Protective sheets, articles, and methods

Information

  • Patent Grant
  • 10265932
  • Patent Number
    10,265,932
  • Date Filed
    Monday, October 23, 2006
    18 years ago
  • Date Issued
    Tuesday, April 23, 2019
    5 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Shosho; Callie E
    • English; Patrick N
    Agents
    • The Griffith Law Firm, A P.C.
    • Griffith; Lisa M.
Abstract
Multi-layer protective sheets of the invention are extensible. They are useful in a range of indoor and outdoor applications in, for example, the transportation, architectural and sporting goods industries. The protective sheets can advantageously be applied to at least a portion of a surface of any article where protection is desired. Methods of the invention include those for forming protective sheets of the invention and applying them to articles.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to sheets useful for protecting surfaces, methods of making and using the same, and articles comprising applied sheets of the invention.


A variety of protective sheets are known. Many of those are based on one or more polyurethane layers. Polyurethane chemistries generally provide one or more properties including the following: environmental resistance, chemical resistance, abrasion resistance, scratch resistance, optical transparency, and other often desirable properties.


There are many commercially available single-layer polyurethane films from a variety of suppliers such as Stevens Urethane (Easthampton, Mass.) and entrotech, Inc. (Columbus, Ohio). Single-layer polyurethane films have been found useful as carrier layers in multi-layer sheet applications. Such films, however, have found limited use by themselves for protection of certain types of surfaces. For example, protection of painted surfaces often requires retention of the glossy appearance otherwise provided by a recently painted surface. One of the problems associated with single-layer polyurethane films is their often inadequate ability to retain the glossy appearance desired.


Attempts have been made to combine polyurethane films with other materials in the form of a multi-layer protective sheet in order to improve properties of the films, such as gloss retention. In some cases, an exterior (or topcoat) layer is applied to a polyurethane carrier layer in order to impart improved gloss retention.


Several protective sheets are readily available on the market today. For example, Minnesota Mining & Manufacturing Co. (“3M”) in St. Paul, Minn., markets polyurethane-based sheet “Paint Protection Film” under the SCOTCHGARD product line. As another example, Venture Tape Corp. in Rockland, Mass., markets such sheets (e.g., designated by product numbers 7510, 7512, and 7514) using the VENTURESHIELD trade designation. Avery Dennison in Strongsville, Ohio markets polyurethane products using the STONESHIELD trade designation. Known sheets for paint protection claim to have a certain degree of non-yellowing properties, gloss retention, and/or abrasion and chemical resistance. Yet, the degree of these properties and/or the ability of the sheets to exhibit such properties long-term are still in need of improvement.


U.S. Pat. No. 5,034,275 refers to a paint-coated sheet material. The material purportedly comprises a flexible and stretchable thermoplastic polyester carrier film, a stretchable aqueous polyurethane paint layer, a stretchable transparent crosslinked polyurethane topcoat layer and, disposed between the carrier film and the paint layer, a thin tie layer formed by coating on the carrier film an aqueous dispersion of a neutralized copolymer of ethylene and an ethylenically unsaturated carboxylic acid. The thickness of the crosslinked polyurethane topcoat layer is stated to be substantially thicker than the paint layer, which is stated to have a thickness of 0.012 to 0.08 millimeter. In that regard, the topcoat layer has a thickness in the range of about 0.02 to 0.25 millimeter, preferably from about 0.03 to 0.1 millimeter.


U.S. Pat. No. 5,114,789 describes a decorative sheet material having a transparent topcoat that can be bonded to various substrates, such as exterior automotive panels, as a protective and decorative coating. The sheet material comprises a thin carrier film, a paint layer adhered to one surface of the carrier film, and a crosslinked topcoat layer. That topcoat layer is stated to be “extremely thick” and at least 0.1 millimeter in embodiments described.


U.S. Pat. No. 5,242,751 describes a paint composite article including a thermally deformable carrier film having, on its first major surface, an adhesive layer and, on its second major surface, a paint layer consisting of a pigmented basecoat covered by a polyurethane topcoat layer.


U.S. Pat. No. 5,268,215 describes a paint-coated film purportedly having good mar resistance. A polyurethane paint layer is coated on a polymeric carrier film. Coated on the upper surface of the paint layer is a polyurethane clearcoat layer, which is then coated with a polyurethane-siloxane topcoat layer. The film can purportedly be thermoformed, stretched, and bonded adhesively to auto body parts, boats, household appliances, and other substrates as protective and decorative coverings having a basecoat-clearcoat appearance.


U.S. Pat. No. 5,468,532 describes a multi-layer graphic article with a color layer. It is based on a polymeric film that is covered with a protective surface layer to purportedly make the article weatherable and resistant to chemical exposure. The protective surface layer is described as being a polyurethane-based material in an exemplary embodiment.


U.S. Pat. No. 6,132,864 describes a painted plastic film, which is coated with two or more coats. It consists of a base plastic film, which is first coated with a filler composition, followed by a pigmented paint coating, and then coating with a transparent plastic film. The base plastic film can be a polyolefin, a polyamide, a polyurethane, a polyester, a polyacrylate, a polycarbonate or mixture of different polymeric substances. The filler composition is described as a composition containing a binder and crosslinking agent among other components. The pigmented paint coating is described as a topcoat comprising a polymeric binder, without or without a crosslinking agent, and a pigment or mixture of pigments. The transparent plastic film is described as being one of the same materials suitable for use as the base film. The multi-layer sheets described therein purportedly have good resistance to stone chipping and corrosion.


U.S. Pat. No. 6,383,644 describes a multi-layer sheet comprising an exterior protective crosslinked polyurethane layer. Internal to the sheet is a polymeric film. On the first major side of the polymeric film, which could also be polyurethane, is the exterior crosslinked polyurethane layer. On the opposite side of the polymeric film is an adhesive layer for adherence of the sheet to a surface after removal of a release liner thereon. The crosslinked polyurethane layer is polycarbonate-based and comprises the reaction product of a polycarbonate polyol or a polycarbonate polyamine and an aliphatic polyisocyanate.


While some protective sheets are known to have one or more desirable properties, it is highly desirable to provide sheets having a combination of properties including: non-yellowing, gloss retention, and extensibility.


BRIEF SUMMARY OF THE INVENTION

Multi-layer protective sheets of the invention are extensible. They are useful in a range of indoor and outdoor applications in, for example, the transportation, architectural and sporting goods industries. The protective sheets can advantageously be applied to at least a portion of a surface of any article where protection is desired. The surface to be protected can be painted or unpainted.


Particularly desirable is a sheet having a combination of not only gloss retention and extensibility, but also resistance to yellowing. For example, if a sheet yellows after prolonged exposure to ultraviolet radiation, the sheet can become visible on the substrate to which it is applied. If the sheet develops even a slight yellow tint, it may not be desirable to apply it to a substrate with a light paint color, such as white. In exemplary embodiments, protective sheets of the invention have a previously unobtainable combination of desired properties including: non-yellowing, gloss retention, and extensibility. Due to the non-yellowing properties of such protective sheets, distortion of the underlying surface's color and undesired visibility of the protective sheet are minimized.


Methods of the invention include those for applying protective sheets of the invention to articles. Such articles include, for example, motorized vehicles and bicycles amongst a multitude of other applications. Particularly when applying protective sheets to non-planar surfaces, extensibility is important. If a sheet is not very extensible, micro-cracking can occur when the film is stretched too far. Relief cuts may be needed in that case in order to apply such sheets to substrates, particularly those having a complex surface of convex and concave features. Advantageously, extensible protective sheets of the invention address those undesirable features of conventional protective sheets.


According to an exemplary embodiment of the invention, an extensible multi-layer protective sheet comprises a carrier layer; a polyurethane-based topcoat layer; and an adhesive layer. According to another embodiment, an extensible multi-layer protective sheet of the invention comprises a carrier layer; and an essentially uncrosslinked topcoat layer. According to a further embodiment of the latter, the topcoat layer can be polyurethane-based.


Polyurethane-based topcoat layers can include any suitable polyurethanes, such as polycarbonate-based polyurethanes. The topcoat layer can also comprise a silicone polymer according to further embodiments.


The carrier layer can comprise multiple individual film layers or a single film layer. The carrier layer can be, for example, polyurethane-based. In preferred embodiments, the carrier layer is essentially uncrosslinked.


In certain embodiments, protective sheets of the invention can also comprise an adhesive layer, such as for example a pressure-sensitive adhesive. Prior to use, the adhesive layer can be protected by a conventional release liner. In addition, prior to use, a carrier film can be positioned on an exterior surface of the topcoat layer.


Protective sheets of the invention, by virtue of their being extensible, exhibit superior performance and handling properties. In one embodiment, a protective sheet of the invention is capable of elongating more than 200% before breaking.


In another embodiment, a protective sheet of the invention exhibits essentially no plastic deformation when stretched up to about 125% of its initial length. In a further embodiment, a protective sheet of the invention exhibits essentially no plastic deformation when stretched up to about 150% of its initial length. Preferably, a force of less than about 40 Newtons is required to elongate the sheet to 150% its initial length.


In still another embodiment, a protective sheet of the invention exhibits greater than about 210% elongation at break when tested according to ASTM D638-95. In a further embodiment, a protective sheet of the invention exhibits greater than about 260% elongation at break when tested according to ASTM D638-95. In a still further embodiment, a protective sheet of the invention exhibits greater than about 300% elongation at break when tested according to ASTM D638-95. In yet another embodiment, a protective sheet of the invention exhibits greater than about 350% elongation at break when tested according to ASTM D638-95.


A method for forming a protective sheet of the invention comprises steps of: forming a carrier layer; forming an adhesive layer on a first side of the carrier layer; forming a topcoat layer on a carrier film; thermally bonding the topcoat layer to a second side of the carrier layer opposite from the adhesive layer to form an assembly; and optionally, removing the carrier film from the topcoat layer. Another embodiment of a method for forming a protective sheet of the invention comprises steps of: forming a carrier layer; forming an adhesive layer on a first side of the carrier layer; and forming a topcoat layer on a second side of the carrier layer opposite from the adhesive layer. In further embodiments, the method can comprise steps of: contacting the topcoat layer with a smooth plastic film; and heating the topcoat layer and plastic film to form a smooth surface on the topcoat layer.







DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed toward improved multi-layer protective sheets. The protective sheets are advantageously, not only capable of protecting a surface, but also extensible to enable protection and ease of application to non-planar surfaces.


The terms “extensible” and “extensibility” refer to a material's ductility and its ability to be stretched and recover to essentially its original state after stretching. Extensible sheets are capable of recovering to their original state when stretched (i.e., elongated) up to about 125% of their initial length or more. Preferably, extensible sheets are capable of recovering to their original state when stretched up to about 150% of their initial length or more. According to one aspect of the invention, extensible sheets are capable of elongating more than 200% before breaking. Further preferable are extensible sheets that exhibit essentially no plastic deformation when stretched up to about 150% of their initial length.


According to one aspect of the invention, extensible sheets of the invention exhibit greater than about 210% elongation at break when tested according to the Tensile Testing Method described below. In a further embodiment, extensible sheets of the invention exhibit greater than about 260% elongation at break when tested according to the Tensile Testing Method described below. In a still further embodiment, extensible sheets of the invention exhibit greater than about 300% elongation at break when tested according to the Tensile Testing Method described below. In a further embodiment still, extensible sheets of the invention exhibit greater than about 350% elongation at break when tested according to the Tensile Testing Method described below.


According to another aspect of the invention, extensible sheets of the invention exhibit less than about 3% deformation after 25% elongation when tested according to the Recovery Testing Method described below. In a further embodiment, extensible sheets of the invention exhibit less than about 2% deformation after 25% elongation when tested according to the Recovery Testing Method described below. In a still further embodiment, extensible sheets of the invention exhibit less than about 1% deformation after 25% elongation when tested according to the Recovery Testing Method described below.


According to another aspect of the invention, extensible sheets of the invention exhibit less than about 8% deformation after 50% elongation when tested according to the Recovery Testing Method described below. In a further embodiment, extensible sheets of the invention exhibit less than about 5% deformation after 50% elongation when tested according to the Recovery Testing Method described below. In a still further embodiment, extensible sheets of the invention exhibit less than about 2% deformation after 50% elongation when tested according to the Recovery Testing Method described below.


According to another aspect of the invention, extensible sheets of the invention require a force of less than about 40 Newtons to elongate the sheet to 150% its initial length. In a further embodiment, extensible sheets of the invention require a force of less than about 30 Newtons to elongate the sheet to 150% its initial length. In yet a further embodiment, extensible sheets of the invention require a force of less than about 20 Newtons to elongate the sheet to 150% its initial length.


Protective sheets of the invention comprise at least a carrier layer and a topcoat layer. In further embodiments, protective sheets of the invention comprise the following layers in order: a topcoat layer, a carrier layer, and an adhesive layer. The use of multiple sheets according to the invention imparts flexibility in design of protective sheets of the invention. While there may be protective sheets that do not involve each of a topcoat layer, carrier layer, and adhesive layer, each of those individual layers is generally present according to preferred embodiments of the invention in order to maximize performance properties thereof.


Topcoat Layer


In general, the non-adhesive layer adjacent the carrier layer in protective sheets of the invention is referred to as the “topcoat layer.” Any suitable type of material can be used for the topcoat layer in order to provide extensible protective sheets of the invention. For example, the topcoat layer can comprise as its base polymer a polycarbonate, a polyvinyl fluoride, a poly(meth)acrylate (e.g., a polyacrylate or a polymethacrylate), a polyurethane, modified (e.g., hybrid) polymers thereof, or combinations thereof.


Preferably, to maximize gloss retention, soil resistance, and other desirable performance properties, the topcoat layer is of relatively high molecular weight. That is, while the topcoat layer can be formed by extrusion according to some embodiments of the invention, the topcoat layer is preferably of a sufficient molecular weight that extrusion thereof is not practical (i.e., if a polyurethane, the polyurethane is not considered extrusion-grade polyurethane by those of ordinary skill in the art).


The topcoat layer of the invention provides improvements for many applications, such as for example, when sheets of the invention are used as protective sheets for non-planar surfaces. Sheets of the invention were found to be significantly more extensible than certain commercially available protective sheets having a crosslinked topcoat layer. Accordingly, in a further embodiment, unlike many conventional protective sheets, protective sheets of the invention comprise an essentially uncrosslinked topcoat layer. In many applications where protective sheets are used, the potential benefits imparted by crosslinking an exterior layer were substantially outweighed by the significantly improved extensibility provided by sheets of the invention.


Any suitable additives can be present in conjunction with the base polymer in the topcoat layer. Other additives are selected as known to those skilled in the art based on the intended application. For example, silicone polymers and/or fluoropolymers can be added to the topcoat layer for improved mar resistance in certain applications. Those skilled in the art are readily able to determine the amount of such additives to use for the desired effect. In an exemplary embodiment, mar resistance is improved with addition of up to about 1% by weight of a silicone polymer or fluoropolymer to the topcoat layer.


While the use of certain amounts of crosslinker may still allow formation of extensible sheets of the invention, if crosslinkers are present, they are generally used in an amount of less than about 4 parts by weight, and preferably less than about 2 parts by weight, based on 100 parts by weight of any polymer crosslinkable therewith prior to any crosslinking reaction. Further, crosslinkers may be present if they are not used in combination with polymers that are crosslinkable therewith or where, if crosslinkable, resulting crosslink density is minimal (e.g., due to minimal reactive sites on the base polymer) so as not to significantly affect extensibility of the sheet. In a preferred embodiment, the topcoat layer is essentially free of crosslinkers and reaction products thereof. As such, crosslinkers and reaction products are not discernible when using chemical analysis.


In one embodiment, the topcoat layer has a thickness of about 1 micron to about 125 microns, or more specifically about 3 microns to about 95 microns. In an exemplary embodiment, the topcoat layer has a thickness of about 20 microns or less, more specifically about 5 microns to about 15 microns.


According to one aspect of the invention, a topcoat layer of the desired thickness is formed using dispersion chemistry. Dispersion chemistry is well known to those skilled in the art. While the % solids will vary, in one embodiment, a dispersion having about 10-15% solids was found useful for formation of the topcoat layer.


To protect the topcoat layer of the sheet, a polymer liner (e.g., a clear polyester liner) or the like may be used and removed before or after the sheet is applied to a substrate.


Carrier Layer


The term “carrier layer” is used herein to refer to the layer(s) of film adjacent to the topcoat layer and between the topcoat layer and the adhesive layer when the adhesive layer is present. In general, the carrier layer of protective sheets of the invention is referred to as a “mid-ply layer” when it contains multiple layers (i.e., “n” number of individual layers). However, the carrier layer of protective sheets of the invention can be a single film layer according to other embodiments of the invention.


Any suitable chemistry can be used for the carrier layer. Suitable base polymers include, for example, polyvinyl chloride, polyvinyl acetate, polypropylene, polyester, poly(meth)acrylate, polyethylene, and polyurethane, and rubbery resins (e.g., silicone elastomers). According to one embodiment, the carrier layer comprises a relatively clear, UV-stable resin such as, for example, a silicone.


When multiple layers form the carrier layer, each of the “n” individual layers can be the same or different chemistries. In an exemplary embodiment, each of the “n” individual layers has essentially the same chemistry.


Any suitable additives can be present in the carrier layer. Other additives are selected as known to those skilled in the art based on the intended application. Those skilled in the art are readily able to determine the amount of such additives to use for the desired effect.


While the use of certain amounts of crosslinker may still allow formation of extensible sheets of the invention, if crosslinkers are present, they are generally used in an amount of less than about 4 parts by weight, and preferably less than about 2 parts by weight, based on 100 parts by weight of any polymer crosslinkable therewith prior to any crosslinking reaction. Further, crosslinkers may be present if they are not used in combination with polymers that are crosslinkable therewith or where, if crosslinkable, resulting crosslink density is minimal (e.g., due to minimal reactive sites on the base polymer) so as not to significantly affect extensibility of the sheet. In a preferred embodiment, the carrier layer is essentially free of crosslinkers and reaction products thereof. As such, crosslinkers and reaction products are not discernible when using chemical analysis.


To further impart desired performance properties, elastic modulus of the carrier layer is similar to the elastic modulus of the topcoat layer in an exemplary embodiment of the invention. One way in which this beneficial property is obtained is through the use of both a topcoat layer and a carrier layer that are essentially uncrosslinked.


According to one embodiment of the invention, the carrier layer has a thickness of about 5 microns to about 1,250 microns. Each of the “n” number of individual film layers therein can be as thin as about 5 microns and up to about 50 microns in thickness, the presence of thicker layers being particularly useful for ballistic applications. However, to impart greater extensibility, a carrier layer having a thickness of about 220 microns or less is used according to one aspect of the invention. According to further aspects, the carrier layer has a thickness of about 180 microns or less. For example, the carrier layer can have a thickness of about 120 microns to about 180 microns. Not only is extensibility of the carrier layer, and hence overall protective sheet, enhanced by using a thinner carrier layer, overall cost of the sheet is reduced in this manner.


Adhesive Layer


When included within protective sheets according to further embodiments of the invention, the adhesive layer is present adjacent the carrier layer and opposite from the topcoat layer. Any suitable adhesive can be used for the adhesive layer according to the invention. In a preferred embodiment, the adhesive layer comprises a pressure-sensitive adhesive.


While any suitable chemistry can be used for the base polymer in the adhesive layer, (meth)acrylate—acrylate and methacrylate—chemistry is preferred. However, other suitable chemistries are known to those skilled in the art and include, for example, those based on synthetic and natural rubbers, polybutadiene and copolymers thereof, polyisoprene or copolymers thereof, and silicones (e.g., polydimethylsiloxane and polymethylphenylsiloxane). Any suitable additives can be present in conjunction with the base polymer in the adhesive layer.


In particular, an adhesive based on 2-ethyl hexyl acrylate, vinyl acetate, and acrylic acid monomers polymerized as known to those skilled in the art was found useful in one embodiment of the invention. The adhesive can be crosslinked, for example, using conventional aluminum or melamine crosslinkers.


In one embodiment, the adhesive layer has a thickness of about 5 microns to about 150 microns. In a further embodiment, the adhesive layer has a thickness of about 30 microns to about 100 microns. However, the thickness of the adhesive layer can vary substantially without departing from the spirit and scope of the invention.


Until its application on a surface, the adhesive layer can be protected using, for example, a conventional release liner. As such, the sheet can be stored and shipped easily in roll or other forms until its application.


In an exemplary embodiment, protective sheets of the invention are polyurethane-based in that they comprise at least one polyurethane-based layer. According to one aspect of this embodiment, polyurethane-based sheets of the invention comprise a polyurethane-based topcoat layer, a carrier layer, and optionally an adhesive layer. See U.S. Pat. No. 4,476,293 for a description of exemplary polycarbonate-based polyurethanes useful for the topcoat layer of the invention.


According to another aspect of this embodiment, the carrier layer is a polyurethane-based layer. For cost-efficiency, the polyurethane used for the carrier layer can be any extrusion grade polyurethane, such as those available from Stevens Urethane of Easthampton, Mass. For example, extrudable aliphatic polyurethanes designated SS-1219-92 and SS-2219-92 are available from Stevens Urethane for this purpose. However, the carrier layer need not be an extruded film, but can be prepared in any suitable manner. In one embodiment, the carrier layer comprises a blown film.


When protective sheets of the invention are polyurethane-based, each polyurethane-based layer comprises a polyurethane film. For simplicity, the term “polyurethane” as used herein includes polymers containing urethane (also known as carbamate) linkages, urea linkages, or combinations thereof (i.e., in the case of poly(urethane-urea)s). Thus, polyurethanes of the invention contain at least urethane linkages and, optionally, urea linkages. In one embodiment, polyurethane-based layers of the invention are based on polyurethanes where the backbone has at least about 80% urethane and/or urea repeat linkages formed during their polymerization.


Polyurethane chemistry is well known to those of ordinary skill in the art. Polyurethane-based layers of the invention can contain polyurethane polymers of the same or different chemistries, the latter commonly understood to be a polymer blend. Polyurethanes generally comprise the reaction product of at least one isocyanate-reactive component, at least one isocyanate-functional component, and one or more other optional components such as emulsifiers and chain extending agents.


Components of polyurethanes are further described below, with reference to certain terms understood by those in the chemical arts as referring to certain hydrocarbon groups. Reference is also made throughout to polymeric versions thereof. In that case, the prefix “poly” is inserted in front of the name of the corresponding hydrocarbon group. Except where otherwise noted, such hydrocarbon groups, as used herein, may include one or more heteroatoms (e.g., oxygen, nitrogen, sulfur, or halogen atoms), as well as functional groups (e.g., oxime, ester, carbonate, amide, ether, urethane, urea, carbonyl groups, or mixtures thereof).


The term “aliphatic group” means a saturated or unsaturated, linear, branched, or cyclic hydrocarbon group. This term is used to encompass alkylene (e.g., oxyalkylene), aralkylene, and cycloalkylene groups, for example.


The term “alkylene group” means a saturated, linear or branched, divalent hydrocarbon group. Particularly preferred alkylene groups are oxyalkylene groups. The term “oxyalkylene group” means a saturated, linear or branched, divalent hydrocarbon group with a terminal oxygen atom. The term “aralkylene group” means a saturated, linear or branched, divalent hydrocarbon group containing at least one aromatic group. The term “cycloalkylene group” means a saturated, linear or branched, divalent hydrocarbon group containing at least one cyclic group. The term “oxycycloalkylene group” means a saturated, linear or branched, divalent hydrocarbon group containing at least one cyclic group and a terminal oxygen atom. The term “aromatic group” means a mononuclear aromatic hydrocarbon group or polynuclear aromatic hydrocarbon group. The term includes arylene groups. The term “arylene group” means a divalent aromatic group.


Many commercially available polyurethanes are available and suitable for use as polyurethane films according to the present invention. For example, polyurethanes are available from Thermedics (Noveon, Inc.) of Wilmington, Mass., under the TECOFLEX trade designation (e.g., CLA-93AV) and from Bayer MaterialScience LLC of Pittsburgh, Pa., under the TEXIN trade designation (e.g., an aliphatic ester-based polyurethane suitable as a base polymer for carrier layers of the invention is available under the trade designation, TEXIN DP7-3008).


Further, any suitable method can be used for preparation of polyurethane films for use in polyurethane-based sheets of the invention. In one embodiment, the polyurethane is prepared and formed into a film using an extruder. This method is preferred for preparation of carrier layers of polyurethane-based sheets of the invention.


In another embodiment, a polyurethane film can be prepared and formed into a film using solution or dispersion chemistry and film coating techniques known to those skilled in the art. Such a film can be prepared by reacting components, including at least one isocyanate-reactive component, at least one isocyanate-functional component, and, optionally, at least one reactive emulsifying compound, to form an isocyanate-terminated polyurethane prepolymer. The polyurethane prepolymer can then be dispersed, and optionally chain-extended, in a dispersing medium to form a polyurethane-based dispersion that can be cast to form a polyurethane film. This method is preferred for preparation of topcoat layers in polyurethane-based sheets of the invention.


When the polyurethane film is prepared from an organic solventborne or waterborne system, once the solution or dispersion is formed, it is easily applied to a substrate and then dried to form a polyurethane film. As known to those of ordinary skill in the art, drying can be carried out either at room temperature (i.e., about 20° C.) or at elevated temperatures (e.g., about 25° C. to about 150° C.). For example, drying can optionally include using forced air or a vacuum. This includes the drying of static-coated substrates in ovens, such as forced air and vacuum ovens, or drying of coated substrates that are continuously conveyed through chambers heated by forced air, high-intensity lamps, and the like. Drying may also be performed at reduced (i.e., less than ambient) pressure.


Any suitable isocyanate-reactive component can be used in this embodiment of the present invention. The isocyanate-reactive component contains at least one isocyanate-reactive material or mixtures thereof. As understood by one of ordinary skill in the art, an isocyanate-reactive material includes at least one active hydrogen. Those of ordinary skill in the polyurethane chemistry art will understand that a wide variety of materials are suitable for this component. For example, amines, thiols, and polyols are isocyanate-reactive materials.


However, it is preferred that the isocyanate-reactive material be a hydroxy-functional material. Polyols are the preferred hydroxy-functional material used in the present invention. Polyols provide urethane linkages when reacted with an isocyanate-functional component, such as a polyisocyanate.


Polyols, as opposed to monols, have at least two hydroxy-functional groups. Diols contribute to formation of relatively high molecular weight polymers without requiring crosslinking, such as is conventionally introduced by polyols having greater than two hydroxy-functional groups. Examples of polyols useful in the present invention include, but are not limited to, polyester polyols (e.g., lactone polyols) and the alkylene oxide (e.g., ethylene oxide; 1,2-epoxypropane; 1,2-epoxybutane; 2,3-epoxybutane; isobutylene oxide; and epichlorohydrin) adducts thereof, polyether polyols (e.g., polyoxyalkylene polyols, such as polypropylene oxide polyols, polyethylene oxide polyols, polypropylene oxide polyethylene oxide copolymer polyols, and polyoxytetramethylene polyols; polyoxycycloalkylene polyols; polythioethers; and alkylene oxide adducts thereof), polyalkylene polyols, polycarbonate polyols, mixtures thereof, and copolymers therefrom.


Polycarbonate-based polyurethanes are preferred according to one embodiment. It was found that this type of polyurethane chemistry easily facilitated obtainment of polyurethane-based sheets with properties desired. See U.S. Pat. No. 4,476,293 for a description of exemplary polycarbonate-based polyurethanes.


In one preferred embodiment, a polycarbonate diol is used to prepare polycarbonate-based polyurethane according to the invention. Although polyols containing more than two hydroxy-functional groups are generally less preferred than diols, certain higher functional polyols may also be used in the present invention. These higher functional polyols may be used alone, or in combination with other isocyanate-reactive materials, for the isocyanate-reactive component.


For broader formulation latitude, at least two isocyanate-reactive materials, such as polyols, may be used for the isocyanate-reactive component. However, as any suitable isocyanate-reactive component can be used to form the polyurethane, much latitude is provided in the overall polyurethane chemistry.


The isocyanate-reactive component is reacted with an isocyanate-functional component during formation of the polyurethane. The isocyanate-functional component may contain one isocyanate-functional material or mixtures thereof. Polyisocyanates, including derivatives thereof (e.g., ureas, biurets, allophanates, dimers and trimers of polyisocyanates, and mixtures thereof), (hereinafter collectively referred to as “polyisocyanates”) are the preferred isocyanate-functional materials for the isocyanate-functional component. Polyisocyanates have at least two isocyanate-functional groups and provide urethane linkages when reacted with the preferred hydroxy-functional isocyanate-reactive components. In one embodiment, polyisocyanates useful for preparing polyurethanes are one or a combination of any of the aliphatic or aromatic polyisocyanates commonly used to prepare polyurethanes.


Generally, diisocyanates are the preferred polyisocyanates. Useful diisocyanates include, but are not limited to, aromatic diisocyanates, aromatic-aliphatic diisocyanates, aliphatic diisocyanates, cycloaliphatic diisocyanates, and other compounds terminated by two isocyanate-functional groups (e.g., the diurethane of toluene-2,4-diisocyanate-terminated polypropylene oxide polyol).


Examples of preferred diisocyanates include the following: 2,6-toluene diisocyanate; 2,5-toluene diisocyanate; 2,4-toluene diisocyanate; phenylene diisocyanate; 5-chloro-2,4-toluene diisocyanate; 1-chloromethyl-2,4-diisocyanato benzene; xylylene diisocyanate; tetramethyl-xylylene diisocyanate; 1,4-diisocyanatobutane; 1,6-diisocyanatohexane; 1,12-diisocyanatododecane; 2-methyl-1,5-diisocyanatopentane; methylenedicyclohexylene-4,4′-diisocyanate; 3-isocyanatomethyl-3,5,5′-trimethylcyclohexyl isocyanate (isophorone diisocyanate); 2,2,4-trimethylhexyl diisocyanate; cyclohexylene-1,4-diisocyanate; hexamethylene-1,6-diisocyanate; tetramethylene-1,4-diisocyanate; cyclohexane-1,4-diisocyanate; naphthalene-1,5-diisocyanate; diphenylmethane-4,4′-diisocyanate; hexahydro xylylene diisocyanate; 1,4-benzene diisocyanate; 3,3′-dimethoxy-4,4′-diphenyl diisocyanate; phenylene diisocyanate; isophorone diisocyanate; polymethylene polyphenyl isocyanate; 4,4′-biphenylene diisocyanate; 4-isocyanatocyclohexyl-4′-isocyanatophenyl methane; and p-isocyanatomethyl phenyl isocyanate.


When preparing polyurethane dispersions for casting into layers of polyurethane, the isocyanate-reactive and isocyanate-functional components may optionally be reacted with at least one reactive emulsifying compound according to one embodiment of the invention. The reactive emulsifying compound contains at least one anionic-functional group, cationic-functional group, group that is capable of forming an anionic-functional group or cationic-functional group, or mixtures thereof. This compound acts as an internal emulsifier because it contains at least one ionizable group. Thus, these compounds are referred to as “reactive emulsifying compounds.”


Reactive emulsifying compounds are capable of reacting with at least one of the isocyanate-reactive and isocyanate-functional components to become incorporated into the polyurethane. Thus, the reactive emulsifying compound contains at least one, preferably at least two, isocyanate- or active hydrogen-reactive- (e.g., hydroxy-reactive) groups. Isocyanate- and hydroxy-reactive groups include, for example, isocyanate, hydroxyl, mercapto, and amine groups.


Preferably, the reactive emulsifying compound contains at least one anionic-functional group or group that is capable of forming such a group (i.e., an anion-forming group) when reacted with the isocyanate-reactive (e.g., polyol) and isocyanate-functional (e.g., polyisocyanate) components. The anionic-functional or anion-forming groups of the reactive emulsifying compound can be any suitable groups that contribute to ionization of the reactive emulsifying compound. For example, suitable groups include carboxylate, sulfate, sulfonate, phosphate, and similar groups. As an example, dimethylolpropionic acid (DMPA) is a useful reactive emulsifying compound. Furthermore, 2,2-dimethylolbutyric acid, dihydroxymaleic acid, and sulfopolyester diol are other useful reactive emulsifying compounds. Those of ordinary skill in the art will recognize that a wide variety of reactive emulsifying compounds are useful in preparing polyurethanes for the present invention.


One or more chain extenders can also be used in preparing polyurethanes of the invention. For example, such chain extenders can be any or a combination of the aliphatic polyols, aliphatic polyamines, or aromatic polyamines conventionally used to prepare polyurethanes.


Illustrative of aliphatic polyols useful as chain extenders include the following: 1,4-butanediol; ethylene glycol; 1,6-hexanediol; glycerine; trimethylolpropane; pentaerythritol; 1,4-cyclohexane dimethanol; and phenyl diethanolamine. Also note that diols such as hydroquinone bis(β-hydroxyethyl)ether; tetrachlorohydroquinone-1,4-bis(β-hydroxyethyl)ether; and tetrachlorohydroquinone-1,4-bis(β-hydroxyethyl)sulfide, even though they contain aromatic rings, are considered to be aliphatic polyols for purposes of the invention. Aliphatic diols of 2-10 carbon atoms are preferred. Especially preferred is 1,4-butanediol.


Illustrative of useful polyamines are one or a combination of the following: p,p′-methylene dianiline and complexes thereof with alkali metal chlorides, bromides, iodides, nitrites and nitrates; 4,4′-methylene bis(2-chloroaniline); dichlorobenzidine; piperazine; 2-methylpiperazine; oxydianiline; hydrazine; ethylenediamine; hexamethylenediamine; xylylenediamine; bis(p-aminocyclohexyl)methane; dimethyl ester of 4,4′-methylenedianthranilic acid; p-phenylenediamine; m-phenylenediamine; 4,4′-methylene bis(2-methoxyaniline); 4,4′-methylene bis(N-methylaniline); 2,4-toluenediamine; 2,6-toluenediamine; benzidine; 3,4′-dimethylbenzidine; 3,3′-dimethoxybenzidine; dianisidine; 1,3-propanediol bis(p-aminobenzoate); isophorone diamine; 1,2-bis(2′-aminophenylthio)ethane; 3,5-diethyl toluene-2,4-diamine; and 3,5-diethyl toluene-2,6-diamine. The amines preferred for use are 4,4′-methylene bis(2-chloroaniline); 1,3-propanediol bis(p-aminobenzoate); and p,p′-methylenedianiline and complexes thereof with alkali metal chlorides, bromides, iodides, nitrites and nitrates.


Protective Sheet Formation


In one embodiment, each of the individual layers of the protective sheet is prepared before assembly into the final multi-layer protective sheet. Any suitable method for preparation of each can be used as known to those skilled in the art.


For preparation of the carrier layer, for example, a film can be extruded onto a separate carrier film (e.g., polyester film) to form a supported carrier layer, after which the supporting carrier film is removed at some point before both sides of the carrier layer are able to be coated. In one embodiment, each of the “n” individual layers is cast successively onto each layer to form the overall carrier layer.


For preparation of the adhesive layer, any suitable method can be used. For example, a film of the desired thickness can be cast onto a release film according to one embodiment and as known to those skilled in the art. In one embodiment, the film of adhesive contained on the release film can be laminated to the unsupported side of the carrier layer, after which time the supporting carrier film is removed from the carrier layer for application of the topcoat layer.


For preparation of the topcoat layer, any suitable method can be used. For example, a topcoat film of the desired thickness can be cast onto a smooth film (e.g., polyester) according to one embodiment and as known to those skilled in the art. In one embodiment, the supported topcoat film is then laminated to the exposed side of the carrier layer, opposite from the adhesive layer. The smooth film used for formation of the topcoat film can remain in the assembly until application of the sheet to a surface in order to provide extra protection during shipping and storage of the sheet.


According to this embodiment, any suitable method can be used to laminate the topcoat layer to the carrier layer. For example, the topcoat layer can be adhered directly to the carrier layer using thermal bonding. According to this method, a preformed topcoat film is adhered to the carrier layer and bonded using heat and, optionally, pressure.


According to one aspect of this embodiment, thermal bonding occurs upon application of heat in an amount sufficient to begin to at least partially melt at least one of the layers to be bonded. Bonding is further enhanced when both layers to be bonded begin to at least partially melt. While the melting temperature of each layer can vary, in those applications requiring high temperature exposure, it is preferred that the melting temperature of each of the carrier layer and the topcoat layer is at least about 120° C. (250° F.).


While it can vary, if used, generally pressure will be applied in an amount of up to about 690 Pa (100 psi), or more typically up to about 345 Pa (50 psi). As an example, the layers can be adhered according to this method when contacted for about three seconds with application of heat 150° C. (300° F.) and 140 Pa (20 psi) pressure.


According to another embodiment, at least one of the adhesive layer and the topcoat layer is formed by direct coating onto the carrier layer according to conventional methods. However, this method resulted in sheets having, for example, a topcoat layer more susceptible to having a surface marked by an orange peel-type texture. Therefore, use of the thermal bonding method is preferred.


If the topcoat layer is direct coated, however, a smooth plastic film (e.g., polyester) can be heat laminated to the exterior surface of the topcoat layer in order to reduce the orange peel appearance of the topcoat layer's surface. According to this embodiment, the topcoat layer is contacted with a smooth plastic film and then heated, optionally with pressure, at a temperature and for a time sufficient to smooth the surface of the topcoat layer as desired.


While the above-described process relies primarily on preparation of individual layers and then adhering those layers together to form the sheet, according to another embodiment of the invention, some or all of the sheet's layers can be formed simultaneously by co-extrusion. As known to those skilled in the art, co-extrusion often facilitates processing efficiency. No matter what method is used, the process can be a continuous or batch process.


Protective Sheet Use


Beneficially, protective sheets of the invention have good gloss retention, non-yellowing properties, and extensibility. Protective sheets of the invention are useful in a range of indoor and outdoor applications in, for example, the transportation, architectural and sporting goods industries. Exemplary applications including those including motorized vehicles and bicycles, among many other articles. Preferably, protective sheets of the invention have smooth, glossy surfaces and a substantially uniform thickness throughout in order to maximize their capability of providing seemingly invisible protection to a surface.


During use, a protective sheet is applied to a surface, preferably in such a way as to conform to the shape of the surface. Particularly when applying protective sheets to non-planar surfaces, extensibility is important. If a sheet is not very extensible, micro-cracking can occur when the film is stretched too far. Relief cuts may be needed in that case in order to apply such sheets to substrates, particularly those having a complex surface of convex and concave features. However, according to preferred embodiments of the invention, relief cuts are not necessary when applying protective sheets of the invention to complex surfaces. Such protective sheets are readily conformable due to their extensibility.


Protective sheets of the invention can be readily and easily applied to a surface based on knowledge of those skilled in the art. When an adhesive layer is included within the protective sheet, the adhesive layer is generally adhered to the surface to be protected after removal of any release liner present thereon to expose the adhesive. When a pressure-sensitive adhesive layer is used, the protective sheet can be more easily repositioned before being firmly adhered to a surface. When an adhesive layer is not included within the protective sheet, the adhesive sheet is otherwise adhered to a surface using any conventional method, including thermal or other bonding mechanisms.


EXAMPLES

Exemplary embodiments and applications of the invention are described in the following non-limiting examples and related testing methods.


Tensile Testing Method


For tensile testing, samples were formed into standard tensile testing specimens according to ASTM D638-95 using designations for Type II measurements. Tensile testing was performed according to ASTM D638-95. The rate at which the jaws holding the specimen were pulled in a tensile manner was 1.0 millimeter/minute (0.04 inch/minute) to measure the elastic modulus of the sample, but increased to 300 millimeters/minute (11.8 inches/minute) to obtain the ultimate tensile strength and elongation data. Test data using this method is reported in Table 1.


Recovery Testing Method


For recovery testing, a generally rectangular sample having an initial length of 25 centimeters (10 inches) and width of 5 centimeters (2 inches) was prepared. The sample was stretched in tension until its length exceeded its initial length by a predetermined percentage (25% or 50%). After recovery equilibrium was obtained (approximately 5-10 minutes), the length of the relaxed sample was measured and the sample was qualitatively analyzed for defects or deformation. The change in length of the sample as compared to the initial length is reported as its “Percent Deformation” in Table 2. Note that values reported in Table 2 have a standard deviation of about plus/minus 0.6%.


Elongation Force Testing Method


Force required to elongate a generally rectangular sample having an initial length of 12.5 centimeters (5 inches) and width of 5 centimeters (2 inches) was measured using an IMASS SP2000 slip/peel tester (available from IMASS, Inc. of Accord, Mass.) operating at a speed of 30 centimeters/minute (12 inches/minute). Two forces were measured for each sample, those being that required to elongate the sample to 125% of its initial length and that required to elongate the sample to 150% of its initial length. The forces so measured are also reported in Table 2.


Weathering Testing Method


Where indicated, samples were tested for weathering resistance using a well-known QUV test method and weatherometer. The weathering conditions were as set forth in ASTM D4329.


Protective Sheet Example 1

A polyurethane-based sheet of the invention was prepared such that the sheet comprised a carrier layer having a thickness of 150 microns, a topcoat layer having a thickness of 18 microns, and an adhesive layer having a thickness of 60 microns. The adhesive layer was adhered to the opposite side of the carrier layer from the topcoat layer. A standard release liner was positioned exterior to the adhesive layer, but was removed prior to testing.


To prepare the sheet, first a 98# polyethylene-coated kraft paper with silicone coated on one side was used as a release liner onto which the adhesive layer was formed. The adhesive layer was formed from an adhesive composition prepared by charging a closed vessel with initial components as follows: 20% by weight 2-ethyl hexyl acrylate, 5% by weight methyl acrylate, 1% by weight acrylic acid, 37% by weight ethyl acetate, 7% by weight isopropyl alcohol, 26.1% by weight toluene, and 3.75% by weight n-propanol. The weight percentages of each component were based on total weight of the reaction components, which also included 0.15% by weight benzoyl peroxide (98%) added in partial increments. To the initial components, 10% by weight of the benzoyl peroxide was first added. Then, the components were charged under a nitrogen atmosphere and using agitation. The vessel was heated at 80° C. until exotherm was reached. The exotherm was maintained by addition of the remaining benzoyl peroxide. After the benzoyl peroxide was depleted and the exotherm was complete, aluminum acetal acetonate was added to the polymerized solution in the amount of 0.4% by weight based on solid weight of the polymer.


This adhesive composition was coated onto the release liner and dried in a 14-zone oven, at 20 seconds per zone, with the zone temperatures set as follows: zone 1 (50° C.), zone 2 (60° C.), zone 3 (70° C.), zone 4 (80° C.), zone 5 (90° C.), zone 6 (90° C.), zones 7-10 (100° C.), and zones 11-14 (120° C.). With drying, the aluminum acetal acetonate functioned to crosslink the polymer. The thickness of the adhesive layer thus formed was 60 microns. The construction was then run through a chill stack to reduce the temperature to about 30° C.


A 150-micron-thick film of extruded aliphatic polyurethane, available from Stevens Urethane under the trade designation, SS-2219-92, was then provided and laminated to the exposed adhesive layer. This further construction was run through the 14-zone oven and then again chilled to about 30° C.


Meanwhile, an 18-micron-thick film for the topcoat layer was formed on a 76-micron thick (3-mil-thick) silicone-coated polyester carrier film. The film was formed by solution coating the polyurethane-based composition described below on the supporting carrier film. After the composition was coated on the carrier film, it was run through the 14-zone oven and then chilled to about 30° C.


The polyurethane-based composition was prepared by charging a closed vessel with 7.36% by weight of a hybrid linear hexane diol/1,6-polycarbonate polyester having terminal hydroxyl groups, 43.46% by weight toluene, 43.46% by weight isopropyl alcohol, and 0.03% by weight dibutyl tin laureate. The weight percentages of each component were based on total weight of the reaction components, which also included 5.68% by weight isophorone diisocyanate added later. The components were charged under a nitrogen atmosphere and using agitation. After the vessel was heated to 90° C., 5.68% by weight isophorone diisocyanate was continually added to the vessel through the resultant exotherm. After the exotherm was complete, the composition was maintained at 90° C. for one additional hour while still using agitation.


Once the topcoat layer was thus formed, it was thermally bonded to the exposed surface of the carrier layer. During thermal bonding, the carrier layer and the topcoat layer were contacted for about three seconds with application of heat 150° C. (300° F.) and 140 Pa (20 psi) pressure. Prior to testing, the release liner and carrier film were removed.


All of the individual components used in preparation of the protective sheet are readily available from a variety of chemical suppliers such as Aldrich (Milwaukee, Wis.) and others. For example, the isopropyl alcohol and toluene can be obtained from Shell Chemicals (Houston, Tex.).


Samples of the sheet were then tested according to the Tensile Testing Method, Recovery Testing Method, and Elongation Force Testing Method described above. Test data is reported in Table 1 in comparison with that from Comparative Sheet Example C1 described below.


Further, samples of the sheet were tested according to the Weathering Testing Method described above. After weathering for 500 hours, no visible yellowing was observed by the unaided human eye.


Finally, samples of the sheet were tested for deglossing by placing them in an outside environment in the states of Florida and Arizona for approximately one year. After one year, no visible deglossing was observed by the unaided human eye.


Comparative Sheet Example C1

A multi-layer protective sheet available from Minnesota Mining & Manufacturing Co. of St. Paul, Minn., under the trade designation, SCOTCHGARD PAINT PROTECTION FILM SGPPF6, was provided. Samples of the sheet were then tested according to the Tensile Testing Method, Recovery Testing Method, and Elongation Force Testing Method described above. Test data is reported in Table 1 in comparison with that from Sheet Example 1 described above.


Further, samples of the sheet were tested according to the Weathering Testing Method described above. After weathering for only 250 hours, visible yellowing was observed by the unaided human eye.


Finally, samples of the sheet were tested for deglossing by placing them in an outside environment in the states of Florida and Arizona for approximately one year. After one year, no visible deglossing was observed by the unaided human eye.













TABLE 1







Ultimate





Test
Tensile
Elastic
Elongation



Temperature
Strength
Modulus
at Break


Ex.
° C./° F.
(MPa/psi)
(MPa/psi)
(%)







1
24/75
58.4/8,460
61/8,800
390


C1
24/75
28.8/4,170
 75/11,000
200









As illustrated in Table 1, advantageously the polyurethane-based sheet of Sheet Example 1 has an ultimate tensile strength of 58.4 MPa as compared to the much lower ultimate tensile strength of the sheet of Comparative Sheet Example C1, which has a value of 28.8 MPa. It is commonly understood that ultimate tensile strength is the limit stress at which a material actually breaks, with a sudden release of the stored elastic energy therein. In basic terms, ultimate tensile strength is a measure of how far a material will stretch before it breaks. The more a material can be stretched, the easier it will be to apply to a surface. For example, such materials are able to more easily conform to complex surfaces, including both concave and convex surfaces, without requiring relief cuts. Because of this ease in application, polyurethane-based sheets of the invention can readily be installed by those having much less experience and skill than is typically required for installation of other types of protective films on the market today. For example, as relief cuts are not required, not only is installation more simple, but it also takes less time.


As also illustrated by Table 1, elongation at break measured for the exemplified polyurethane-based protective sheet of the invention is superior to that measured for the conventional protective sheet of Comparative Sheet Example C1. Elongation at break for Sheet Example 1 was measured to be 390%, which is almost double the comparable value of 200%, which was measured with respect to Comparative Sheet Example C1. It is commonly understood that elongation at break is a measure of the ductility of a material as determinable from tensile testing. It is believed that polyurethane-based sheets of the invention have significantly better elongation at break properties due to the limited crosslinking and other selection of materials therein. Because of this benefit, polyurethane-based protective sheets of the invention are able to more easily conform to complex surfaces, including both concave and convex surfaces, as noted above. They are extensible.













TABLE 2







Force Required to

Force Required to



Percent
Elongate to 125%
Percent
Elongate to 150%



Deformation
Initial Length
Deformation
Initial Length


Sheet
After 25%
(Newtons/pounds-
After 50%
(Newtons/pounds-


Ex.
Elongation
force)
Elongation
force)



















1
−0.3
6.1/1.4
−0.6
18.9/4.3


C1
3.1
8.3/1.9
8.8
42.8/9.6









The phenomenon that occurs when a sample does not retract to its initial length (i.e., recover) after stretching is generally attributed to plastic deformation. Plastic deformation prevents a sample from recovering and represents a permanent change in the shape of a material as a result of the application of an applied stress. In order to maintain the integrity of a protective sheet and facilitate secure attachment to a surface, it is preferable for the sheet to recover to the extent possible. Sheets that do not fully recover complicate the method of their application and often lead to less than ideal protection of a surface.


As noted in Table 2, samples of Comparative Sheet Example C1 did not fully recover when elongated even the relatively small amount of 25%. Plastic deformation when elongated 50% was even more prevalent. Further, when qualitatively assessed after 50% elongation, the sample of Comparative Sheet Example C1 had curled back up on itself, which rendered it unusable for future applications or testing. In contrast, samples of the invention (Sheet Example 1) did not exhibit the curling behavior and remained essentially flat. It is believed that this is due to the fact that the carrier layer and the topcoat layer of the samples prepared according to Sheet Example 1 have similar modulus properties, which facilitates return of such sheets to their original dimensions at normal levels of stretching.


Comparative Sheet Example C2

A sheet was formed as set forth in Sheet Example 1, except for a topcoat layer was not part of the construction. Samples of the sheet were tested for deglossing by placing them in an outside environment in the states of Florida and Arizona for approximately one year. After one year, visible deglossing was observed by the unaided human eye. Thus, a benefit of utilizing a topcoat layer to minimize deglossing was demonstrated.


Various modifications and alterations of the invention will become apparent to those skilled in the art without departing from the spirit and scope of the invention, which is defined by the accompanying claims. It should be noted that steps recited in any method claims below do not necessarily need to be performed in the order that they are recited. Those of ordinary skill in the art will recognize variations in performing the steps from the order in which they are recited.

Claims
  • 1. A multi-layer protective sheet consisting essentially of: a polyurethane-based carrier layer;an essentially uncrosslinked topcoat layer that is not an extrusion-grade polyurethane, wherein crosslinkers and reaction products thereof are not discernible in the topcoat layer when using chemical analysis;wherein an outermost adhesive later is present on a side of the carrier layer opposite from that of the topcoat layer;andoptionally, a carrier film on an exterior surface of the topcoat layer, wherein the sheet is extensible, has a substantially uniform thickness throughout, and is essentially invisible on a substrate to which it is applied.
  • 2. The sheet of claim 1, wherein the carrier layer comprises multiple individual film layers.
  • 3. The sheet of claim 1, wherein the carrier layer is essentially uncrosslinked, wherein crosslinkers and reaction products thereof are not discernible in the carrier layer when using chemical analysis.
  • 4. The sheet of claim 1, wherein the topcoat layer is polyurethane-based.
  • 5. The sheet of claim 1, wherein the topcoat layer comprises a polycarbonate-based polyurethane.
  • 6. The sheet of claim 1, wherein the topcoat layer comprises a silicone polymer.
  • 7. The sheet of claim 1, wherein the adhesive layer comprises a pressure-sensitive adhesive.
  • 8. The sheet of claim 1, wherein a release film is present on an exterior surface of the adhesive layer.
  • 9. The sheet of claim 1, wherein the carrier film on an exterior surface of the topcoat layer is present.
  • 10. The sheet of claim 1, wherein the sheet is capable of elongating more than 200% before breaking.
  • 11. The sheet of claim 1, wherein the sheet exhibits essentially no plastic deformation when stretched up to about 125% of its initial length.
  • 12. The sheet of claim 1, wherein the sheet exhibits essentially no plastic deformation when stretched up to about 150% of its initial length.
  • 13. The sheet of claim 1, wherein the sheet exhibits greater than about 300% elongation at break when tested according to ASTM D638-95.
  • 14. The sheet of claim 1, wherein the sheet exhibits greater than about 350% elongation at break when tested according to ASTM D638-95.
  • 15. The sheet of claim 1, wherein a force of less than about 40 Newtons is required to elongate the sheet to 150% its initial length.
  • 16. An article comprising at least one surface having on at least a portion thereof the sheet of claim 1.
  • 17. The article of claim 16, wherein the article comprises a motorized vehicle.
  • 18. The article of claim 16, wherein the article comprises a bicycle.
  • 19. A method of using the sheet of claim 1 to protect a surface on a motorized vehicle, the method comprising: providing the sheet of claim 1; andapplying the sheet to the surface of the motorized vehicle.
  • 20. The method of claim 19, wherein the surface is at least partially painted.
  • 21. A method of protecting a non-planar surface, comprising: providing the sheet of claim 1; andapplying the sheet to the non-planar surface.
  • 22. A method for forming the protective sheet of claim 1, the method comprising steps of: forming the carrier layer;forming the adhesive layer on a first side of the carrier layer;forming the topcoat layer on the carrier film;thermally bonding the topcoat layer to a second side of the carrier layer opposite from the adhesive layer to form an assembly; andoptionally, removing the carrier film from the topcoat layer.
  • 23. A method for forming the protective sheet of claim 1, the method comprising steps of: forming the carrier layer;forming the adhesive layer on a first side of the carrier layer; andforming the topcoat layer on a second side of the carrier layer opposite from the adhesive layer.
  • 24. The method of claim 23, further comprising steps of: contacting the topcoat layer with a smooth plastic film; andheating the topcoat layer and plastic film to form a smooth surface on the topcoat layer.
  • 25. The sheet of claim 1, wherein the carrier layer has a thickness of about 120 microns to about 180 microns.
  • 26. The sheet of claim 1, wherein the topcoat layer has a thickness of about 20 microns or less.
  • 27. The sheet of claim 1, wherein the topcoat layer has a thickness of about 5 microns to about 15 microns.
  • 28. The sheet of claim 1, wherein the carrier layer is based on a polyurethane with a backbone having at least about 80% urethane and/or urea repeat linkages formed during its polymerization.
  • 29. A multi-layer protective sheet consisting of: a polyurethane-based carrier layer;an essentially uncrosslinked topcoat layer that is not an extrusion-grade polyurethane, wherein crosslinkers and reaction products thereof are not discernible in the topcoat layer when using chemical analysis;optionally, an adhesive layer;optionally, a release film on an exterior surface of the adhesive layer; andoptionally, a carrier film on an exterior surface of the topcoat layer,
  • 30. The sheet of claim 1, wherein no visible yellowing is observed by an unaided human eye when tested for weathering for 250 hours according to ASTM D4329.
  • 31. The sheet of claim 1, wherein no visible yellowing is observed by an unaided human eye when tested for weathering for 500 hours according to ASTM D4329.
  • 32. The sheet of claim 1, wherein no visible deglossing is observed by an unaided human eye after placement of the sheet in an outside environment in Florida or Arizona for one year.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/060171 10/23/2006 WO 00 4/17/2008
Publishing Document Publishing Date Country Kind
WO2007/048145 4/26/2007 WO A
US Referenced Citations (281)
Number Name Date Kind
2914556 Hostettler et al. Nov 1958 A
2871218 Schollenberger Jan 1959 A
3294724 Axelrood Dec 1966 A
3296196 Lamoreaux Jan 1967 A
3463662 Hodes et al. Aug 1969 A
3509015 Wismer et al. Apr 1970 A
3523100 Stein et al. Aug 1970 A
3523101 Reuter Aug 1970 A
3549583 Nobuyoshi et al. Dec 1970 A
3554951 Blomeyer et al. Jan 1971 A
3616198 Kenji Oct 1971 A
3661672 John May 1972 A
3867350 Pedain Feb 1975 A
3899467 Bonk et al. Aug 1975 A
3899621 Willdorf Aug 1975 A
4007151 Ogawa et al. Feb 1977 A
4081578 Van Essen et al. Mar 1978 A
4092198 Herbert et al. May 1978 A
4092199 Israel et al. May 1978 A
4093766 Herbert et al. Jun 1978 A
4101698 Dunning et al. Jul 1978 A
4154882 Israel et al. May 1979 A
4201799 Stephens May 1980 A
4207356 Waugh Jun 1980 A
4241140 Ammons Dec 1980 A
4296156 Lustig et al. Oct 1981 A
4371686 Yamamoto et al. Feb 1983 A
4387129 Vincent Jun 1983 A
4420525 David Dec 1983 A
4476293 Robinson Oct 1984 A
4496628 Deatcher et al. Jan 1985 A
4501852 Markusch et al. Feb 1985 A
4530976 Kordomenos et al. Jul 1985 A
4540622 Brunion Sep 1985 A
4550052 Malek Oct 1985 A
4578426 Lenz et al. Mar 1986 A
4611043 Burson et al. Sep 1986 A
4657795 Foret Apr 1987 A
4705721 Frisch et al. Nov 1987 A
4741961 Frisch et al. May 1988 A
4745152 Fock et al. May 1988 A
4748192 Smith May 1988 A
4751121 Kuhnel et al. Jun 1988 A
4766038 de Vroom et al. Aug 1988 A
4774043 Beckmann Sep 1988 A
4810540 Ellison et al. Mar 1989 A
4900611 Carroll, Jr. Feb 1990 A
4913760 Benson et al. Apr 1990 A
4917928 Heinecke Apr 1990 A
4919994 Joseph Apr 1990 A
4921776 Taylor May 1990 A
4931324 Ellison et al. Jun 1990 A
4933237 Krenceski et al. Jun 1990 A
4948654 Brooks et al. Aug 1990 A
4966527 Merz Oct 1990 A
5034275 Pearson et al. Jul 1991 A
5055346 Rohrbacher Oct 1991 A
5070172 Hirai et al. Dec 1991 A
5077373 Tsuda et al. Dec 1991 A
5114514 Landis May 1992 A
5114789 Reafler May 1992 A
5123814 Burdick et al. Jun 1992 A
5141783 Corsi et al. Aug 1992 A
5203189 Lovejoy et al. Apr 1993 A
5215811 Reafler et al. Jun 1993 A
5219643 Schmidt et al. Jun 1993 A
5232527 Vernhet et al. Aug 1993 A
5242744 Schryer Sep 1993 A
5242751 Hartman Sep 1993 A
5268215 Krenceski et al. Dec 1993 A
5288356 Benefiel Feb 1994 A
5306548 Zabrocki et al. Apr 1994 A
5310080 Figge May 1994 A
5334450 Zabrocki et al. Aug 1994 A
5342666 Ellison et al. Aug 1994 A
5391686 Jadhav et al. Feb 1995 A
5403880 Hegedus et al. Apr 1995 A
5405675 Sawka Apr 1995 A
5468532 Ho et al. Nov 1995 A
5478596 Gurney Dec 1995 A
5486096 Hertel et al. Jan 1996 A
5518786 Johnson et al. May 1996 A
5556677 Quigley et al. Sep 1996 A
5560979 Bloom et al. Oct 1996 A
5562979 Easterlow et al. Oct 1996 A
5563206 Eicken et al. Oct 1996 A
5567502 Miyabara et al. Oct 1996 A
5582887 Etheredge Dec 1996 A
5587230 Lin et al. Dec 1996 A
5604006 Ponchaud et al. Feb 1997 A
5614297 Velazquez Mar 1997 A
5620819 Conforti et al. Apr 1997 A
5641374 Peterson et al. Jun 1997 A
5688571 Quigley et al. Nov 1997 A
5707941 Haberle Jan 1998 A
5736204 Suskind Apr 1998 A
5768285 Griep et al. Jun 1998 A
5770313 Furumoto et al. Jun 1998 A
5786285 Walla et al. Jul 1998 A
5820491 Hatch et al. Oct 1998 A
5848769 Fronek et al. Dec 1998 A
5849168 Lutz Dec 1998 A
5858495 Eikmeier et al. Jan 1999 A
5866257 Schledjewski et al. Feb 1999 A
5877254 La Casse et al. Mar 1999 A
5882775 Matsui et al. Mar 1999 A
5912081 Negele et al. Jun 1999 A
5912193 Iwata et al. Jun 1999 A
5912195 Walla et al. Jun 1999 A
5928778 Takahashi et al. Jul 1999 A
5939188 Moncur et al. Aug 1999 A
5945199 Morin et al. Aug 1999 A
5955204 Yamamoto et al. Sep 1999 A
5965256 Barrera Oct 1999 A
5968444 Yamamoto Oct 1999 A
5985079 Ellison Nov 1999 A
6001906 Golumbic Dec 1999 A
6037054 Shirai et al. Mar 2000 A
6054208 Rega et al. Apr 2000 A
6071583 Pomerantz Jun 2000 A
6096396 Patton et al. Aug 2000 A
6132864 Kiriazis et al. Oct 2000 A
6153718 Imashiro et al. Nov 2000 A
6177189 Rawlings et al. Jan 2001 B1
6210295 Yoneyama Apr 2001 B1
6210796 Lobert et al. Apr 2001 B1
6254712 Enlow et al. Jul 2001 B1
6258918 Ho et al. Jul 2001 B1
6319353 Mussig Nov 2001 B1
6336988 Enlow et al. Jan 2002 B1
6369186 Branlard et al. Apr 2002 B1
6383644 Fuchs May 2002 B2
6389602 Alsaffar May 2002 B1
6399193 Ellison Jun 2002 B1
6436531 Kollaja et al. Aug 2002 B1
6458875 Sandlin et al. Oct 2002 B1
6458880 Onder et al. Oct 2002 B1
6475559 Bettinger Nov 2002 B1
6475616 Dietz et al. Nov 2002 B1
6479142 Condon et al. Nov 2002 B1
6485836 Reihs et al. Nov 2002 B2
6518359 Clemens et al. Feb 2003 B1
6518389 Kaufhold et al. Feb 2003 B1
6521164 Plummer et al. Feb 2003 B1
6521337 Yanagiuchi Feb 2003 B2
6579601 Kollaja et al. Jun 2003 B2
6592173 Hardgrive et al. Jul 2003 B2
6602591 Smith Aug 2003 B1
6607831 Ho et al. Aug 2003 B2
6612944 Bureau Sep 2003 B1
6624276 Lamers et al. Sep 2003 B2
6627018 O'Neill et al. Sep 2003 B1
6638467 Yamamoto Oct 2003 B1
6642159 Bhatnagar et al. Nov 2003 B1
6649003 Spain et al. Nov 2003 B1
6649693 Konishi et al. Nov 2003 B2
6651011 Bache Nov 2003 B1
6659625 Hanasaki Dec 2003 B2
6673428 Reafler Jan 2004 B1
6677028 Lasch et al. Jan 2004 B1
6680111 Leibler et al. Jan 2004 B1
6682679 Marentic et al. Jan 2004 B1
6709723 Roys et al. Mar 2004 B2
6709748 Ho et al. Mar 2004 B1
6713185 Carlson et al. Mar 2004 B2
6723427 Johnson et al. Apr 2004 B1
6723472 Nakanishi et al. Apr 2004 B2
6726971 Wong Apr 2004 B1
6730388 MacQueen et al. May 2004 B2
6733870 Enlow et al. May 2004 B2
6734273 Onder May 2004 B2
6753056 Mizumoto Jun 2004 B1
6755757 Sutherland Jun 2004 B2
6762243 Stender et al. Jul 2004 B2
6770360 Mientus et al. Aug 2004 B2
6790525 Takeuchi et al. Sep 2004 B2
6790526 Vargo et al. Sep 2004 B2
6797098 Watanabe et al. Sep 2004 B2
6806212 Fyfe Oct 2004 B2
6811628 Reid et al. Nov 2004 B1
6824818 McCoy et al. Nov 2004 B2
6824834 Schafheutle et al. Nov 2004 B2
6827895 Yamamoto Dec 2004 B1
6835267 Spain et al. Dec 2004 B1
6838130 Spain et al. Jan 2005 B1
6852268 Valyi et al. Feb 2005 B1
6852377 Bohm et al. Feb 2005 B2
6852418 Zurbig et al. Feb 2005 B1
6866383 Kirit et al. Mar 2005 B2
6869496 Kollaja et al. Mar 2005 B1
6881856 Tanaka et al. Apr 2005 B2
6890628 Kerr May 2005 B2
6893596 Haas et al. May 2005 B2
6894084 Kovar et al. May 2005 B2
6908401 Cheng Jun 2005 B2
6966962 Spain et al. Nov 2005 B2
6998084 Horansky Feb 2006 B2
7005103 Smith et al. Feb 2006 B2
7005183 Kondo Feb 2006 B2
7005794 Watanabe et al. Feb 2006 B2
7011777 Schmidt Mar 2006 B2
7048989 Watkins et al. May 2006 B2
7141294 Sakurai et al. Nov 2006 B2
7141303 Clemens et al. Nov 2006 B2
7160973 Ohrbom et al. Jan 2007 B2
7166249 Abrams et al. Jan 2007 B2
7279057 Reid et al. Oct 2007 B2
7282533 Kreitschmann et al. Oct 2007 B2
7316832 Steinhardt et al. Jan 2008 B2
RE40723 Matsui et al. Jun 2009 E
7854985 Song et al. Dec 2010 B2
7931954 Kobayashi et al. Apr 2011 B2
8062451 Mozer et al. Nov 2011 B2
8071000 Neitzke et al. Dec 2011 B2
8117679 Pierce Feb 2012 B2
8501315 Tanaka et al. Aug 2013 B2
8545959 McGuire et al. Oct 2013 B2
8545960 McGuire et al. Oct 2013 B2
8551279 Johnson et al. Oct 2013 B2
8568849 Shi et al. Oct 2013 B2
9292128 Huang Mar 2016 B1
20020006516 Ito et al. Jan 2002 A1
20020015772 Munch et al. Feb 2002 A1
20020018889 Franck et al. Feb 2002 A1
20020061374 O'Brien et al. May 2002 A1
20020193460 Kovar et al. Dec 2002 A1
20020195910 Hus et al. Dec 2002 A1
20030003282 Roys et al. Jan 2003 A1
20030026932 Johnson et al. Feb 2003 A1
20030060574 Muller et al. Mar 2003 A1
20030203190 Schmidt et al. Oct 2003 A1
20030211334 Jones Nov 2003 A1
20040048073 Bacon Mar 2004 A1
20040071980 McBain et al. Apr 2004 A1
20040096630 Sakurai et al. May 2004 A1
20040145092 McCollum et al. Jul 2004 A1
20040159969 Truog et al. Aug 2004 A1
20040161567 Truog et al. Aug 2004 A1
20040170793 Linden et al. Sep 2004 A1
20040197572 Bell Oct 2004 A1
20040200564 Kinsey et al. Oct 2004 A1
20040208998 Steininger et al. Oct 2004 A1
20040209057 Enlow et al. Oct 2004 A1
20040214007 Brown et al. Oct 2004 A1
20050042431 Wagenblast Feb 2005 A1
20050059309 Tsotsis Mar 2005 A1
20050069686 Hoops Mar 2005 A1
20050069698 Eubanks et al. Mar 2005 A1
20050084696 Gaggar et al. Apr 2005 A1
20050113194 Pearson May 2005 A1
20050136205 Stoppelmann et al. Jun 2005 A1
20050148404 Ignatius Jul 2005 A1
20050156358 Bellefleur et al. Jul 2005 A1
20050159060 Shao Jul 2005 A1
20050164008 Rukavina Jul 2005 A1
20050175794 Dathe Aug 2005 A1
20050181203 Rawlings et al. Aug 2005 A1
20050186415 McCormick Aug 2005 A1
20050191490 Ton-That et al. Sep 2005 A1
20050214559 Minoda et al. Sep 2005 A1
20060046028 Kaminski et al. Mar 2006 A1
20060127666 Fuchs Jun 2006 A1
20070036929 Baird et al. Feb 2007 A1
20070047099 Clemens et al. Mar 2007 A1
20070116933 Kobayashi et al. Mar 2007 A1
20070178239 Kestell et al. Aug 2007 A1
20080003406 Steelman Jan 2008 A1
20080199704 Ho et al. Aug 2008 A1
20080261014 McGuire et al. Oct 2008 A1
20090186198 McGuire Jul 2009 A1
20100059167 McGuire Mar 2010 A1
20100062250 Johnson et al. Mar 2010 A1
20100068446 McGuire, Jr. et al. Mar 2010 A1
20100089434 Fishman Apr 2010 A1
20110045306 Johnson et al. Feb 2011 A1
20130316115 Smith et al. Nov 2013 A1
20140030462 Sullivan Jan 2014 A1
20140212674 Ho et al. Jul 2014 A1
20150099113 Ho et al. Apr 2015 A1
20160062016 Lee et al. Mar 2016 A1
20160103250 Snyder et al. Apr 2016 A1
Foreign Referenced Citations (52)
Number Date Country
572168 May 1988 AU
2600241 Jul 1977 DE
19715871 Jun 1998 DE
10214827 Oct 2003 DE
0 251 546 Mar 1992 EP
0 978 374 Feb 2000 EP
1 144 125 Jul 2003 EP
1386950 Feb 2004 EP
0 808 885 Apr 2004 EP
1004608 Oct 2004 EP
1 481 031 Jul 2007 EP
2404729 Jan 2012 EP
2 463 093 Jun 2012 EP
2 463 094 Jun 2012 EP
2169228 Jun 1990 JP
6-143506 May 1994 JP
07-052176 Feb 1995 JP
07-074322 Aug 1995 JP
2000-260252 Sep 2000 JP
2001-253033 Sep 2001 JP
2003-527258 Sep 2003 JP
2004-307532 Nov 2004 JP
2005-125506 May 2005 JP
2005335120 Dec 2005 JP
WO-9011878 Oct 1990 WO
WO-9202731 Feb 1992 WO
WO-9216367 Oct 1992 WO
WO1992022619 Dec 1992 WO
WO-9324551 Dec 1993 WO
WO-9413465 Jun 1994 WO
WO-9610595 Apr 1996 WO
WO-9728472 Aug 1997 WO
WO-9837115 Aug 1998 WO
WO-0129144 Apr 2001 WO
WO-0231074 Apr 2002 WO
WO-2002028636 Apr 2002 WO
WO-2003002680 Jan 2003 WO
WO-2003049942 Jun 2003 WO
WO-03076542 Sep 2003 WO
WO-2004067246 Aug 2004 WO
WO 2004067246 Aug 2004 WO
WO-2005032812 Apr 2005 WO
WO-20060118883 Nov 2006 WO
WO-0748141 Apr 2007 WO
WO-20070048141 Apr 2007 WO
WO-2007120188 Oct 2007 WO
WO-0851629 May 2008 WO
WO-20080109733 Sep 2008 WO
WO-2009041964 Apr 2009 WO
WO-20160018749 Feb 2016 WO
WO-20160076337 May 2016 WO
WO-2017156506 Sep 2017 WO
Non-Patent Literature Citations (33)
Entry
“Argotec Fills Industry Need with Thin, Aliphatic-Grade Polyurethane Films,” Argotec Press Release, www.argotecinc.com (2006).
“Aircraft Painting,” KLM Engineering & Maintenance, www.klm-em.com (Jun. 27, 2007).
Engineering Edge, Air France KLM (Jan. 2006).
“ECLIPSE High Performance Exterior Topcoat,” Akzo Nobel Aerospace Coatings, www.akzonobelaerospace.com.
Umamaheswaran, Venkatakrishnan et al., “New Weatherable Film Technology to Eliminate Painting of Automotive Exteriors,” Society of Automotive Engineers: 2001-01-0443, (2001).
“Epoxy Curing Agents and Modifiers: Amicure CG-1200 Curing Agent,” Air Products and Chemicals (Allentown, PA) Publication No. 125-9416.7.
“Epoxy Curing Agents and Modifiers: Amicure UR Curing Agent,” Air Products and Chemicals (Allentown, PA) Publication No. 125-9416.11.
“EPON Resin 828 Product Bulletin”, Resolution Performance Products (Houston, TX) RP:3075-01 (Apr. 2002).
“Blade Protection Kits Keep Helicopters in the Air,” EngineeringTalk (www.engineeringtalk.com/news/mmr/mmr102.html) (Sep. 16, 2005).
“EPON Resin Structural Reference Manual—EPON Resins—EPI-CURE Curing Agents—Heloxy Modifiers,” Resolution Performance Products (Houston, TX), pp. 3i to 3-6 (2001).
“3M Aircraft Belly Protective Tape 8641 Technical Data Sheet,” Minnesota Mining & Manufacturing Co. (St. Paul, MN) Publication No. 70-0703-7681-2 (Mar. 2007).
“3M Polyurethane Protective Tape 8674/8674DL Technical Data Sheet,” Minnesota Mining & Manufacturing Co. (St. Paul, MN) Publication No. 60-9700-0074-5 (Nov. 2005).
“3M Polyurethane Protective Tape 8672/8672 GB Technical Data Sheet,” Minnesota Mining & Manufacturing Co. (St. Paul, MN) Publication No. 78-9236-7045-5 (Nov. 2004).
“Improved Scotchgard Paint Protection Film Uses Latest 3M Technology,” 3M News: SEMA Show 2005, (Nov. 1, 2005).
“An Amazing New Automotive Finish Protection Film to Keep Your Vehicle in Showroom Condition . . . VentureShield,” (http://www.venturetape.com/final/new_products.htm) VentureTape (Rockland, MA).
“Ford Pressure Sensitive Performance Testing (Venture Tape) for Test Materials: 7510 and 7514,” ACT Laboratories, Inc. (Hillsdale, MI), published at: http://www.invisiblepatterns.com/pdf/AIN154314C.pdf, (Dec. 30, 2005).
“Paint Protection Film FAQ's,” previously published at: http://enprodistributing.com/products/protection/faq.htm, (Jul. 12, 2005)
“Polyurethane Coatings for Automotive Exteriors,” published at: http://www.bayermaterialscienceafta.com/industries/automotive/coatings.html#3.
“Scotchgard Paint Protection Film SGPF6 for Professional Applicators,” 3M Technical Data Sheet 75-3469-1065-8, Minnesota Mining & Manufacturing Co. (St. Paul, MN) (Apr. 2004).
“Argotec 49510 Technical Data Sheet,” Argotech, Inc. (Greenfield, MA) (Oct. 2003).
“EPON Resin 863 Technical Data Sheet,” Hexion Specialty Chemicals (Houston, TX) RP:4041 (Jun. 2004).
“EPON Resins and Modifiers,” Resolution Performance Products SC:3059-01 (2002).
AircraftLog: Where Smart Solutions Take Flight, PPG Industries, Inc. (Huntsville, AL) (May 2005), pp. 10-11 and 16.
“EPON Resin 862 Product Bulletin,” Resolution Performance Products (Houston, TX) RP:4048 (Mar. 2005).
“Epoxy Curing Agents and Modifiers: Ancamine 2441 Curing Agent,” Air Products and Chemicals (Allentown, PA) Publication No. 125-04-017-GLB (2004).
“CAB-O-SIL TS-720,” Cabot Corporation (Billerica, MA) PDS-141 (Jan. 2006).
“Scotchgard Paint Protection Film: Application Guide for Professional Applicators,” 3M Technical Update 75-3469-1102-9, Minnesota Mining & Manufacturing Co. (St. Paul, MN) (Apr. 2004).
“3M Paint Protection Film: A Clear Alternative to Vehicle Bras or Guards,” 3M Automotive Aftermarket Division 75-3467-9992-9, Minnesota Mining & Manufacturing Co. (St. Paul, MN) (2003).
“3M Paint Protection Film Builds Business through the SEMA Show,” 3M Holding Fast, 3M Automotive Division (St. Paul, MN), 1(25) (2002).
“Venture Shield Paint Protection 7510,” VentureTape (Rockland, MA), published at: http://www.venturetape.com/final/automotive_products.asp?id=609 (Jul. 12, 2005).
“Venture Shield—Paint Protection 7512”, VentureTape (Rockland, MA), published at: http://www.venturetape.com/final/automotive_products.asp?id=610 (Jul. 12, 2005).
“Test Report—Venture Shield 7510,” Bodycote Materials Testing Met-Chem Laboratory, published at: http://www.invisiblepatterns.com/pdf/067682.pdf, Letter Dated Jan. 14, 2003—Report No. 067682 (Jan. 14, 2003).
“Avery Dennison StoneShield Technical Data Sheet”.
Related Publications (1)
Number Date Country
20080286576 A1 Nov 2008 US