The present invention relates generally to the field of safety apparel, and more specifically to a safety garment having reduced particulate shedding properties, dosimeter attachment facilities, reinforced points of wear, and ease-of-removal characteristics.
Safety garments, such as disposable smocks, jumpsuits, gloves, shoe coverings, and hair coverings, are required apparel for the performance of many jobs. Some of the jobs requiring safety garments are performed in clean room environments, wherein the introduction of foreign matter must be minimized. For example, technicians in certain sensitive medical fields dealing with infectious matter, aerospace researchers assembling interplanetary probes, and material scientists developing and manufacturing ultrapure materials all wear safety garments in clean room environments. The safety garments perform the dual function of protecting the wearer from the potentially hazardous materials he is working with as well as preventing unwanted matter from the wearer's person from contaminating his work product.
Safety garments for use in clean room environments are typically made from nonwoven disposable materials, such as from sheets of spunbond/melt blown/melt blown/spunbond (SMMS) material and the like. Such sheets of material are cut into patterns and stitched together to form desired safety apparel. Typically, as these garments are intended to be disposable and the focus is on their functionality and not aesthetic appeal, little attention is paid to the hemming and stitching. The “as cut” edges are thus exposed. However, in clean room environments where contaminant levels in the parts per million or even parts per billion would be too high, such exposed cut edges present genuine sources of potential particulate contamination.
Moreover, as these garments are intended to be disposable, little effort is made to provide durable stitching. The prevalent attitude is that a garment intended to be worn for just a few hours does not require superior stitching. However, in a clean room situation or a hazardous environment such as asbestos remediation or nuclear demolition and decontamination, seam separation is not only a potential source of particulate evolution in and of itself, but also produces a pathway from the exterior to the interior of the garment through which potentially hazardous material may flow.
Many workplace environments from industrial settings to hospitals hold the potential to expose workers to various types of radiation. One problem faced by workers in such environments is how to safely perform tasks while monitoring their exposure to potentially harmful radiation. Often such protective measures include the use of personal radiation measuring devices referred to as “dosimeters” along with protective garments.
Traditionally, personal dosimeters have been attached to a worker's protective garments using tape or some other improvised means. Under normal working conditions, such informal attachment methods often lead to the detachment and potential loss or damage to the dosimeter device. Additionally, such protective garments are often bulky and difficult to remove when they are no longer needed.
There thus remains a need for an improved safety garment that is more durable and less prone to particulate shedding. There is also a need for protective garments to which personal dosimeter devices and other monitoring equipment can be effectively attached, as well as a garment that can be removed quickly and easily, and withstands high-wear regions such as elbows and knees. The present disclosure addresses these needs.
The present disclosure relates to a disposable clean room safety garment, including at least one sheet of nonwoven fabric having at least one cut edge, a plurality of stitches formed in the sheet(s) of nonwoven fabric to define a garment; and hemming formed at cut edges. The nonwoven fabric is preferably formed from spunbond/melt blown material. The stitching is characterized by an optimized stitch density of between ten and twelve stitches per inch. The garment includes at least one dosimeter attachment feature for holding or attaching one or more dosimeters to the garment. These may be positioned to allow the wearer to grasp them and tear open certain seams or otherwise remove the garment.
One object of the present invention is to provide an improved safety garment. Related objects and advantages of the present invention will be apparent from the following description.
For the purposes of promoting an understanding of the principles of the disclosure and presenting its currently understood best mode of operation, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, with such alterations and further modifications in the illustrated embodiments and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art.
In practice, the garments 10 and 14 are made by cutting one or more sheets of nonwoven material into a desired safety garment pattern. Simple patterns (e.g., shoe coverings) may require a single sheet; more complex patterns (e.g., smocks, jumpsuits, and the like) may require two or more sheets of varying size. The sheet(s) is/are then stitched together to define a garment 10. The edges of the garment 10 are then hemmed. All cut edges are twice folded and hemmed under to prevent exposure of any cut edges that could increase the likelihood of particulate shedding. All stitching in these illustrative embodiments is characterized by a stitch density in the range of 10 to 12 stitches per inch.
The loops of the embodiments of
Garment 110 is accessible through opening 146, which is held closed using a closure means 150 shown in greater detail in
Garment 110 can be made from a non-woven material such as polypropylene, polyethylene, polyester materials, and the like, including combinations of two or more non-woven materials. Such materials may be manufactured using spunbond/melt blown/melt blown/spunbond (SMMS) techniques, spunbond/melt blown/spunbond (SMS) techniques, or other suitable techniques for manufacturing non-woven garments, and may include two or more layers of material and/or multiple layers of different materials, as desired. The seams 116 located at various points about the garment 110 are optionally double-folded under so as not to be exposed. The seams 116 are also stitched with an optimized number of stitches per inch (SPI) increased to 10-12 SPI over 6-8 SPI, which is the industry standard. A stitch density of 10-12 SPI has been found to be optimal, as more than 12 SPI weakens the non-woven material via excessive perforation and less than 10 SPI provides a looser and weaker hem, such that particulate shedding is not minimized. Optionally, seams 16 are formed using some other method such as sonic welding or binding.
Continuing with the embodiment shown in
In one embodiment of the disclosed technology, garment 110 is constructed such that one or more seams are designed to rip or tear when a force above a predetermined threshold is applied. Such “tear-away” garments are known in the industry and are designed so as to allow for easy removal of a garment when it is no longer needed. Tear away garments allow workers to quickly and easily remove a garment at the end of a shift, for example. Attachment features 130 are optionally positioned so as to allow a wearer to grasp one or both of them and strong enough such that pulling on the attachment features 130 causes the tear away seams to release, thereby allowing the worker to quickly and easily remove the garment 110. Alternatively, a garment 110 according to another embodiment of the disclosed technology will open at the closure means 150 when sufficient force is applied by the wearer to the attachment features 130, thereby allowing the wearer to remove the garment 110.
Portions of garment 110 likely to experience wear such as the knees and elbows may include reinforced portions 140, 145. Reinforced portions 140, 145 may be made from the same material as garment 110 or from a different, stronger material. Optionally, garment 110 may be made from two or more layer of material. Reinforced portions 140, 145 may be attached to the interior or exterior surface of garment 110 and may be attached using adhesives, stitching, or any other suitable attachment method. Garment 110 may also include one or more pockets 135 located about the garment as desired.
Continuing with the embodiment shown in
While the disclosed technology has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. It is understood that the embodiments have been shown and described in the foregoing specification in satisfaction of the best mode and enablement requirements. It is understood that one of ordinary skill in the art could readily make a near infinite number of insubstantial changes and modifications to the above-described embodiments, and that it would be impractical to attempt to describe all such variations in the present specification. Accordingly, it is understood that all changes and modifications that come within the spirit of the disclosed technology are desired to be protected.
The present application claims priority to U.S. patent application Ser. No. 11/428,728 (“APPARATUS AND METHOD FOR PACKAGING NONWOVEN SAFETY GARMENTS”), filed Jul. 5, 2006, pending; its parent, U.S. application Ser. No. 10/798,646 (“DISPOSABLE GARMENT WITH REDUCED PARTICULATE SHEDDING”), filed Mar. 11, 2004, now abandoned; and Provisional Application No. 60/955,718 (“NUCLEAR QPA SUIT”), filed Aug. 14, 2007, pending. Each of these is incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60955718 | Aug 2007 | US |