PROTEIN C PATHWAY ASSOCIATED POLYMORPHISMS AS RESPONSE PREDICTORS TO ACTIVATED PROTEIN C OR PROTEIN C-LIKE COMPOUND ADMINISTRATION

Abstract
The invention provides methods, nucleic acids, compositions and kits for predicting a subject's response to treatment with activated protein C or protein C like compound to identify subjects having a greater benefit from treatment with activated protein C. The method generally comprises determining a protein C pathway associated gene polymorphism genotype(s) of a subject for one or more polymorphisms in the these genes, comparing the determined genotype with known genotypes for the polymorphism that correspond with an improved response polymorphism to identify potential subjects having an inflammatory condition who are more likely to benefit from treatment with activated protein C or protein C like compound and subsequent to treatment recover from the inflammatory condition. The invention also provides for methods of treating such subjects with an anti-inflammatory agent or anti-coagulant agent based on the subject's genotype.
Description
FIELD OF THE INVENTION

The field of the invention relates to the assessment and/or treatment of subjects with an inflammatory condition.


BACKGROUND OF THE INVENTION

The septic inflammatory response involves counter-regulation between pro- and anti-inflammatory cytokines, pro-coagulant and fibrinolytic factors, pro-apoptotic and anti-apoptotic activity, and further counter-regulatory activity in related pathways. Altered balance of these counter-regulatory pathways leads to altered clinical outcome in subjects having an inflammatory condition, for example severe sepsis. Genetic variation between individuals is one factor that can alter the balance of these pathways and may lead to altered clinical outcome. Indeed, genotype has been shown to play a role in the prediction of subject outcome in inflammatory and infectious diseases (MCGUIRE W. et al. Nature (1994) 371(6497):508-10; MIRA J. P. et al. JAMA (1999) 282(6):561-8; NADEL S. et al. Journal of Infectious Diseases (1996) 174(4):878-80; MAJETSCHAK M. et al. Ann Surg (1999) 230(2):207-14; STUBER F. et al. Crit. Care Med (1996) 24(3):381-4; STUBER F. et al. Journal of Inflammation (1996) 46(1):42-50; and WEITKAMP J H. et al. Infection (2000) 28(2):92-6).


New therapies for severe sepsis often aim to beneficially alter this counter-regulatory balance using strategies targeting one or more of these specific pathways. In particular, XIGRIS™ (drotrecogin alpha activated, activated protein C, APC) which has anti-inflammatory, anti-coagulant, pro-fibrinolytic and anti-apoptotic activity, improved 28-day mortality in patients having severe sepsis in the Phase III PROWESS trial (BERNARD G R. et al. New England Journal of Medicine (2001) 344(10):699-709).


Protein C, when activated to form activated protein C or protein C like compound (APC), plays a major role in regulating the inflammatory, coagulation, fibrinolysis and apoptosis pathways (“protein C associated pathways”) triggered by septic or non-septic stimuli such as major surgery. APC inactivates coagulation factor Va (WALKER F J. et al. Biochim Biophys Acta (1979) 571(2):333-42) and coagulation factor VIIIa (FULCHER C A. et al. Blood (1984) 63(2):486-9) and decreases synthesis of plasminogen activator inhibitor type1 (SERPINE1) (VAN HINSBERGH V W. et al. Blood (1985) 65(2):444-51). APC bound to the endothelial protein C receptor activates the protease-activated receptor 1 (RIEWALD M. et al. Science (2002) 296(5574):1880-2) to decrease downstream NFκB and subsequent TNFα, IL1β, and IL6 expression (MURAKAMI K. et al. American Journal of Physiology (1997) 272(2 Pt 1):L197-202; HANCOCK W W. et al. Transplantation (1995) 60(12):1525-32; and GREY S T. et al. Journal of Immunology (1994) 153(8):3664-72). Activated protein C or protein C like compound also decreases adhesion and activation of neutrophils to endothelial cells, decreases apoptosis of endothelial cells and neurons, and decreases neutrophil chemotaxis (JOYCE D E. et al. J Biol Chem (2001) 276(14):11199-203; GRINNELL B W. et al. Glycobiology (1994) 4(2):221-5; LIU D. et al. Nat Med (2004) 10(12):1379-83; and STURN D H. et al. Blood (2003) 102(4):1499-505). Accordingly, protein C has been implicated as having a central role in the pathophysiology of the systemic inflammatory response syndrome.


Infection and inflammation impact protein C regulation. Protein C is produced in its inactive form by the liver. Acute inflammatory states due to infection, major surgery, or shock decrease levels of protein C (BLAMEY S L. et al. Thromb Haemost (1985) 54(3):622-5; FIJNVANDRAAT K. et al. Thrombosis & Haemostasis (1995) 73(1):15-20; GRIFFIN J H. et al. Blood (1982) 60(1):261-4; HESSELVIK J F. et al. Thromb Haemost (1991) 65(2):126-9; and TAYLOR F B. et al. Journal of Clinical Investigation (1987) 79(3):918-25) which is related to poor prognosis (LORENTE J A. et al. Chest (1993) 103(5):1536-42; FISHER C J. Jr. and YAN S B. Crit. Care Med (2000) 28(9 Suppl):S49-56; VERVLOET M G. et al. Semin Thromb Hemost (1998) 24(1):33-44; and YAN S B. and DHAINAUT J F. Crit. Care Med (2001) 29(7 Suppl):S69-74). Endothelial pathways required for protein C activation, including thrombomodulin and endothelial cell protein C receptor (EPCR) expression on endothelial cells, are impaired by pro-inflammatory cytokines (STEARNS-KUROSAWA D J. et al. Proceedings of the National Academy of Sciences of the United States of America (1996) 93(19):10212-6) and in severe menigococcal sepsis (FAUST S N. et al. N Engl J Med (2001) 345(6):408-16).


Genotype can alter response to therapeutic interventions. Genentech's HERCEPTIN® was not effective in its overall Phase III trial but was shown to be effective in a genetic subset of patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. Similarly, Novartis' GLEEVEC® is only indicated for the subset of chronic myeloid leukemia patients who carry a reciprocal translocation between chromosomes 9 and 22.


Numerous genes are known within the coagulation, fibrinolysis and inflammatory pathways and reported to have an association with activated protein C or protein C like compound action, for example, fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor 111 (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), serine (or cysteine) proteinase inhibitor, Glade E type 1 (SERPINE1 or PAI-1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (IL10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR).


Human fibrinogen B beta polypeptide (FGB) or fibrinogen-beta polypeptide chain is encoded by the beta component of fibrinogen and maps to chromosome 4q28. Representative Homo sapiens FGB gene sequences are listed in GenBank under accession numbers AF388026.1 (GI:14423574) and M64983.1 (GI:182597). FGB is a blood-borne glycoprotein comprised of three pairs of nonidentical polypeptide chains. Fibrinogen is cleaved by thrombin to form fibrin for blood clot formation following vascular injury. Furthermore, cleavage products of fibrinogen and fibrin have been reported to regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and as mitogens for several cell types. Mutations in this gene have been associated with afibrinogenemia, dysfibrinogenemia, hypodysfibrinogenemia and thrombotic tendency.


Human coagulation factor II (F2) maps to chromosome 11p1-q12. Representative Homo sapiens F2 gene sequences are listed in GenBank under accession numbers AF478696.1 (GI:18653447) and BC051332.1 (GI:30802114). F2 is proteolytically cleaved to form thrombin in the first step of the coagulation cascade and is involved in maintenance of vascular integrity. Mutations in this gene have been associated with thrombosis and dysprothrombinemia.


Human coagulation factor II receptor (F2R or CF2R), thrombin receptor (TR), or protease-activated receptor 1 (PAR1) maps to chromosome 5q13. Representative Homo sapiens F2R gene sequences are listed in GenBank under accession numbers AF391809.2 (GI:14971463) and M62424.1 (GI:339676). F2R is a 7-transmembrane receptor involved in the regulation of thrombotic response. F2R is a G-protein coupled receptor family member and proteolytic cleavage of the receptor leads to activation.


Human coagulation factor 111 (F3) or tissue factor (TF) or tissue thromboplastin maps to chromosome 1p22-p21. Representative Homo sapiens F3 gene sequences are listed in GenBank under accession numbers AF540377.1 (GI:22536175) and J02846.1 (GI:339505). The F3 gene encodes a cell surface glycoprotein, which is involved in the initiation of the blood coagulation cascades, and acts as a high-affinity receptor for coagulation factor VII. The F3-F7 complex catalyses the initiation of the coagulation protease cascades. To date F3 has not been associated with a congenital deficiency.


Human coagulation factor V (F5) or protein c cofactor maps to chromosome 1q23. Representative Homo sapiens F5 gene sequences are listed in GenBank under accession numbers AY364535.1 (GI:33867366) and M16967.1 (GI:182411). The F5 gene is essential in the blood coagulation cascade and circulates in blood plasma. F5 is converted to the active form by the release of the activation peptide by thrombin during coagulation. Active F5 is a cofactor with activated coagulation factor X, which activates prothrombin to thrombin. Mutations in this gene have been associated with an autosomal recessive hemorrhagic diathesis or an autosomal dominant form of thrombophilia, which is known as activated protein C or protein C like compound resistance.


Human coagulation factor VII (F7) maps to chromosome 13q34. Representative Homo sapiens F7 gene sequences are listed in GenBank under accession numbers AY212252.1 (GI:37781362) and AF466933.2 (GI:38112686). F7 is a vitamin K-dependent factor essential for hemostasis, circulates in the blood in an inactive form, and is converted to an active form by either factor IXa, factor Xa, factor XIIa, or thrombin following minor proteolysis. Active F7 and F3, when in the presence of calcium ions activate the coagulation cascade by converting factor IX to factor IXa and/or factor X to factor Xa. Mutations in this gene have been associated with coagulopathy.


Human coagulation factor X (F10) maps to chromosome 13q34. Representative Homo sapiens F10 gene sequences are listed in GenBank under accession numbers AF503510.1 (GI:20336662) and NM000504.2 (GI:9961350). F10 encodes a vitamin K-dependent coagulation factor X precursor involved in the blood coagulation cascade and is converted to a mature two-chain form by the excision of the tripeptide RKR. Mature F10 is activated by the cleavage of the activation peptide by factor IXa (in the intrinsic pathway), or by factor VIIa (in the extrinsic pathway). Activated F10 can convert prothrombin to thrombin in the presence of factor Va, Ca+2, and phospholipid during blood clotting. Mutations of this gene have been associated with factor X deficiency, a hemorrhagic condition of variable severity.


The human SERPINE1 (plasminogen activator inhibitor type 1 (PAI-1)) gene maps to chromosome 7q21-q22. A representative Homo sapiens SERPINE1 gene sequence is listed in GenBank under accession number AF386492.2 (GI:14488407) DAWSON et al. (Journal of Biological Chemistry (1993) 268(15):10739-45) identified an insertion/deletion polymorphism (4G/5G) at position −675 of the SERPINE1 promoter sequence, which corresponds to position 201 of SEQ ID NO:14. This polymorphism also has an A allele associated with it, but the frequency of this allele is generally low in the populations tested. The 4G (or “del” or “−”) allele is a single base pair deletion promoter polymorphism of the SERPINE1 gene and is associated with increased protein levels of SERPINE1 (DAWSON S J et al. (1993); DAWSON S J et al. Arteriosclerosis & Thrombosis (1991) 11(1):183-90). The 4G allele of this single nucleotide polymorphism (SNP) is associated with increased risk of deep venous thrombosis (SEGUI R et al. British Journal of Haematology (2000) 111(1):122-8), stroke (HINDORFF L A et al. Journal of Cardiovascular Risk (2002) 9(2):131-7), acute myocardial infarction (BOEKHOLDT S M et al. Circulation (2001) 104(25):3063-8; ERIKSSON P et al. PNAS (1995) 92(6):1851-5.), late lumen loss after coronary artery stent placement (ORTLEPPG J R et al. Clinical Cardiology (2001) 24(9):585-91), and sudden cardiac death (ANVARI A et al. Thrombosis Research (2001) 103(2):103-7; MIKKELSSON J et al. Thrombosis & Haemostasis (2000) 84(1):78-82). In the critically ill, the 4G allele is also associated with decreased survival in patients who have had severe trauma (MENGES T et al. Lancet (2001) 357(9262):1096-7) and patients who had meningococcemia (HERMANS P W et al. Lancet. (1999) 354(9178):556-60) as well as increased risk of shock in patients who had meningococcemia (WESTENDORP R G et al. Lancet (1999) 354(9178):561-3). The SERPINE1 4G genotype has also been associated with adverse patient outcomes ((MENGES et al. (2001); HERMANS et al. (1999); WESTENDORP R G et al. (1999); ENDLER G et al. British Journal of Haematology (2000) 110(2):469-71; GARDEMANN A et al. Thrombosis & Haemostasis (1999) 82(3):1121-6; HOOPER W C et al. Thrombosis Research (2000) 99(3):223-30; JONES K et al. European Journal of Vascular & Endovascular Surgery (2002) 23(5):421-5; HARALAMBOUS E. et al. Crit. Care Med (2003) 31(12):2788-93; and ROEST M et al. Circulation (2000) 101(1):67-70). The 4G/4G (−/−) genotype of SERPINE1 was associated with SERPINE1 levels in patients suffering from acute lung injury (RUSSELL J A Crit. Care Med. (2003) 31(4):S243-S247).


Human serine (or cysteine) proteinase inhibitor, Glade A (alpha-1 antiproteinase, antitrypsin), member 5 (SERPINA5), protein C inhibitor, or plasminogen activator inhibitor-3 (PAI-3) maps to chromosome 14q32.1. Representative Homo sapiens SERPINA5 gene sequences are listed in GenBank under accession numbers AF361796.1 (GI:13448931) and NM000624.3 (GI:34147643).


Human interleukin 6 (IL6) or interferon beta 2 (IFNB2), BSF2, HGF or HSF maps to chromosome 7p21. Representative Homo sapiens IL6 gene sequences are listed in GenBank under accession numbers AF372214.2 (GI:14278708) and M54894.1 (GI:186351).


Human interleukin 10 (IL10) maps to chromosome 1q31-q32. Representative Homo sapiens IL10 gene sequences are listed in GenBank under accession numbers NM000572, M57627 and AF418271.


Human interleukin 12A (IL12A) maps to chromosome 3 p12-q13.2 and the cDNA extends over about 1.4 kb. Representative Homo sapiens IL12A gene sequences are listed in GenBank under accession numbers NM000882 and AF404773. The IL12A gene encodes a subunit of the IL12 cytokine. IL-12 is a heterodimer composed of the 35-10 subunit encoded by the IL12A gene, and a 40-kD subunit (IL-12B). Il-12 is required for the T-cell-independent induction of interferon (IFN)-gamma, and is important for the differentiation of both Th1 and Th2 cells. The responses of lymphocytes to IL-12 are mediated by the activator of transcription protein STAT4. Nitric oxide synthase 2A (NOS2A/NOS2) is found to be required for the signaling process of this cytokine in innate immunity.


Human tumor necrosis factor alpha receptor-1 (TNFRSF1A) maps to chromosome 12 p13.2 and the cDNA extends over about 2.2 kb. Representative Homo sapiens TNFRSF1A gene sequences are listed in GenBank under accession numbers NM001065 and AY131997. The TNFRSF1A gene is a member of the TNF-receptor superfamily and is one of the major receptors for the tumor necrosis factor-alpha. TNFRSF1A is known to activate NF-kappaB, mediate apoptosis, and regulate inflammation. Antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRADD and TRAF2 have been shown to interact with TNFRSF1A, and likely have roles in the signal transduction mediated by TNFRSF1A. Germline mutations of the extracellular domains of this receptor have been associated with autosomal dominant periodic fever syndrome, whereby the associated impaired receptor clearance is thought to be a mechanism of the disease.


Human vascular endothelial growth factor (VEGF) maps to chromosome 6 p12. Representative Homo sapiens VEGF gene sequences are listed in GenBank under accession numbers AF022375, AF437895, AL136131, NM001025366, NM003376, NM001025367, NM001025368, NM001025369, NM001025370 and NM001033756. The VEGF gene is a member of the PDGF/VEGF growth factor family and encodes a protein that is a glycosylated mitogen that specifically acts on endothelial cells and has various effects, including mediating increased vascular permeability, inducing angiogenesis, vasculogenesis and endothelial cell growth, promoting cell migration, and inhibiting apoptosis. Elevated levels of this protein have been associated with POEMS syndrome. VEGF gene mutations have been associated with proliferative and nonproliferative diabetic retinopathy.


Human protein C (PROC) maps to chromosome 2q13-q14 and extends over 11 kb. A representative Homo sapiens protein C gene sequence is listed in GenBank under accession number AF378903. Three single nucleotide polymorphisms (SNPs) have been identified in the 5′ untranslated promoter region of the protein C gene and are characterized as −1654 C/T, −1641 A/G and −1476 VT (according to the numbering scheme of FOSTER D C. et al. Proc Natl Acad Sci USA (1985) 82(14):4673-4677), or as −153C/T, −140A/G and +26A/T respectively by (MILLAR D S. et al. Hum. Genet. (2000) 106:646-653 at 651).


The genotype homozygous for −1654 C/−1641 G/−1476 T has been associated with reduced rates of transcription of the protein C gene as compared to the −1654 T/−1641 A/−1476 A homozygous genotype (SCOPES D. et al. Blood Coagul. Fibrinolysis (1995) 6(4):317-321). Patients homozygous for the −1654 C/−1641 G/−1476 T genotype show a decrease of 22% in plasma protein C levels and protein C activity levels as compared to patients homozygous for the −1654 T/−1641 A/−1476 A genotype (SPEK C A. et al. Arteriosclerosis, Thrombosis, and Vascular Biology (1995) 15:214-218). The −1654 C/−1641 G haplotype has been associated with lower protein C concentrations in both homozygotes and heterozygotes as compared to −1654 T/−1641 A (AIACH M. et al. Arterioscler Thromb Vasc Biol. (1999) 19(6):1573-1576).


Human endothelial protein C receptor (PROCR) is located on chromosome 20 and maps to chromosome 20q11.2. A representative human PROCR gene sequence with promoter is listed in GenBank under accession number AF106202 (8167 bp). A number of polymorphisms have been observed in the gene (BIGUZZI E. et al. Thromb Haemost (2002) 87:1085-6 and FRANCHI F. et al. Br J Haematol (2001) 114:641-6). Furthermore, polymorphisms of PROCR are also described in (BIGUZZI E. et al. Thromb Haemost (2001) 86:945-8; GALLIGAN L. et al. Thromb Haemost (2002) 88:163-5; ZECCHINA G. et al. Br J Haematol (2002) 119:881-2; FRENCH J K. et al. Am Heart J (2003) 145:118-24; and VON DEPKA M. et al. Thromb Haemost (2001) 86:1360-2; and SAPOSNIK B. et al. Blood (2004 Feb. 15) 103(4):1311-8.).


SUMMARY OF THE INVENTION

This invention is based in part on the surprising discovery that protein C pathway associated SNPs selected from fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor 111 (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), serine (or cysteine) proteinase inhibitor, Glade E type 1 (SERPINE1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (IL10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR) genes are predictive of subject response to treatment with activated protein C or protein C like compound.


This invention is also based in part on the surprising discovery that protein C pathway associated SNPs selected from fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor 111 (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), serine (or cysteine) proteinase inhibitor, Glade E type 1 (SERPINE1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (11.10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR) alone or in combination are useful in predicting the response a subject with an inflammatory condition will have to treatment with activated protein C. Whereby the subjects having an improved response polymorphism are more likely to benefit from and have an improved response to activated protein C or protein C like compound treatment or treatment with a similar agent.


In accordance with one aspect of the invention, methods are provided for identifying a subject having an improved response polymorphism in a protein C pathway associated gene, the method including determining a genotype of the subject at one or more polymorphic sites in the subject's protein C pathway associated gene sequences or a combination thereof, wherein said genotype is indicative of the subject's response to activated protein C or protein C like compound administration. The method may further include comparing the genotype determined with known genotypes, which are known to be indicative of the subject's response, to activated protein C or protein C like compound administration. The method may further include obtaining protein C pathway associated gene sequence information for the subject. The method may further include obtaining the nucleic acid sample from the subject. The method may further include selecting a subject having one or more improved response polymorphism(s) in their protein C pathway associated gene sequences for administration of activated protein C or a protein C like compound. The method may further include excluding a subject not having one or more improved response polymorphism(s) in their protein C pathway associated gene sequences from administration of activated protein C or a protein C like compound.


In accordance with another aspect of the invention, there is provided a method of identifying a polymorphism in a protein C pathway associated gene sequence that correlates with an improved response to activated protein C or protein C like compound administration, the method including: obtaining protein C pathway associated gene sequence information from a group of subjects having an inflammatory condition; identifying at least one polymorphic nucleotide position in the protein C pathway associated gene sequence in the subjects; determining a genotypes at the polymorphic site for individual subjects in the group; determining response to activated protein C or protein C like compound administration; and correlating the genotypes determined in step (c) with the response to activated protein C or protein C like compound administration in step (d) thereby identifying said protein C pathway associated gene sequence polymorphisms that correlate with response to activated protein C or protein C like compound administration.


In accordance with another aspect of the invention, there is provided a kit for determining a genotype at a defined nucleotide position within a polymorphic site in a protein C pathway associated gene sequence in a subject to predict a subject's response to activated protein C or protein C like compound administration, the kit including: a restriction enzyme capable of distinguishing alternate nucleotides at the polymorphic site; or a labeled oligonucleotide having sufficient complementary to the polymorphic site so as to be capable of hybridizing distinctively to said alternate. The kit may further include an oligonucleotide or a set of oligonucleotides operable to amplify a region including the polymorphic site. The kit may further include a polymerization agent. The kit may further include instructions for using the kit to determine genotype.


In accordance with another aspect of the invention, there is provided a method for selecting a group of subjects for determining the efficacy of a candidate drug known or suspected of being useful for the treatment of an inflammatory condition, the method including determining a genotype at one or more polymorphic sites in a protein C pathway associated gene sequence for each subject, wherein said genotype is indicative of the subject's response to the candidate drug and sorting subjects based on their genotype. The method may further include, administering the candidate drug to the subjects or a subset of subjects and determining each subject's ability to recover from the inflammatory condition. The method may further include comparing subject response to the candidate drug based on genotype of the subject.


In accordance with another aspect of the invention, there is provided a method of treating an inflammatory condition in a subject in need thereof, the method including administering to the subject activated protein C or protein C like compound, wherein said subject has an improved response polymorphism in their protein C pathway associated gene sequence.


In accordance with another aspect of the invention, there is provided a method of treating an inflammatory condition in a subject in need thereof, the method including: selecting a subject having an improved response polymorphism in their protein C pathway associated gene sequence; and administering to said subject activated protein C or protein C like compound.


In accordance with another aspect of the invention, there is provided a method of treating a subject with an inflammatory condition by administering activated protein C, the method including administering the activated protein C or protein C like compound to subjects that have an improved response polymorphism in their protein C pathway associated gene sequence, wherein the improved response polymorphism is predictive of increased responsiveness to the treatment of the inflammatory condition with activated protein C or protein C like compound.


In accordance with another aspect of the invention, there is provided a method of identifying a subject with increased responsiveness to treatment of an inflammatory condition with activated protein C or protein C like compound, including the step of screening a population of subjects to identify those subjects that have an improved response polymorphism in their protein C pathway associated gene sequence, wherein the identification of a subject with an improved response polymorphism in their protein C pathway associated gene sequence is predictive of increased responsiveness to the treatment of the inflammatory condition with the activated protein C or protein C like compound.


In accordance with another aspect of the invention, there is provided a method of selecting a subject for the treatment of an inflammatory condition with an activated protein C or protein C like compound, including the step of identifying a subject having an improved response polymorphism in their protein C pathway associated gene sequence, wherein the identification of a subject with the improved response polymorphism is predictive of increased responsiveness to the treatment of the inflammatory condition with the activated protein C or protein C like compound.


In accordance with another aspect of the invention, there is provided a method of treating an inflammatory condition in a subject, the method including administering an activated protein C or protein C like compound to the subject, wherein said subject has an improved response polymorphism in their protein C pathway associated gene sequence.


In accordance with another aspect of the invention, there is provided a method of treating an inflammatory condition in a subject, the method including: identifying a subject having an improved response polymorphism in their protein C pathway associated gene sequence; and administering activated protein C or protein C like compound to the subject.


In accordance with another aspect of the invention, there is provided a use of an activated protein C or protein C like compound in the manufacture of a medicament for the treatment of an inflammatory condition, wherein the subjects treated have an improved response polymorphism in their protein C pathway associated gene sequence.


In accordance with another aspect of the invention, there is provided a use of an activated protein C or protein C like compound in the manufacture of a medicament for the treatment of an inflammatory condition in a subset of subjects, wherein the subset of subjects have an improved response polymorphism in their protein C pathway associated gene sequence.


In accordance with another aspect of the invention, there is provided a commercial package containing, as active pharmaceutical ingredient, use of an activated protein C or protein C like compound, or a pharmaceutically acceptable salt thereof, together with instructions for its use for the curative or prophylactic treatment of an inflammatory condition in a subject, wherein the subject treated has an improved response polymorphism in their protein C pathway associated gene sequence.


In accordance with another aspect of the invention, there are provided two or more oligonucleotides or peptide nucleic acids of about 10 to about 400 nucleotides that hybridize specifically to a sequence contained in a human target sequence consisting of a subject's protein C pathway associated gene sequence, a complementary sequence of the target sequence or RNA equivalent of the target sequence and wherein the oligonucleotides or peptide nucleic acids are operable in determining the presence or absence of two or more improved response polymorphism(s) in their protein C pathway associated gene sequence selected from of the following polymorphic sites: rs1800791; rs3136516; rs253073; rs2227750; rs1361600; rs9332575; rs4656687; rs9332630; rs9332546; rs2774030; rs2026160; rs3211719; rs3093261; rs1799889; rs1050813; rs2069972; rs2069840; rs1800795; rs1800872; rs2243154; rs4149577; rs1413711; rs2069895; rs2069898; rs2069904; rs1799808; rs2069910; rs2069915; rs2069916; rs2069918; rs2069919; rs2069920; rs2069924; rs5937; rs2069931; rs777556; rs1033797; rs1033799; rs2295888; and rs867186 or one or more polymorphic sites in linkage disequilibrium thereto.


In accordance with another aspect of the invention, oligonucleotides or peptide nucleic acids are provided that may be used in the identification of protein C pathway associated gene sequence polymorphisms in accordance with the methods described herein, the oligonucleotides or peptide nucleic acids are characterized in that the oligonucleotides or peptide nucleic acids hybridize under normal hybridization conditions with a region of one of sequences identified by SEQ ID NO:1-243 or their complements to determine the presence or absence of one or more protein C pathway associated gene sequence polymorphisms within a target sequence.


In accordance with another aspect of the invention, an oligonucleotide primer is provided including a portion of SEQ ID NO:1-243 or their complements, wherein said primer is 12 to 54 nucleotides in length and wherein the primer specifically hybridizes to a region of SEQ ID NO:1-243 or their complements and is capable of identifying protein C pathway associated gene sequence polymorphisms described herein. Alternatively, the primers may be between sixteen to twenty-four nucleotides in length.


In accordance with another aspect of the invention, oligonucleotide or peptide nucleic acids are provided of about 10 to about 400 nucleotides that hybridize specifically to a sequence contained in a human target sequence including SEQ ID NO:1-243, a complementary sequence of the target sequence or RNA equivalent of the target sequence and wherein the oligonucleotide or peptide nucleic acid is operable in determining the allele or genotype at a polymorphism at one or more of positions of the protein C pathway associated gene sequence polymorphisms as described herein.


In accordance with another aspect of the invention, two or more oligonucleotides or peptide nucleic acids are provided selected from: an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule including a first allele for a given polymorphism selected from the polymorphisms listed in TABLE 1C but not capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising a second allele for the given polymorphism selected from the polymorphisms listed in TABLE 1C; and an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising the second allele for a given polymorphism selected from the polymorphisms listed in TABLE 1C but not capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising the first allele for the given polymorphism selected from the polymorphisms listed in TABLE 1C.


In accordance with another aspect of the invention, two or more oligonucleotides or peptide nucleic acids are provided selected from: an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule including a first allele for a given polymorphism selected from the polymorphisms listed in TABLE 1D but not capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising a second allele for the given polymorphism selected from the polymorphisms listed in TABLE 1D; and an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising the second allele for a given polymorphism selected from the polymorphisms listed in TABLE 1D but not capable of hybridizing under high stringency conditions to an oligonucleotide or peptide nucleic acid molecule comprising the first allele for the given polymorphism selected from the polymorphisms listed in TABLE 1D.


In accordance with another aspect of the invention, there is provided an array of oligonucleotides or peptide nucleic acids attached to a solid support, the array including two or more of the oligonucleotides or peptide nucleic acids set out herein.


In accordance with another aspect of the invention, there is provided a composition including an addressable collection of two or more oligonucleotides or peptide nucleic acids, the two or more oligonucleotides or peptide nucleic acids selected from the oligonucleotides or peptide nucleic acids set out herein.


In accordance with another aspect of the invention, there is provided a composition comprising an addressable collection of two or more oligonucleotides or peptide nucleic acids, the two or more oligonucleotides or peptide nucleic acids consisting essentially of two or more nucleic acid molecules set out in SEQ ID NO:1-243 or compliments, fragments, variants, or analogs thereof.


In accordance with another aspect of the invention, there is provided a composition comprising an addressable collection of two or more oligonucleotides or peptide nucleic acids, the two or more oligonucleotides or peptide nucleic acids consisting essentially of two or more nucleic acid molecules set out in TABLES 1C and 1D or compliments, fragments, variants, or analogs thereof.


In accordance with another aspect of the invention, there is provided a computer readable medium comprising a plurality of encoded genotype correlations selected from the protein C pathway associated gene SNP correlations in TABLE 1E, wherein each correlation of the plurality has a value representing an indication of responsiveness to treatment with activated protein C. The encoded genotype correlations may be digitally encoded.


The genotype may be determined using a nucleic acid sample from the subject. Genotype may be determined using one or more of the following techniques: restriction fragment length analysis; sequencing; micro-sequencing assay; hybridization; invader assay; gene chip hybridization assays; oligonucleotide ligation assay; ligation rolling circle amplification; 5′ nuclease assay; polymerase proofreading methods; allele specific PCR; matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy; ligase chain reaction assay; enzyme-amplified electronic transduction; single base pair extension assay; and reading sequence data.


The polymorphic site may be selected from one or more of the following: rs1800791; rs3136516; rs253073; rs2227750; rs1361600; rs9332575; rs4656687; rs9332630; rs9332546; rs2774030; rs2026160; rs3211719; rs3093261; rs1799889; rs1050813; rs2069972; rs2069840; rs1800795; rs1800872; rs2243154; rs4149577; rs1413711; rs2069895; rs2069898; rs2069904; rs1799808; rs2069910; rs2069915; rs2069916; rs2069918; rs2069919; rs2069920; rs2069924; rs5937; rs2069931; rs777556; rs1033797; rs1033799; rs2295888; and rs867186; or one or more polymorphic sites in linkage disequilibrium thereto. The improved response polymorphism may be selected from one or more of the following: rs1800791A; rs3136516G; rs3136516GG; rs253073G; rs253073GG; rs2227750GG; rs1361600GG; rs9332575G; rs4656687T; rs9332630A; rs9332546A; rs2774030AG; rs2026160C; rs3211719G; rs3093261T; rs1799889G; rs1050813A; rs1050813AG; rs2069972TT; rs2069840C; rs1800795G; rs1800872A; rs2243154A; rs2243154AG; rs4149577CT; rs1413711AA; rs2069895AG; rs2069898CT; rs2069904AG; rs1799808CT; rs2069910C; rs2069910CT; rs2069915AG; rs2069916CT; rs2069918A; rs2069918AA; rs2069919AG; rs2069920CT; rs2069924CT; rs5937CT; rs2069931 CT; rs777556C; rs1033797C; rs1033799A; rs2295888G; rs867186AG; and rs867186G; or one or more polymorphic sites in linkage disequilibrium thereto. The one or more polymorphic sites in linkage disequilibrium thereto may be selected from one or more of the polymorphic sites listed in TABLE 1B.


The genotype of the subject may be indicative of the subject's response to activated protein C or protein C like compound administration. The subject may be critically ill with an inflammatory condition. The inflammatory condition may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, aspiration pneumanitis, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for subjects undergoing major surgery or dialysis, subjects who are immunocompromised, subjects on immunosuppressive agents, subjects with HIV/AIDS, subjects with suspected endocarditis, subjects with fever, subjects with fever of unknown origin, subjects with cystic fibrosis, subjects with diabetes mellitus, subjects with chronic renal failure, subjects with acute renal failure, oliguria, subjects with acute renal dysfunction, glomerulo-nephritis, interstitial-nephritis, acute tubular necrosis (ATN), subjects, subjects with bronchiectasis, subjects with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, subjects with febrile neutropenia, subjects with meningitis, subjects with septic arthritis, subjects with urinary tract infection, subjects with necrotizing fasciitis, subjects with other suspected Group A streptococcus infection, subjects who have had a splenectomy, subjects with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, pre-eclampsia, eclampsia, HELP syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhagic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, progressive systemic sclerosis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis. The inflammatory condition may be SIRS or sepsis.


The activated protein C or protein C like compound may be drotecogin alfa activated. The activated protein C or protein C like compound may have one or more of the following activities: serine protease activity; anticoagulant; anti-inflammatory; pro-fibrinolytic; and anti-apoptotic activities.


The method or use may further include determining the subject's APACHE II score as an assessment of subject risk. Subject risk may be used as a further indicator that activated protein C or protein C like compound administration is appropriate. The method or use may further include determining the number of organ system failures for the subject as an assessment of subject risk. The subject's APACHE II score may be indicative of an increased risk when ≧25. Similarly, 2 or more organ system failures may be indicative of increased subject risk.


The oligonucleotides or peptide nucleic acids may further include one or more of the following: a detectable label; a quencher; a mobility modifier; a contiguous non-target sequence situated 5′ or 3′ to the target sequence or 5′ and 3′ to the target sequence. The oligonucleotides or peptide nucleic acids may alternatively be of about 10 to about 400 nucleotides, about 15 to about 300 nucleotides. The oligonucleotides or peptide nucleic acids may alternatively be of about 20 to about 200 nucleotides, about 25 to about 100 nucleotides. The oligonucleotides or peptide nucleic acids may alternatively be of about 20 to about 80 nucleotides, about 25 to about 50 nucleotides.







DETAILED DESCRIPTION OF THE INVENTION
1. Definitions

In the description that follows, a number of terms are used extensively, the following definitions are provided to facilitate understanding of the invention.


“Activated protein C” or “protein C like compound” as used herein includes any protein C molecule, protein C derivative, protein C variant, protein C analog and any prodrug thereof, metabolite thereof, isomer thereof, combination of isomers thereof, or pharmaceutical composition of any of the preceding. Activated protein C or protein C like compound or protein C like compounds may be synthesized or purified. For example, Drotrecogin alfa (activated) is sold as XIGRIS™ by Eli Lilly and Company and has the same amino acid sequence as human plasma-derived Activated Protein C. Examples of derivatives, variants, analogs, or compositions etc. may be found in US patent applications: 20050176083; 20050143283; 20050095668; 20050059132; 20040028670; 20030207435; 20030027299; 20030022354; and 20030018175 and issued U.S. Pat. Nos. 6,933,367; 6,841,371; 6,815,533; 6,630,138; 6,630,137; 6,436,397; 6,395,270; 6,162,629; 6,159,468; 5,837,843; 5,453,373; 5,330,907; 5,766,921; 5,753,224; 5,516,650; and 5,358,932.


“Genetic material” includes any nucleic acid and can be a deoxyribonucleotide or ribonucleotide polymer in either single or double-stranded form.


A “purine” is a heterocyclic organic compound containing fused pyrimidine and imidazole rings, and acts as the parent compound for purine bases, adenine (A) and guanine (G).


“Nucleotides” are generally a purine (R) or pyrimidine (Y) base covalently linked to a pentose, usually ribose or deoxyribose, where the sugar carries one or more phosphate groups.


Nucleic acids are generally a polymer of nucleotides joined by 3′-5′ phosphodiester linkages. As used herein “purine” is used to refer to the purine bases, A and G, and more broadly to include the nucleotide monomers, deoxyadenosine-5′-phosphate and deoxyguanosine-5′-phosphate, as components of a polynucleotide chain.


A “pyrimidine” is a single-ringed, organic base that forms nucleotide bases, cytosine (C), thymine (T) and uracil (U). As used herein “pyrimidine” is used to refer to the pyrimidine bases, C, T and U, and more broadly to include the pyrimidine nucleotide monomers that along with purine nucleotides are the components of a polynucleotide chain.


A nucleotide represented by the symbol M may be either an A or C, a nucleotide represented by the symbol W may be either an T/U or A, a nucleotide represented by the symbol Y may be either an C or T/U, a nucleotide represented by the symbol S may be either an G or C, while a nucleotide represented by the symbol R may be either an G or A, and a nucleotide represented by the symbol K may be either an G or T/U. Similarly, a nucleotide represented by the symbol V may be either A or G or C, while a nucleotide represented by the symbol D may be either A or G or T, while a nucleotide represented by the symbol B may be either G or C or T, and a nucleotide represented by the symbol H may be either A or C or T. Furthermore, a deletion or an insertion may be represented by either a “−” or “del” and “+” or “ins” or “I” respectively. Alternatively, polymorphisms may be represented as follows A/- (SEQ ID NO:75), -/A/AT/G (SEQ ID NO:104), -/AAC (SEQ ID NO:113), -/T (SEQ ID NO:119), -/A/CG/G (SEQ ID NO:130), -/A/C (SEQ ID NO:132, A/- (SEQ ID NO:140), -/A (SEQ ID NO:145), -/AGG (SEQ ID NO:147), -/TTTA (SEQ ID NO:148), -/G/GGA (SEQ ID NO:154), -/GTTT (SEQ ID NO:159), -/CAAA (SEQ ID NO:175, -/CT (SEQ ID NO:192), -/T (SEQ ID NO:221), and -/A/G (SEQ ID NO:14), wherein the allele options at a polymorphic site are separated by a forward slash (“/”). For example, “-/AGG” may be either a deletion or AGG.


A “polymorphic site” or “polymorphism site” or “polymorphism” or “single nucleotide polymorphism site” (SNP site) or single nucleotide polymorphism” (SNP) as used herein is the locus or position with in a given sequence at which divergence occurs. A “Polymorphism” is the occurrence of two or more forms of a gene or position within a gene (allele), in a population, in such frequencies that the presence of the rarest of the forms cannot be explained by mutation alone. The implication is that polymorphic alleles confer some selective advantage on the host. Preferred polymorphic sites have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. Polymorphic sites may be at known positions within a nucleic acid sequence or may be determined to exist using the methods described herein. Polymorphisms may occur in both the coding regions and the noncoding regions (for example, promoters, enhancers and introns) of genes. Polymorphisms may occur at a single nucleotide site (SNPs) or may involve an insertion or deletion as described herein.


An “improved response polymorphism” as used herein refers to an allelic variant or genotype at one or more polymorphic sites within the protein C pathway associated polymorphisms selected from fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor III (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), serine (or cysteine) proteinase inhibitor, Glade E type I (SERPINE1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (IL10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR) as described herein as being predictive of a subject's response to activated protein C or protein C like compound or protein C like compound treatment (for example rs1800791A, rs3136516G, rs3136516GG, rs253073G, rs253073GG, rs2227750GG, rs1361600GG, rs9332575G, rs4656687T, rs9332630A, rs9332546A, rs2774030AG, rs2026160C, rs3211719G, rs3093261T, rs1799889G, rs1050813A, rs1050813AG, rs2069972TT, rs2069840C, rs1800795G, rs1800872A, rs2243154A, rs2243154AG, rs4149577CT, rs1413711AA, rs2069895AG; rs2069898CT; rs2069904AG; rs1799808CT; rs2069910C; rs2069910CT; rs2069915AG; rs2069916CT; rs2069918A; rs2069918AA; rs2069919AG; rs2069920CT; rs2069924CT; rs5937CT; rs2069931CT; rs777556C; rs1033797C; rs1033799A; rs2295888G; rs867186AG; and rs867186G).


As used herein “haplotype” is a set of alleles of closely linked loci on a chromosome that tend to be inherited together. Such allele sets occur in patterns, which are called haplotypes. Accordingly, a specific SNP or other polymorphism allele at one SNP site is often associated with a specific SNP or other polymorphism allele at a nearby second SNP site or other polymorphism site. When this occurs, the two SNPs or other polymorphisms are said to be in linkage disequilibrium because the two SNPs or other polymorphisms are not just randomly associated (in linkage equilibrium).


In general, the detection of nucleic acids in a sample depends on the technique of specific nucleic acid hybridization in which the oligonucleotide is annealed under conditions of “high stringency” to nucleic acids in the sample, and the successfully annealed oligonucleotides are subsequently detected (see for example Spiegelman, S., Scientific American, Vol. 210, p. 48 (1964)). Hybridization under high stringency conditions primarily depends on the method used for hybridization, the oligonucleotide length, base composition and position of mismatches (if any). High stringency hybridization is relied upon for the success of numerous techniques routinely performed by molecular biologists, such as high stringency PCR, DNA sequencing, single strand conformational polymorphism analysis, and in situ hybridization. In contrast to Northern and Southern hybridizations, these techniques are usually performed with relatively short probes (e.g., usually about 16 nucleotides or longer for PCR or sequencing and about 40 nucleotides or longer for in situ hybridization). The high stringency conditions used in these techniques are well known to those skilled in the art of molecular biology, and examples of them can be found, for example, in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1998.


“Oligonucleotides” as used herein are variable length nucleic acids, which may be useful as probes, primers and in the manufacture of microarrays (arrays) for the detection and/or amplification of specific nucleic acids. Such DNA or RNA strands may be synthesized by the sequential addition (5′-3′ or 3′-5′) of activated monomers to a growing chain, which may be linked to an insoluble support. Numerous methods are known in the art for synthesizing oligonucleotides for subsequent individual use or as a part of the insoluble support, for example in arrays (BERNFIELD M R. and ROTTMAN F M. J. Biol. Chem. (1967) 242(18):4134-43; SULSTON J. et al. PNAS (1968) 60(2):409-415; GILLAM S. et al. Nucleic Acid Res. (1975) 2(5):613-624; BONORA G M. et al. Nucleic Acid Res. (1990) 18(11):3155-9; LASHKARI D A. et al. PNAS (1995) 92(17):7912-5; MCGALL G. et al. PNAS (1996) 93(24):13555-60; ALBERT T J. et al. Nucleic Acid Res. (2003) 31(7):e35; GAO X. et al. Biopolymers (2004) 73(5):579-96; and MOORCROFT M J. et al. Nucleic Acid Res. (2005) 33(8):e75). In general, oligonucleotides are synthesized through the stepwise addition of activated and protected monomers under a variety of conditions depending on the method being used. Subsequently, specific protecting groups may be removed to allow for further elongation and subsequently and once synthesis is complete all the protecting groups may be removed and the oligonucleotides removed from their solid supports for purification of the complete chains if so desired.


“Peptide nucleic acids” (PNA) as used herein refer to modified nucleic acids in which the sugar phosphate skeleton of a nucleic acid has been converted to an N-(2-aminoethyl)-glycine skeleton. Although the sugar-phosphate skeletons of DNA/RNA are subjected to a negative charge under neutral conditions resulting in electrostatic repulsion between complementary chains, the backbone structure of PNA does not inherently have a charge. Therefore, there is no electrostatic repulsion. Consequently, PNA has a higher ability to form double strands as compared with conventional nucleic acids, and has a high ability to recognize base sequences. Furthermore, PNAs are generally more robust than nucleic acids. PNAs may also be used in arrays and in other hybridization or other reactions as described above and herein for oligonucleotides.


An “addressable collection” as used herein is a combination of nucleic acid molecules or peptide nucleic acids capable of being detected by, for example, the use of hybridization techniques or by any other means of detection known to those of ordinary skill in the art. An DNA microarray would be considered an example of an “addressable collection”.


In general the term “linkage”, as used in population genetics, refers to the co-inheritance of two or more nonallelic genes or sequences due to the close proximity of the loci on the same chromosome, whereby after meiosis they remain associated more often than the 50% expected for unlinked genes. However, during meiosis, a physical crossing between individual chromatids may result in recombination. “Recombination” generally occurs between large segments of DNA, whereby contiguous stretches of DNA and genes are likely to be moved together in the recombination event (crossover). Conversely, regions of the DNA that are far apart on a given chromosome are more likely to become separated during the process of crossing-over than regions of the DNA that are close together. Polymorphic molecular markers, like single nucleotide polymorphisms (SNPs), are often useful in tracking meiotic recombination events as positional markers on chromosomes.


The pattern of a set of markers along a chromosome is referred to as a “Haplotype”. Accordingly, groups of alleles on the same small chromosomal segment tend to be transmitted together. Haplotypes along a given segment of a chromosome are generally transmitted to progeny together unless there has been a recombination event. Absent a recombination event, haplotypes can be treated as alleles at a single highly polymorphic locus for mapping.


Furthermore, the preferential occurrence of a disease gene in association with specific alleles of linked markers, such as SNPs or other polymorphisms, is called “Linkage Disequilibrium” (LD). This sort of disequilibrium generally implies that most of the disease chromosomes carry the same mutation and the markers being tested are relatively close to the disease gene(s).


For example, in SNP-based association analysis and linkage disequilibrium mapping, SNPs can be useful in association studies for identifying polymorphisms, associated with a pathological condition, such as sepsis. Unlike linkage studies, association studies may be conducted within the general population and are not limited to studies performed on related individuals in affected families. In a SNP association study the frequency of a given allele (i.e. SNP allele) is determined in numerous subjects having the condition of interest and in an appropriate control group. Significant associations between particular SNPs or SNP haplotypes and phenotypic characteristics may then be determined by numerous statistical methods known in the art.


Association analysis can either be direct or LD based. In direct association analysis, potentially causative SNPs may be tested as candidates for the pathogenic sequence. In LD based SNP association analysis, SNPs may be chosen at random over a large genomic region or even genome wide, to be tested for SNPs in LD with a pathogenic sequence or pathogenic SNP. Alternatively, candidate sequences associated with a condition of interest may be targeted for SNP identification and association analysis. Such candidate sequences usually are implicated in the pathogenesis of the condition of interest. In identifying SNPs associated with inflammatory conditions, candidate sequences may be selected from those already implicated in the pathway of the condition or disease of interest. Once identified, SNPs found in or associated with such sequences, may then be tested for statistical association with an individual's prognosis or susceptibility to the condition.


For an LD based association analysis, high density SNP maps are useful in positioning random SNPs relative to an unknown pathogenic locus. Furthermore, SNPs tend to occur with great frequency and are often spaced uniformly throughout the genome. Accordingly, SNPs as compared with other types of polymorphisms are more likely to be found in close proximity to a genetic locus of interest. SNPs are also mutationally more stable than variable number tandem repeats (VNTRs).


In population genetics linkage disequilibrium refers to the “preferential association of a particular allele, for example, a mutant allele for a disease with a specific allele at a nearby locus more frequently than expected by chance” and implies that alleles at separate loci are inherited as a single unit (Gelehrter, T. D., Collins, F. S. (1990). Principles of Medical Genetics. Baltimore: Williams & Wilkens). Accordingly, the alleles at these loci and the haplotypes constructed from their various combinations serve as useful markers of phenotypic variation due to their ability to mark clinically relevant variability at a particular position, such as position 86 of SEQ ID NO:1 (see Akey, J. et al. (2001). Haplotypes vs single marker linkage disequilibrium tests: what do we gain? European Journal of Human Genetics. 9:291-300; and Zhang, K. et al. (2002). Haplotype block structure and its applications to association studies: power and study designs. American Journal of Human Genetics. 71:1386-1394). This viewpoint is further substantiated by Khoury et al. ((1993). Fundamentals of Genetic Epidemiology. New York: Oxford University Press at p. 160) who state, “[w]henever the marker allele is closely linked to the true susceptibility allele and is in [linkage] disequilibrium with it, one can consider that the marker allele can serve as a proxy for the underlying susceptibility allele.”


As used herein “linkage disequilibrium” (LD) is the occurrence in a population of certain combinations of linked alleles in greater proportion than expected from the allele frequencies at the loci. For example, the preferential occurrence of a disease gene in association with specific alleles of linked markers, such as SNPs, or between specific alleles of linked markers, are considered to be in LD. This sort of disequilibrium generally implies that most of the disease chromosomes carry the same mutation and that the markers being tested are relatively close to the disease gene(s). Accordingly, if the genotype of a first locus is in LD with a second locus (or third locus etc.), the determination of the allele at only one locus would necessarily provide the identity of the allele at the other locus. When evaluating loci for LD those sites within a given population having a high degree of linkage disequilibrium (i.e. an absolute value for D′ of ≧0.5 or r2≧0.5) are potentially useful in predicting the identity of an allele of interest (i.e. associated with the condition of interest). A high degree of linkage disequilibrium may be represented by an absolute value for D′ of ≧0.6 or r2≧0.6. Alternatively, a high degree of linkage disequilibrium may be represented by an absolute value for D′ of ≧0.7 or r2≧0.7 or by an absolute value for D′ of ≧0.8 or r2≧0.8. Additionally, a high degree of linkage disequilibrium may be represented by an absolute value for D′ of ≧0.85 or r2≧0.85 or by an absolute value for D′ of ≧0.9 or r2≧0.9. Accordingly, two SNPs that have a high degree of LD may be equally useful in determining the identity of the allele of interest or disease allele. Therefore, we may assume that knowing the identity of the allele at one SNP may be representative of the allele identity at another SNP in LD. Accordingly, the determination of the genotype of a single locus can provide the identity of the genotype of any locus in LD therewith and the higher the degree of linkage disequilibrium the more likely that two SNPs may be used interchangeably. For example, in the population from which the tagged SNPs were identified from the SNP identified by rs2069972 is in “linkage disequilibrium” with the SNP identified by rs2069973, whereby when the genotype of rs2069972 is T the genotype of rs2069973 is G. Similarly, when the genotype of rs2069972 is C the genotype of rs2069973 is C. Accordingly, the determination of the genotype at rs2069972 will provide the identity of the genotype at rs2069973 or any other locus in “linkage disequilibrium” therewith. Particularly, where such a locus has a high degree of linkage disequilibrium thereto.


Linkage disequilibrium is useful for genotype-phenotype association studies. For example, if a specific allele at one SNP site (e.g. “A”) is the cause of a specific clinical outcome (e.g. call this clinical outcome “B”) in a genetic association study then, by mathematical inference, any SNP (e.g. “C”) which is in significant linkage disequilibrium with the first SNP, will show some degree of association with the clinical outcome. That is, if A is associated (˜) with B, i.e. A˜B and C˜A then it follows that C˜B. Of course, the SNP that will be most closely associated with the specific clinical outcome, B, is the causal SNP—the genetic variation that is mechanistically responsible for the clinical outcome. Thus, the degree of association between any SNP, C, and clinical outcome will depend on linkage disequilibrium between A and C.


Until the mechanism underlying the genetic contribution to a specific clinical outcome is fully understood, linkage disequilibrium helps identify potential candidate causal SNPs and also helps identify a range of SNPs that may be clinically useful for prognosis of clinical outcome or of treatment effect. If one SNP within a gene is found to be associated with a specific clinical outcome, then other SNPs in linkage disequilibrium will also have some degree of association and therefore some degree of prognostic usefulness. By way of prophetic example, if multiple polymorphisms were tested for individual association with an improved response to activated protein C or protein C like compound or protein C like compound administration in our SIRS/sepsis cohort of ICU patients, wherein the multiple polymorphisms had a range of linkage disequilibrium with SERPINA5 polymorphism rs2069972 and it was assumed that rs2069972 was the causal polymorphism, and we were to order the polymorphisms by the degree of linkage disequilibrium with rs2069972, we would expect to find that polymorphisms with high degrees of linkage disequilibrium with rs2069972 would also have a high degree of association with this specific clinical outcome. As linkage disequilibrium decreased, we would expect the degree of association of the polymorphism with an improved response to activated protein C or protein C like compound or protein C like compound administration to also decrease. Accordingly, logic dictates that if A˜B and C˜A, then C˜B. That is, any polymorphism, whether already discovered or as yet undiscovered, that is in linkage disequilibrium with one of the improved response polymorphisms described herein will likely be a predictor of the same clinical outcomes that rs2069972 is a predictor of. The similarity in prediction between this known or unknown polymorphism and rs2069972 would depend on the degree of linkage disequilibrium between such a polymorphism and rs2069972.


Numerous sites have been identified as polymorphic sites in the protein C pathway associated genes (see TABLE 1A). Furthermore, the polymorphisms in TABLE 1A are linked to (in linkage disequilibrium with) numerous polymorphisms as set out in TABLE 1B below and may also therefore be indicative of subject prognosis.









TABLE 1A







Polymorphisms in the protein C pathway associated genes (coagulation, fibrinolysis


and inflammation pathways) genotyped in a cohort of critically ill patients who had severe sepsis


and no XIGRIS ™ contraindications. Minor allele frequency is given for the entire patient cohort


(XIGRIS ™-treated patients and matched controls).
















Minor allele



Polymorphism Name


May 2004
frequency in


(HUGO name. chromosomal


Chromosomal
the patient
SEATTLE


position. major allele/minor allele


position
population
SNPS


according to public databases)
Official Gene Name
rs#
(Build 35)
(minor allele)
IDENTIFYER















FGB.155840914.G/A
fibrinogen, B beta
1800791
155840914
0.15 (A)
1038



polypeptide


F2.46717332.G/A
coagulation factor II
3136516
46717332
0.47 (A)
21239



(thrombin)


F2R.76059983.A/G
coagulation factor II
 253073±
76059983
0.41 (G)
14244



(thrombin) receptor


F2R.76049220.G/C
coagulation factor II
2227750
76049220
0.22 (C)
3481



(thrombin) receptor


F3.94719939.A/G
coagulation factor III
1361600
94719939
0.44 (G)
1826



(thromboplastin, tissue



factor)


F5.166258759.A/G
coagulation factor V
9332575
166258759
0.11 (G)
30539



(proaccelerin, labile factor)


F5.166236816.T/C*
coagulation factor V
4656687
166236816
0.41 (C)
52485



(proaccelerin, labile factor)


F5.166227911.A/G
coagulation factor V
9332630
166227911
0.46 (A)
61390



(proaccelerin, labile factor)


F5.166269905.G/A
coagulation factor V
9332546
166269905
0.32 (A)
19390



(proaccelerin, labile factor)


F7.112808416.A/G
coagulation factor VII
2774030
112808416
0.40 (G)
2643



(serum prothrombin



conversion accelerator)


F10.112840894.A/C
coagulation factor X
2026160
112840894
0.26 (C)
17396


F10.112825510.A/G
coagulation factor X
3211719
112825510
0.24 (G)
2011


F10.112824083.T/C
coagulation factor X
3093261
112824083
0.35 (T)
577


SERPINE1.100363146.4G/5G
serine (or cysteine)
1799889
100363146
0.49 (5G)
837


(or —/G)
proteinase inhibitor, clade



E (nexin, plasminogen



activator inhibitor type 1),



member 1


SERPINE1.100375050.G/A
serine (or cysteine)
1050813
100375050
0.18 (A)
12750



proteinase inhibitor, clade



E (nexin, plasminogen



activator inhibitor type 1),



member 1


SERPINA5.94123294.C/T
serine (or cysteine)
2069972
94123294
0.47 (T)
1328



proteinase inhibitor, clade



A (alpha-1 antiproteinase,



antitrypsin), member 5


IL6.22541812.C/G
interleukin 6 (interferon,
2069840
22541812
0.28 (G)
3437



beta 2)


IL6.22539885.G/C
interleukin 6 (interferon,
1800795
22539885
0.29 (C)
1510



beta 2)


IL10.203334802.C/A
interleukin 10
1800872
203334802
0.30 (A)
472


IL12A.161198944.G/A
interleukin 12A (natural
2243154
161198944
0.08 (A)
11494



killer cell stimulatory factor



1, cytotoxic lymphocyte



maturation factor 2, p40)


TNFRSF1A.6317783.T/C
tumor necrosis factor
4149577
6317783
0.48 (T)
5664



receptor superfamily,



member 1A


VEGF.43848656.G/A*
vascular endothelial growth
1413711
43848656
0.45 (A)
674



factor


PROC.127890298.A/G
protein C (inactivator of
2069895
127890298
 0.3 (G)
611



coagulation factors Va and



VIIIa)


PROC.127890457.T/C
protein C (inactivator of
2069898
127890457
 0.3 (C)
770



coagulation factors Va and



VIIIa)


PROC.127892009.G/A
protein C (inactivator of
2069904
127892009
 0.3 (A)
2322



coagulation factors Va and



VIIIa)


PROC.127892092.C/T
protein C (inactivator of
1799808
127892092
 0.4 (T)
2405



coagulation factors Va and



VIIIa)


PROC.127894204.T/C
protein C (inactivator of
2069910
127894204
0.49 (T)
4515



coagulation factors Va and



VIIIa)


PROC.127894608.G/A
protein C (inactivator of
2069915
127894608
0.44 (A)
4919



coagulation factors Va and



VIIIa)


PROC.127894645.C/T
protein C (inactivator of
2069916
127894645
 0.4 (T)
4956



coagulation factors Va and



VIIIa)


PROC.127895556.G/A
protein C (inactivator of
2069918
127895556
0.21 (A)
5867



coagulation factors Va and



VIIIa)


PROC.127895783.G/A
protein C (inactivator of
2069919
127895783
 0.3 (A)
6094



coagulation factors Va and



VIIIa)


PROC.127895876.T/C
protein C (inactivator of
2069920
127895876
0.44 (C)
6187



coagulation factors Va and



VIIIa)


PROC.127899224.C/T
protein C (inactivator of
2069924
127899224
 0.4 (T)
9534



coagulation factors Va and



VIIIa)


PROC.127901000.T/C
protein C (inactivator of
  5937
127901000
0.29 (C)
11310



coagulation factors Va and



VIIIa)


PROC.127901799.C/T
protein C (inactivator of
2069931
127901799
 0.4 (T)
12109



coagulation factors Va and



VIIIa)


PROC.127975205.T/C
protein C (inactivator of
 777556
127975205
0.31 (C)



coagulation factors Va and



VIIIa)


PROCR.33183348.T/C
protein C receptor,
1033797
33183348
0.11 (C)



endothelial (EPCR)


PROCR.33183694.C/A
protein C receptor,
1033799
33183694
0.11 (A)



endothelial (EPCR)


PROCR.33186524.A/G
protein C receptor,
2295888
33186524
0.08 (G)



endothelial (EPCR)


PROCR.33228215.A/G
protein C receptor,
 867186
33228215
 0.1 (G)
6118



endothelial (EPCR)





*Note:


SNPs marked with * were genotyped on the complementary strand. SNP nomenclature is consistent with that of Goldenpath.


±Amended from rs10307480 to rs253073 as a result of a consolidation of rs number redundancies, whereby rs10307480, rs10393898, rs2227785 and rs253073 all represented the same polymorphism. The current rs identifier for this polymorphism site is rs253073.













TABLE 1B







Polymorphisms in linkage disequilibrium with those listed in TABLE 1A above, as


identified using the LD-select algorithm (CARLSON CS. et al. Am. J. Hum. Genet. (2004)


74: 106-120), r2 ≧ 0.5/minor allele frequency (MAF) = 0.05. The gene is identified, along with


the alleles, rs designation and the chromosomal positions (May 2004 Build 35).














Tag
Alleles
Polymorphism

LD
rsIDs of


Gene
Polymorphisms
(IRP allele)
rsID
Polymorphisms in LD
Alleles
Polymorphisms in LD
















FGB
155840914
G/A (G)
rs1800791
n/a
n/a
n/a






155846700
G
rs2227412


F2
46717332
G/A (G)
rs3136516
46716696
G
rs3136512


F2R
76059983
A/G (G)
rs253073
76051211
A
rs37245






76046105
A
rs2227744






76048599
A
rs27135






76049220
G
rs2227750






76050075
A
rs37243


F2R
76049220
G/C (GG)
rs2227750
76051211
AA
rs37245






76046105
AA
rs2227744






76048599
AA
rs27135






76050075
AA
rs37243






76059983
DD
rs253073






76046105 & 76048669
G & T
rs2227744 & rs27593






76046105 & 76049687
G & A
rs2227744 & rs37242






76046105 & 76049756
G & A
rs2227744 & rs253061






76046105 & 76050867
G & T
rs2227744 & rs37244






76046105 & 76051420
G & A
rs2227744 & rs37246






76048599 & 76048669
G & T
rs27135 & rs27593






76048599 & 76049687
G & A
rs27135 & rs37242






76048599 & 76049756
G & A
rs27135 & rs253061






76048599 & 76050867
G & T
rs27135 & rs37244






76048599 & 76051420
G & A
rs27135 & rs37246






76050075 & 76048669
G & T
rs37243 & rs27593






76050075 & 76049687
G & A
rs37243 & rs37242






76050075 & 76049756
G & A
rs37243 & rs253061






76050075 & 76050867
G & T
rs37243 & rs37244






76050075 & 76051420
G & A
rs37243 & rs37246






76051211 & 76048669
G & T
rs37245 & rs27593






76051211 & 76049687
G & A
rs37245 & rs37242






76051211 & 76049756
G & A
rs37245 & rs253061






76051211 & 76050867
G & T
rs37245 & rs37244






76051211 & 76051420
G & A
rs37245 & rs37246






76052731 & 76048669
G & T
rs37249 & rs27593






76052731 & 76049687
G & A
rs37249 & rs37242






76052731 & 76049756
G & A
rs37249 & rs253061






76052731 & 76050867
G & T
rs37249 & rs37244






76052731 & 76051420
G & A
rs37249 & rs37246


F3
94719939
A/G (G)
rs1361600
94714011
A
rs3917615






94711518
T
rs841695






94711541
G
rs2794470






94714232
T
rs1144300






94716035
C
rs841697






94716105
G
rs762485






94717241
C
rs696619






94720676
G
rs3761955






94721166
T
rs958587


F5
166258759
A/G (G)
rs9332575
n/a
n/a
n/a


F5
166236816
T/C (A)
rs4656687
166213608
C
rs2187952






166214094
T
rs2040444






166215502
G
rs4656685






166216210
A
rs3820060






166217058
A
rs6670407






166217517
T
rs2420369






166218159
C
rs9332667






166218425
A
rs9332665






166220585
A
rs3766103






166221016
A
rs2227244






166221170
T
rs2213866






166221243
A
rs2213867






166222250
T
rs9332655






166222687
D
rs9332652






166222807
C
rs9332651






166224334
G
rs9332643






166225854
G
rs2301515






166227091
A
rs9332635






166229478
C
rs9332627






166229839
G
rs2420373






166230848
T
rs2157581






166231039
G
rs2187953






166231317
A
rs916438






166231609
G
rs9332620






166232006
C
rs9332619






166236487
G
rs4656187






166237899
T
rs7535409






166240234
T
rs1557572






166240397
T
rs3766109






166243213
A
rs6032






166243392
A
rs4525






166243413
A
rs4524






166244571
G
rs9332600






166244638
C
rs9332599






166245094
G
rs9287092






166245995
T
rs9332596






166246013
C
rs9332595






166246841
T
rs3766110






166246862
A
rs3766111






166246954
G
rs3766112






166246965
T
rs3766113






166247039
A
rs1894694






166247104
D
rs9332589






166247194
G
rs6672595






166251166
A
rs1988607






166251207
C
rs1988608






166252117
C
rs2420375






166252207
C
rs2420376






166252250
C
rs2420377






166252651
T
rs2298909


F5
166227911
A/G (A)
rs9332630
166241891
T
rs9332607






166240367
D
rs9332611






166246588
C
rs9332590






166251075
T
rs7537742






166251195
C
rs9332587






166252346
T
rs9332586






166253209
C
rs721161


F5
166269905
G/A (A)
rs9332546
166257923
T
rs9332577






166257466
T
rs2239854






166257958
A
rs4656688






166258025
C
rs4656689






166258083
A
rs4656188






166258259
G
rs1894697






166258304
C
rs1894698






166258608
C
rs1894699






166258884
C
rs1981491






166259603
A
rs7548857






166260488
A
rs6427202






166260796
A
rs9287093






166262019
G
rs1894700






166262188
G
rs5778621






166268097
A
rs7542281






166268143
G
rs2187954






166268160
A
rs9332556






166268308
T
rs2187955






166268559
T
rs9332554






166268668
T
rs9332553






166269336
C
rs6670678






166269427
D
rs9332548






166270254
C
rs2298907






166270500
A
rs2298905






166270941
T
rs9332542






166271581
A
rs9332538






166271612
A
rs9332537






166271738
A
rs2227245






166271935
I
rs5778622






166271950
D
rs9332534






166271992
T
rs2213870






166272080
C
rs2213871






166272250
G
rs9332533






166272554
G
rs9332531






166273793
A
rs6691048






166273848
D
rs9332520






166274375
A
rs9332516






166274680
A
rs9332513






166277480
T
rs9332511






166277493
T
rs9332510






166282732
D
rs9332500






166285716
C
rs3753305


F7
112808416
A/G (AG)
rs2774030
112805827
C
rs3093229






112805969
G
rs3093230






112807487
A
rs762635






112807527
A
rs762636






112807755
G
rs510317






112808856
G
rs3093237


F10
112840894
A/C (C)
rs2026160
112834948
C
rs483743






112832408
T
rs483949






112835822
G
rs3211753






112836955
G
rs473950






112838379
T
rs3211758






112840755
T
rs2251102






112843672
T
rs776897


F10
112825510
A/G (G)
rs3211719
n/a
n/a
n/a


F10
112824083
T/C (T)
rs3093261
n/a
n/a
n/a


SERPINE1
100363146
del4G/ins5
rs1799889
100362973
G
rs2227631




G (insG)


SERPINE1
100375050
G/A (A)
rs1050813
100369665
T
rs2227676






100370029
I
rs2227681






100370071
A
rs2227683


SERPINA5
94123294
C/T (TT)
rs2069972
94123304
G
rs2069973






94123325
A
rs2069974






94123643
A
rs6115






94123929
C
rs6112






94125866
A
rs2066969






94127023
A
rs6107






94128113
G
rs6109






94128215
C
rs6116






94128384
T
rs6108






94128566
G
rs938






94128678
G
rs1050013






94128829
C
rs9113






94129134
G
rs7070






94129535
G
rs2069995






94129617
A
rs2069996


IL6
22541812
C/G (C)
rs2069840
22538581
D
rs2069825






22539461
A
rs1800797






22539885
C
rs1800795






22540673
A
rs2069832






22540904
C
rs2069833






22541148
C
rs1474348






22541364
C
rs1474347






22541947
T
rs1554606






22543389
G
rs2069845






22545967
G
rs1818879


IL6
22539885
G/C (G)
rs1800795
22538581
I
rs2069825






22539461
G
rs1800797






22540673
G
rs2069832






22540904
T
rs2069833






22541148
G
rs1474348






22541364
A
rs1474347






22541812
G
rs2069840






22541947
G
rs1554606






22543389
A
rs2069845






22545967
A
rs1818879


IL10
203334802
C/A (A)
rs1800872
203332628
T
rs1554286






203333040
A
rs1518111






203333256
T
rs1518110






203333706
T
rs3024490






203335029
T
rs1800871


IL12A
161198944
G/A (A)
rs2243154
n/a
n/a
n/a


TNFRSF1A
6317783
T/C (CT)
rs4149577
6310270
A
rs1800693






6311609
G
rs4149587






6312607
T
rs1800692






6316243
T
rs887477






6317038
C
rs1860545






6317246
A
rs4149581






6317251
C
rs4149580






6319376
G
rs4149576






6321206
A
rs767455






6321851
T
rs4149570






6322729
G
rs4149569


VEGF
43848656
G/A (AA)
rs1413711
43850397
GG
rs865577






43850505
GG
rs833068






43850557
TT
rs833069






43850604
TT
rs833070






43851038
DD
rs3024991






43852599
CC
rs735286






43853085
GG
rs3024997






43853555
CC
rs3024998






43855226
CC
rs3025006






43855349
TT
rs3025007






43855428
AA
rs3025009


PROC
127890298
A/G (AG)
rs2069895
127890457
C
rs2069898






127891073
C
rs2069901






127891093
G
rs2069902






127892009
A
rs2069904






127892105
G
rs1799809






127892270
T
rs1799810






127893607
C
rs1158867






127895783
A
rs2069919






127901000
C
rs5937


PROC
127890457
C/T (CT)
rs2069898
127890298
G
rs2069895






127891073
C
rs2069901






127891093
G
rs2069902






127892009
A
rs2069904






127892105
G
rs1799809






127892270
T
rs1799810






127893607
C
rs1158867






127895783
A
rs2069919






127901000
C
rs5937


PROC
127892009
A/G (AG)
rs2069904
127890298
G
rs2069895






127890457
C
rs2069898






127891073
C
rs2069901






127891093
G
rs2069902






127892105
G
rs1799809






127892270
T
rs1799810






127893607
C
rs1158867






127895783
A
rs2069919






127901000
C
rs5937


PROC
127892092
C/T (CT)
rs1799808
127894608
A
rs2069915






127894645
T
rs2069916






127895876
C
rs2069920






127899224
T
rs2069924






127894204
T
rs2069910


PROC
127894204
C/T (C)
rs2069910
127892092
C
rs1799808






127894608
G
rs2069915






127894645
C
ys2069916






127895876
T
rs2069920






127899224
C
rs2069924


PROC
127894608
A/G (AG)
rs2069915
127892092
4
rs1799808






127894645
T
rs2069916






127895876
C
rs2069920






127899224
T
rs2069924






127894204
T
rs2069910


PROC
127894645
C/T (CT)
rs2069916
127892092
T
rs1799808






127894608
A
rs2069915






127895876
C
rs2069920






127899224
T
rs2069924






127894204
T
rs2069910


PROC
127895556
G/A (A)
rs2069918
127894421
C
rs2069912






127894489
G
rs2069913






127894502
A
rs2069914






127896068
G
rs2069915






127897748
T
rs971207






127896451
A
rs973760






127897469
C
rs2069922






127898605
T
rs1518759






127900144
T
rs2069928






127901918
T
rs2069933


PROC
127895783
A/G (AG)
rs2069919
127890298
G
rs2069895






127890457
C
rs2069898






127891073
C
rs2069901






127891093
G
rs2069902






127892009
A
rs2069904






127892105
G
rs1799809






127892270
T
rs1799810






127893607
C
rs1158867






127901000
C
rs5937


PROC
127895876
C/T (CT)
rs2069920
127892092
T
rs1799808






127894608
A
rs2069915






127894645
T
rs2069916






127899224
T
rs2069924






127894204
T
rs2069910


PROC
127899224
C/T (CT)
rs2069924
127892092
T
rs1799808






127894608
A
rs2069915






127894645
T
rs2069916






127895876
C
rs2069920






127894204
T
rs2069910


PROC
127901000
C/T (CT)
rs5937
127890298
G
rs2069895






127890457
C
rs2069898






127891073
C
rs2069901






127891093
G
rs2069902






127892009
A
rs2069904






127892105
G
rs1799809






127892270
T
rs1799810






127893607
C
rs1158867






127895783
A
rs2069919


PROC
127901799
C/T (CT)
rs2069931
NA


PROC
127975205
C/T (C)
rs777556
NA


PROCR
33183348
C/T (C)
rs1033797
NA


PROCR
33183694
A/C (A)
rs1033799
NA


PROCR
33186524
A/G (G)
rs2295888
NA


PROCR
33228215
A/G (G)
rs867186
33222933
G
rs2069940









It will be appreciated by a person of skill in the art that further linked polymorphic sites and combined polymorphic sites may be determined. The haplotype of protein C pathway associated genes can be created by assessing polymorphisms in protein C pathway associated genes in normal subjects using a program that has an expectation maximization algorithm (i.e. PHASE). A constructed haplotype of protein C pathway associated genes may be used to find combinations of SNP's that are in linkage disequilibrium (LD) with the haplotype tagged SNPs (htSNPs) identified herein. Accordingly, the haplotype of an individual could be determined by genotyping other SNPs or other polymorphisms that are in LD with the htSNPs identified herein. Single polymorphic sites or combined polymorphic sites in LD may also be genotyped for assessing subject response to activated protein C or protein C like compound or protein C like compound treatment.


It will be appreciated by a person of skill in the art, that the numerical designations of the positions of polymorphisms within a sequence are relative to the specific sequence. Also the same positions may be assigned different numerical designations depending on the way in which the sequence is numbered and the sequence chosen, as illustrated by the alternative numbering of the equivalent polymorphism (rs1799889), whereby the same polymorphism identified as an insertion/deletion polymorphism (4G/5G) at position −675 of the SERPINE1 promoter sequence (by DAWSON et al. Journal of Biological Chemistry (1993) 268(15):10739-45), which corresponds to position 201 of SEQ ID NO:14 and to position 201 of SEQ ID NO:14. Furthermore, sequence variations within the population, such as insertions or deletions, may change the relative position and subsequently the numerical designations of particular nucleotides at and around a polymorphic site.


Polymorphic sites in SEQ ID NO:1-40 and SEQ ID NO:41-243 are identified by their variant designation (i.e. M, W, Y, S, R, K, V, B, D, H or by “−” for a deletion, a “+” or “G” etc. for an insertion).


An “rs” prefix designates a SNP in the database is found at the NCBI SNP database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db.Snp). The “rs” numbers are the NCBI|rsSNP ID form.


TABLE 1C below shows the flanking sequences for a selection of protein C pathway associated gene SNPs providing their rs designations, alleles and corresponding SEQ ID NO designations. Each polymorphism is at position 201 within the flanking sequence, unless otherwise indicated, and identified in bold and underlined.













TABLE 1C







SEQ ID




GENE
SNP
NO:
FLANKING SEQUENCE



















FGB
rs1800791
1
TTCCTATTGATTCTTGTAGGAGTTATTAATCCTGATTGCAACACACAAGTGAA




(position

CAGACAAGAGAGATAAATTTTGTGGCTTGTGGRAAATGAAGGAAAATGGGCCT



86)

CATTTAGTCTGTGAGCATACTAATTGAAATAGATGTATGAAGACTTCACCAGT





GTTAAAATAACATTGTTTTTATAAATCATATGATATAAACTATATAACAATAA





AATAGAATGTTRAACATGTATTTAATCATCATCATAATTTTGATTCAGAAATC





TATAATTTATTAGTTATCTTAATAATGTTTAGAATTTGTTGAACATTTTACCT





TATGTGAATTAAGGACAAAATATTAAAGCTATTCAGCACAAAAAAAGGGTCTT





TCTGATGTGTATTTTTCATAGAATAGGGTATGAATTTGTTATTTTGTTATTTT





GATTAATGTCTAAAACAAAAGATAAACACATTATGATATAACATTACTATTGA





TTTTAATRGCCCCTTTTGAAATAGAATTATGTCATTGTCAGAAAACATAAGCA





TTTATGGTATATCATTAATGAGT





F2
rs3136516
2
ATGAGCTATGCTCCTGAGCACAGACGGCTGTTCTCTTTCAAGGTTACAAGCCT





GATGAAGGGAAACGAGGGGATGCCTGTGAAGGTGACAGTGGGGGACCCTTTGT





CATGAAGGTAAGCTTCTCTAAAGCCCAGGGCCTGGTGAACACATCTTCTGGGG





GTGGGGAGAAACTCTAGTATCTAGAAACAGTTGCCTGGCAGRGGAATACTGAT





GTGACCTTGAACTTGACTCTATTGGAAACCTCATCTTTCTTCTTCAGAGCCCC





TTTAACAACCGCTGGTATCAAATGGGCATCGTCTCATGGGGTGAAGGCTGTGA





CCGGGATGGGAAATATGGCTTCTACACACATGTGTTCCGCCTGAAGAAGTGGA





TACAGAAGGTCATTGATCAGTTTGGAGAGTAGGGGGCCACTCATATTCTGGGC





TCCTGGAACCAATCCCGTGAAAGAATTATTTT





F2R
rs253073
3
CAAACTTATAACATGTATTACCTCAAATACTTATCATTTTTTGTGGTGAGACC





ACTTAAAGTCTACTCTCTTAGCAATTGTCAAGTATACAACACATTGTTATTAA





CTATAGTCACCGTATTATACAAGAGATTTTTCTAACTAATTCCTCCATCCAAC





CCCAGCCTCTACTAACCACCATTCTCTTCTCTGCTTCCATGRGTTCAACTGTT





TTCGATTCCACATATAAGTGAAATCATGCTATATTTGTCTTTCGGTGCCTGCC





ATATTTCACTTAACATTATGCCCTCTCGGCTCATCCATGTTGTTGCAAATGAC





AGAATTTCCTTCTTTTTTAAGGCTGAATAGTATTCCACTGTGTATATACATCA





TATTTTTTATTCATTCATTCATTCATCAGTGGATACCTAGTTTGATTCCATAA





CTGGGCTATTATAAATAATTCTGCAATGAACA





F2R
rs2227750
4
GCACTCTATATTGCTCCCACACTCAAAAAAAAGTGTAGACACATCAAGATTAA





GAGGTGACAAAGACATAGCATGTTCTCGCCTCTCTGTCTTTGTTCAGGGTGAG





TTTTGAGATGCTTTTGGGAAAACTAAGAGCTCCAGACTGGGGCCCAGTGTTTA





GCAGTAACTAGCCTGCCTGCAGATAAGTGAGCATTGTTGCCSAAAGTGTTTGA





GAGAACACCGAGAACTCCTGAAAAATTGTTTGCGATGAGATATGATTTCACAT





ACCATTATGTAATTTGCACAATGTAGTTTGAGGACACGCTCTTGAGAATCCAG





TGTTTTGTTTGAGATTTGGATCATGGGGTGGAGAACAGAGCTTATAGAAATGC





TGCACCCTTTCTCACAGTGGCCTCCCAGCAAGGTGTGTAGCCTCATTAGGGAG





TGAAGTCAAAGCGTACTGGTTTCTGCCAAGCT





F3
rs1361600
5
CGCTGGAATTCTCCCAGAGGCAAACTGCCAGATGTGAGGCTGCTCTTCCTCAG





TCACTATCTCTGGTCGTACCGGGCGATGCCTGAGCCAACTGACCCTCAGACCT





GTGAGCCGAGCCGGTCACACCGTGGCTGACACCGGCATTCCCACCGCCTTTCT





CCTGTGCGACCCGCTAAGGGCCCCGCGAGGTGGGCAGGCCARGTATTCTTGAC





CTTCGTGGGGTAGAAGAAGCCACCGTGGCTGGGAGAGGGCCCTGCTCACAGCC





ACACGTTTACTTCGCTGCAGGTCCCGAGCTTCTGCCCCAGGTGGGCAAAGCAT





CCGGGAAATGCCCTCCGCTGCCCGAGGGGAGCCCAGAGCCCGTGCTTTCTATT





AAATGTTGTAAATGCCGCCTCTCCCACTTTATCACCAAATGGAAGGGAAGAAT





TCTTCCAAGGCGCCCTCCCTTTCCTG





F5
rs9332575
6
AAACCATATGCACAAAAATAAAAATAAATTGATCTGAGCTTAGAGTTTACGAA





TTTATAGTTCCCAAAAGAATAACTGGGGGTAAATGGGACAAGGTAGGGAAAGA





CCATCAGTAGAAACTAAGAATAGTAAACATTTGTAAAAACCCTCTGCCTTATA





AAGCAGAATAAATTGAATACATATGATAAATGCTAACACAGRTATGTTAATTG





CTGAACTCAATATAAGCATTTCTTTGGCATGGATAAACGCTTCCACCAAAGCC





TCCTAGTGATGCAAGGAATCCTGGCTTTGTTGCAATGGTCTCCTAAAAAAAAC





AAGCCTTTGTGTGGGTAAGGAACTGATTCTCAGCCCCATTATCTAGTATCTAG





TGATTATGTATCTGAGATGTAAAACAGAAACCTAAAAGCCAAGGATGGAGTCT





CCCCACAGAGCAAATGAGCATTTTCCCAGTGA





F5
rs4656687
7
AAAAGAGAATATTGCCTCCCATAGCTTCATGGAAAATTTAGAATAATTAAGAT





TCTTATATCCCTATGTACTTGTTTACGTTTTTAAAAAGAGCAAATGGTCACTG





AAAATGTAGTGAATGCTTACACAGGTATAGTAGATTATATTTTAAAATCTAGA





ATAGCTTACTTTAGAATCAGGGTTCTTTCTGGGTTTTTGAAYGTGAGCGGTTA





GCAAAAATGGCGGAAGTAAACTTTGTTATAAAAGCAAGTTATAATCGTGGGTC





TGGACACAAGATTTTGAAAGAAATTACCAGAACTAGGAAGACACTGAAGAAAC





TTGCTCACTTTTGGAGGGCATGGAGACATCTTTACTTTCCTTACTCATTTTAT





TTAACTTCATTTTATTTAATTTTTAGGAAAACACCTGAAGATATTTCTAAATT





ACTATTACTACTAGCACTGCTACTGCCACCAC





F5
rs9332630
8
AAAGTAGATTTTGGGCAGAATTCCAAGGAGTCTGTATTTTTAACAAGCAGCCT





TCCTTCTATTTTGCCTTCTATTAAAAGTAATGGCAAAAACCGCAATTATAGTT





TGCACCAACCTAACACATGCTGCCTGAGGAGTTAGTGAAGGCAGCCCCTCGAC





AGCACTTTGGGTGACGTTGTGTGAATCTGCCTCAGATGCAGRCACAGAAGTCC





AAATGGACTGGTTTGATTAAGAGCAGGGAAAAAAAGAGGGTTCTTATTGGTTT





TTCACATGCCAGTAACTCACTAATACATCTAGAGAGTATTAATTGTATTATAT





TAATATCATATTAATTAATTAATATAATAATTAATAGATAATTTATTGTATTA





AAATCAGAGACAGAAGAGATTCAGTCAAATTTACTCATCTTTTCATCAAGTAT





TAGAAGATCAGTCATCCTTCCTATCAGCCTGCAGACAGACTGAGAAGCTAG





F5
rs9332546
9
ACTTAATGTAGGTGATTACATTTTTTCACTTCTCATCTGAATATTTTGGCCTT





ATGTAGAGACTTCCTTGAGTATATGATAAACACCTGAAACAAACTATAACGGC





TATAGTTTGTATATTTAATAAATCACAAAAATGTGGATCCCTTTTCCAAAGAG





ACTTGCAAGTCCTGTGCAATGAAATCAGCTCTTTATAAAACRTCAGCATTGAT





TCGCCCATTGCCTACATTATAGCTTCTAAAAGAATATTCTGAATCTTTGAATG





TAGTGAAGCATTCACTAAGTTTATTAACTTAGGAGAGGAAAAGAGTTGTTCAC





AAAAATAAGTAACAAGGGAAGAGTTACTGAGTGAGCACCCTAATGAGTAACCA





AAAAGGCTCTTTATGTAACTTCACTTTCCCAAAGCTTGTATGCACCATTTTTC





ATTTTTAAAAAATACTGAGAGCCTTTGGCAAG





F7
rs2774030
10
TGCAGGTGCGTCCGGGGAGGTTTTCTCCATAAACTTGGTGGAAGGGCAGTGGG





CAAATCCAGGAGCCAGCCCGGGCTTCCCAAACCCCGCCCTTGCTCCGGACACC





CCCATCCACCAGGAGGGTTTTCTGGCGGCTCCTGTTCAATTTCTTTCCTTCTA





GAAACCAGCATCCAGGCACAGGAGGGGAGGCCCTTCTTGGTRGCCCAGGCTTT





GGCGGGATTATTTTTCAAAGAACTTTAGGAGTGGGTGGTGCTTTCCTGGCCCC





CATGGGCCCCTGCCTGTGAGGTCGGACAAGCGCAGGGAGTCTGGGGCCTCTCA





GAGTGCAGGAAGTGCGCACAGGGTGCTCCCAGGCTGGGGAGCACAGGTAGGGG





ACGGTGCGTGGGGGATGGCGCCTGGGGCATGGGGGATGGGGTGTGGGAAACGG





CATGTGGGGCGTAAGGGATGGGGTGTGGAGGA





F10
rs2026160
11
CACTTAATTATGGTTGTTATTGGTATAAAATGTCTCTGTTTTCCCTAATATAT





TTTTAAATCTCTTTTTTCCTTTTAGAATGAATTCTGGAATAAATACAAAGGTC





AGTATTTTTTCTGTTTTAACCTTCAGTGAGAGGGGTTCATCAGGATATTTGAA





TTTTGAAAATAGTTCCTGAATTTCCTTTCTGCTTTTGTTCTMATTTTACTCAT





TTAAGACTTTTTCCCTCAGGGTGTTTCCATAATAGTTATTGTAAAAGAGTTTT





TAGAGTAATTTTATACTAATCCTAGTTTTGTTATTGAGTTAGAGATATATATT





TAAATCAGTTCATTCTCATTTGAGGATACCAAATTCCATGATAACTTTTCTTA





AATAAAAGTGTATTC





F10
rs3211719
12
CCCTCTCATCTCTGCAGCCTGGACGGTGGGTGCCTTGAGTGCTGCCAGAGGCT





GGGCTCGGATGGCTGGGCTTGGCCTTTCCAGCCAACGGCATCCTCAAGGCCAG





CTGTGGCTCCCTGGGGCTGAGAGTCAGACGGGCGGATCAGAGGTCACAGAGAC





AAAAACACAAGGACAGAGTCAGAGAGAGAAAGGGAGAGGGARGGAGAAACGGA





GACACAGTGAGATGGGAGGCCAAGAGGCAGAGACAGAGGTAGAAAGACGGAGA





CAGAGAGAGAGGGAGGGGTTGGGGCAGGCAGAGACAGGACAGTTAGCCATCTG





CCACCACAGGGAGGCACAGGACGAGGGGCACAGCAGAGGAGCTCCCAGGGAGG





AGGAGGCTGAGCCGAGCCAGTGCCACCACTCTCGGACTGGCTCCGTCGGGGAA





GGAGCTGCCTAATGCACAGCTGGACAGGTGGG





F10
rs3093261
13
CTGCTGTTGGTGCACACACCGCATTGGTCTCTCCATACAAACATGCCTAGAGG





CGATGTCAGAGGGTGGAGACCAGGAGAGGCAGGAGTCAGACATCTGGTGCCAC





CAGGAAGGCCCTTCTCAGAGGACCAGGCTGTGCGTGGTGCCCGCCGTGGGAGG





CCAGCCTGGCGTTGGCATCCAGCATCATCAGTTTGTGCAGTYGGGTGGGGCTC





AGTGAGTGCCTCCTGTGTGCCAGGCACAATGACGCACAATGTGTGCACACCAG





GCTCATGTGCAGGTGGCTGCGAGACAGGGCGACCCATCAAGGCAGATGCACCA





TGAGGCAGTGGCCAGTGCTGTGGGTGTTAGGGGCATTGCTCCCCGGCCACTAC





GGCATAGCAGGCAGTGATCGCCACACTGGCCAAGCTTTAGACCATTTATTCCA





GAGACCCCAGAGGCAAAAAGCCCGGCTGCACC





SERPINE1
rs1799889
14
TGCCCCAAGTCCTAGCGGGCAGCTCGAGGAAGTGAAACTTACACGTTGGTCTC





CTGTTTCCTTACCAAGCTTTTACCATGGTAACCCCTGGTCCCGTTCAGCCACC





ACCACCCCACCCAGCACACCTCCAACCTCAGCCAGACAAGGTTGTTGACACAA





GAGAGCCCTCAGGGGCACAGAGAGAGTCTGGACACGTGGGG-/A/G





AGTCAGCCGTGTATCATCGGAGGCGGCCGGGCACATGGCAGGGATGAGGGAAA





GACCAAGAGTCCTCTGTTGGGCCCAAGTCCTAGACAGACAAAACCTAGACAAT





CACGTGGCTGGCTGCATGCCCTGTGGCTGTTGGGCTGGGCCCAGGAGGAGGGA





GGGGCGCTCTTTCCTGGAGGTGGTCCAGAGCACCGGGTGGACAGCCCTGGGGG





AAAACTTCCACGTTTTGATGGAGGTTATCTTTGATAAC





SERPINE1
rs1050813
15
CTTTTATTTTTATAGGAATAGAGGAAGAAATGTCAGATGCGTGCCCAGCTCTT





CACCCCCCAATCTCTTGGTGGGGAGGGGTGTACCTAAATATTTATCATATCCT





TGCCCTTGAGTGCTTGTTAGAGAGAAAGAGAACTACTAAGGAAAATAATATTA





TTTAAACTCGCTCCTAGTGTTTCTTTGTGGTCTGTGTCACCRTATCTCAGGAA





GTCCAGCCACTTGACTGGCACACACCCCTCCGGACATCCAGCGTGACGGAGCC





CACACTGCCACCTTGTGGCCGCCTGAGACCCTCGCGCCCCCCGCGCCCCCCGC





GCCCCTCTTTTTCCCCTTGATGGAAATTGACCATACAATTTCATCCTCCTTCA





GGGGATCAAAAGGACGGAGTGGGGGGACAGAGACTCAGATGAGGACAGAGTGG





TTTCCAATGTGTTCAATAGATTTAGGAGCAGA





SERPINA5
rs2069972
16
AGACAGAGCAGAGCAGAGGGAACCCTCTCCCTCCATATCCCATCCTCCAAAAT





GTGTCCCTTGATGTGGATGGGTAGACAGGATTCCTGCCCTGGCAGCCAGACCC





CTGCCTTGGGTCTGCACCTCCTCTCCCTCCTTCCTCTCCCCGTCATCCCTAAA





TCTTGTCCTCGAGCCACTGCCACCCTGTGTAAACCCTCATGYCCAGTCTTGGG





GGTGCCATCCCTTCTCTTTAAAGCTGAATGGACCAAACATACCCATTGAGTGT





TGGGTGGGGACATCTCTGGAAAGTCAGCACCTGGACCAGCTCCACCCCTCTCT





GAGGACACCTTCTTTCCCTTTCAGAACAAAGAACAGCCACCATGCAGCTCTTC





CTCCTCTTGTGCCTGGTGCTTCTCAGCCCT





IL6
rs2069840
17
AACCTTCCAAAGATGGCTGAAAAAGATGGATGCTTCCAATCTGGATTCAATGA





GGTACCAACTTGTCGCACTCACTTTTCACTATTCCTTAGGCAAAACTTCTCCC





TCTTGCATGCAGTGCCTGTATACATATAGATCCAGGCAGCAACAAAAAGTGGG





TAAATGTAAAGAATGTTATGTAAATTTCATGAGGAGGCCAASTTCAAGCTTTT





TTAAAGGCAGTTTATTCTTGGACAGGTATGGCCAGAGATGGTGCCACTGTGGT





GAGATTTTAACAACTGTCAAATGTTTAAAACTCCCACAGGTTTAATTAGTTCA





TCCTGGGAAAGGTACTCTCAGGGCCTTTTCCCTCTCTGGCTGCCCCTGGCAGG





GTCCAGGTCTGCCCTCCCTCCCTGCCCAGC





IL6
rs1800795
18
CAAAAAACATAGCTTTAGCTTATTTTTTTTCTCTTTGTAAAACTTCGTGCATG





ACTTCAGCTTTACTCTTTGTCAAGACATGCCAAAGTGCTGAGTCACTAATAAA





AGAAAAAAAGAAAGTAAAGGAAGAGTGGTTCTGCTTCTTAGCGCTAGCCTCAA





TGACGACCTAAGCTGCACTTTTCCCCCTAGTTGTGTCTTGCSATGCTAAAGGA





CGTCACATTGCACAATCTTAATAAGGTTTCCAATCAGCCCCACCCGCTCTGGC





CCCACCCTCACCCTCCAACAAAGATTTATCAAATGTGGGATTTTCCCATGAGT





CTCAATATTAGAGTCTCAACCCCCAATAAATATAGGACTGGAGATGTCTGAGG





CTCATTCTGCCCTCGAGCCCACCGGGAACG





IL10
rs1800872
19
TAAAATAGAGACGGTAGGGGTCATGGTGAGCACTACCTGACTAGCATATAAGA





AGCTTTCAGCAAGTGCAGACTACTCTTACCCACTTCCCCCAAGCACAGTTGGG





GTGGGGGACAGCTGAAGAGGTGGAAACATGTGCCTGAGAATCCTAATGAAATC





GGGGTAAAGGAGCCTGGAACACATCCTGTGACCCCGCCTGTMCTGTAGGAAGC





CAGTCTCTGGAAAGTAAAATGGAAGGGCTGCTTGGGAACTTTGAGGATATTTA





GCCCACCCCCTCATTTTTACTTGGGGAAACTAAGGCCCAGAGACCTAAGGTGA





CTGCCTAAGTTAGCAAGGAGAAGTCTTGGGTATTCATCCCAGGTTGGGGGGAC





CCAATTATTTCTCAATCCCATTGTATTCTGGAATGGGCAATTTGTCCACGTCA





CTGTGACCTAGGAACACGCGAATGAGAACCCACAGCTGAGGGCCTCTGCGCAC





AGAACAGCTGTTCTCCCCAGGAAAT





IL12A
rs2243154
20
AATCATTCCAATGCTCCCCATTGGTCTCCTCTTCTGAAAAAGGAAGGTAATAC





TAGAATCTACCTAAAAGGATCAGAGAAAGGGTAAAATGGAACAACTCGTGCAA





AGGGCTAGCGTTGCACCTGGCACATAGTAAGTGCACAATAAATGTAAGCACAT





TTTGAAATGTATTATTAGTCTTTGGGCTAAGCACCTGCACCRAATTTGTTACC





TCCTCTTTGCTGCTATTTCCTCATTGATGAAATTCAGAAAACGGTGGGACCTA





ATTAACTGTGTTATTGTGAAGATTAAATGACACAATACAGTGCCAGCACCTAG





TTATTACTCAACATAAATTTGTCACAGTTCTCACAAGACATCAGAACACCCGC





TGATGTGCTGTCCCCCATGGCACTCAGCATATTAAGTGTGGTCGGCACAAGCG





GCTGCCTGGTGTGAAGTATGAGGGCAAAAGGC





TNFRSF1A
rs4149577
21
TTCAGATCATTTCCATGACCATGGAAATGCTGTTTGGAGCCAGGCCCTGGAGA





TGGAGAGGAAGGTTCACACACTTGTGCGTGCAAGTTAAAGCCTGAATGAAGAT





TTAAAAAGTGTGTAGGACGGATGGGAGCAGGAGAGAGGCTAGAAGACACTTGC





AATAACCCAGGTGTGAGGCAACCCAGGAATGCGGAGAGGACYGAGAGATCACA





GGGGGAGGCCTCGCAAGATGAACTGACACATGGGATGGCGGCAGGGATAGGGA





TGGGGCCCTGGGGAGAGAGCGTGGCAAGTTCTCAGCATTCGTCCGGGAAGTCG





ATGGTGTGTCATTTGTCTAGGTGAGGAGATGGATGAATTCCGTCTGGGGCATG





TTAAGGGTCAGGGAAATGGTCATGTGGAAGGGTGCGCCTACCAAGCTGGAGGA





GAGGTGCTGCAACTTCTTTCTGCCTTTGTATC





VEGF
rs1413711
22
ACAGTTACCAGGCTTCCAGCTGGACAGCTTACCACTGCGGCTCCTGCAGGGAC





CCCCTGGATTCTGCACCTCAGCCCCCTCACCCATTCCCATGACACCCCCTGCC





TTCCCCCTGACAATATTCTCCCGGGACCCTCCACTCCTCCTGGGCCCCAAGGA





GGAAAGGGGACGGAAATTTCATACCCCTTCCAAGGCCAGGGRGCACAGGAGGG





GCGGTTCTAGGCAGGCAGGGGCCAGGTGTCCTTCTCTGGGGGCCTCTGAAGGT





CACACTGTGGCCAGGCAGCCACTCCTCCCCCTCCTCCCTACTTGGAGGCCTGT





AGCCAAGGCCTTTGTGCCAGGGTCTGAGGAACTTGCGGTGTTAGCAGCGACCC





CTGTCCATGGCTTTCCTCTTGCCTC





PROC
rs2069895
23
GCTGCCTGTGCTGGGGTGGGGAGGAGTAGAGGGCGAGAAGTTGGTGGGGARGG



(at position

GAAGCGGCGCCAAAAGAATACCCACAACATCTTGCACCTGGAAGGCAA



51)





PROC
rs2069898
24
ATACAAGCTGGTGCCTTCTGTGGTTGTGCATGGGGTCTTCATGCTTCCTGYCT



(at position

GAGTTCCCAGAAGCTTGTCTCTGCTTTTCTAGGCAGCTGCCACAGCCT



51)





PROC
rs2069904
25
ACTATAATATCTCTGGGCAAAAATGTCCCCATCTGAAAAACAGGGACAACRTT



(at position

CCTCCCTCAGCCAGCCACTATGGGGCTAAAATGAGACCACATCTGTCA



51)





PROC
rs1799808
26
TTATAATTAATGGTATTTTAGATTTGACGAAATATGGAATATTACCTGTTGTG





CTGATCTTGGGCAAACTATAATATCTCTGGGCAAAAATGTCCCCATCTGAAAA





ACAGGGACAACGTTCCTCCCTCAGCCAGCCACTATGGGGCTAAAATGAGACCA





CATCTGTCAAGGGTTTTGCCCTCACCTCCCTCCCTGCTGGAYGGCATCCTTGG





TGGGCAGAGGTGGGCTTCGGGCAGAACAAGCCGTGCTGAGCTAGGACCAGGAG





TGCTAGTGCCACTGTTTGTCTATGGAGAGGGAGGCCTCAGTGCTGAGGGCCAA





GCAAATATTTGTGGTTATGGATTAACTCGAACTCCAGGCTGTCATGGCGGCAG





GACGGCGAACTTGCAGTATCTCCACGACC





PROC
rs2069910
27
CTGCCAGGGCAGGCATGCGTGATGGCAGGGAGCCCCGCGATGACCTCCTAAAG





CTCCCTCCTCCACACGGGGATGGTCACAGAGTCCCCTGGGCCTTCCCTCTCCA





CCCACTCACTCCCTCAACTGTGAAGACCCCAGGCCCAGGCTACCGTCCACACT





ATCCAGCACAGCCTCCCCTACTCAAATGCACACTGGCCTCAYGGCTGCCCTGC





CCCAACCCCTTTCCTGGTCTCCACAGCCAACGGGAGGAGGCCATGATTCTTGG





GGAGGTCCGCAGGACACATGGGCCCCTAAAGCCACACCAGGCTGTTGGTTTCA





TTTGTGCCTTTATAGAGCTGTTTATCTGCTTGGGACCTGCACCTCCACCCTTT





CCCAAGGTGCCCTCAGCTCAGGCATACCC





PROC
rs2069915
28
TCTAGGATGCCTTTTCCCCCATCCCTTCTTGCTCACACCCCCAACTTGATCTC





TCCCTCCTAACTGTGCCCTGCACCAAGACAGACACTTCACAGAGCCCAGGACA





CACCTGGGGACCCTTCCTGGGTGATAGGTCTGTCTATCCTCCAGGTGTCCCTG





CCCAAGGGGAGAAGCATGGGGAATACTTGGTTGGGGGAGGARAGGAAGACTGG





GGGGATGTGTCAAGATGGGGCTGCATGTGGTGTACTGGCAGAAGAGTGAGAGG





ATTTAACTTGGCAGCCTTTACAGCAGCAGCCAGGGCTTGAGTACTTATCTCTG





GGCCAGGCTGTATTGGATGTTTTACATGACGGTCTCATCCCCATGTTTTTGGA





TGAGTAAATTGAACCTTAGAAAGGTAAAG





PROC
rs2069916
29
CCCCAACTTGATCTCTCCCTCCTAACTGTGCCCTGCACCCAAGACAGACACTT





CACAGAGCCCAGGAGACACCTGGGGACCCTTCCTGGGTGATAGGTCTGTCTAT





CCTCCAGGTGTCCCTGCCCAAGGGGAGAAGCATGGGGAATACTTGGTTGGGGG





AGGAGAGGAAGACTGGGGGGATGTGTCAAGATGGGGCTGCAYGTGGTGTACTG





GCAGAAGAGTGAGAGGATTTAACTTGGCAGCCTTTACAGCAGCAGCCAGGGCT





TGAGTACTTATCTCTGGGCCAGGGACTGTATTGGATGTTTTACATGACGGTCT





CATCCCCATGTTTTTGGATGAGTAAATTGAACCTTAGAAAGGTAAAGACACTG





GCTCAAGGTCACACAGAGATCGGGGTGGGGTTCACAGGGAGGCCTGTCCATCT





CAGAGCAAGGCTTCGTCCTCCAACTG





PROC
rs2069918
30
GGAGTTGTGGGGGTGGCTGAGTGGAGCGATTAGGATGCTGGCCCTATGATGTC





GGCCAGGCACATGTGACTGCAAGAAACAGAATTCAGGAAGAAGCTCCAGGAAA





GAGTGTGGGGTGACCCTAGGTGGGGACTCCCACCAGCCACAGTGTAGGTGGTT





CAGTCCACCCTCCAGCCACTGCTGAGCACCACTGCCTCCCCRTCCCACCTCAC





AAAGAGGGGACCTAAAGACCACCCTGCTTCCACCCATGCCTCTGCTGATCAGG





GTGTGTGTGTGACCGAAACTCACTTCTGTCCACATAAAATCGCTCACTCTGTG





CCTCACATCAAAGGGAGAAAATCTGATTGTTCAGGGGGTCGGAAGACAGGGTC





TGTGTCCTATTTGTCTAAGGGTCAGAGTC





PROC
rs2069919
31
AGACCACCCTGCTTCCACCCATGCCTCTGCTGATCAGGGTGTGTGTGTGACCG





AAACTCACTTCTGTCCACATAAAATCGCTCACTCTGTGCCTCACATCAAAGGG





AGAAAATCTGATTGTTCAGGGGGTCGGAAGACAGGGTCTGTGTCCTATTTGTC





TAAGGGTCAGAGTCCTTTGGAGCCCCCAGAGTCCTGTGGACRTGGCCCTAGGT





AGTAGGGTGAGCTTGGTAACGGGGCTGGCTTCCTGAGACAAGGCTCAGACCCG





CTCTGTCCCTGGGGATCGCTTCAGCCACTAGGACCTGAAAATTGTGCACGGCC





TGGGCCCCCTTCCAAGGCATCCAGGGATGCTTTCCAGTGGAGGCTTTCAGGGC





AGGAGACCCTCTGGCCTGCACCCTCTCTT





PROC
rs2069920
32
TCACATCAAAGGGAGAAAATCTGATTGTTCAGGGGGTCGGAAGACAGGGTCTG





TGTCCTATTTGTCTAAGGGTCAGAGTCCTTTGGAGCCCCCAGAGTCCTGTGGA





CGTGGCCCTAGGTAGTAGGGTGAGCTTGGTAACGGGGCTGGCTTCCTGAGACA





AGGCTCAGACCCGCTCTGTCCCTGGGGATCGCTTCAGCCACYAGGACCTGAAA





ATTGTGCACGCCTGGGCCCCCTTCCAAGGCATCCAGGGATGCTTTCCAGTGGA





GGCTTTCAGGGCAGGAGACCCTCTGGCCTGCACCCTCTCTTGCCCTCAGCCTC





CACCTCCTTGACTGGACCCCCATCTGGACCTCCATCCCCACCACCTCTTTCCC





CAGTGGCCTCCCTGGCAGACACCACAGTG





PROC
rs2069924
33
CCCCTCAGAGCAGGGTGGGGCAGGGGAGCTGGTGCCTGTGCAGGCTGTGGACA



(at position

TTTGCATGACTCCCTGTGGTCAGCTAAGAGCACCACTCCTTCCTGAAGCGGGG



501)

CCTGAAGTCCCTAGTCAGAGCCTCTGGTTCACCTTCTGCAGGCAGGGAGAGGG





GAGTCAAGTCAGTGAGGAGGGCTTTCGCAGTTTCTCTTACAAACTCTCAACAT





GCCCTCCCACCTGCACTGCCTTCCTGGAAGCCCCACAGCCTCCTATGGTTCCG





TGGTCCAGTCCTTCAGCTTCTGGGCGCCCCCATCACGGGCTGAGATTTTTGCT





TTCCAGTCTGCCAAGTCAGTTACTGTGTCCATCCATCTGCTGTCAGCTTCTGG





AATTGTTGCTGTTGTGCCCTTTCCATTCTTTTGTTATGATGCAGCTCCCCTGC





TGACGACGTCCCATTGCTCTTTTAAGTCTAGATATCTGGACTGGGCATTCAAG





GCCCATTTTGAGCAGAGTCGGGCYGACCTTTCAGCCCTCAGTTCTCCATGGAG





TATGCGCTCTCTTCTTGGCAGGGAGGCCTCACAAACATGCCAT





PROC
rs5937
34
CTATGCCCATATGACCAGGGAACCCAGGAAAGTGCATATGAAACCCAGGTGCC





CTGGACTGGAGGCTGTCAGGAGGCAGCCCTGTGATGTCATCATCCCACCCCAT





TCCAGGTGGTCCTGCTGGACTCAAAGAAGAAGCTGGCCTGCGGGGCAGTGCTC





ATCCACCCCTCCTGGGTGCTGACAGCGGCCCACTGCATGGAYGAGTCCAAGAA





GCTCCTTGTCAGGCTTGGTATGGGCTGGAGCCAGGCAGAAGGGGGCTGCCAGA





GGCCTGGGTAGGGGGACCAGGCAGGCTGTTCAGGTTTGGGGGACCCCGCTCCC





CAGGTGCTTAAGCAAGAGGCTTCTTGAGCTCCACAGAAGGTGTTTGGGGGGAA





GAGGCCTATGTGCCCCCACCCTGCCCACC





PROC
rs2069931
35
AGCATAATCTATGGCCAGTGCCCCCGTGGGCTTGGCTTAGAATTCCCAGGTGC





TCTTCCCAGGGAACCATCAGTCTGGACTGAGAGGACCTTCTCTCTCAGGTGGG





ACCCGGCCCTGTCCTCCCTGGCAGTGCCGTGTTCTGGGGGTCCTCCTCTCTGG





GTCTCACTGCCCCTGGGGTCTCTCCAGCTACCTTTGCTCCAYGTTCCTTTGTG





GCTCTGGTCTGTGTCTGGGGTTTCCAGGGGTCTCGGGCTTCCCTGCTGCCCAT





TCCTTCTCTGGTCTCACGGCTCCGTGACTCCTGAAAACCAACCAGCATCCTAC





CTCTTTGGGATTGACACCTGTTGGCCACTCCTTCTGGCAGGAAAAGTCACCGT





TGATAGGGTTCCACGGCATAGACAGGTGG





PROC
rs777556
36
TTCCCTCCTTATTTCATCTTCATTCCTGGAAAGTATTTTTGCTAAATTTAACA





AAATTCTAGGTTTGCAGTTAGTAGATTCTATTGTTTCTGTTGTGAAGTCAGCT





GTTAGTCTAATCATTACTTTTCTGAACGTATTTTTTTTCCCTTGTGGCTGCTT





TTAGACTTTCCTATTTTCGTTGGTTTCTTGCAGTTTTATTAYGATGTAGTTAG





GTGTAGATTTCTTTTTGTTTATCTTCCTTGCAATGTGTACAACTTCGAGAATC





TATGGTTTAGGTATCATTTCCTTTTAAAATACTGCTTCTGCTATACATGTAAC





TTTCCCTCTCCTTTCATTATTCCAATTTTTGCGAAAACTTTTCGATGTATAGT





CTATATCTTTTCCTTTCTTCTGTAATACTGTATCTTGAAGCTTCATTCCAGAT





CTCTCCTTCTAAGCCATCTTCCAGTT





PROCR
rs1033797
37
CTCCTTTCACCAAGTACTCAAAGTAGGAGTCCACGCCAGCCCCGATGCCTGCG





TCCTGGGCCACCCACTTGCCAGTGAGCACATCAATGTGGTTGCCGACCTGAGA





GAGAGAAAGACACACGGTCCCAACGGGAAGGCCGATGGCCAAAGAAGGATCTA





CTCACCCCCAACCCTGACTGCCCAGGGAGATGCAGGGCAGGYGCCCCAGTGCT





TCTTGGGAAACATGCAGACCCTGAGAGGGAAGGGCAATGCTGGATCATGGCCA





GCCTTCCTGTACATCTGCATAGTAGAGATGCATCTCATGCACATTTATGAGGA





CTTAATTATACACATTGAGCAAAAAATGAAAAAGAAAAATGATTTGGAGTGTT





TATGTCCTGCCTAGAGTGAGTGTGAGATG





PROCR
rs1033799
38
AAAAAGAAAAATGATTTGGAGTGTTTATGTCCTGCCTAGAGTGAGTGTGAGAT





GGGAGATGAGAATTTGCTGTTGCCGCAATCTGTCTGATTTCTCAGCACCCAGC





ATGTGATTCCACTATCTGAAGACACAGACGTGCTTTACGTATTTCCATAAATT





AACTCAATAAGAACATCCACCAAGAAGCTGACAGAGTGGTTMTAAGGAGAGAA





ACCGAATAGCTGGAGACAGGGGCAAAAGGGGACTTCACCAATGTCACTGAGTA





CCCTTTTTTGTATCCTTTGACTTTTTTTTTTTTAATTGTTCAGTCTCTGTAGA





GACTGTGAAAAATTGGCAATGCCGGCCAGGCGCGGTGGCTCATGCCTATAATC





CCAGCACGTTGGGAGGCTGAGGGGGGCAA





PROCR
rs2295888
39
CTGCCGTACAGGTGACAGGGGTCTCTCCTGGGTTCACGCCATGAAGTAAGTTC





ACTGTTCCATATGGCATGCCAGTGGGGGTCTGAAAGGCTGAACAATCGACAAA





TTATGATCCCGGACAGGAGCAGGGGGATAGGGATAGTTCTGATACACGCCCAA





AGCCTGGGACCTTAGCCAGCACTTCCCTCTTTCTCCTGGGTRTCCTGCTAGAG





TCTGAGCCAGAGAAAGATAAATGTCATAACTGGAGGGCCCTGAGCAGCCACCC





AGCCCAGATGCTGTCAAACACTGCTCTGCATAACCTTGGGTTCCTGCTCATCA





TGAGGGGGCAGGGAGCAGGCTGTGCTCCACACACACTCGCTTTAGCTAGAGAG





CTTTACCTATTTTTATTTATTTTACACTA





PROCR
rs867186
40
CTGGGGGTTTGGGACAGAACACACGCAGCTTCAGTCAGTTGGTAAACGGGTCC





CTTTCCTCTGGGGCAGAAACGCTTTGGGGTTTGACTCAAATCATGGACTCCTT





GGGGGCCTATTCTTCGGGCTAACTCTTTGCATGTTCTGCAGGGAGCCAAACAA





GCCGCTCCTACACTTCGCTGGTCCTGGGCGTCCTGGTGGGCRGTTTCATCATT





GCTGGTGTGGCTGTAGGCATCTTCCTGTGCACAGGTGGACGGCGATGTTAATT





ACTCTCCAGCCCCCTCAGAAGGGGCTGGATTGATGGAGGCTGGCAAGGGAAAG





TTTCAGCTCACTGTGAAGCCAGACTCCCCAACTGAAACACCAGAAGGTTTGGA





GTGACAGCTCCTTTCTTCTCCCACATCTGCCCACTGAAGATTTGAGGGAGGGG





AGATGGAGAGGAGAGGTGGACAAAGTACTTGGTTTGCTAAGAACCTAAGAACG





TGTATGCTTTGCTGAATTAGTCTGATAAGTGAATGTTTATCTATCTTTGTGGA





AAACAGATAATGGAGTTGGGGCAGGAAGCCTATGGCCCATCCTCCAAAGACAG





ACAGAATCACCTGAGGC









The Sequences given in TABLE 1C (SEQ ID NO:1-40) above and in TABLE 1D (SEQ ID NO:41-243) would be useful to a person of skill in the art in the design of primers and probes or other oligonucleotides or peptide nucleic acids for the identification of protein C pathway associated gene SNP alleles and or genotypes as described herein.


TABLE 1D below shows the flanking sequences for a selection of protein C pathway associated gene SNPs in LD with the tagged SNPs in TABLE 1C (unless the LD SNP is already in TABLE 1C), providing their rs designations, alleles and corresponding SEQ ID NO designations. Each SNP is at position 201 of the flanking sequence, unless otherwise indicated, and identified in bold and underlined.













TABLE 1D







SEQ






ID


GENE
SNP
NO:
FLANKING SEQUENCE



















FGB
rs2227412
41
CTGATGTCTCAGCTCAAATGGAATATTGTCGCACCCCATGCACTGTCAGT






TGCAATATTCCTGTGGTGTCTGGCAAAGGTAACTGATTCATAAACATATT





TTTAGAGAGTTCCAGAAGAACTCACACACCAAAAATAAGAGAACAACAAC





AACAACAAAAATGCTAAGTGGATTTTCCCAACAGATCATAATGACATTAC







R
GTACATCATAAAAATATCCTTAGCCAGTTGTGTTTTGGACTGGCCTGGT






GCATTTGCTGGTTTTGATGAGCAGGATGGGGCACAGGTAGTCCCAGGGGT





GGCTGATGTGTGCATCTGCGTACTGGCTTGAACAGATGGCAGAACCACAG





ATAGATGTAGAAGTTTCTCCATTTTGTGTGTTCTGGGAGCTCATGGATAT





TCCAGGACACAAAAGGTGGAGAAGAGCTTTGTTCATCCTCTTAGCAGATA





F2
rs3136512
42
GGAGATTTGGATAAAAGCAACTATCATTATTATCCTCATCAGACTTGTAG





GTCTAACTTTTTAATTTTTTAATTTTTAATTTAAATTTTTTTCTTGGTCT





TTTATCATTAATTAATTTTTTCGAGACAGGGTCTCACTCTGTTGCCCAGG





CTGGAGTGTGGTGACATGATCACGGCTCACTGCAGCCTTAACCTCCCAGG







Y
GCAAGTGATCCTCCTCTCTTAGCCTCCCGAGTAGCTGGGACTCCAGGCA






TGTGCCACCATGCCCAGCTAATTTTTTGTAGAGAGAGGGTTTTGCCATAT





TGCCCAGGCTGGTCTTGAACTGCTGAGCTCAAGTGATCCACCCGGCTTGG





GCATGAGCCACCTCCCCTGGTCTGGTCCAACTTTTTAAAAGCATTATTCT





GCCTGTTGGGTGGAGAATAGACTGTAGGTGGGCAAAGAATGAAGGAAACT





F2R
rs37245
43
AAATACAAAATTAGCTGGGTATGGTGGTGCACACCTGTAGTCACAGCTAC





TTGGGAGGCTGAGGCACCAGAATTGCCTGAACCTGGAAGGCAGAGGTTGC





AGGGAACTGAGATTGTGCCACTGCACTCCAGTCTGAGCAACAGAGTGAGA





CTCTCTCTCAAAAAAAAAAAGAGGTGGAATTGGGAGTTGACCACAGGCCT







R
TCTCTCCGAAGTGCAGGCTTTCTCTAACACCCCCTATAGAAAGGAAGCC






ATCTAGACTCCCAGCACCTCTTACAGTAGAGAAGTAACCCCACTGTGCTC





CCTAGTACAGTATGGATTTACCTATTTTTGATAATTCATCAAAATATAGA





AGCAAAGTCTGTGCCCTATCGCCTTGGTAGCTCAGGCCCAGCACAGGGAG





GTATTTAGTGAGCATTTATGCA





F2R
rs2227744
44
GTAATGGGTTAAAATGATAAATTGTAAAATCAATGACGTCTTAGGAATAA





TGAAAAATAGTTTAATAGTGAATGAAGAACTATGTAATTTTAACTGTTCA





CATTTACTCTTGGGTATGTTTCCAGAGGATAACTGAACGGGGATAGATTT





TAAAAAGCTTTATTTAACTGGGTACTTCCGCAATTTAGTGATCAACTTCT







R
TGTACAACAAGGTACTGTCCTTTGAGGATGATGGGAGAATACAGGGAAG






AACGAAATCGCCTCTGATCGTACTTTCTCCACGGATGTAAGTGTCCGGGC





TCTAGTGGGGGAATGATACTCTTCGTGCGAAATTCACTTTTAAAAAAGGC





TTAGAAAACTGACCACCGGCTCTCAGCTGCAGCTTATCAACCACAGAACT





C





F2R
rs27135
45
TTTGTTGGAAGTTTTTTTCTTGCACATTTTACAGGCGAGAAAAGTGATGT





AGAGAAAAGCCCAGGCAGTCCCTTGGCATGTTTAGCAGAGAATCAGTACC





AGCAGCCCCCGGCCCGGCCTTGTGTCCAGGAGGTGCGCAGGGTGCGAGAT





ATATGGTGACAATAGCAGAGGCTCCGCGTGGTGGCGGGGGAGGGGACATG







R
AGAGGATTTTGTTGTTACCTAGAACCCATTCCTTCTAAGTGAGTTGAAG






AGAGAGATCCCTCCCCAGGATCGGGCTCCCTCGAACACTGTGGGATCCCA





GTATTTCTTAACGAGATTTCTGATCCACTGCAAGAAGGTTGCTCCCCTAG





AATATTTTCCCCACTAGTAGTCTATTTTTAAGTATCTGGCCACTTGACCA





AATAAATAAATTTGATTAATTTATTTGGTCAAATATTTTCTGTATCCCTT





TCCCCA





F2R
rs37243
46
TAAAATCACTAATAAAATCAACCCAAGATAGGTTTACTTTCTATTACCAC





CATGCATTGACAATTCTAAGCATTGTCTGTCATAAGGTAGTGGTGCTGGG





ACTCTGAGGCATCCAACAGTGCCTCCCATCCTTGAACCGCCACCGCTGTG





ATAGAGTTTATTGTCCAGGATTACCAGCTCTGTGTGCCAAGAGGGGCGGT







R
AAGCCCTCCCAGGGCTGGCCCTGACCACCAAGCTGAGCCTTCCTCCAGC






ACTTCCCGACTTTTTGTTCCCACTCATTTTGGCATTTCCTGCCTTGTCAC





TTTGTGTGTGTGTCTCATTCTCCCAACTAAGATTATAAAGTTTTATTTAT





CCCCATGGTGACTAAAACAAATGTTCACTCAGCAGATAGTTGTTGAGAAA





F2R
rs27593
47
CCTTGGCATGTTTAGCAGAGAATCAGTACCAGCAGCCCCCGGCCCGGCCT





TGTGTCCAGGAGGTGCGCAGGGTGCGAGATATATGGTGACAATAGCAGAG





GCTCCGCGTGGTGGCGGGGGAGGGGACATGGAGAGGATTTTGTTGTTACC





TAGAACCCATTCCTTCTAAGTGAGTTGAAGAGAGAGATCCCTCCCCAGGA







Y
CGGGCTCCCTCGAACACTGTGGGATCCCAGTATTTCTTAACGAGATTTC






TGATCCACTGCAAGAAGGTTGCTCCCCTAGAATATTTTCCCCACTAGTAG





TCTATTTTTAAGTATCTGGCCACTTGACCAAATAAATAAATTTGATTAAT





TTATTTGGTCAAATATTTTCTGTATCCCTTTCCCCAAGAGCAGCACAGAT





GAGTTGTTTTTAGCCTGTAAAGGCGCTAATTAGAAAGTGAGAAAAGTGTT





TTTGAA





F2R
rs37242
48
CATGGCAGGAGTGGTGCATGTTAATATGGACAGTGCTGGTGTAGACAGAA





AGGCAGGTGGATGAACTTGGCTAGTTTATCAACACTGGATTCTGGAACCA





CTTTGGGAGGGAAAGAAGAAAGGAGTATGATAGAGGAAAAGGAGCGCTTG





CTAAGTGCCATATTCCATGTCAAGCCCTGGGCCAGAAGGAATTTTCACTT







R
GATTGTCTCATTTCACCTTGTCAAAACACCTTGTTAAGGTGGGTATTTA






TCCCCTTTTGCTGATTCTGCAACTAAGACCCAGAGACAGCGGCTAAGCAA





GTGGTGGCGGGTGGGGCAGGGAAGGGGCAGTCCACCCACCCTGGGTGCAA





GCAATTAGGAATAAGTGGGGCTTTGTCTTTAGAAAATTTAAAATCACTAA





TAAAATCAACCCAAGATAGGTTTACTTTCTATTACCACCATGCATTGACA





F2R
rs253061
49
GCTAGTTTATCAACACTGGATTCTGGAACCACTTTGGGAGGGAAAGAAGA





AAGGAGTATGATAGAGGAAAAGGAGCGCTTGCTAAGTGCCATATTCCATG





TCAAGCCCTGGGCCAGAAGGAATTTTCACTTGGATTGTCTCATTTCACCT





TGTCAAAACACCTTGTTAAGGTGGGTATTTATCCCCTTTTGCTGATTCTG







M
AACTAAGACCCAGAGACAGCGGCTAAGCAAGTGGTGGCGGGTGGGGCAG






GGAAGGGGCAGTCCACCCACCCTGGGTGCAAGCAATTAGGAATAAGTGGG





GCTTTGTCTTTAGAAAATTTAAAATCACTAATAAAATCAACCCAAGATAG





GTTTACTTTCTATTACCACCATGCATTGACAATTCTAAGCATTGTCTGTC





F2R
rs37244
50
ATGCCCTCCCCATATCCCATACCCGCCACGTTCATGTTTAATTAAAAACA





GCTACCCTCTGTGGAGTACTGACTACAGCTGACATCCTTCTTAGGGACGT





TACAATACTATCTTATTTATTTCTCACAACAGCCCTTTGAGTAGATGTCA





TCCTCATTTTACTGGTTATAAAACAGAGACCCAGAATGGTTAAGTCACAA







K
TTGAGAAAGAGGTGGAATTGGGACTGGGTGCGGTGGCTCATGCCTGTAA






TCCCAGCACTTTGGGAGGCCAAAGCAGGGGGATCACTTGAGGCCAGGAGT





TTGAGACCAGCCTGACCAACATGGTGAAACCCTGTCTCTACTAAAAATAC





AAAATTAGCTGGGTATGGTGGTGCACACCTGTAGTCACAGCTACTTGGGA





GGCTGAGGCACCAGAATTGCCTGAACCTGGAAGGCAGAGGTTGCAGGGAA





CTGAGATTGTGCCACTGCACTCCAGTCTGAGCAACAGAGTGAGACTCTCT





CTCAAAAAAAAAAAGAGGTGGAATTGGGAGTTGACCACAGGCCTGTCTCT





F2R
rs37246
51
AAGTGCAGGCTTTCTCTAACACCCCCTATAGAAAGGAAGCCATCTAGACT





CCCAGCACCTCTTACAGTAGAGAAGTAACCCCACTGTGCTCCCTAGTACA





GTATGGATTTACCTATTTTTGATAATTCATCAAAATATAGAAGCAAAGTC





TGTGCCCTATCGCCTTGGTAGCTCAGGCCCAGCACAGGGAGGTATTTAGT







R
AGCATTTATGCACGGACTGTGGTATTCTCTCATTTACTTTCGCTAACAG






ATGATAAGGCAGGCTCTGAAAAGATCCCTGCTCATGAATACACTAATTAA





TCAGATGTTACAAGAGATATTGCTAGTAAACCTAAACAGAAAGACAGAAA





ACTGAGCAGTGGTTCTACCGTAAGCAGACCAGAAAGCTCTATAAAGCCTG





F2R
rs37249
52
GCACCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGAGA





TTTTATCACACTGCCCAGGCTGTTCTCAAACTCCTGGGATCAAGCGATCC





ACCTACCTTGGCCTCCCAAAGTGCTGGAATTCTAGGCGTGAGCCACCATG





CCCAGTCTTTAACTAGTTTTCGTGAGCACCTAGGCTCCCCTTCCATTGCG







R
ATACTCACAAAAACATCCTTGTTAGAAGAGTTATTAGGACTCAGGGCCT






TGGTTTATTTTTGACTATGATACTAGTGTTGAGGACTCCATAGTTTTACC





ATTCATAATTTTCTGTTTGTTTCCTTTTTTGCGATTTCTTTCATTCTGCC





TTTTTCTTTCTCTTGCTTGTGCCTAAAACTGTCGTCATAAATAGCTCTGT





F3
rs3917615
53
CTAAAAGAAAGATATTTAACAAAATGGTTGAGTACAGATCCAAGAGTCAA





ATAGCTGTCTGGTTCAAAGTCCAGCTGTGTGATTTTGAGCTAGTCACCCA





ATCTCACTTTGTCTCAGTAGCCTTATTTGTAAAAACAAGGCAAATTACAG





AGCCATCCCCTGGGTTGCTATGAGGACTCAAACATGCATCCCAAGTGCTC







R
GTGTTGCTAGGTATGATGGCTCACACCTGTACATTCAGCACTTTGGGAG






GCCGAAGCAGAAGGATCAGCCTGGGCAACATAGCAGGACCCCATCTCTAC





AAAACAATGTTTAAAAAAAAGCAAAGTGCTCAGCACAGTGACTGCATCAT





TAGGATTGATTGTAGGGCTCCTGATGTTAGCACAGAACACCACAGCCAGG





AAGCAGTCTATCTTGTTGGGTGCAAATTGTAACATTCCATTTATGTTTCT





F3
rs841695
54
AGATGACGAGGATGAACACCTTTATGATGATCCACTTCCACTTTATCAAT





AGTAAATATATTTTCTCTTCCTTATAATTCTTTCTCTTCCTTCCTTCTTT





CTTTTCTTTTCTTTTCTTTTTTTTCTTTCTTTCCCTTTCTTTTTTAGACA





GAGTCTCGCTCTGTCACCCAGGCCGGAGTGCAGTGGCGCAATCTCAGTTC







R
CTGCAACCTCCTCCACCTGGGTTGAAGTGATTCTCCTGCCTCAGCCTCC






CAAGTAGCTGGGATTACAGGCACCCACAACCACGCCTGGCTAATTTTTGT





ATTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAAC





TCCTGACCTCAAGTGATCCACCCGCCTTAGCATCCCAAAGTTCTGAGATT





ACAGGCACGAGCCACCATGCCCAGCCTCTTTTCCTTATAATTTTCTTAAT





F3
rs2794470
55
ATGATGATCCACTTCCACTTTATCAATAGTAAATATATTTTCTCTTCCTT





ATAATTCTTTCTCTTCCTTCCTTCTTTCTTTTCTTTTCTTTTCTTTTTTT





TCTTTCTTTCCCTTTCTTTTTTAGACAGAGTCTCGCTCTGTCACCCAGGC





CGGAGTGCAGTGGCGCAATCTCAGTTCACTGCAACCTCCTCCACCTGGGT







Y
GAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGCAC






CCACAACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGATGGGGTTTC





ACCATGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAAGTGATCCACCC





GCCTTAGCATCCCAAAGTTCTGAGATTACAGGCACGAGCCACCATGCCCA





GCCTCTTTTCCTTATAATTTTCTTAATAACATTTTCTTTCCTCTAGCTTA





F3
rs1144300
56
TTAATAATATTATTAATAGTGGTCATGAGAGAATATATGTATAACATGTT





ATTATGTAGACTCACTATATAGACTCTATTCTACATAGAATATAGAACAT





TATATAACAAACAACTATAATAAGTAGACTATAGTAAACAACCTCACTTT





GTCTCAGTTGCCTCATCTTGATGGAAAACTGCTCTTTCTCTCCTGTTACC







Y
TGACAGAGAGCGTCTACATTCTAAAAGAAAGATATTTAACAAAATGGTT






GAGTACAGATCCAAGAGTCAAATAGCTGTCTGGTTCAAAGTCCAGCTGTG





TGATTTTGAGCTAGTCACCCAATCTCACTTTGTCTCAGTAGCCTTATTTG





TAAAAACAAGGCAAATTACAGAGCCATCCCCTGGGTTGCTATGAGGACTC





AAACATGCATCCCAAGTGCTCGGTGTTGCTAGGTATGATGGCTCACACCT





GTACATTCAGCACTTTGGGAGGCCGAAGCAGAAGGATCAGCCTGGGCAAC





F3
rs841697
57
TCAGAACATTTCCATGGAATGAATATCACCGGTGACGGTTTGTGCTAAGG





CTTAAGCCAATAACATTTCCCAACCACCACTGAAAACTGTTAGCAAAGGT





GAAAAATGCAGTTGGAGTTCCAAGTAGGGGCTTCTGCACAGCAGTAGTGT





CCTGCGGCTGGAGCCAGGCTGCAGTAGTGAGAGCAGTCGGGAGGGAAGAG







R
GGCAGCTGCTTAAGATGCTAACTGTAGGGAGGGAAAACAGGCAGAGAGG






AAGGCCAACTGAGGAGATGCAGTGGGCAAGACTTTCCTTCTTCCTCCCGC





TTTGGAGCCTCCCATCAGACTGTGGCAGAGCCACCTGAGGGATGGTGGTG





TGTGGATACTGGGTAGACTTTGGTTCCAGACCTGACATGGGCACTCACCA





TCAGTGTAGTCATGAATAAATCCCTCACTTCTCAGAGCAACAGTTTCCTC





F3
rs762485
58
TTCAGATTTCACCAATTGAGAATTAGTAAGTAATTTCTCTGATACAGGCC



(at position

TGAAGTTTACCTTAGTAAACACTTTACTTCCATATGGTAAAAATTAGATT



648)

TTGGGAGGAATGCTTACCTCCTAAATATATTCAATCTAATATTTGAGGAC





ACATGGGAATATATTTATGATTCATCTGCTTTTTAAACATAAGCCTTTGT





TAACTGTAAGTTCTTGAACTTTATAAGGCTGCTGTTATTTAAATGAGCAC





AGCTCCTGATCTGCAAACAGCAGAGCGCAGGGCTACAGCTTGGGGGATGC





CAGCCGACTCAGGGTGGTCCTGTGGACTGAACAATCTCTTGCTGCTGTAC





TGGAGGGCCTGGGAGCTTTTCCATCAGCCTCGGCCTGAGGTGTGCACTCT





TCTCCTGCCCACCCCAGGAATAAATGAGATTCCTGGTTAAAAAGGACCAG





AGCAGTCATTTTACAGTTGAGGAAACTGTTGCTCTGAGAAGTGAGGGATT





TATTCATGACTACACTGATGGTGAGTGCCCATGTCAGGTCTGGAACCAAA





GTCTACCCAGTATCCACACACCACCATCCCTCAGGTGGCTCTGCCACAGT





CTGATGGGAGGCTCCAAAGCGGGAGGAAGAAGGAAAGTCTTGCCCACKGC





ATCTCCTCAGTTGGCCTTCCTCTCTGCCTGTTTTCCCTCCCTACAGTTAG





CATCTTAAGCA





F3
rs696619
59
GAGGTGGGGAGGAATCCCAATGTATACATTGCCCTTAAGCAGTGTTTGAT





TCATTCATCTTTGGACTCCATGAATCGAAATCTGGTAGAATACATGATCT





TAGTGGAGGAGGCCAAATGCGTGACTCACTGAGCCTGGCAGAGCAGAAAT





ACTCTGCTGTCTGCACCCTCTGGGTCTGGTGTGGCTCTGCTTCTTGGTGC







Y
TCAACTCTGACTGGCAGCTGTCCCCAGGAGGCGATAATTCAGCATGTTC






AATCTAAAGGTTATGACTTCCTTGATGGTTTTCACCATATTCTTGGCAAG





TTTTTGGTTTTTGAAATGTTCTAGGAGGCTTGGTAGAGATCTTATGAAAT





AGAGAATAGCTGCTGTGGAAATTATTTTAATGCTAATTACATAAAAGTAC





AAAAGTAGCACTAGCTAAAACAAAAGGTATTTTGCTGTTCTGTTTTGTTT





TAGCTTGTGCCAGGCCTTTTACAGCATTAGGA





F3
rs3761955
60
TGTTTCCTCTCTCCTTCTTTCCCACGTTTTCCCAGGGAAGTCAGTCTTGC





ATTTTAATGCATACTATATACATATCTCGTTTAGCTTACTGAACCACTTG





TTTTAACAGAATAAAACTGTGCAAAATTTTAATTTTCCTCCTTTGCCTGA





ACTGAAATAGCACATCCAGGTTTAGCCCTTGTAGACTTTCCTTCCTCGAA







R
CAGAAAGTTGCCCTTGATGATTTCCTCTTTGAGCTCTCTGCCAGCTCTG






AAACCCACAAAATTTATGTTTGCAAAACTAAGCCATGCAATCCTCTTTTT





ATGCAGGCTCTAGCCTGAGTCATTTTCCCTAAGAGATCTTCAGCTCCACC





TGGGATGTGATTCTTTGCTCTCTGGGATTGAAGGTAGCTGAAGAGAAATA





GTTACACTTCAGGTTTGTTACAAGACCCAAGAAATTGTTGCAATTCCACT





TGGAG





F3
rs958587
61
GCCACAGGGTTCTCATCCATAAAAGAATGTCTGTGAGGTTCTCCCATCCT



(at position

CTGACATCCTAAAATCCAATGAGAAAGGGACTGGTCAAGCCAGAGAGATT



472)

ATTGTTATAGTTTAGTAACTTTTTGAACTTCTCAGAGCCTCCAAGATAGA





TCATGGAGGAGGGAACTGTTAACTGCTAAGCTTGACTTTACTGACAGGAG





TAAAAAAAATTGTGTTAAGGTTAGGGAATAATTTTAACAGTCAATTTGTT





CTTGTGAACAAATTTCAACAGTGAAATTTTAGATATGTACTTTTTAATGG





TGCCAAGCAGCAGTTATTATAGATCAACTGCTGTTTGGCACCATTAAAAA





GTACACTTCGCACCGTCAAAAAGTAGATCTGGCCACAATTAGATCAGTCA





GGGAAAAACACTTCGCAATGAAATATTATTTACCACGTTTTCTTCCTCCC





TCTTCTTGAAAATAGTAATGAYTTTAGCATTTTTAAATCTTGAAGAATGT





CATTCCGTACTGACTAAAAAGCCTGTGCAAACACCCAACATCTTCTCTTT





CCTGTCTATTT





F5
rs2187952
62
ACATTCTCTTTTGCTCTTAACGGAATGGAAATCTTAGAAATGTTGATGGG



(at position

ACAATGACATGAATCATGAAAAGAAAGGAATAGTGGGAATACRAATATTA



93)

GAAAGCCAATGTTTTGTGGATGTTTGAAACTCTCATATACATTCATAGGG





CTTACCCCACTGGTATGGGCAACAGGTAACTCTGGTAGTTTCTAAAGATG





CTCCCAGTGAATTATGCCTCCTGGTATGTGGTCCTTATGCAGTTCCCTTC





TACACTGAATCGAGACTGGCCTGTAATTTGTGTTCACAACGAATAGAATG





CAGCAAAAGCAAAGCCCTGTCTCCTAGAGATTCTGGTATGTTGTCTCTTT





GTTCTCATTGGTTTTAAGGAACTTATTTATTTCTGCCTTAATTTCATTAT





TTACCCAGTAGTCATTCAGGAGCAGGTTGTTCAGTTTCCATGTAGTTGTG





TGGTTTCGAGTGAGTTTCTTAGTCCTCAGTTCTAATTTGATTTCTCTGTG





GTCTGAGAGATTGTTATGAATTTCGTTGATAAAATTTTATATAT





F5
rs2040444
63
ATTTCTGCCTTAATTTCATTATTTACCCAGTAGTCATTCAGGAGCAGGTT





GTTCAGTTTCCATGTAGTTGTGTGGTTTCGAGTGAGTTTCTTAGTCCTCA





GTTCTAATTTGATTTCTCTGTGGTCTGAGAGATTGTTATGAATTTCGTTG





ATAAAATTTTATATATTTATGGTATACATAACATTTTGATATATGTACAC







R
TTACAGGATGATTAAATCAAGCTAAGTAACAAATCCATAATCTCACATA






AATTTTTTTTGGTTGCTCTTTTAACACTAAGTTTTGGGGTGGTTTATTTC





AGACACCCCAAATGACTGTCTATCTCATGTGATTTTAAGGATGTCTAAAG





GTTCCCCAGTTGTGCAATATCTACAGGATCACTGAATGCCAAGTCCCCAG





GGAAAGGAATGATGAAAGGGGAAGTTGCTGGAAGAAGAGAGAGGAGGAAG





TTGAGGCCATAGAGAGGAAGGCCCTGAAAGAAAACTTTAACTGCTTGCCA





GTTTGGCCAGAGGTCTCTTTGAGCAGGAACAACTGCATTTAGACCAGCAG





TTCCCATGCTCTGTTTTACAGGTCTGAGCTTTCCAGTAGGTGAAATTATG





TTTTGAAACTGTGTGCCATGTAGTACCAGCTAGAATAAAGCCAACATTAC





ACATTCAGTTCTACCATGGTTATTTCAGTTCTGTTCCATATCTAATGACC





ACCAACCTTGAATATCAATGTGTGCAGTCCTTAGGGAGACCAGGACGGAT





TCACAATTTCAATGGGGCTACTGGAAAGATGCTTGGCTGTTTTTTTACTC





ATGGAAAGTCAGAAAAATCATTGTTATATGGGAAAGACAGGATATTTTAA





GTACTTATTTCATTTGATAATATTGTTTTTCTCTTCACTCAAGAAAAACC





ATTAAAAAATCATGTGTTTGTGAAAGTTATCCAGGTCTATCAATTATTAT





TTAAAGTAATATCTGTTTTACTAGTGTGTAAAGGATTTAAAAGAGTTATA





ATGAAGCATTTTAACTACATAAATATTACTTC





F5
rs4656685
64
GGGGTTGAAAAAGTTCTTCACATGTCCTTTGGTATTAGTATTTCCTTCAA





AAATCTGAAAGCCAAATAAGAGAAAATCTTTAATGACAACATAAATGGCT





AAGGTTTTTTGTTTTTGTNTTTTTTTAGACAGGGTCTTATTCTGTTGCCC





AGGCTTGAGTCCAGTGGCACAGTCATGGCTCACTGCAGCCTTAAACTCCT







Y
TCAAGTAATCCTCTTGCCTCAGCCTTCCAAAGTGCTGGCATTGCAGACA






TGAGCCATCATGCCCAACCCAGAAAATTTTTTATCCTATTAGCTCAAAAT





GAGCATATCAAAGAACACATAGAACACTCTCACAGAGATGATCCTCTATC





AGTTATGAAATCACATGCCAGATAGATTTCATCTCACCAGTGATCTGACT





TAAATTAGTGA





F5
rs3820060
65
ACCTTATATCCTCAACTAAAGTGTATAACTTTCCCCCTTCCATCATCAGC





AAGTTCCCCAAGGTTTACACACACCAGAAATAAAATCACTCTTTTTTTTT





ATGACAATGATATTTATCCTCCTATGAGGGCAACCTGGTGTAGTGAGAAA





TAAAACAAACCAAAACAGACAACCAGGAGTTTGTCTGAGACCAGGCACCT







K
AAGAACTAAGATTTAGAAGACTTAAAGAGGTGGTACATGTCACTGCATA






TTTGTCAAATGCAAAATACTGTTATTCTCATTATAGCACAGTCTTCAGAT





TGCTTTCTCTTTGCCCAGATGCCACTCTACCTTGTCCACCATGGAGGATT





TCAGCCTGTATGGTTTCCATTCCACTCCCTGCTCACTGTAGTGGATGGTA





TAGCTCTTTACATACATTTCAGAGGACAGAGACTTGCAGCCCTGTGTTAT





F5
rs6670407
66
TGAATGAATAAATGAGCTTTATTTGGAAAAATAATTAAACTGCTAAATTA





TCTGTGAATATTATTTTCTTAAGCAAATTTCTTTAAATACTCTGGTAATA





TTGCTGCAGGGTTATCTGGGAAATAATTGGATAGCATTCTCTCTCTATTT





CACCTGTTTTACAAAACACAACTTCTCTTTCCCCCTGTTAATGTCAAAGA







K
CAGAAATAGTTCAATTTCTTCTAATATTTCAAATAAATGTAACATTTGA






GAGACCTGATAAAACCATAAGTAGAGCTTGATACACAGTACAGTTATTGT





CCTGTCTCTGGCCTAACAAAATGCCTAATCACATGGTTGGTGATATGTGT





TTGGAGAAAGATCAGAAGGTCTAAACTGAGTTTTAGAGTCATCTAAGATA





F5
rs2420369
67
AATATTGATATGTTTCTTCAACATCACCCACACATACATAAGTGTATGTG





TATATATAGGTGTATGTGTATATATGTGTATACACAAAAATTCACATGCT





ATATGTATTTTAAAAGCAAATTAACTGAATTAGAATGATTATATGAGAAA





ACTTTTAAGTCTATAACATCCTCTAGTGACATCTGGGTGGTATCTTAGTG







W
GTCTTCATATCAAGGTTGTACCAGTGATGCAGAGTATAACCAGCTAGAG






GTTTTCACAGGCATAAAAGAGGTAGAGACATTTTAGTTATGGAGAGAACA





GCATCTATGTGCATCACTGCATATGTCCAGCTTTGATTTTCAACCTCTCT





AAAGAGACCATATAAAGACATTTCATGTGAATGGAAGGGGGTTAAGTAAA





ACACATATTTCTGATCCCGAATTCTAACTTTGAAATGACACCATTAAAAA





TTAGCATTTTATCTTTGAGGCCCTTGTTATATCACAAAGACTAAGAGCAA





ATTATAGAGAGTGCAAATTTTTTTAAAAGATTGTAAAATGAAGTATGGAG





TGACAAGGTTATACCATGAACAAGTCTAAAGAGTCATCTGAAAAAGAATT





GGATAACATCTCTTTAATTATTATTTATATTGCTATGTAAATTATATAAA





TGTAATATAACACTATTTTTATTATTTTAACTTCTCTGGGTGTCAGCT





F5
rs9332667
68
TCCAGGGCCTATCCTTAAATTAGGCCACTAGAAAGGAAAAAAGAATTGTG





GTGCTGGTGGCGTAAATAGAAAAGATTGGATTCCACACAGTCTTGGGAAC





TGATATCTGTGTCTTGAAACTCATTCTGGCCCAATATGGAATCACAGAAT





GTTACAGTAGCAAGGAGCAAAGCATCTGGTCTAGATTTTTCCTTTTAATT







S
TAAATACACAGGAGATTAAATAATTTTAGCTTAGTTTGGTAGCAGAATC






AGGACTAGAATCCCATTCTCCCAGTAAACAGGCCATGCTCCTTCCACCAT





TTGAAGCAGCCCAAATACCTCATTTTGCAATTTTGCAGAGGGCAAAGCTG





ACACCCAGAGAAGTTAAAATAATAAAAATAGTGTTATATTACATTTATAT





AATTTACATAGCAATATAAATAATAATTAAAGAGATGTTATCCAATTCTT





TTTCAGATGACTCTTTAGACTTGTTCATGGTATAACCTTGTCACTCCATA





CTTCATTTTACAATCTTTTAAAAAAATTTGCACTCTCTATAATTTGCTCT





TAGTCTTTGTGATAT





F5
rs9332665
69
TCAGTGATCTAAGTTAAACAAACACCTTCCAGAGAGTTATACTGTCCCTG





ATATTAGCCCACTGAGTAATTCAGGTGATTTAATTTGGGGGTAACTCTTA





ATATTTGACTCATTTTTATTAATTCTTTAAATGACCTGAGATATCAGAAT





GGCATGAATAACTTGATGATCCCTTCAGCCAACTAAATCCAAATTCCCTA







M
TTTCTATCCTCATATCTCCCTCCCTTAAGATACCTACACTCCAATTTCC






TGGCTTTCTATAGAATTCCAGGGCCTATCCTTAAATTAGGCCACTAGAAA





GGAAAAAAGAATTGTGGTGCTGGTGGGGTAAATAGAAAAGATTGGATTCC





ACACAGTCTTGGGAACTGATATCTGTGTCTTGAAACTCATTCTGGCCCAA





TATGGAATCACAGAATGTTACAGTAGCAAGGAGCAAAGCATCTGGTCTAG





ATTTTT





F5
rs3766103
70
TCTGTGTTTTATTTGGGAGATGTTTTAGACTACTGCTATCTGGACATTGG





CAAAATACCCATATCCATCCAAGGGTATACTGTGCCATTATCTGCTTCAA





CAGGAAACTGATTCCAGGTTTCAGCTACTTTCTCCATTGTGAATCATGGT





GGCTTCTCTCCACCCAAAGGGAAGTACTGCAACTCCTGACAGGTGTGCCA







Y
GGCAGGTTTCTAGTGCACCTATTTATTGATCCCTCTTCCCACCTCCAGC






CCTTCAGCAGCCAAGTGGGGCCTGGATCAGCCAAGCCTTAGATTTATTGC





TTCATTCTTTTACCTCAGAATGCCAGGCAGATATTATTTTCTTTGTGTGC





TTTGAAGTAAAAAATATTGGAAAGCACTGCTTTAAGAGTCCAAGAAGAAC





AGTTAAGACTCTTAAACATCCTTGCTATATATAGTAGAATTTTATTATGA





CCATTT





F5
rs2227244
71
CAAAAACACTCATTGAACACCAYATATATGGCAGTGATGTTGCCAGATAC



(at position

TGTCATGACATTGAAGTTTGAGTGACCTGAGGACTTTGGAAGAGTCAGGC



23)

CTAGTTTGAATCTCAGGTAGGTCTTATTGAAAATGGGCTGATGGAGGTAA





TTCCAAATTAGAGCCCTTCCTTGGAGAGTTGTGATGTGTCTATATAATCC





AGGCACTTTCTTCACAGAGATGCTGTCGGCACTCTGATTGGCAGAACCAT





TCTTGGTCTAGATCACACTGAGAGTTTACCTGAGTAGAACCTCTGTTTCA





CAAAGGTTTTCCTAGGAGCCTAAGTCACTGAAAAGAACTAAAAATTCTAC





TCATTCTCCTATACCTCCCAAATCTTGATTCTTTGAGTGGCAGTGAGAAA





ATAATGCATCTTTGTACCTTACCATTTACCTCACAACCTTGCAGTTCCAA





TCGAAGGGTAGGTCTGTTATAGGCTCGAGTTGGAGAGATCCTAATATATC





TAGCCACAATAGGTGGGTCAAACTGATTCTCTTTTATTGTAGAGGCATCT





GAATTGCCATTAAAATACTAGAAGAAAAGAGGAAAGTTTAGTTATGTAAC





AATGATCTATAAAG





F5
rs2213866
72
CAAAAACACTCATTGAACACCATATATATGGCAGTGATGTTGCCAGATAC



(at position

TGTCATGACATTGAAGTTTGAGTGACCTGAGGACTTTGGAAGAGTCAGGC



177)

CTAGTTTGAATCTCAGGTAGGTCTTATTGAAAATGGGCTGATGGAGGTAA





TTCCAAATTAGAGCCCTTCCTTGGAGRGTTGTGATGTGTCTATATAATCC





AGGCACTTTCTTCACAGAGATGCTGTCGGCACTCTGATTGGCAGAACCAT





TCTTGGTCTAGATCACACTGAGAGTTTACCTGAGTAGAACCTCTGTTTCA





CAAAGGTTTTCCTAGGAGCCTAAGTCACTGAAAAGAACTAAAAATTCTAC





TCATTCTCCTATACCTCCCAAATCTTGATTCTTTGAGTGGCAGTGAGAAA





ATAATGCATCTTTGTACCTTACCATTTACCTCACAACCTTGCAGTTCCAA





TCGAAGGGTAGGTCTGTTATAGGCTCGAGTTGGAGAGATCCTAATATATC





TAGCCACAATAGGTGGGTCAAACTGATTCTCTTTTATTGTAGAGGCATCT





GAATTGCCATTAAAATACTAGAAGAAAAGAGGAAAGTTTAGTTATGTAAC





AATGATCTATAAAG





F5
rs2213867
73
CTGTCATGACATTGAAGTTTGAGTGACCTGAGGACTTTGGAAGAGTCAGG





CCTAGTTTGAATCTCAGGTAGGTCTTATTGAAAATGGGCTGATGGAGGTA





ATTCCAAATTAGAGCCCTTCCTTGGAGAGTTGTGATGTGTCTATATAATC





CAGGCACTTTCTTCACAGAGATGCTGTCGGCACTCTGATTGGCAGAACCA







Y
TCTTGGTCTAGATCACACTGAGAGTTTACCTGAGTAGAACCTCTGTTTC






ACAAAGGTTTTCCTAGGAGCCTAAGTCACTGAAAAGAACTAAAAATTCTA





CTCATTCTCCTATACCTCCCAAATCTTGATTCTTTGAGTGGCAGTGAGAA





AATAATGCATCTTTGTACCTTACCATTTACCTCACAACCTTGCAGTTCCA





ATCGAAGGGTAGGTCTGTTATAGGCTCGAGTTGGAGAGATCCTAATATAT





CTAGCCACAATAGGTGGGTCAAACTGATTCTCTTTTATTGTAGAGGCATC





TGAATTGCCATTAAAATACTAGAAGAAAAGAGGAAAGTTTAGTTATGTAA





CAATGATCTATAAAG





F5
rs9332655
74
TTACCGATACCTGCTCCAATCTTCTGTTTTAAAAAGTTGGCTTTTTCTGA





CATTGCTCTGTCAGGAAAAGGGGTAGGGCACAGCCTGTTTACTGCCAAGT





GGGGGTCAAAGTCCAGGTTCCCCACTCCATTGCCACCTAAGAAGGGATTG





TTCCTTGGTGGCTGGGTGGGAAGGGAAGTTCCCCATTTGGCCTCCACTGA







Y
ACTGCAGGGGCAGGAGCTTCATTAGGGGCTGGAGATGAAAGCCCTAAAT






CCCTACATGGCCTTTTCTGACACAACCCCAGTGAGGGTGTAGGGTGCCTC





TTTAGCCTCAGGAGCATAGAAGTCTAGGCTCCCCATTCAGCCTTTGCTGT





TGTGGGTTGGGGAGGGGCCTCAGGTTTTTCTGTGGTGTTTGGCTAAAGGA





GAGAAGTCAGTGTCCACCAGTTTTCTATCATATCTCGCTATGCTGCCCTT





TACTGG





F5
rs9332652
75
ATTGTCATCTGCCCCTCCTTTCTTTTTTGTGTGAATCTTGCTAGAGATTT





GTCGATTTTAAAAAAATCTTCTTGGCCGGGCGCAGTGGCTCACGTCTGTA





ATCCCAGCACTTTGGGAGGCCGAGGTGGGCAGATCACGAGGTCAAGAGAT





CAAGACCATCCTGACCAACATGGTGAAACCCCCTCTCTACTAAAAATATT







A/-







GCAGGAGTATCGCTTGAATCCGGAAGGCAGAGGTTGCAGTGAGCCGAGAT





CACGCCACTGCACTCCAGCCTGGTGACGGAGTGAGACTCCGTCTCAAAAA





AAAAAAAAAAAAAAAAAAATCTTTTCACAGAACCAGCCTTGTTTTATTGA





TTTTTCTCTATTGTTTTTCTGTTTTCAGTATTACCGATACCTGCTCCA





F5
rs9332651
76
GTATATTTCAATTAACTGGTCAATTCCCTCTACGTTGTTAAGTTTATATG





TGTAGAGTTGTTTGTATATTCCCTTATCCTTTTTCATGTTTGTAGTGATT





TTGCCTGTTTCATCTCTGATATTGTCATCTGCCCCTCCTTTCTTTTTTGT





GTGAATCTTGCTAGAGATTTGTCGATTTTAAAAAAATCTTCTTGGCCGGG







Y
GCAGTGGCTCACGTCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGC






AGATCACGAGGTCAAGAGATCAAGACCATCCTGACCAACATGGTGAAACC





CCCTCTCTACTAAAAATATTAAAAAAAAATTAGGCAGGGTGGCGTGCACT





TGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGTATCGCTTGAATCCG





GAAGGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTGCACTCCAGCCTG





GTGACG





F5
rs9332643
77
CTGAGGTTGGTTCTAATAATATCTTGTTTTATAGATTAAAAAACAAAAGG





CACAGAGATACTACCTACCTTCCCAAAGTAACACACAGCTAATTAGTCAT





TGAGTTGGGATTCAAATTTAGGTACTCTGTGCCCAAATATGAATTGCATG





TAGTCATTGTATCAGTTTGCTAAGATCTTATGTGCTAGCTCTTTAGTTCT







R
AAGAAAGCTGATTGTATAATGAATTTAGGCAGTGTGTGACTTGTTGACA






AGGACAGTTCTGTTTACTGGCTTTCCTATATTGCAGGTGGACATGCAAAA





GGAAGTCATAATCACAGGGATCCAGACCCAAGGTGCCAAACACTACCTGA





AGTCCTGCTATACCACAGAGTTCTATGTAGCTTACAGTTCCAACCAGATC





AACTGGCAGATCTTCAAAGGGAACAGCACAAGGAATGTGATGGTTTGTGT





GCATAT





F5
rs2301515
78
TTGTCATGTATGGTTTCATAGGCTGCATGCTGCACAACTGTAGGGGGTAC





CATTCACAGACCATGGTGCTACAACTTACCCAGAAACTCTGAAGCCTTGA





TCTGTGAATCAGATATGATACCAGTGCTTAGTCCCATTGGCATCCTACAG





TCTATGAAAAACAGAAAAAAAATGAATAATTTTTGCTTAGAAAATATATA







Y
AATAAAGTAAAACTCCATGGTTAGGGATTATGTTTCTGACTCAATAATT






AGATATTTTTACCTACCTTGTGTGGCCCTGACTTAAATATATCTGATTAT





AAAATGGTAAATGCACTAACAAGACTGGTGCTTTAATAGATATAGTGGCA





TCCTAGAAGAAAGCAACTGAAATCCTGAAATGTAATCATTTTTTAAACTG





ATTTTCTNCTGCTTTTATCTTAAATTATGCTATTTTACAACATTAGGTAC





CATCCATTGGCCAGGTGCAGTGGCTCATGCCTGTAATCCTAGCACTCTGG





GAGGCCGAGGGGGGAGGATTACTTGAGGCCAGGAGTTTGATCTTGGGCAA





CCTCTTCTCTACAAAAAAAATAAAAATACAAAATATAAAAATATGAAAAA





AAGTTCTAGTCCT





F5
rs9332635
79
AAAGCAAAAATGAAAAGAGGGAAAGGAAACATGTATGATATTTTTGAAGC





CCAATGATGTCATTCGAGGTCACTTTGATAATTAGGACTGTGAAGCTGTA





TTGTATGTGAGTTAATTTGTAACATTATATTTAGATAAGTGAAAGTTTCT





TCTAGTGAGGTGTGGTGGTGATTTAAAATTTTTTTTAGTTATCTCTGTGT







R
TGTGTTGTTATTGTTTTGTTTTTATCTGTTATACTTTCAGTCCTACCTA






AAGAAAAATGGTTAAATTCTATTTGAAAGCCTCTTGTGAAGCAGGAATTT





TAGGATTCTTAGAGAACTATCAACCACAATATTTACTTGTTAATTTTTGC





AAATGTAATGTTGTTCTTTTTATTTTAGGTTCATTTAAAACTCTTGAAAT





GAAGGCATCAAAACCTGGCTGGTGGCTCCTAAACACAGAGGTTGGAGAAA





ACCAGA





F5
rs9332627
80
AACTTTATCTTTACAGTTTTGTGTTACATTTTTAAGGTGATCAAGTTTCT





CAGGAACTTTTTAAAAAATCCGCGTATTTTACTGTGGGGAGAGTAGATAA





AGCCTGAGAACCCTAGTTATCTAATCTGAGAAGTGGGCAGAGGAGTTGTC





ATACCAATAAGAGAATAAACATGACTTGCTATGGTTGCTGGATACACCAA







Y
GATAAACTCCTAATTTTATAAACTCCTAGACTTCCTAATTTGCCTGAAA






CTTTCTCTGAATTTAGAAGGCCTTAAGGTGACATGCTGCATATCTCCTTG





CTGACTCTAATCCCTGGAGTTTACTTTGTCTGCCCATATTTGTATTTATC





TTTTGTAGTTAAGGAAAATTAAGACTGTTAATGGAAAGTATACACGGGTA





AAGCACGGAACTGTAAAAGCTGAGGAAAAGAGTGATAAACTGCTTGGAAA





GGGAGT





F5
rs2420373
81
TCACCTTAAAAATGTAACACAAAACTGTAAAGATAAAGTTTAGTGTTACC





AAACGTTTAACTGAAACCAAAGTGAAGGAAGTGCTTTGTTTCCTCCTTCT





TAAGTTAGAGGAACTGCTGTGAAATTTCAGAAACCAGGCAGGTGAATTTT





TGGAGAGGGACGGGTTGAGATCATTTGGGCATCCTTCAAATTATATCAGG







Y
GTGAGAACACCTATCTACATATTCATAACACAAGCTCGTACCTTTCTCT






TCTCAGTTTCTGTTTCAGTTACTAGCTTACAGGGCAAATTTTCCTTGTGA





ATTTCCAAATAGGCACACTTTTCCCAGTGTGACCACCCAAATGCTCTCTT





GCCACTATTCTCCTATTACCTGGGTACCTAGTTTCTTATCTCATTTTGTT





CTCATATGCTTTGGGTGCCACCTGGTAGCTGCTGAGAGCTAAAACTGTTA





GCGTCATTCTTATTTTAGAAAAGACACACAGGTGATCATTTCTTTTATAT





AAACACTTGTGCCTTTAGAGATCCAGAAACAAGCTTATTAACTTTAAATT





GCAGAACAATGTTAATTCCTTTTCAATGTATGTTACCAGCTGAAGCACAC





TGGCTTTTTGTTGTTGTGGTTTTCTGTTGGTTTGTTTTGCAGCAGCTTCT





CTGTGCTATCTTTCAGACTTTCTCTTTTTGCCTCACCCACAGTGTCACCT





G





F5
rs2157581
82
CCTTATGTAGTATTCCTTTTTGGCAGATTAGGAGGGGACCTATCAAGCCT





GAGTGAATATCTTTTTCCTGGAAAAACAGAGTAAATTGTATTGCCTCTTT





CTCAGGAATTTCCTTGCTCTTCTGATAATCACTCATCATATAGAAAAGGA





AACTTTCTGATAGGCTCTGAATTTGAAGATGAAGATTATAAATGAATGGC







R
TAATAAGCCTGGATATTTATCACCTAATTCTGTTGTATTCATAATCCTC






CTTCCTCTGATTGATCTTTATCCCAGTAACAATGATGATAATAATAAATT





GATAATATAAGGGATACTATTTATTGAGAATCTATTACTATATTAAATGA





TTTGCCTGCAATCTCCCATTTAATCCTGACAACTATCTTATATGGTAAAT





ATAAATTCATTCATTGAACAAATATTTACCAAGTGCTTACCATGCACTAT





GTACTGTTATCTCATTTTTAACTTCTGATACCAGGCTAAGAGAGGTCAAG





GAATTTCCTAGGATTATGCATTGACAGGGTAAAAATTTAAATCTGAGTCT





GTGCTCTTTCCACTATGCCTGAAATGGAGGAGTTGTTTCTCTTTTTAATT





GACAGATAAAATTGTATGCATATACTGTGTATGACATATTGTTTTGAAGT





ATATATACATTGCAGAATGTCAGATAAAGGAGTCTTGACTTTGCAGTTCT





T





F5
rs2187953
83
ATGAATGGCATAATAAGCCTGGATATTTATCACCTAATTCTGTTGTATTC





ATAATCCTCCTTCCTCTGATTGATCTTTATCCCAGTAACAATGATGATAA





TAATAAATTGATAATATAAGGGATACTATTTATTGAGAATCTATTACTAT





ATTAAATGATTTGCCTGCAATCTCCCATTTAATCCTGACAACTATCTTAT







M
TGGTAAATATAAATTCATTCATTGAACAAATATTTACCAAGTGCTTACC






ATGCACTATGTACTGTTATCTCATTTTTAACTTCTGATACCAGGCTAAGA





GAGGTCAAGGAATTTCCTAGGATTATGCATTGACAGGGTAAAAATTTAAA





TCTGAGTCTGTGCTCTTTCCACTATGCCTGAAATGGAGGAGTTGTTTCTC





TTTTTAATTGACAGATAAAATTGTATGCATATACTGTGTATGACATATTG





TTTTGAAGTATATATACATTGCAGAATGTCAGATAAAGGAGTCTTGACTT





TGCAGTTCTTTTCATAAAGAAAGAGCAGAACATAGCTAATACTTGTTCAA





GAAAATTTCAAATAAATGCCATCTTCTGTAAATGTAGGCATTCTAATTCA





TGGCCAATCATTCAAGTAATCTTTCCTCCTCTCCACTGAATAAATGTTTC





TCTCTCT





F5
rs916438
84
AGGGTAAAAATTTAAATCTGAGTCTGTGCTCTTTCCACTATGCCTGAAAT



(at position

GGAGGAGTTGTTTCTCTTTTTAATTGACAGATAAAATTGTATGCATATAC



145)

TGTGTATGACATATTGTTTTGAAGTATATATACATTGCAGAATGWCAGAT





AAAGGAGTCTTGACTTTGCAGTTCTTTTCATAAAGAAAGAGCAGAACATA





GCTAATACTTGTTCAAGAAAATTTCAAATAAATGCCATCTTCTGTAAATG





TAGGCATTCTAATTCATGGCCAATCATTCAAGTAATCTTTCCTCCTCTCC





ACTGAATAAATGTTTCTCTCTCTGTCATCTGAAGAGCTGCATGGAGAGTC





CCTGGTTATGATAAATGCAGACTGTTAACCACACCCTTATGCATTCCTCA





TGAAAAGCAAGACAGACATTTGACAAGAAATAACCCCGACTCTTCCATTT





GGTGGACTTCAGATTACGAGGTTAGGGGAATGAGAAAAACTTTCAATGAA





AGTACCTACTGGGTTCACA





F5
rs9332620
85
TTAAGGAAGATAATGCTGTTCAGCCAAATAGCAGTTATACCTACGTATGG





CATGCCACTGAGCGATCAGGGCCAGAAAGTCCTGGCTCTGCCTGTCGGGC





TTGGGCCTACTACTCAGCTGTGAACCCAGTAGGTACTTTCATTGAAAGTT





TTTCTCATTCCCCTAACCTCGTAATCTGAAGTCCACCAAATGGAAGAGTC







R
GGGTTATTTCTTGTCAAATGTCTGTCTTGCTTTTCATGAGGAATGCATA






AGGGTGTGGTTAACAGTCTGCATTTATCATAACCAGGGACTCTCCATGCA





GCTCTTCAGATGACAGAGAGAGAAACATTTATTCAGTGGAGAGGAGGAAA





GATTACTTGAATGATTGGCCATGAATTAGAATGCCTACATTTACAGAAGA





TGGCATTTATTTGAAATTTTCTTGAACAAGTATTAGCTATGTTCTGCTCT





TTCTTT





F5
rs9332619
86
TCTTCACATCTCCACTACCTATCACTCTCATTTCATTAGTAGATAATGTC





AGTACTTTAGCCTTGAGCCTAAGAACAAATATCTTTTGGTATTTCTGGAG





AAAACTACTTGGGCCATATCTCACAGGATGGTTATGAAAATTAAATGAAA





TAATATACATAAGTTATTTTGTACCTTATATCTTAGCTCCGATTTTATAA







Y
CAGCCATTTTGACTTATAATGCTGACATTTTTGTGGTTTAGATTTTTGT






TAAGCTTAAGTACATTTGTGGATCATTCCTTTTCCTAGGTTCGTTTTAAA





AATTTAGCATCCAGACCGTATTCTCTACATGCCCATGGNCTTTCCTATGA





AAAATCATCAGAGGGAAAGACTTATGAAGATGACTCTCCTGAATGGTTTA





AGGAAGATAATGCTGTTCAGCCAAATAGCAGTTATACCTACGTATGGCAT





GCCACTGAGCGATCAGGGCCAGAAAGTCCTGGCTCTGCCTGTCGGGCTTG





GGCCTACTACTCAGCTGTGAACCCAGTAGGTACTTTCATTGA





F5
rs4656187
87
TTTAAAAAACTTCAGTTGCTTTAGGAATGCAAGTGGTTTTTGGTTACATG





GATGAATTGTATAGTGGTGAAGTCTAGGATTTTAGTGTACCTGTCACCTG





AGTAGTGTACCCTGTACCCAATAGGTAGCTTTTCATCCATCCCCCGTTCC





CTTTTGAGTCTCCAATGTCCATTATACCAATCTGTCTGCCTTCGCATACC







Y
GCAGTTTATCTCCCATTTGTAAGTGAGAACATACAGTGTCTGGTTTTTG






ATTCCTGAGTTACTTAGAATAAGTTTTTTAAATATTGTGTTAAATTATCG





TTCATCTTGAAAAAGGATCCCCTAATCATAAAAGAGAATATTGCCTCCCA





TAGCTTCATGGAAAATTTAGAATAATTAAGATTCTTATATCCCTATGTAC





TTGTTTACGTTTTTAAAAAGAGCAAATGGTCACTGAAAATGTAGTGAATG





CTTACACAGGTATAG





F5
rs7535409
88
ATAAATGAGTAAATATATAAGTGGATAAAAACAAAAGCCAGTAAATATCT





TTCAATTCCTAACTCAAATATTATTTTATAGGTAAGTCTTCCTATGACCT





TTTAGACTAGGTCAAGTCTCTATATCAATTTCTCATATTTCTATAGTATT





ATTATAGTATATATAGTAAATTCCTGTAGTATTCTTATAATATCTCTAGA







R
TATATATTGTAGATTATATATAATTTATTTGTGAGATTATCTATTAATA






TCTGTCTCTCACTGGGTATAAGTGCCATGAGGTCAGCCATTGTGCCTAGT





TTGCTCATAGTACTCTCTCCAGTGGTAAGCACATTATCTGACACACAGCA





GGAACTTAATAAATTTTTGTCAAACATATAAATGAATGTATAAATATAAT





CGTATGTTAACACACCAAATTTTAAGATCAAAGGCAGACAAAGCCATGTA





ATGGGACAGTGCCAGAGCTTGGGGCTATCAGGTGACAATGGTCAGATTAA





TTAGAAGGTCACACTTATGAAAGTCACTGGATGGGTGAATGTTTTGTACC





CTAAAAGTAGCCACTCTTCTC





F5
rs1557572
89
TCACATTTCCCAAGCCTGTGGAAACAAGCCAAACACTCACCCATCAAACC





CATAATATTTGCTATATACTGTGAGTCATCAACAGAGAATCTCCTTCTGC





CTTTCTTCTGGTCTACCTCCCCTACTAATCCCATCTTTCCAGACTCTGAG





CATAACATGCAAACTCACAGAACACAAGGGAGTGGGTAAAGCAACTCCGA







M
TGCCATAAAAGTGGGTTGTGAGCCTTGAATGGAATACAAGATTTTGAAG






GTGGTTCCATCCCTATTCACTCTGGACAGGCCCTGCATCTCACTCCCTCG





GGGCCTTGCTTAGAAATACTCAGGTAGCTAGTTGTTCTCATGTGGTATTG





AGTGCAACATTTAAATAGGAAGTCATAGGAAAAGGTGTTTTAAACAGAGT





TCTAATGTGGAGATGTCAGGCATCAG





F5
rs3766109
90
CTCACAGAACACAAGGGAGTGGGTAAAGCAACTCCGAATGCCATAAAAGT





GGGTTGTGAGCCTTGAATGGAATACAAGATTTTGAAGGTGGTTCCATCCC





TATTCACTCTGGACAGGCCCTGCATCTCACTCCCTCGGGGCCTTGCTTAG





AAATACTCAGGTAGCTAGTTGTTCTCATGTGGTATTGAGTGCAACATTTA







W
ATAGGAAGTCATAGGAAAAGGTGTTTTAAACAGAGTTCTAATGTGGAGA






TGTCAGGCATCAGATTAATGAACTCATATGCATAAGTCACACCATACATT





GTGTTTGCCTACTGTAATTACACTTTGGTTTTTTAAGTGATTAGTGTAAC





AGCTTTAGTAAAAGCTGTGGGCATATCTAGACAGCTGATGCACAGTCATC





ATGCTATATCCCTGAGAATTTGTAGTTGACTAAGCCTTGCTCCTTTCCTC





CTCTCT





F5
rs6032
91
AAAGTCAAGAACATGCTAAGCATAAGGGACCCAAGGTAGAAAGAGATCAA





GCAGCAAAGCACAGGTTCTCCTGGATGAAATTACTAGCACATAAAGTTGG





GAGACACCTAAGCCAAGACACTGGTTCTCCTTCCGGAATGAGGCCCTGGG





AGGACCTTCCTAGCCAAGACACTGGTTCTCCTTCCAGAATGAGGCCCTGG







R
AGGACCCTCCTAGTGATCTGTTACTCTTAAAACAAAGTAACTCATCTAA






GATTTTGGTTGGGAGATGGCATTTGGCTTCTGAGAAAGGTAGCTATGAAA





TAATCCAAGATACTGATGAAGACACAGCTGTTAACAATTGGCTGATCAGC





CCCCAGAATGCCTCACGTGCTTGGGGAGAAAGCACCCCTCTTGCCAACAA





GCCTGGAAAGCAGAGTGGCCACCCAAAGTTTCCTAGAGTTAGACATAAAT





CTCTAC





F5
rs4525
92
TTCTCACCAACAAGCCACCACAGCTGGTTCCCCACTGAGACACCTCATTG





GCAAGAACTCAGTTCTCAATTCTTCCACAGCAGAGCATTCCAGCCCATAT





TCTGAAGACCCTATAGAGGATCCTCTACAGCCAGATGTCACAGGGATACG





TCTACTTTCACTTGGTGCTGGAGAATTCAAAAGTCAAGAACATGCTAAGC







R
TAAGGGACCCAAGGTAGAAAGAGATCAAGCAGCAAAGCACAGGTTCTCC






TGGATGAAATTACTAGCACATAAAGTTGGGAGACACCTAAGCCAAGACAC





TGGTTCTCCTTCCGGAATGAGGCCCTGGGAGGACCTTCCTAGCCAAGACA





CTGGTTCTCCTTCCAGAATGAGGCCCTGGAAGGACCCTCCTAGTGATCTG





TTACTCTTAAAACAAAGTAACTCATCTAAGATTTTGGTTGGGAGATGGCA





TTTGGC





F5
rs4524
93
TGCAGAACCTCAGAAAGCCCCTTCTCACCAACAAGCCACCACAGCTGGTT





CCCCACTGAGACACCTCATTGGCAAGAACTCAGTTCTCAATTCTTCCACA





GCAGAGCATTCCAGCCCATATTCTGAAGACCCTATAGAGGATCCTCTACA





GCCAGATGTCACAGGGATACGTCTACTTTCACTTGGTGCTGGAGAATTCA







R
AAGTCAAGAACATGCTAAGCATAAGGGACCCAAGGTAGAAAGAGATCAA






GCAGCAAAGCACAGGTTCTCCTGGATGAAATTACTAGCACATAAAGTTGG





GAGACACCTAAGCCAAGACACTGGTTCTCCTTCCGGAATGAGGCCCTGGG





AGGACCTTCCTAGCCAAGACACTGGTTCTCCTTCCAGAATGAGGCCCTGG





AAGGACCCTCCTAGTGATCTGTTACTCTTAAAACAAAGTAACTCATCTAA





GATTTT





F5
rs9332600
94
GTCCTGATCTGCCAATCGATTGCTGTGTAACCTTACACAAGTTACTTGGC





CACACTGAGCCACAAGTCATTTATCTGGAAAACAGTGTAATCACATCTCA





CAGAGTTACTTTGACCATTAAAATAGTAATATGCGCCAAGTGCCTAGCAC





TCAGTAGACACCAACAATGGTAACTATTGGAGACTCACCAAGAAATCTTT







R
ATGTTCCAGCAATGCATGCCATTTCAGAGATTCAAAATTGTCCTCGTGA






ATTATTACTTAGAAACATCTAAATGTCTCTTATTTGTGGGGATAGAGCTC





ATCACCATCCCTTTAATTCTAAGACAAGATGTGCTGTTAGGATATTTATG





ATATTAAAAGTCCATTTTATTCTTGATTCATCCCTTTCTTAATATATTTT





F5
rs9332599
95
TCATCAGGTACAGTGCCTTAAAGGCTGCTTCAGCAACAGCTTTGGAGTTT





GTCAGACTGGAATGCAAGTCCTGATCTGCCAATCGATTGCTGTGTAACCT





TACACAAGTTACTTGGCCACACTGAGCCACAAGTCATTTATCTGGAAAAC





AGTGTAATCACATCTCACAGAGTTACTTTGACCATTAAAATAGTAATATG







Y
GCCAAGTGCCTAGCACTCAGTAGACACCAACAATGGTAACTATTGGAGA






CTCACCAAGAAATCTTTGATGTTCCAGCAATGCATGCCATTTCAGAGATT





CAAAATTGTCCTCGTGAATTATTACTTAGAAACATCTAAATGTCTCTTAT





TTGTGGGGATAGAGCTCATCACCATCCCTTTAATTCTAAGACAAGATGTG





CTGTTAGGATATTTATGATATTAAAAGTCCATTTTATTCTTGATT





F5
rs9287092
96
CACTTCACTGGGCACTCATTCATCTATGGAAAGAGGCATGAGGACACCTT





GACCCTCTTCCCCATGCGTGGAGAATCTGTGACGGTCACAATGGATAATG





TTGGTGAGTAAGAGTCTGGACACTCACAGAGGAAGCTTGCTTTGAATTTC





TGGTCTATAAAGGTCTGCTGCAACTCTCCAGGCTACCAGTGCTCCTCTAT







K
TATCTCCCTGACCCCCTGCAGGCTTTTCTTTCAATGTTTCTCATGATTT






CTCTTTGAGAAATTAATGACTTAAATGGATCCAGTTCTTTAGTGTGGGTT





ATATTTTTCCTTCTCTGGGCAAAGTAGGAAGTAAAAATATACAACAGCAG





AAAAATAAGGCATAACTCTGAGGAAGAAGCATAAATATTTTGGCCACAAA





AGAGCATTTCTTTTATCAAAATGCCCTATTCGGTTTTTTGCAACAGTCAT





CTTCAA





F5
rs9332596
97
TGTAGCCAGTGGCTACCATATTGAACAATGCAGTTATAGACCATTTAGAA





AAACATCTAGAATGAGGTATAAACTAATAATACATCATGTAAATTATTAA





AGTCACTTAAGTGATTTAAGTAGGTATTTAAATATTTGTTAATGCCAGTC





ATTATACTGGTACTAAGGCTAAGAGTGGTAATCGAGGTAGACATGAGCCC







Y
GCCCTTGTAGAAATCATACCTTTGGTTTTTTACTATGCTTAGTACATAA






GTAAATAAAAATATTGCCTACAGCAGTGTCCCTTTTAACAATAATGAAAT





GTATGAACTGGATACTCAAATGGAAACTGTGAATACTATGTAGATTATAA





GACAGCAATAAAAACTATAAAATATGCTAAATGGGCTTTATTTTTAGGGA





F5
rs9332595
98
AAGTGCTCGATAACCACTTGTAGCCAGTGGCTACCATATTGAACAATGCA





GTTATAGACCATTTAGAAAAACATCTAGAATGAGGTATAAACTAATAATA





CATCATGTAAATTATTAAAGTCACTTAAGTGATTTAAGTAGGTATTTAAA





TATTTGTTAATGCCAGTCATTATACTGGTACTAAGGCTAAGAGTGGTAAT







S
GAGGTAGACATGAGCCCTGCCCTTGTAGAAATCATACCTTTGGTTTTTT






ACTATGCTTAGTACATAAGTAAATAAAAATATTGCCTACAGCAGTGTCCC





TTTTAACAATAATGAAATGTATGAACTGGATACTCAAATGGAAACTGTGA





ATACTATGTAGATTATAAGACAGCAATAAAAACTATAAAATATGCTAAAT





F5
rs3766110
99
ATTACCTACTAGAGAAGGTGATTACCATGACTCTAGACTCTGAGGATCAG





TAGGGGGACCCTGGCTGTTGTGGAGAAGTTTGCTTCCAGCTGGCTCAGTG





ACATTTCTCTCAGACTGCCATGGCAGTGCTTTTGGCCACTGAACTTTAGA





ACTGCAGCAAATGCCGGAACCCTCATTCAGGGAATTCCTTTTGTTCTGAA







M
ATCTTACTGATCACTTGAAATGTCTTCATGCATGCCTTTCCAAGACTCT






TGGGTCCCTATACTCATTTTGCTCTACTTTGATGTGTCAATCCATCTTTG





GATTACTTGCCTTCTTTCTGTCCTAGCCATATATTCACCCTGAACTCAGT





CTAGGATACTATTGACATGGACTATAACACCTTCCATTAGTCCTACTCTC





TCACCCTTTTCCTCACCACGCAGAGTATGTCTGTGTACACACACACACAC





ACACAC





F5
rs3766111
100
TTACCATGACTCTAGACTCTGAGGATCAGTAGGGGGACCCTGGCTGTTGT





GGAGAAGTTTGCTTCCAGCTGGCTCAGTGACATTTCTCTCAGACTGCCAT





GGCAGTGCTTTTGGCCACTGAACTTTAGAACTGCAGCAAATGCCGGAACC





CTCATTCAGGGAATTCCTTTTGTTCTGAAAATCTTACTGATCACTTGAAA







Y
GTCTTCATGCATGCCTTTCCAAGACTCTTGGGTCCCTATACTCATTTTG






CTCTACTTTGATGTGTCAATCCATCTTTGGATTACTTGCCTTCTTTCTGT





CCTAGCCATATATTCACCCTGAACTCAGTCTAGGATACTATTGACATGGA





CTATAACACCTTCCATTAGTCCTACTCTCTCACCCTTTTCCTCACCACGC





AGAGTATGTCTGTGTACACACACACACACACACACACACACACATGCTTG





GAATAG





F5
rs3766112
101
ACTGCCATGGCAGTGCTTTTGGCCACTGAACTTTAGAACTGCAGCAAATG





CCGGAACCCTCATTCAGGGAATTCCTTTTGTTCTGAAAATCTTACTGATC





ACTTGAAATGTCTTCATGCATGCCTTTCCAAGACTCTTGGGTCCCTATAC





TCATTTTGCTCTACTTTGATGTGTCAATCCATCTTTGGATTACTTGCCTT







S
TTTCTGTCCTAGCCATATATTCACCCTGAACTCAGTCTAGGATACTATT






GACATGGACTATAACACCTTCCATTAGTCCTACTCTCTCACCCTTTTCCT





CACCACGCAGAGTATGTCTGTGTACACACACACACACACACACACACACA





CATGCTTGGAATAGAAGATCAAACGCATTTCTAAGGATGTGAGCCTTTGA





CCTCTTGCTTAAAAATGTTGCTATGATGTCACCCACGGATTTCATCACCA





AGTCTT





F5
rs3766113
102
AGTGCTTTTGGCCACTGAACTTTAGAACTGCAGCAAATGCCGGAACCCTC





ATTCAGGGAATTCCTTTTGTTCTGAAAATCTTACTGATCACTTGAAATGT





CTTCATGCATGCCTTTCCAAGACTCTTGGGTCCCTATACTCATTTTGCTC





TACTTTGATGTGTCAATCCATCTTTGGATTACTTGCCTTCTTTCTGTCCT







R
GCCATATATTCACCCTGAACTCAGTCTAGGATACTATTGACATGGACTA






TAACACCTTCCATTAGTCCTACTCTCTCACCCTTTTCCTCACCACGCAGA





GTATGTCTGTGTACACACACACACACACACACACACACACATGCTTGGAA





TAGAAGATCAAACGCATTTCTAAGGATGTGAGCCTTTGACCTCTTGCTTA





AAAATGTTGCTATGATGTCACCCACGGATTTCATCACCAAGTCTTTGGAC





TGGAAG





F5
rs1894694
103
AAAATCTTACTGATCACTTGAAATGTCTTCATGCATGCCTTTCCAAGACT





CTTGGGTCCCTATACTCATTTTGCTCTACTTTGATGTGTCAATCCATCTT





TGGATTACTTGCCTTCTTTCTGTCCTAGCCATATATTCACCCTGAACTCA





GTCTAGGATACTATTGACATGGACTATAACACCTTCCATTAGTCCTACTC







Y
CTCACCCTTTTCCTCACCACGCAGAGTATGTCTGTGTACACACACACAC






ACACACACACACACACGCTTGGAATAGAAGATCAAACGCATTTCTAAGGA





TGTGAGCCTTTGACCTCTTGCTTAAAAATGTTGCTATGATGTCACCCACG





GATTTCATCACCAAGTCTTTGGACTGGAAGTGAGGATTGGAGGTGCCCCT





TAGCGAGTAGATTTTAATCCATGTCTCTGACTCTAGGCACAGTCATATTT





CAACCACAGGAATGAAAAACTGATGAACAAAAATAGTACTCTGACTT





F5
rs9332589
104
TTCATTCCTGTGGTTGAAATATGACTGTGCCTAGAGTCAGAGACATGGAT





TAAAATCTACTCGCTAAGGGGCACCTCCAATCCTCACTTCCAGTCCAAAG





ACTTGGTGATGAAATCCGTGGGTGACATCATAGCAACATTTTTAAGCAAG





AGGTCAAAGGCTCACATCCTTAGAAATGCGTTTGATCTTCTATTCCAAGC







-/A/AT/G







GTGTGTGTGTGTGTGTGTGTGTGTGTGTACACAGACATACTCTGCGTGGT





GAGGAAAAGGGTGAGAGAGTAGGACTAATGGAAGGTGTTATAGTCCATGT





CAATAGTATCCTAGACTGAGTTCAGGGTGAATATATGGCTAGGACAGAAA





GAAGGCAAGTAATCCAAAGATGGATTGACACATCAAAGTAGAGCAAAATG





AGTATAGGGACCCAAGAGTCTTGGAAAGGCATGCATGAAGACATTTCAAG





F5
rs6672595
105
GGATACTATTGACATGGACTATAACACCTTCCATTAGTCCTACTCTCTCA





CCCTTTTCCTCACCACGCAGAGTATGTCTGTGTACACACACACACACACA





CACACACACACGCTTGGAATAGAAGATCAAACGCATTTCTAAGGATGTGA





GCCTTTGACCTCTTGCTTAAAAATGTTGCTATGATGTCACCCACGGATTT







Y
ATCACCAAGTCTTTGGACTGGAAGTGAGGATTGGAGGTGCCCCTTAGCG






AGTAGATTTTAATCCATGTCTCTGACTCTAGGCACAGTCATATTTCAACC





ACAGGAATGAAAAACTGATGAACAAAAATAGTACTCTGACTTACTGCTCA





TGATGTTTGATTCATAAAACTTGGGGTCATCACGTTTCACNTCATCAGGA





TTTTCACAAAACTTGTTGATGTTGTCCTCAAGGTACCAGCTTTTGTTCTC





ATCAAACCACAGCAAACACAGCCTGCTGTTCGATGTCTGCTGCCCTCTGG





AGGACAAAACAGTATAGTACTGGTACAAGAACAGACGCATAGACCAATGG





AACAGAATAGAGAACTCAGAAATAAGGCTGCGCACCTACAACTATCT





F5
rs1988607
106
ACCAATTAATATTGCAAAAGGAATTCTTTTATTTTTTATTTGTTTTTAAA



(at position

TTATACTTTAAGTTCTAGGGTACATGTGCACAACGTGCAGGTTTGTTACA



176)

TATGTATACATGTGTCATGTTGGTGTGCTGCACCCATTAACTTGTCATTA





ACATTAGGTATATCTCCTAATGCTAYCCCTCCCCCCGCCCCCCACCCCCC





CCGACAGGCCCCAGTGTGTGATGTTCCCCATCCTGTGTCTAAATGTTCTC





ATTGTTCAATTGAATTCTTTAAATATTCTACTTGGAACCTGGATAACATG





TAGCCATTAGATAATGCTCCACTAGAGGCCACTATGACACTAATAAAAGA





CACCATATTTTGTTACCACTAAGAGACAAAACTCCTGAAGTGAGAAGGGT





TTGGCTGTGATTTTTAGGATACTCCTACATGTATACTACCTGACTGCAGT





AGTGACACCACCGGGCAAGGAGAATAGCAGAAAAATGTGGCAGCCTCTCA





GAAGTTACTAGTTGGATTCAGTAGAAGTGAAAGATTCAAACCTG





F5
rs1988608
107
TGCAAAAGGAATTCTTTTATTTTTTATTTGTTTTTAAATTATACTTTAAG





TTCTAGGGTACATGTGCACAACGTGCAGGTTTGTTACATATGTATACATG





TGTCATGTTGGTGTGCTGCACCCATTAACTTGTCATTAACATTAGGTATA





TCTCCTAATGCTACCCCTCCCCCCGCCCCCCACCCCCCCCGACAGGCCCC







R
GTGTGTGATGTTCCCCATCCTGTGTCTAAATGTTCTCATTGTTCAATTG






AATTCTTTAAATATTCTACTTGGAACCTGGATAACATGTAGCCATTAGAT





AATGCTCCACTAGAGGCCACTATGACACTAATAAAAGACACCATATTTTG





TTACCACTAAGAGACAAAACTCCTGAAGTGAGAAGGGTTTGGCTGTGATT





TTTAGGATACTCCTACATGTATACTACCTGACTGCAGTAGTGACACCACC





GGGCAAGGAGAATAGCAGAAAAATGTGGCAGCCTCTCAGAAGTTACTAGT





TGGATTCAGTAGAAGTGAAAGATTCAAACCTG





F5
rs2420375
108
CTCTCCAAGCAAGTCCTCCTTCCCCTGCCCTTCTCTTTTCAGCTTGGGCC





ACATCTCATTTTGAATCTGCTTCTCATCTCTAGACCATGATCCCCTTCCC





CTGCCCGGTAGATTTTTTAGGACACTGTCTTTGAAGTCATCTTCTCAGCT





AGGTTCAGTGGCTCAAACCTGTAACCCCAGCACTTTGGGAGGCTGAAGCA







S
GTGGATCACTTGAGCTCAGGAGTTCAAGACCAGCCTGGGCAACATGGTG






AAACCTCATCTCTACAAAAAAATACAAAAATTAGCCAGGCGTTGGGGCGT





GTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGTGCGAGAATCGCCTGA





GCCCAGGAAGTGGAGGTTGCAGTGAGCCATGATCACACCACTGCACTCCA





GCCTGGGTGACAGAGTAAGACCCTTGGTGGGGGGGAAAAGCTACTTGCTT





GAGAGGCACAGACAAATAGCCAGATCCTGAACTTTTAATAAGGTATGTCT





ACACTTGCTGAGAGCACATAAAAGGGATCAGAAATGGAAGAAGGGAAAGA





GGCATGGAGAAAAAAAACTGCTTTTGTCCTTTGGCTATTTTAAATGAACA





GAATAGACCTTGTCAGGTGCATAA





F5
rs2420376
109
TCCCCTTCCCCTGCCCGGTAGATTTTTTAGGACACTGTCTTTGAAGTCAT





CTTCTCAGCTAGGTTCAGTGGCTCAAACCTGTAACCCCAGCACTTTGGGA





GGCTGAAGCAGGTGGATCACTTGAGCTCAGGAGTTCAAGACCAGCCTGGG





CAACATGGTGAAACCTCATCTCTACAAAAAAATACAAAAATTAGCCAGGC







R
TTGGGGCGTGTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGTGCGAG






AATCGCCTGAGCCCAGGAAGTGGAGGTTGCAGTGAGCCATGATCACACCA





CTGCACTCCAGCCTGGGTGACAGAGTAAGACCCTTGGTGGGGGGGAAAAG





CTACTTGCTTGAGAGGCACAGACAAATAGCCAGATCCTGAACTTTTAATA





AGGTATGTCTACACTTGCTGAGAGCACATAAAAGGGATCAGAAATGGAAG





AAGGGAAAGAGGCATGGAGAAAAAAAACTGCTTTTGTCCTTTGGCTATTT





TAAATGAACAGAATAGACCTTGTCAGGTGCATAA





F5
rs2420377
110
AAGTCATCTTCTCAGCTAGGTTCAGTGGCTCAAACCTGTAACCCCAGCAC





TTTGGGAGGCTGAAGCAGGTGGATCACTTGAGCTCAGGAGTTCAAGACCA





GCCTGGGCAACATGGTGAAACCTCATCTCTACAAAAAAATACAAAAATTA





GCCAGGCGTTGGGGCGTGTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAG







R
TGCGAGAATCGCCTGAGCCCAGGAAGTGGAGGTTGCAGTGAGCCATGAT






CACACCACTGCACTCCAGCCTGGGTGACAGAGTAAGACCCTTGGTGGGGG





GGAAAAGCTACTTGCTTGAGAGGCACAGACAAATAGCCAGATCCTGAACT





TTTAATAAGGTATGTCTACACTTGCTGAGAGCACATAAAAGGGATCAGAA





ATGGAAGAAGGGAAAGAGGCATGGAGAAAAAAAACTGCTTTTGTCCTTTG





GCTATTTTAAATGAACAGAATAGACCTTGTCAGGTGCATAAAACACACAG





GAGTCCTAGTTAGGCTCTTTAATCTGCAAAAGAGAACCTTAATCCTATCT





TCTATTTGGTTGATTGTCAAAGCCTTTGGATCATCCTTTGTCTGTAGATT





AACTACACTCTAGGATTTTGTCAAAGATTGCAACCTTTAATTCTCTGCTG





TCCAATTCTTATCTATCTTGGTGAAGTGACATGACATTTAAGGAGAATTG





T





F5
rs2298909
111
TTTTTACTCATTTTTTAATGTAGTCTAGGTATGCAGCTCTCTAATGGTTG





GACTCTGATGAAGGTAAACTCCATGTATCAAGAGCACGGAGTTTTCCTCA





GACAATTCTCCTTAAATGTCATGTCACTTCACCAAGATAGATAAGAATTG





GACAGCAGAGAATTAAAGGTTGCAATCTTTGACAAAATCCTAGAGTGTAG







W
TAATCTACAGACAAAGGATGATCCAAAGGCTTTGACAATCAACCAAATA






GAAGATAGGATTAAGGTTCTCTTTTGCAGATTAAAGAGCCTAACTAGGAC





TCCTGTGTGTTTTATGCACCTGACAAGGTCTATTCTGTTCATTTAAAATA





GCCAAAGGACAAAAGCAGTTTTTTTTCTCCATGCCTCTTTCCCTTCTTCC





ATTTCTGATCCCTTTTATGTGCTCTCAGCAAGTGTAGACATACCTTATTA





AAAGTT





F5
rs9332607
112
AGCCATATGACTCTCTCTCCAGAACTCAGTCAGACAAACCTTTCCCCAGC





CCTCGGTCAGATGCCCATTTCTCCAGACCTCAGCCATACAACCCTTTCTC





TAGACTTCAGCCAGACAAACCTCTCTCCAGAACTCAGTCAAACAAACCTT





TCCCCAGCCCTCGGTCAGATGCCCCTTTCTCCAGACCCCAGCCATACAAC







Y
CTTTCTCTAGACCTCAGCCAGACAAACCTCTCTCCAGAACTCAGTCAGA






CAAACCTTTCCCCAGACCTCAGTGAGATGCCCCTCTTTGCAGATCTCAGT





CAAATTCCCCTTACCCCAGACCTCGACCAGATGACACTTTCTCCAGACCT





TGGTGAGACAGATCTTTCCCCAAACTTTGGTCAGATGTCCCTTTCCCCAG





ACCTCAGCCAGGTGACTCTCTCTCCAGACATCAGTGACACCACCCTTCTC





CCGGAT





F5
rs9332611
113
TGCCCACAGCTTTTACTAAAGCTGTTACACTAATCACTTAAAAAACCAAA





GTGTAATTACAGTAGGCAAACACAATGTATGGTGTGACTTATGCATATGA





GTTCATTAATCTGATGCCTGACATCTCCACATTAGAACTCTGTTTAAAAC





ACCTTTTCCTATGACTTCCTATTTAAATGTTGCACTCAATACCACATGAG







-/AAC







AACTAGCTACCTGAGTATTTCTAAGCAAGGCCCCGAGGGAGTGAGATGCA





GGGCCTGTCCAGAGTGAATAGGGATGGAACCACCTTCAAAATCTTGTATT





CCATTCAAGGCTCACAACCCACTTTTATGGCATTCGGAGTTGCTTTACCC





ACTCCCTTGTGTTCTGTGAGTTTGCATGTTATGCTCAGAGTCTGGAAAGA





TGGGATTAGTAGGGGAGGTAGACCAGAAGAAAGGCAGAAGGAGATTCTCT





GTTGA





F5
rs9332590
114
TAAAGTTCAGTGGCCAAAAGCACTGCCATGGCAGTCTGAGAGAAATGTCA





CTGAGCCAGCTGGAAGCAAACTTCTCCACAACAGCCAGGGTCCCCCTACT





GATCCTCAGAGTCTAGAGTCATGGTAATCACCTTCTCTAGTAGGTAATCA





CACATGTGAGGATGATTTCTGCATGTTCTGTTCATATAGCTTCAGATGAC







Y
GACAGCTAGGGATTATCAGAGCTGACAGGTGCCAGGTCAAATAATTCAA






ACAGAAAATTACTCTCAGCTTTCTTTGCATAACTTCCTTTTGGCAGTGAA





TCTATCATAGTTCTAGACCAGTGCTGTCCAATAGAAACTACGTATGAGCT





ACATGCGTAATTTAAAATTTTCTGATAGCAACATTAAAAAGTAAAGAGAA





ATAGGTGACATTAATTTTAGTAATATGTTTTACTTAACTCAGTATATCCT





GAATATTATCATTTCAACATGTAACCAATATAAAAATTAATGAGACTTAC





TTTATTACTAAGTCTTTGAAATTCAATGTATATTTTATACTCACAGCATA





TCTCAGTCCAGTCTACCCATATTTCAAGTGCTCGATAACCACTTGTAGCC





AGTGGCTACCATATTGAACAATGCAGTTATAGACCATTTAGAAAAACATC





TAGAATGAGGTATAAACTAATAATACATCATGTAAATTATTAAAGTCACT





T





F5
rs7537742
115
CCTGGTTGAACTGCTCTGATCATGGTGTTGTTCCTGCCTGAAAGAAAATA





TATTCAAAATTGTTTTCATTTGCAAAGTTATTTCATGATAATAAATAAAT





AAATAAGCTTTCGCTGGAACCAATTAATATTGCAAAAGGAATTCTTTTAT





TTTTATTTTTTTTAAATTATACTTTAAGTTCTAGGGTACATGTGCACAAC







R
TGCAGGTTTGTTACATATGTATACATGTGTCATGTTGGTGTGCTGCACC






CATTAACTTGTCATTAACATTAGGTATATCTCCTAATGCTATCCCTCCCC





CCGCCCCCCACCCCCCCCCCCCGACAGGCCCCGGTGTGTGATGTTCCCCA





TCCTGTGTCTAAATGTTCTCATTGTTCAATTGAATTCTTTAAATATTCTA





CTTGGAACCTGGATAACATGTAGCCATTAGATAATGCTCCACTAGAGGCC





ACTATGACACTAATAAAAGACACCATATTTTGTTACCACTAAGAGACAAA





ACTCCTGAAGTGAGAAGGGTTTGGCTGTGATTTTTAGGATACTCCTACAT





GTATACTACCTGACTGCAGTAGTGACACCAC





F5
rs9332587
116
AACCCTTCTCACTTCAGGAGTTTTGTCTCTTAGTGGTAACAAAATATGGT





GTCTTTTATTAGTGTCATAGTGGCCTCTAGTGGAGCATTATCTAATGGCT





ACATGTTATCCAGGTTCCAAGTAGAATATTTAAAGAATTCAATTGAACAA





TGAGAACATTTAGACACAGGATGGGGAACATCACACACCGGGGCCTGTCG







S
GGGGGGGGGGTGGGGGGCGGGGGGAGGGATAGCATTAGGAGATATACCT






AATGTTAATGACAAGTTAATGGGTGCAGCACACCAACATGACACATGTAT





ACATATGTAACAAACCTGCACGTTGTGCACATGTACCCTAGAACTTAAAG





TATAATTTAAAAAAAATAAAAATAAAAGAATTCCTTTTGCAATATTAATT





GGTTCCAGCGAAAGCTTATTTATTTATTTATTATCATGAAATAACTTTGC





AAATGA





F5
rs9332586
117
TGTGTTTTATGCACCTGACAAGGTCTATTCTGTTCATTTAAAATAGCCAA





AGGACAAAAGCAGTTTTTTTTCTCCATGCCTCTTTCCCTTCTTCCATTTC





TGATCCCTTTTATGTGCTCTCAGCAAGTGTAGACATACCTTATTAAAAGT





TCAGGATCTGGCTATTTGTCTGTGCCTCTCAAGCAAGTAGCTTTTCCCCC







Y
CACCAAGGGTCTTACTCTGTCACCCAGGCTGGAGTGCAGTGGTGTGATC






ATGGCTCACTGCAACCTCCACTTCCTGGGCTCAGGCGATTCTCGCACCTC





AGCCTCTCAAGTAGCTGGGACTACAGGCACACGCCCCAACGCCTGGCTAA





TTTTTGTATTTTTTTGTAGAGATGAGGTTTCACCATGTTGCCCAGGCTGG





TCTTGAACTCCTGAGCTCAAGTGATCCACCTGCTTCAGCCTCCCAAAGTG





CTGGGGTTACAGGTTTGAGCCACTGAACCTAGCTGAGAAGATGACTTCAA





AGACAGTGTCCTAAAAAATCTACCGGGCAGGGGAAGGGGATCATGGTCTA





GAGATGAGAAGCAGATTCAAAATGAGATGTGGCCCAAGCTGAAAAGAGAA





GGGCAGGGGAAGGAGGACTTGCTTGGAGAGAGTGATACTGTGAGGAAAAC





GTCACTTCTCCTAACCTATCCTCTAAAGT





F5
rs721161
118
GGATCTTCACATCAGGATAAATGGTGCTTTCTTTTTGTAGATGATGTAAA



(at position

CTTCACCCTGACATATTTCCTTTTTTACACTGACTGCCATAAAGCTTAGG



170)

ACAAAATTTGAAGACAGCCTTACAGGGTCACATGGTATCTACTTATCTGT





GGCTTTATTTTCTTTGTCCSCATATTCTATCCCAATTACATAGACTCCTT





GTTTTATGCCTTTATAACTTGAGAAACTGTCTCAGATCCTTTGTATTACT





GAGTAAGCTGTAAATAAATACAAATACTAAATAAAAACTAAAAGTTGCAT





TTGAATTTAAAATTATATGAGCATCTTTTTCTTTTAAAATTAAAAAATAA





CCAGGTACTCCATAATATTTTACTATGTAATTTCTCCCATGATTCTGTAT





TTGTGTTACTTACTTTGAGTGTGTCTCTGACCTGGGCTCTGATAATAGGA





CCCAAAATCCCATCTTCTTTCGTATTGGGATTCACTGTATGTTTGGTGAA





GGACTCATCTTCGTACTGTGTGTACATAACTTTCTTATAATGTTTTCCAA





TTTGGTTTGAGAAATTATCCAAATGCTGAGACCTGTATTTTCTTAAAGTG





AAGTAAAAAAAAATTAAACCACTTTCTCAA





F5
rs9332577
119
AGTTAAAGTCCTGAATCTTGGGAAACCCCTCAGACCAGAACAGTCGGTTA





CCTTCTTGGTTCCCTTCTTGGCCTAATCCTTTAGCAATCCCTGTGTTTTT





GAGTTCACATCCACCATCTCTAAGCTCTGTTGTTACCTGTATAATGCCAT





TTATCACAATGAGTTGTCACTGCTTGTTTGCTGGTCACTCAGATGTCTGC







-/T







TTTTGCAGGGCACAAACTACAACTGGAGTGTCTGTTCCCTCAAAGCTTTA





TACAATGCCTGACACACAGCAGGTGCTCAATACACTTGGTGAGTGAATGT





TTGATCACAGAGTACTTGACTGAATGCTTATTTTGGCCTGTGTCTCTCCC





TCTTTCTCAGATATAACAGTTTGTGCCCATGACCACATCAGCTGGCATCT





GCTGGGAATGAGCTCGGGGCCAGAATTATTCTCCATTCATTTCAACGGCC





AGGTCCTGGAGCAGAACCATCATAAGGTCTCAGCCATCACCCTTGTCAGT





GCTACATCCACTACCGCAAATATGACTGTGGGCCCAGAGGGAAAGTGGAT





CATATCTTCTCTCACCCCAAAACATTTGCAAGGCAAGAAACTCTCCTGAC





F5
rs2239854
120
TCTTCCTCTTTTCTTCTTTCGAGGAAGTTAGAGATCTCTTTAGCTTTTGC





TTAATTAAAAAAAAAAAAAAAACCTTTGCCAATTCCTTCGCTTTCTCCAT





CCCCAAAGAGCAAGTTATAAATCTAAGAGCAAAATATCTAAGTTTGGTTG





TTAGGAACTGAGGAAAGTTTGTCTGCGGTGCAGGTGGCTTGAAAGGGCAA







R
GGAGAAAGAGGGAGTTAGTGCATGGGAAGAAAGGATTCTGCATTGAGAA






GCAAGACTGTCAGGAGAGTTTCTTGCCTTGCAAATGTTTTGGGGTGAGAG





AAGATATGATCCACTTTCCCTCTGGGCCCACAGTCATATTTGCGGTAGTG





GATGTAGCACTGACAAGGGTGATGGCTGAGACCTTATGATGGTTCTGCTC





CAGGACCTGGCCGTTGAAATGAATGGAGAATAATTCTGGCCCCGAGCTCA





TTCCCA





F5
rs4656688
121
TTATATCTGAGAAAGAGGGAGAGACACAGGCCAAAATAAGCATTCAGTCA





AGTACTCTGTGATCAAACATTCACTCACCAAGTGTATTGAGCACCTGCTG





TGTGTCAGGCATTGTATAAAGCTTTGAGGGAACAGACACTCCAGTTGTAG





TTTGTGCCCTGCAAAAGCAGACATCTGAGTGACCAGCAAACAAGCAGTGA







Y
AACTCATTGTGATAAATGGCATTATACAGGTAACAACAGAGCTTAGAGA






TGGTGGATGTGAACTCAAAAACACAGGGATTGCTAAAGGATTAGGCCAAG





AAGGGAACCAAGAAGGTAACCGACTGTTCTGGTCTGAGGGGTTTCCCAAG





ATTCAGGACTTTAACTATTAGAACTGGTAAAAAGTCCACGGCAAAATGGA





ATGTTTGGTCACCCCAGTCTGATCTCAGCTGGAGGGAGTCAAATCACCAG





AACCGCCAATAGGGCTGAGTTCAAGCACTTAATCCTCTCAGCTCTCTAGC





F5
rs4656689
122
CATTCACTCACCAAGTGTATTGAGCACCTGCTGTGTGTCAGGCATTGTAT





AAAGCTTTGAGGGAACAGACACTCCAGTTGTAGTTTGTGCCCTGCAAAAG





CAGACATCTGAGTGACCAGCAAACAAGCAGTGACAACTCATTGTGATAAA





TGGCATTATACAGGTAACAACAGAGCTTAGAGATGGTGGATGTGAACTCA







R
AAACACAGGGATTGCTAAAGGATTAGGCCAAGAAGGGAACCAAGAAGGT






AACCGACTGTTCTGGTCTGAGGGGTTTCCCAAGATTCAGGACTTTAACTA





TTAGAACTGGTAAAAAGTCCACGGCAAAATGGAATGTTTGGTCACCCCAG





TCTGATCTCAGCTGGAGGGAGTCAAATCACCAGAACCGCCAATAGGGCTG





AGTTCAAGCACTTAATCCTCTCAGCTCTCTAGCTGTAGTGGTCGAAGCTC





TGCCTAAGGGAAGAAGATGTGAAGATGATATGAGGATTTTCAATTGTTAT





TTTTA





F5
rs4656188
123
GAGGGAACAGACACTCCAGTTGTAGTTTGTGCCCTGCAAAAGCAGACATC





TGAGTGACCAGCAAACAAGCAGTGACAACTCATTGTGATAAATGGCATTA





TACAGGTAACAACAGAGCTTAGAGATGGTGGATGTGAACTCAAAAACACA





GGGATTGCTAAAGGATTAGGCCAAGAAGGGAACCAAGAAGGTAACCGACT







K
TTCTGGTCTGAGGGGTTTCCCAAGATTCAGGACTTTAACTATTAGAACT






GGTAAAAAGTCCACGGCAAAATGGAATGTTTGGTCACCCCAGTCTGATCT





CAGCTGGAGGGAGTCAAATCACCAGAACCGCCAATAGGGCTGAGTTCAAG





CACTTAATCCTCTCAGCTCTCTAGCTGTAGTGGTCGAAGCTCTGCCTAAG





GGAAGAAGATGTGAAGATGATATGAGGATTTTCAATTGTTATTTTTACTT





ACTTTTTGATTGTTTTAATGACAAGTCAACGAAATCACTTT





F5
rs1894697
124
GCTGGAGGGAGTCAAATCACCAGAACCGCCAATAGGGCTGAGTTCAAGCA



(at position

CTTAATCCTCTCAGCTCTCTAGCTSTAGTGGTCGAAGCTCTGCCTAAGGG



75)

AAGAAGATGTGAAGATGATATGAGGATTTTCAATTGTTATTTTTACTTAC





TTTTTGATTGTTTTAATGACAAGTCAACGAAATCACTTTGGGGTTACACA





CTCTCCTTAAAATGCAGTGTACAAGTCCTCATTATGCTGAGCCATTGGGA





GCTTTTCATGGAAGGAGTAGTGATAACTGAATATAAAAACTTAGTTTTGC





TCCTTCTTTGCTCCTACAGTCACTGGGAAAATGCTCATTTGCTCTGTGGG





GAGACTCCATCCTTGGCTTTTAGGTTTCTGTTTTACATCTCAGATACATA





ATCACTAGATACTAGATAATGGGCCTGAGAATCAGTTCCTTACCCACACA





AAGGCTTGTTTTTTTTAGGAGACCATTGCAACAAAGCCAGGATTCCTTGC





ATCACTAGGAGGCTTTGGTGGAAGCGTTTATCCATGCCAAAGAAATGCTT





ATATTGAGTTCAGCAATTAACATATCTGTGTTAGCATTTATCATATGTAT





TCAATTTATTCTGCTTTATAAGGCAGAGGGTTTTTACAAATGTTT





F5
rs1894698
125
CTGGAGGGAGTCAAATCACCAGAACCGCCAATAGGGCTGAGTTCAAGCAC



(at position

TTAATCCTCTCAGCTCTCTAGCTGTAGTGGTCGAAGCTCTGCCTAAGGGA



119)

AGAAGATGTGAAGATGATRTGAGGATTTTCAATTGTTATTTTTACTTACT





TTTTGATTGTTTTAATGACAAGTCAACGAAATCACTTTGGGGTTACACAC





TCTCCTTAAAATGCAGTGTACAAGTCCTCATTATGCTGAGCCATTGGGAG





CTTTTCATGGAAGGAGTAGTGATAACTGAATATAAAAACTTAGTTTTGCT





CCTTCTTTGCTCCTACAGTCACTGGGAAAATGCTCATTTGCTCTGTGGGG





AGACTCCATCCTTGGCTTTTAGGTTTCTGTTTTACATCTCAGATACATAA





TCACTAGATACTAGATAATGGGCCTGAGAATCAGTTCCTTACCCACACAA





AGGCTTGTTTTTTTTAGGAGACCATTGCAACAAAGCCAGGATTCCTTGCA





TCACTAGGAGGCTTTGGT





F5
rs1894699
126
AGTCCTCATTATGCTGAGCCATTGGGAGCTTTTCATGGAAGGAGTAGTGA





TAACTGAATATAAAAACTTAGTTTTGCTCCTTCTTTGCTCCTACAGTCAC





TGGGAAAATGCTCATTTGCTCTGTGGGGAGACTCCATCCTTGGCTTTTAG





GTTTCTGTTTTACATCTCAGATACATAATCACTAGATACTAGATAATGGG







S
CTGAGAATCAGTTCCTTACCCACACAAAGGCTTGTTTTTTTTAGGAGAC






CATTGCAACAAAGCCAGGATTCCTTGCATCACTAGGAGGCTTTGGTGGAA





GCGTTTATCCATGCCAAAGAAATGCTTATATTGAGTTCAGCAATTAACAT





ATCTGTGTTAGCATTTATCATATGTATTCAATTTATTCTGCTTTATAAGG





CAGAGGGTTTTTACAAATGTTT





F5
rs1981491
127
CATCACTAGGAGGCTTTGGTGGAAGCGTTTATCCATGCCAAAGAAATGCT





TATATTGAGTTCAGCAATTAACATATCTGTGTTAGCATTTATCATATGTA





TTCAATTTATTCTGCTTTATAAGGCAGAGGGTTTTTACAAATGTTTACTA





TTCTTAGTTTCTACTGATGGTCTTTCCCTACCTTGTCCCATTTACCCCCA







R
TTATTCTTTTGGGAACTATAAATTCGTAAACTCTAAGCTCAGATCAATT






TATTTTTATTTTTGTGCATATGGTTTTGCTTTT





F5
rs7548857
128
ATTTTAATTTTTTAATGTTTTTCCCTCAGGCTAGTATCATATACCCTGGA





TCTTTAGTTGTAGGTCAGTTCTACCAGAGAGAAATAGAAGAGATGTGGTC





TAAGTGGGAATTAGTTATTTTTTCTCTTAACGATTGCTATGATTTTGCCT





TCTCATAAGTGCCCAAATGCAAATGGAAAGAGAAAATATTCTAGATGCCA







Y
TGAATATTACTCTTCTGTCACCTTTTGAAATGCTGGTTTTTTTTGTGTG






TTGAGGATTACTCCTAATCTGTTCATCTTTACTGCAATCTTCCTGCTGAT





CCTTCCTGCTAGGGCTTGTCCTTGAAGAAGCCATGGTCATCATATAGAGG





AACTGCAGAACTCGGAGAGAGTGGCTGAGCTGATACCTTAAGGTCTTATT





CAAAGTACAGGCCAAGGTGAAACCTACTCAGGTCACTATACCTAACAAGG





CTGCAC





F5
rs6427202
129
ATAATGATTTCAACTTGAAGAAATTCTTATTTTTTAAAATAGCATATTTA





TCAAGTAATAATGGTTCTAGGGTTATTTAAAATCTGGTGCCACACTGTCT





TCTTTGATACCTTCTTGCTTTGGGGAACAGGCTTTATTTCATCCAGCTTG





GGAAGAAAACATTTGGTGACTCTCAAGACTCTGTACAAGTATCCATTTCC







Y
CCAGTCTCAATAGAAGAGTATATAGATACGTTAGCTCAGTTGGTAAAAG






CATCATGCCCCAAGTTTAATGCTGTCATCTTATTTGTATATGAAAGGGGG





CATTAGATAATTGGGTGGAAGTATCAGCATTAATCCATTCTCACTATGAG





AAAAACATGCTGCTGATGGTAAAATGCAAGAAGAGTCTTTTGTAAGTTTT





AAGGTTTTTTTCAGTACCATCACAGTATCTTATATATACCAGGAAATGGA





AAAAAA





F5
rs9287093
130
GTTGAAAACTTTGGGTGGTAGGTTTCAAACACACTCAAGTGACTTTACAA





GAACTTTTATTGGCTGGGCTTCTTAGGAGCAAGCTTGGATTTTCATTTTA





TCCCATGAGAATCCAGCCCATCTTTCATTAAAACAAACAACCACAGTGAG





CCACAGCATGGGAAATAACGTGATGGACTCACCATCTGCCTATACATACA







-/A/CG/G







CTCAGGCCATACCTACATACATGCCCAATGTATTTACTCATTATACAAAG





ACTTTTTTTCCATTTCCTGGTATATATAAGATACTGTGATGGTACTGAAA





AAAACCTTAAAACTTACAAAAGACTCTTCTTGCATTTTACCATCAGCAGC





ATGTTTTTCTCATAGTGAGAATGGATTAATGCTGATACTTCCACCCAATT





ATCTAATGCCCCCTTTCATATACAAATAAGATGACAGCATTAAACTTGGG





GCATG





F5
rs1894700
131
CTGAACAATTATTATTTAAATATAATCAGAGAATTGAATCGCCTTTGATT



(at position

AGTAAACCATCTCAGAATATAAGAATGGGTGATATCTTCTTTGTGGTSTT



98)

TAATAAGACATACTTAGCCTATTAACATGAGATGGGAGGATAGTCAGAGC





TGTTTATGTATTATTTTGTTTTGCTATTTCAGATCTTCTTTCCAACTGCT





GTGATCCTCAGCTTTGTTTTATCTCTTTATTTCATCTTAGCCATCTGATT





ATCTCAATTTTTTCCCCCGAGCCACAGCGTCTAACTCCCCTATGCAGGCT





GGTTGTCTGTATGAATATGAAATGTGTCCATCCCCTGAAACTTAGATGTC





TTACTTTGTACTTTGTGCACCCAAAGACACATCATTAACACCTCCATGTA





TATTGGACTTTCCCTACTGATAGGAGAGGGAGAGGATGAAGAAATTGGTC





TTCTTTATTGAAGAGAAGGAACTGAGATACTCAATATTAAAAGAAGTGTA





GAGGGTTGGGTGAGGTTTTCAATAATAAAATGGAGCAAGTGAGGTCAGGA





AGGGGAGAGGTGAGTGCCATAGAGAGCCAAGTGGAATGAACAGTTTCCTC





TGCCTGAGGAATTCCTCATTTAATTAGGTGAAAGATTCCCTATCATCAG





F5
rs5778621
132
ATAAGAATGGGTGATATCTTCTTTGTGGTGTTTAATAAGACATACTTAGC





CTATTAACATGAGATGGGAGGATAGTCAGAGCTGTTTATGTATTATTTTG





TTTTGCTATTTCAGATCTTCTTTCCAACTGCTGTGATCCTCAGCTTTGTT





TTATCTCTTTATTTCATCTTAGCCATCTGATTATCTCAATTTTTTCCCCC







-/A/C







GAGCCACAGCGTCTAACTCCCCTATGCAGGCTGGTTGTCTGTATGAATAT





GAAATGTGTCCATCCCCTGAAACTTAGATGTCTTACTTTGTACTTTGTGC





ACCCAAAGACACATCATTAACACCTCCATGTATATTGGACTTTCCCTACT





GATAGGAGAGGGAGAGGATGAAGAAATTGGTCTTCTTTATTGAAGAGAAG





GAACTGAGATACTCAATATTAAAAGAAGTGTAGAGGGTTGGGTGAGGTTT





TCAATAATAAAATGGAGCAAGTGAGGTCAGGAAGGGGAGAGGTGAGTGCC





ATAGAGAGCCAAGTGGAATGAACAGTTTCCTCTGCCTGAGGAATTCCTCA





TTTAATTAGGTGAAAGATTCCCTATCATCAGCTGGTGACAGAATTTCTCT





F5
rs7542281
133
ACCCTGGATTGAGTGGCTTATAAACAACGGACACTTCTTCCTCACAGTTC





TGGAGGCTGGAAGTTTAAAATCAGGGTGCCAGCATGGTTGGGTTCTGGTG





CAGGGTCTCTTCCAGGTTGTAGACTGCCATCTTCTCCTTGTATCCTCACA





TGGTAGAAAGAGGGTGAGTGAGAGGGTCCCTTTTATAAGGGCACTAATCT







Y
ATCATGAGGGCTCCATCCTCATTACCTAAAAATCTCCCAAAGGAGGGGG






GAGGGATAGCATTGGGAGATATACCTAATGCTAGATGACGAGTTAGTGGG





TGCAGCGCACCAGCATGGCACATGTATACATATGTAACTAACCTGCACAA





TGTGCACATGTACCCTAAAACTTAAAGTATAATAAAAAAAAATCTCCCAA





AGGCCCCACCTGCTAATGCCATCACACTGGAGGTTAGATTTCAGTATGTG





AATTTTTGGAGGACACAAACTTCCAATCCATTGTAGTGATGTATCTATTC





CAAAGGCGATGAAAGTAAATAAGACTTTTTTGGTAAAAGTACTTTTTTTT





TTTTTTTTTGGTAATAAGTAAGACAAAGTACCTGCTCAAAATTATCAGCA





AAATCAATAATTTTAAAGCAAGGGAAAAATAATGCATAGTCCTTACTTTC





TAATCAGTCCTCGGCCCCTCAGTTTAGTTCA





F5
rs2187954
134
GTTCTGGAGGCTGGAAGTTTAAAATCAGGGTGCCAGCATGGTTGGGTTCT





GGTGCAGGGTCTCTTCCAGGTTGTAGACTGCCATCTTCTCCTTGTATCCT





CACATGGTAGAAAGAGGGTGAGTGAGAGGGTCCCTTTTATAAGGGCACTA





ATCTCATCATGAGGGCTCCATCCTCATTACCTAAAAATCTCCCAAAGGAG







V
GGGGAGGGATAGCATTGGGAGATATACCTAATGCTAGATGACGAGTTAG






TGGGTGCAGCGCACCAGCATGGCACATGTATACATATGTAACTAACCTGC





ACAATGTGCACATGTACCCTAAAACTTAAAGTATAATAAAAAAAAATCTC





CCAAAGGCCCCACCTGCTAATGCCATCACACTGGAGGTTAGATTTCAGTA





TGTGAATTTTTGGAGGACACAAACTTCCAATCCATTGTAGTGATGTATCT





F5
rs9332556
135
GTCCTCCAAAAATTCACATACTGAAATCTAACCTCCAGTGTGATGGCATT





AGCAGGTGGGGCCTTTGGGAGATTTTTTTTTATTATACTTTAAGTTTTAG





GGTACATGTGCACATTGTGCAGGTTAGTTACATATGTATACATGTGCCAT





GCTGGTGCGCTGCACCCACTAACTCGTCATCTAGCATTAGGTATATCTCC







M
AATGCTATCCCTCCCCCCTCCTTTGGGAGATTTTTAGGTAATGAGGATG






GAGCCCTCATGATGAGATTAGTGCCCTTATAAAAGGGACCCTCTCACTCA





CCCTCTTTCTACCATGTGAGGATACAAGGAGAAGATGGCAGTCTACAACC





TGGAAGAGACCCTGCACCAGAACCCAACCATGCTGGCACCCTGATTTTAA





ACTTCCAGCCTCCAGAACTGTGAGGAAGAAGTGTCCGTTGTTTATAAGCC





ACTCAATCCAGGGTACTTTGTTAACAGCAACCCAAACTAAGAAAATCACC





AATTTCTATCTTACTCACATGTGTTACCAGAACTCAAGCACACTTAAGAT





CTATCTTATCTAAAGTAGAACATAAAGGAAAGAGGCTGTATTAATTGCAA





CATGACTGGGAAAGAAAATACTTAACCAAAATGTGAACATGTATTCCCAC





AGGCTATCAGAGCATTTGTTAGGAGCCAGAAATTTTA





F5
rs2187955
136
CTCCATCCTCATTACCTAAAAATCTCCCAAAGGAGGGGGGAGGGATAGCA





TTGGGAGATATACCTAATGCTAGATGACGAGTTAGTGGGTGCAGCGCACC





AGCATGGCACATGTATACATATGTAACTAACCTGCACAATGTGCACATGT





ACCCTAAAACTTAAAGTATAATAAAAAAAAATCTCCCAAAGGCCCCACCT







R
CTAATGCCATCACACTGGAGGTTAGATTTCAGTATGTGAATTTTTGGAG






GACACAAACTTCCAATCCATTGTAGTGATGTATCTATTCCAAAGGCGATG





AAAGTAAATAAGACTTTTTTGGTAAAAGTACTTTTTTTTTTTTTTTTTGG





TAATAAGTAAGACAAAGTACCTGCTCAAAATTATCAGCAAAATCAATAAT





TTTAAAGCAAGGGAAAAATAATGCATAGTCCTTACTTTCTAATCAGTCCT





CGGCCCCTCAGTTTAGTTCA





F5
rs9332554
137
GAAGAAATCTAGAGGTCAAACCTATCACAATTAGGGCACCAACATGTACC





CTAGAGTTAACTAGGCAGAGCCCCTCAGGGGCCCAGGCCCTGTCTTCTTT





ACATTTGTACTCTGGCATTTAGCACAGAGCCTGGAACCTAGTGGATGATG





ATGGTCATGATCATGATGATATTAATCATTACTGAACTAAACTGAGGGGC







Y
GAGGACTGATTAGAAAGTAAGGACTATGCATTATTTTTCCCTTGCTTTA






AAATTATTGATTTTGCTGATAATTTTGAGCAGGTACTTTGTCTTACTTAT





TACCAAAAAAAAAAAAAAAAAGTACTTTTACCAAAAAAGTCTTATTTACT





TTCATCGCCTTTGGAATAGATACATCACTACAATGGATTGGAAGTTTGTG





TCCTCCAAAAATTCACATACTGAAATCTAACCTCCAGTGTGATGGCATTA





GCAGGTGGGGCCTTTGGGAGATTTTTTTTTATTATACTTTAAGTTTTAGG





GTACATGTGCACATTGTGCAGGTTAGTTACATATGTATACATGTGCCATG





CTGGTGCGCTGCACCCACTAACTCGTCATCTAGCATTAGGTATATCTCCC





AATGCTATCCCTCCCCCCTCCTTTGGGAGATTTTTAGGTAATGAGGATGG





AGCCCTCATGATGAGATTAGTGCCCTTATAAAAGGGACCCTCTCACTCAC





C





F5
rs9332553
138
TCACCCTGCTATACCTAGCACAAGTGTTATAGCATCTTGGGCAATTTTTA





GATACTTACATTGGTTGGTTCTCATTCCAGATTGACAGTGTGTTCTAATT





GTAGCCCTAGAAGAAATCTAGAGGTCAAACCTATCACAATTAGGGCACCA





ACATGTACCCTAGAGTTAACTAGGCAGAGCCCCTCAGGGGCCCAGGCCCT







K
TCTTCTTTACATTTGTACTCTGGCATTTAGCACAGAGCCTGGAACCTAG






TGGATGATGATGGTCATGATCATGATGATATTAATCATTACTGAACTAAA





CTGAGGGGCCGAGGACTGATTAGAAAGTAAGGACTATGCATTATTTTTCC





CTTGCTTTAAAATTATTGATTTTGCTGATAATTTTGAGCAGGTACTTTGT





CTTACTTATTACCAAAAAAAAAAAAAAAAAGTACTTTTACCAAAAAAGTC





TTATTT





F5
rs6670678
139
TACTACTAAAAGTTGAATTATGAGCATCTTGAAACAGTGAATGATATAGA





CTTGTACATAGGATATATTCTATAATTACACTGAGTGAGATGGCTAATGA





GACAATTGGGGTGTAATTTTATCAATGCTTTTATTCTTTTCACTTCAAAT





TATTTTACCTTTAGTCTAGAATAAAACAGGTTTGTTGTATCTTTGATTTT







R
CAACATACATTAATATAAAGTATAAAATACAAACAGCTATTAAGAGGAA






GCATTTGTGAGATGCAGTTTTGGTGAATGTGATTTTGACTTTGTAATCAA





AATAAAAAAAATTAAGCTCTAAACTGAAAAGAAGAGAAATGGACAGGGAC





AACTATTGTGCTAGAGCACAAGAAGTCCTTGTTCAGCTGCTTGCTGGAAT





AAAATCTTTACACAAGGGTAGCTCTTCATTTATATTTACTCAGTTCTGTT





CATTTC





F5
rs9332548
140
ATAAATACAATACAAAGCTGACTATCGACTGAGCAGGAAATGAACAGAAC





TGAGTAAATATAAATGAAGAGCTACCCTTGTGTAAAGATTTTATTCCAGC





AAGCAGCTGAACAAGGACTTCTTGTGCTCTAGCACAATAGTTGTCCCTGT





CCATTTCTCTTCTTTTCAGTTTAGAGCTTAATTTTTTTTATTTTGATTAC







A/-







AAGTCAAAATCACATTCACCAAAACTGCATCTCACAAATGCTTCCTCTTA





ATAGCTGTTTGTATTTTATACTTTATATTAATGTATGTTGCAAAATCAAA





GATACAACAAACCTGTTTTATTCTAGACTAAAGGTAAAATAATTTGAAGT





GAAAAGAATAAAAGCATTGATAAAATTACACCCCAATTGTCTCATTAGCC





ATCTCACTCAGTGTAATTATAGAATATATCCTATGTACAAGTCTATATCA





TTCAC





F5
rs2298907
141
TGTAACTAGCATGCATCAAATTGACTTCAATGCTGCACCTTTGAGCAAAG





TTTGTTGTTCAGTAAAATTTTCAAAGTCGTTTTGGTCAATTACCTTTAAA





AAGCTTGTTTCATGGAGAATTTAATATTATTCTTTTCTTTTAGTTATATT





CTCATATTTTAAATATATGAGTTGCATATGAATGTGATGTCACAAAATTA







S
TTCTATAATATATAGCCATCTGCTGGTAAGCCAGCTCTCCAAATAAAAC






ACGTTTTCTGCCAGACATTGTTCGTTGTATCTAAGTGTTGCCAAATTCTC





TATACAAAAATTTGCTCTTCTAGATTTTTCCAAAACATTCCAATGCTTGA





CTTAATGTAGGTGATTACATTTTTTCACTTCTCATCTGAATATTTTGGCC





TTATGTAGAGACTTCCTTGAGTATATGATAAACACCTGAAACAAACTATA





ACGGCT





F5
rs2298905
142
GTAGGGGGTTAAGATAGTATTACACTGGCTTGAGAAACCACAACAGAACA





TAAGAGAACTCTGGATAACCCTTTTTGACAGAATGGACAAACGGTGATTT





GTAAAAATGCTTGTAAGGACATTTCCTTTAATAATGTATTTAATAAGACT





GTCTTAGATCAGGGAATAAAGTATCTGCAACTGTAACTAATCACTTAAAA







R
CTGTCACTAAAGGGTTTCAATTTGAGGTTAAATTTTCAGAAACTCTGTA






ACTAGCATGCATCAAATTGACTTCAATGCTGCACCTTTGAGCAAAGTTTG





TTGTTCAGTAAAATTTTCAAAGTCGTTTTGGTCAATTACCTTTAAAAAGC





TTGTTTCATGGAGAATTTAATATTATTCTTTTCTTTTAGTTATATTCTCA





TATTTTAAATATATGAGTTGCATATGAATGTGATGTCACAAAATTAGTTC





TATAAT





F5
rs9332542
143
CCTCTTCCTTTACTGTTTATTTGTCCCTACATTCCCTACAGCCAGCAATT





ATTTATGAGCAATTGCTTAAAATGCTCCCACAGCTTTCACTGGAGACATG





ATTATTGGCATATAATATTGCCTCTGGTCCTATGAATCTAAGAAAGGTAA





ATACATATTGGTAGGGAAAGTAAAATTTTACCTTGGAAATGAGATGCAAA







Y
CTAGTAAGCAGATAGTATCTTTTATGGTAAAAGACAAGCCTTATAAGTT






GATTTTATTATGCCCTCTGCATTAAAATAAAACATCTCCTCCTCCATGTC





TGACACTCACCCTCACCTATAGCCTCCCTCTGTGGTTTGAGCTATTTTTT





TGGGAGTGGGGATAAACTAACTGCATGCTGAGCCAGTTACATGAGAATCC





AGATTCCTCTATCTCAGAGGTAGATATTTGAGAGATAGGTGGTAGGGGGT





TAAGAT





F5
rs9332538
144
AATGGTAATAATAATCATGTCTCTGTCATACAGGTTTGTTGTCGTGAAAT





CTTAGAATAATGACTGGCATATAACAGATAATAAATATTAGCCATGATAG





TAAAGATAATTCTTCAATTAAAATGTGTTCAAATAATTTAGTATTTATCT





TAAAACTTGTTAGTTTCAGAAAAAATCAGAAAGTAATTTTTAAATTTATT







R
TTTTCTATATAAACTGTTGTCAAACTCATACCCACTAAGGTATAAGTGA






CTGATAATAGGTCAATGAACTACCTTCCTTAGGAGTACTTGCATTAGCAC





TTAATCTTTGGCTTGAGGAAAAACAATGAAGCATTAACTGTGGCACTGAG





ATTTCTTCCAAAGTGAATTTGGCAAGACTCTGGGTGAGGTAGTGGGAACA





F5
rs9332537
145
CCTCTGTGTGCCTCATCTTTCTCATCTGTAAAATGGTAATAATAATCATG





TCTCTGTCATACAGGTTTGTTGTCGTGAAATCTTAGAATAATGACTGGCA





TATAACAGATAATAAATATTAGCCATGATAGTAAAGATAATTCTTCAATT





AAAATGTGTTCAAATAATTTAGTATTTATCTTAAAACTTGTTAGTTTCAG







-/A







AAAAATCAGAAAGTAATTTTTAAATTTATTGTTTTCTATATAAACTGTTG





TCAAACTCATACCCACTAAGGTATAAGTGACTGATAATAGGTCAATGAAC





TACCTTCCTTAGGAGTACTTGCATTAGCACTTAATCTTTGGCTTGAGGAA





AAACAATGAAGCATTAACTGTGGCACTGAGATTTCTTCCAAAGTGAATTT





GGCAAGACTCTGGGTGAGGTAGTGGGAACAGGAGTTTCTCCTATGTTCTT





AAAAT





F5
rs2227245
146
CAAGTTTTAAGATAAATACTAAATTATTTGAACACATTTTAATTGAAGAA



(at position

TTATCTTTACTATCATGGCTAATATTTATTATCTGTTATATGCCAGTCAT



116)

TATTCTAAGATTTCAYGACAACAAACCTGTATGACAGAGACATGATTATT





ATTACCATTTTACAGATGAGAAAGATGAGGCACACAGAGGTTAAATAACT





TCATAAAAGTCACTGAGCCAGGATTTGCACTTATTAGTCTAGTTCTAAAA





CCTGCACATAAACCACTCTCCTACTCAATTATTCTCTCAAAGGTATGATG





GCTGGAACATGTAGAAGGAAAGATATTTAAATGTGAACCATGAAAAGTCT





GAAATTATTTTAAAATGTTCTCATACCAACAACTATTATAATATGGATAC





AATTTTTTATACCAGTGCCTGATGGAACTCTACTATGCTTACAATGATCT





GAACATCAGCATAATGGGATAATTAGAACCATATTAACATCAGGTACTTA





CTATTCAGCGGCTGATACAATAACTTGCATGACTATTATCTTTATGATTA





TTGCCATCATTGTCATCATTATTTATAGAGAGCTTATCCGATCCCAGG





F5
rs5778622
147
TCACGACAACAAACCTGTATGACAGAGACATGATTATTATTACCATTTTA





CAGATGAGAAAGATGAGGCACACAGAGGTTAAATAACTTCATAAAAGTCA





CTGAGCCAGGATTTGCACTTATTAGTCTAGTTCTAAAACCTGCACATAAA





CCACTCTCCTACTCAATTATTCTCTCAAAGGTATGATGGCTGGAACATGT







-/AGG







AGAAGGAAAGATATTTAAATGTGAACCATGAAAAGTCTGAAATTATTTTA





AAATGTTCTCATACCAACAACTATTATAATATGGATACAATTTTTTATAC





CAGTGCCTGATGGAACTCTACTATGCTTACAATGATCTGAACATCAGCAT





AATGGGATAATTAGAACCATATTAACATCAGGTACTTACTATTCAGCGGC





TGATACAATAACTTGCATGACTATTATCTTTATGATTATTGCCATCATTG





TCATCATTATTTATAGAGAGCTTATCCGATCCCAGGAACCATGTTTAGTA





CTCTACCTAAGTGACTTCATTTAAATTTCAGGCAATCTTATGGGTGGTTA





TAATCATTTCCATTTTATAGATGAGAAAACTGAGGCTCAGAGATGCTAAA





F5
rs9332534
148
CATGCAAGTTATTGTATCAGCCGCTGAATAGTAAGTACCTGATGTTAATA





TGGTTCTAATTATCCCATTATGCTGATGTTCAGATCATTGTAAGCATAGT





AGAGTTCCATCAGGCACTGGTATAAAAAATTGTATCCATATTATAATAGT





TGTTGGTATGAGAACATTTTAAAATAATTTCAGACTTTTCATGGTTCACA







-/TTTA







AATATCTTTCCTTCTCCTACATGTTCCAGCCATCATACCTTTGAGAGAAT





AATTGAGTAGGAGAGTGGTTTATGTGCAGGTTTTAGAACTAGACTAATAA





GTGCAAATCCTGGCTCAGTGACTTTTATGAAGTTATTTAACCTCTGTGTG





CCTCATCTTTCTCATCTGTAAAATGGTAATAATAATCATGTCTCTGTCAT





ACAGGTTTGTTGTCGTGAAATCTTAGAATAATGACTGGCATATAACAGAT





AATAA





F5
rs2213870
149
GAAAGATGAGGCACACAGAGGTTAAATAACTTCATAAAAGTCACTGAGCC





AGGATTTGCACTTATTAGTCTAGTTCTAAAACCTGCACATAAACCACTCT





CCTACTCAATTATTCTCTCAAAGGTATGATGGCTGGAACATGTAGAAGGA





AAGATATTTAAATGTGAACCATGAAAAGTCTGAAATTATTTTAAAATGTT







M
TCATACCAACAACTATTATAATATGGATACAATTTTTTATACCAGTGCC






TGATGGAACTCTACTATGCTTACAATGATCTGAACATCAGCATAATGGGA





TAATTAGAACCATATTAACATCAGGTACTTACTATTCAGCGGCTGATACA





ATAACTTGCATGACTATTATCTTTATGATTATTGCCATCATTGTCATCAT





TATTTATAGAGAGCTTATCCGATCCCAGG





F5
rs2213871
150
ATAAACCACTCTCCTACTCAATTATTCTCTCAAAGGTATGATGGCTGGAA





CATGTAGAAGGAAAGATATTTAAATGTGAACCATGAAAAGTCTGAAATTA





TTTTAAAATGTTCTCATACCAACAACTATTATAATATGGATACAATTTTT





TATACCAGTGCCTGATGGAACTCTACTATGCTTACAATGATCTGAACATC







R
GCATAATGGGATAATTAGAACCATATTAACATCAGGTACTTACTATTCA






GCGGCTGATACAATAACTTGCATGACTATTATCTTTATGATTATTGCCAT





CATTGTCATCATTATTTATAGAGAGCTTATCCGATCCCAGG





F5
rs9332533
151
GTGAGACTAGAAGCATTAATAGTATTAGACTTTTGGACATAGTGAAGTGG





TTAAGAAAGTAAGCTTTAAAGGCAGACAAGTTAAAATTCTAGCTTTATCA





TTTCTGATTCTACGACTTTAGCATCTCTGAGCCTCAGTTTTCTCATCTAT





AAAATGGAAATGATTATAACCACCCATAAGATTGCCTGAAATTTAAATGA







R
GTCACTTAGGTAGAGTACTAAACATGGTTCCTGGGATCGGATAAGCTCT






CTATAAATAATGATGACAATGATGGCAATAATCATAAAGATAATAGTCAT





GCAAGTTATTGTATCAGCCGCTGAATAGTAAGTACCTGATGTTAATATGG





TTCTAATTATCCCATTATGCTGATGTTCAGATCATTGTAAGCATAGTAGA





GTTCCATCAGGCACTGGTATAAAAAATTGTATCCATATTATAATAGTTGT





TGGTAT





F5
rs9332531
152
CTTTGCAGGCCATAAGATCTCTGTTGCAAGTACTCAACTCTGCCTTTTAG





TACAAAAGCAGCCATAGACGATACCTATTTTTTTGGCTTTGGTTACAGAT





GCCAGAACTAATTAACTTTGTTACCGTATTCTTTCCCTCAAGTCATACAC





CAGAGTAAGACCGCCTCTGACAATACAATTTTATTTACAAAAACAGGAAA







K
TGGTTGGGTTTGGCCCATGAGCCACTGACATAGTGACATAGAACTAGCC






TGATATAGGCTTCCTGGCACATAGATGACACTCAATAAGTGGTATTTGGT





GGTGGTGAGACTAGAAGCATTAATAGTATTAGACTTTTGGACATAGTGAA





GTGGTTAAGAAAGTAAGCTTTAAAGGCAGACAAGTTAAAATTCTAGCTTT





ATCATTTCTGATTCTACGACTTTAGCATCTCTGAGCCTCAGTTTTCTCAT





CTATAA





F5
rs6691048
153
GAGGGTAGTTACTTTAGATTTCTCTGACATGGGTGTGCTCAGAGACCTAG





ATGAATTGAGGAACCAAATCACACAGCTCTCTGGCTCTGAGGCAGGAGTA





GTCTTGATGTATCTAAGGAACAGTAAGAAAAACAGTACGGGAAGAAAGAA





GAGATGAGGTGGATGGTAGGTGTGTAGAACAAGGGAGGCCCTATGGGCTA







Y
GGTAAGAACTTGAATTTTCTTCTAAGTGAAATGGGACATCACTGGAGCA






TTTTTCTTTTTTTTTTTGAGATGGAGTCTCGCTCTGTCTCCTAGGCTGGA





GTGCAGTGATGCAATCTCAGGACCCACTGCAACCTCCGCCTCCTGGGTTC





AAGCAATTCTCCTACCTCAACCTCCCAAGTAGCTGGGATTGCAGGCATGC





ACCACCACACCCAGCTAATTTTTGTATTTTTAGTAGAGATGACTTTTCAC





CATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCAGGTGATACACCCGC





CTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCACGCCTCGT





CTAAGTGAAATGGAGCATTTCTAAGTAAAATGAAAAACCACTTTGTACAG





CAGAGACATAGTATAACGTGTATTAAAAGTTCATCCTAAAACAAAAAGTT





CATCATAGCTGCTGTGTAGAGAATAGTCTGTGTAGGGACAAGAATGGAAG





CAGAGAGATTAGGCAGTATAGGAAAGAGACTGCAGTGTACT





F5
rs9332520
154
AACATGGTGAAAAGTCATCTCTACTAAAAATACAAAAATTAGCTGGGTGT





GGTGGTGCATGCCTGCAATCCCAGCTACTTGGGAGGTTGAGGTAGGAGAA





TTGCTTGAACCCAGGAGGCGGAGGTTGCAGTGGGTCCTGAGATTGCATCA





CTGCACTCCAGCCTAGGAGACAGAGCGAGACTCCATCTCAAAAAAAAAAA







-/G/GGA







AAATGCTCCAGTGATGTCCCATTTCACTTAGAAGAAAATTCAAGTTCTTA





CCGTAGCCCATAGGGCCTCCCTTGTTCTACACACCTACCATCCACCTCAT





CTCTTCTTTCTTCCCGTACTGTTTTTCTTACTGTTCCTTAGATACATCAA





GACTACTCCTGCCTCAGAGCCAGAGAGCTGTGTGATTTGGTTCCTCAATT





CATCTAGGTCTCTGAGCACACCCATGTCAGAGAAATCTAAAGTAACTACC





CTCTCGCATCACCCTCTGTAATTGAAATGAACATCTTTCTTAAGCAAAGA





AAGTTATTGCTAAGGAATGACAGTGGGTCAAAGTGGGCAAGACTTGGCCA





GAACTATTTCTCCTACTCTGTTGACTTCTTTTGGGTCCAGGACAAGTGTT





F5
rs9332516
155
TAGAAAGTAAAACCTCATTCTTGATTTCTGCACCCATAACCTCCTGTCTC





TGCTGTGTTCTCCCATTGCAGTAACTAATAACATCATTTACCCAGTTGTT





CTGATAAAACACCTTGAGGTCATCCTTGACTTCTGTCTCTCACAAGCCAC





ATGCAATCCATCAGCAAGTCTTGTTTGCCTTACCTACAAAAATGTCCAGA







M
TCCAACCACTACTCATCACGTTCTGCTACATGTGCTGGCCCAGTACACT






GCAGTCTCTTTCCTATACTGCCTAATCTCTCTGCTTCCATTCTTGTCCCT





ACACAGACTATTCTCTACACAGCAGCTATGATGAACTTTTTGTTTTAGGA





TGAACTTTTAATACACGTTATACTATGTCTCTGCTGTACAAAGTGGTTTT





TCATTTTACTTAGAAATGCTCCATTTCACTTAGACGAGGCGTGGTGGCTC





ACACCT





F5
rs9332513
156
TGTTTTTTGAATATTTTTGATCCAAAATTGGTTGACTCCATGGATGTGTA





ACCATGAATATGAACCATGGTCATGGAGGGCTGACTATATACAATTCCTC





AAATTCTGACTCAGCCATCAACTTTTTCCCTAACTCCCCAGACAGAATTT





GTGCTTCATCCTCTCTTCTTCTGTAATATTTTGCCCATATCTCAGCAGTC







R
CTCCTATCATACATCTATCTCCAAACTAGCTTGTGAGTTCCTTCAGTAC






AGGGACTGTATTTGATCCAGGTAGCCAGAAACTTTCTAACACAGTGCCTG





GCATGTAGAAAGTAAAACCTCATTCTTGATTTCTGCACCCATAACCTCCT





GTCTCTGCTGTGTTCTCCCATTGCAGTAACTAATAACATCATTTACCCAG





TTGTTCTGATAAAACACCTTGAGGTCATCCTTGACTTCTGTCTCTCACAA





GCCACATGCAATCCATCAGCAAGTCTTGTTTGCCTTACCTACAAAAATGT





CCAGACTCCAACCACTACTCATCACGTTCTGCTACATGTGCTGGCCCAGT





ACACTGCAGTCTCTTTCCTATACTGCCTAATCTCTCTGCTTCCATTCTTG





TCCCTACACAGACTATTCTCTACACAGCAGCTATGATGAACTTTTTGTTT





TAGGATGAACTTTTAATACACGTTATACTATGTCTCTGCTGTACAAAGTG





G





F5
rs9332511
157
TTGGCAGCATAGTCAGCACCCTGTTGGGCTCATTGGCAGCTGGGGTAGGT





GGGAATAGTCAGTGGAAACTTCCATCAGGAGCCAAGACAGAGGGTAGCAG





CTGGAAGAGGGGGGTCAGTCAGTGGAGTCCGACATGTCAGGAGTCAAAAG





AGGTGTAGACATCTGGACTATTCTATAAAGATGGGGGCCTGAGCCTGCCC







Y
GTGGAAGGAATAGGGAGAGCTTTGGCTCAGGAGTCCAGAGATCTGAGTT






CTGATCCCAGCAATGCTACCAGATCACTGACTGACCTTGGGCAAGTCACC





TTTGTCCCCCGATTCCTACCTCCCAGGCTTTGTTAACTAAAATAAGGACT





GAACTTTGTGACCTCCACAGTCCTGTGTAAAGCTAACATAAAAACAAACA





AAAAGCTTCAGGCACAAGATCAGAATAAACTCCAGGAGTAGGAGTTCAAG





GAAAGGAATAGGACAACCGTGGGTGGCAAGACAGGGGTAGGGAAAGATAG





GACCTCTGTCCCAGAAATCAGAGTTTACCATTGCTTCTGTAACCAGTTAC





TGCAAACTTAGTGGCTAAAACAACACAAATTTATTCTTTTATGATTATAT





ATCTGCAGATGAGAAGTCCAAAATGGGTTTTATTGGGCTAAAATCAAGGT





GTTGGCAGAGCTGCATTCCTTCTGGAGGCTCTGGGGGAGAATTGTTTCCT





T





F5
rs9332510
158
ATGCGGCACACAATTGGCAGCATAGTCAGCACCCTGTTGGGCTCATTGGC





AGCTGGGGTAGGTGGGAATAGTCAGTGGAAACTTCCATCAGGAGCCAAGA





CAGAGGGTAGCAGCTGGAAGAGGGGGGTCAGTCAGTGGAGTCCGACATGT





CAGGAGTCAAAAGAGGTGTAGACATCTGGACTATTCTATAAAGATGGGGG







Y
CTGAGCCTGCCCCGTGGAAGGAATAGGGAGAGCTTTGGCTCAGGAGTCC






AGAGATCTGAGTTCTGATCCCAGCAATGCTACCAGATCACTGACTGACCT





TGGGCAAGTCACCTTTGTCCCCCGATTCCTACCTCCCAGGCTTTGTTAAC





TAAAATAAGGACTGAACTTTGTGACCTCCACAGTCCTGTGTAAAGCTAAC





ATAAAAACAAACAAAAAGCTTCAGGCACAAGATCAGAATAAACTCCAGGA





GTAGGAGTTCAAGGAAAGGAATAGGACAACCGTGGGTGGCAAGACAGGGG





TAGGGAAAGATAGGACCTCTGTCCCAGAAATCAGAGTTTACCATTGCTTC





TGTAACCAGTTACTGCAAACTTAGTGGCTAAAACAACACAAATTTATTCT





TTTATGATTATATATCTGCAGATGAGAAGTCCAAAATGGGTTTTATTGGG





CTAAAATCAAGGTGTTGGCAGAGCTGCATTCCTTCTGGAGGCTCTGGGGG





A





F5
rs9332500
159
TGGGCATTGAAATAGGCATTGTGGATGCAATAGTGGACAAGACAGTCTCA





TATCCTGGGTTCATGGAGATTATGGTCTAGTTTAATGAGCATAGATGTGC





CTTCGCAAAATGATATTTTGCTTCCATTTGGCTCCCTAGATTCATTCAAA





GGAACTATGTATGGCTGACTCTTTTGCATCTCTTTCCCGTCTATTCTTCT







-/GTTT







ATTTAGTGTGATATATACAATAGCCATAATTTTTAAAGAAAATCTCTTAT





TTTTTCCTCATCTCTTCCTTTATCAAGAAGACTGGGTTGAATAGGGTTCT





AATATCTTAACTATGATACCATATTCCGCAGGGATGATAGAGACCATCAA





GGGAGAACTTCCTCCAGTTGAATCCCCTTGTCAGTAATTCACCTGTCCCT





TTCCCCAATCAGATGAAGACCTGCTGTCTTTCCCAGAATCATCCTAGTCT





GTCCT





F5
rs3753305
160
GAGTTGGCTATGTTGATATTCACCTAGTGAGTATCATAGCTCTAGGGGCA





GGACAAGTTAGAACAAGTTCTTAGTTTAAGCAGCCAGATATATGGATTAG





ATTTTTCATAAGAAAATGCTAGAGAGAAATGATATGATTTAGGGTTAAAC





AATATGACAGTTTGTCTGGGTTGTGTTTCTATGGTTTTGACTCAACAATT







S
CTACCAGAGGAACGAATCTCCAGAACTTTGGAAACTTACCCACAGGATG






AGGGGACAGAATGACCAGTCATGGTTCCCTGTGTACTCACCATGTGAATC





AGACCTTTGCCCTATCTGGTTCTGCCTCCGGTATTTTGCTTGTTATTTTC





AACGCTAACTACAGACAAGAGAAAAAACTCCCAAGCATGAACCCAGCATG





CTACAAGAAAGCCAACAACCAAGTCTGCATTCTACTCATGAGCAGGCAAG





ATTAGT





F7
rs3093229
161
CAACTTGCCTTGAGATGACAACCAAAGTTTTCCTGGTGTCCTCYACACTC



(at position

AAGAGTGACTGTGAGGCGGAGGGGCCCAGCCCTTCTTGCAGGCGGGAATG



44)

AGTGGATGGGTGGATCAACAGAGGCTGCCACAGGAGAGAGGGAGGCCTGG





CCTGGGAACAGAGCTGTGACCGTGCCCTTCCCCAGGGTAGGGGCTGAAGG





ACCCTCCCATCCTAGTGACAGGGCCACAGCATGTCCAAGGAGGCCCCAGA





GGAGGTCCCGGGAGTCCTGGGAGAGCCTGGTTAGCCTCCCTGAAGGGAG





F7
rs3093230
162
CAACTTGCCTTGAGATGACAACCAAAGTTTTCCTGGTGTCCTCCACACTC



(at position

AAGAGTGACTGTGAGGCGGAGGGGCCCAGCCCTTCTTGCAGGCGGGAATG



186)

AGTGGATGGGTGGATCAACAGAGGCTGCCACAGGAGAGAGGGAGGCCTGG





CCTGGGAACAGAGCTGTGACCGTGCCCTTCCCCAGRGTAGGGGCTGAAGG





ACCCTCCCATCCTAGTGACAGGGCCACAGCATGTCCAAGGAGGCCCCAGA





GGAGGTCCCGGGAGTCCTGGGAGAGCCTGGTTAGCCTCCCTGAAGGGAGG





AAGTGGGGTTTTGTGAGAGGGATGGTGCAGCAGCCCCCACACCTGCTACT





CCGTGTGGCCGGGTCCAGCCCCAGGCAAGGTTCCAGGCATGCCCCTGGGA





CAGACGTGGGAGGGAGACCAGCAGGCAGGTCCCCCTCAGGG





F7
rs762635
163
ACTTGAGGTCAGGAGTTCGAAACCAGCCTGGTCAACACGGTGAAACCCCA





TCTCTGCTAAAAAAAAAAAATATATATATATAAATTAGCCAGGCATGGTG





ACGTGCACCTGTGGTCCCAGCTACTCAGGAGGCTGAGGCACAAGAATCAC





TTGAACCCGGGAGGTGGAGGTTGCAGTGAGATTGCACCAGTGCACTCTCC







M
GCCTGGCAACAGAGCAAGACTCTGTCTCAAACAAACAAAACAAAACAAA






CAAAAAGACGTAAGATGTGGACCGCTGGAGAATGGGGGTGCTGCCTGCAG





TCAAAACGGAGTGGGGGTGCCCAGCTCAGGGCCAGAATGATCCTATTCCC





GGCACTTCTCAGTGAGGCTCTGTGGCTCACCTAAGAAACCAGCCTCCCTT





GCAGGCAACGGCCTAGCTGGCCTGGTCTGGAGGCTCTCTTCAAATATTTA





CATCCACA





F7
rs762636
164
TGAAACCCCATCTCTGCTAAAAAAAAAAAATATATATATATAAATTAGCC





AGGCATGGTGACGTGCACCTGTGGTCCCAGCTACTCAGGAGGCTGAGGCA





CAAGAATCACTTGAACCCGGGAGGTGGAGGTTGCAGTGAGATTGCACCAG





TGCACTCTCCAGCCTGGCAACAGAGCAAGACTCTGTCTCAAACAAACAAA







R
CAAAACAAACAAAAAGACGTAAGATGTGGACCGCTGGAGAATGGGGGTG






CTGCCTGCAGTCAAAACGGAGTGGGGGTGCCCAGCTCAGGGCCAGAATGA





TCCTATTCCCGGCACTTCTCAGTGAGGCTCTGTGGCTCACCTAAGAAACC





AGCCTCCCTTGCAGGCAACGGCCTAGCTGGCCTGGTCTGGAGGCTCTCTT





CAAATATTTACATCCACA





F7
rs510317
165
GGACCGCTGGAGAATGGGGGTGCTGCCTGCAGTCAAAACGGAGTGGGGGT





GCCCAGCTCAGGGCCAGAATGATCCTATTCCCGGCACTTCTCAGTGAGGC





TCTGTGGCTCACCTAAGAAACCAGCCTCCCTTGCAGGCAACGGCCTAGCT





GGCCTGGTCTGGAGGCTCTCTTCAAATATTTACATCCACACCCAAGATAC







D
GTCTTGAGATTTGACTCGCATGATTGCTATGGGACAAGTTTTCATCTGC






AGTTTAAATCTGTTTCCCAACTTACATTAGGGGTTTGGAATTCTAGATCG





TATTTGAAGTGTTGGTGCCACACACACCTTAACACCTGCACGCTGGCAAC





AAAACCGTCCGCTCTGCAGCAC





F7
rs3093237
166
GATGGGGTGTGGAGGATCGGGGGTGGGGATGGCGTGTGGGGTGTGGGGGA





TGGGCCGTGGGGGGGTGGGGCCTGGGAAACAGCATGTGGGGCATGGGGTG





TGGGGGTGAGGTGTGGGAAAGTGTGTGGGGTGTGGGGGATGGGGCATGGA





AAGGGCGTGTGGGGTGCAGGGGATGGGGCATGGAGGTGTGGGGGATGGGG







Y
GTGTGGGGTGTCGGGGATGGGGCATGTGGGGTGTGGGGGATGGGGCATG






GAAAGGGCGTGTGGGGTGCAGAGGATGGGGCATGGGGGGGTGGGGATGGC





GAGTGGGGCTGGGGCCTGGGAATGGTGAGTGGGGCATGGGGATGGCGAGT





AGGGGGTGTGGCGTGAGGATGGCTAGTGGGGCGTGGGGATGGCGTGTGGG





GATGGCGAGTGGGGGGTGGGCTGTGAGGGACAGTGCCTGGGATGTGGGGC





TGCAGCCCTAGCTCACAGCATGGCCTTATGACCCCGGCCACCTTCCTGCC





CCAGGCGGGGTCGCTA





F10
rs483743
167
TATTGCTATTAGGAAAACACATATGCATGCATTTCTTCTAGATTATCATC





TAAGAGTGGCTTCTCCAGAGAGAGACGACTGAATTAAAGGTTATCAACAA





GTTCCAATTCCAGATAAGATGAAGAAATCACATTCCACACTGCCTCTCCC





ACTGAGTGTAGCTCCAAAACATGGATAGAATGCATGTAGCAGCTATTTGA







S
GACCCTAAAAAGTAAATCGCAGTGTATTGCAGAATAAGACTACAATTAG






ATGTATGATATGATACAACTGGCTGTGAGTTTATCATTTTTTCCTCCAGT





CTTCCAGACATCACTTGACCTGAATCTAATGGACATTTATAGGATTCTCA





ACAATAGCAAAGTACACTTTCCTTCCACATATGGAAAATTCCTCAAGGTA





GACTATATCCTGTGTCTTAAAGCATACCTCAATAAAAAGATTGAACTCAC





ATAAAGTATGTTTTCTGACCATAATGGAATTAAAGTAAAAATTACTAACA





GAAAAATAACTGGAAACTTCCCTAAGTACTCGGAAATTAAGTCACACATG





TATAAATAATCTGTGAGTCAAAGAGAAAATTTTAAGGGGAGTAAGAAAGT





F10
rs483949
168
ATTTAAAAATAAAATGTTAACCTAAAAACCAATAGTCATGGTCTCGGCCA





GCGCCTCGCCGAGTTGCAGTGAGCTGAGATCGTGCCCTCCCACGCCCGCA





GCCCGCGTCCTGCCTTGGCCTCCGTAGTCGCTGAGAGCCACAGCCTAGAG





CGCCAGCGCGCAGGCGCACAACTGACGCCAGGCCACGAACCCAGTACTGC







K
CCTGCACAGCAGAAGCACTAGCACTGAGGCCGGGCCGCGAACCCGGCAC






TGCGCCTGCGCAGCAAAAGGACACGCACTGAGGCCAGGCCGCGAACCCAG





CACGGTGCCTGCGCAGCAGGAAGACCGGCATCCACACCGGACGACGAACC





CAGCATCGCGCCTGCGCAGTAGGAGGAGAGCAATGCCACCAGGCCGCGAT





TGCGCAGCCGCAGCAGCCCCGCGCGGAAGACGCTACCCTCCTCTCCCCCG





AAGAGG





F10
rs3211753
169
AAAAACAAACAAACAAAAACAAGAAAAAGGACCTATGTTGGAAATGGAAG





AGAGGGGACATCACTACAGAAACTGTAGATGTTAAATGTATAATAAGAAA





ATACTTTGAACAACTCTGCATATATAAATTTGCATGAGATTTGAACTTGG





ATGAAATGAGCCTATTCTTCAATACCACAAGCCACCAAAACATACACAAG







R
TGAAAGAGATACCTGCCAATTCAATTCTTAATTTAAAACCTTCTGAAAA






AGTAATGTTCAGGTACAGATGGTTTCACTGGTAGAATTTTACCAAACATT





TCAAAAAGAACACCAATTCTATACAACTCTTCCAGAACATAGAAGAGGGA





ACACTTCTTAGTTTGTCTTAGGCCAGCATTACCCTGATGTCAAAACCAGA





CAAATACTGAAAACAAAAACCACCCTACGTAACAATATCTCTCATGAATC





TAGACATAAAAATCCTCAACAAAATATTAGCAAACGGTGCAGCAATATAT





TTTTAAAAGAGTAATAATACACCATGACCAAGTGAGTTTTTCTGGGGCAC





ACATGACTGGCTCAATATTTAAAAATAATTATGTAATCCACCATATAAAC





AAAAGAGAACATCCACATAATCATGTCAATTGATGCAACAAACAAATCTG





GCAAAATTTAACATCCATTTATGATTTTATAAAAAACCTATCAGCAGAAT





ATGAATAGGAGGGAATTTTATGAACATAATAAAGTTCATCTACAAAGAGT





CTACAGTTGATATTATACTTAAAGGTGAAAACTGAAGGTTTTCTCCCTGA





F10
rs473950
170
CATGGCTGTAGGAGGGAGAAGAATGAGAGCCGAGCAAAAGGGGAATCCTC





TTAAAAAAAATCAGATCTCATGAGAACATACTCCCACGAGAACAGCATGG





AGGAACCACCCTCACGATTCAGTTACCTCCCACTTGGTCCCTCTCACTAC





ACATGGGGATTATGGGAACTACAATTCAAGATGAGATTTGGGTGGGGACA







R
AGCCAAACCATATCAATGCTCCTAAAATTTGCAAATGAGTGTAACAAGG






TCACAGAATACAAGGTCAGCACATGTGTTAATCACATTTTTATGTAATAG





CAATGCACAGTTATTTGTAAGCCAAAAATTTTTAAATGCCATTTACAATT





GCTTCAAAGAAAATTATATACTTATATGTAAAGCTAATAAAACATATACA





GGATCTTTATCCCAAAATCTACAAAATTCCAATGAAAGTATTTAAACAGA





CCTAAATAAATAGAGACACATACAGTGTTCATGGATTGAAAGACTCAACA





TATTAAGATATCAATTTTCGGCCGGGCGCGGTGGCTCATGCCTGTAATCC





F10
rs3211758
171
TGATTAATAAAAGAAAAAAGTCATAAATTGGACTTTATCAAAATTAAAAC





CTTTTGCACTTCAGAAATAAACACTGTTAAGAGGATGAAAACACAAGCTA





CAAACTAAGAGAAAATATTTGCAAATCACATATCCAACAAAGGAATCATA





TTCGGAATATATAAAGAAATCTTAACAGATCAGAAGAAGAAAATAAACAC







Y
CAGTTAAACAAAAGACCTTAACAGCCAACTCGCCAAAGAGGATATATGG






ATAGAAAATAAACATGTGAGAAGATACTCAACATTATTAGCTCTTACAGA





AATGCAGATAAAAACCACAATAAGAACGACTATATACTCATAGAGTAAAA





AACACTGACACAGAACAGCGCTGGTTAAGACACGGAGAAAGCAGAACTTT





GATACACTGCTCGTGGGAATGCAAAATGGCACGGCCACTTTGAAAAGGAA





F10
rs2251102
172
ACTCTTTTACAATAACTATTATGGAAACACCCTGAGGGAAAAAGTCTTAA





ATGAGTAAAATGAGAACAAAAGCAGAAAGGAAATTCAGGAACTATTTTCA





AAATTCAAATATCCTGATGAACCCCTCTCACTGAAGGTTAAAACAGAAAA





AATACTGACCTTTGTATTTATTCCAGAATTCATTCTAAAAGGAAAAAAGA







R
ATTTAAAAATATATTAGGGAAAACAGAGACATTTTATACCAATAACAAC






CATAATTAAGTGACTCAAGCTGAATAGGATATTTTCCCCAATGGAAGTCA





CTTTTAGGAATGAATTGTTCTAGAACTATTCAATCTAAAGAGGAAAGCTA





TTCAGATCTTCTGCATCTGTGAAGATGTGGCTTCAGTCATCTTAAATGAA





CCATCTTTGTTGAATATTGAAAATATTTTCAAGTTAATTACCTAGAAACA





F10
rs776897
173
CAGGTAACAGTGACACCAAGAGGACAGGACTGAGCCCTGGGCTCCGGGCC





CAGGTGGTTCAAACATGAAGACCATGAGGTTTGGAAACAGACCCATTATT





TCTGTAAGCCAGATCTGCTGTTTAACCTCAGCTTCCCCATCTGACAAATG





GGACCAACACTATTGCCTGACTGCTTGGGTGATCCCTGGAGCACTTTGCA







Y
GATGCCTGGCCCACCGCAGGCCCTCAGTCTGCATTGGGACTGTGGGGGG






ATCCAGTGCAAGGGCTCAAAGCACCAGGGCAGGCAAAGGGCAGAGCTGGC





CCGAGGAACTGGAGCTAAGGTGCGGGGCTGGGATAGGAGTCAGGGGACGC





TCAGGCTCTGAGCTCCTTTTACCAGGACCAGTGTTCATTGAACGTAGTTT





TTCTTTTCCTTGATGAATGTGGACAACAGGCGGCCAGAGGGCAGTGAGCA





SERPINE1
rs2227676
174
ATGAGGACTGGGATGAACTGGTGGCTGGGTGTGGGGAAAATGGAAGTGAA





GGAAGGCCAAAAGAGACAGAGAAGGCCTGGCGCGGCGACTCACGCCTATA





ATCCCAGCACTTTGGGAGGCTGAGAAGGGGGATTGCTTGAGGCCAGAAGT





TGAATACCAGTCTGGGCAGCATAGCAAGACCCTGCCTCTACAAAAAAAAA







W
TTTTTTTTAATTAGCCAGGCTTGGTGACATGCATCTGTAGTCTACTCAA






GAAGCTGAGGTGAGGCCAGGCACGGTGGCTCACGCCTGTATTCCCAGCAC





TTTGGGAGGTCAAGGCGGGTGGATGACCTGAGGTCAGGAGTTCAAGACCA





GCCTGGCCAACATGGTGAAACCCCATCTGTATAAAAATACAAAAATTAGC





TGGGCATGATAGCAGGTGCCTGTAATTCCAGCTACTCAGGAGGCTGAGGT





SERPINE1
rs2227681
175
GTGAAACCCCATCTGTATAAAAATACAAAAATTAGCTGGGCATGATAGCA





GGTGCCTGTAATTCCAGCTACTCAGGAGGCTGAGGTGGGAGAATCTATTG





AACCCGGGAGGGGGAGGTTGCAGTGAGCCGAGATCATGCCATTGCACTCC





AGCCTGGGCGACAGAGTGAGACTCCTTCTCAAAACAAACAAACAAACAAA







-/CAAA







CAAAATACAGAAGCTGAGGCGGGAGGAACATTTGAACCGGATTCGGAGGC





TGCAGTGAGCTATGATTGCACCACTGCGCTCCAGTCTGTGTGACAGTGAG





ACCCTGTCTCTTACACACACACACACACACACACACACACATGCACACAC





ACAGAGAGAGAGAAATTAGAAGATACTGAATTGGCAGAAGAGAAGGGAAA





TAGAAATTAAAATACTGAATAGGGGAGCAGTGAACAGGGGATACCCAAAA





GCCAA





SERPINE1
rs2227683
176
TGATAGCAGGTGCCTGTAATTCCAGCTACTCAGGAGGCTGAGGTGGGAGA





ATCTATTGAACCCGGGAGGGGGAGGTTGCAGTGAGCCGAGATCATGCCAT





TGCACTCCAGCCTGGGCGACAGAGTGAGACTCCTTCTCAAAACAAACAAA





CAAACAAACAAACAAAATACAGAAGCTGAGGCGGGAGGAACATTTGAACC







R
GATTCGGAGGCTGCAGTGAGCTATGATTGCACCACTGCGCTCCAGTCTG






TGTGACAGTGAGACCCTGTCTCTTACACACACACACACACACACACACAT





GCACACACACAGAGAGAGAGAAATTAGAAGATACTGAATTGGCAGAAGAG





AAGGGAAATAGAAATTAAAATACTGAATAGGGGAGCAGTGAACAGGGGAT





ACCCAAAAGCCAAGAGCGAGAGAGAGCCTGGCTTCCAGAAATAGTGGAGA





AGCCAGGAGAACTAGGTGAAAACCCAGTGCTGGGTTGCCATCAGCGAGAG





SERPINA5
rs2069973
177
TCTGCACCTCCTCTCCCTCCTTCCTCTCCCCGTCATCCCTAAATCTTGTC



(at position

CTCGAGCCACTGCCACCCTGTGTAAACCCTCATGCCCAGTCTTGSGGGTG



95)

CCATCCCTTCTCTTTGAAGCTGAATGGACCAAACATACCCATTGAGTGTT





GGGTGGGGACATCTCTGGAAAGTCAGCACCTGGACCAGCTCCACCCCTCT





CTGAGGACACCTTCTTTCCCTTTCAGAACAAAGAACAGCCACCATGCAGC





TCTTCCTCCTCTTGTGCCTGGTGCTTCTCAGCCCTCAGGGGGCCTCCCTT





CACCGCCACCACCCCCGGGAGATGAAGAAGAGAGTCGAGGACCTCCATGT





AGGTGCCACGGTGGCCCCCAGCAGCAGAAGGGACTTTACCTTTGACCTCT





ACAGGGCCTTGGCTTCCGCTGCCCCCAGCCAGAGCATCTTCTTCTCCCCT





GTGAGCATCTCCATGAGCCTGGCCATGCTCTCCCTGGGGGCTGGGTCCAG





CACAAAGATGCAGATCCTGGAGGGCCTGGGCCTCAACCTCCAGAAAAGCT





CAGAGAAGGAGCTGCACAGAGGCTTTCAGCAGCTCCTTCAGGAAC





SERPINA5
rs2069974
178
TCCATATCCCATCCTCCAAAATGTGTCCCTTGATGTGGATGGGTAGACAG





GATTCCTGCCCTGGCAGCCAGACCCCTGCCTTGGGTCTGCACCTCCTCTC





CCTCCTTCCTCTCCCCGTCATCCCTAAATCTTGTCCTCGAGCCACTGCCA





CCCTGTGTAAACCCTCATGTCCAGTCTTGGGGGTGCCATCCCTTCTCTTT







R
AAGCTGAATGGACCAAACATACCCATTGAGTGTTGGGTGGGGACATCTC






TGGAAAGTCAGCACCTGGACCAGCTCCACCCCTCTCTGAGGACACCTTCT





TTCCCTTTCAGAACAAAGAACAGCCACCATGCAGCTCTTCCTCCTCTTGT





GCCTGGTGCTTCTCAGCCCTCAGGGGGCCTCCCTTCACCGCCACCACCCC





SERPINA5
rs6115
179
AACAGCCACCATGCAGCTCTTCCTCCTCTTGTGCCTGGTGCTTCTCAGCC





CTCAGGGGGCCTCCCTTCACCGCCACCACCCCCGGGAGATGAAGAAGAGA





GTCGAGGACCTCCATGTAGGTGCCACGGTGGCCCCCAGCAGCAGAAGGGA





CTTTACCTTTGACCTCTACAGGGCCTTGGCTTCCGCTGCCCCCAGCCAGA







R
CATCTTCTTCTCCCCTGTGAGCATCTCCATGAGCCTGGCCATGCTCTCC






CTGGGGGCTGGGTCCAGCACAAAGATGCAGATCCTGGAGGGCCTGGGCCT





CAACCTCCAGAAAAGCTCAGAGAAGGAGCTGCACAGAGGCTTTCAGCAGC





TCCTTCAGGAACTCAACCAGCCCAGAGATGGCTTC





SERPINA5
rs6112
180
CTGAGCCTCGGCAATGCCCTTTTCACCGACCTGGTGGTAGACCTGCAGGA



(at position

CACCTTCGTAAGTGCCATGAAGACGCTGTACCTGGCAGACACTTTCCCYA



99)

CCAACTTTAGGGACTCTGCAGGGGCCATGAAGCAGATCAATGATTATGTG





GCAAAGCAAACGAAGGGCAAGATTGTGGACTTGCTTAAGAACCTCGATAG





CAATGCGGTCGTGATCATGGTGAATTACATCTTCTTTAAAGGTAAGGCCC





TTGGGCCCAAACCTGCACTTTCTTTGGCTTTTCTGCTGCTTTTATCTAAA





GAATACCCAATTCCCTCACATACATAAAAGACGGGGAGTACGTTAAGTTC





TTTTGGGTGCCTGTTGAGAAAAATTAAGTAAACAAGCAGCCAGAGAAGGT





SERPINA5
rs2066969
181
TTCCCAATGGGAAAAACCATTCATTTCCAGGATCCATACTAACTTCTTTC





TAAAATTTAAATCAAAATATTGGAATGAAAGTGCAAACAGAGAAGTTCAC





CCAGATATCAGGTAGCATTCACAGCCAGCCACATTTTTCACCCTCTTCAC





TTGGAGATTTGGTCTTGAGTAAAACGTTAGAGAATCAGAGAACATCAGGG







R
TCCAGGGCCTCTGAAGATGTGAAAACCAACCTCCTTGTTTTGCAAATGT






GGAAGGAAAAGTCCCACGAAAAGTCCAAGAATGTGCCCAATGTTATAAAG





AGACTTGCCTTCATATTCAAGAGGTTCAACAGTCACTGCTCTGGGGCTGC





CATAAAGATGGTCTCCGCTGGCTATCTTTACTGTCT





SERPINA5
rs6107
182
CCTTTTCCCTTTCCAGGCAGCTCGAGCTTTACCTTCCCAAATTCTCCATT





GAGGGCTCCTATCAGCTGGAGAAAGTCCTCCCCAGTCTGGGGATCAGTAA





CGTCTTCACCTCCCATGCTGATCTGTCCGGCATCAGCAACCACTCAAATA





TCCAGGTGTCTGAGGTGGGTTCAGAAGCTCCTATGCATCTGCTTCCCAAG







R
TCTATTCTGTTCTATTCTTTCTATTCTACTCTACCCCATTTCATTCCAT






TCCATTCCACTCAACTCCACTCCACTCCACTCCACTCCAGTTCACTCTAT





TCAATTCCACTCCACTCCACTCCAGTTCACTTTATTCAATTCCACTCCAC





TCCACTCCAGTTCACTCTATTCAGTTCCACTCCACTCCACTCCACTCCAG





TTCACTCTATTCCATTCCACTCCATTCCACTCCTCCACTCCTCTCATCCA





CTCCACTCTACTCCTCCACTCCACATCTCCACTCCACTCCTCCACTCCAC





SERPINA5
rs6109
183
ATTACACCTTGCTCAAAGATGCCATGAGAATTCAATGACAGACACATGCG





AAGTCACCCCCCAGCACAGTGCCTGGGGCAGAGTAGCTGCTCCATTGTTC





CATTTCCTACTTGCTCCATGGCTCAGTTGAACAGATACTTAGAGGTTGAT





GCCCATAGGCAGAAGCTTTGCCATTTGCTATGATGACTTCACCTGCCCCT







R
GTGGCCTGGTGATGCCTGGTGTCTCCCCTGCAGATGGTGCACAAAGCTG






TGGTGGAGGTGGACGAGTCGGGAACCAGAGCAGCGGCAGCCACGGGGACA





ATATTCACTTTCAGGTCGGCCCGCCTGAACTCTCAGAGGCTAGTGTTCAA





CAGGCCCTTTCTGATGTTCATTGTGGATAACAACATCCTCTTCCTTGGCA





SERPINA5
rs6116
184
TTTCCTACTTGCTCCATGGCTCAGTTGAACAGATACTTAGAGGTTGATGC





CCATAGGCAGAAGCTTTGCCATTTGCTATGATGACTTCACCTGCCCCTGG





TGGCCTGGTGATGCCTGGTGTCTCCCCTGCAGATGGTGCACAAAGCTGTG





GTGGAGGTGGACGAGTCGGGAACCAGAGCAGCGGCAGCCACGGGGACAAT







M
TTCACTTTCAGGTCGGCCCGCCTGAACTCTCAGAGGCTAGTGTTCAACA






GGCCCTTTCTGATGTTCATTGTGGATAACAACATCCTCTTCCTTGGCAAA





GTGAACCGCCCCTGAGGTGGGGCTTCTCCTGAAATCTACAGGCCTCAGGG





TGGGAGATGAAGGGGGCTATGCTATGGCCCATCTGTATGCTGGTAGCTAG





SERPINA5
rs6108
185
GAACCAGAGCAGCGGCAGCCACGGGGACAATATTCACTTTCAGGTCGGCC





CGCCTGAACTCTCAGAGGCTAGTGTTCAACAGGCCCTTTCTGATGTTCAT





TGTGGATAACAACATCCTCTTCCTTGGCAAAGTGAACCGCCCCTGAGGTG





GGGCTTCTCCTGAAATCTACAGGCCTCAGGGTGGGAGATGAAGGGGGCTA







W
GCTATGGCCCATCTGTATGCTGGTAGCTAGTGATTTACACAGGTTTAGT






TGACTAATGAGGCATTACAAATAATATTACTCTATGATGATTGCTTCCAC





CCACACGACTGCAACATACAGGTGCCTTGGGGAAATGTGGAGAACATTCA





ATCTTGCCGTCACTATTCATCAATGAAGATTAACACTGAGATCCAGAGAG





GCTGGATGACTTGCTCAAGTTCACCAGCATGGTAGTGGCAAAGAGAGGTC





CAGAGTCCTGGCCCTTGATGCCCAGCTCAGTGCCACAAAGCTCAATAGGA





GGGATGTTCCAGTGGATGAGGGCCACCAGGAAGCACAGGTCCAAGGC





SERPINA5
rs938
186
GGGAGATGAAGGGGGCTAAGCTATGGCCCATCTGTATGCTGGTAGCTAGT





GATTTACACAGGTTTAGTTGACTAATGAGGCATTACAAATAATATTACTC





TATGATGATTGCTTCCACCCACACGACTGCAACATACAGGTGCCTTGGGG





AAATGTGGAGAACATTCAATCTTGCCGTCACTATTCATCAATGAAGATTA







R
CACTGAGATCCAGAGAGGCTGGATGACTTGCTCAAGTTCACCAGCATGG






TAGTGGCAAAGAGAGGTCCAGAGTCCTGGCCCTTGATGCCCAGCTCAGTG





CCACAAAGCTCAATAGGAGGGATGTTCCAGTGGATGAGGGCCACCAGGAA





GCACAGGTCCAAGGCTGGTCCCACACTTATCAGCAGCAACAACTGTCAGT





TCATCCTGCATGGGAAAAATGTTGGAATGGGAGTCTGAAATGGGGCTACT





GTTTCAGTCCTAATGTGCTGTGTGACATTGGGACAACACTTTCCCTCTCT





GGACCTCAGTTTCCCTCTGTATACAAGGATCAGATTCTTGCTGTGACCCA





AGAACTCCTGAAATCATATAGAAAGGCTGGGGTGGGCCCTGTCATTCGT





SERPINA5
rs1050013
187
TTCCACCCACACGACTGCAACATACAGGTGCCTTGGGGAAATGTGGAGAA





CATTCAATCTTGCCGTCACTATTCATCAATGAAGATTAACACTGAGATCC





AGAGAGGCTGGATGACTTGCTCAAGTTCACCAGCATGGTAGTGGCAAAGA





GAGGTCCAGAGTCCTGGCCCTTGATGCCCAGCTCAGTGCCACAAAGCTCA







R
TAGGAGGGATGTTCCAGTGGATGAGGGCCACCAGGAAGCACAGGTCCAA






GGCTGGTCCCACACTTATCAGCAGCAACAACTGTCAGTTCATCCTGCATG





GGAAAAATGTTGGAATGGGAGTCTGAAATGGGGCTACTGTTTCAGTCCTA





ATGTGCTGTGTGACATTGGGACAACACTTTCCCTCTCTGGACCTCAGTTT





CCCTCTGTATACAAGGATCAGATTCTTGCTGTGACCCAAGAACTCCTGAA





ATCATATAGAAAGGCTGGGGTGGGCCCTGTCATTCGTGGTTGATTTCAA





SERPINA5
rs9113
188
AGGTCCAGAGTCCTGGCCCTTGATGCCCAGCTCAGTGCCACAAAGCTCAA





TAGGAGGGATGTTCCAGTGGATGAGGGCCACCAGGAAGCACAGGTCCAAG





GCTGGTCCCACACTTATCAGCAGCAACAACTGTCAGTTCATCCTGCATGG





GAAAAATGTTGGAATGGGAGTCTGAAATGGGGCTACTGTTTCAGTCCTAA







Y
GTGCTGTGTGACATTGGGACAACACTTTCCCTCTCTGGACCTCAGTTTC






CCTCTGTATACAAGGATCAGATTCTTGCTGTGACCCAAGAACTCCTGAAA





TCATATAGAAAGGCTGGGGTGGGCCCTGTCATTCGTGGTTGATTTCAATA





CACTCAAGTGCCATTCATCCTTTAAGAAAAACATCTGGATATCAAGGTGG





AAATGGCCCATTTAATGATTGATTATATCATTTTGTGGATATAGTTATAA





TCTGATGG





SERPINA5
rs7070
189
TAGAAAGGCTGGGGTGGGCCCTGTCATTCGTGGTTGATTTCAATACACTC





AAGTGCCATTCATCCTTTAAGAAAAACATCTGGATATCAAGGTGGAAATG





GCCCATTTAATGATTGATTATATCATTTTGTGGATATAGTTATAATCTGA





TGGGCCTGGCTGGGAGTGGAAGAAGGGAAGCCTTTTGCAAATAGTAGAGT







R
TCAGTTGCAGGTGCCAATGACTAACTTTTTGAATTCTATGTTGGCATTA






ACAATAAAGCATTTTGCAAACACTGGTTATAACTGTCTTTATGGAGGCAG





CTCTGGGAATGGTGACATTGATAGCTTACCATGCTCCAGGCCGGGTGCCT





GGCCCTTCACCTGGATGGTCGCATTTGCCCCTCATAAGACTCCCATGAAG





AAAGGCACCACTGTTATCCCATCTGTTATTCACAGATGGGAAAGGCAAGG





CTTGAAGTGGTTAGGTGGCTTACCCAGTCACATATCTTCTAAGTGGTGCA





GCCAGAATTTGGCGGGGGGAGTGCGACCAAGAACCCTACACTCAGTCCTG





TGCTCTGTGCTGTGGAGGAGAGATGACCAGGAGCAGAAACTTCATT





SERPINA5
rs2069995
190
AAGGCACCACTGTTATCCCATCTGTTATTCACAGATGGGAAAGGCAAGGC





TTGAAGTGGTTAGGTGGCTTACCCAGTCACATATCTTCTAAGTGGTGCAG





CCAGAATTTGGCGGGGGGAGTGCGACCAAGAACCCTACACTCAGTCCTGT





GCTCTGTGCTGTGGAGGAGAGATGACCAGGAGCAGAAACTTCATTCAGGG







R
CATCTCAGGCACCAGCTCCCCCATGAGCCAGCTAAGTTCCCTCCCTCCC






TTCACCAAGCACCATGTGTTTCCTCATGTGCCGAATGAAGAGGATTAGAT





ACTCAAGAATGGAATGAGTGGGTGAGTGAGTCCTTCGCTGCACCCAAGTC





TGATTTTCTGTGCGCCTGCTCACCCCACCCTGCATGTTCTAAGCATGCTT





SERPINA5
rs2069996
191
ATCTTCTAAGTGGTGCAGCCAGAATTTGGCGGGGGGAGTGCGACCAAGAA





CCCTACACTCAGTCCTGTGCTCTGTGCTGTGGAGGAGAGATGACCAGGAG





CAGAAACTTCATTCAGGGACATCTCAGGCACCAGCTCCCCCATGAGCCAG





CTAAGTTCCCTCCCTCCCTTCACCAAGCACCATGTGTTTCCTCATGTGCC







R
AATGAAGAGGATTAGATACTCAAGAATGGAATGAGTGGGTGAGTGAGTC






CTTCGCTGCACCCAAGTCTGATTTTCTGTGCGCCTGCTCACCCCACCCTG





CATGTTCTAAGCATGCTTCCATAAGGCTGTGCCCCACCCTCTGATTCTAG





AGTCTGGACTGTATCAGAGGTGAGTGCCTACTAGAGGTAACAAGGTCAGG





IL6
rs2069825
192
TTTCATTTTCACACCAAAGAATCCCACCGCGGCAGAGGACCACCGTCTCT



(at position



-/CT





51)

GTTTAGACAATCGGTGAAGAATGGATGACCTCACTTTCCCCAACAGGCGG





IL6
rs1800797
193
CAAACCTCTGGCACAGAGAGCAAAGTCCTCACTGGGAGGATTCCCAAGGG



(at position

GTCACTTGGGAGAGGGCAGGGCAGCAGCCAACCTCCTCTAAGTGGGCTGA



196)

AGCAGGTGAAGAAAGTGGCAGAAGCCACGCGGTGGCAAAAAGGAGTCACA





CACTCCACCTGGAGACGCCTTGAAGTAACTGCACGAAATTTGAGGRTGGC





CAGGCAGTTCTACAACAGCCSCTCACAGGGAGAGCCAGAACACAGAAGAA





CTCAGATGACTGGTAGTATTACCTTCTTCATAATCCCAGGCTTGGGGGGC





TGCGATGGAGTCAGAGGAAACTCAGTTCAGAACATCTTTGGTTTTTACAA





ATACAAATTAACTGGAACGCTAAATTCTAGCCTGTTAATCTGGTCACTG





IL6
rs2069832
194
ATCTCAGCCCTGAGAAAGGAGGTGGGTAGGCTTGGCGATGGGGTTGAAGG





GCCCGGTGCGCATGCGTTCCCCTTGCCCCTGCGTGTGGCCGGGGGCTGCC





TGCATTAGGAGGTCTTTGCTGGGTTCTAGAGCACTGTAGATTTGAGGCCA





ACGGGGCCGACTAGACTGACTTCTGTATTTATCCTTTGCTGGTGTCAGGA







R
GTTCCTTTCCTTTCTGGAAAATGCAGAATGGGTCTGAAATCCATGCCCA






CCTTTGGCATGAGCTGAGGGTTATTGCTTCTCAGGGCTTCCTTTTCCCTT





TCCAAAAAATTAGGTCTGTGAAGCTCCTTTTTGTCCCCCGGGCTTTGGAA





GGACTAGAAAAGTGCCACCTGAAAGGCATGTTCAGCTTCTCAGAGCAGTT





IL6
rs2069833
195
GGTCTGAAATCCATGCCCACCTTTGGCATGAGCTGAGGGTTATTGCTTCT





CAGGGCTTCCTTTTCCCTTTCCAAAAAATTAGGTCTGTGAAGCTCCTTTT





TGTCCCCCGGGCTTTGGAAGGACTAGAAAAGTGCCACCTGAAAGGCATGT





TCAGCTTCTCAGAGCAGTTGCAGTACTTTTTGGTTATGTAAACTCAATGG







Y
TAGGATTCCTCAAAGCCATTCCAGCTAAGATTCATACCTCAGAGCCCAC






CAAAGTGGCAAATCATAAATAGGTTAAAGCATCTCCCCACTTTCAATGCA





AGGTATTTTGGTCCTGTTTGGTAGAAAGAAAAGAACACAGGAGGGGAGAT





TGGGAGCCCACACTCGAATTCTGGTTCTGCCAAACCAGCCTTGTGATCTT





GGGTAAATTCCCTACCACCTCTGGACTCCATCAGTAAAATTGGGCGTGGA





CTAGGTGATCTCATAGATCCTTCCTGCTGGAACATTCTATGGCTTGAATT





ATATTCTCCTAATTATTGTCAAAATTGCTGTTATTAAGTATCTACTGTGT





IL6
rs1474348
196
TACTTAATCCTGAGTCTCAGTTTCCTTATCTCCAAAAACCTTCCTTGCAA





ATTTGTTTTGAAGATTAGACACAATATTTATTTAAAGTGCCTGGCACACA





GTAGATACTTAATAACAGCAATTTTGACAATAATTAGGAGAATATAATTC





AAGCCATAGAATGTTCCAGCAGGAAGGATCTATGAGATCACCTAGTCCAC







S
CCCAATTTTACTGATGGAGTCCAGAGGTGGTAGGGAATTTACCCAAGAT






CACAAGGCTGGTTTGGCAGAACCAGAATTCGAGTGTGGGCTCCCAATCTC





CCCTCCTGTGTTCTTTTCTTTCTACCAAACAGGACCAAAATACCTTGCAT





TGAAAGTGGGGAGATGCTTTAACCTATTTATGATTTGCCACTTTGGTGGG





CTCTGAGGTATGAATCTTAGCTGGAATGGCTTTGAGGAATCCTAGCCATT





GAGTTTACATAACCAAAAAGTACTGCAACTGCTCTGAGAAGCTGAACATG





IL6
rs1474347
197
TCTTGTTACATGTCTGGGAAAGAATACCAGAATTGTTATCACCTAAGTGT





CCCTAAAACAAACACCACTAGAGGGCCTTTTCATTGTTCAACCACAGCCA





GGAAAGTCTCTAAGAAAAATGAAGCTACAACTCATTGGCATCCTGGCAAG





CAAATTCCAGTGGAGTGGGGGCACACTTGGGTTCAGTTCCAAGCTCACCT







K
TGACTTTAGGTGTGTTACTTAATCCTGAGTCTCAGTTTCCTTATCTCCA






AAAACCTTCCTTGCAAATTTGTTTTGAAGATTAGACACAATATTTATTTA





AAGTGCCTGGCACACAGTAGATACTTAATAACAGCAATTTTGACAATAAT





TAGGAGAATATAATTCAAGCCATAGAATGTTCCAGCAGGAAGGATCTATG





AGATCACCTAGTCCACGCCCAATTTTACTGATGGAGTCCAGAGGTGGTAG





GGAATTTACCCAAGATCACAAGGCTGGTTTGGCAGAACCAGAATTCGAGT





GTGGGCTCCCAATCTCCCCTCCTGTGTTCTTTTCTTTCTACCAAACAGGA





IL6
rs1554606
198
ATCCAGGCAGCAACAAAAAGTGGGTAAATGTAAAGAATGTTATGTAAATT





TCATGAGGAGGCCAACTTCAAGCTTTTTTAAAGGCAGTTTATTCTTGGAC





AGGTATGGCCAGAGATGGTGCCACTGTGGTGAGATTTTAACAACTGTCAA





ATGTTTAAAACTCCCACAGGTTTAATTAGTTCATCCTGGGAAAGGTACTC







K
CAGGGCCTTTTCCCTCTCTGGCTGCCCCTGGCAGGGTCCAGGTCTGCCC






TCCCTCCCTGCCCAGCTCATTCTCCACAGTGAGATAACCTGCACTGTCTT





CTGATTATTTATCAAAGGGAGTTTCCAGCTCAGCATACACAAGGCAGAGA





GTGCAGACAGAACATCAAGGGGACAATTCAGAGAAGGATCC





IL6
rs2069845
199
CCCTGGGCATCTTCTTGTGGTGTGGAGTCTGACTTAGCAAGCCTCGGGTG





GGTTTGAGGGTCAAATTTCTACCAGGCTTATATCCCTGGTGATGCTGCAG





AATTCCAGGACCACACTTGGAGGTTTAAGGCCTTCCACAAGTTACTTATC





CCATATGGTGGGTCTATGGAAAGGTGTTTCCCAGTCCTCTTTACACCACC







R
GATCAGTGGTCTTTCAACAGATCCTAAAGGGATGGTGAGAGGGAAACTG






GAGAAAAGTATCAGATTTAGAGGCCACTGAAGAACCCATATTAAAATGCC





TTTAAGTATGGGCTCTTCATTCATATACTAAATATGAACTATGTGCCAGG





CATTATTTCATATGACAGAATACAAACAAATAAGATAGTGATGCTGGTCA





GGCTTGGTGGCTCATGCCTGTATTCCCTAAACTTTGGGAGCCTAAGGTGA





IL6
rs1818879
200
GTTCTGCCTCCCTCTTCTGGGTTCCTAAAGCACTGCACCTATCTACCTGT





CAAAGCATCTACCACATTGTACCACACCTTAAAATCAATGGTTTTTTTCT





TCTCAGCCAGCATGTGGATGCCTCAATAAAGCAGACTCCTTTCATGACCT





AAAACTAATTTCAGGGGGGAAAAAAAGACGAGCTGGGCGCAGTGGCTCAC







R
CCTATAATCCCAGCACTTTGGGAGGCTGAGGCGGGAGGATCACTTGAGG






TCAGAAGACCAGCCTGGCCAACATGGCAAAACCCCGTCTCTACTAAAAAT





ACAAAAATTAGCTGGGCGTGGTGGCGCACCTATAATCCCAGCTACTCAGG





AAGCTGAGACATGATAATCGCTTGAGCCTGGGAGGTAGAGCCTGGGGCTG





CACTCCATCCTGGGCAACAGAGGGAGATTCTGTCTCAAAAAATAATAATA





ATAATATAAATAAATAAATAATTTTTTTAAAAAAAGACTCTTTCCTATAT





IL10
rs1554286
201
TCTCACTCACCTTTGGCTCCTGCCCTTAGGGTTACCTGGGTTGCCAAGCC





TTGTCTGAGATGATCCAGTTTTACCTGGAGGAGGTGATGCCCCAAGCTGA





GAACCAAGACCCAGACATCAAGGCGCATGTGAACTCCCTGGGGGAGAACC





TGAAGACCCTCAGGCTGAGGCTACGGCGCTGTGTAAGTAGCAGATCAGTT







Y
TTTCCCTTGCAGCTGCCCCCAAAATACCATCTCCTACAGACCAGCAGGG






ACACTCACATCCACAGACACAGCAAAGACACAGACTGGCAGAGCTAGCTG





TAAATGAGGAAAGACTCCTGGAGTCAGATCTCTTGCTCATTTCTCTTTGA





GCAGGCGTTGGGGGTGGCTGCTAGGCATTTACATGTGAAATTTGCAAACA





GCTTTCCTGTTATTTGTGAGTCATTTGTGGGTTATTAACTACTCCCCTCT





CTCTTCATAAAAGGAGCCCAGAGCTTCAGTCAGGCCTCCACTGCCTCTTT





IL10
rs1518111
202
TCTCTAAATGAAAGGGCATCAAAAAGACCGCATTTCAGTTATTTCCCCAA





ACCTCAAGTTCATTCTCCTTTTGTTCTTCCTGCAGCAAATGAAGGATCAG





CTGGACAACTTGTTGTTAAAGGAGTCCTTGCTGGAGGACTTTAAGGTGAG





AGCAGGGGCGGGGTGCTGGGGGAGTGTGCAGCATGATTAAGGGAAGGGAG







R
CTCTGCTTCCTGATTGCAGGGAATTGGGTTTGTTTCCTTCGCTTTGAAA






AGGAGAAGTGGGAAGATGTTAACTCAGCACATCCAGCAGCCAGAGGGTTT





ACAAAGGGCTCAGTCCTTCGGGGAGGCTTCTGGTGAAGGAGGATCGCTAG





AACCAAGCTGTCCTCTTAAGCTAGTTGCAGCAGCCCCTCCTCCCAGCCAC





CTCCGCCAATCTCTCACTCACCTTTGGCTCCTGCCCTTAGGGTTACCTGG





GTTGCCAAGCCTTGTCTGAGATGATCCAGTTTTACCTGGAGGAGGTGATG





CCCCAAGCTGAGAACCAAGACCCAGACATCAAGGCGCATG





IL10
rs1518110
203
TCCTCTGTTTTTAAAACTCCCCTTTTGATTTTTTTGGGCCAGAGCCAATT



(at position

TKATTTAAAAAAAAAAATCTCTAAATGAAAGGGCATCAAAAAGACCGCAT



52)

TTCAGTTATTTCCCCAAACCTCAAGTTCATTCTCCTTTTGTTCTTCCTGC





AGCAAATGAAGGATCAGCTGGACAACTTGTTGTTAAAGGAGTCCTTGCTG





GAGGACTTTAAGGTGAGAGCAGGGGCGGGGTGCTGGGGGAGTGTGCAGCA





TGATTAAGGGAAGGGAGACTCTGCTTCCTGATTGCAGGGAATTGGGTTTG





TTTCCTTCGCTTTGAAAAGGAGAAGTGGGAAGATGTTAACTCAGCACATC





CAGCAGCCAGAGGGTTTACAAAGGGCTCAGTCCTTCGGGGAGGCTTCTGG





TGAAGGAGGATCGCTAGAACCAAGCTGTCCTCTTAAGCTAGTTGCAGCAG





IL10
rs3024490
204
CCAACACCTATTCCCCCAAACTTAAATTCTTAAGAGAATCCTAGATCAAG





CCATGGGTTTGGTGAGTTAAGCTAAGCCAGATGATACAGTAAATGTGCAG





GAAACCTGCCTTATAAAGTAAATGCGTTCTCTCTCGTGCTGAGAAACTTA





TAAGATCCTGCTGGCGCTCTATACTTTATTGGCTAGGAGAAGTAAAGAAA







K
GTCTGATTCGAGGTGAAGATGCTCCCCATGCCTTGCAGCAGGGAAATTT






AAATTGCCTCTGCTTAGAGCGTTTCCAGACCTGAAAGACCAGTGGTTTAG





GGAAGCACTCTACATGAGGGAAACCTGCATTAGAAGGAGCTTCTTAATCC





CTGGGATCTTTCCAAGCTAAACTGGATGTCTACAGTGGGGAGAAAGAAAA





GCAGAGAACAGGACATGAGGGGGGCTCAAGGCCCCGAAGGGTTGACATAG





GTGTCC





IL10
rs1800871
205
GACTTCTTTTCCTTGTTATTTCAACTTCTTCCACCCCATCTTTTAAACTT





TAGACTCCAGCCACAGAAGCTTACAACTAAAAGAAACTCTAAGGCCAATT





TAATCCAAGGTTTCATTCTATGTGCTGGAGATGGTGTACAGTAGGGTGAG





GAAACCAAATTCTCAGTTGGCACTGGTGTACCCTTGTACAGGTGATGTAA







Y
ATCTCTGTGCCTCAGTTTGCTCACTATAAAATAGAGACGGTAGGGGTCA






TGGTGAGCACTACCTGACTAGCATATAAGAAGCTTTCAGCAAGTGCAGAC





TACTCTTACCCACTTCCCCCAAGCACAGTTGGGGTGGGGGACAGCTGAAG





AGGTGGAAACATGTGCCTGAGAATCCTAATGAAATCGGGGTAAAGGAGCC





TNFRSF1A
rs1800693
206
TATCAAGAGACAGCAAAAATATTTGTAAAGAAAGGATGTCCAACAATCTG





TGTGGTTGTTTTTCTGTGTTCCTCCAATGGTAGGGCCTCTGTTCACCAGT





GCCGTCTCTTCTTTTAGCTGTAAGAAAAGCCTGGAGTGCACGAAGTTGTG





CCTACCCCAGATTGAGAATGTTAAGGGCACTGAGGACTCAGGTGAGGAGA







R
GTGACCTGGTGCCCATGCTCACCTGCCCTCTCCCTCTTCTTGCCCCCAC






CCGTCCATCCATCCCACCCATCCATCTATCCCTGCGGCCCCCCTCTGCCC





GCTCCTCTGACCAACACCTGCTTTGTCTGCAGGCACCACAGTGCTGTTGC





CCCTGGTCATTTTCTTTGGTCTTTGCCTTTTATCCCTCCTCTTCATTGGT





TTAATGTATCGCTACCAACGGTGGAAGTCCAAGCTCTACTCCATTGGTGA





TNFRSF1A
rs4149587
207
GGCTCAGCCTCCACCTCCAGGGCTCAAGCCATCCTCTTGCCTTAGCCTCC





TGAGTAGCTGGGATTAGAGGCACACACCACTACACCCAGCTAATGTTTTA





CTTTTTGTAGAGACAGGGTCCTACTATATTGCCCAGGCTGGCCTCGGACT





CCTGGGCTCAAGCGATCTTCCGCCTCAGCCTCCCAAAGTGCTAGGATTAC







S
GGCATGAGCCACCACGCCTGGCCTGGGCCTTAGATTTCTTATATTTAAA






GTAAGCATAATGACATTCATTTGGTGAATTTGTGAGAACCAAAAACAAAG





AAACAAACAAAACCTACAACACGTCTGACACAAAACTATTTATTTTCCAT





TAATCTTCTTTTTTTTTTTTTTTTTTTTTTTTGACACAGAGTCCTGCTCT





GTCGCCCAGGCTGGAATGCAGTGGCGCGATCTCGGCTCACTGCAACCTCT





TNFRSF1A
rs1800692
208
CGTGCACCTCTCCTGTGAGCGCAGCTCTCCTGAGGCCAAGCCCTCTCCCC





ACCCCAGGGGTTGGCCCCTTCCCCATGCGGTGGCACTTCCTTTCCTTCCC





CCTCCTGTATTCTGTGGGTCTGACAACCAACTCCTCTCTGGCCGCCCCCA





CCCTGTCCCTCGTCACTTCCTCTGTCCTGTGGGGTGGGGGTGCAGGCGCT







Y
CTCCTTTAGCTGTGCCGCACTTCTCCCTACAGGCCAGGAGAAACAGAAC






ACCGTGTGCACCTGCCATGCAGGTTTCTTTCTAAGAGAAAACGAGTGTGT





CTCCTGTAGTAAGTGAGTATCTCTGAGAGCTGCTGGGCACTGGATGGTGG





CATGGGTTGGGACGGGTGACTGGTGGGAACCATTAGCTGGGCAACAGATG





CCAGGATGCCCCAGAGTGCTCAGGGTCCTACTGGCTGAGTAGGAGACACT





TNFRSF1A
rs887477
209
GGGCTCTGGAGGCTTTCCTGTATTGCCAGTGGGCTTGGGGAGGGTCTGTG





GAGACTCAGAACTGGCCTTGTTTCCTAAGGATTGTCTGGGGACCCCAGGG





AGGCCCCCAAACCCAGCACAACTGGTCAGAACCAGCCAGGCTGTGGGAAT





GCGGTGAACCCAGGGTGGGAGGGCAGCCTTGGCTTGCTTCCTGCTGGGAC







K
GGGGAGTGTTGGGGGATGGAGTGAGAGCTCACGGAATGGGTTTAGCTGT






TGGAGACTTGTTGAACTGGGAGGAGGAGCTGGGGCGGGGCCTCAGCTAAA





GGCCGCTGAGGGGCTAGGAGGAGCCAAGTGGCCCTCAGGGAAGGGAGGGC





ACAGACCTGATGGGCGGAAGCCAGGGTCGAGGGAGACTTCCCTTCGGGAT





GGAATGGGGAGAGGGAGGCATTTCCCGGAACATGTGGGCCAAGTGGGACA





TNFRSF1A
rs1860545
210
AAGACATTTTTTGATCTCTCATCTTATAAGGTTCGTGGTCACTTTGGGGA



(at position

GATCATATCTGTCACCCAACATAACCATATTATGATAAGAGCCAAAAGTA



175)

GATAGGGTCAGTTCACGTGCTTCGAGTTCACAGGGACTATGGGTCTAAGG





AGCCGGGGTGGAGGAAACAGACATYGTCAATGGTGGCTTCACGGGAGGGA





GATGGGATCTCAACTGGGCCCTTGGAGGAGAAGCTGCCACGACCTCCCCC





AACACCTTGACATTAAATGAACAGACACATGAATGAGGGGGAAAGGAAGA





CTAATTGGGTCCCTGCAAGGTGGCTGGATCGGGGTCAGACCACAAGGCCG





ATCTCAGCGTCGCCTCCCCACTCTGCAGCCCCAGCACAGGAAGTCACACT





TTAAAGCCTCCTCTGGCGGAAATTGTGGGGGAGTTGGAGGGGTGTTGGGC





CACCCCCTCAACTGTCTCTCCACAGGCACCCCAGCTTCCTGCCCTTCTGC





TCCAGGCTGGAGTCTGGGCCTAAAGAGCTCACCTCCTGTTTCTCCTGTTT





TNFRSF1A
rs4149581
211
TTGTGTGTGGGGAGGTGGGGGGATGGTCTGAAAACTCTCCCCCGGAGATA





AATATATTCCTACCAGGGGTGCTGTCTCCTCACCTCCCTCTTTGGGAATC





ACTGGCTTCTACTAGAGTGGAAGACAGATGTATCATTAGATCGATCAGTT





GATCCATATTTATCTGCTCCCAGTCTGGAGGTCTGGTTCTGGGAGCTGAG







R
GGACACCAGGGGAGGATAAGACACTTTCTGACCAAGACATTTTTTTGAT






CTCTCATCTTATAAGGTTCGTGGTCACTTTGGGGAGATCATATCTGTCAC





CCAACATAACCATATTATGATAAGAGCCAAAAGTAGATAGGGTCAGTTCA





CGTGCTTCGAGTTCACAGGGACTATGGGTCTAAGGAGCCGGGGTGGAGGA





AACAGACATCGTCAATGGTGGCTTCACGGGAGGGAGATGGGATCTCAACT





TNFRSF1A
rs4149580
212
TGTGCTTGTGTGTGGGGAGGTGGGGGGATGGTCTGAAAACTCTCCCCCGG





AGATAAATATATTCCTACCAGGGGTGCTGTCTCCTCACCTCCCTCTTTGG





GAATCACTGGCTTCTACTAGAGTGGAAGACAGATGTATCATTAGATCGAT





CAGTTGATCCATATTTATCTGCTCCCAGTCTGGAGGTCTGGTTCTGGGAG







Y
TGAGAGGACACCAGGGGAGGATAAGACACTTTCTGACCAAGACATTTTT






TTGATCTCTCATCTTATAAGGTTCGTGGTCACTTTGGGGAGATCATATCT





GTCACCCAACATAACCATATTATGATAAGAGCCAAAAGTAGATAGGGTCA





GTTCACGTGCTTCGAGTTCACAGGGACTATGGGTCTAAGGAGCCGGGGTG





GAGGAAACAGACATCGTCAATGGTGGCTTCACGGGAGGGAGATGGGATCT





TNFRSF1A
rs4149576
213
TAGGTTGTAGCAAATAGAAAGCACTCAATAAAGTTTTTATATTGCTGTGA





CTAGTAGTAATTACTGGGTGGCTACCTGTGTTGGGAAAACAGAGGGTAAA





GGTAGCCTGAACAGGTAAAGGGAAGTGCCTGCGTCCTGGGGTGCTTCAGC





CCAGGTGGGATTATGTCTCCTAAGGGACAGAAGCCTGGCCTGGAGCTGGA







R
GAAAGGGAAAACAAAGGGAATGCAACATCCTTCTGAATTTCTCACCATT






CAGTGGGCAATGCAGAGCTCACAGTGTGTGTGTGTGTGTGTGTGTGTGTG





TGTGTGTGAGAGAGAGAGAGAGAGAGAGAGAGAAGTGGGGTAGGGGAGTA





GGGAAGAATGATACAGGAGAGACTGTGGCAAAGCAAACAGGATTTTGCTG





CTCTCAAAGAGCTTACAGCCTAGTAACCAAGATGGCTTACAGTGAAAAAT





TNFRSF1A
rs767455
214
GCGCAGCCCCTACTCCAAAAGGCGGATGAATGGGGAACCCCACACTGGCA





GTGGCTGAGGTTAGGACCTGCAGGCCTGAGGCTGGCGCCAGGACCAGGCC





CGGGCAGGAGAGGCTCGGCCCCCTCCCGGAGAGGGCCCACGCCAGCCGGA





AGGTGCCTCGCCCACCAGCCCACTCTTCCCTTTGTCCCTGGTCTCACCAG







Y
GGCAGCAGCAGGTCAGGCACGGTGGAGAGGCCCATGCCAGACAGCTATG






GCCTCTCACTCCCCCATTTGGGCTCATGGCAGTGTGGCAGCGGCAGTGCT





GGGGCTTCCCGGGACTCGGTCTGTCCAGGACGTCCCAAGTGCNCTTGGGT





GACAGTTGAGGGTTGAGACTCGGGCATAGAGATCACGGCCTGGTCCCAGT





GATCTTGAACCCCAAAGGCCAGAACTGGAGCCTCAGTCCAGAGAATTC





TNFRSF1A
rs4149570
215
GGATCAGTAAATTCCCAAGAAAGAGGGAGACTAGGAGGCTAGTGAAGAAC





TNGGAGTAAAGGGGAGGATTACTAAGGGACATGGAGTACCTATCATGTGT





CGGACGCTTATYTATATCTCTCCCATCTGAACAAATCCTTACAGGAACCC





CAGGAGACAGGTTATCTCCACTCTGCAAATTGGAAAACAGATCCAGACAG







K
TTCAGTTATGTGTCTGAGAAGTTCATTTRTGTGTCCAAGACACATTCTT






AGCTAAAAAGCTAAGCATTCTGAATTGGAACCCAGAGAATTTGACTCCCA





GACTCTGGATCTTTTCACTGCTGTGATCCATCTGGGAAAGGCTAGTGATG





TGGGCAAGGGGCTTATTGCCCCTTGGTGTTTGGTTGGGAGTGGTCGGATT





GGTGGGTTGGGGGCACAAGGCAGCCAGMTCTGGGACTCCTGTGCTTGTGA





CTGGACTACAAAGAGTTAAAGAACGTTGGGCCTCCTCCTCCCGCCTCCTG





TNFRSF1A
rs4149569
216
GGGGTCTGACTCAGTGACAGAAAAAGTGGCAGTGTGTCTCTCATAGCCAA





AGGGGCCCTTGGACCGGCAGTCGGGAGTCTGGGGTTCTCTGTTGGCTCTG





CCTCCTGGCACATTGGGTTTCTGGACCTCAGTTTTCTCCTCTATAAAACC





GGGCAGTTGGGTGGGCACGGTGGCTCACACCTGTAATCCTAGCACTTTAG







S
AGGCTGAGGTGGGCAGATCATTTGGGCCCAGGAGTTCAAGACCTGCCTG






TGTAACATGGTGAGACCCTGTCTCTACAAAAAATACAAAAATTACCCAGG





CGTGGTGGTATGCACCTATAGTCCCAGCTGCTTGGGAGGCTGAGGTGGGA





GGATTACTTGAACCTGGGAGGTCGAGGCTGCAGTGAGCTGCGATGGTACC





VEGF
rs865577
217
TTTCTCCACCCCCAAAGGAATGCAAACCAGGGAAGGGAGGGGAGATCCCA





TTAGGCTGAGCCCTCTGTGCCTCCAGCTCACACAGGAAGGGTCACAGTTC





CCACAAATGGGACATGTCTATATAGGAAATGACACTAAATGTCCACTCTC





CCCTGGGAGCTAGGGGAAACAAGGGACACTTCCCCCAACACCTAGGATCC







V
TGAACACTGTCTTCCTGCTCTGTGCGCACGACTCCTTCTCCAAATAAAA






TTTTACTGGAAAGAGCAGAAGAAAAAGGCAACAAGTCCTACTTCTAGCAG





AGACCTGAACAGCGGAGAGTCCTCACGAAACTGAGGGTGAACCTCGTGGT





GCCCAGCTCTTTCTTTCTTGATCCTTATATTCCTGTGCCCCTTCCCCTTC





CTCCCCACAGTTCTGAAGAAAAAGGAATTAGGCCATCCACCCATCCCCTG





VEGF
rs833068
218
AAGTAGGACTTGTTGCCTTTTTCTTCTGCTCTTTCCAGTAAAATTTTATT





TGGAGAAGGAGTCGTGCGCACAGAGCAGGAAGACAGTGTTCACGGATCCT





AGGTGTTGGGGGAAGTGTCCCTTGTTTCCCCTAGCTCCCAGGGGAGAGTG





GACATTTAGTGTCATTTCCTATATAGACATGTCCCATTTGTGGGAACTGT







R
ACCCTTCCTGTGTGAGCTGGAGGCACAGAGGGCTCAGCCTAATGGGATC






TCCCCTCCCTTCCCTGGTTTGCATTCCTTTGGGGGTGGAGAAAACCCCAC





TTGACTATGTTCGGGTGCTGTGAACTTCCCTCCCAGGCCAGCAGAGGGCT





GGCTGTAGCTCCCAGGCGCCCCGCCCCCCTGCCCAACCCCGAGTCCGCCT





GCCTTTTGTTCCGTTGTGGTTTGGATCCTCCCATTTCTCTGGGGACACCC





VEGF
rs833069
219
CCAGGGTGTCCCCAGAGAAATGGGAGGATCCAAACCACAACGGAACAAAA





GGCAGGCGGACTCGGGGTTGGGCAGGGGGGCGGGGCGCCTGGGAGCTACA





GCCAGCCCTCTGCTGGCCTGGGAGGGAAGTTCACAGCACCCGAACATAGT





CAAGTGGGGTTTTCTCCACCCCCAAAGGAATGCAAACCAGGGAAGGGAGG







R
GAGATCCCATTAGGCTGAGCCCTCTGTGCCTCCAGCTCACACAGGAAGG






GTCACAGTTCCCACAAATGGGACATGTCTATATAGGAAATGACACTAAAT





GTCCACTCTCCCCTGGGAGCTAGGGGAAACAAGGGACACTTCCCCCAACA





CCTAGGATCCGTGAACACTGTCTTCCTGCTCTGTGCGCACGACTCCTTCT





CCAAATAAAATTTTACTGGAAAGAGCAGAAGAAAAAGGCAACAAGTCCTA





VEGF
rs833070
220
CCTCCCCAGAGGTGGAGAGCACAGGCCACAGTCAGTGGTGGGGAGAGCCA





GGGTGTCCCCAGAGAAATGGGAGGATCCAAACCACAACGGAACAAAAGGC





AGGCGGACTCGGGGTTGGGCAGGGGGGCGGGGCGCCTGGGAGCTACAGCC





AGCCCTCTGCTGGCCTGGGAGGGAAGTTCACAGCACCCGAACATAGTCAA







R
TGGGGTTTTCTCCACCCCCAAAGGAATGCAAACCAGGGAAGGGAGGGGA






GATCCCATTAGGCTGAGCCCTCTGTGCCTCCAGCTCACACAGGAAGGGTC





ACAGTTCCCACAAATGGGACATGTCTATATAGGAAATGACACTAAATGTC





CACTCTCCCCTGGGAGCTAGGGGAAACAAGGGACACTTCCCCCAACACCT





VEGF
rs3024991
221
CTGACCTAAATCTGGCGTGGCTGGGTAGTGGCCAGCAGTGGTGATGCCCA





GCCTGTTCTGCCTCCTCCTTCCCCACCCCAGGAGCCCTTTCCTTGGCCTA





GGACCTGGCTTCTCAGCCACTGACCGGCCCCCTGCTTCCAGTGCGCCACT





TACCCCTTCCAGCTTCCCAGTGGTCTCTGGTCTGGGAGAGGCAGGACAAA







-/T







GGTCTTTGTTTGCTGGAGAAAAGGTTGTCTGCGATAAATAAGGAAAACCA





CGAAAGCCTGGTTGTTGGAGTGTACGTGTGTGCTCCCCCAGGCAGTGGAG





GCCAGCCCTCCTTGGAGGGGCGGCTGCCTGATGAAGGATGCGGGTGAGGT





TCCCCGCCTCCACCTCCCATGGGACTTGGGGATTCATTCCAAGGGGAAGC





TTTTTGGGGGAATTCCTACCCCAGGTCTTTTTACCCTCAGTTACCAACCC





VEGF
rs735286 (at
222
ACTTACTACATCCTGAGTACTGTGTACAGTAGTCCACAGCTATCATTTCA



position

CACAAGTTTCTCCACATGGTACTATTAGACACTATTGAGATTCCATTTTA



118)

CAGATGGGGAACAGGAGRCTCAAAGAGGCTAAGTAAGTTGCCCCAAGGCC





GCACAGCTAGTAAGTAAAGGAGTCAGAATTAGCTGACATCAAAGTGTTCC





CAAGCCTATATTAGGCAAAAACAGAGGAGGCACCTTTCAGGAGGAGGCAC





CTTTCCCCCTGCCAGTCCTCTTCCCCAGACATGAGCTGAGAAGGTGGTGG





GCATCAGCACAGGGGCTGGGCCCTCCTGGAACCCACAGGTGGCAGTGGGC





GGACACGCTGTGCCAGCCCTGCCAGCCACTGATAACCCCGCCCAAGAGGG





CAAACTGCTTGCATCATGGAAAAAACAGTGCTGCCACTGTAGCCACGAAA





VEGF
rs3024997
223
GGCCCAGGATTCAGTTCAGCTGTCACAGTGAGGTGGCGGGATCAGATGTG





GCAGGCCATGTCCCTTGGAACTTGAGTACATCGTGTGATCTCTGGAATGA





AAACAGGCCTTCACCAGTGTTGATGGTGGAAAGCTTAGGGAAGTGCTTCA





AACACAGTAGGAGGGACTTACGTTAGATTTTGGAAGGACTTGCCTGATTC







R
GAAGCTCCAAAGAGTGGCATTACAGAGCTGGGTGGAGAGAGGGGCTAGC






CATCTTTTGTGTCGCCCACCGGGCTCATGTGTCATCGCCTCTCATGCAGT





GGTGAAGTTCATGGATGTCTATCAGCGCAGCTACTGCCATCCAATCGAGA





CCCTGGTGGACATCTTCCAGGAGTACCCTGATGAGATCGAGTACATCTTC





AAGCCATCCTGTGTGCCCCTGATGCGATGCGGGGGCTGCTGCAATGACGA





VEGF
rs3024998
224
CTGAGGAGTCCAACATCACCATGCAGGTGGGCATCTTTGGGAAGTGGGGC





AAGGGGGGGATAGGGAGGGGGGTAACACTTTGGGAACAGGTGGTCCCAGG





TCGTTTCCTGGCTAGATTTGCCTTGTCTGGCTCCTGCCCCTGAGTTGCAC





AGGGGAGGTATGGTGGGGTCTTGCCTTCTGTGGAGAAGATGCTTCATTCC







Y
AGCCCAGGTTCCCAGCAAGCCCCAACCATCTCCTTCTCCCTGATGGTTG






CCCATGGGCTCAGGAGGGGACAGATGGATGCCTGTGTCAGGAGCCCCTCT





CTCCCTCTCTTGGAGAGAGTCCTGAGTGCCCCCCCTTCTTGGGGGCTTTG





TTTGGGAAGCTGGATGAGCCTGGTCCATGGAGAGTTTAAAAAGTCTTTTG





GTGTTACCTGGTAATGGGGCACATCTCAGCCCAGATAGGGTGGGAGGGAG





VEGF
rs3025006
225
CTTTTGGTGGCTGCTGTGACGGTGCAGTTGGATGCGAGGCCGGCTGGAGG





GTGGTTTCTCAGTGCATGCCCTCCTGTAGGCGGCAGGCGGCAGACACACA





GCCCTCTTGGCCAGGGAGAAAAAGTTGAATGTTGGTCATTTTCAGAGGCT





TGTGAGTGCTCCGTGTTAAGGGGCAGGTAGGATGGGGTGGGGGACAAGGT







Y
TGGCGGCAGTAACCCTTCAAGACAGGGTGGGCGGCTGGCATCAGCAAGA






GCTTGCAGGGAAAGAGAGACTGAGAGAGAGCACCTGTGCCCTGCCCTTTC





CCCCACACCATCTTGTCTGCCTCCAGTGCTGTGCGGACATTGAAGCCCCC





ACCAGGCCTCAACCCCTTGCCTCTTCCCTCAGCTCCCAGCTTCCAGAGCG





AGGGGATGCGGAAACCTTCCTTCCACCCTTTGGTGCTTTCTCCTAAGGGG





VEGF
rs3025007
226
GTTGAATGTTGGTCATTTTCAGAGGCTTGTGAGTGCTCCGTGTTAAGGGG





CAGGTAGGATGGGGTGGGGGACAAGGTTTGGCGGCAGTAACCCTTCAAGA





CAGGGTGGGCGGCTGGCATCAGCAAGAGCTTGCAGGGAAAGAGAGACTGA





GAGAGAGCACCTGTGCCCTGCCCTTTCCCCCACACCATCTTGTCTGCCTC







Y
AGTGCTGTGCGGACATTGAAGCCCCCACCAGGCCTCAACCCCTTGCCTC






TTCCCTCAGCTCCCAGCTTCCAGAGCGAGGGGATGCGGAAACCTTCCTTC





CACCCTTTGGTGCTTTCTCCTAAGGGGGACAGACTTGCCCTCTCTGGTCC





CTTCTCCCCCTCCTTTCTTCCCTGTGACAGACATCCTGAGGTGTGTTCTC





TTGGGCTTGGCAGGCATGGAGAGCTCTGGTTCTCTTGAAGGGGACAGGCT





VEGF
rs3025009
227
GGCGGCAGTAACCCTTCAAGACAGGGTGGGCGGCTGGCATCAGCAAGAGC





TTGCAGGGAAAGAGAGACTGAGAGAGAGCACCTGTGCCCTGCCCTTTCCC





CCACACCATCTTGTCTGCCTCCAGTGCTGTGCGGACATTGAAGCCCCCAC





CAGGCCTCAACCCCTTGCCTCTTCCCTCAGCTCCCAGCTTCCAGAGCGAG







R
GGATGCGGAAACCTTCCTTCCACCCTTTGGTGCTTTCTCCTAAGGGGGA






CAGACTTGCCCTCTCTGGTCCCTTCTCCCCCTCCTTTCTTCCCTGTGACA





GACATCCTGAGGTGTGTTCTCTTGGGCTTGGCAGGCATGGAGAGCTCTGG





TTCTCTTGAAGGGGACAGGCTACAGCCTGCCCCCCTTCCTGTTTCCCCAA





ATGACTGCTCTGCCATGGGGAGAGTAGGGGGCTCGCCTGGGCTCGGAAGA





PROC
rs971207
228
CGTGCAGCGTCCTCCTCCATGTAGCCTGGCTGCGTTTTTCTCTGACGTTG





TCCGGCGTGCATCGCATTTCCCTCTTTACCCCCTTGCTTCCTTGAGGAGA





GAACAGAATCCCGATTCTGCCTTCTTCTATATTTTCCTTTTTATGCATTT





TAATCAAATTTATATATGTATGAAACTTTAAAAATCAGAGTTTTACAACT







Y
TTACATTTCAGCATGCTGTTCCTTGGCATGGGTCCTTTTTTCATTCATT






TTCATTAAAAGGTGGACCCTTTTAATGTGGAAATTCCTATCTTCTGCCTC





TAGGGACATTTATCACTTATTTCTTCTACAATCTCCCCTTTACTTCCTCT





ATTTTCTCTTTCTGGACCTCCCATTATTCAGACCTCTTTCCTCTAGTTTT





ATTGTCTCTTCTATTTCCCATCTCTTTGACTTTGTGTTTTCTTTCAGGGA





PROC
rs973760
229
CAGCAACCCTGGTACCTGGTTAGGAACGCAGACCCTCTGCCCCCATCCTC





CCAACTCTGAAAAACACTGGCTTAGGGAAAGGCGCGATGCTCAGGGGTCC





CCCAAAGCCCGCAGGCAGAGGGAGTGATGGGACTGGAAGGAGGCCGAGTG





ACTTGGTGAGGGATTCGGGTCCCTTGCATGCCAGAGGCTGCTGTGGGAGC







R
GACAGTCGCGAGAGCAGCACTGCAGCTGCATGGGGAGAGGGTGTTGCTC






CAGGGACGTGGGATGGAGGCTGGGCGCGGGCGGGTGGCGCTGGAGGGCGG





GGGAGGGGCAGGGAGCACCAGCTCCTAGCAGCCAACGACCATCGGGCGTC





GATCCCTGTTTGTCTGGAAGCCCTCCCCTCCCCTGCCCGCTCACCCGCTG





PROC
rs1158867
230
TTAGCTAATATTCTCAGCCCAGTCATCAGACCGGCAGAGGCAGCCACCCC





ACTGTCCCCAGGGAGGACACAAACATCCTGGCACCCTCTCCACTGCATTC





TGGAGCTGCTTTCTAGGCAGGCAGTGTGAGCTCAGCCCCACGTAGAGCGG





GCAGCCGAGGCCTTCTGAGGCTATGTCTCTAGCGAACAAGGACCCTCAAT







Y
CCAGCTTCCGCCCTGACGGCCAGCACACAGGGACAGCCCTTTCATTCCG






CTTCCACCTGGGGGTGCAGGCAGAGCAGCAGCGGGGGTAGGCACTGCCCG





GAGCTCANAAGTCCTCCTCAGACAGGTGCCAGTGCC





PROC
rs1518759
231
GAGGCTGAGGTGGGAGGATTGCTTGAGCTTGGGAGTTTGAGACTAGCCTG





GGCAACACAGTGAGACCCTGTCTCTATTTTTAAAAAAAGTAAAAAAAGAT





CTAAAAATTTAACTTTTTATTTTGAAATAATTAGATATTTCCAGGAAGCT





GCAAAGAAATGCCTGGTGGGCCTGTTGGCCTGTGGGTTTCCTGCAAGGCC







K
TGGGAAGGCCCTGTCATTGGCAGAACCCCAGATCGTGAGGGCTTTCCTT






TTAGGCTGCTTTCTAAGAGGACTCCTCCAAGCTCTTGGAGGATGGAAGAC





GCTCACCCATGGTGTTCGGCCCCTCAGAGCAGGGTGGGGCAGGGGAGCTG





GTGCCTGTGCAGGCTGTGGACATTTGCATGACTCCCTGTGGTCAGCTAAG





PROC
rs1799809
232
TATTTTAGATTTGACGAAATATGGAATATTACCTGTTGTGCTGATCTTGG





GCAAACTATAATATCTCTGGGCAAAAATGTCCCCATCTGAAAAACAGGGA





CAACGTTCCTCCCTCAGCCAGCCACTATGGGGCTAAAATGAGACCACATC





TGTCAAGGGTTTTGCCCTCACCTCCCTCCCTGCTGGACGGCATCCTTGGT







R
GGCAGAGGTGGGCTTCGGGCAGAACAAGCCGTGCTGAGCTAGGACCAGG






AGTGCTAGTGCCACTGTTTGTCTATGGAGAGGGAGGCCTCAGTGCTGAGG





GCCAAGCAAATATTTGTGGTTATGGATTAACTCGAACTCCAGGCTGTCAT





GGCGGCAGGACGGCGAACTTGCAGTATCTCCACGACCCGCCCCTGTGAGT





PROC
rs1799810
233
CCTCACCTCCCTCCCTGCTGGACGGCATCCTTGGTGGGCAGAGGTGGGCT





TCGGGCAGAACAAGCCGTGCTGAGCTAGGACCAGGAGTGCTAGTGCCACT





GTTTGTCTATGGAGAGGGAGGCCTCAGTGCTGAGGGCCAAGCAAATATTT





GTGGTTATGGATTAACTCGAACTCCAGGCTGTCATGGCGGCAGGACGGCG







W
ACTTGCAGTATCTCCACGACCCGCCCCTGTGAGTCCCCCTCCAGGCAGG






TCTATGAGGGGTGTGGAGGGAGGGCTGCCCCCGGGAGAAGAGAGCTAGGT





GGTGATGAGGGCTGAATCCTCCAGCCAGGGTGCTCAACAAGCCTGAGCTT





GGGGTGAAAGGACACAAGGCCCTCCACAGGCCAGGCCTGGCAGCCACAGT





PROC
rs2069901
234
CCACCACAGCCCAGCATGGTGTGGTGCCTCAGCAGGAGGCATCTGGTTAC





AATCAACACAAGCTGTTCCAGCCAATTTAAAGAAACTTCAGGAGGAATAG





GGTTTTAGGAGGGCATGGGGACCCTCCTGCACCCGAAGCCAGGATGTGCC





ACCAATCATAAGGAGGCAGGGGCCTCCTTCCGCTGCTCCCTGGGACTCTC







Y
AGGTGTCCGTGGCCTCAGTCCCCCTCTGCACACCTGCATCTTCCTTCTC






ATCAGCTTCCTCTGCTTTAAGCGTAAACATGGATGCCCAGGACCTGGCCT





CAATCTTCCGAGTCTGGTACTTATGGTGTACTGACAGTGTGAGACCCTAC





TCCTCTGATCAATCCCCTGGGTTGGTGACTTCCCTGTGCAATCAATGGAA





PROC
rs2069902
235
GGCCTCCTTCCGCTGCTCCCTGGGACTCTCCAGGTGTCCGTGGCCTCAGC



(at position



S
CCCCTCTGCACACCTGCATCTTCCTTCTCATCAGCTTCCTCTGCTTTAA




51)

G





PROC
rs2069912
236
CCCCTTTCCTGGTCTCCACAGCCAACGGGAGGAGGCCATGATTCTTGGGG





AGGTCCGCAGGACACATGGGCCCCTAAAGCCACACCAGGCTGTTGGTTTC





ATTTGTGCCTTTATAGAGCTGTTTATCTGCTTGGGACCTGCACCTCCACC





CTTTCCCAAGGTGCCCTCAGCTCAGGCATACCCTCCTCTAGGATGCCTTT







Y
CCCCCATCCCTTCTTGCTCACACCCCCAACTTGATCTCTCCCTCCTAAC






TGTGCCCTGCACCCAAGACAGACACTTCACAGAGCCCAGGAGACACCTGG





GGACCCTTCCTGGGTGATAGGTCTGTCTATCCTCCAGGTGTCCCTGCCCA





AGGGGAGAAGCATGGGGAATACTTGGTTGGGGGAGGAGAGGAAGACTGGG





PROC
rs2069913
237
GGCCCCTAAAGCCACACCAGGCTGTTGGTTTCATTTGTGCCTTTATAGAG





CTGTTTATCTGCTTGGGACCTGCACCTCCACCCTTTCCCAAGGTGCCCTC





AGCTCAGGCATACCCTCCTCTAGGATGCCTTTTCCCCCATCCCTTCTTGC





TCACACCCCCAACTTGATCTCTCCCTCCTAACTGTGCCCTGCACCCAAGA







S
AGACACTTCACAGAGCCCAGGAGACACCTGGGGACCCTTCCTGGGTGAT






AGGTCTGTCTATCCTCCAGGTGTCCCTGCCCAAGGGGAGAAGCATGGGGA





ATACTTGGTTGGGGGAGGAGAGGAAGACTGGGGGGATGTGTCAAGATGGG





GCTGCACGTGGTGTACTGGCAGAAGAGTGAGAGGATTTAACTTGGCAGCC





PROC
rs2069914
238
ACACCAGGCTGTTGGTTTCATTTGTGCCTTTATAGAGCTGTTTATCTGCT





TGGGACCTGCACCTCCACCCTTTCCCAAGGTGCCCTCAGCTCAGGCATAC





CCTCCTCTAGGATGCCTTTTCCCCCATCCCTTCTTGCTCACACCCCCAAC





TTGATCTCTCCCTCCTAACTGTGCCCTGCACCCAAGACAGACACTTCACA







R
AGCCCAGGAGACACCTGGGGACCCTTCCTGGGTGATAGGTCTGTCTATC






CTCCAGGTGTCCCTGCCCAAGGGGAGAAGCATGGGGAATACTTGGTTGGG





GGAGGAGAGGAAGACTGGGGGGATGTGTCAAGATGGGGCTGCACGTGGTG





TACTGGCAGAAGAGTGAGAGGATTTAACTTGGCAGCCTTTACAGCAGCAG





PROC
rs2069922
239
TTTCCCTGCTTCCTTTCTTCCTGGCGTCCCCGCCTTCCTCCGGGCGCCCC



(at position



-/C





51)

TGCGCACCTGGGGCCACCTCCTGGAGCGCAAGCCCAGTGGTGGCTCCGCT





PROC
rs2069928
240
CTGAAACGAGACACAGAAGACCAAGAAGACCAAGTAGATCCGCGGCTCAT





TGATGGGAAGATGACCAGGCGGGGAGACAGCCCCTGGCAGGTGGGAGGCG





AGGCAGCACCGGCTGCTCACGTGCTGGGTCCGGGATCACTGAGTCCATCC





TGGCAGCTATGCTCAGGGTGCAGAAACCGAGAGGGAAGCGCTGCCATTGC







K
TTTGGGGGATGATGAAGGTGGGGGATGCTTCAGGGAAAGATGGACGCAA






CCTGAGGGGAGAGGAGCAGCCAGGGTGGGTGAGGGGAGGGGCATGGGGGC





ATGGAGGGGTCTGCAGGAGGGAGGGTTACAGTTTCTAAAAAGAGCTGGAA





AGACACTGCTCTGCTGGCGGGATTTTAGGCAGAAGCCCTGCTGATGGGAG





PROC
rs2069933
241
CTCCCTGGCAGTGCCGTGTTCTGGGGGTCCTCCTCTCTGGGTCTCACTGC





CCCTGGGGTCTCTCCAGCTACCTTTGCTCCACGTTCCTTTGTGGCTCTGG





TCTGTGTCTGGGGTTTCCAGGGGTCTCGGGCTTCCCTGCTGCCCATTCCT





TCTCTGGTCTCACGGCTCCGTGACTCCTGAAAACCAACCAGCATCCTACC







Y
CTTTGGGATTGACACCTGTTGGCCACTCCTTCTGGCAGGAAAAGTCACC






GTTGATAGGGTTCCACGGCATAGACAGGTGGCTCCGCGCCAGTGCCTGGG





ACGTGTGGGTGCACAGTCTCCGGGTGAACCTTCTTCAGGCCCTCTGCCCA





GGCCTGCAGGGGCACAGCAGTGGGTGGGCCTCAGGAAAGTGCCACTGGGG





PROCR
rs2069940
242
TGTCCACTAATAAATTATGACCTCAGTTTCAAAAAGATTGCTTTAGGTAA



(at position



S
CAATCATCTTCTGAGATTTATACAGATTGCTCATAATTCTCTCCTATTT




51)

T





SERPINE1
rs2227631
243
CCTGGTGCCAAAAACGTTGAGGACCACTGCTCCACAGAATCTATCGGTCA





CTCTTCCTCCCCTCACCCCCTTGCCCTAAAAGCACACCCTGCAAACCTGC





CATGAATTGACACTCTGTTTCTATCCCTTTTCCCCTTGTGTCTGTGTCTG





GAGGAAGAGGATAAAGGACAAGCTGCCCCAAGTCCTAGCGGGCAGCTCGA







R
GAAGTGAAACTTACACGTTGGTCTCCTGTTTCCTTACCAAGCTTTTACC






ATGGTAACCCCTGGTCCCGTTCAGCCACCACCACCCCACCCAGCACACCT





CCAACCTCAGCCAGACAAGGTTGTTGACACAAGAGAGCCCTCAGGGGCAC





AGAGAGAGTCTGGACACGTGGGGAGTCAGCCGTGTATCATCGGAGGCGGC









An “allele” is defined as any one or more alternative forms of a given gene. In a diploid cell or organism the members of an allelic pair (i.e. the two alleles of a given gene) occupy corresponding positions (loci) on a pair of homologous chromosomes and if these alleles are genetically identical the cell or organism is said to be “homozygous”, but if genetically different the cell or organism is said to be “heterozygous” with respect to the particular gene.


A “gene” is an ordered sequence of nucleotides located in a particular position on a particular chromosome that encodes a specific functional product and may include untranslated and untranscribed sequences in proximity to the coding regions (5′ and 3′ to the coding sequence). Such non-coding sequences may contain regulatory sequences needed for transcription and translation of the sequence or introns etc. or may as yet to have any function attributed to them beyond the occurrence of the SNP of interest. For Example, the sequences identified in TABLES 1C and 1D.


A “genotype” is defined as the genetic constitution of an organism, usually in respect to one gene or a few genes or a region of a gene relevant to a particular context (i.e. the genetic loci responsible for a particular phenotype).









TABLE 1E







below shows a genotype correlation for protein C pathway


associated gene SNPs with values representing an indication


of responsiveness to treatment of an inflammatory condition


with activated protein C or protein C like compound.













Responsiveness To



Polymorphism
Genotype
Treatment







rs1800791
A
IR



rs1800791
G
NAR



rs3136516
G
IR



rs3136516
GG
IR



rs3136516
A
NAR



rs253073
G
IR



rs253073
GG
IR



rs253073
A
NAR



rs2227750
GG
IR



rs2227750
C
NAR



rs1361600
GG
IR



rs1361600
A
NAR



rs9332575
G
IR



rs9332575
A
NAR



rs4656687
T
IR



rs4656687
C
NAR



rs9332630
A
IR



rs9332630
G
NAR



rs9332546
A
IR



rs9332546
G
NAR



rs2774030
AG
IR



rs2026160
C
IR



rs2026160
A
NAR



rs3211719
G
IR



rs3211719
A
NAR



rs3093261
T
IR



rs3093261
C
NAR



rs1799889
G
IR



rs1799889

NAR



rs1050813
A
IR



rs1050813
AG
IR



rs1050813
GG
NAR



rs2069972
TT
IR



rs2069972
C
NAR



rs2069840
C
IR



rs2069840
G
NAR



rs1800795
G
IR



rs1800795
C
NAR



rs1800872
A
IR



rs1800872
C
NAR



rs2243154
AA
IR



rs2243154
AG
IR



rs2243154
GG
NAR



rs4149577
CT
IR



rs1413711
AA
IR



rs1413711
G
NAR



rs2069895
AG
IR



rs2069898
CT
IR



rs2069904
AG
IR



rs1799808
CT
IR



rs2069910
C
IR



rs2069910
CT
IR



rs2069915
AG
IR



rs2069916
CT
IR



rs2069918
A
IR



rs2069918
AA
IR



rs2069919
AG
IR



rs2069920
CT
IR



rs2069924
CT
IR



rs5937
CT
IR



rs2069931
CT
IR



rs777556
C
IR



rs1033797
C
IR



rs1033799
A
IR



rs2295888
G
IR



rs867186
AG
IR



rs867186
G
IR








Improved Response (IR); No Response or Adverse Response(NAR).




A “phenotype” is defined as the observable characters of an organism.






A “single nucleotide polymorphism” (SNP) occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations). A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A “transition” is the replacement of one purine by another purine or one pyrimidine by another pyrimidine. A “transversion” is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion (represented by “−” or “del”) of a nucleotide or an insertion (represented by “+” or “ins” or “I”) of a nucleotide relative to a reference allele. Furthermore, a person of skill in the art would appreciate that an insertion or deletion within a given sequence could alter the relative position and therefore the position number of another polymorphism within the sequence. Furthermore, although an insertion or deletion may by some definitions not qualify as a SNP as it may involve the deletion of or insertion of more than a single nucleotide at a given position, as used herein such polymorphisms are also called SNPs as they generally result from an insertion or deletion at a single site within a given sequence.


A “systemic inflammatory response syndrome” or (SIRS) is defined as including both septic (i.e. sepsis or septic shock) and non-septic systemic inflammatory response (i.e. post operative). “SIRS” is further defined according to ACCP (American College of Chest Physicians) guidelines as the presence of two or more of A) temperature >38° C. or <36° C., B) heart rate >90 beats per minute, C) respiratory rate >20 breaths per minute, and D) white blood cell count >12,000 per mm3 or <4,000 mm3. In the following description, the presence of two, three, or four of the “SIRS” criteria were scored each day over the 28 day observation period.


“Sepsis” is defined as the presence of at least two “SIRS” criteria and known or suspected source of infection. Septic shock was defined as sepsis plus one new organ failure by Brussels criteria plus need for vasopressor medication.


Subject outcome or prognosis as used herein refers the ability of a subject to recover from an inflammatory condition and may be used to determine the efficacy of a treatment regimen, for example the administration of activated protein C or protein C like compound. An inflammatory condition, may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, aspiration pneumanitis, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for subjects undergoing major surgery or dialysis, subjects who are immunocompromised, subjects on immunosuppressive agents, subjects with HIV/AIDS, subjects with suspected endocarditis, subjects with fever, subjects with fever of unknown origin, subjects with cystic fibrosis, subjects with diabetes mellitus, subjects with chronic renal failure, subjects with acute renal failure, oliguria, subjects with acute renal dysfunction, glomerulo-nephritis, interstitial-nephritis, acute tubular necrosis (ATN), subjects with bronchiectasis, subjects with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, subjects with febrile neutropenia, subjects with meningitis, subjects with septic arthritis, subjects with urinary tract infection, subjects with necrotizing fasciitis, subjects with other suspected Group A streptococcus infection, subjects who have had a splenectomy, subjects with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, pre-eclampsia, eclampsia, HELP syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhagic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, progressive systemic sclerosis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.


Assessing subject outcome, prognosis, or response of a subject to activated protein C or protein C like compound or protein C like compound administration may be accomplished by various methods. For Example, an “APACHE II” score is defined as Acute Physiology And Chronic Health Evaluation and herein was calculated on a daily basis from raw clinical and laboratory variables. Vincent et al. (Vincent J L. Ferreira F. Moreno R. Scoring systems for assessing organ dysfunction and survival. Critical Care Clinics. 16:353-366, 2000) summarize APACHE score as follows “First developed in 1981 by Knaus et al., the APACHE score has become the most commonly used survival prediction model in ICUs worldwide. The APACHE II score, a revised and simplified version of the original prototype, uses a point score based on initial values of 12 routine physiologic measures, age, and previous health status to provide a general measure of severity of disease. The values recorded are the worst values taken during the subject's first 24 hours in the ICU. The score is applied to one of 34 admission diagnoses to estimate a disease-specific probability of mortality (APACHE II predicted risk of death). The maximum possible APACHE II score is 71, and high scores have been well correlated with mortality. The APACHE II score has been widely used to stratify and compare various groups of critically ill subjects, including subjects with sepsis, by severity of illness on entry into clinical trials.” Furthermore, the criteria or indication for administering activated vasopressin (XIGRIS™-drotrecogin alfa (activated)) in the United States is an APACHE II score of ≧25. In Europe, the criteria or indication for administering activated protein C or protein C like compound is an APACHE II score of ≧25 or 2 new organ system failures.


“Activated protein C” as used herein includes Drotrecogin alfa (activated) which is sold as XIGRIS™ by Eli Lilly and Company. Drotrecogin alfa (activated) is a serine protease glycoprotein of approximately 55 kilodalton molecular weight and having the same amino acid sequence as human plasma-derived Activated Protein C. The protein consists of a heavy chain and a light chain linked by a disulfide bond. XIGRIS™, Drotecogin alfa (activated) is currently indicated for the reduction of mortality in adult subjects with severe sepsis (sepsis associated with acute organ dysfunction) who have a high risk of death (e.g., as determined by an APACHE II score of greater >25 or having 2 or more organ system failures).


XIGRIS™ is available in 5 mg and 20 mg single-use vials containing sterile, preservative-free, lyophilized drug. The vials contain 5.3 mg and 20.8 mg of drotrecogin alfa (activated), respectively. The 5 and 20 mg vials of XIGRIS™ also contain 40.3 and 158.1 mg of sodium chloride, 10.9 and 42.9 mg of sodium citrate, and 31.8 and 124.9 mg of sucrose, respectively. XIGRIS™ is recommended for intravenous administration at an infusion rate of 24 mcg/kg/hr for a total duration of infusion of 96 hours. Dose adjustment based on clinical or laboratory parameters is not recommended. If the infusion is interrupted, it is recommended that when restarted the infusion rate should be 24 mcg/kg/hr. Dose escalation or bolus doses of drotrecogin alfa are not recommended. XIGRIS™ may be reconstituted with Sterile Water for Injection and further diluted with sterile normal saline injection. These solutions must be handled so as to minimize agitation of the solution (Product information. XIGRIS™, Drotecogin alfa (activated), Eli Lilly and Company, November 2001).


Drotrecogin alfa (activated) is a recombinant form of human Activated Protein C, which may be produced using a human cell line expressing the complementary DNA for the inactive human Protein C zymogen, whereby the cells secrete protein into the fermentation medium. The protein may be enzymatically activated by cleavage with thrombin and subsequently purified. Methods, DNA compounds and vectors for producing recombinant activated human protein C are described in U.S. Pat. Nos. 4,775,624; 4,992,373; 5,196,322; 5,270,040; 5,270,178; 5,550,036; 5,618,714 all of which are incorporated herein by reference.


Treatment of sepsis using activated protein C or protein C like compound in combination with a bactericidal and endotoxin neutralizing agent is described in U.S. Pat. No. 6,436,397;methods for processing protein C is described in U.S. Pat. No. 6,162,629; protein C derivatives are described in U.S. Pat. Nos. 5,453,373 and 6,630,138; glycosylation mutants are described in U.S. Pat. No. 5,460,953; and Protein C formulations are described in U.S. Pat. Nos. 6,630,137, 6,436,397, 6,395,270 and 6,159,468, all of which are incorporated herein by reference.


A “Brussels score” score is a method for evaluating organ dysfunction as compared to a baseline.


If the Brussels score is 0 (i.e. moderate, severe, or extreme), then organ failure was recorded as present on that particular day (see TABLE 2A below). In the following description, to correct for deaths during the observation period, days alive and free of organ failure (DAF) were calculated as previously described. For example, acute lung injury was calculated as follows. Acute lung injury is defined as present when a subject meets all of these four criteria. 1) Need for mechanical ventilation, 2) Bilateral pulmonary infiltrates on chest X-ray consistent with acute lung injury, 3) PaO2/FiO2 ratio is less than 300, 4) No clinical evidence of congestive heart failure or if a pulmonary artery catheter is in place for clinical purposes, a pulmonary capillary wedge pressure less than 18 mm Hg (1). The severity of acute lung injury is assessed by measuring days alive and free of acute lung injury over a 28 day observation period. Acute lung injury is recorded as present on each day that the person has moderate, severe or extreme dysfunction as defined in the Brussels score. Days alive and free of acute lung injury is calculated as the number of days after onset of acute lung injury that a subject is alive and free of acute lung injury over a defined observation period (28 days). Thus, a lower score for days alive and free of acute lung injury indicates more severe acute lung injury. The reason that days alive and free of acute lung injury is preferable to simply presence or absence of acute lung injury, is that acute lung injury has a high acute mortality and early death (within 28 days) precludes calculation of the presence or absence of acute lung injury in dead subjects. The cardiovascular, renal, neurologic, hepatic and coagulation dysfunction were similarly defined as present on each day that the person had moderate, severe or extreme dysfunction as defined by the Brussels score. Days alive and free of steroids are days that a person is alive and is not being treated with exogenous corticosteroids (e.g. hydrocortisone, prednisone, methylprednisolone). Days alive and free of pressors are days that a person is alive and not being treated with intravenous vasopressors (e.g. dopamine, norepinephrine, epinephrine, phenylephrine). Days alive and free of an International Normalized Ratio (INR)>1.5 are days that a person is alive and does not have an INR>1.5.









TABLE 2A







Brussels Organ Dysfunction Scoring System










Free of Organ
Clinically Significant



Dysfunction
Organ Dysfunction












ORGANS
Normal
Mild
Moderate
Severe
Extreme












DAF ORGAN
1
0


DYSFUNCTION


SCORE












Cardiovascular
>90
≦90
≦90
≦90 plus
≦90 plus


Systolic BP

Responsive
Unresponsive to fluid
pH ≦7.3
pH ≦7.2


(mmHg)

to fluid


Pulmonary
>400
400-301
300-201
200-101
≦100


PaO2/FIO2


Acute lung injury
ARDS
Severe


(mmHg)




ARDS


Renal
<1.5
1.5-1.9
2.0-3.4
3.5-4.9
≧5.0


Creatinine


(mg/Dl)


Hepatic
<1.2
1.2-1.9
2.0-5.9
 6.0-11.9
≧12


Bilirubin


(mg/dL)


Hematologic
>120
120-81 
80-51
50-21
≦20


Platelets


(×105/mm3)


Neurologic
15
14-13
12-10
9-6
≦5


(Glascow Score)





Round Table Conference on Clinical Trials for the Treatment of Sepsis Brussels, Mar. 12-14, 1994.






Analysis of variance (ANOVA) is a standard statistical approach to test for statistically significant differences between sets of measurements.


The Fisher exact test is a standard statistical approach to test for statistically significant differences between rates and proportions of characteristics measured in different groups.


2. General Methods

One aspect of the invention may involve the identification of subjects or the selection of subjects that are either at risk of developing and inflammatory condition or the identification of subjects who already have an inflammatory condition. For example, subjects who have undergone major surgery or scheduled for or contemplating major surgery may be considered as being at risk of developing an inflammatory condition. Furthermore, subjects may be determined as having an inflammatory condition using diagnostic methods and clinical evaluations known in the medical arts. An inflammatory condition, may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, aspiration pneumanitis, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for subjects undergoing major surgery or dialysis, subjects who are immunocompromised, subjects on immunosuppressive agents, subjects with HIV/AIDS, subjects with suspected endocarditis, subjects with fever, subjects with fever of unknown origin, subjects with cystic fibrosis, subjects with diabetes mellitus, subjects with chronic renal failure, subjects with acute renal failure, oliguria, subjects with acute renal dysfunction, glomerulo-nephritis, interstitial-nephritis, acute tubular necrosis (ATN), subjects with bronchiectasis, subjects with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, subjects with febrile neutropenia, subjects with meningitis, subjects with septic arthritis, subjects with urinary tract infection, subjects with necrotizing fasciitis, subjects with other suspected Group A streptococcus infection, subjects who have had a splenectomy, subjects with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, pre-eclampsia, eclampsia, HELP syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhagic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, progressive systemic sclerosis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.


Once a subject is identified as being at risk for developing or having an inflammatory condition or is to be administered activated protein C, then genetic sequence information may be obtained from the subject. Or alternatively genetic sequence information may already have been obtained from the subject. For example, a subject may have already provided a biological sample for other purposes or may have even had their genetic sequence determined in whole or in part and stored for future use. Genetic sequence information may be obtained in numerous different ways and may involve the collection of a biological sample that contains genetic material. Particularly, genetic material, containing the sequence or sequences of interest. Many methods are known in the art for collecting bodily samples and extracting genetic material from those samples. Genetic material can be extracted from blood, tissue and hair and other samples. There are many known methods for the separate isolation of DNA and RNA from biological material. Typically, DNA may be isolated from a biological sample when first the sample is lysed and then the DNA is isolated from the lysate according to any one of a variety of multi-step protocols, which can take varying lengths of time. DNA isolation methods may involve the use of phenol (Sambrook, J. et al., “Molecular Cloning”, Vol. 2, pp. 9.14-9.23, Cold Spring Harbor Laboratory Press (1989) and Ausubel, Frederick M. et al., “Current Protocols in Molecular Biology”, Vol. 1, pp. 2.2.1-2.4.5, John Wiley & Sons, Inc. (1994)). Typically, a biological sample is lysed in a detergent solution and the protein component of the lysate is digested with proteinase for 12-18 hours. Next, the lysate is extracted with phenol to remove most of the cellular components, and the remaining aqueous phase is processed further to isolate DNA. In another method, described in Van Ness et al. (U.S. Pat. No. 5,130,423), non-corrosive phenol derivatives are used for the isolation of nucleic acids. The resulting preparation is a mix of RNA and DNA.


Other methods for DNA isolation utilize non-corrosive chaotropic agents. These methods, which are based on the use of guanidine salts, urea and sodium iodide, involve lysis of a biological sample in a chaotropic aqueous solution and subsequent precipitation of the crude DNA fraction with a lower alcohol. The final purification of the precipitated, crude DNA fraction can be achieved by any one of several methods, including column chromatography (Analects, (1994) Vol 22, No. 4, Pharmacia Biotech), or exposure of the crude DNA to a polyanion-containing protein as described in Koller (U.S. Pat. No. 5,128,247).


Yet another method of DNA isolation, which is described by Botwell, D. D. L. (Anal. Biochem. (1987) 162:463-465) involves lysing cells in 6M guanidine hydrochloride, precipitating DNA from the lysate at acid pH by adding 2.5 volumes of ethanol, and washing the DNA with ethanol.


Numerous other methods are known in the art to isolate both RNA and DNA, such as the one described by CHOMCZYNSKI (U.S. Pat. No. 5,945,515), whereby genetic material can be extracted efficiently in as little as twenty minutes. EVANS and HUGH (U.S. Pat. No. 5,989,431) describe methods for isolating DNA using a hollow membrane filter.


Once a subject's genetic material has been obtained from the subject it may then be further be amplified by Reverse Transcription Polymerase Chain Reaction (RT-PCR), Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Ligase chain reaction (LCR), Nucleic Acid Sequence Based Amplification (NASBA) or other methods known in the art, and then further analyzed to detect or determine the presence or absence of one or more polymorphisms or mutations in the sequence of interest, provided that the genetic material obtained contains the sequence of interest. Particularly, a person may be interested in determining the presence or absence of a mutation in a protein C pathway associated gene sequence, as described in TABLES 1A-D. The sequence of interest may also include other mutations, or may also contain some of the sequence surrounding the mutation of interest.


Detection or determination of a nucleotide identity, or the presence of one or more single nucleotide polymorphism(s) (SNP typing), may be accomplished by any one of a number methods or assays known in the art. Many DNA typing methodologies are useful detection of SNPs. The majority of SNP genotyping reactions or assays can be assigned to one of four broad groups (sequence-specific hybridization, primer extension, oligonucleotide ligation and invasive cleavage). Furthermore, there are numerous methods for analyzing/detecting the products of each type of reaction (for example, fluorescence, luminescence, mass measurement, electrophoresis, etc.). Furthermore, reactions can occur in solution or on a solid support such as a glass slide, a chip, a bead, etc.


In general, sequence-specific hybridization involves a hybridization probe, which is capable of distinguishing between two DNA targets differing at one nucleotide position by hybridization. Usually probes are designed with the polymorphic base in a central position in the probe sequence, whereby under optimized assay conditions only the perfectly matched probe target hybrids are stable and hybrids with a one base mismatch are unstable. A strategy which couples detection and sequence discrimination is the use of a “molecular beacon”, whereby the hybridization probe (molecular beacon) has 3′ and 5′ reporter and quencher molecules and 3′ and 5′ sequences which are complementary such that absent an adequate binding target for the intervening sequence the probe will form a hairpin loop. The hairpin loop keeps the reporter and quencher in close proximity resulting in quenching of the fluorophor (reporter) which reduces fluorescence emissions. However, when the molecular beacon hybridizes to the target the fluorophor and the quencher are sufficiently separated to allow fluorescence to be emitted from the fluorophor.


Similarly, primer extension reactions (i.e. mini sequencing, nucleotide-specific extensions, or simple PCR amplification) are useful in sequence discrimination reactions. For example, in mini sequencing a primer anneals to its target DNA immediately upstream of the SNP and is extended with a single nucleotide complementary to the polymorphic site. Where the nucleotide is not complementary, no extension occurs.


Oligonucleotide ligation assays require two sequence-specific probes and one common ligation probe per SNP. The common ligation probe hybridizes adjacent to a sequence-specific probe and when there is a perfect match of the appropriate sequence-specific probe, the ligase joins both the sequence-specific and the common probes. Where there is not a perfect match the ligase is unable to join the sequence-specific and common probes. Probes used in hybridization can include double-stranded DNA, single-stranded DNA and RNA oligonucleotides, and peptide nucleic acids. Hybridization methods for the identification of single nucleotide polymorphisms or other mutations involving a few nucleotides are described in the U.S. Pat. Nos. 6,270,961; 6,025,136; and 6,872,530. Suitable hybridization probes for use in accordance with the invention include oligonucleotides and PNAs from about 10 to about 400 nucleotides, alternatively from about 20 to about 200 nucleotides, or from about 30 to about 100 nucleotides in length.


Alternatively, an invasive cleavage method requires an oligonucleotide called an Invader™ probe and sequence-specific probes to anneal to the target DNA with an overlap of one nucleotide. When the sequence-specific probe is complementary to the polymorphic base, overlaps of the 3′ end of the invader oligonucleotide form a structure that is recognized and cleaved by a Flap endonuclease releasing the 5′ arm of the allele specific probe.


5′ exonuclease activity or TaqMan™ assay (Applied Biosystems) is based on the 5′ nuclease activity of Taq polymerase that displaces and cleaves the oligonucleotide probes hybridized to the target DNA generating a fluorescent signal. It is necessary to have two probes that differ at the polymorphic site wherein one probe is complementary to the ‘normal’ sequence and the other to the mutation of interest. These probes have different fluorescent dyes attached to the 5′ end and a quencher attached to the 3′ end when the probes are intact the quencher interacts with the fluorophor by fluorescence resonance energy transfer (FRET) to quench the fluorescence of the probe. During the PCR annealing step the hybridization probes hybridize to target DNA. In the extension step the 5′ fluorescent dye is cleaved by the 5′ nuclease activity of Taq polymerase, leading to an increase in fluorescence of the reporter dye. Mismatched probes are displaced without fragmentation. The presence of a mutation in a sample is determined by measuring the signal intensity of the two different dyes.


It will be appreciated that numerous other methods for sequence discrimination and detection are known in the art and some of which are described in further detail below. It will also be appreciated that reactions such as arrayed primer extension mini sequencing, tag microarrays and sequence-specific extension could be performed on a microarray. One such array based genotyping platform is the microsphere based tag-it high throughput genotyping array (BORTOLIN S. et al. Clinical Chemistry (2004) 50(11): 2028-36). This method amplifies genomic DNA by PCR followed by sequence-specific primer extension with universally tagged genotyping primers. The products are then sorted on a Tag-It array and detected using the Luminex xMAP system.


Mutation detection methods may include but are not limited to the following:


Restriction Fragment Length Polymorphism (RFLP) strategy—An RFLP gel-based analysis can be used to indicate the presence or absence of a specific mutation at polymorphic sites within a gene.


Briefly, a short segment of DNA (typically several hundred base pairs) is amplified by PCR. Where possible, a specific restriction endonuclease is chosen that cuts the short DNA segment when one polymorphism is present but does not cut the short DNA segment when the polymorphism is not present, or vice versa. After incubation of the PCR amplified DNA with this restriction endonuclease, the reaction products are then separated using gel electrophoresis. Thus, when the gel is examined the appearance of two lower molecular weight bands (lower molecular weight molecules travel farther down the gel during electrophoresis) indicates that the DNA sample had a polymorphism was present that permitted cleavage by the specific restriction endonuclease. In contrast, if only one higher molecular weight band is observed (at the molecular weight of the PCR product) then the initial DNA sample had the polymorphism that could not be cleaved by the chosen restriction endonuclease. Finally, if both the higher molecular weight band and the two lower molecular weight bands are visible then the DNA sample contained both polymorphisms, and therefore the DNA sample, and by extension the subject providing the DNA sample, was heterozygous for this polymorphism;


Sequencing—For example the Maxam-Gilbert technique for sequencing (MAXAM A M. and GILBERT W. Proc. Natl. Acad. Sci. USA (1977) 74(4):560-564) involves the specific chemical cleavage of terminally labelled DNA. In this technique four samples of the same labeled DNA are each subjected to a different chemical reaction to effect preferential cleavage of the DNA molecule at one or two nucleotides of a specific base identity. The conditions are adjusted to obtain only partial cleavage, DNA fragments are thus generated in each sample whose lengths are dependent upon the position within the DNA base sequence of the nucleotide(s) which are subject to such cleavage. After partial cleavage is performed, each sample contains DNA fragments of different lengths, each of which ends with the same one or two of the four nucleotides. In particular, in one sample each fragment ends with a C, in another sample each fragment ends with a C or a T, in a third sample each ends with a G, and in a fourth sample each ends with an A or a G. When the products of these four reactions are resolved by size, by electrophoresis on a polyacrylamide gel, the DNA sequence can be read from the pattern of radioactive bands. This technique permits the sequencing of at least 100 bases from the point of labeling. Another method is the dideoxy method of sequencing was published by SANGER et al. (Proc. Natl. Acad. Sci. USA (1977) 74(12):5463-5467). The Sanger method relies on enzymatic activity of a DNA polymerase to synthesize sequence-dependent fragments of various lengths. The lengths of the fragments are determined by the random incorporation of dideoxynucleotide base-specific terminators. These fragments can then be separated in a gel as in the Maxam-Gilbert procedure, visualized, and the sequence determined. Numerous improvements have been made to refine the above methods and to automate the sequencing procedures. Similarly, RNA sequencing methods are also known. For example, reverse transcriptase with dideoxynucleotides have been used to sequence encephalomyocarditis virus RNA (ZIMMERN D. and KAESBERG P. Proc. Natl. Acad. Sci. USA (1978) 75(9):4257-4261). MILLS D R. and KRAMER F R. (Proc. Natl. Acad. Sci. USA (1979) 76(5):2232-2235) describe the use of Q13 replicase and the nucleotide analog inosine for sequencing RNA in a chain-termination mechanism. Direct chemical methods for sequencing RNA are also known (PEATTIE D A. Proc. Natl. Acad. Sci. USA (1979) 76(4):1760-1764). Other methods include those of Donis-Keller et al. (1977, Nucl. Acids Res. 4:2527-2538), SIMONCSITS A. et al. (Nature (1977) 269(5631):833-836), AXELROD V D. et al. (Nucl. Acids Res. (1978) 5(10):3549-3563), and KRAMER F R. and MILLS D R. (Proc. Natl. Acad. Sci. USA (1978) 75(11):5334-5338). Nucleic acid sequences can also be read by stimulating the natural fluoresce of a cleaved nucleotide with a laser while the single nucleotide is contained in a fluorescence enhancing matrix (U.S. Pat. No. 5,674,743); In a mini sequencing reaction, a primer that anneals to target DNA adjacent to a SNP is extended by DNA polymerase with a single nucleotide that is complementary to the polymorphic site. This method is based on the high accuracy of nucleotide incorporation by DNA polymerases. There are different technologies for analyzing the primer extension products. For example, the use of labeled or unlabeled nucleotides, ddNTP combined with dNTP or only ddNTP in the mini sequencing reaction depends on the method chosen for detecting the products;


Probes used in hybridization can include double-stranded DNA, single-stranded DNA and RNA oligonucleotides, and peptide nucleic acids. Hybridization methods for the identification of single nucleotide polymorphisms or other mutations involving a few nucleotides are described in the U.S. Pat. Nos. 6,270,961; 6,025,136; and 6,872,530. Suitable hybridization probes for use in accordance with the invention include oligonucleotides and PNAs from about 10 to about 400 nucleotides, alternatively from about 20 to about 200 nucleotides, or from about 30 to about 100 nucleotides in length.


A template-directed dye-terminator incorporation with fluorescent polarization-detection (TDI-FP) method is described by FREEMAN B D. et al. (J Mol Diagnostics (2002) 4(4):209-215) for large scale screening;


Oligonucleotide ligation assay (OLA) is based on ligation of probe and detector oligonucleotides annealed to a polymerase chain reaction amplicon strand with detection by an enzyme immunoassay (VILLAHERMOSA ML. J Hum Virol (2001) 4(5):238-48; ROMPPANEN E L. Scand J Clin Lab Invest (2001) 61(2):123-9; IANNONE M A. et al. Cytometry (2000) 39(2):131-40);


Ligation-Rolling Circle Amplification (L-RCA) has also been successfully used for genotyping single nucleotide polymorphisms as described in QI X. et al. Nucleic Acids Res (2001) 29(22):E116;


5′ nuclease assay has also been successfully used for genotyping single nucleotide polymorphisms (AYDIN A. et al. Biotechniques (2001) (4):920-2, 924, 926-8.);


Polymerase proofreading methods are used to determine SNPs identities, as described in WO 0181631;


Detection of single base pair DNA mutations by enzyme-amplified electronic transduction is described in PATOLSKY F et al. Nat. Biotech. (2001) 19(3):253-257;


Gene chip technologies are also known for single nucleotide polymorphism discrimination whereby numerous polymorphisms may be tested for simultaneously on a single array (EP 1120646 and GILLES P N. et al. Nat. Biotechnology (1999) 17(4):365-70);


Matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy is also useful in the genotyping single nucleotide polymorphisms through the analysis of microsequencing products (HAFF L A. and SMIRNOV I P. Nucleic Acids Res. (1997) 25(18):3749-50; HAFF L A. and SMIRNOV I P. Genome Res. (1997) 7:378-388; SUN X. et al. Nucleic Acids Res. (2000) 28 e68; BRAUN A. et al. Clin. Chem. (1997) 43:1151-1158; LITTLE DP. et al. Eur. J. Clin. Chem. Clin. Biochem. (1997) 35:545-548; FEI Z. et al. Nucleic Acids Res. (2000) 26:2827-2828; and BLONDAL T. et al. Nucleic Acids Res. (2003) 31(24):e155).


Sequence-specific PCR methods have also been successfully used for genotyping single nucleotide polymorphisms (HAWKINS J R. et al. Hum Mutat (2002) 19(5):543-553). Alternatively, a Single-Stranded Conformational Polymorphism (SSCP) assay or a Cleavase Fragment Length Polymorphism (CFLP) assay may be used to detect mutations as described herein.


Alternatively, if a subject's sequence data is already known, then obtaining may involve retrieval of the subjects nucleic acid sequence data (for example from a database), followed by determining or detecting the identity of a nucleic acid or genotype at a polymorphic site by reading the subject's nucleic acid sequence at the one or more polymorphic sites.


Once the identity of a polymorphism(s) is determined or detected an indication may be obtained as to subject response to activated protein C or protein C like compound or protein C like compound administration based on the genotype (the nucleotide at the position) of the polymorphism of interest. As described herein, polymorphisms in protein C pathway associated gene sequences, may be used to predict a subject's response to activated protein C or protein C like compound treatment. Methods for predicting a subject's response to activated protein C or protein C like compound treatment may be useful in making decisions regarding the administration of activated protein C.


Methods of treatment of an inflammatory condition in a subject having an improved response polymorphism in a protein C pathway associated gene are described herein. An improved response may include an improvement subsequent to administration of said therapeutic agent, whereby the subject has an increased likelihood of survival, reduced likelihood of organ damage or organ dysfunction (Brussels score), an improved APACHE II score, days alive and free of pressors, inotropes, and reduced systemic dysfunction (cardiovascular, respiratory, ventilation, CNS, coagulation [INR>1.5], renal and/or hepatic).


As described above genetic sequence information or genotype information may be obtained from a subject wherein the sequence information contains one or more polymorphic sites in a protein C pathway associated gene sequence. Also, as previously described the sequence identity of one or more polymorphisms in a protein C pathway associated gene sequence of one or more subjects may then be detected or determined. Furthermore, subject response to administration of activated protein C or protein C like compound may be assessed as described above. For example, the APACHE II scoring system or the Brussels score may be used to assess a subject's response to treatment by comparing subject scores before and after treatment. Once subject response has been assessed, subject response may be correlated with the sequence identity of one or more polymorphism(s). The correlation of subject response may further include statistical analysis of subject outcome scores and polymorphism(s) for a number of subjects.


Cohort Description

All patients admitted to the ICU of St. Paul's Hospital (Vancouver, BC, Canada) were screened for inclusion. The ICU is a mixed medical-surgical ICU in a tertiary care, university-affiliated teaching hospital. Severe sepsis was defined as the presence of at least two systemic inflammatory response syndrome criteria and a known or suspected source of infection plus at least one new organ dysfunction by Brussels criteria (at least moderate, severe or extreme). From this cohort we identified XIGRIS™-treated subjects who were critically ill patients who had severe sepsis, no XIGRIS™ contraindications (e.g. platelet count >30,000, International normalization ration (INR)<3.0) and were treated with XIGRIS™. Control subjects were critically ill patients who had severe sepsis (at least 2 of 4 SIRS criteria, known or suspected infection, and APACHE II ≧25), a platelet count >30,000, INR <3.0, bilirubin <20 mmol/L and were not treated with XIGRIS™. Accordingly, the control group (untreated with XIGRIS™) is comparable to the XIGRIS™-treated group.


Genotyping

Discarded whole blood samples, stored at 4° C., were collected from the hospital laboratory. The buffy coat was extracted and the samples were transferred to 1.5 mL cryotubes, bar coded and cross-referenced with a unique patient number and stored at −80° C. DNA was extracted from the buffy coat using a QIAamp DNA Midi kit (Qiagen, Mississauga, ON, Canada). Single nucleotide polymorphisms in fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor 111 (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), plasminogen activator inhibitor type I (SERPINE1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (IL10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR) genes were genotyped. TABLE 1A gives the full name of each of these genes and provides a complete list of the 40 haplotype tagged polymorphisms that were genotyped. TABLE 1C gives the flanking sequences for each of the polymorphisms listed in TABLE 1A.


Clinical Phenotype

Our primary outcome variable was 28-day mortality. Secondary outcome variables were organ dysfunctions (TABLE 2C). Baseline demographics recorded were age, gender, admission APACHE II score (KNAUS W A. et al. Crit. Care Med (1985) 13:818-829), and medical or surgical diagnosis on admission to the ICU (based on the APACHE III diagnostic codes) (KNAUS W A. et al. Chest (1991) 100:1619-1636) (TABLE 2B). After meeting the inclusion criteria, data were recorded for each 24-hour period (8 am to 8 am) for 28-days after ICU admission or until hospital discharge to evaluate organ dysfunction and the intensity of SIRS (Systemic Inflammatory Response Syndrome) and sepsis. Raw clinical and laboratory variables were recorded using the worst or most abnormal variable for each 24-hour period with the exception of Glasgow Coma Score, for which the best possible score for each 24-hour period was recorded. Missing data on the date of admission was assigned a normal value and missing data after day one was substituted by carrying forward the previous day's value. When data collection for each patient was complete, all patient identifiers were removed from all records and the patient file was assigned a unique random number linked with the blood samples. The completed raw data file was used to calculate descriptive and severity of illness scores using standard definitions as described below.









TABLE 2B







Baseline characteristics key.








Baseline Characteristic
Description





AGE
Age, in years


SEX/GENDER
% Male


APACHE II
APACHE II score


SURGICAL
% Surgical admissions


SS.ADMIT
% Patients with septic shock upon admission


SS.ANY
% Patients with septic shock anytime during



admission
















TABLE 2C





Secondary outcome variables key.


Secondary Outcome Description

















Day alive and free of cardiovascular dysfunction



Days alive and free of use of vasopressors



Days alive and free of inotropic agents



Days alive and free of acute lung injury



Days alive and free of respiratory dysfunction



Days alive and free of use of mechanical ventilators



Days alive and free of acute renal dysfunction



Days alive and free of any of renal dysfunction



Days alive and free of renal support



Days alive and free of coagulation dysfunction



Days alive and free of INR >1.5



Days alive and free of neurological dysfunction



Days alive and free of acute hepatic dysfunction



Days alive and free of ¾ SIRS criteria










Organ dysfunction was evaluated at baseline and daily using the Brussels score (SIBBALD W J. and VINCENT J L. Chest (1995) 107(2):522-7) (TABLE 2A). If the Brussels score was moderate, severe, or extreme dysfunction then organ dysfunction was recorded as present on that day. To correct for deaths during the observation period, we calculated the days alive and free of organ dysfunction (RUSSELL J A. et al. Crit. Care Med (2000) 28(10):3405-11 and BERNARD G R. et al. Chest (1997) 112(1):164-72). For example, the severity of cardiovascular dysfunction was assessed by measuring days alive and free of cardiovascular dysfunction over a 28-day observation period. Days alive and free of cardiovascular dysfunction was calculated as the number of days after inclusion that a patient was alive and free of cardiovascular dysfunction over 28-days. Thus, a lower score for days alive and free of cardiovascular dysfunction indicates more cardiovascular dysfunction. The reason that days alive and free of cardiovascular dysfunction is preferable to simply presence or absence of cardiovascular dysfunction is that severe sepsis has a high acute mortality so that early death (within 28-days) precludes calculation of the presence or absence of cardiovascular dysfunction in dead patients. Organ dysfunction has been evaluated in this way in observational studies [34] and in randomized controlled trials of new therapy in sepsis, acute respiratory distress syndrome (BERNARD G R. et al. N Engl J Med (1997) 336(13):912-8) and in critical care (HEBERT P C. et al. N Engl J Med (1999) 340(6):409-17).


To further evaluate cardiovascular, respiratory, and renal function we also recorded, during each 24 hour period, vasopressor support, mechanical ventilation, and renal support, respectively. Vasopressor use was defined as dopamine >5 μg/kg/min or any dose of norepinephrine, epinephrine, vasopressin, or phenylephrine. Mechanical ventilation was defined as need for intubation and positive airway pressure (i.e. T-piece and mask ventilation were not considered ventilation). Renal support was defined as hemodialysis, peritoneal dialysis, or any continuous renal support mode (e.g. continuous veno-venous hemodialysis).


We also scored the presence of three or four of the SIRS criteria each day over the 28-day observation period as a cumulative measure of the severity of SIRS. SIRS was considered present when subjects met at least two of four SIRS criteria. The SIRS criteria were 1) fever (>38° C.) or hypothermia (<35.5° C.), 2) tachycardia (>100 beats/min in the absence of beta blockers, 3) tachypnea (>20 breaths/min) or need for mechanical ventilation, and 4) leukocytosis (total leukocyte count >11,000/μL).


Haplotype Determination and Selection of htSNPs


We used two steps to determine haplotypes and then haplotype clades of the study genes. We inferred haplotypes using PHASE software using un-phased Caucasian genotype data (from http://pga.mbt.washington.edu/) (STEPHENS M. et al. Am J Hum Genet (2001) 68(4):978-89). We then used MEGA 2 to infer a phylogenetic tree so that we could identify major haplotype clades (KUMAR S. et al. Bioinformatics (2001) 17:1244-1245). Haplotypes were sorted according to this phylogenetic tree and this haplotype structure was inspected to choose SNPs that tagged each major haplotype Glade, so-called haplotype tag SNPs (htSNPs) (not shown). Polymorphisms genotyped are listed in TABLE 1A. Polymorphisms included in the Linkage analysis are listed in TABLE 1B with all flanking sequences in TABLES 1C and 1D.


Statistical Analysis

Baseline characteristics age, gender, APACHE II, and percent surgical patients were recorded in both groups and compared using a chi-squared or Kruskal-Wallis test where appropriate. For each SNP of each gene the 28 day survival rate (%) for patients who were treated with XIGRIS™ (activated protein C) was compared to control patients who were not treated with XIGRIS™ using a chi-squared test. We considered a by-genotype effect to be significant when two criteria were fulfilled. First, we required an increase of >20% in 28-day survival rate in the XIGRIS™ treated group compared to the control group. Second, we required that p<0.1 for this comparison. When both criteria were met we considered the polymorphism allele or genotype which predicted increased 28-day survival with XIGRIS™ treatment to be an “Improved Response Polymorphism” (IRP). Organ dysfunction results were only considered for polymorphisms that were an IRP and were compared between XIGRIS™-treated patients and matched controls using a Kruskal-Wallis test.


Results
Baseline Characteristics

Baseline characteristics for the XIGRIS™-treated patients (N=49) and the matched controls (N=250) are given in TABLE 3. These are typical of subjects who have severe sepsis with regards to age, sex and APACHE II score.









TABLE 3







Baseline characteristics (Age, Gender, % Surgical, APACHE II) for XIGRIS ™-treated


patients matched control patients (not treated with XIGRIS ™). Data are shown as 25


percentile/median/75 percentile. Statistical analysis was conducted using a chi-squared or


Kruskal-Wallis test (F) where appropriate.














Matched








Controls
XIGRIS ™-Treated
TOTAL



(N = 250)
Patients (N = 49)
(N = 299)
Test Statistic
D.F.
P-VALUE

















AGE
51/63/73
38/52/67
49/62/72
F = 10.45
1.297
0.00137


SEX
65%(163)
57%(28)
64%(191)
Chisquare = 1.15
1
0.283


APACHEII
27/29/33.75
23/32/37
26/29/34
F = 0.18
1.297
0.674


SURGICAL
22%(55) 
29%(14)
23%(69) 
Chisquare = 1.0
1
0.318


SS.ADMIT
83%(208)
90%(44)
84%(252)
Chisquare = 1.35
1
0.246


SS.ANY
88%(219)
92%(45)
88%(264)
Chisquare = 0.71
1
0.399





D.F., degrees of freedom.






Survival

Overall, 47 SNP allele or genotype IRPs were identified involving 40 SNPs (TABLE 4). Twenty-eight day Survival by each of the 47 IRPs is given in TABLE 5. For patients with a given IRP allele or genotype, survival is greater for the XIGRIS™-treated patients compared to the matched controls by at least 20% (P<0.1 for each IRP).









TABLE 4







Sample size (N) for TABLES 5 to 18. When the improved response


polymorphism (IRP) is an allele, N represents the number of alleles


genotyped. When the IRP is a genotype, N represents the


number of individuals genotyped.













N




N Matched
XIGRIS ™-Treated


SNP
IRP
Controls
Patients or Alleles













FGB.155840914.G/A
A
55
8


F2.46717332.G/A
G
231
42


F2.46717332.G/A
GG
67
8


F2R.76059983.A/G
G
182
32


F2R.76059983.A/G
GG
39
7


F2R.76049220.G/C
GG
128
30


F3.94719939.A/G
GG
42
10


F5.166258759.A/G
G
34
9


F5.166236816.T/C
T
207
30


F5.166227911.A/G
A
157
24


F5.166269905.G/A
A
107
21


F7.112808416.A/G
AG
81
17


F10.112840894.A/C
C
91
13


F10.112825510.A/G
G
81
17


F10.112824083.T/C
T
119
21


SERPINE1.100363146.4G/5G
I
169
25


SERPINE1.100375050.G/A
A
65
8


SERPINE1.100375050.G/A
AG
45
8


SERPINA5.94123294.C/T
TT
56
8


IL6.22541812.C/G
C
52
4


IL6.22539885.G/C
G
93
5


IL10.203334802.C/A
A
59
5


IL12A.161198944.G/A
A
30
7


IL12A.161198944.G/A
AG
30
7


TNFRSF1A.6317783.T/C
CT
88
15


VEGF.43848656.G/A
AA
38
4


PROC.127890298.A/G
AG
74
15


PROC.127890457.T/C
CT
78
16


PROC.127892009.G/A
AG
75
16


PROC.127892092.C/T
CT
90
16


PROC.127894204.T/C
C
214
46


PROC.127894204.T/C
CT
82
16


PROC.127894608.G/A
AG
83
16


PROC.127894645.C/T
CT
84
17


PROC.127895556.G/A
A
88
21


PROC.127895556.G/A
AA
13
4


PROC.127895783.G/A
AG
77
15


PROC.127895876.T/C
CT
84
17


PROC.127899224.C/T
CT
84
17


PROC.127901000.T/C
CT
79
11


PROC.127901799.C/T
CT
84
17


PROC.127975205.T/C
C
133
21


PROCR.33183348.T/C
C
50
8


PROCR.33183694.C/A
A
46
8


PROCR.33186524.A/G
G
35
7


PROCR.33228215.A/G
G
43
10


PROCR.33228215.A/G
AG
37
8
















TABLE 5







28-day survival of XIGRIS ™-treated patients and matched controls (patients not


treated with XIGRIS ™) by different improved response polymorphisms (IRP) in the coagulation,


fibrinolysis and inflammation pathways in a cohort of critically ill patients who had severe sepsis


and no XIGRIS ™ contraindications. Data is presented for both IRP and non-IRP patients.


The chi square tests and the reported P-values correspond to the comparison of IRP Matched Controls


to IRP XIGRIS ™-treated patients only (Column A versus Column B). 28-day survival is given as


% survival (N survived/N total).










28-Day Survival





















D







A
B
C
non-IRP




IRP
IRP
non-IRP
XIGRIS ™-




Matched
XIGRIS ™-
Matched
Treated
A vs B


SNP
IRP
Controls
Treated Patients
Controls
Patients
Chi-square
D.F.
P-VALUE


















FGB.155840914.G/A
A
53%
88% (7/8) 
53%
56% (27/48)
3.45
1
0.0633




(29/55)

(169/319)


F2.46717332.G/A
G
46%
67% (28/42)
58%
57% (26/46)
5.89
1
0.0153




(107/231)

(115/197)


F2.46717332.G/A
GG
39%
75% (6/8) 
58%
58% (21/36)
3.83
1
0.0504




(26/67)

 (85/147)


F2R.76059983.A/G
G
49%
72% (23/32)
54%
57% (31/54)
5.49
1
0.0191




 (90/182)

(140/258)


F2R.76059983.A/G
GG
36%
71% (5/7) 
56%
61% (22/36)
3.09
1
0.0788




(14/39)

(101/181)


F2R.76049220.G/C
GG
47%
67% (20/30)
61%
54% (7/13) 
3.81
1
0.051




 (60/128)

(54/89)


F3.94719939.A/G
GG
48%
80% (8/10) 
53%
56% (18/32)
3.41
1
0.0649




(20/42)

 (91/173)


F5.166258759.A/G
G
56%
89% (8/9) 
52%
58% (26/45)
3.32
1
0.0685




(19/34)

(163/314)


F5.166236816.T/C
T
53%
73% (22/30)
53%
50% (12/24)
4.53
1
0.0333




(109/207)

 (73/139)


F5.166227911.A/G
A
55%
75% (18/24)
49%
53% (16/30)
3.28
1
0.0702




 (87/157)

 (89/183)


F5.166269905.G/A
A
54%
76% (16/21)
51%
55% (18/33)
3.48
1
0.0622




 (58/107)

(124/241)


F7.112808416.A/G
AG
42%
65% (11/17)
61%
60% (6/10) 
2.92
1
0.0873




(34/81)

(56/92)


F10.112840894.A/C
C
46%
77% (10/13)
54%
59% (24/41)
4.31
1
0.0379




(42/91)

(138/255)


F10.112825510.A/G
G
41%
71% (12/17)
56%
59% (22/37)
5.04
1
0.0248




(33/81)

(149/267)


F10.112824083.T/C
T
47%
71% (15/21)
55%
61% (19/31)
4.24
1
0.0395




 (56/119)

(124/227)


SERPINE1.100363146.4G/5G
I
44%
68% (17/25)
59%
59% (17/29)
4.87
1
0.0273




 (75/169)

 (99/169)


SERPINE1.100375050.G/A
A
48%
88% (7/8) 
53%
59% (27/46)
4.52
1
0.0334




(31/65)

(151/283)


SERPINE1.100375050.G/A
AG
51%
88% (7/8) 
51%
88% (7/8) 
3.66
1
0.0557




(23/45)

(23/45)


SERPINA5.94123294.C/T
TT
52%
88% (7/8) 
52%
56% (19/34)
3.63
1
0.0568




(29/56)

 (80/155)


IL6.22541812.C/G
C
58%
100% (4/4)  
60%
100% (2/2)  
2.79
1
0.095




(30/52)

(12/20)


IL6.22539885.G/C
G
49%
100% (5/5)  
49%
100% (3/3)  
4.86
1
0.0276




(46/93)

(18/37)


IL.10.203334802.C/A
A
47%
100% (5/5)  
45%
64% (7/11) 
5.1
1
0.024




(28/59)

 (62/139)


IL12A.161198944.G/A
A
50%
86% (6/7) 
54%
58% (34/59)
2.95
1
0.0859




(15/30)

(203/378)


IL12A.161198944.G/A
AG
50%
86% (6/7) 
54%
54% (14/26)
2.95
1
0.0859




(15/30)

 (94/174)


TNFRSF1A.6317783.T/C
CT
47%
73% (11/15)
60%
50% (6/12) 
3.67
1
0.0555




(41/88)

(46/77)


VEGF.43848656.G/A
AA
53%
100% (4/4)  
54%
59% (13/22)
3.32
1
0.0686




(20/38)

 (70/129)


PROC.127890298.A/G
AG
57%
80% (12/15)
49%
50% (13/26)
2.82
1
0.0929




(42/74)

 (68/139)


PROC.127890457.T/C
CT
58%
81% (13/16)
49%
46% (12/26)
3.12
1
0.0774




(45/78)

 (68/139)


PROC.127892009.G/A
AG
55%
81% (13/16)
49%
50% (14/28)
3.86
1
0.0494




(41/75)

 (68/140)


PROC.127892092.C/T
CT
51%
81% (13/16)
51%
53% (16/30)
5
1
0.0253




(46/90)

 (74/144)


PROC.127894204.T/C
C
53%
74% (34/46)
51%
48% (20/42)
6.87
1
0.00879




(113/214)

(105/206)


PROC.127894204.T/C
CT
50%
75% (12/16)
53%
54% (15/28)
3.37
1
0.0664




(41/82)

 (68/128)


PROC.127894608.G/A
AG
53%
88% (14/16)
52%
46% (12/26)
6.58
1
0.0103




(44/83)

 (67/129)


PROC.127894645.C/T
CT
52%
82% (14/17)
51%
48% (13/27)
5.19
1
0.0227




(44/84)

 (67/132)


PROC.127895556.G/A
A
51%
71% (15/21)
52%
59% (41/69)
2.82
1
0.093




(45/88)

(181/346)


PROC.127895556.G/A
AA
46% (6/13) 
100% (4/4)  
52%
59% (24/41)
3.66
1
0.0557






(107/204)


PROC.127895783.G/A
AG
56%
80% (12/15)
49%
48% (13/27)
3.05
1
0.0809




(43/77)

 (67/138)


PROC.127895876.T/C
CT
51%
82% (14/17)
52%
48% (13/27)
5.58
1
0.0181




(43/84)

 (67/129)


PROC.127899224.C/T
CT
52%
82% (14/17)
51%
50% (14/28)
5.19
1
0.0227




(44/84)

 (65/127)


PROC.127901000.T/C
CT
56%
82% (9/11) 
49%
52% (16/31)
2.72
1
0.099




(44/79)

 (67/137)


PROC.127901799.C/T
CT
54%
82% (14/17)
51%
46% (12/26)
4.82
1
0.0281




(45/84)

 (66/130)


PROC.127975205.T/C
C
53%
76% (16/21)
51%
57% (36/63)
3.84
1
0.0501




 (71/133)

(145/283)


PROCR.33183348.T/C
C
52%
88% (7/8) 
52%
61% (49/80)
3.54
1
0.0598




(26/50)

(202/390)


PROCR.33183694.C/A
A
52%
88% (7/8) 
53%
58% (45/78)
3.48
1
0.0622




(24/46)

(198/374)


PROCR.33186524.A/G
G
51%
86% (6/7) 
52%
59% (48/81)
2.8
1
0.0943




(18/35)

(208/401)


PROCR.33228215.A/G
G
51%
90% (9/10) 
52%
61% (51/84)
5.04
1
0.0248




(22/43)

(216/417)


PROCR.33228215.A/G
AG
43%
88% (7/8) 
53%
59% (23/39)
5.16
1
0.0232




(16/37)

(103/193)





D.F., degrees of freedom.






Organ Dysfunctions of IRP Patients

Significant improvements (P<0.1) in days alive and free of different organ dysfunctions were observed when comparing XIGRIS™-treated patients to the matched controls with a specific IRP allele or genotype (TABLES 6-18). This indicates that for IRP individuals, XIGRIS™ treatment results in improvement in the function of several organ systems including the cardiovascular (and cardiovascular support by vasopressor and inotrope medications), respiratory (plus respiratory support with mechanical ventilation and acute lung injury), renal (and renal support using a form of dialysis), coagulation (and prolonged INR>1.5) and the central nervous systems plus less clinical evidence of inflammation (more days alive and free of 3 of 4 SIRS criteria).


Significant improvements in days alive and free of cardiovascular dysfunction were noted when comparing XIGRIS™-treated patients and the matched controls for 28 of the IRPs (TABLE 6). Significant improvements in days alive and free of vasopressors were noted when comparing XIGRIS™-treated patients and the matched controls for 13 of the IRPs (TABLE 7). Significant improvements in days alive and free of inotropic agents were noted when comparing XIGRIS™-treated patients and the matched controls for 23 of the IRPs (TABLE 8).









TABLE 6







Days alive and free of cardiovascular dysfunction by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill patients who had


severe sepsis and no XIGRIS ™ contraindications. More days alive and free of organ dysfunction


indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test


(F). Data is presented as 25th percentile/median/75th percentile.










Days Alive and Free of Cardiovascular




Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F5.166258759.A/G
G
3/12.5/23
15/27/27
6.69
1.41
0.0134


F5.166236816.T/C
T
0/15/24
9.5/22/26
4.12
1.235
0.0435


F5.166227911.A/G
A
2/16/24
10.5/22/26
2.95
1.179
0.0875


F5.166269905.G/A
A
1.5/15/23.5
11/22/26
3.89
1.126
0.0509


F10.112840894.A/C
C
0.50/9/23
20/25/27
4.39
1.102
0.0386


F10.112825510.A/G
G
0/8/22
9/24/26
5.04
1.96
0.027


F10.112824083.T/C
T
1/13/23
9/24/26
5.24
1.138
0.0236


SERPINE1.100375050.G/A
A
0/16/24
22.75/25.5/26.25
4.83
1.71
0.0313


SERPINE1.100375050.G/A
AG
0/16/24
22.75/25.5/26.25
4.05
1.51
0.0495


IL6.22541812.C/G
C
1.75/18/26
26/26.5/27.25
5.75
1.54
0.0200


IL6.22539885.G/C
G
1/9/25
11/27/27
3.79
1.96
0.0546


TNFRSF1A.6317783.T/C
CT
1/9/23
10/22/26
3.2
1.101
0.0767


VEGF.43848656.G/A
AA
2/13/22.75
22.75/24.5/26.25
3.47
1.40
0.0698


PROC.127890298.A/G
AG
3/18/25
20/25/26
3.52
1.87
0.0641


PROC.127890457.T/C
CT
3/18.5/25
22/25/26.25
4.29
1.92
0.0412


PROC.127892009.G/A
AG
2.5/18/24.5
22/25/26.25
5.41
1.89
0.0222


PROC.127894204.T/C
C
1.25/14/24
3.5/23/26
2.79
1.258
0.096


PROC.127894608.G/A
AG
0.5/14/24
14.5/24.5/26
3.89
1.97
0.0514


PROC.127894645.C/T
CT
0/14/24
13/24/26
3.09
1.99
0.0818


PROC.127895556.G/A
AA
4/9/18
20.75/24.5/25.25
3.6
1.15
0.0773


PROC.127895783.G/A
AG
3/18/25
20/25/26
3.94
1.90
0.0503


PROC.127895876.T/C
CT
0/10.5/24
13/24/26
3.4
1.99
0.0682


PROC.127899224.C/T
CT
0/13/24
13/24/26
3.49
1.99
0.0647


PROC.127901000.T/C
CT
2.5/18/24.5
20/25/26
3.3
1.88
0.0727


PROC.127901799.C/T
CT
0/14.5/24
13/24/25
2.78
1.99
0.0986


PROC.127975205.T/C
C
1/14/24
11/24/26
3.28
1.152
0.072


PROCR.33228215.A/G
G
1.5/12/23.5
22.5/24.5/26
6.07
1.51
0.0172


PROCR.33228215.A/G
AG
1/6/25
20.25/25.5/26.25
4.31
1.43
0.0439





IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 7







Days alive and free of vasopressors by several polymorphisms in the coagulation,


fibrinolysis and inflammation pathways in a cohort of critically ill patients who had severe sepsis


and no XIGRIS ™ contraindications. More days alive and free of organ dysfunction indicates


improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F). Data


is presented as 25th percentile/median/75th percentile.










Days Alive and Free of Vassopressors

















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F5.166258759.A/G
G
3.25/18.5/25.75
17/27/28
3.3
1.41
0.0764


F10.112840894.A/C
C
2/15/25.5
24/25/28
3.45
1.102
0.0663


SERPINE1.100375050.G/A
A
2/20/26
25/26/27
3.43
1.71
0.0683


SERPINE1.100375050.G/A
AG
1/20/26
25/26/27
2.96
1.51
0.0912


IL6.22541812.C/G
C
1.75/20.5/27
27/27.5/28
6.15
1.54
0.0163


IL6.22539885.G/C
G
1/17/26
17/28/28
4.2
1.96
0.0432


IL10.203334802.C/A
A
0/12/23
26/28/28
11.21
1.62
0.00139


VEGF.43848656.G/A
AA
2/17/25.75
25.75/26/26.5
3.66
1.40
0.0631


PROC.127892009.G/A
AG
3.5/21/26
24.25/26/27
3.16
1.89
0.0787


PROC.127894608.G/A
AG
2/18/26
21.75/25/26
3.26
1.97
0.0743


PROC.127975205.T/C
C
2/18/26
17/25/26
2.81
1.152
0.0955


PROCR.33228215.A/G
G
1.5/19/26
26/26/27
4.2
1.51
0.0456


PROCR.33228215.A/G
AG
1/15/26
23.75/26.5/27.25
3.89
1.43
0.055





IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 8







Days alive and free of inotropic agents by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically


ill patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free




of Inotropic Agents
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2.46717332.G/A
GG
3/13/28
21.25/27/28
3.27
1.73
0.0746


F5.166258759.A/G
G
4.25/26/28
28/28/28
5.62
1.41
0.0225


F5.166236816.T/C
T
4/24/28
16.25/28/28
4.3
1.235
0.0392


F5.166227911.A/G
A
6/26/28
20.75/28/28
3.99
1.179
0.0474


F10.112825510.A/G
G
2/21/28
14/28/28
3.36
1.96
0.0698


SERPINE1.100375050.G/A
A
5/22/28
27.5/28/28
4.42
1.71
0.039


SERPINE1.100375050.G/A
AG
7/26/28
27.5/28/28
3.08
1.51
0.0852


IL6.22539885.G/C
G
2/22/28
28/28/28
4.65
1.96
0.0335


IL10.203334802.C/A
A
4.5/16/28
28/28/28
5.7
1.62
0.0201


TNFRSF1A.6317783.T/C
CT
5.75/22/28
18.5/28/28
3.1
1.101
0.0811


VEGF.43848656.G/A
AA
4.25/24.5/28
28/28/28
3.97
1.40
0.0531


PROC.127892009.G/A
AG
5.5/26/28
27.5/28/28
3.48
1.89
0.0652


PROC.127892092.C/T
CT
4.25/25/28
27.25/28/28
4.51
1.104
0.0361


PROC.127894204.T/C
C
5/26/28
13.75/28/28
2.74
1.258
0.099


PROC.127894608.G/A
AG
4/26/28
27.5/28/28
4.56
1.97
0.0352


PROC.127894645.C/T
CT
4/25/28
26/28/28
4.17
1.99
0.0438


PROC.127895876.T/C
CT
3.75/23.5/28
26/28/28
4.54
1.99
0.0356


PROC.127899224.C/T
CT
4/25/28
26/28/28
4.27
1.99
0.0413


PROC.127901000.T/C
CT
5.5/26/28
28/28/28
3.21
1.88
0.0765


PROC.127901799.C/T
CT
4/25/28
28/28/28
5.46
1.99
0.0215


PROC.127975205.T/C
C
4/26/28
25/28/28
3.86
1.152
0.0513


PROCR.33228215.A/G
G
3/24/28
28/28/28
4.42
1.51
0.0405


PROCR.33228215.A/G
AG
2/19/28
26.75/28/28
4.3
1.43
0.0442





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Significant improvements in days alive and free of acute lung injury were noted when comparing XIGRIS™-treated patients and the matched controls for 3 of the IRPs (TABLE 9). Significant improvements in days alive and free of respiratory dysfunction were noted when comparing XIGRIS™-treated patients and the matched controls for 16 of the IRPs (TABLE 10). Significant improvements in days alive and free of mechanical ventilator use were noted when comparing XIGRIS™-treated patients and the matched controls for 29 of the IRPs (TABLE 11).









TABLE 9







Days alive and free of acute lung injury by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically


ill patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of Acute Lung




Injury
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















PROCR.33183348.T/C
C
2.25/8/27
1.5/2/6.75
4.71
1.56
0.0343


PROCR.33183694.C/A
A
3/11.5/27
1.5/2/6.75
4.94
1.52
0.0306


PROCR.33186524.A/G
G
2.5/15/27
2/2/7.5
3.1
1.40
0.086





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism. D.F., degrees of freedom.













TABLE 10







Days alive and free of respiratory dysfunction by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of Respiratory




Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2R.76059983.A/G
G
0/3/20
3.5/19/22
5.13
1.212
0.0245


F3.94719939.A/G
GG
0/2.5/19.5
19.25/22.5/24
3.85
1.50
0.0553


F5.166236816.T/C
T
0/3/22
4/20/23
4.54
1.235
0.0341


F5.166227911.A/G
A
0/7/22
4/19.5/22.25
2.75
1.179
0.099


F10.112840894.A/C
C
0/2/21.5
19/21/24
4.71
1.102
0.0324


F10.112825510.A/G
G
0/1/18
4/20/23
4.64
1.96
0.0338


F10.112824083.T/C
T
0/3/19
4/19/23
4.77
1.138
0.0306


IL10.203334802.C/A
A
0/1/15.5
19/23/24
8.16
1.62
0.00583


TNFRSF1A.6317783.T/C
CT
0/2/20.25
4/19/22.5
3.67
1.101
0.0581


VEGF.43848656.G/A
AA
0/2/18
16/21/22.5
2.98
1.40
0.0921


PROC.127890298.A/G
AG
0/8.5/20
10/20/23
3.02
1.87
0.0856


PROC.127890457.T/C
CT
0/9/20.75
12/20/23.25
3.31
1.92
0.072


PROC.127892009.G/A
AG
0/7/20
12/20/23.25
4.41
1.89
0.0386


PROC.127894204.T/C
C
0/6/20
1/15/22.75
3.1
1.258
0.0794


PROC.127895783.G/A
AG
0/8/20
10/20/22.5
3.18
1.90
0.078


PROC.127975205.T/C
C
0/4/20
4/14/23
3.02
1.152
0.0844





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 11







Days alive and free of mechanical ventilator use by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of Mechanical




Ventilator Use
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2.46717332.G/A
G
0/0/18
0.25/4/19
3.03
1.271
0.083


F2R.76059983.A/G
G
0/1/18
1.75/18.5/22
7.76
1.212
0.00581


F2R.76059983.A/G
GG
0/0/8.5
7/19/21
3.95
1.44
0.0531


F3.94719939.A/G
GG
0/0/19.5
19.25/22/24
5.06
1.50
0.0289


F5.166236816.T/C
T
0/1/21
3/17.5/22
5.66
1.235
0.0181


F5.166227911.A/G
A
0/2/21
3/17.5/22
3.77
1.179
0.0539


F5.166269905.G/A
A
0/2/20
3/17/22
3.22
1.126
0.0751


F10.112840894.A/C
C
0/0/19.5
17/20/24
5.27
1.102
0.0237


F10.112825510.A/G
G
0/0/15
3/20/23
5.76
1.96
0.0184


F10.112824083.T/C
T
0/2/18
3/19/23
4.73
1.138
0.0314


SERPINE1.100363146.4G/5G
I
0/1/18
1/17/22
4.04
1.192
0.0459


SERPINE1.100375050.G/A
AG
0/6/21
15.25/21/24.25
3
1.51
0.0893


IL10.203334802.C/A
A
0/0/11
19/23/23
9.94
1.62
0.00249


IL6.22541812.C/G
C
0/1/18.25
22/23.5/24
3.92
1.54
0.0527


IL6.22539885.G/C
G
0/1/18
7/19/23
3.28
1.96
0.0733


TNFRSF1A.6317783.T/C
CT
0/0.5/17.25
3/17/22
4.38
1.101
0.039


VEGF.43848656.G/A
AA
0/0.5/18
15.25/20.5/22.25
3.25
1.40
0.079


PROC.127890298.A/G
AG
0/6/18
9/20/23
4.26
1.87
0.0421


PROC.127890457.T/C
CT
0/7/18.75
11.5/20/22.5
4.74
1.92
0.032


PROC.127892009.G/A
AG
0/4/18
11.5/20/22.5
5.77
1.89
0.0184


PROC.127894204.T/C
C
0/4/18
1/15/22
5.23
1.258
0.023


PROC.127894608.G/A
AG
0/1/21
4/19.5/22
3.12
1.97
0.0807


PROC.127894645.C/T
CT
0/0/18.5
4/19/22
3.73
1.99
0.0563


PROC.127895783.G/A
AG
0/5/18
9/20/22
4.43
1.90
0.038


PROC.127895876.T/C
CT
0/1/20
4/19/22
3.16
1.99
0.0784


PROC.127899224.C/T
CT
0/0.5/20
4/19/22
3.15
1.99
0.079


PROC.127901000.T/C
CT
0/5/18
9/20/22
3.95
1.88
0.0499


PROC.127901799.C/T
CT
0/1/18.5
4/17/20
3.04
1.99
0.0843


PROC.127975205.T/C
C
0/3/18
2/14/22
3.63
1.152
0.0586





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Significant improvements in days alive and free of acute renal dysfunction were noted when comparing XIGRIS™-treated patients and the matched controls for 23 of the IRPs (TABLE 12). Significant improvements in days alive and free of any renal dysfunction were noted when comparing XIGRIS™-treated patients and the matched controls for 32 of the IRPs (TABLE 13). Significant improvements in days alive and free of renal support with any form of dialysis were noted when comparing XIGRIS™-treated patients and the matched controls for 19 of the IRPs (TABLE 14).









TABLE 12







Days alive and free of acute renal dysfunction by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of




Acute Renal Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2.46717332.G/A
G
2/11/26.5
5.5/17/28
4.31
1.271
0.0387


F2R.76059983.A/G
G
1.25/12/27
4.5/25.5/28
4.27
1.212
0.0401


F2R.76059983.A/G
GG
1/7/20.5
14/28/28
3.25
1.44
0.0781


F5.166258759.A/G
G
3/15.5/28
15/28/28
3.63
1.41
0.0636


F5.166236816.T/C
T
2/10/27
6.75/27/28
6.99
1.235
0.00875


F5.166227911.A/G
A
2/15/27
13.5/27/28
6.17
1.179
0.0139


F10.112825510.A/G
G
2/13/26
14/27/28
5.87
1.96
0.0172


SERPINA5.94123294.C/T
TT
2/15.5/27
24/28/28
6.53
1.62
0.0131


IL6.22541812.C/G
C
2/11.5/26
0/0/6.75
3.11
1.54
0.0836


TNFRSF1A.6317783.T/C
CT
2/12/27.25
13/27/28
4.73
1.101
0.0319


VEGF.43848656.G/A
AA
3/10.5/28
27/27.5/28
3.21
1.40
0.0809


PROC.127894204.T/C
C
2/14/27.75
4/25.5/28
3.28
1.258
0.0714


PROC.127894204.T/C
CT
1/13/27
2.5/27.5/28
2.92
1.96
0.091


PROC.127894608.G/A
AG
1/10/27
19.5/28/28
6.27
1.97
0.014


PROC.127894645.C/T
CT
2/13/27
3/28/28
3.75
1.99
0.0558


PROC.127895876.T/C
CT
1/10/27
3/28/28
4.69
1.99
0.0327


PROC.127899224.C/T
CT
1/13/27.25
3/28/28
3.55
1.99
0.0623


PROC.127901000.T/C
CT
2/16/27.5
21/28/28
4.65
1.88
0.0338


PROC.127901799.C/T
CT
1.75/13/27.25
25/28/28
6.48
1.99
0.0125


PROC.127975205.T/C
C
1/12/28
12/19/28
2.8
1.152
0.0962


PROCR.33183348.T/C
C
2/5.5/25.5
17.25/23.5/28
3.11
1.56
0.0834


PROCR.33183694.C/A
A
2/5.5/23.75
17.25/23.5/28
3.46
1.52
0.0687


PROCR.33228215.A/G
G
2/7/27.5
21.25/28/28
3.54
1.51
0.0657





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 13







Days alive and free of any renal dysfunction by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of Any Renal




Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2.46717332.G/A
G
1/6/25
3.5/14.5/28
5.41
1.271
0.0208


F2R.76059983.A/G
G
1/8.5/24.75
4.5/22/28
6.23
1.212
0.0133


F2R.76059983.A/G
GG
1/5/18
14/28/28
3.83
1.44
0.0567


F2R.76049220.G/C
GG
0/6.5/21.25
3.5/16.5/28
5.12
1.156
0.025


F5.166236816.T/C
T
1/8/26
6.75/16.5/28
7.35
1.235
0.00719


F5.166227911.A/G
A
1/12/27
13.5/16.5/28
5.07
1.179
0.0256


F10.112825510.A/G
G
1/8/25
14/27/28
6.67
1.96
0.0113


SERPINE1.100375050.G/A
A
0/7/26
12.25/28/28
3.95
1.71
0.0506


SERPINE1.100375050.G/A
AG
1/12/27
12.25/28/28
2.94
1.51
0.0924


SERPINA5.94123294.C/T
TT
1/13.5/27
13.5/28/28
4.86
1.62
0.0313


IL12A.161198944.G/A
A
1/3.5/16.25
15.5/28/28
5.19
1.35
0.0289


IL12A.161198944.G/A
AG
1/3.5/16.25
15.5/28/28
5.19
1.35
0.0289


TNFRSF1A.6317783.T/C
CT
0/7.5/20.5
13/18/27
6.99
1.101
0.0095


VEGF.43848656.G/A
AA
0/6/27
27/27.5/28
4.4
1.40
0.0424


PROC.127890298.A/G
AG
0.25/8.5/24.75
2/28/28
4.47
1.87
0.0375


PROC.127890457.T/C
CT
1/8.5/24.75
2.5/27.5/28
4.41
1.92
0.0386


PROC.127892009.G/A
AG
1/9/25.5
2.5/27.5/28
4.07
1.89
0.0467


PROC.127892092.C/T
CT
0/9.5/27
2.5/27.5/28
3.37
1.104
0.0693


PROC.127894204.T/C
C
1/10.5/26
3.25/19/28
6.44
1.258
0.0117


PROC.127894204.T/C
CT
0/9/26
1.75/27.5/28
4.32
1.96
0.0404


PROC.127894608.G/A
AG
0.5/8/26
19.5/28/28
8.87
1.97
0.00366


PROC.127894645.C/T
CT
1/9/26.25
3/28/28
5.66
1.99
0.0193


PROC.127895556.G/A
A
0/5/22.25
2/19/28
5.32
1.107
0.023


PROC.127895783.G/A
AG
1/9/25
9/28/28
5.53
1.90
0.0208


PROC.127895876.T/C
CT
0/8/26
3/28/28
6.98
1.99
0.0096


PROC.127899224.C/T
CT
0.75/9.5/27
3/28/28
5.62
1.99
0.0197


PROC.127901000.T/C
CT
1/9/26
21/28/28
7.97
1.88
0.00587


PROC.127901799.C/T
CT
1/9.5/27
25/28/28
8.66
1.99
0.00405


PROC.127975205.T/C
C
0/7/26
10/19/28
6.4
1.152
0.0125


PROCR.33183348.T/C
C
0/3/22
13.5/18.5/21.25
2.94
1.56
0.0918


PROCR.33183694.C/A
A
0/3/21.25
13.5/18.5/21.25
3.48
1.52
0.0677


PROCR.33228215.A/G
G
0/3/23
15/23.5/28
3.92
1.51
0.0533





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 14







Days alive and free of renal support by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of Renal Support

















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F2R.76059983.A/G
G
1/9/28
4.25/27.5/28
4.13
1.212
0.0433


F10.112825510.A/G
G
2/13/28
5/28/28
3.19
1.96
0.0771


SERPINE1.100375050.G/A
A
2/15/28
22/28/28
2.99
1.71
0.088


SERPINE1.100375050.G/A
AG
2/20/28
22/28/28
2.8
1.51
0.100


IL10.203334802.C/A
A
2/15/27.5
15/28/28
3.36
1.62
0.0714


IL12A.161198944.G/A
A
1/4.5/25.25
21.5/28/28
3.83
1.35
0.0583


IL12A.161198944.G/A
AG
1/4.5/25.25
21.5/28/28
3.83
1.35
0.0583


VEGF.43848656.G/A
AA
2.25/14/28
28/28/28
5.07
1.40
0.0299


PROC.127890298.A/G
AG
1/15/28
13/28/28
4.33
1.87
0.0405


PROC.127890457.T/C
CT
1/15/28
19/28/28
5.44
1.92
0.0219


PROC.127892009.G/A
AG
1/15/28
19/28/28
4.67
1.89
0.0335


PROC.127894608.G/A
AG
1/10/28
7.5/28/28
4.02
1.97
0.0478


PROC.127894645.C/T
CT
1/12/28
6/28/28
3.18
1.99
0.0777


PROC.127895783.G/A
AG
1/15/28
14.5/28/28
4.91
1.90
0.0293


PROC.127895876.T/C
CT
1/9.5/28
6/28/28
3.73
1.99
0.0563


PROC.127899224.C/T
CT
1/13/28
6/28/28
2.83
1.99
0.0954


PROC.127901000.T/C
CT
1/15/28
28/28/28
6.21
1.88
0.0146


PROC.127901799.C/T
CT
1/14/28
9/28/28
5.02
1.99
0.0273


PROC.127975205.T/C
C
1/11/28
9/28/28
3.01
1.152
0.085





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Significant improvements in days alive and free of coagulation dysfunction (as measured by the Brussels hematologic platelet count) were noted when comparing XIGRIS™-treated patients and the matched controls for the IL10.203334802.C/A and PROC.127895556.G/A IRP (TABLE 15). Significant improvements in days alive and free of INR>1.5 were noted when comparing XIGRIS™-treated patients and the matched controls for 43 of the IRPs (TABLE 16).









TABLE 15







Days alive and free of coagulation dysfunction (as measured by the


Brussels hematologic platelet count)by several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of


critically ill patients who had severe sepsis and no XIGRIS ™


contraindications.










Days Alive and Free of




Coagulation Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















IL10.203334802.C/A
A
4/20/28
27/28/28
3.42
1.62
0.0692


PROC.127895556.G/A
AA
7/15/25
23.25/27.5/28
3.35
1.15
0.087





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.













TABLE 16







Days alive and free of INR > 1.5 by several polymorphisms in the coagulation,


fibrinolysis and inflammation pathways in a cohort of critically ill patients who


had severe sepsis and no XIGRIS ™ contraindications.










Days Alive and Free of INR > 1.5

















XIGRIS ™-





SNP
IRP
Matched Controls
Treated Patients
F
D.F.
P
















FGB.155840914.G/A
A
9/23/28
27.75/28/28
4.04
1.61
0.0488


F2.46717332.G/A
G
2/15/28
5.25/27.5/28
6.45
1.271
0.0117


F2.46717332.G/A
GG
2/9/27.5
5.75/28/28
3.38
1.73
0.0699


F3.94719939.A/G
GG
1.25/18/26
10.5/28/28
4.45
1.50
0.0399


F2R.76059983.A/G
G
3/20/28
5/28/28
4.63
1.212
0.0325


F2R.76049220.G/C
GG
2.75/17.5/28
5/27/28
3.06
1.156
0.0824


F5.166258759.A/G
G
7.25/26.5/28
28/28/28
4.49
1.41
0.0401


F5.166236816.T/C
T
3/23/28
17.25/28/28
6.94
1.235
0.00901


F5.166227911.A/G
A
6/25/28
23.75/28/28
5.81
1.179
0.017


F5.166269905.G/A
A
5.5/26/28
27/28/28
4.95
1.126
0.0279


F7.112808416.A/G
AG
2/10/28
4/28/28
4.08
1.96
0.0463


F10.112840894.A/C
C
3/18/28
27/28/28
4.56
1.102
0.0352


F10.112825510.A/G
G
2/12/27
14/28/28
8.09
1.96
0.00545


F10.112824083.T/C
T
3.5/21/28
14/28/28
8.63
1.138
0.00387


SERPINE1.100363146.4G/5G
I
3/16/28
4/28/28
5.75
1.192
0.0174


SERPINE1.100375050.G/A
A
7/23/28
28/28/28
6.02
1.71
0.0166


SERPINE1.100375050.G/A
AG
8/23/28
28/28/28
5.55
1.51
0.0223


SERPINA5.94123294.C/T
TT
2.75/20.5/28
22.25/28/28
3.71
1.62
0.0587


IL6.22541812.C/G
C
5/26/28
28/28/28
4.06
1.54
0.049


IL6.22539885.G/C
G
3/19/28
28/28/28
7.02
1.96
0.00941


IL10.203334802.C/A
A
4.5/15/27
28/28/28
9.22
1.62
0.0035


TNFRSF1A.6317783.T/C
CT
6.75/21.5/28
20.5/28/28
4.32
1.101
0.0402


VEGF.43848656.G/A
AA
3.25/22/28
27.75/28/28
3.33
1.40
0.0755


PROC.127890298.A/G
AG
5.25/23.5/28
26.5/28/28
3.41
1.87
0.0681


PROC.127890457.T/C
CT
6.5/24.5/28
26.75/28/28
3.91
1.92
0.0508


PROC.127892009.G/A
AG
4.5/22/28
26.75/28/28
4.35
1.89
0.04


PROC.127892092.C/T
CT
3/22.5/28
26/28/28
3.64
1.104
0.0593


PROC.127894204.T/C
C
4/21.5/28
7/28/28
7.44
1.258
0.00682


PROC.127894204.T/C
CT
2/20.5/28
21/27.5/28
3.51
1.96
0.064


PROC.127894608.G/A
AG
2/21/28
26/28/28
5.93
1.97
0.0167


PROC.127894645.C/T
CT
2/22.5/28
26/28/28
3.3
1.99
0.0722


PROC.127895556.G/A
A
4/21.5/28
6/28/28
4.57
1.107
0.0348


PROC.127895556.G/A
AA
8/23/28
28/28/28
6.11
1.15
0.0259


PROC.127895783.G/A
AG
5/23/28
26.5/28/28
3.41
1.90
0.0682


PROC.127895876.T/C
CT
2/20.5/28
26/28/28
4.7
1.99
0.0325


PROC.127899224.C/T
CT
2/22/28
26/28/28
3.77
1.99
0.0551


PROC.127901799.C/T
CT
2/22/28
26/28/28
3.56
1.99
0.0622


PROC.127975205.T/C
C
4/21/28
26/28/28
8.76
1.152
0.00358


PROCR.33183348.T/C
C
2/21.5/28
28/28/28
6.3
1.56
0.015


PROCR.33183694.C/A
A
2.25/21.5/28
28/28/28
6.03
1.52
0.0174


PROCR.33186524.A/G
G
2/21/28
28/28/28
4.52
1.40
0.0398


PROCR.33228215.A/G
G
2/21/28
28/28/28
7.58
1.51
0.00817


PROCR.33228215.A/G
AG
1/16/28
28/28/28
7.68
1.43
0.0082





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Significant improvements in days alive and free of neurological dysfunction were noted when comparing XIGRIS™-treated patients and the matched controls for 11 of the IRPs (TABLE 17).









TABLE 17







Days alive and free of neurological dysfunction by several polymorphisms


in the coagulation, fibrinolysis and inflammation pathways in a cohort of


critically ill patients who had severe sepsis and no XIGRIS ™


contraindications.










Days Alive and Free of Neurological




Dysfunction
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















FGB.155840914.G/A
A
4.5/18/25
26/27/27
4.68
1.61
0.0345


F2R.76059983.A/G
G
3/15/26
8.5/25/26.25
3.56
1.212
0.0606


IL10.203334802.C/A
A
2/15/26.5
25/26/28
4.57
1.62
0.0365


IL12A.161198944.G/A
A
2.25/18/25.75
24/25/27
3.18
1.35
0.0832


IL12A.161198944.G/A
AG
2.25/18/25.75
24/25/27
3.18
1.35
0.0832


PROC.127894608.G/A
AG
2.5/15/26.5
23.75/25/27
4.11
1.97
0.0454


PROC.127894645.C/T
CT
2.75/19/26.25
23/25/27
3.16
1.99
0.0785


PROC.127895876.T/C
CT
2/15/26.25
23/25/27
3.86
1.99
0.0522


PROC.127899224.C/T
CT
2/19/26
23/25/27
3.73
1.99
0.0564


PROC.127901799.C/T
CT
2/20/26.25
23/25/27
3.49
1.99
0.0646


PROCR.33228215.A/G
AG
2/14/25
23.5/25/27
3.49
1.43
0.0684





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Significant improvements in days alive and free of ¾ SIRS criteria were noted when comparing XIGRIS™-treated patients and the matched controls for 3 of the IRPs (TABLE 18).









TABLE 18







Days alive and free of ¾ SIRS criteria by several polymorphisms


in the coagulation, fibrinolysis and inflammation pathways in a cohort of


critically ill patients who had severe sepsis and no XIGRIS ™


contraindications.










Days Alive and Free of




¾SIRS Criteria
















XIGRIS ™-Treated





SNP
IRP
Matched Controls
Patients
F
D.F.
P
















F3.94719939.A/G
GG
0/5.5/19.75
7/22/23
2.92
1.50
0.0935


IL6.22541812.C/G
C
0.75/9/24.25
23.5/26/26
3.05
1.54
0.0862


IL10.203334802.C/A
A
1/5/11.5
16/16/22
4.67
1.62
0.0346





More days alive and free of organ dysfunction indicates improved organ function. Statistical analysis was conducted using a Kruskal-Wallis test (F).


Data is presented as 25th percentile/median/75th percentile.


IRP, improved response polymorphism.


D.F., degrees of freedom.






Organ Dysfunctions of IRP Patients Compared to Those of Non-IRP Patients

Organ dysfunctions were also compared between IRP patients and patients having alleles/genotypes other than the IRP (TABLEs 20-33; sample sizes in TABLE 19) for all IRP SNPs. Results are reported as the difference in median days alive and free of a given organ dysfunction between both (1) IRP patients and non-IRP patients in the matched-control group and (2) IRP XIGRIS™-treated patients and non-IRP XIGRIS™-treated patients. In virtually every case the average difference in days alive and free of different organ dysfunctions in XIGRIS™-treated patients is greater than the difference in matched controls. Furthermore, the IRP patients have fewer days alive and free than the non-TRP patients when they are not treated with XIGRIS™. In contrast, the IRP patients have more days alive and free than the non-IRP patients when they are treated with XIGRIS™. This confirms that the IRP genotype identifies patients who respond particularly well to XIGRIS™.









TABLE 19







Improved response polymorphism (IRP) description and sample


size (N) for TABLES 20 to 32.










Matched
XIGRIS ™-Treated



Controls
Patients













SNP
IRP
non-IRP
N IRP
N non-IRP
N IRP
N non-IRP
















FGB.155840914.G/A
A
G
55
319
8
48


F2.46717332.G/A
G
A
231
197
42
46


F2.46717332.G/A
GG
AG/AA
67
147
8
36


F2R.76059983.A/G
G
A
182
258
32
54


F2R.76059983.A/G
GG
AG/AA
39
181
7
36


F2R.76049220.G/C
GG
GC/CC
128
89
30
13


F3.94719939.A/G
GG
AG/AA
42
173
10
32


F5.166258759.A/G
G
A
34
314
9
45


F5.166236816.T/C
T
C
207
139
30
24


F5.166227911.A/G
A
G
157
183
24
30


F5.166269905.G/A
A
G
107
241
21
33


F7.112808416.A/G
AG
AA/GG
81
92
17
10


F10.112840894.A/C
C
A
91
255
13
41


F10.112825510.A/G
G
A
81
267
17
37


F10.112824083.T/C
T
C
119
227
21
31


SERPINE1.100363146.4G/5G
I
D
169
169
25
29


SERPINE1.100375050.G/A
A
G
65
283
8
46


SERPINE1.100375050.G/A
AG
AA/GG
45
129
8
19


SERPINA5.94123294.C/T
TT
CT/CC
56
155
8
34


IL6.22541812.C/G
C
G
52
20
4
2


IL6.22539885.G/C
G
C
93
37
5
3


IL10.203334802.C/A
A
C
59
139
5
11


IL12A.161198944.G/A
A
G
30
378
7
59


IL12A.161198944.G/A
AG
AA/GG
30
174
7
26


TNFRSF1A.6317783.T/C
CT
CC/TT
88
77
15
12


VEGF.43848656.G/A
AA
AG/GG
38
129
4
22


PROC.127890298.A/G
AG
AA/GG
74
139
15
26


PROC.127890457.T/C
CT
CC/TT
78
139
16
26


PROC.127892009.G/A
AG
AA/GG
75
140
16
28


PROC.127892092.C/T
CT
CC/TT
90
144
16
30


PROC.127894204.T/C
C
T
214
206
46
42


PROC.127894204.T/C
CT
CC/TT
82
128
16
28


PROC.127894608.G/A
AG
AA/GG
83
129
16
26


PROC.127894645.C/T
CT
CC/TT
84
132
17
27


PROC.127895556.G/A
A
G
88
346
21
69


PROC.127895556.G/A
AA
AG/GG
13
204
4
41


PROC.127895783.G/A
AG
AA/GG
77
138
15
27


PROC.127895876.T/C
CT
CC/TT
84
129
17
27


PROC.127899224.C/T
CT
CC/TT
84
127
17
28


PROC.127901000.T/C
CT
CC/TT
79
137
11
31


PROC.127901799.C/T
CT
CC/TT
84
130
17
26


PROC.127975205.T/C
C
T
133
283
21
63


PROCR.33183348.T/C
C
T
50
390
8
80


PROCR.33183694.C/A
A
C
46
374
8
78


PROCR.33186524.A/G
G
A
35
401
7
81


PROCR.33228215.A/G
AG
AA/GG
37
193
8
39


PROCR.33228215.A/G
G
A
43
417
10
84





When the IRP is an allele, N represents the number of alleles genotyped.


When the IRP is a genotype, N represents the number of individuals genotyped.






For cardiovascular dysfunction (TABLE 20), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.3 days alive and free of cardiovascular dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+8.7 days alive and free of cardiovascular dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of cardiovascular dysfunction.









TABLE 20







Difference in median days alive and free of cardiovascular dysfunction


between improved response polymorphism (IRP) and non-IRP patients


by treatment (control or XIGRIS ™).










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
IRP
DIFFERENCE
non-IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
16
14
2
22.5
15
7.5


F2.46717332.G/A
G
9
17
−8
15
14
1


F2.46717332.G/A
GG
3
17
−14
14.5
15.5
−1


F3.94719939.A/G
GG
8.5
14
−5.5
24.5
14
10.5


F2R.76059983.A/G
G
14
14
0
16
14
2


F2R.76059983.A/G
GG
5
16
−11
14
17.5
−3.5


F2R.76049220.G/C
GG
9
18
−9
15
22
7


F5.166258759.A/G
G
12.5
14
−1.5
27
15
12


F5.166236816.T/C
T
15
13
2
22
9.5
12.5


F5.166227911.A/G
A
16
9
7
22
13
9


F5.166269905.G/A
A
15
14
1
22
15
7


F7.112808416.A/G
AG
7
17.5
−10.5
22
15.5
6.5


F10.112840894.A/C
C
9
14
−5
25
15
10


F10.112825510.A/G
G
8
16
−8
24
15
9


F10.112824083.T/C
T
13
15
−2
24
15
9


SERPINE1.100363146.4G/5G
I
9
16
−7
22
15
7


SERPINE1.100375050.G/A
A
16
14
2
25.5
15
10.5


SERPINE1.100375050.G/A
AG
16
14
2
25.5
11
14.5


SERPINA5.94123294.C/T
TT
15.5
12
3.5
18.5
14
4.5


IL6.22541812.C/G
C
18
19.5
−1.5
26.5
27.5
−1


IL6.22539885.G/C
G
9
13
−4
27
26
1


IL10.203334802.C/A
A
7
9
−2
27
26
1


IL12A.161198944.G/A
A
15
14
1
22
15
7


IL12A.161198944.G/A
GA
15
14
1
22
13
9


TNFRSF1A.6317783.T/C
CT
9
19
−10
22
7.5
14.5


VEGF.43848656.G/A
AA
13
16
−3
24.5
15
9.5


PROC.127890298.A/G
AG
18
9
9
25
8.5
16.5


PROC.127890457.T/C
CT
18.5
9
9.5
25
8.5
16.5


PROC.127892009.G/A
AG
18
9
9
25
8.5
16.5


PROC.127892092.C/T
CT
14.5
11
3.5
19
14.5
4.5


PROC.127894204.T/C
C
14
13
1
23
8.5
14.5


PROC.127894204.T/C
CT
9
14.5
−5.5
19
12.5
6.5


PROC.127894608.G/A
AG
14
14
0
24.5
8.5
16


PROC.127894645.C/T
CT
14
12
2
24
9
15


PROC.127895556.G/A
A
9
15
−6
15
15
0


PROC.127895556.G/A
AA
9
14.5
−5.5
24.5
15
9.5


PROC.127895783.G/A
AG
18
9
9
25
8
17


PROC.127895876.T/C
CT
10.5
14
−3.5
24
9
15


PROC.127899224.C/T
CT
13
14
−1
24
10
14


PROC.127901000.T/C
CT
18
9
9
25
9
16


PROC.127901799.C/T
CT
14.5
13.5
1
24
8.5
15.5


PROC.127975205.T/C
C
14
14
0
24
14
10


PROCR.33183348.T/C
C
11.5
14
−2.5
23
15
8


PROCR.33183694.C/A
A
11.5
14
−2.5
23
14
9


PROCR.33186524.A/G
G
15
14
1
22
15
7


PROCR.33228215.A/G
AG
6
14
−8
25.5
14
11.5


PROCR.33228215.A/G
G
12
14
−2
24.5
15
9.5


AVERAGE



−1.3


8.7


DIFFERENCE





Data is shown for several polymorphisms in the coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of cardiovascular dysfunction of patients having the IRP minus median days alive and free of cardiovascular dysfunction of patients having the non-IRP allele/genotype, within (1) Matched Controls and (2) XIGRIS ™-Treated Patients.






For days alive a free of use of vasopressors (TABLE 21), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.3 days alive and free of use of vasopressors). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+6.5 days alive and free of use of vasopressors). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of use of vasopressors.









TABLE 21







Difference in median days alive and free of use of vasopressors between


improved response polymorphism (IRP) and non-IRP patients by treatment


(control or XIGRIS ™).










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
18
20
−2
24.5
21
3.5


F2.46717332.G/A
G
14
21
−7
22.5
23
−0.5


F2.46717332.G/A
GG
7
20
−13
22
23
−1


F2R.76059983.A/G
G
18
19
−1
24
17
7


F2R.76059983.A/G
GG
11
20
−9
23
22.5
0.5


F2R.76049220.G/C
GG
17.5
20
−2.5
22.5
25
−2.5


F3.94719939.A/G
GG
16.5
19
−2.5
24.5
17
7.5


F5.166258759.A/G
G
18.5
18
0.5
27
21
6


F5.166236816.T/C
T
19
18
1
25
14
11


F5.166227911.A/G
A
20
12
8
25.5
19
6.5


F5.166269905.G/A
A
19
18
1
24
21
3


F7.112808416.A/G
AG
10
22
−12
25
20.5
4.5


F10.112840894.A/C
C
15
18
−3
25
17
8


F10.112825510.A/G
G
13
20
−7
25
21
4


F10.112824083.T/C
T
18
19
−1
25
21
4


SERPINE1.100363146.4G/5G
I
13
19
−6
24
21
3


SERPINE1.100375050.G/A
A
20
18
2
26
19
7


SERPINE1.100375050.G/A
AG
20
18
2
26
17
9


SERPINA5.94123294.C/T
TT
18
18
0
24
21.5
2.5


IL6.22541812.C/G
C
20.5
20.5
0
27.5
28
−0.5


IL6.22539885.G/C
G
17
18
−1
28
27
1


IL10.203334802.C/A
A
12
13
−1
28
26
2


IL12A.161198944.G/A
A
18
19
−1
25
21
4


IL12A.161198944.G/A
GA
18
19
−1
25
17
8


TNFRSF1A.6317783.T/C
CT
13.5
22
−8.5
24
10.5
13.5


VEGF.43848656.G/A
AA
17
20
−3
26
19
7


PROC.127890298.A/G
AG
21
17
4
26
13
13


PROC.127890457.T/C
CT
21.5
17
4.5
26
10.5
15.5


PROC.127892009.G/A
AG
21
16.5
4.5
26
13
13


PROC.127892092.C/T
CT
19
17.5
1.5
24.5
20
4.5


PROC.127894204.T/C
C
18
19
−1
24
11
13


PROC.127894204.T/C
CT
17.5
19
−1.5
24.5
17
7.5


PROC.127894608.G/A
AG
18
19
−1
25
10.5
14.5


PROC.127894645.C/T
CT
18
18.5
−0.5
25
11
14


PROC.127895556.G/A
A
17
19
−2
24
23
1


PROC.127895556.G/A
AA
17
19
−2
25
22
3


PROC.127895783.G/A
AG
21
16.5
4.5
26
11
15


PROC.127895876.T/C
CT
18
19
−1
25
11
14


PROC.127899224.C/T
CT
18
19
−1
25
14
11


PROC.127901000.T/C
CT
21
16
5
25
15
10


PROC.127901799.C/T
CT
19
18
1
25
10.5
14.5


PROC.127975205.T/C
C
18
19
−1
25
21
4


PROCR.33183348.T/C
C
18
19
−1
26
23
3


PROCR.33183694.C/A
A
18
19
−1
26
21.5
4.5


PROCR.33186524.A/G
G
18
19
−1
26
22
4


PROCR.33228215.A/G
AG
15
19
−4
26.5
22
4.5


PROCR.33228215.A/G
G
19
18
1
26
22.5
3.5


AVERAGE



−1.3


6.5


DIFFERENCE





Data is shown for several polymorphisms in the coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of use of vasopressors of patients having the IRP minus median days alive and free of use of vasopressors of patients having the non-IRP allele/genotype, within (1) Matched Controls and (2) XIGRIS ™-Treated Patients.






For days alive a free of inotropic agents (TABLE 22), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.8 days alive and free of use of inotropic agents). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+5.3 days alive and free of use of inotropic agents). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of use of inotropic agents.









TABLE 22







Difference in median days alive and free of inotropic agents between


improved response polymorphism (IRP) and non-IRP patients by


treatment (control or XIGRIS ™).










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
24
26
−2
28
25
3


F2.46717332.G/A
G
21
27
−6
27
27
0


F2.46717332.G/A
GG
13
27
−14
27
27
0


F2R.76059983.A/G
G
24
26
−2
28
27
1


F2R.76059983.A/G
GG
17
26
−9
28
27
1


F2R.76049220.G/C
GG
23
28
−5
28
23
5


F3.94719939.A/G
GG
23.5
26
−2.5
27
26.5
0.5


F5.166258759.A/G
G
26
25
1
28
25
3


F5.166236816.T/C
T
24
26
−2
28
16.5
11.5


F5.166227911.A/G
A
26
23
3
28
24
4


F5.166269905.G/A
A
26
25
1
28
23
5


F7.112808416.A/G
AG
15
27.5
−12.5
26
26.5
−0.5


F10.112840894.A/C
C
22
26
−4
28
25
3


F10.112825510.A/G
G
21
26
−5
28
25
3


F10.112824083.T/C
T
23
26
−3
28
25
3


SERPINE1.100363146.4G/5G
I
21
27
−6
26
25
1


SERPINE1.100375050.G/A
A
22
25
−3
28
25
3


SERPINE1.100375050.G/A
AG
26
25
1
28
23
5


SERPINA5.94123294.C/T
TT
25
26
−1
28
25
3


IL6.22541812.C/G
C
28
28
0
27
28
−1


IL6.22539885.G/C
G
22
22
0
28
26
2


IL10.203334802.C/A
A
16
19
−3
28
26
2


IL12A.161198944.G/A
A
22
26
−4
28
25
3


IL12A.161198944.G/A
GA
22
26
−4
28
24
4


TNFRSF1A.6317783.T/C
CT
22
28
−6
28
14
14


VEGF.43848656.G/A
AA
24.5
26
−1.5
28
25
3


PROC.127890298.A/G
AG
27
23
4
28
18.5
9.5


PROC.127890457.T/C
CT
27
23
4
28
13
15


PROC.127892009.G/A
AG
26
23
3
28
18.5
9.5


PROC.127892092.C/T
CT
25
26
−1
28
20.5
7.5


PROC.127894204.T/C
C
26
23
3
28
14
14


PROC.127894204.T/C
CT
24.5
26
−1.5
28
24
4


PROC.127894608.G/A
AG
26
26
0
28
12
16


PROC.127894645.C/T
CT
25
26
−1
28
14
14


PROC.127895556.G/A
A
26
25.5
0.5
28
26
2


PROC.127895556.G/A
AA
26
26
0
28
26
2


PROC.127895783.G/A
AG
26
23
3
28
14
14


PROC.127895876.T/C
CT
23.5
26
−2.5
28
14
14


PROC.127899224.C/T
CT
25
26
−1
28
16
12


PROC.127901000.T/C
CT
26
23
3
28
23
5


PROC.127901799.C/T
CT
25
26
−1
28
12
16


PROC.127975205.T/C
C
26
25
1
28
26
2


PROCR.33183348.T/C
C
25.5
25.5
0
28
26
2


PROCR.33183694.C/A
A
25.5
26
−0.5
28
26
2


PROCR.33186524.A/G
G
26
25
1
28
26
2


PROCR.33228215.A/G
AG
19
26
−7
28
26
2


PROCR.33228215.A/G
G
24
26
−2
28
26
2


AVERAGE



−1.8


5.3


DIFFERENCE





Data is shown for several polymorphisms in the coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of use of inotropic agents of patients having the IRP minus median days alive and free of use of inotropic agents of patients having the non-IRP allele/genotype, within (1) Matched Controls and (2) XIGRIS ™-Treated Patients.






For days alive a free of acute lung injury (TABLE 23), on average matched-control patients having the IRP allele/genotype do the same as patients having alleles/genotypes other than the IRP (0.2 days alive and free of use of acute lung injury). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+4.2 days alive and free of use of acute lung injury). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of use of acute lung injury.









TABLE 23







Difference in median days alive and free of acute lung injury between improved


response polymorphism (IRP) and non-IRP patients by treatment (control or


XIGRIS ™). Data is shown for several polymorphisms in the coagulation,


fibrinolysis and inflammation pathways in a cohort of critically ill patients who


had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of acute lung injury of


patients having the IRP minus median days alive and free of acute lung injury


patients having the non-IRP allele/genotype., within (1) Matched


Controls and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
17
11
6
11
8.5
2.5


F2.46717332.G/A
G
8
17
−9
5.5
14
−8.5


F2.46717332.G/A
GG
6
16
−10
6
13
−7


F2R.76059983.A/G
G
11
10
1
17
5
12


F2R.76059983.A/G
GG
8
12
−4
17
8.5
8.5


F2R.76049220.G/C
GG
11
11
0
10.5
4
6.5


F3.94719939.A/G
GG
4.5
11
−6.5
21.5
5.5
16


F5.166258759.A/G
G
16
11
5
22
9
13


F5.166236816.T/C
T
9
15
−6
15
6.5
8.5


F5.166227911.A/G
A
12
11
1
14
8
6


F5.166269905.G/A
A
15
9
6
16
5
11


F7.112808416.A/G
AG
6
16.5
−10.5
6
11.5
−5.5


F10.112840894.A/C
C
11
11
0
22
8
14


F10.112825510.A/G
G
5
14
−9
18
8
10


F10.112824083.T/C
T
12
11
1
14
9
5


SERPINE1.100363146.4G/5G
I
9
12
−3
8
14
−6


SERPINE1.100375050.G/A
A
11
12
−1
18
8.5
9.5


SERPINE1.100375050.G/A
AG
17
11
6
18
8
10


SERPINA5.94123294.C/T
TT
10.5
9
1.5
5
11
−6


IL6.22541812.C/G
C
22
22
0
16
15.5
0.5


IL6.22539885.G/C
G
11
15
−4
9
16
−7


IL10.203334802.C/A
A
7
15
−8
3
16
−13


IL12A.161198944.G/A
A
17
12
5
17
9
8


IL12A.161198944.G/A
AG
17
11
6
17
8.5
8.5


TNFRSF1A.6317783.T/C
CT
9.5
15
−5.5
17
3.5
13.5


VEGF.43848656.G/A
AA
9
14
−5
24
8.5
15.5


PROC.127890298.A/G
AG
15
8
7
17
5.5
11.5


PROC.127890457.T/C
CT
15.5
7
8.5
19.5
5.5
14


PROC.127892009.G/A
AG
15
7.5
7.5
19.5
5.5
14


PROC.127892092.C/T
CT
10.5
10.5
0
10.5
7
3.5


PROC.127894204.T/C
C
13.5
8
5.5
9
8
1


PROC.127894204.T/C
CT
13.5
8.5
5
10
8.5
1.5


PROC.127894608.G/A
AG
13
9
4
16.5
5.5
11


PROC.127894645.C/T
CT
9.5
10
−0.5
16
6
10


PROC.127895556.G/A
A
11.5
9
2.5
9
12
−3


PROC.127895556.G/A
AA
9
10.5
−1.5
13.5
8
5.5


PROC.127895783.G/A
AG
15
7.5
7.5
17
6
11


PROC.127895876.T/C
CT
11
9
2
16
6
10


PROC.127899224.C/T
CT
10
11
−1
16
7
9


PROC.127901000.T/C
CT
15
8
7
17
6
11


PROC.127901799.C/T
CT
9.5
11
−1.5
17
5.5
11.5


PROC.127975205.T/C
C
11
9
2
9
12
−3


PROCR.33183348.T/C
C
8
10
−2
2
14
−12


PROCR.33183694.C/A
A
11.5
10.5
1
2
10.5
−8.5


PROCR.33186524.A/G
G
15
10
5
2
12
−10


PROCR.33228215.A/G
AG
5
12
−7
4.5
12
−7.5


PROCR.33228215.A/G
G
14
11
3
2.5
12
−9.5


AVERAGE



0.2


4.2


DIFFERENCE









For respiratory dysfunction (TABLE 24), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−0.2 days alive and free of respiratory dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+8.4 days alive and free of respiratory dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of respiratory dysfunction.









TABLE 24







Difference in median days alive and free of respiratory dysfunction between


improved response polymorphism (IRP) and non-IRP patients by treatment


(control or XIGRIS ™). Data is shown for several polymorphisms in


the coagulation, fibrinolysis and inflammation pathways in a cohort of


critically ill patients who had severe sepsis and no XIGRIS ™


contraindications. DIFFERENCE = median days alive and free of


respiratory dysfunction of patients having the IRP minus median days alive


and free of respiratory dysfunction of patients having the non-IRP


allele/genotype, within (1) Matched Controls and (2) XIGRIS ™-


Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
9
5
4
19.5
9
10.5


F2.46717332.G/A
G
2
8
−6
6
14.5
−8.5


F2.46717332.G/A
GG
1
8
−7
5.5
14.5
−9


F2R.76059983.A/G
G
3
7
−4
19
4
15


F2R.76059983.A/G
GG
0
8
−8
19
5.5
13.5


F2R.76049220.G/C
GG
5.5
4
1.5
15.5
4
11.5


F3.94719939.A/G
GG
2.5
6
−3.5
22.5
4
18.5


F5.166258759.A/G
G
6.5
4.5
2
20
17
3


F5.166236816.T/C
T
3
6
−3
20
7
13


F5.166227911.A/G
A
7
4
3
19.5
13
6.5


F5.166269905.G/A
A
9
3
6
20
9
11


F7.112808416.A/G
AG
2
9
−7
17
14
3


F10.112840894.A/C
C
2
5
−3
21
5
16


F10.112825510.A/G
G
1
7
−6
20
9
11


F10.112824083.T/C
T
3
5
−2
19
17
2


SERPINE1.100363146.4G/5G
I
2
5
−3
17
17
0


SERPINE1.100375050.G/A
A
8
4
4
21.5
9
12.5


SERPINE1.100375050.G/A
AG
8
4
4
21.5
5
16.5


SERPINA5.94123294.C/T
TT
6.5
3
3.5
7.5
9.5
−2


IL6.22541812.C/G
C
8
7
1
24
21.5
2.5


IL6.22539885.G/C
G
3
7
−4
19
24
−5


IL10.203334802.C/A
A
1
1
0
23
20
3


IL12A.161198944.G/A
A
11.5
5
6.5
19
9
10


IL12A.161198944.G/A
GA
11.5
4
7.5
19
7
12


TNFRSF1A.6317783.T/C
CT
2
10
−8
19
9
10


VEGF.43848656.G/A
AA
2
8
−6
21
13
8


PROC.127890298.A/G
AG
8.5
2
6.5
20
4
16


PROC.127890457.T/C
CT
9
2
7
20
3
17


PROC.127892009.G/A
AG
7
2
5
20
4
16


PROC.127892092.C/T
CT
3
4.5
−1.5
15.5
4
11.5


PROC.127894204.T/C
C
6
3
3
15
4
11


PROC.127894204.T/C
CT
3
5.5
−2.5
15.5
4.5
11


PROC.127894608.G/A
AG
4
4
0
20
4
16


PROC.127894645.C/T
CT
2
6
−4
20
4
16


PROC.127895556.G/A
A
3.5
3
0.5
9
6
3


PROC.127895556.G/A
AA
5
3
2
16
5
11


PROC.127895783.G/A
AG
8
2
6
20
4
16


PROC.127895876.T/C
CT
3
5
−2
20
4
16


PROC.127899224.C/T
CT
2
6
−4
20
4
16


PROC.127901000.T/C
CT
7
2
5
20
4
16


PROC.127901799.C/T
CT
2.5
5.5
−3
17
4
13


PROC.127975205.T/C
C
4
3
1
14
4
10


PROCR.33183348.T/C
C
3
4
−1
5
14
−9


PROCR.33183694.C/A
A
3
5
−2
5
11.5
−6.5


PROCR.33186524.A/G
G
3
4
−1
6
14
−8


PROCR.33228215.A/G
AG
3
6
−3
19
6
13


PROCR.33228215.A/G
G
8
4
4
12.5
9
3.5


AVERAGE



−0.2


8.4


DIFFERENCE









For days alive and free of use of mechanical ventilators (TABLE 25), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−0.5 days alive and free of use of mechanical ventilators). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+8.8 days alive and free of use of mechanical ventilators). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of use of mechanical ventilators.









TABLE 25







Difference in median days alive and free of mechanical ventilator use between


improved response polymorphism (IRP) and non-IRP patients by treatment


(control or XIGRIS ™). Data is shown for several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of use of mechanical


ventilator of patients having the IRP minus median days alive and free of use


of mechanical ventilator of patients having the non-IRP allele/genotype, within


(1) Matched Controls and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median


Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
7
2
5
18
7
11


F2.46717332.G/A
G
0
6
−6
4
14.5
−10.5


F2.46717332.G/A
GG
0
6
−6
4
14.5
−10.5


F2R.76059983.A/G
G
1
4
−3
18.5
3.5
15


F2R.76059983.A/G
GG
0
5
−5
19
4
15


F2R.76049220.G/C
GG
2
3
−1
15.5
4
11.5


F3.94719939.A/G
GG
0
3
−3
22
3
19


F5.166258759.A/G
G
1
2
−1
20
17
3


F5.166236816.T/C
T
1
4
−3
17.5
4
13.5


F5.166227911.A/G
A
2
2
0
17.5
12
5.5


F5.166269905.G/A
A
2
1
1
17
7
10


F7.112808416.A/G
AG
0
7
−7
17
12
5


F10.112840894.A/C
C
0
2
−2
20
4
16


F10.112825510.A/G
G
0
4
−4
20
7
13


F10.112824083.T/C
T
2
1
1
19
17
2


SERPINE1.100363146.4G/5G
I
1
2
−1
17
17
0


SERPINE1.100375050.G/A
A
7
1
6
21
7
14


SERPINE1.100375050.G/A
AG
6
1
5
21
3
18


SERPINA5.94123294.C/T
TT
4
1
3
5.5
8.5
−3


IL6.22541812.C/G
C
1
5.5
−4.5
23.5
21
2.5


IL6.22539885.G/C
G
1
7
−6
19
24
−5


IL10.203334802.C/A
A
0
0
0
23
20
3


IL12A.161198944.G/A
A
7
2
5
19
7
12


IL12A.161198944.G/A
GA
7
2
5
19
5
14


TNFRSF1A.6317783.T/C
CT
0.5
6
−5.5
17
8.5
8.5


VEGF.43848656.G/A
AA
0.5
4
−3.5
20.5
12
8.5


PROC.127890298.A/G
AG
6
1
5
20
2.5
17.5


PROC.127890457.T/C
CT
7
1
6
20
1.5
18.5


PROC.127892009.G/A
AG
4
0.5
3.5
20
2.5
17.5


PROC.127892092.C/T
CT
1
2
−1
15.5
3
12.5


PROC.127894204.T/C
C
4
1
3
15
3
12


PROC.127894204.T/C
CT
1
3
−2
15.5
3
12.5


PROC.127894608.G/A
AG
1
2
−1
19.5
2.5
17


PROC.127894645.C/T
CT
0
3.5
−3.5
19
3
16


PROC.127895556.G/A
A
2.5
1
1.5
7
4
3


PROC.127895556.G/A
AA
3
1
2
15
4
11


PROC.127895783.G/A
AG
5
1
4
20
2
18


PROC.127895876.T/C
CT
1
3
−2
19
3
16


PROC.127899224.C/T
CT
0.5
4
−3.5
19
3
16


PROC.127901000.T/C
CT
5
1
4
20
3
17


PROC.127901799.C/T
CT
1
3
−2
17
2.5
14.5


PROC.127975205.T/C
C
3
2
1
14
3
11


PROCR.33183348.T/C
C
0
2
−2
3.5
14
−10.5


PROCR.33183694.C/A
A
0
3
−3
3.5
10.5
−7


PROCR.33186524.A/G
G
0
2
−2
4
14
−10


PROCR.33228215.A/G
AG
0
3
−3
18.5
4
14.5


PROCR.33228215.A/G
G
3
2
1
11
7
4


AVERAGE



−0.5


8.8


DIFFERENCE









For acute renal dysfunction (TABLE 26), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−2.7 days alive and free of acute renal dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+12.2 days alive and free of acute renal dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of acute renal dysfunction.









TABLE 26







Difference in median days alive and free of acute renal dysfunction between


improved response polymorphism (IRP) and non-IRP patients by treatment


(control or XIGRIS ™). Data is shown for several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically ill


patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of acute renal dysfunction


of patients having the IRP minus median days alive and free of acute renal


dysfunction of patients having the non-IRP allele/genotype, within (1)


Matched Controls and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
18
13
5
27.5
12
15.5


F2.46717332.G/A
G
11
19
−8
17
20
−3


F2.46717332.G/A
GG
6
19
−13
16
20
−4


F2R.76059983.A/G
G
12
16
−4
25.5
13.5
12


F2R.76059983.A/G
GG
7
16
−9
28
14.5
13.5


F2R.76049220.G/C
GG
11.5
22
−10.5
22
15
7


F3.94719939.A/G
GG
12.5
14
−1.5
20.5
16.5
4


F5.166258759.A/G
G
15.5
12.5
3
28
12
16


F5.166236816.T/C
T
10
15
−5
27
4.5
22.5


F5.166227911.A/G
A
15
12
3
27
5
22


F5.166269905.G/A
A
16
12
4
26
5
21


F7.112808416.A/G
AG
8
17.5
−9.5
15
13
2


F10.112840894.A/C
C
12
13
−1
26
12
14


F10.112825510.A/G
G
13
13
0
27
12
15


F10.112824083.T/C
T
13
13
0
26
12
14


SERPINE1.100363146.4G/5G
I
9
18
−9
12
14
−2


SERPINE1.100375050.G/A
A
12
13
−1
28
12
16


SERPINE1.100375050.G/A
AG
12
13
−1
28
12
16


SERPINA5.94123294.C/T
TT
15.5
13
2.5
28
13.5
14.5


IL6.22541812.C/G
C
11.5
9.5
2
0
13.5
−13.5


IL6.22539885.G/C
G
10
13
−3
12
0
12


IL10.203334802.C/A
A
11
9
2
27
0
27


IL12A.161198944.G/A
A
12
14.5
−2.5
28
12
16


IL12A.161198944.G/A
GA
12
15.5
−3.5
28
12
16


TNFRSF1A.6317783.T/C
CT
12
16
−4
27
1
26


VEGF.43848656.G/A
AA
10.5
14
−3.5
27.5
12
15.5


PROC.127890298.A/G
AG
15.5
13
2.5
28
12.5
15.5


PROC.127890457.T/C
CT
15.5
13
2.5
27.5
12
15.5


PROC.127892009.G/A
AG
16
12.5
3.5
27.5
12.5
15


PROC.127892092.C/T
CT
14
12
2
27.5
13.5
14


PROC.127894204.T/C
C
14
15
−1
25.5
12.5
13


PROC.127894204.T/C
CT
13
15.5
−2.5
27.5
13
14.5


PROC.127894608.G/A
AG
10
17
−7
28
12
16


PROC.127894645.C/T
CT
13
15
−2
28
12
16


PROC.127895556.G/A
A
10
15.5
−5.5
19
25
−6


PROC.127895556.G/A
AA
14
14.5
−0.5
22.5
15
7.5


PROC.127895783.G/A
AG
16
12
4
28
12
16


PROC.127895876.T/C
CT
10
18
−8
28
12
16


PROC.127899224.C/T
CT
13
16
−3
28
12.5
15.5


PROC.127901000.T/C
CT
16
13
3
28
12
16


PROC.127901799.C/T
CT
13
15
−2
28
12
16


PROC.127975205.T/C
C
12
15
−3
19
15
4


PROCR.33183348.T/C
C
5.5
14
−8.5
23.5
20
3.5


PROCR.33183694.C/A
A
5.5
15
−9.5
23.5
14
9.5


PROCR.33186524.A/G
G
5
14
−9
28
15
13


PROCR.33228215.A/G
AG
5
14
−9
28
14
14


PROCR.33228215.A/G
G
7
13
−6
28
14.5
13.5


AVERAGE



−2.7


12.2


DIFFERENCE









For any renal dysfunction (TABLE 27), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.9 days alive and free of any renal dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+10.1 days alive and free of any renal dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of any renal dysfunction.









TABLE 27







Difference in median days alive and free of any renal dysfunction between


improved response polymorphism (IRP) and non-IRP patients by treatment


(control or XIGRIS ™). Data is shown for several polymorphisms in


the coagulation, fibrinolysis and inflammation pathways in a cohort of


critically ill patients who had severe sepsis and no XIGRIS ™


contraindications. DIFFERENCE = median days alive and free of any


renal dysfunction of patients having the IRP minus median days alive and


free of any renal dysfunction of patients having the non-IRP allele/genotype,


within (1) Matched Controls and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients

















Median


Median



SNP
IRP
Median IRP
non-IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
8
9
−1
14
12
2


F2.46717332.G/A
G
6
12
−6
14.5
14.5
0


F2.46717332.G/A
GG
5
12
−7
15.5
14.5
1


F2R.76059983.A/G
G
8.5
9
−0.5
22
13
9


F2R.76059983.A/G
GG
5
10
−5
28
14
14


F2R.76049220.G/C
GG
6.5
14
−7.5
16.5
15
1.5


F3.94719939.A/G
GG
8.5
9
−0.5
20.5
14
6.5


F5.166258759.A/G
G
12.5
9
3.5
15
12
3


F5.166236816.T/C
T
8
11
−3
16.5
4.5
12


F5.166227911.A/G
A
12
7
5
16.5
5
11.5


F5.166269905.G/A
A
13
8
5
15
5
10


F7.112808416.A/G
AG
4
13
−9
14
13
1


F10.112840894.A/C
C
8
10
−2
18
12
6


F10.112825510.A/G
G
8
9
−1
27
12
15


F10.112824083.T/C
T
11
9
2
15
12
3


SERPINE1.100363146.4G/5G
I
5
13
−8
12
14
−2


SERPINE1.100375050.G/A
A
7
9
−2
28
12
16


SERPINE1.100375050.G/A
AG
12
9
3
28
12
16


SERPINA5.94123294.C/T
TT
13.5
8
5.5
28
13
15


IL6.22541812.C/G
C
7.5
4
3.5
0
13.5
−13.5


IL6.22539885.G/C
G
4
9
−5
12
0
12


IL10.203334802.C/A
A
10
6
4
27
0
27


IL12A.161198944.G/A
A
3.5
9
−5.5
28
12
16


IL12A.161198944.G/A
GA
3.5
9
−5.5
28
12
16


TNFRSF1A.6317783.T/C
CT
7.5
12
−4.5
18
1
17


VEGF.43848656.G/A
AA
6
9
−3
27.5
12
15.5


PROC.127890298.A/G
AG
8.5
10
−1.5
28
12
16


PROC.127890457.T/C
CT
8.5
10
−1.5
27.5
11
16.5


PROC.127892009.G/A
AG
9
9
0
27.5
12
15.5


PROC.127892092.C/T
CT
9.5
7
2.5
27.5
13
14.5


PROC.127894204.T/C
C
10.5
9
1.5
19
12
7


PROC.127894204.T/C
CT
9
10
−1
27.5
13
14.5


PROC.127894608.G/A
AG
8
11
−3
28
11
17


PROC.127894645.C/T
CT
9
10.5
−1.5
28
12
16


PROC.127895556.G/A
A
5
10
−5
19
14
5


PROC.127895556.G/A
AA
14
8.5
5.5
22.5
14
8.5


PROC.127895783.G/A
AG
9
7
2
28
10
18


PROC.127895876.T/C
CT
8
12
−4
28
12
16


PROC.127899224.C/T
CT
9.5
10
−0.5
28
12
16


PROC.127901000.T/C
CT
9
9
0
28
12
16


PROC.127901799.C/T
CT
9.5
9.5
0
28
11
17


PROC.127975205.T/C
C
7
10
−3
19
14
5


PROCR.33183348.T/C
C
3
9.5
−6.5
18.5
14
4.5


PROCR.33183694.C/A
A
3
10
−7
18.5
14
4.5


PROCR.33186524.A/G
G
3
10
−7
18
14
4


PROCR.33228215.A/G
AG
2
10
−8
18.5
14
4.5


PROCR.33228215.A/G
G
3
9
−6
23.5
14
9.5


AVERAGE



−1.9


10.1


DIFFERENCE









For days alive and free of renal support (TABLE 28), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−2 days alive and free of renal support). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+14.8 days alive and free of renal support). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of renal support.









TABLE 28







Difference in median days alive and free of renal support between improved


response polymorphism (IRP) and non-IRP patients by treatment (control or


XIGRIS ™). Data is shown for several polymorphisms in the coagulation,


fibrinolysis and inflammation pathways in a cohort of critically ill patients who


had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of renal support of patients


having the IRP minus median days alive and free of renal support of patients


having the non-IRP allele/genotype, within (1) Matched Controls and (2)


XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median


Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
13
15
−2
8
9.5
−1.5


F2.46717332.G/A
G
12
19
−7
10
14
−4


F2.46717332.G/A
GG
6
19
−13
19
12
7


F2R.76059983.A/G
G
9
15
−6
27.5
9.5
18


F2R.76059983.A/G
GG
7
15
−8
28
10
18


F2R.76049220.G/C
GG
11
22
−11
17.5
14
3.5


F3.94719939.A/G
GG
15.5
13
2.5
27
9.5
17.5


F5.166258759.A/G
G
21
12
9
28
9
19


F5.166236816.T/C
T
13
13
0
27
7
20


F5.166227911.A/G
A
21
9
12
27.5
7
20.5


F5.166269905.G/A
A
16
12
4
26
5
21


F7.112808416.A/G
AG
6
17
−11
5
14.5
−9.5


F10.112840894.A/C
C
11
13
−2
26
9
17


F10.112825510.A/G
G
13
13
0
28
5
23


F10.112824083.T/C
T
16
12
4
26
5
21


SERPINE1.100363146.4G/5G
I
8
16
−8
10
14
−4


SERPINE1.100375050.G/A
A
15
13
2
28
9
19


SERPINE1.100375050.G/A
AG
20
12
8
28
5
23


SERPINA5.94123294.C/T
TT
17.5
12
5.5
28
10
18


IL6.22541812.C/G
C
15
15
0
7.5
21.5
−14


IL6.22539885.G/C
G
5
15
−10
15
0
15


IL10.203334802.C/A
A
15
6
9
28
2
26


IL12A.161198944.G/A
A
4.5
14
−9.5
28
10
18


IL12A.161198944.G/A
GA
4.5
14.5
−10
28
8.5
19.5


TNFRSF1A.6317783.T/C
CT
12
15
−3
26
3.5
22.5


VEGF.43848656.G/A
AA
14
13
1
28
7
21


PROC.127890298.A/G
AG
15
13
2
28
7
21


PROC.127890457.T/C
CT
15
13
2
28
5.5
22.5


PROC.127892009.G/A
AG
15
12.5
2.5
28
7
21


PROC.127892092.C/T
CT
15
11
4
28
9
19


PROC.127894204.T/C
C
15
13
2
27
8
19


PROC.127894204.T/C
CT
13
15
−2
28
10
18


PROC.127894608.G/A
AG
10
15
−5
28
6.5
21.5


PROC.127894645.C/T
CT
12
15.5
−3.5
28
8
20


PROC.127895556.G/A
A
5.5
15
−9.5
26
10
16


PROC.127895556.G/A
AA
11
13
−2
27
10
17


PROC.127895783.G/A
AG
15
12
3
28
6
22


PROC.127895876.T/C
CT
9.5
16
−6.5
28
8
20


PROC.127899224.C/T
CT
13
15
−2
28
6.5
21.5


PROC.127901000.T/C
CT
15
12
3
28
8
20


PROC.127901799.C/T
CT
14
14.5
−0.5
28
6.5
21.5


PROC.127975205.T/C
C
11
14
−3
28
9
19


PROCR.33183348.T/C
C
5.5
13
−7.5
14.5
12
2.5


PROCR.33183694.C/A
A
5.5
13.5
−8
14.5
10
4.5


PROCR.33186524.A/G
G
15
13
2
1
14
−13


PROCR.33228215.A/G
AG
2
15
−13
21.5
10
11.5


PROCR.33228215.A/G
G
3
13
−10
28
10
18


AVERAGE



−2


14.8


DIFFERENCE









For coagulation dysfunction (as measured by the Brussels hematologic platelet count) (TABLE 29), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.6 days alive and free of coagulation dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+9 days alive and free of coagulation dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of coagulation dysfunction.









TABLE 29







Difference in median days alive and free of coagulation dysfunction (as


measured by the Brussels hematologic platelet count) between improved


response polymorphism (IRP) and non-IRP patients by treatment (control


or XIGRIS ™). Data is shown for several polymorphisms in the


coagulation, fibrinolysis and inflammation pathways in a cohort of critically


ill patients who had severe sepsis and no XIGRIS ™ contraindications.


DIFFERENCE = median days alive and free of coagulation dysfunction


of patients having the IRP minus median days alive and free of coagulation


dysfunction of patients having the non-IRP allele/genotype, within (1)


Matched Controls and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients

















Median


Median



SNP
IRP
Median IRP
non-IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
22
23
−1
27.5
20
7.5


F2.46717332.G/A
G
19
25
−6
20
25.5
−5.5


F2.46717332.G/A
GG
11
25
−14
16
25.5
−9.5


F2R.76059983.A/G
G
22
23.5
−1.5
27
20
7


F2R.76059983.A/G
GG
12
24
−12
24
21.5
2.5


F2R.76049220.G/C
GG
20
26
−6
22
23
−1


F3.94719939.A/G
GG
15
23
−8
27.5
17
10.5


F5.166258759.A/G
G
17.5
22
−4.5
28
20
8


F5.166236816.T/C
T
23
21
2
25.5
11
14.5


F5.166227911.A/G
A
25
20
5
24
16
8


F5.166269905.G/A
A
22
23
−1
24
20
4


F7.112808416.A/G
AG
13
25.5
−12.5
23
21
2


F10.112840894.A/C
C
21
23
−2
28
14
14


F10.112825510.A/G
G
16
23
−7
27
20
7


F10.112824083.T/C
T
22
23
−1
27
20
7


SERPINE1.100363146.4G/5G
I
20
24
−4
23
20
3


SERPINE1.100375050.G/A
A
23
22
1
27.5
17
10.5


SERPINE1.100375050.G/A
AG
23
22
1
27.5
12
15.5


SERPINA5.94123294.C/T
TT
23
22
1
17.5
23.5
−6


IL6.22541812.C/G
C
28
28
0
27.5
28
−0.5


IL6.22539885.G/C
G
20
20
0
28
27
1


IL10.203334802.C/A
A
20
15
5
28
27
1


IL12A.161198944.G/A
A
19.5
23
−3.5
28
14
14


IL12A.161198944.G/A
GA
19.5
23
−3.5
28
13
15


TNFRSF1A.6317783.T/C
CT
20.5
25
−4.5
27
12.5
14.5


VEGF.43848656.G/A
AA
21.5
24
−2.5
28
17
11


PROC.127890298.A/G
AG
24.5
19
5.5
28
11
17


PROC.127890457.T/C
CT
25.5
19
6.5
28
10
18


PROC.127892009.G/A
AG
24
18.5
54
28
11
17


PROC.127892092.C/T
CT
23
20
3
27.5
13
14.5


PROC.127894204.T/C
C
22.5
22.5
0
25.5
14
11.5


PROC.127894204.T/C
CT
22.5
22
0.5
27
11
16


PROC.127894608.G/A
AG
23
21
2
27.5
10
17.5


PROC.127894645.C/T
CT
23
20.5
2.5
27
10
17


PROC.127895556.G/A
A
17.5
23
−5.5
23
20
3


PROC.127895556.G/A
AA
15
23
−8
27.5
20
7.5


PROC.127895783.G/A
AG
24
18.5
5.5
28
10
18


PROC.127895876.T/C
CT
22.5
21
1.5
27
10
17


PROC.127899224.C/T
CT
23.5
21
2.5
27
11
16


PROC.127901000.T/C
CT
24
20
4
28
12
16


PROC.127901799.C/T
CT
23
21
2
28
10
18


PROC.127975205.T/C
C
23
22
1
27
20
7


PROCR.33183348.T/C
C
20.5
22.5
−2
27
20
7


PROCR.33183694.C/A
A
20.5
23
−2.5
27
20
7


PROCR.33186524.A/G
G
20
23
−3
27
20
7


PROCR.33228215.A/G
AG
15
23
−8
27.5
20
7.5


PROCR.33228215.A/G
G
15
23
−8
27
20
7


AVERAGE



−1.6


9


DIFFERENCE









For days alive and free of INR>1.5 (TABLE 30), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1.7 days alive and free of INR>1.5). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+5.4 days alive and free of INR>1.5). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of INR>1.5.









TABLE 30







Difference in median days alive and free of INR >1.5 between


improved response polymorphism (IRP) and non-IRP patients by


treatment (control or XIGRIS ™). Data is shown for several


polymorphisms in the coagulation, fibrinolysis and inflammation


pathways in a cohort of critically ill patients who had severe sepsis


and no XIGRIS ™ contraindications. DIFFERENCE =


median days alive and free of INR >1.5 of patients having the IRP


minus median days alive and free of INR >1.5 of patients having


the non-IRP allele/genotype, within (1) Matched Controls and


(2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients

















Median

Median
Median



SNP
IRP
Median IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
23
23
0
28
27.5
0.5


F2.46717332.G/A
G
15
25
−10
27.5
26.5
1


F2.46717332.G/A
GG
9
24
−15
28
26.5
1.5


F2R.76059983.A/G
G
20
23
−3
28
26.5
1.5


F2R.76059983.A/G
GG
9
23
−14
26
27
−1


F2R.76049220.G/C
GG
17.5
26
−8.5
27
27
0


F3.94719939.A/G
GG
18
23
−5
28
26
2


F5.166258759.A/G
G
26.5
22
4.5
28
27
1


F5.166236816.T/C
T
23
22
1
28
16.5
11.5


F5.166227911.A/G
A
25
19
6
28
27.5
0.5


F5.166269905.G/A
A
26
22
4
28
27
1


F7.112808416.A/G
AG
10
26
−16
28
27
1


F10.112840894.A/C
C
18
23
−5
28
28
0


F10.112825510.A/G
G
12
25
−13
28
28
0


F10.112824083.T/C
T
21
23
−2
28
28
0


SERPINE1.100363146.4G/5G
I
16
25
−9
28
27
1


SERPINE1.100375050.G/A
A
23
22
1
28
27.5
0.5


SERPINE1.100375050.G/A
AG
23
21
2
28
27
1


SERPINA5.94123294.C/T
TT
20.5
22
−1.5
28
26
2


IL6.22541812.C/G
C
26
26.5
−0.5
28
28
0


IL6.22539885.G/C
G
19
26
−7
28
28
0


IL10.203334802.C/A
A
15
16
−1
28
28
0


IL12A.161198944.G/A
A
20
23
−3
28
27
1


IL12A.161198944.G/A
GA
20
23
−3
28
27
1


TNFRSF1A.6317783.T/C
CT
21.5
25
−3.5
28
16.5
11.5


VEGF.43848656.G/A
AA
22
23
−1
28
28
0


PROC.127890298.A/G
AG
23.5
19
4.5
28
12
16


PROC.127890457.T/C
CT
24.5
19
5.5
28
9
19


PROC.127892009.G/A
AG
22
18.5
3.5
28
12
16


PROC.127892092.C/T
CT
22.5
21
1.5
28
20.5
7.5


PROC.127894204.T/C
C
21.5
21
0.5
28
14
14


PROC.127894204.T/C
CT
20.5
22.5
−2
27.5
18.5
9


PROC.127894608.G/A
AG
21
22
−1
28
9
19


PROC.127894645.C/T
CT
22.5
20
2.5
28
10
18


lPROC.127895556.G/A
A
21.5
21
0.5
28
26
2


PROC.127895556.G/A
AA
23
21
2
28
26
2


PROC.127895783.G/A
AG
23
17.5
5.5
28
10
18


PROC.127895876.T/C
CT
20.5
21
−0.5
28
10
18


PROC.127899224.C/T
CT
22
21
1
28
12
16


PROC.127901000.T/C
CT
24
19
5
28
14
14


PROC.127901799.C/T
CT
22
21
1
28
9
19


PROC.127975205.T/C
C
21
21
0
28
26
2


PROCR.33183348.T/C
C
21.5
21
0.5
28
27
1


PROCR.33183694.C/A
A
21.5
22
−0.5
28
26
2


PROCR.33186524.A/G
G
21
21
0
28
26
2


PROCR.33228215.A/G
AG
16
23
−7
28
26
2


PROCR.33228215.A/G
G
21
22
−1
28
27
1


AVERAGE DIFFERENCE



−1.7


5.4









For neurological dysfunction (TABLE 31), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−2.1 days alive and free of neurological dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+7.3 days alive and free of neurological dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of neurological dysfunction.









TABLE 31







Difference in median days alive and free of neurological dysfunction


between improved response polymorphism (IRP) and non-IRP


patients by treatment (control or XIGRIS ™). Data is shown for


several polymorphisms in the coagulation, fibrinolysis and inflammation


pathways in a cohort of critically ill patients who had severe sepsis and


no XIGRIS ™ contraindications. DIFFERENCE = median


days alive and free of neurological dysfunction of patients having the


IRP minus median days alive and free of neurological dysfunction of


patients having the non-IRP allele/genotype, within (1) Matched Controls


and (2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median


Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
18
19
−1
27
19
8


F2.46717332.G/A
G
14
22
−8
23
23
0


F2.46717332.G/A
GG
8
21
−13
23.5
23
0.5


F2R.76059983.A/G
G
15
19
−4
25
22.5
2.5


F2R.76059983.A/G
GG
8
20
−12
25
23
2


F2R.76049220.G/C
GG
15
22
−7
24.5
22
2.5


F3.94719939.A/G
GG
17
18
−1
24.5
22.5
2


F5.166258759.A/G
G
22
16
6
26
19
7


F5.166236816.T/C
T
18
16
2
25
3.5
21.5


F5.166227911.A/G
A
19
15
4
24
5
19


F5.166269905.G/A
A
23
15
8
25
19
6


F7.112808416.A/G
AG
10
23
−13
23
14
9


F10.112840894.A/C
C
14
20
−6
26
22
4


F10.112825510.A/G
G
11
20
−9
25
22
3


F10.112824083.T/C
T
14
20
−6
23
22
1


SERPINE1.100363146.4G/5G
I
14
21
−7
23
22
1


SERPINE1.100375050.G/A
A
14
19
−5
25.5
20.5
5


SERPINE1.100375050.G/A
AG
22
16
6
25.5
9
16.5


SERPINA5.94123294.C/T
TT
20.5
16
4.5
24.5
22.5
2


IL6.22541812.C/G
C
21.5
22.5
−1
26
27
−1


IL6.22539885.G/C
G
16
15
1
26
26
0


IL10.203334802.C/A
A
15
15
0
26
25
1


IL12A.161198944.G/A
A
18
19
−1
25
22
3


IL12A.161198944.G/A
GA
18
19
−1
25
14
11


TNFRSF1A.6317783.T/C
CT
14.5
22
−7.5
23
15
8


VEGF.43848656.G/A
AA
17.5
19
−1.5
26.5
20.5
6


PROC.127890298.A/G
AG
20.5
16
4.5
25
10
15


PROC.127890457.T/C
CT
20.5
16
4.5
25
8
17


PROC.127892009.G/A
AG
20
15.5
4.5
25
10
15


PROC.127892092.C/T
CT
17
17
0
24.5
15.5
9


PROC.127894204.T/C
C
18
19
−1
24
11
13


PROC.127894204.T/C
CT
15
19
−4
24.5
15
9.5


PROC.127894608.G/A
AG
15
18
−3
25
6.5
18.5


PROC.127894645.C/T
CT
19
16
3
25
7
18


PROC.127895556.G/A
A
10
19.5
−9.5
23
23
0


PROC.127895556.G/A
AA
10
19
−9
21.5
23
−1.5


PROC.127895783.G/A
AG
21
15.5
5.5
25
9
16


PROC.127895876.T/C
CT
15
18
−3
25
7
18


PROC.127899224.C/T
CT
19
16
3
25
8
17


PROC.127901000.T/C
CT
21
16
5
25
11
14


PROC.127901799.C/T
CT
20
16
4
25
6.5
18.5


PROC.127975205.T/C
C
16
18
−2
24
23
1


PROCR.33183348.T/C
C
10
19
−9
24
23
1


PROCR.33183694.C/A
A
10
19.5
−9.5
24
23
1


PROCR.33186524.A/G
G
14
18
−4
24
23
1


PROCR.33228215.A/G
AG
14
19
−5
25
23
2


PROCR.33228215.A/G
G
16
18
−2
24.5
23
1.5


AVERAGE



−2.1


7.3


DIFFERENCE









For acute hepatic dysfunction (TABLE 32), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−2.3 days alive and free of acute hepatic dysfunction). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+8 days alive and free of acute hepatic dysfunction). Clearly, the IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of acute hepatic dysfunction.









TABLE 32







Difference in median days alive and free of acute hepatic dysfunction


between improved response polymorphism (IRP) and non-IRP patients


by treatment (control or XIGRIS ™). Data is shown for several


polymorphisms in the coagulation, fibrinolysis and inflammation


pathways in a cohort of critically ill patients who had severe sepsis and


no XIGRIS ™ contraindications. DIFFERENCE = median days


alive and free of acute hepatic dysfunction of patients having the IRP


minus median days alive and free of acute hepatic dysfunction of patients


having the non-IRP allele/genotype, within (1) Matched Controls and (2)


XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median

Median
Median



SNP
IRP
IRP
non-IRP
DIFFERENCE
IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
28
28
0
28
19
9


F2.46717332.G/A
G
20
28
−8
25.5
26
−0.5


F2.46717332.G/A
GG
13
28
−15
19.5
26
−6.5


F2R.76059983.A/G
G
23.5
28
−4.5
28
25.5
2.5


F2R.76059983.A/G
GG
15
28
−13
28
25.5
2.5


F2R.76049220.G/C
GG
22.5
28
−5.5
27.5
24
3.5


F3.94719939.A/G
GG
23.5
28
−4.5
28
16.5
11.5


F5.166258759.A/G
G
28
26
2
28
19
9


F5.166236816.T/C
T
28
26
2
28
8.5
19.5


F5.166227911.A/G
A
28
20
8
28
12
16


F5.166269905.G/A
A
28
26
2
27
19
8


F7.112808416.A/G
AG
15
28
−13
23
25
−2


F10.112840894.A/C
C
23
28
−5
28
19
9


F10.112825510.A/G
G
17
28
−11
24
24
0


F10.112824083.T/C
T
22
28
−6
26
24
2


SERPINE1.100363146.4G/5G
I
21
28
−7
28
19
9


SERPINE1.100375050.G/A
A
26
26
0
28
21
7


SERPINE1.100375050.G/A
AG
28
26
2
28
14
14


SERPINA5.94123294.C/T
TT
28
26
2
28
16.5
11.5


IL6.22541812.C/G
C
28
23.5
4.5
28
27
1


IL6.22539885.G/C
G
19
17
2
27
28
−1


IL10.203334802.C/A
A
17
18
−1
26
23
3


IL12A.161198944.G/A
A
20
28
−8
28
23
5


IL12A.161198944.G/A
GA
20
28
−8
28
16.5
11.5


TNFRSF1A.6317783.T/C
CT
22.5
28
−5.5
27
5
22


VEGF.43848656.G/A
AA
20
28
−8
27
21
6


PROC.127890298.A/G
AG
28
23
5
28
11
17


PROC.127890457.T/C
CT
28
23
5
28
9
19


PROC.127892009.G/A
AG
28
22
6
28
11
17


PROC.127892092.C/T
CT
24.5
27
−2.5
28
16.5
11.5


PROC.127894204.T/C
C
28
25
3
28
13
15


PROC.127894204.T/C
CT
25
28
−3
28
16.5
11.5


PROC.127894608.G/A
AG
26
28
−2
28
11
17


PROC.127894645.C/T
CT
24.5
27
−2.5
28
12
16


PROC.127895556.G/A
A
19
28
−9
19
28
−9


PROC.127895556.G/A
AA
14
28
−14
23
28
−5


PROC.127895783.G/A
AG
28
22
6
28
10
18


PROC.127895876.T/C
CT
24.5
28
−3.5
28
12
16


PROC.127899224.C/T
CT
24.5
28
−3.5
28
13
15


PROC.127901000.T/C
CT
28
23
5
28
12
16


PROC.127901799.C/T
CT
27
27
0
28
11
17


PROC.127975205.T/C
C
28
26
2
27
24
3


PROCR.33183348.T/C
C
28
26
2
27.5
27.5
0


PROCR.33183694.C/A
A
28
28
0
27.5
23.5
4


PROCR.33186524.A/G
G
28
26
2
28
24
4


PROCR.33228215.A/G
AG
20
28
−8
25.5
27
−1.5


PROCR.33228215.A/G
G
28
26
2
28
26.5
1.5


AVERAGE



−2.3


8


DIFFERENCE









For days alive and free of ¾ SIRS criteria (TABLE 33), on average matched-control patients having the IRP allele/genotype do worse than patients having alleles/genotypes other than the IRP (−1 days alive and free of ¾ SIRS criteria). In contrast, on average, XIGRIS™-treated patients having the IRP allele/genotype do better than patients having alleles/genotypes other than the IRP (+7.6 days alive and free of ¾ SIRS criteria). The IRP patients benefit the most from XIGRIS™ treatment in terms of improvements of days alive and free of ¾ SIRS criteria.









TABLE 33







Difference in median days alive and free of ¾ SIRS criteria


between improved response polymorphism (IRP) and non-IRP patients


by treatment (control or XIGRIS ™). Data is shown for several


polymorphisms in the coagulation, fibrinolysis and inflammation


pathways in a cohort of critically ill patients who had severe sepsis and


no XIGRIS ™ contraindications. DIFFERENCE = median


days alive and free of ¾ SIRS criteria of patients having the IRP


minus median days alive and free of ¾ SIRS criteria of patients


having the non-IRP allele/genotype, within (1) Matched Controls and


(2) XIGRIS ™-Treated Patients.










Matched Controls
XIGRIS ™-Treated Patients
















Median
Median


Median



SNP
IRP
non-IRP
IRP
DIFFERENCE
Median IRP
non-IRP
DIFFERENCE

















FGB.155840914.G/A
A
10
9
1
18
2
16


F2.46717332.G/A
G
6
12
−6
5
2
3


F2.46717332.G/A
GG
3
12
−9
4.5
3
1.5


F2R.76059983.A/G
G
9
9
0
8
2.5
5.5


F2R.76059983.A/G
GG
8
9
−1
8
3.5
4.5


F2R.76049220.G/C
GG
9
8
1
6
2
4


F3.94719939.A/G
GG
5.5
9
−3.5
22
2
20


F5.166258759.A/G
G
9.5
8
1.5
20
4
16


F5.166236816.T/C
T
9
9
0
19.5
1
18.5


F5.166227911.A/G
A
10
7
3
19.5
1.5
18


F5.166269905.G/A
A
10
8
2
7
2
5


F7.112808416.A/G
AG
4
12
−8
4
4
0


F10.112840894.A/C
C
6
9
−3
20
2
18


F10.112825510.A/G
G
5
10
−5
4
7
−3


F10.112824083.T/C
T
8
9
−1
2
11
−9


SERPINE1.100363146.4G/5G
I
6
9
−3
7
4
3


SERPINE1.100375050.G/A
A
7
9
−2
21
2
19


SERPINE1.100375050.G/A
AG
10
8
2
21
1
20


SERPINA5.94123294.C/T
TT
8
9
−1
5
3
2


IL6.22541812.C/G
C
9
11
−2
26
21
5


IL6.22539885.G/C
G
5
9
−4
16
26
−10


IL10.203334802.C/A
A
5
5
0
16
20
−4


IL12A.161198944.G/A
A
8.5
9
−0.5
16
4
12


IL12A.161198944.G/A
GA
8.5
9
−0.5
16
3
13


TNFRSF1A.6317783.T/C
CT
9
10
−1
4
5.5
−1.5


VEGF.43848656.G/A
AA
6.5
10
−3.5
20
3
17


PROC.127890298.A/G
AG
12
6
6
20
2
18


PROC.127890457.T/C
CT
12
6
6
20.5
2
18.5


PROC.127892009.G/A
AG
12
6
6
20.5
2
18.5


PROC.127892092.C/T
CT
8
8.5
−0.5
7.5
3
4.5


PROC.127894204.T/C
C
9
7.5
1.5
6
2
4


PROC.127894204.T/C
CT
9
7.5
1.5
5.5
3
2.5


PROC.127894608.G/A
AG
9
9
0
16
2
14


PROC.127894645.C/T
CT
8.5
9
−0.5
11
2
9


PROC.127895556.G/A
A
5
9
−4
4
6
−2


PROC.127895556.G/A
AA
4
9
−5
5
3
2


PROC.127895783.G/A
AG
12
6
6
20
2
18


PROC.127895876.T/C
CT
7.5
9
−1.5
11
2
9


PROC.127899224.C/T
CT
8.5
9
−0.5
11
2
9


PROC.127901000.T/C
CT
12
6
6
21
2
19


PROC.127901799.C/T
CT
8.5
9
−0.5
8
2
6


PROC.127975205.T/C
C
9
9
0
6
2
4


PROCR.33183348.T/C
C
3.5
9
−5.5
4.5
5
−0.5


PROCR.33183694.C/A
A
4
9
−5
4.5
2
2.5


PROCR.33186524.A/G
G
4
9
−5
3
4
−1


PROCR.33228215.A/G
AG
4
9
−5
11
3
8


PROCR.33228215.A/G
G
7
9
−2
5
6
−1


AVERAGE



−1


7.6


DIFFERENCE









Overall, there is marked improvement in days alive and free of different organ dysfunctions for the IRP individuals compared to the non-IRP individuals, but importantly, this improvement is only seen when the individuals are treated with XIGRIS™.


We report that polymorphisms within fibrinogen B beta polypeptide (FGB), coagulation factor II (F2), coagulation factor II receptor (F2R), coagulation factor III (F3), coagulation factor V (F5), coagulation factor VII (F7), coagulation factor X (F10), plasminogen activator inhibitor type 1 (SERPINE1), protein C inhibitor (SERPINA5), interleukin 6 (IL6), interleukin 10 (IL10), interleukin 12A (IL12A), tumor necrosis factor alpha receptor-1 (TNFRSF1A), vascular endothelial growth factor (VEGF), protein C (PROC) and protein C receptor (PROCR) genes predict enhanced response to XIGRIS™ treatment.


Linkage Disequilibrium Analysis

Polymorphisms found to be in linkage disequilibrium with the polymorphisms identified as having an improved response association with XIGRIS™ are listed in TABLE 1B. Polymorphisms in linkage disequilibrium with those listed in TABLE 1A were identified using the LD-select algorithm which analyzes patterns of linkage disequilibrium between polymorphic SNPs across all gene regions of interest (CARLSON C S. et al. Am. J. Hum. Genet. (2004) 74:106-120), r2≧0.5/minor allele frequency (MAF)=0.05. The binning algorithm used in LD-select identified all SNPs that exceed the r2 threshold of ≧0.5 with our IRP SNPs. A minimum minor allele frequency of 0.05 was used throughout the analysis.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of skill in the art in light of the teachings of this invention that changes and modification may be made thereto without departing from the spirit or scope of the appended claims.

Claims
  • 1. A method for identifying a subject having an improved response polymorphism in a protein C pathway-associated gene, the method comprising determining a genotype of said subject at one or more polymorphic sites in the subject's protein C pathway-associated gene sequences or a combination thereof, wherein said genotype is indicative of the subject's response to administration of activated protein C or protein C-like compound.
  • 2. The method of claim 1, wherein the polymorphic site is rs1800791; rs3136516; rs253073; rs2227750; rs1361600; rs9332575; rs4656687; rs9332630; rs9332546; rs2774030; rs2026160; rs3211719; rs3093261; rs1799889; rs1050813; rs2069972; rs2069840; rs1800795; rs1800872; rs2243154; rs4149577; rs1413711; rs2069895; rs2069898; rs2069904; rs1799808; rs2069910; rs2069915; rs2069916; rs2069918; rs2069919; rs2069920; rs2069924; rs5937; rs2069931; rs777556; rs1033797; rs1033799; rs2295888; rs867186; or one or more polymorphic sites in linkage disequilibrium (LD) with any of said sites.
  • 3. The method of claim 1, wherein the improved response polymorphism is rs1800791A; rs3136516G; rs3136516GG; rs253073G; rs253073GG; rs2227750GG; rs1361600GG; rs9332575G; rs4656687T; rs9332630A; rs9332546A; rs2774030AG; rs2026160C; rs3211719G; rs3093261T; rs1799889G; rs1050813A; rs1050813AG; rs2069972TT; rs2069840C; rs1800795G; rs1800872A; rs2243154A; rs2243154AG; rs4149577CT; rs1413711AA; rs2069895AG; rs2069898CT; rs2069904AG; rs1799808CT; rs2069910C; rs2069910CT; rs2069915AG; rs2069916CT; rs2069918A; rs2069918AA; rs2069919AG; rs2069920CT; rs2069924CT; rs5937CT; rs2069931CT; rs777556C; rs1033797C; rs1033799A; rs2295888G; rs867186AG; rs867186G; or one or more polymorphic sites in LD with any of said sites.
  • 4. The method of claim 2, wherein the one or more polymorphic sites in LD is selected from the polymorphic sites listed in TABLE 1B.
  • 5. The method of claim 1, further comprising comparing the genotype so determined with known genotypes which are known to be indicative of the subject's response to administration of activated protein C or a protein C like compound.
  • 6. The method of claim 1, further comprising obtaining protein C pathway associated gene sequence for the subject.
  • 7. The method of claim 1, wherein the genotype is determined using a nucleic acid sample from the subject.
  • 8. The method of claim 7, further comprising obtaining the nucleic acid sample from the subject.
  • 9. The method of claim 1, wherein said genotype is determined using one or more of the following techniques: (a) restriction fragment length analysis;(b) sequencing;(c) micro-sequencing assay;(d) hybridization;(e) invader assay;(f) gene chip hybridization assays;(g) oligonucleotide ligation assay;(h) ligation rolling circle amplification;(i) 5′ nuclease assay;(j) polymerase proofreading methods;(k) allele specific PCR;(l) matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy;(m) ligase chain reaction assay;(n) enzyme-amplified electronic transduction;(o) single base pair extension assay; and(p) reading sequence data.
  • 10. The method of claim 1, wherein the subject is critically ill with an inflammatory condition.
  • 11. The method of claim 10, wherein the inflammatory condition is selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, aspiration pneumonitis, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for a subject undergoing major surgery or dialysis or who is otherwise immunocompromised, a subject on immunosuppressive agents, a subject with HIV/AIDS, a subject with suspected endocarditis, a subject with fever, a subject with fever of unknown origin, a subject with cystic fibrosis, a subject with diabetes mellitus, a subject with chronic renal failure, acute renal failure, oliguria, acute renal dysfunction, glomerulo-nephritis, interstitial-nephritis, or acute tubular necrosis (ATN), a subject with bronchiectasis, a subject with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, a subject with febrile neutropenia, a subject with meningitis, a subject with septic arthritis, a subject with urinary tract infection, a subject with necrotizing fasciitis, a subject with other suspected Group A streptococcus infection, a splenectomized subject a subject with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, pre-eclampsia, eclampsia, HELP syndrome, mycobacterial tuberculosis, Pneumocystis carinii pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhagic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, progressive systemic sclerosis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.
  • 12. The method of claim 10, wherein the inflammatory condition is SIRS; sepsis; or septic shock.
  • 13. The method of claim 1, further comprising selective administration of activated protein C or protein C like compound, wherein a subject has one or more improved response polymorphisms in the subject's protein C pathway-associated gene sequences.
  • 14. The method of claim 1, further comprising selectively not administering activated protein C or protein C like compound, wherein a subject does not have one or more improved response polymorphisms in the subject's protein C pathway associated gene sequences.
  • 15. A method for selecting a group of subjects for determining the efficacy of a candidate drug known or suspected of being useful for the treatment of an inflammatory condition, the method comprising (a) determining a genotype at one or more polymorphic sites in a protein C pathway-associated gene sequence for each subject, wherein said genotype is indicative of the subject's response to the candidate drug, and(b) sorting subjects based on their genotype.
  • 16. The method of claim 15 further comprising, administering the candidate drug to the subjects or a subset of subjects and determining each subject's ability to recover from the inflammatory condition.
  • 17. The method of claim 16, further comprising comparing the subject's response to the candidate drug based on genotype of the subject.
  • 18. (canceled)
  • 19. A method of selecting a subject expected to be responsive to treatment of an inflammatory condition by administration of an activated protein C or protein C-like compound, comprising identifying a subject who has an improved response polymorphism in his or her protein C pathway-associated gene sequence, wherein a subject so identified is selected for treatment of the inflammatory condition with the activated protein C or protein C-like compound.
  • 20.-21. (canceled)
  • 22. The method of claim 19, further comprising determining the subject's APACHE II score as an assessment of subject risk.
  • 23. The method of claim 19, further comprising determining the number of organ system failures for the subject as an assessment of subject risk.
  • 24. The method of claim 22, wherein the subject's APACHE II score of >25 is indicative of an increased risk.
  • 25. The method of claim 23, wherein 2 or more organ system failures are indicative of increased subject risk.
  • 26. The method of claim 19, wherein the inflammatory condition is selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, aspiration pneumonitis, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for a subject undergoing major surgery or dialysis or, subjects who is otherwise immunocompromised, a subject on immunosuppressive agents, a subject with HIV/AIDS, a subject with suspected endocarditis, a subject with fever, a subject with fever of unknown origin, a subject with cystic fibrosis, a subject with diabetes mellitus, a subject with chronic renal failure, acute renal failure, oliguria, acute renal dysfunction, glomerulo-nephritis, interstitial-nephritis, or acute tubular necrosis (ATN), a subject with bronchiectasis, a subject with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, a subject with febrile neutropenia, a subject with meningitis, a subject with septic arthritis, a subject with urinary tract infection, a subject with necrotizing fasciitis, a subject with other suspected Group A streptococcus infection, a splenectomized subject, a subject with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, pre-eclampsia, eclampsia, HELP syndrome, mycobacterial tuberculosis, Pneumocystic Pneumocystis carinii pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhagic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, progressive systemic sclerosis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.
  • 27. The method of claim 19, wherein the inflammatory condition is systemic inflammatory response syndrome.
  • 28. The method of claim 19, wherein the polymorphic site is selected from one or more of the following: rs1800791; rs3136516; rs253073; rs2227750; rs1361600; rs9332575; rs4656687; rs9332630; rs9332546; rs2774030; rs2026160; rs3211719; rs3093261; rs1799889; rs1050813; rs2069972; rs2069840; rs1800795; rs1800872; rs2243154; rs4149577; rs1413711; rs2069895; rs2069898; rs2069904; rs1799808; rs2069910; rs2069915; rs2069916; rs2069918; rs2069919; rs2069920; rs2069924; rs5937; rs2069931; rs777556; rs1033797; rs1033799; rs2295888; rs867186; or one or more polymorphic sites in LD with any of said sites.
  • 29. The method of claim 19, wherein the improved response polymorphism is rs1800791A; rs3136516G; rs3136516GG; rs253073G; rs253073GG; rs2227750GG; rs1361600GG; rs9332575G; rs4656687T; rs9332630A; rs9332546A; rs2774030AG; rs2026160C; rs3211719G; rs3093261T; rs1799889G; rs1050813A; rs1050813AG; rs2069972TT; rs2069840C; rs1800795G; rs1800872A; rs2243154A; rs2243154AG; rs4149577CT; rs1413711AA; rs2069895AG; rs2069898CT; rs2069904AG; rs1799808CT; rs2069910C; rs2069910CT; rs2069915AG; rs2069916CT; rs2069918A; rs2069918AA; rs2069919AG; rs2069920CT; rs2069924CT; rs5937CT; rs2069931CT; rs777556C; rs1033797C; rs1033799A; rs2295888G; rs867186AG; or rs867186G; or one or more polymorphic sites in LD with any of said sites.
  • 30. The method of claim 19, wherein the one or more polymorphic sites in linkage disequilibrium is selected from the polymorphic sites listed in TABLE 1B.
  • 31. The method of claim 19, wherein the activated protein C or protein C like compound is drotecogin alfa activated.
  • 32. Two or more oligonucleotides or peptide nucleic acids of about 10 to about 400 nucleotides that hybridize specifically to a sequence contained in a human target sequence consisting of a subject's protein C pathway-associated gene sequence, a complementary sequence of the target sequence or RNA equivalent of the target sequence and wherein the oligonucleotides or peptide nucleic acids are operable in determining the presence or absence of two or more improved response polymorphisms in their protein C pathway-associated gene sequence selected from rs1800791; rs3136516; rs253073; rs2227750; rs1361600; rs9332575; rs4656687; rs9332630; rs9332546; rs2774030; rs2026160; rs3211719; rs3093261; rs1799889; rs1050813; rs2069972; rs2069840; rs1800795; rs1800872; rs2243154; rs4149577; rs1413711; rs2069895; rs2069898; rs2069904; rs1799808; rs2069910; rs2069915; rs2069916; rs2069918; rs2069919; rs2069920; rs2069924; rs5937; rs2069931; rs777556; rs1033797; rs1033799; rs2295888; rs867186 or one or more polymorphic sites in linkage disequilibrium with any of said sites.
  • 33. The oligonucleotides or peptide nucleic acids of claim 32, wherein the improved response polymorphism is rs1800791A; rs3136516G; rs3136516GG; rs253073G; rs253073GG; rs2227750GG; rs1361600GG; rs9332575G; rs4656687T; rs9332630A; rs9332546A; rs2774030AG; rs2026160C; rs3211719G; rs3093261T; rs1799889G; rs1050813A; rs1050813AG; rs2069972TT; rs2069840C; rs1800795G; rs1800872A; rs2243154A; rs2243154AG; rs4149577CT; rs1413711AA; rs2069895AG; rs2069898CT; rs2069904AG; rs1799808CT; rs2069910C; rs2069910CT; rs2069915AG; rs2069916CT; rs2069918A; rs2069918AA; rs2069919AG; rs2069920CT; rs2069924CT; rs5937CT; rs2069931CT; rs777556C; rs1033797C; rs1033799A; rs2295888G; rs867186AG; rs867186G; or one or more polymorphic sites in LD with any of said sites.
  • 34. The oligonucleotides or peptide nucleic acids of claim 32, wherein the one or more polymorphic sites in LD is selected from the polymorphic sites listed in TABLE 1B.
  • 35. Two or more oligonucleotides or peptide nucleic acids selected from the group consisting of: (a) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:1 having a G at position 86 but not to a nucleic acid molecule comprising SEQ ID NO:1 having an A at position 86;(b) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:1 having an A at position 86 but not to a nucleic acid molecule comprising SEQ ID NO:1 having a G at position 86;(c) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:2 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:2 having an A at position 201;(d) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:2 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:2 having a G at position 201;(e) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:3 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:3 having a G at position 201;(f) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:3 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:3 having an A at position 201;(g) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:4 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:4 having a C at position 201;(h) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:4 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:4 having a G at position 201;(i) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:5 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:5 having a G at position 201;(j) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:5 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:5 having an A at position 201;(k) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:6 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:6 having a G at position 201;(l) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:6 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:6 having an A at position 201;(m) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:7 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:7 having a T at position 201;(n) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:7 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:7 having a C at position 201;(o) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:8 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:8 having a G at position 201;(p) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:8 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:8 having an A at position 201;(q) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:9 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:9 having an A at position 201;(r) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:9 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:9 having a G at position 201;(s) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:10 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:10 having a G at position 201;(t) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:10 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:10 having an A at position 201;(u) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:11 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:11 having a C at position 201;(v) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:11 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:11 having an A at position 201;(w) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:12 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:12 having a G at position 201;(x) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:12 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:12 having an A at position 201;(y) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:13 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:13 having a C at position 201;(z) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:13 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:13 having a T at position 201(aa) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:14 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:14 having a deletion at position 201;(bb) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:14 having an deletion at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:14 having a G at position 201;(cc) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:15 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:15 having an A at position 201(dd) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:15 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:15 having a G at position 201;(ee) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:16 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:16 having a T at position 201;(ff) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:16 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:16 having a C at position 201;(gg) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:17 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:17 having a G at position 201;(hh) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:17 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:17 having a C at position 201;(ii) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:18 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:18 having a C at position 201;(jj) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:18 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:18 having a G at position 201;(kk) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:19 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:19 having an A at position 201;(ll) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:19 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:19 having a C at position 201;(mm) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:20 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:20 having an A at position 201;(nn) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:20 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:20 having a G at position 201;(oo) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:21 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:21 having a C at position 201;(pp) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:21 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:21 having a T at position 201;(qq) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:22 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:22 having a G at position 201;(rr) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:22 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:22 having an A at position 201;(ss) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:23 having an A at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:23 having a G at position 51;(tt) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:23 having a G at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:23 having an A at position 51;(uu) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:24 having a C at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:24 having a T at position 51;(vv) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:24 having a T at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:24 having a C at position 51;(ww) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:25 having an A at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:25 having a G at position 51;(xx) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:25 having a G at position 51 but not to a nucleic acid molecule comprising SEQ ID NO:25 having an A at position 51;(yy) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:26 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:26 having a T at position 201;(zz) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:26 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:26 having an C at position 201;(aaa) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:27 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:27 having a T at position 201;(bbb) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:27 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:27 having a C at position 201;(ccc) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:28 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:28 having a G at position 201;(ddd) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:28 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:28 having an A at position 201;(eee) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:29 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:29 having a T at position 201;(fff) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:29 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:29 having a C at position 201;(ggg) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:30 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:30 having a G at position 201;(hhh) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:30 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:30 having an A at position 201;(iii) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:31 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:31 having a G at position 201;(jjj) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:31 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:31 having an A at position 201;(kkk) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:32 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:32 having a T at position 201;(lll) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:32 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:32 having a C at position 201;(mmm) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:33 having a C at position 501 but not to a nucleic acid molecule comprising SEQ ID NO:33 having a T at position 501;(nnn) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:33 having a T at position 501 but not to a nucleic acid molecule comprising SEQ ID NO:33 having a C at position 501;(ooo) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:34 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:34 having a T at position 201;(ppp) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:34 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:34 having a C at position 201;(qqq) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:35 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:35 having a T at position 201;(rrr) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:35 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:35 having a C at position 201;(sss) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:36 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:36 having a T at position 201;(ttt) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:36 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:36 having a C at position 201;(uuu) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:37 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:37 having a T at position 201;(vvv) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:37 having a T at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:37 having a C at position 201;(www) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:38 having a C at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:38 having an A at position 201;(xxx) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:38 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:38 having a C at position 201;(yyy) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:39 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:39 having a G at position 201;(zzz) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:39 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:39 having an A at position 201;(aaaa) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:40 having an A at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:40 having a G at position 201;(bbbb) an oligonucleotide or peptide nucleic acid that hybridizes under high stringency conditions to a nucleic acid molecule comprising SEQ ID NO:40 having a G at position 201 but not to a nucleic acid molecule comprising SEQ ID NO:40 having an A at position 201;(cccc) an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to a nucleic acid molecule comprising a first allele for a given polymorphism selected from the polymorphisms listed in TABLE 1D but not capable of hybridizing under high stringency conditions to a nucleic acid molecule comprising a second allele for the given polymorphism selected from the polymorphisms listed in TABLE 1D; and(dddd) an oligonucleotide or peptide nucleic acid capable of hybridizing under high stringency conditions to a nucleic acid molecule comprising the second allele for a given polymorphism selected from the polymorphisms listed in TABLE 1D but not capable of hybridizing under high stringency conditions to a nucleic acid molecule comprising the first allele for the given polymorphism selected from the polymorphisms listed in TABLE 1D.
  • 36. An array of oligonucleotides or peptide nucleic acids bound to a solid support, the array comprising two or more of the oligonucleotides or peptide nucleic acids according to claim 35.
  • 37. A composition comprising an addressable collection of two or more oligonucleotides or peptide nucleic acids, which oligonucleotides or peptide nucleic acids consist essentially of two or more nucleic acid molecules set out in SEQ ID NO:1-243 or complements, fragments, variants, or analogues thereof.
  • 38. The oligonucleotides or peptide nucleic acids of claim 35, further comprising one or more of the following: a detectable label; a quencher; a mobility modifier; a contiguous non-target sequence situated 5′ or 3′ to the target sequence or 5′ and 3′ to the target sequence.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CA07/00054 1/12/2007 WO 00 8/30/2010
Provisional Applications (2)
Number Date Country
60758193 Jan 2006 US
60783021 Mar 2006 US