highest enzyme activity was selected per enzyme type for the construction of the recombinant E. coli Nissle 1917 in order to perform further experiments.


The genes encoding: PAL having an amino acid sequence as set forth in SEQ ID NO: 2, C4H4CL having an amino acid sequence as set forth in SEQ ID NO: 12, HCTC3H having an amino acid sequence as set forth in SEQ ID NO: 14, CCoAOMT having an amino acid sequence as set forth in SEQ ID NO: 18, DIRPLR having an amino acid sequence as set forth in SEQ ID NO: 20, SDH having an amino acid sequence as set forth in SEQ ID NO: 22, and CYP719 having an amino acid sequence as set forth in SEQ ID NO: 26 were assembled in pRSF vector.


The next six genes of the pathway were selected as follows. The genes encoding OMT having an amino acid sequence as set forth in SEQ ID NO: 30, CYP71 having an amino acid sequence as set forth in SEQ ID NO: 32, 2-ODD having an amino acid sequence as set forth in SEQ ID NO: 36, CYP82D having an amino acid sequence as set forth in SEQ ID NO: 40, UGT having an amino acid sequence as set forth in SEQ ID NO: 46, DERA having an amino acid sequence as set forth in SEQ ID NO: 50 were assembled in p15A vector. The corresponding nucleic acid sequences have been given in Table 1 as presented previously.


Although the recombinant microbe was constructed as per details mentioned above, however, it can be contemplated that other functional homologs of the enzymes showing desirable activity can be used to arrive at different recombinant microbes.


Transcriptional and translational elements, are synthesized (Gen9, Cambridge, MA) and cloned into vector pBR322 and p15A. The pathway cassette was placed under the control of either of the promoter sequences as follows.


GapA promoter having a nucleic acid sequence as set forth in SEQ ID NO: 59 (TTGCTCACATCTCACTTTAATCGTGCTCACATTACGTGACTGATTCTAACA AAACATTAACACCAACTGGCAAAATTTTGTCCTAAACTTGATCTCGACGA AATGGCTGCACCTAAATCGTGATGAAAATCACATTTTTATCGTAATTGCCC TTTAAAATTCGGGGCGCCGACCCCATGTGGTCTCAAGCCCAAAGGAAGAG TGAGGCGAGTCAGTCGCGTAATGCTTAGGCACAGGATTGATTTGTCGCAA TGATTGACACGATTCCGCTTGACGCTGCGTAAGGTTTTTGTAATTTTACAG GCAACCTTTTATTCA)


TufB promoter having a nucleic acid sequence as set forth in SEQ ID NO: 60 (TAAAAAGAATTATGGTTTAGCAGGAGCGCATTGTTGAGCACAATGATGTT GAAAAAGTGTGCTAATCTGCCCTCCGTTCGGCTGTTTCTTCATCGTGTCGC ATAAAATGTGACCAATAAAACAAATTATGCAATTTTTTAGTTGCATGAACT CGCATGTCTCCATAGAATGCGCGCTACTTG).


It can be contemplated that any well-known and suitable promoter sequences apart from the ones disclosed herein can also be used for constructing the recombinant microbe.


For efficient translation of genes, each synthetic gene in the operon was separated by ribosome binding sites (RBS). The RBS can have a nucleic acid sequence as set forth in SEQ ID NO: 61 (TCTTAATCATGCACAGGAGACTTTCTA) or the nucleic acid sequence as set forth in SEQ ID NO: 62 (AAGTTCACTTAAAAAGGAGAGATCAACA). Further, a person skilled in the art can use any other well-known RBS sequence in order to increase the translation efficiency.


Plasmids p15A and pRSF assembled with entire etoposide pathway genes were co-transformed in E. coli Nissle and recombinant clones were selected on dual antibiotic LB agar plates containing kanamycin (25 μg/ml) and chloramphenicol (15 μg/ml). Recombinant clones were screened for biosynthesis of etoposide and the presence of etoposide was confirmed through mass analysis. E. coli Nissle recombinant clone (JNM2450) which produced highest etoposide levels was selected for further analysis like screening of ABC transporter genes for etoposide secretion and the like.


Example 5

ABC Transporter for Etoposide Secretion


A transporter (also referred to as a membrane transport protein) is a membrane protein involved in the movement of molecules and ions across a biological membrane. Transporters span the membrane in which they are localized and across which they transport substances. Transporters can operate to move substances by facilitated diffusion or by active transport. Transport proteins have been classified according to various criteria at the Transporter Classification Database. See, Saier Jr. et al., Nucl. Acids Res., 37:D274-278 (2009). Two families of plasma membrane transporters are thought to be ubiquitous among living organisms: the ATP-Binding Cassette (ABC) transporters and the Major Facilitator Superfamily (MFS) transporters. ATP-binding cassette transporters (ABC transporters) are transmembrane proteins that utilize the energy of adenosine triphosphate (ATP) hydrolysis to carry out translocation of various substrates across membranes. They can transport a wide variety of substrates across extra- and intracellular membranes, including metabolic products, lipids and sterols, and drugs. Proteins are classified as ABC transporters based on the sequence and organization of their ATP-binding cassette domain. Typically, ABC family transporters are multicomponent primary active transporters, capable of transporting molecules in response to ATP hydrolysis. Non-limiting examples of endogenous ABC transporter genes include the genes at the loci PDRS, PDR10, PDR15, SNQ2, YOR1, YOL075c and PDR18 (or a functional homolog thereof).


A total of 20 ABC transporter genes from various organisms (Table 6) were selected and codon optimized for expression in E. coli system. To determine the effect of various transporters on etoposide secretion in E. coli Nissle clone (JNM2450), a library of E. coli Nissle strains was constructed by cloning the transporter genes under a constitutive promoter GapA.



E. coli Nissle clone (JNM2450) producing etoposide was co-transformed with ColE1 plasmid harbouring various transporter genes. The recombinant clones were grown in M9 minimal media at 37° C. for overnight and the supernatant was subjected for HPLC analysis. Table 6 below depicts the percentage of etoposide secretion achieved by using the different ABC transporters.









TABLE 6







Comparison of different ABC transporters in secreting etoposide











Etoposide




secretion


Clone

(>90%) in


name
Organism
growth media





JNM133

Candida albicans

0%


JNM134

Trichophyton rubrum

0%


JNM135

Neosartorya fumigata

0%


JNM136

Emericella nidulans

0%


JNM137

Aspergillus oryzae

0%


JNM138

Trichophyton rubrum

0%


JNM139

Trichophyton equinum (SEQ ID NO: 52)

10% 


JNM140

Purpureocillium lilacinum

0%


JNM141

Wickerhamomyces ciferrii

0%


JNM142

Mucor ambiguous (SEQ ID NO: 54)

45% 


JNM143

Sporisorium scitamineum

0%


JNM144

Cutibacterium granulosum (SEQ ID NO: 56)

98% 


JNM145

Botryosphaeria parva

0%


JNM146

Colletotrichum fructicola

0%


JNM147

Clohesyomyces aquations

0%


JNM148

Cadophora sp.

0%


JNM149

Magnetospirillum magneticum

64% 



(SEQ ID NO: 58)


JNM150

Lactobacillus paracasei

0%


JNM151

Rothia kristinae

0%


JNM152

Acinetobacter baumannii

0%









As can be observed from Table 6, that the clone (JNM144) harbouring ABC transporter gene (SEQ ID NO: 55), and encoding ABC transporter protein as per SEQ ID NO: 56 from Cutibacterium granulosum showed highest etoposide secretion in the supernatant compared to the control strain.


Therefore, along with the etoposide pathway assembly as discussed in Example 4, the gene encoding ABC transporter having an amino acid sequence as set forth in SEQ ID NO: 56 was also cloned to obtain the recombinant E. coli Nissle 1917. The recombinant E. coli Nissle 1917 obtained along with the ABC transporter as described herein was used for further studies as described in forthcoming examples. It can be contemplated that other transporters well-known in the art can also be used for obtaining the recombinant microbe.


Example 6

Controlling the Expression of the Genes Cloned in the Recombinant E. coli Nissle 1917


It is imperative to control the expression of genes comprised in the recombinant E. coli Nissle 1917 obtained as per the previous Examples 1-4. In order to effectuate the same, different kinds of regulatory circuit can be used for eventually controlling the secretion of etoposide by the recombinant bacterium.


Engineering E. coli Nissle 1917 with AraC Transcriptional Regulator that can Detect Arabinose and Rhamnose


To create inducible systems for use in E. coli Nissle, parts from a large repertoire of systems that govern carbohydrate utilization were used, which included cytoplasmic transcription factors, extracytoplasmic function sigma/anti-sigma pairs, and hybrid two-component systems (HTCS), among others. In E. coli Nissle, arabinose and rhamnose metabolism is mediated by the AraC/Xy1S-family transcriptional activator, RhaR, which activates transcription at the Pbad promoter. To assay the functionality of Pbad as an inducible system, 250 bp of the promoter-RBS region was cloned upstream of the etoposide pathway (as described in Example 3) into the expression vectors. Gene expression was conditional on the concentration of arabinose and rhamnose and demonstrated a response curve with an output dynamic range of 104-fold. Fitting the response curve to a Hill function revealed a threshold K of 0.3 mM and a Hill coefficient n=1.4. FIG. 1 depicts the production of etoposide by E. coli Nissle in which the genes encoding enzymes of the etoposide pathway are under the control of AraC regulator. The production of etoposide can be observed in the presence of arabinose (induce), and the absence of the expression can be observed without arabinose.


Engineering E. coli Nissle 1917 with Lung Airway Epithelial Cell Specific Nitric Oxide (NO) Regulatory Operon


Nitric oxide is a natural marker of inflammation in lung cancer, making it an ideal input signal for this engineered microorganism. Inflamed lung epithelial cells produce nitric oxide by up-regulating inducible nitric oxide synthase (iNOS), an enzyme that produces nitric oxide from L-arginine. Nitric oxide sensing was combined through NorR regulatory unit with podophyllotoxin (etoposide) pathway biosynthesis genes. The following design strategy is incorporated to successfully couple nitric oxide sensing to switch activation.


The sequence used for promoter PnorV extended into the coding sequence of NoR. Additionally, rather than using the sequence for the native ribosomal binding site (RBS) for norV, a stronger synthetic RBS was used and spacer to drive multiple genes. To characterize the switching properties of the nitric oxide responsive engineered E. coli Nissle strains, the nitric oxide donors DETA/NO (diethylenetriamine/nitric oxide adduct) and SNP (sodium nitro prusside) were used as sources of nitric oxide. FIG. 2 depicts the production of etoposide under the control of nitric oxide. E. coli Nissle was cloned with the genes encoding the enzymes of etoposide pathway under the control of Nor R regulatory circuit. After exposure to SNP, E. coli Nissle strain JNM1013 was detected with biosynthesis of podophyllotoxin.


Engineering E. coli Nissle 1917 with the FNR Regulatory Operon that can Detect Hypoxic Conditions



E. coli Nissle strain JNM1024 was genetically engineered to express genes for biosynthesis of podophyllotoxin under the control of an FNR transcriptional regulator. Under oxygen-rich conditions, binding of the transcription factor FNR to the hypoxia-inducible promoter will be impeded, leading to repressed expression of the downstream gene. In tumor microenvironment with relatively low levels of oxygen, the FNR transcription factor can bind to the promoter, leading to the expression of the downstream gene. Sodium sulphite is used to make an hypoxia environment in laboratory conditions. Comparing with a control, under oxygen-limiting conditions FNR controlled pathway genes showed expression leading to biosynthesis of podophyllotoxin (FIG. 3).


Therefore, it can be clearly observed that the production of etoposide by the recombinant E. coli Nissle takes place only in the presence of the respective inducers. Whereas, in the absence of any inducer, etoposide production is not observed. Hence, the production of etoposide can be controlled and limited to only the location where it is required to be produced.


Example 7

Laboratory Bioassay for Treating Lung Cancer Cell Lines with E. coli Nissle 1917 Producing Podophyllotoxins


The lung cancer cell lines such as NCI-H69, NCI-H128, NCIH209, SHP-77, PC-9 were used to study the E. coli Nissle bacterial clones producing podophyllotoxin.


Lung cancer cells were added to each well of a 6-well plate containing 1.5 ml DMEM supplemented with 10% FBS. Cells were cultured in the wells overnight at 37° C., 95% air, and 5% CO2 to allow them to form a ˜90% confluent monolayer. The culture medium in each well was then replaced with 1 ml fresh medium supplemented before adding 50 μl of engineered bacterial suspension with OD600˜1.0. Wild type bacteria were also added to control wells containing fresh media. Inducers such as arabinose or rhamnose, sodium nitro prusside (SNP) and cobalt chloride were used for activating the AraC operon, NO generation and creating hypoxic conditions in tumour cell lines respectively. After incubating the plates for overnight under the same conditions as described above, the effects of native and engineered bacteria releasing podophyllotoxins on tumour cell viability were assessed using CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) (Promega, Madison, WI). These experiments were repeated 5 times for each combination of tumor cell type. Statistical significance of sample difference was evaluated with the Mann-Whitney U test.


To visualize E. coli interactions with tumour cells, 1.5 ml of DMEM supplemented with 10% FBS plus 0.5 ml of B16.F10 or EMT6 cell suspension (approximately 3×106 cells/ml) were added to each well of a 6-well plate. Cells were incubated in plates overnight at 37° C., 95% air, and 5% CO2 to obtain confluent monolayers. For co-visualization of tumour cells and bacteria, tumour cells were stained prior to bacterial infection by incubating with 1 μM calcein-AM in serum-free DMEM at 37° C. for 15 min. The medium in each well was then replaced with fresh, serum-supplemented medium. Monolayers were inoculated with 40 μl of an overnight culture of E. coli (0D600 ˜1.0) and incubated at 37° C., 95% air, and 5% CO2 for overnight. Medium was then removed from each well and monolayers were gently washed three times with PBS before visualizing with confocal microscopy (Zeiss LSM 510). FIG. 4 depicts the interaction of tumour cells incubated overnight along with the recombinant E. coli Nissle capable of producing etoposide as per the present disclosure. It can be observed that in the absence of etoposide production majority of live tumour cells (green indicates live tumour cells) are visible (FIG. 4 A). Whereas, in the presence of etoposide production, tumour cell death (red indicates induced tumour cell death) can be observed (FIG. 4 B).


Advantages of the Present Disclosure:


The present disclosure discloses recombinant (programmed) microbe capable of producing podophyllotoxin, or its derivatives, or its precursors. As per one of the example, the recombinant microbe produces etoposide which is an anti-cancer molecule and can solve the problem of the targeted therapy and regulating the dosage of the molecule for the treatment. The recombinant microbe as disclosed herein is capable of producing etoposide in the presence of inducers like hypoxic conditions, or the presence of nitric oxide which are the hallmarks of the cancerous cells. Therefore, the production of etoposide by the recombinant bacteria present in the tumour microenvironment leads to targeted therapy and that too with a much lesser amount of etoposide. Such a treatment would lead to a reduction in the dosage of the anti-cancer molecule required for the cancer treatment, therefore, circumventing the problem of side effects of the chemotherapy, and increasing the chances of survival of the subject.


The present disclosure discloses the recombinant microbe which can be used to produce podophyllotoxin pathway precursors, or derivatives. The methods disclosed in the present disclosure provides three distinct advantages, first amongst them, such tools permit cloning of large fragments of nucleic acids into the bacterial genome (both episomally and integrated into its genome); second of them, they enable rapid scalability in cloning the metabolic pathway for the drug compound; third, is their versatile nature to adapt cloning variety of control circuitry inside the microorganism. Therefore, the recombinant microbe leads to a stable production of the end-product which further can have numerous applications.

Claims
  • 1. A recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71 Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives.
  • 2. A recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of at least one regulatory circuit.
  • 3. The recombinant microbe as claimed in claim 2, wherein the regulatory circuit is selected from the group consisting of nitric oxide (NO) operon, arabinose (AraC) operon, fumarate and nitrate reductase (FNR) operon, thiosulphate-responsive regulatory circuit, and tetrathionate-responsive regulatory circuit.
  • 4. The recombinant microbe as claimed in claim 1, wherein the gene encode phenyl alanine ammonia-lyase (PAL) having an amino acid sequence as set forth in SEQ ID NO: 10, cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL) having an amino acid sequence as set forth in SEQ ID NO: 12, hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase, p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H) having an amino acid sequence as set forth in SEQ ID NO: 14, caffeoyl CoA O-methyltransferase (CCoAOMT) having an amino acid sequence as set forth in SEQ ID NO: 18 bifunctional pinoresinol-lariciresinol reductase (DIRPLR) having an amino acid sequence as set forth in SEQ ID NO: 20, secoisolariciresinol dehydrogenase (SDH) having an amino acid sequence as set forth in SEQ ID NO: 22, cytochrome P450 oxidoreductase CYP719 having an amino acid sequence as set forth in SEQ ID NO: 26, O-methyltransferase (OMT) having an amino acid sequence as set forth in SEQ ID NO: 30, cytochrome P450 oxidoreductase CYP71 having an amino acid sequence as set forth in SEQ ID NO: 32, 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD) having an amino acid sequence as set forth in SEQ ID NO: 36, cytochrome P450 oxidoreductase CYP82D having an amino acid sequence as set forth in SEQ ID NO: 40, UDP glucosyl transferase having an amino acid sequence as set forth in SEQ ID NO: 46, and 2-Deoxy-d-ribose-5-phosphate aldolase having an amino acid sequence as set forth in SEQ ID NO: 50.
  • 5. The recombinant microbe as claimed in claim 1, wherein the microbe is a bacterium selected from the group consisting of commensal bacteria.
  • 6. The recombinant microbe as claimed in claim 1, wherein the recombinant microbe is Escherichia coli.
  • 7. The recombinant microbe as claimed in claim 1, wherein the recombinant microbe is E. coli Nissle 1917.
  • 8. The recombinant microbe as claimed in claim 1, wherein the genes are separated by a ribosome binding site.
  • 9. The recombinant microbe as claimed in claim 1, wherein said genes have nucleic acid sequences as set forth in SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 25, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 35, SEQ ID NO. 39, SEQ ID NO. 45, and SEQ ID NO. 49.
  • 10. A recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a hypoxia-responsive regulatory circuit.
  • 11. A recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of a nitric oxide-responsive regulatory circuit.
  • 12. A recombinant microbe comprising genes encoding phenyl alanine ammonia-lyase (PAL), cinnamate-4-hydroxylate 4-coumaroyl CoA-ligase fusion (C4H4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase p-coumaroyl quinate 3′-hydroxylase fusion (HCTC3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, and UDP glucosyl transferase, and a protein transporter, wherein the recombinant microbe secretes etoposide, or its derivatives, and wherein the expression of the genes is under the control of an arabinose-responsive regulatory circuit.
  • 13. A composition comprising: (a) the recombinant microbe as claimed in any one of the claims 1, 2, 10, 11, or 12; and (b) at least one pharmaceutically acceptable carrier.
  • 14. A method for treating cancer, said method comprising: administering the composition as claimed in claim 13 to a subject for treating cancer.
  • 15. The method as claimed in claim 14, wherein administering is done by at least one method selected from the group consisting of oral, nasal, and intravenous.
  • 16. A method for constructing the recombinant microbe as claimed in claim 1, said method comprising: (a) obtaining one or more recombinant vector, said recombinant vector encoding a repertoire of genes encoding phenyl alanine ammonia-lyase (PAL), Cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, UDP glucosyl transferase, and at least one gene encoding a protein transporter selected from the group consisting of ATP-Binding Cassette (ABC) transporter, Major Facilitator Superfamily (MFS) transporters, SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family; and (b) transforming a host microbe with the recombinant vector obtained in step (a), to obtain the recombinant microbe as claimed in claim 1.
  • 17. A method for constructing the recombinant microbe as claimed in claim 2, said method comprising: (a) obtaining one or more recombinant vector, said recombinant vector encoding a repertoire of genes encoding phenyl alanine ammonia-lyase (PAL), Cinnamate-4-hydroxylate (C4H), 4-coumaroyl CoA-ligase (4CL), hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HCT), p-coumaroyl quinate 3′-hydroxylase (C3H), caffeoyl CoA O-methyltransferase (CCoAOMT), bifunctional pinoresinol-lariciresinol reductase (DIRPLR), secoisolariciresinol dehydrogenase (SDH), O-methyltransferase (OMT), 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), 2-Deoxy-d-ribose-5-phosphate aldolase, Cytochrome P450 oxidoreductase CYP719, Cytochrome P450 oxidoreductase CYP71, Cytochrome P450 oxidoreductase CYP82D, UDP glucosyl transferase, at least one gene encoding a protein transporter selected from the group consisting of ATP-Binding Cassette (ABC) transporter, Major Facilitator Superfamily (MFS) transporters, SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family, and at least one regulatory circuit selected from the group consisting of nitric oxide (NO) operon, arabinose (AraC) operon, fumarate and nitrate reductase (FNR) operon, thiosulphate-responsive regulatory circuit, and tetrathionate-responsive regulatory circuit; and (b) transforming a host microbe with the recombinant vector obtained in step (a), to obtain the recombinant microbe as claimed in claim 2.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/058,662, filed Jul. 30, 2020, the entirety of which is incorporated herein for any and all purposes The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 15, 2023 is named Sequence.txt and is 224 KB in size.

US Referenced Citations (1)
Number Name Date Kind
20050026866 Pawelek Feb 2005 A1
Non-Patent Literature Citations (24)
Entry
Agrawal et al.; “Bacteriolytic therapy can generate a potent immune response against experimental tumors”; PNAS; vol. 101 No. 42; Oct. 2004; p. 15172-15177.
Saier Jr. et al.; “The Major Facilitator Superfamily”; J. Mol. Microbiol. Biotechnol.; vol. 1(2); 1999; p. 257-279.
Saier Jr. et al.; “The Transporter Classification Database: recent advances”; Nucleic Acids Research; vol. 37; Jan. 2009; p. D274-D278.
Altenhoefer et al.; “The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by diferent enteroinvasive bacterial pathogens”; FEMS Immunology and Medical Microbiology; vol. 40; 2004; p. 223-229.
Bay et al.; “Diversity and evolution of the small multidrug resistance protein family”; BMC Evolutionary Biology; vol. 9; 2009; 27 pages.
Dang et al.; “Combination bacteriolytic therapy for the treatment of experimental tumors”; PNAS; vol. 98 No. 26; Dec. 2001; p. 15155-15160.
Fisher et al.; “Evaluation of the Worth of Corynebacterium parvum in Conjunction With Chemotherapy as Adjuvant Treatment for Primary Breast Cancer”; Cancer; vol. 66 No. 2; 1990; p. 220-227.
Jia et al.; “Oral Delivery of Tumor-Targeting Salmonella to Treat Cancer in Mice”; Bacterial Therapy of Cancer; Chapter3; 2005; p. 25-33.
Lee et al.; “A Propionate-Inducible Expression System for Enteric Bacteria”; Applied and Environmental Microbiology; vol. 71 No. 11; Nov. 2005; p. 6856-6862.
Lee et al.; “Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models”; The Journal of Gene Medicine; vol. 6; 2004; p. 1382-1393.
Lee et al.; “Systemic Administration of Attenuated Salmonella choleraesuis in Combination with Cisplatin for Cancer Therapy”; Molecular Therapy; vol. 11 No. 5; May 2005; p. 707-716.
Lee et al.; “Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model”; Cancer Gene Therapy; vol. 12; 2005; p. 175-184.
Lodinova-Zadnikova et al.; “Effect of Preventive Administration of a Nonpathogenic Escherichia coliStrain on the Colonization of the Intestine with Microbial Pathogens in Newborn Infants”; Biology of the Neonate; vol. 71; 1997; p. 224-232.
Loeffler et al.; “Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth”; PNAS; vol. 104 No. 31; Jul. 2007; p. 12879-12883.
Malmgren et al.; “Localization of the Vegetative Form of Clostridium tetani in Mouse Tumors Following Intravenous Spore Administration”; Cancer Research; vol. 15; 1955; p. 473-478.
Parker et al.; “Effect of H'istolyticus Infection and Toxin on Transplantable Mouse Tumors”; Experimental Biology and Medicine; vol. 66; 1947; p. 461-467.
Reister et al.; “Complete genome sequence of the Gram-negative probiotic Escherichia coli strain Nissle 1917”; Journal of Biotechnology; vol. 187; 2014; p. 106-107.
Rembacken et al.; “Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial”; The Lancet; vol. 354; Aug. 1999; p. 635-639.
Schultz et al.; “Clinical Use of E. coli Nissle 1917 in Inflammatory Bowel Disease”; Clinical Review—Inflamm Bowel Disease; vol. 14 No. 7; Jul. 2008; p. 1012-1018.
Sonnenborn et al.; “The non-pathogenic Escherichia coli strain Nissle 1917—features of a versatile probiotic”; Microbial Ecology in Health and Disease; vol. 21; 2009; p. 122-158.
Ukena et al.; “Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity”; PLos ONE; Issue 12—e1308; Dec. 2007; 9 pages.
Yi et al.; “Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma1”; Acta Pharmacologica Sinica; vol. 26; May 2005; p. 629-634.
Zhao et al.; “Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium”; PNAS; vol. 102 No. 3; Jan. 2005; p. 755-760.
Zhao et al.; “Targeted Therapy with a Salmonella typhimurium Leucine-Arginine Auxotroph Cures Orthotopic Human Breast Tumors in Nude Mice”; Cancer Research; vol. 66; Aug. 2006; p. 7647-7652.
Related Publications (1)
Number Date Country
20220033867 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
63058662 Jul 2020 US