PROTEINS COMPRISING CD3 ANTIGEN BINDING DOMAINS AND USES THEREOF

Abstract
The disclosure provides antigen binding domains that bind cluster of differentiation 3 (CD3) protein, comprising the antigen binding domains that bind CD3ε, polynucleotides encoding them, vectors, host cells, methods of making and using them.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

This application contains a sequence listing, which is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file name “JBI6516USNP1_SL.txt”, creation date of Mar. 17, 2022 and having a size of 1,282 KB. The sequence listing submitted via EFS-Web is part of the specification and is herein incorporated by reference in its entirety.


TECHNICAL FIELD

The disclosure provides antigen binding domains that bind cluster of differentiation 3 (CD3) protein comprising the antigen binding domains that bind CD3, polynucleotides encoding them, vectors, host cells, methods of making and using them.


BACKGROUND

Bispecific antibodies and antibody fragments have been explored as a means to recruit cytolytic T cells to kill tumor cells. However, the clinical use of many T cell-recruiting bispecific antibodies has been limited by challenges including unfavorable toxicity, potential immunogenicity, and manufacturing issues. There thus exists a considerable need for improved bispecific antibodies that recruit cytolytic T cells to kill tumor cells that include, for example, reduced toxicity and favorable manufacturing profiles.


The human CD3 T cell antigen receptor protein complex is composed of six distinct chains: a CD3γ chain (SwissProt P09693), a CD3δ chain (SwissProt P04234), two CD3ε chains (SwissProt P07766), and one CD3ζ chain homodimer (SwissProt P20963) (εγ:εδ:ζζ), which is associated with the T cell receptor α and β chain. This complex plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. The CD3 complex mediates signal transduction, resulting in T cell activation and proliferation. CD3 is required for immune response.


Redirection of cytotoxic T cells to kill tumor cells has become an important therapeutic mechanism for numerous oncologic indications (Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18, 585-608, doi:10.1038/s41573-019-0028-1 (2019)). T cell activation follows a two-signal hypothesis, in which the first signal is supplied by engagement of the T cell receptor (TCR) complex with its cognate peptide MHC complex on an antigen presenting cell (APC), and the second signal may be either co-stimulatory or co-inhibitory (Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242, doi:10.1038/nri3405 (2013)). Tumors often fail to present sufficient non-self antigens to induce a T cell-based immune response, and T cell-engaging BsAbs (bsTCE) can overcome this challenge by inducing T cell activation in the absence of TCR-pMHC interaction. T cell receptor signaling occurs through the ITAM motifs in the cytoplasmic region of the CD3 subunits of the TCR (Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10, doi:10.1016/j.immuni.2013.07.012 (2013)). In particular, the CD3ε subunit is present in two copies per TCR complex and represents an attractive antigen for T cell engagement. Indeed, numerous bsTCE that target CD3ε have shown clinical anti-tumor efficacy where mAbs have failed, and significant pharmaceutical development efforts are ongoing for several tumor targets (Labrijn, A. F. et al., 2019). Three major challenges for clinical development of bsTCE are 1) the potential for rapid and severe toxicity associated with cytokine release via systemic or off-tumor T cell activation, 2) practical challenges of formulation and dosing for bsTCE with high potency and sharp therapeutic indices, and 3) the potential for reactivation-induced T cell death, wherein tumor-infiltrating T cells (TILS) undergo apoptosis in response to over-activation by bsTCE (Wu, Z. & Cheung, N. V. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol Ther 182, 161-175, doi:10.1016/j.pharmthera.2017.08.005 (2018)).


Together, these observations suggest that there is a need in the art for novel CD3 specific binding proteins that are more advantageous and can be used to treat cancers.


SUMMARY

The disclosure satisfies this need, for example, by providing novel CD3ε specific binding proteins that possess high affinity for the tumor antigen and weak affinity for the T cell. The proteins comprising an antigen binding domain that binds CD3ε of the disclosure were generated to have high thermostability, reduced deamidation risk, and humanized to decrease immunogenicity.


In certain embodiments, the disclosure provides an isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises: an isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises:


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;


the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;


the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or


the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;


wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


In certain embodiments, the disclosure also provides an isolated protein, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 comprise


SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;


SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or


SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.


In other embodiments, the antigen binding domain that binds CD3ε is the Fab.


In other embodiments, the antigen binding domain that binds CD3ε is the scFv.


In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).


In other embodiments, the L1 comprises


about 5-50 amino acids;


about 5-40 amino acids;


about 10-30 amino acids; or about 10-20 amino acids.


In other embodiments, the L1 comprises an amino acid sequence of SEQ ID NOs: 3-36.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 3.


In other embodiments, the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58 or 56.


In other embodiments, the antigen binding domain that binds CD3ε comprises:


the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;


the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;


the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;


the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58


the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or


the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the antigen binding domain that binds CD3ε comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 96-126.


In other embodiments, the isolated protein is a multispecific protein.


In other embodiments, the multispecific protein is a bispecific protein.


In other embodiments, the multispecific protein is a trispecific protein.


In other embodiments, the isolated protein further comprises an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof.


In other embodiments, the fragment of the Ig constant region comprises a Fc region.


In other embodiments, the fragment of the Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises a CH2 domain and a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises at least portion of a hinge, a CH2 domain and a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises a hinge, a CH2 domain and a CH3 domain.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).


In other embodiments, the L2 comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 3-36.


In other embodiments, the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.


In other embodiments, the cell antigen is a tumor associated antigen.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR).


In other embodiments, the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.


In other embodiments, the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.


In other embodiments, the protein comprises at least one mutation in a CH3 domain of the Ig constant region.


In other embodiments, the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, T366L, F405W, T394W, K392L, T394S, T394W, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.


The disclosure also provides a pharmaceutical composition comprising the isolated protein and a pharmaceutically acceptable carrier.


The disclosure also provides a polynucleotide encoding the isolated protein.


The disclosure also provides a vector comprising the polynucleotide.


The disclosure also provides a host cell comprising the vector.


The disclosure also provides a method of producing the isolated protein, comprising culturing the host cell in conditions that the protein is expressed, and recovering the protein produced by the host cell.


The disclosure also provides a method of treating a cancer in a subject, comprising administering a therapeutically effective amount of the isolated protein to the subject in need thereof to treat the cancer.


The disclosure also provides an anti-idiotypic antibody binding to the isolated protein.


The disclosure also provides an isolated protein of any one of claims 1-35 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 127-157.


The disclosure also provides an isolated protein comprising an antibody heavy chain of SEQ ID NO: 224 and antibody light chain of SEQ ID NO: 226.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The summary, as well as the following detailed description, is further understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosed antibodies and methods, there are shown in the drawings exemplary embodiments of the antibodies and methods; however, antibodies and methods are not limited to the specific embodiments disclosed. In the drawings:



FIG. 1 shows binding of murine Cris-7 (CD3B1127 and CD31128) and human germline-grafted Cris-7 variant sequences in scFv format, as determined by ELISA.



FIGS. 2A and 2B show % of E. coli-expressed scFv clones retaining at least 75% of binding, determined by ELISA, after the heat shock of 60° C. for the humanized VH pared with murine VL (2A) or for the humanized VL paired with murine VH (2B); numbers on the X-axis show the residue positions.



FIG. 3 shows ELISA-based comparison of the binding abilities of humanized CD3 specific scFvs containing human-to-mouse back mutations.



FIG. 4 shows binding of CD3B2030 variants, formatted as scFvs, to recombinant CD3 (TRCW5), determined by ELISA; “NtoX” indicates the amino acid substitutions made in position 106 of the VH (SEQ ID NO: 55), wherein “X” is the amino acid indicated on the Figure.



FIG. 5 shows hydrogen-deuterium exchange rates determined using hydrogen-deuterium exchange mass spectrometry (HDX-MS) measured for the complex of Cris7 (either bi-valent or monovalent) bound to human CD3ε, or the complex of OKT3 bound to human CD3ε (CD3ε:OKT3) (fragment of CD3ε (SEQ ID No: 1) is shown). Underline indicates segments with >30% decrease in deuteration levels in the presence of the antibody, as compared to CD3ε alone. FIG. 5 discloses SEQ ID NOS 1508, 1509, 1509 and 1509, respectively, in order of appearance.



FIG. 6. Depiction of a exemplary CD79b×CD20×CD3 trispecific antibody.



FIGS. 7A-7D. Binding affinities of selected CD79b×CD3 bsAbs in the HLB-1 cell line (FIG. 7A); the OCI-LY10 cell line (FIG. 7B); the Carnaval cell line (FIG. 7C); and the WILL-2 cell line (FIG. 7D). Circles correspond to the 79C3B646 bsAb; triangles correspond to the 79C3B651 bsAb; and diamonds correspond to the 79C3B601 bsAb.



FIGS. 8A-8D. Binding affinities of selected CD79b×CD20×CD3 trispecific antibodies in the HLB-1 cell line (FIG. 8A); the OCI-LY10 cell line (FIG. 8B); the Carnaval cell line (FIG. 8C); and the WILL-2 cell line (FIG. 8D). Solid circles correspond to the 79C3B646 bsAb control; solid triangles correspond to the 79C3B651 bsAb control; and solid diamonds correspond to the 79C3B601 bsAb control. Open triangles correspond to trispecific antibody C923B38; open diamonds correspond to trispecific antibody C923B74; asterisks correspond to trispecific antibody C923B9; and X corresponds to control null trispecific antibody C923B98.



FIGS. 9A-9I. Binding kinetics of selected CD79b×CD3 bsAbs on DLBCL cell lines. Binding kinetics of the three selected bsAbs in HBL-1 cells at 300 nm (FIG. 9A). Binding kinetics of the three selected bsAbs in HBL-1 cells at 60 nm (FIG. 9B). Binding kinetics of the three selected bsAbs in HBL-1 cells at 12 nm (FIG. 9C). Binding kinetics of the three selected bsAbs in Carnaval cells at 300 nm (FIG. 9D). Binding kinetics of the three selected bsAbs in Carnaval cells at 60 nm (FIG. 9E). Binding kinetics of the three selected bsAbs in Carnaval cells at 12 nm (FIG. 9F). Binding kinetics of the three selected bsAbs in OCI-LY10 cells at 300 nm (FIG. 9G). Binding kinetics of the three selected bsAbs in OCI-LY10 cells at 60 nm (FIG. 9H). Binding kinetics of the three selected bsAbs in OCI-LY10 cells at 12 nm (FIG. 9I). Inverted triangles correspond to the 79C3B646 bsAb; diamonds correspond to the 79C3B651 bsAb; and squares correspond to the 79C3B601 bsAb.



FIGS. 10A-10I. Binding kinetics of selected CD79b×CD20×CD3 trispecific antibodies on DLBCL cell lines. Binding kinetics of the selected antibodies in HBL-1 cells at 300 nm (FIG. 10A). Binding kinetics of the selected antibodies in HBL-1 cells at 60 nm (FIG. 10B). Binding kinetics of the selected antibodies in HBL-1 cells at 12 nm (FIG. 10C). Binding kinetics of the selected antibodies in Carnaval cells at 300 nm (FIG. 10D). Binding kinetics of the selected antibodies in Carnaval cells at 60 nm (FIG. 10E). Binding kinetics of the selected antibodies in Carnaval cells at 12 nm (FIG. 10F). Binding kinetics of the selected antibodies in OCI-LY10 cells at 300 nm (FIG. 10G). Binding kinetics of the selected antibodies in OCI-LY10 cells at 60 nm (FIG. 10H). Binding kinetics of the selected antibodies in OCI-LY10 cells at 12 nm (FIG. 10I). Inverted triangles correspond to the 79C3B646 bsAb control; diamonds correspond to the 79C3B651 bsAb control; and squares correspond to the 79C3B601 bsAb control. Triangles correspond to trispecific antibody C923B38; circles correspond to trispecific antibody C923B74; squares correspond to trispecific antibody C923B99; and asterisks correspond to control null trispecific antibody C923B98.



FIGS. 11A-11D. Primary pan T-cell binding of CD79b×CD20×CD3 trispecific antibodies and CD79b×CD3 bispecific antibodies. Binding kinetics of the selected antibodies in pan T-cell donor line D221837 (FIG. 11A). Binding kinetics of the selected antibodies in pan T-cell donor line D329312 (FIG. 11B). Binding kinetics of the selected antibodies in pan T-cell donor line D329335 (FIG. 11C). Binding kinetics of the selected antibodies in pan T-cell donor line D160115 (FIG. 11D). Circles correspond to the 79C3B651 bsAb; squares correspond to the 79C3B646 bsAb; triangles correspond to the trispecific antibody C923B38; inverted triangles correspond to the trispecific antibody C923B99; diamonds correspond to the trispecific antibody C923B74.



FIGS. 12A-12B. T cell cytotoxicity of CD79b×CD20×CD3 trispecific antibodies and CD79b×CD3 bispecific antibodies. Cytotoxicity of the selected antibodies in the HEL T-cell line (FIG. 12A). Cytotoxicity of the selected antibodies in the K562 T-cell line (FIG. 12B). Shaded circles correspond to the trispecific antibody C923B74; clear circles correspond to the trispecific antibody C923B99; triangles correspond to the trispecific antibody C923B38; inverted triangles correspond to the 79C3B646 bsAb; diamonds correspond to 79C3B651 bsAb; black squares correspond to the 79C3B601 bsAb; and white squares correspond to C923B98 bsAb.



FIGS. 13A-13C. CD79b×CD20×CD3 trispecific construct mediated B cell cytotoxicity and T cell activation. Cytotoxicity in B cells (FIG. 13A); CD4+ T-cells (FIG. 13B) and CD8+ T-cells are shown for the lead antibodies.



FIG. 14 shows HDX-MS epitope mapping of PSMA against PS3B1352 (top) and PS3B1353 (bottom). G is glycosylation site. Black box is epitope and gray is probable epitope. White box indicates no/little change in deuteration level in the presence of the antibody. The residues without box indicate the HDX behaviors were not monitored, because there is no peptide to cover the residues or the residues are the first two residues of a peptide. The epitopes of PS3B1352 and PS3B1353 are identical. The epitopes are residue 597-598 (CR), because the segment 597-598 were significantly protected upon binding (average differences in deuteration levels >10%). The epitopes include residues 599 (D), 602-603 (VV) and 605 (R), because they are marginally protected upon binding (average differences in deuteration levels 5%-10%) and are likely to show bigger protections if longer time points were monitored. The epitopes can be larger than these four segments, because the segments around these four segments, such as 593-594 (LP), 595 (F), 596 (D), 600 (Y), 601 (A), 604 (L), 606-607 (KY), 607-609 (YAD), and 610-612, (KIY), did not exchange at all in the time window employed and can be protected if longer time points were monitored. FIG. 14 discloses SEQ ID NO: 1510.



FIG. 15 shows HDX-MS identified epitopes of PSMA overlaid on X-ray crystal structure. Blue: epitope; sky blue: probable epitope; and cyan: potential epitope.



FIG. 16 shows PAN-T cell binding assay. Human PAN-T cells were treated with various concentrations of PSMA/CD3 bispecific antibodies and incubated at 37° C. for 30 minutes followed by CD3 cell surface expression analysis by flow cytometry.



FIG. 17 shows the non-linear regression fit of four-parameter function of PSMA ligand binding of C4-2B human prostate tumor cells.



FIG. 18 shows a target cell binding assay. C4-2B human prostate tumor cells were treated with various concentrations of PSMA/CD3 bispecific antibodies and incubated at 37° C. for 30 minutes followed by PSMA cell surface expression analysis by flow cytometry.



FIG. 19 shows internalization of PSMA. Human C4-2B prostate tumor cells were incubated with PSMA/CD3 bispecific antibodies conjugated to IncuCyte® Human Fab-fluor-pH Red Antibody Labeling Dye for 24 hours.



FIGS. 20A-H show bispecific anti-PSMA/anti-T cell redirection antibodies evaluated in an IncuCyte®-based cytotoxicity assay. Isolated PAN-T cells were co-incubated with PSMA+C4-2B cells in the presence of bispecific PSMA/T cell redirection antibodies for 120 hours. Shown are data for (A) PS3B1352, (B) PS3B1356, (C) PS3B1353, (D) PS3B1357, (E) PS3B1354, (F) PS3B937, (G) PS3B1355, and (H) PS3B1358.



FIG. 21 shows T cell redirected killing assay. Normal human PBMCs were combined with C4-2B human prostate tumor cells transduced with IncuCyte® NucLight red nuclear dye and treated with PSMA/CD3 bispecific antibodies for 5 days.



FIG. 22 shows cytokine induction by bispecific anti-PSMA/anti-T cell redirection antibodies. Isolated PAN-T cells were co-incubated with PSMA+C4-2B cells in the presence of bispecific anti-PSMA/anti-T cell redirection antibodies for the indicated time points. IFN-gamma concentration was measured from supernatants collected at the indicated time points.





DETAILED DESCRIPTION OF THE INVENTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.


It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.


Although any methods and materials similar or equivalent to those described herein may be used in the practice for testing of the present invention, exemplary materials and methods are described herein. In describing and claiming the present invention, the following terminology will be used.


When a list is presented, unless stated otherwise, it is to be understood that each individual element of that list, and every combination of that list, is a separate embodiment. For example, a list of embodiments presented as “A, B, or C” is to be interpreted as including the embodiments, “A,” “B,” “C,” “A or B,” “A or C,” “B or C,” or “A, B, or C.”


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a cell” includes a combination of two or more cells, and the like.


The transitional terms “comprising,” “consisting essentially of,” and “consisting of” are intended to connote their generally accepted meanings in the patent vernacular; that is, (i) “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps; (ii) “consisting of” excludes any element, step, or ingredient not specified in the claim; and (iii) “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. Embodiments described in terms of the phrase “comprising” (or its equivalents) also provide as embodiments those independently described in terms of “consisting of” and “consisting essentially of.”


“About” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. Unless explicitly stated otherwise within the Examples or elsewhere in the Specification in the context of a particular assay, result or embodiment, “about” means within one standard deviation per the practice in the art, or a range of up to 5%, whichever is larger.


“Activation” or “stimulation” or “activated” or “stimulated” refers to induction of a change in the biologic state of a cell resulting in expression of activation markers, cytokine production, proliferation or mediating cytotoxicity of target cells. Cells may be activated by primary stimulatory signals. Co-stimulatory signals can amplify the magnitude of the primary signals and suppress cell death following initial stimulation resulting in a more durable activation state and thus a higher cytotoxic capacity. A “co-stimulatory signal” refers to a signal, which in combination with a primary signal, such as TCR/CD3 ligation, leads to T cell and/or NK cell proliferation and/or upregulation or downregulation of key molecules.


“Alternative scaffold” refers to a single chain protein framework that contains a structured core associated with variable domains of high conformational tolerance. The variable domains tolerate variation to be introduced without compromising scaffold integrity, and hence the variable domains can be engineered and selected for binding to a specific antigen.


“Antibody-dependent cellular cytotoxicity”, “antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to the mechanism of inducing cell death that depends upon the interaction of antibody-coated target cells with effector cells possessing lytic activity, such as natural killer cells (NK), monocytes, macrophages and neutrophils via Fc gamma receptors (FcγR) expressed on effector cells.


“Antibody-dependent cellular phagocytosis” or “ADCP” refers to the mechanism of elimination of antibody-coated target cells by internalization by phagocytic cells, such as macrophages or dendritic cells.


“Antigen” refers to any molecule (e.g., protein, peptide, polysaccharide, glycoprotein, glycolipid, nucleic acid, portions thereof, or combinations thereof) capable of being bound by an antigen binding domain or a T-cell receptor that is capable of mediating an immune response. Exemplary immune responses include antibody production and activation of immune cells, such as T cells, B cells or NK cells. Antigens may be expressed by genes, synthetized, or purified from biological samples such as a tissue sample, a tumor sample, a cell or a fluid with other biological components, organisms, subunits of proteins/antigens, killed or inactivated whole cells or lysates.


“Antigen binding fragment” or “antigen binding domain” refers to a portion of the protein that binds an antigen. Antigen binding fragments may be synthetic, enzymatically obtainable or genetically engineered polypeptides and include portions of an immunoglobulin that bind an antigen, such as the VH, the VL, the VH and the VL, Fab, Fab′, F(ab′)2, Fd and Fv fragments, domain antibodies (dAb) consisting of one VH domain or one VL domain, shark variable IgNAR domains, camelized VH domains, VHH domains, minimal recognition units consisting of the amino acid residues that mimic the CDRs of an antibody, such as FR3-CDR3-FR4 portions, the HCDR1, the HCDR2 and/or the HCDR3 and the LCDR1, the LCDR2 and/or the LCDR3, alternative scaffolds that bind an antigen, and multispecific proteins comprising the antigen binding fragments. Antigen binding fragments (such as VH and VL) may be linked together via a synthetic linker to form various types of single antibody designs where the VH/VL domains may pair intramolecularly, or intermolecularly in those cases when the VH and VL domains are expressed by separate single chains, to form a monovalent antigen binding domain, such as single chain Fv (scFv) or diabody. Antigen binding fragments may also be conjugated to other antibodies, proteins, antigen binding fragments or alternative scaffolds which may be monospecific or multispecific to engineer bispecific and multispecific proteins.


“Antibodies” is meant in a broad sense and includes immunoglobulin molecules including monoclonal antibodies including murine, human, humanized and chimeric monoclonal antibodies, antigen binding fragments, multispecific antibodies, such as bispecific, trispecific, tetraspecific etc., dimeric, tetrameric or multimeric antibodies, single chain antibodies, domain antibodies and any other modified configuration of the immunoglobulin molecule that comprises an antigen binding site of the required specificity. “Full length antibodies” are comprised of two heavy chains (HC) and two light chains (LC) inter-connected by disulfide bonds as well as multimers thereof (e.g. IgM). Each heavy chain is comprised of a heavy chain variable region (VH) and a heavy chain constant region (comprised of domains CH1, hinge, CH2 and CH3). Each light chain is comprised of a light chain variable region (VL) and a light chain constant region (CL). The VH and the VL regions may be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with framework regions (FR). Each VH and VL is composed of three CDRs and four FR segments, arranged from amino-to-carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. Immunoglobulins may be assigned to five major classes, IgA, IgD, IgE, IgG and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. Antibody light chains of any vertebrate species may be assigned to one of two clearly distinct types, namely kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.


“Bispecific” refers to a molecule (such as a protein or an antibody) that specifically binds two distinct antigens or two distinct epitopes within the same antigen. The bispecific molecule may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca cynomolgus (cynomolgus, cyno) or Pan troglodytes, or may bind an epitope that is shared between two or more distinct antigens.


“Bispecific anti-PSMA/anti-CD3 antibody”, “PSMA/CD3 antibody”, “PSMAxCD3 antibody,” “anti-PSMA/anti-CD3 protein,” and the like refer to an antibody that binds PSMA and CD3 and that comprises at least one binding domain specifically binding PSMA and at least one binding domain specifically binding CD3. The domains specifically binding PSMA and CD3 are typically VH/VL pairs. The bispecific anti-PSMAxCD3 antibody may be monovalent in terms of its binding to either PSMA or CD3.


“Bispecific anti-CD79b/anti-CD3 antibody”, “anti-CD79b×CD3”, “CD79b/CD3 antibody”, “CD79b×CD3 antibody,” “anti-CD79b/anti-CD3 protein,” and the like refer to an antibody that binds CD79b and CD3 and that comprises at least one binding domain specifically binding CD79b and at least one binding domain specifically binding CD3. The domains specifically binding CD79b and CD3 are typically VH/VL pairs. The bispecific anti CD79b×CD3 antibody may be monovalent in terms of its binding to either CD79b or CD3.


“Cancer” refers to a broad group of various diseases characterized by the uncontrolled growth of abnormal cells in the body. Unregulated cell division and growth results in the formation of malignant tumors that invade neighboring tissues and may also metastasize to distant parts of the body through the lymphatic system or bloodstream. A “cancer” or “cancer tissue” can include a tumor.


“Cluster of Differentiation 3 ε” or “CD3ε” refers to a known protein which is also called “T-cell surface glycoprotein CD3 epsilon chain”, or “T3E”. CD3ε, together with CD3-gamma, -delta and -zeta, and the T-cell receptor alpha/beta and gamma/delta heterodimers, forms the T-cell receptor-CD3 complex. This complex plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. The CD3 complex mediates signal transduction, resulting in T cell activation and proliferation. CD3 is required for the immune response. The amino acid sequence of a full length CD3ε is shown in SEQ ID NO: 1. The amino acid sequence of the extracellular domain (ECD) of CD3ε is shown in SEQ ID NO: 2. Throughout the specification, “CD3ε-specific” or “specifically binds CD3ε” or “anti-CD3ε antibody” refers to antibodies that bind specifically to the CD3ε polypeptide (SEQ ID NO: 1), including antibodies that bind specifically to the CD3ε extracellular domain (ECD) (SEQ ID NO: 2).









(Human CD3 epsilon)


SEQ ID NO: 1


MQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYKVSISGTTVILTC





PQYPGSEILWQHNDKNIGGDEDDKNIGSDEDHLSLKEFSELEQSGYYVC





YPRGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLL





VYYWSKNRKAKAKPVTRGAGAGGRQRGQNKERPPPVPNPDYEPIRKGQR





DLYSGLNQRRI





(Human CD3 epsilon extracellular domain)


SEQ ID NO: 2


DGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDED





DKNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVCE





NCMEMD






“Cluster of Differentiation CD79B protein” or “CD79b” refers to a B-cell antigen receptor (BCR) signaling component Igβ. The amino acid sequences of the various isoforms are retrievable from GenBank accession numbers AAH32651.1, EAW94232.1, AAH02975.2, NP_000617.1, and NP_001035022.1. The amino acid sequence of the full length CD79b sequence is shown below (SEQ ID NO: 241). The sequence includes the extracellular domain (residues 29-159) and the cytoplasmic domain (residues 181-229).









(SEQ ID NO: 241)


MARLALSPVPSHWMVALLLLLSAEPVPAARSEDRYRNPKGSACSRIWQS





PRFIARKRGFTVKMHCYMNSASGNVSWLWKQEMDENPQQLKLEKGRMEE





SQNESLATLTIQGIRFEDNGIYFCQQKCNNTSEVYQGCGTELRVMGFST





LAQLKQRNTLKDGIIMIQTLLIILFIIVPIFLLLDKDDSKAGMEEDHTY





EGLDIDQTATYEDIVTLRTGEVKWSVGEHPGQE.






“Complement-dependent cytotoxicity” or “CDC”, refers to the mechanism of inducing cell death in which the Fc effector domain of a target-bound protein binds and activates complement component C1q which in turn activates the complement cascade leading to target cell death. Activation of complement may also result in deposition of complement components on the target cell surface that facilitate CDC by binding complement receptors (e.g., CR3) on leukocytes.


“Complementarity determining regions” (CDR) are antibody regions that bind an antigen. There are three CDRs in the VH (HCDR1, HCDR2, HCDR3) and three CDRs in the VL (LCDR1, LCDR2, LCDR3). CDRs may be defined using various delineations such as Kabat (Wu et al. (1970) J Exp Med 132: 211-50; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991), Chothia (Chothia et al. (1987) J Mol Biol 196: 901-17), IMGT (Lefranc et al. (2003) Dev Comp Immunol 27: 55-77) and AbM (Martin and Thornton J Bmol Biol 263: 800-15, 1996). The correspondence between the various delineations and variable region numbering is described (see e.g. Lefranc et al. (2003) Dev Comp Immunol 27: 55-77; Honegger and Pluckthun, J Mol Biol (2001) 309:657-70; International ImMunoGeneTics (IMGT) database; Web resources (for example, can be retrieved from the Internet <URL: http://www.imgt.org>)). Available programs such as abYsis by UCL Business PLC may be used to delineate CDRs. The term “CDR”, “HCDR1”, “HCDR2”, “HCDR3”, “LCDR1”, “LCDR2” and “LCDR3” as used herein includes CDRs defined by any of the methods described supra, Kabat, Chothia, IMGT or AbM, unless otherwise explicitly stated in the specification.


“Decrease,” “lower,” “lessen,” “reduce,” or “abate” refers generally to the ability of a test molecule to mediate a reduced response (i.e., downstream effect) when compared to the response mediated by a control or a vehicle. Exemplary responses are T cell expansion, T cell activation or T-cell mediated tumor cell killing or binding of a protein to its antigen or receptor, enhanced binding to a Fcγ or enhanced Fc effector functions such as enhanced ADCC, CDC and/or ADCP. Decrease may be a statistically significant difference in the measured response between the test molecule and the control (or the vehicle), or a decrease in the measured response, such as a decrease of about 1.1, 1.2, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or 30 fold or more, such as 500, 600, 700, 800, 900 or 1000 fold or more (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7. 1.8, etc.).


“Differentiation” refers to a method of decreasing the potency or proliferation of a cell or moving the cell to a more developmentally restricted state.


“Encode” or “encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.


“Enhance,” “promote,” “increase,” “expand” or “improve” refers generally to the ability of a test molecule to mediate a greater response (i.e., downstream effect) when compared to the response mediated by a control or a vehicle. Exemplary responses are T cell expansion, T cell activation or T-cell mediated tumor cell killing or binding of a protein to its antigen or receptor, enhanced binding to a Fcγ or enhanced Fc effector functions such as enhanced ADCC, CDC and/or ADCP Enhance may be a statistically significant difference in the measured response between the test molecule and control (or vehicle), or an increase in the measured response, such as an increase of about 1.1, 1.2, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or 30 fold or more, such as 500, 600, 700, 800, 900 or 1000 fold or more (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7. 1.8, etc.).


“Epitope” refers to a portion of an antigen to which an antibody, or the antigen binding portion thereof, specifically binds. Epitopes typically consist of chemically active (such as polar, non-polar or hydrophobic) surface groupings of moieties such as amino acids or polysaccharide side chains and may have specific three-dimensional structural characteristics, as well as specific charge characteristics. An epitope may be composed of contiguous and/or discontiguous amino acids that form a conformational spatial unit. For a discontiguous epitope, amino acids from differing portions of the linear sequence of the antigen come in close proximity in 3-dimensional space through the folding of the protein molecule. Antibody “epitope” depends on the methodology used to identify the epitope.


“Expansion” refers to the outcome of cell division and cell death.


“Express” and “expression” refers the to the well-known transcription and translation occurring in cells or in vitro. The expression product, e.g., the protein, is thus expressed by the cell or in vitro and may be an intracellular, extracellular or a transmembrane protein.


“Expression vector” refers to a vector that can be utilized in a biological system or in a reconstituted biological system to direct the translation of a polypeptide encoded by a polynucleotide sequence present in the expression vector.


“dAb” or “dAb fragment” refers to an antibody fragment composed of a VH domain (Ward et al., Nature 341:544 546 (1989)).


“Fab” or “Fab fragment” refers to an antibody fragment composed of VH, CH1, VL and CL domains.


“F(ab′)2” or “F(ab′)2 fragment” refers to an antibody fragment containing two Fab fragments connected by a disulfide bridge in the hinge region.


“Fd” or “Fd fragment” refers to an antibody fragment composed of VH and CH1 domains.


“Fv” or “Fv fragment” refers to an antibody fragment composed of the VH and the VL domains from a single arm of the antibody.


“Full length antibody” is comprised of two heavy chains (HC) and two light chains (LC) inter-connected by disulfide bonds as well as multimers thereof (e.g. IgM). Each heavy chain is comprised of a heavy chain variable domain (VH) and a heavy chain constant domain, the heavy chain constant domain comprised of subdomains CH1, hinge, CH2 and CH3. Each light chain is comprised of a light chain variable domain (VL) and a light chain constant domain (CL). The VH and the VL may be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with framework regions (FR). Each VH and VL is composed of three CDRs and four FR segments, arranged from amino-to-carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.


“Genetic modification” refers to the introduction of a “foreign” (i.e., extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence. The introduced gene or sequence may also be called a “cloned” or “foreign” gene or sequence, may include regulatory or control sequences operably linked to polynucleotide encoding the chimeric antigen receptor, such as start, stop, promoter, signal, secretion, or other sequences used by a cell's genetic machinery. The gene or sequence may include nonfunctional sequences or sequences with no known function. A host cell that receives and expresses introduced DNA or RNA has been “genetically engineered.” The DNA or RNA introduced to a host cell can come from any source, including cells of the same genus or species as the host cell, or from a different genus or species.


“Heterologous” refers to two or more polynucleotides or two or more polypeptides that are not found in the same relationship to each other in nature.


“Heterologous polynucleotide” refers to a non-naturally occurring polynucleotide that encodes two or more neoantigens as described herein.


“Heterologous polypeptide” refers to a non-naturally occurring polypeptide comprising two or more neoantigen polypeptides as described herein.


“Host cell” refers to any cell that contains a heterologous nucleic acid. An exemplary heterologous nucleic acid is a vector (e.g., an expression vector).


“Human antibody” refers to an antibody that is optimized to have minimal immune response when administered to a human subject. Variable regions of human antibody are derived from human immunoglobulin sequences. If human antibody contains a constant region or a portion of the constant region, the constant region is also derived from human immunoglobulin sequences. Human antibody comprises heavy and light chain variable regions that are “derived from” sequences of human origin if the variable regions of the human antibody are obtained from a system that uses human germline immunoglobulin or rearranged immunoglobulin genes. Such exemplary systems are human immunoglobulin gene libraries displayed on phage, and transgenic non-human animals such as mice or rats carrying human immunoglobulin loci. “Human antibody” typically contains amino acid differences when compared to the immunoglobulins expressed in humans due to differences between the systems used to obtain the human antibody and human immunoglobulin loci, introduction of somatic mutations or intentional introduction of substitutions into the frameworks or CDRs, or both. Typically, “human antibody” is at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical in amino acid sequence to an amino acid sequence encoded by human germline immunoglobulin or rearranged immunoglobulin genes. In some cases, “human antibody” may contain consensus framework sequences derived from human framework sequence analyses, for example as described in Knappik et al., (2000) J Mol Biol 296:57-86, or a synthetic HCDR3 incorporated into human immunoglobulin gene libraries displayed on phage, for example as described in Shi et al., (2010) J Mol Biol 397:385-96, and in Int. Patent Publ. No. WO2009/085462. Antibodies in which at least one CDR is derived from a non-human species are not included in the definition of “human antibody”.


“Humanized antibody” refers to an antibody in which at least one CDR is derived from non-human species and at least one framework is derived from human immunoglobulin sequences. Humanized antibody may include substitutions in the frameworks so that the frameworks may not be exact copies of expressed human immunoglobulin or human immunoglobulin germline gene sequences.


“In combination with” means that two or more therapeutic agents are be administered to a subject together in a mixture, concurrently as single agents or sequentially as single agents in any order.


“Intracellular signaling domain” or “cytoplasmic signaling domain” refers to an intracellular portion of a molecule. It is the functional portion of the protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers. The intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CAR-T cell.


“Isolated” refers to a homogenous population of molecules (such as synthetic polynucleotides or polypeptides) which have been substantially separated and/or purified away from other components of the system the molecules are produced in, such as a recombinant cell, as well as a protein that has been subjected to at least one purification or isolation step. “Isolated” refers to a molecule that is substantially free of other cellular material and/or chemicals and encompasses molecules that are isolated to a higher purity, such as to 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% purity.


“Modulate” refers to either enhanced or decreased ability of a test molecule to mediate an enhanced or a reduced response_(i.e., downstream effect) when compared to the response mediated by a control or a vehicle.


“Monoclonal antibody” refers to an antibody obtained from a substantially homogenous population of antibody molecules, i.e., the individual antibodies comprising the population are identical except for possible well-known alterations such as removal of C-terminal lysine from the antibody heavy chain or post-translational modifications such as amino acid isomerization or deamidation, methionine oxidation or asparagine or glutamine deamidation. Monoclonal antibodies typically bind one antigenic epitope. A bispecific monoclonal antibody binds two distinct antigenic epitopes. Monoclonal antibodies may have heterogeneous glycosylation within the antibody population. Monoclonal antibody may be monospecific or multispecific such as bispecific, monovalent, bivalent or multivalent.


“Multispecific” refers to a molecule, such as an antibody that specifically binds two or more distinct antigens or two or more distinct epitopes within the same antigen. Multispecific molecule may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno) or Pan troglodytes, or may bind an epitope that is shared between two or more distinct antigens.


“Natural killer cell” and “NK cell” are used interchangeably and synonymously herein. NK cell refers to a differentiated lymphocyte with a CD16+CD56+ and/or CD57+ TCR: phenotype. NK cells are characterized by their ability to bind to and kill cells that fail to express “self” MHC/HLA antigens by the activation of specific cytolytic enzymes, the ability to kill tumor cells or other diseased cells that express a ligand for NK activating receptors, and the ability to release protein molecules called cytokines that stimulate or inhibit the immune response.


“Operatively linked” and similar phrases, when used in reference to nucleic acids or amino acids, refers to the operational linkage of nucleic acid sequences or amino acid sequence, respectively, placed in functional relationships with each other. For example, an operatively linked promoter, enhancer elements, open reading frame, 5′ and 3′ UTR, and terminator sequences result in the accurate production of a nucleic acid molecule (e.g., RNA) and in some instances to the production of a polypeptide (i.e., expression of the open reading frame). Operatively linked peptide refers to a peptide in which the functional domains of the peptide are placed with appropriate distance from each other to impart the intended function of each domain.


The term “paratope” refers to the area or region of an antibody molecule which is involved in binding of an antigen and comprise residues that interact with an antigen. A paratope may composed of continuous and/or discontinuous amino acids that form a conformational spatial unit. The paratope for a given antibody can be defined and characterized at different levels of details using a variety of experimental and computational methods. The experimental methods include hydrogen/deuterium exchange mass spectrometry (HX-MS). The paratope will be defined differently depending on the mapping method employed.


“Pharmaceutical combination” refers to a combination of two or more active ingredients administered either together or separately.


“Pharmaceutical composition” refers to a composition that results from combining an active ingredient and a pharmaceutically acceptable carrier.


“Pharmaceutically acceptable carrier” or “excipient” refers to an ingredient in a pharmaceutical composition, other than the active ingredient, which is nontoxic to a subject. Exemplary pharmaceutically acceptable carriers are a buffer, stabilizer or preservative.


“Polynucleotide” or “nucleic acid” refers to a synthetic molecule comprising a chain of nucleotides covalently linked by a sugar-phosphate backbone or other equivalent covalent chemistry. cDNA is a typical example of a polynucleotide. Polynucleotide may be a DNA or a RNA molecule.


“Prevent,” “preventing,” “prevention,” or “prophylaxis” of a disease or disorder means preventing that a disorder occurs in a subject.


“Proliferation” refers to an increase in cell division, either symmetric or asymmetric division of cells.


“Promoter” refers to the minimal sequences required to initiate transcription. Promoter may also include enhancers or repressor elements which enhance or suppress transcription, respectively.


“Protein” or “polypeptide” are used interchangeably herein and refer to a molecule that comprises one or more polypeptides each comprised of at least two amino acid residues linked by a peptide bond. Protein may be a monomer, or may be protein complex of two or more subunits, the subunits being identical or distinct. Small polypeptides of less than 50 amino acids may be referred to as “peptides”. Protein may be a heterologous fusion protein, a glycoprotein, or a protein modified by post-translational modifications such as phosphorylation, acetylation, myristoylation, palmitoylation, glycosylation, oxidation, formylation, amidation, citrullination, polyglutamylation, ADP-ribosylation, pegylation or biotinylation. Protein may be an antibody or may comprise an antigen binding fragment of an antibody. Protein may be recombinantly expressed.


“Prostate-specific membrane antigen” or “PSMA” refers to a type II membrane protein expressed on certain cells. The amino acid sequence of the human PSMA is shown in SEQ ID NO: 240. The extracellular domain spans residues 44-750, the transmembrane domain spans residues 20-43 and the cytoplasmic domain spans residues 1-19 of SEQ ID NO: 240.









SEQ ID NO: 240


MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEA





TNITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQS





QWKEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPP





PPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINC





SGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDG





WNLPGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPV





HPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVK





MHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGA





AVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRL





LQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEG





KSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTK





NWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELA





NSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVK





NFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPF





YRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVA





AFTVQAAAETLSEVA






“Recombinant” refers to polynucleotides, polypeptides, vectors, viruses and other macromolecules that are prepared, expressed, created or isolated by recombinant means.


“Regulatory element” refers to any cis- or trans acting genetic element that controls some aspect of the expression of nucleic acid sequences.


“Relapsed” refers to the return of a disease or the signs and symptoms of a disease after a period of improvement after prior treatment with a therapeutic.


“Refractory” refers to a disease that does not respond to a treatment. A refractory disease can be resistant to a treatment before or at the beginning of the treatment, or a refractory disease can become resistant during a treatment.


“Single chain Fv” or “scFv” refers to a fusion protein comprising at least one antibody fragment comprising a light chain variable region (VL) and at least one antibody fragment comprising a heavy chain variable region (VH), wherein the VL and the VH are contiguously linked via a polypeptide linker, and capable of being expressed as a single chain polypeptide. Unless specified, as used herein, a scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.


“(scFv)2” or “tandem scFv” or “bis-scFv” fragments refers to a fusion protein comprising two light chain variable region (VL) and two heavy chain variable region (VH), wherein the two VL and the two VH are contiguously linked via polypeptide linkers, and capable of being expressed as a single chain polypeptide. The two VL and two VH are fused by peptide linkers to form a bivalent molecule VLA-linker-VHA-linker-VLB-linker-VHB to form two binding sites, capable of binding two different antigens or epitopes concurrently.


“Specifically binds,” “specific binding,” “specifically binding” or “binds” refer to a proteinaceous molecule binding to an antigen or an epitope within the antigen with greater affinity than for other antigens. Typically, the proteinaceous molecule binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1×10−7 M or less, for example about 5×10−8 M or less, about 1×10−8 M or less, about 1×10−9 M or less, about 1×10−10 M or less, about 1×10−11 M or less, or about 1×10−12 M or less, typically with the KD that is at least one hundred fold less than its KD for binding to a non-specific antigen (e.g., BSA, casein). In the context of the prostate neoantigens described here, “specific binding” refers to binding of the proteinaceous molecule to the prostate neoantigen without detectable binding to a wild-type protein the neoantigen is a variant of.


“Subject” includes any human or nonhuman animal. “Nonhuman animal” includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. The terms “subject” and “patient” can be used interchangeably herein.


“T cell” and “T lymphocyte” are interchangeable and used synonymously herein. T cell includes thymocytes, naïve T lymphocytes, memory T cells, immature T lymphocytes, mature T lymphocytes, resting T lymphocytes, or activated T lymphocytes. A T cell can be a T helper (Th) cell, for example a T helper 1 (Th1) or a T helper 2 (Th2) cell. The T cell can be a helper T cell (HTL; CD4+ T cell) CD4+ T cell, a cytotoxic T cell (CTL; CD8+ T cell), a tumor infiltrating cytotoxic T cell (TIL; CD8+ T cell), CD4+CD8+ T cell, or any other subset of T cells. Also included are “NKT cells”, which refer to a specialized population of T cells that express a semi-invariant αβ T-cell receptor, but also express a variety of molecular markers that are typically associated with NK cells, such as NK1.1. NKT cells include NK1.1+ and NK1.1, as well as CD4+, CD4, CD8+ and CD8 cells. The TCR on NKT cells is unique in that it recognizes glycolipid antigens presented by the MHC I-like molecule CD Id. NKT cells can have either protective or deleterious effects due to their abilities to produce cytokines that promote either inflammation or immune tolerance. Also included are “gamma-delta T cells (γδ T cells),” which refer to a specialized population that to a small subset of T cells possessing a distinct TCR on their surface, and unlike the majority of T cells in which the TCR is composed of two glycoprotein chains designated α- and β-TCR chains, the TCR in γδ T cells is made up of a γ-chain and a δ-chain. γδ T cells can play a role in immunosurveillance and immunoregulation, and were found to be an important source of IL-17 and to induce robust CD8+ cytotoxic T cell response. Also included are “regulatory T cells” or “Tregs” which refer to T cells that suppress an abnormal or excessive immune response and play a role in immune tolerance. Tregs are typically transcription factor Foxp3-positive CD4+ T cells and can also include transcription factor Foxp3-negative regulatory T cells that are IL-10-producing CD4+ T cells.


“Therapeutically effective amount” or “effective amount” used interchangeably herein, refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. A therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual. Example indicators of an effective therapeutic or combination of therapeutics that include, for example, improved wellbeing of the patient, reduction of a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body.


“Transduction” refers to the introduction of a foreign nucleic acid into a cell using a viral vector.


“Treat,” “treating” or “treatment” of a disease or disorder such as cancer refers to accomplishing one or more of the following: reducing the severity and/or duration of the disorder, inhibiting worsening of symptoms characteristic of the disorder being treated, limiting or preventing recurrence of the disorder in subjects that have previously had the disorder, or limiting or preventing recurrence of symptoms in subjects that were previously symptomatic for the disorder.


“Tumor cell” or a “cancer cell” refers to a cancerous, pre-cancerous or transformed cell, either in vivo, ex vivo, or in tissue culture, that has spontaneous or induced phenotypic changes. These changes do not necessarily involve the uptake of new genetic material. Although transformation may arise from infection with a transforming virus and incorporation of new genomic nucleic acid, uptake of exogenous nucleic acid or it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation/cancer is exemplified by morphological changes, immortalization of cells, aberrant growth control, foci formation, proliferation, malignancy, modulation of tumor specific marker levels, invasiveness, tumor growth in suitable animal hosts such as nude mice, and the like, in vitro, in vivo, and ex vivo.


“Variant,” “mutant” or “altered” refers to a polypeptide or a polynucleotide that differs from a reference polypeptide or a reference polynucleotide by one or more modifications, for example one or more substitutions, insertions or deletions.


The numbering of amino acid residues in the antibody constant region throughout the specification is according to the EU index as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), unless otherwise explicitly stated.


Mutations in the Ig constant regions are referred to as follows: L351Y_F405A_Y407V refers to L351Y, F405A and Y407V mutations in one immunoglobulin constant region. L351Y_F405A_Y407V/T394W refers to L351Y, F405A and Y407V mutations in the first Ig constant region and T394W mutation in the second Ig constant region, which are present in one multimeric protein.


“VHH” refers to a single-domain antibody or nanobody, exclusively composed by heavy chain homodimers A VHH single domain antibody lack the light chain and the CH1 domain of the heavy chain of conventional Fab region.


Unless otherwise stated, any numerical values, such as a concentration or a concentration range described herein, are to be understood as being modified in all instances by the term “about.” Thus, a numerical value typically includes ±10% of the recited value. For example, a concentration of 1 mg/mL includes 0.9 mg/mL to 1.1 mg/mL. Likewise, a concentration range of 1% to 10% (w/v) includes 0.9% (w/v) to 11% (w/v). As used herein, the use of a numerical range expressly includes all possible subranges, all individual numerical values within that range, including integers within such ranges and fractions of the values unless the context clearly indicates otherwise.


The numbering of amino acid residues in the antibody constant region throughout the specification is according to the EU index as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), unless otherwise explicitly stated.









TABLE 1







Conventional one- and three-letter amino acid


codes used herein











Amino acid
Three-letter code
One-letter code







Alanine
Ala
A



Arginine
Arg
R



Asparagine
Asn
N



Aspartate
Asp
D



Cysteine
Cys
C



Glutamate
Glu
E



Glutamine
Gln
Q



Glycine
Gly
G



Histidine
His
H



Isoleucine
Ile
I



Lysine
Lys
K



Methionine
Met
M



Phenylalanine
Phe
F



Proline
Pro
P



Serine
Ser
S



Threonine
Thr
T



Tryptophan
Trp
W



Tyrosine
Tyr
Y



Valine
Val
V










Antigen Binding Domains that Bind CD3ε.


The disclosure provides antigen binding domains that bind CD3ε, monospecific and multispecific proteins comprising the antigen binding domains that bind CD3ε, polynucleotides encoding the foregoing, vectors, host cells and methods of making and using the foregoing. The antigen binding domains that bind CD3ε identified herein demonstrated several advantageous properties. First, the selection of IGHV1-69*02-IGHJ1-01 and IGKV3-11*02-IGKJ4-01 germlines for CDR grafting ensured enhanced binding as compared to the murine Cris-7 parent antibody. Second, upon introducing human-to-mouse mutations, the selected clones demonstrated improved thermostability by retaining binding after heat shock, including at 55° C., 60° C., and/or 65° C., a characteristic leading to improved manufacturability and storage. This was not the case for the murine Cris-7 parent antibody, which demonstrated minimal binding at all to recombinant CD3 and T cells after heat shock when compared to antigen binding domains that bind CD3ε of the present invention. Third, the Post Translational Modification (PTM) risk was mitigated by substituting at position N106 in SEQ ID Nos: 55, 54, and 48, and thus preventing Asn deamidation, which, if left unmodified, could lead to loss of activity. The engineered position at residue N106 was within HCDR3. Even with mutations at this position within HCR3, antibodies still retained the ability to robustly bind antigen while also possessing added beneficial properties (e.g., improved thermostability).


The disclosure also provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively. SEQ ID NO: 86 (PQVHYDYXGFPY, wherein X can be Q, A, G, or S) represents a genus HCDR3 amino acid sequence encompassing variants demonstrating improved properties, including improved thermostability, reduced deamidation risk and varied affinity to CD3, depending on the amino acid in place of “X”. For example, if X in SEQ ID NO: 86 is substituted with either Q or A, the CD3 affinity is similar to the parental (having N in place of X); and if X is substituted with either G or S, the CD3 affinity is lower compared to Q or A. This provided the advantageous ability to tune the activity of T cell redirection ability of the multi- or bi-specific proteins comprising the CD3ε biding domains of the disclosure, in order to potentially mitigate cytokine response in subjects and potentially enhance tumor distribution of the multi- or bi-specific proteins.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises:

    • a HCDR1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
      • wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;


SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or


SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58, or 56.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56; or
    • the VH of SEQ ID NO: 58 and the VL of SEQ ID NO: 58.


In other embodiments, the antigen binding domain that binds CD3ε is a scFv.


In other embodiments, the antigen binding domain that binds CD3ε is a (scFv)2.


In other embodiments, the antigen binding domain that binds CD3ε is a Fv.


In other embodiments, the antigen binding domain that binds CD3ε is a Fab.


In other embodiments, the antigen binding domain that binds CD3ε is a F(ab′)2.


In other embodiments, the antigen binding domain that binds CD3ε is a Fd.


In other embodiments, the CD3ε antigen binding domain is a dAb.


In other embodiments, the CD3ε antigen binding domain is a VHH.


CD3ε Binding scFvs


Any of the VH and the VL domains identified herein that bind CD3ε may be engineered into scFv format in either VH-linker-VL or VL-linker-VH orientation. Any of the VH and the VL domains identified herein may also be used to generate sc(Fv)2 structures, such as VH-linker-VL-linker-VL-linker-VH, VH-linker-VL-linker-VH-linker-VL. VH-linker-VH-linker-VL-linker-VL. VL-linker-VH-linker-VH-linker-VL. VL-linker-VH-linker-VL-linker-VH or VL-linker-VL-linker-VH-linker-VH.


The VH and the VL domains identified herein may be incorporated into a scFv format and the binding and thermostability of the resulting scFv to CD3ε may be assessed using known methods. Binding may be assessed using ProteOn XPR36, Biacore 3000 or KinExA instrumentation, ELISA or competitive binding assays known to those skilled in the art. Binding may be evaluated using purified scFvs or E. coli supernatants or lysed cells containing the expressed scFv. The measured affinity of a test scFv to CD3ε may vary if measured under different conditions (e.g., osmolarity, pH). Thus, measurements of affinity and other binding parameters (e.g., KD, Kon, Koff) are typically made with standardized conditions and standardized buffers. Thermostability may be evaluated by heating the test scFv at elevated temperatures, such as at 50° C., 55° C. or 60° C. for a period of time, such as 5 minutes (min), 10 min, 15 min, 20 min, 25 min or 30 min and measuring binding of the test scFv to CD3ε. The scFvs retaining comparable binding to CD3ε when compared to a non-heated scFv sample are referred to as being thermostable.


In recombinant expression systems, the linker is a peptide linker and may include any naturally occurring amino acid. Exemplary amino acids that may be included into the linker are Gly, Ser Pro, Thr, Glu, Lys, Arg, Ile, Leu, His and The. The linker should have a length that is adequate to link the VH and the VL in such a way that they form the correct conformation relative to one another so that they retain the desired activity, such as binding to CD3ε.


The linker may be about 5-50 amino acids long. In other embodiments, the linker is about 10-40 amino acids long. In other embodiments, the linker is about 10-35 amino acids long. In other embodiments, the linker is about 10-30 amino acids long. In other embodiments, the linker is about 10-25 amino acids long. In other embodiments, the linker is about 10-20 amino acids long. In other embodiments, the linker is about 15-20 amino acids long. In other embodiments, the linker is about 16-19 amino acids long. In other embodiments, the linker is 6 amino acids long. In other embodiments, the linker is 7 amino acids long. In other embodiments, the linker is 8 amino acids long. In other embodiments, the linker is 9 amino acids long. In other embodiments, the linker is 10 amino acids long. In other embodiments, the linker is 11 amino acids long. In other embodiments, the linker is 12 amino acids long. In other embodiments, the linker is 13 amino acids long. In other embodiments, the linker is 14 amino acids long. In other embodiments, the linker is 15 amino acids long. In other embodiments, the linker is 16 amino acids long. In other embodiments, the linker is 17 amino acids long. In other embodiments, the linker is 18 amino acids long. In other embodiments, the linker is 19 amino acids long. In other embodiments, the linker is 20 amino acids long. In other embodiments, the linker is 21 amino acids long. In other embodiments, the linker is 22 amino acids long. In other embodiments, the linker is 23 amino acids long. In other embodiments, the linker is 24 amino acids long. In other embodiments, the linker is 25 amino acids long. In other embodiments, the linker is 26 amino acids long. In other embodiments, the linker is 27 amino acids long. In other embodiments, the linker is 28 amino acids long. In other embodiments, the linker is 29 amino acids long. In other embodiments, the linker is 30 amino acids long. In other embodiments, the linker is 31 amino acids long. In other embodiments, the linker is 32 amino acids long. In other embodiments, the linker is 33 amino acids long. In other embodiments, the linker is 34 amino acids long. In other embodiments, the linker is 35 amino acids long. In other embodiments, the linker is 36 amino acids long. In other embodiments, the linker is 37 amino acids long. In other embodiments, the linker is 38 amino acids long. In other embodiments, the linker is 39 amino acids long. In other embodiments, the linker is 40 amino acids long. Exemplary linkers that may be used are Gly rich linkers, Gly and Ser containing linkers, Gly and Ala containing linkers, Ala and Ser containing linkers, and other flexible linkers.


Other linker sequences may include portions of immunoglobulin hinge area, CL or CH1 derived from any immunoglobulin heavy or light chain isotype. Alternatively, a variety of non-proteinaceous polymers, including polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, may find use as linkers. Exemplary linkers that may be used are shown in Table 2. Additional linkers are described for example in Int. Pat. Publ. No. WO2019/060695.









TABLE 2







Linkers.









Linker

SEQ


name
Amino acid sequence
ID NO:





Linker 1
GGSEGKSSGSGSESKSTGGS
 3





Linker 2
GGGSGGGS
 4





Linker 3
GGGSGGGSGGGS
 5





Linker 4
GGGSGGGSGGGSGGGS
 6





Linker 5
GGGSGGGSGGGSGGGSGGGS
 7





Linker 6
GGGGSGGGGSGGGGS
 8





Linker 7
GGGGSGGGGSGGGGSGGGGS
 9





Linker 8
GGGGSGGGGSGGGGSGGGGSGGGGS
10





Linker 9
GSTSGSGKPGSGEGSTKG
11





Linker 10
IRPRAIGGSKPRVA
12





Linker 11
GKGGSGKGGSGKGGS
13





Linker 12
GGKGSGGKGSGGKGS
14





Linker 13
GGGKSGGGKSGGGKS
15





Linker 14
GKGKSGKGKSGKGKS
16





Linker 15
GGGKSGGKGSGKGGS
17





Linker 16
GKPGSGKPGSGKPGS
18





Linker 17
GKPGSGKPGSGKPGSGKPGS
19





Linker 18
GKGKSGKGKSGKGKSGKGKS
20





Linker 19
STAGDTHLGGEDFD
21





Linker 20
GEGGSGEGGSGEGGS
22





Linker 21
GGEGSGGEGSGGEGS
23





Linker 22
GEGESGEGESGEGES
24





Linker 23
GGGESGGEGSGEGGS
25





Linker 24
GEGESGEGESGEGESGEGES
26





Linker 25
GSTSGSGKPGSGEGSTKG
27





Linker 26
PRGASKSGSASQTGSAPGS
28





Linker 27
GTAAAGAGAAGGAAAGAAG
29





Linker 28
GTSGSSGSGSGGSGSGGGG
30





Linker 29
GKPGSGKPGSGKPGSGKPGS
31





Linker 30
GSGS
32





Linker 31
APAPAPAPAP
33





Linker 32
APAPAPAPAPAPAPAPAPAP
34





Linker 33
AEAAAKEAAAKEAAAAKEAAAAKEAAAA
35



KAAA



Linker 34
GTEGKSSGSGSESKST
36









In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL).


In other embodiments, the scFv comprises, from the N-to C-terminus, the VL, the L1 and the VH (VL-L1-VH).


In other embodiments, the L1 comprises the amino acid sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 3.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 4.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 5.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 6.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 7.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 8.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 9.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 10.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 11.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 12.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 13.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 14.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 15.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 16.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 19.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 20.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 21.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 22.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 23.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 24.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 25.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 26.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 27.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 28.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 29.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 30.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 36.


In other embodiments, the scFv comprises

    • a HCDR1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    • wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;


SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or


SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the scFv comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58, or 56.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 96.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 97.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 98.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 99.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 100.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 101.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 102.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 103.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 104.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 105.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 106.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 107.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 108.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 109.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 110.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 111.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 112.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 113.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 114.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 115.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 116.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 117.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 118.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 119.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 120.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 121.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 122.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 123.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 124.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 125.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 126.


Other Antigen Binding Domains that Bind CD3ε


Any of the VH and the VL domains identified herein that bind CD3ε may also be engineered into Fab, F(ab′)2, Fd or Fv format and their binding to CD3ε and thermostability may be assessed using the assays described herein. In certain embodiments thermostability is improved 2 fold, 3 fold, 4 fold, 5 fold, upto 100 fold, with every integer in between (for example, 6 fold, 7 fold, 8 fold, 9 fold, 10 fold, and so forth), compared to the murine Cris-7 parent antibody at 55° C., 60° C., and/or 65° C. by the methods described herein.


In other embodiments, the Fab comprises

    • a HCDR1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;


wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of

    • SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;
    • SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or
    • SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the F(ab′)2 comprises

    • a HCDR1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;


the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;

    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;


wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of

    • SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;
    • SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or
    • SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the Fv comprises

    • a HCDR1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
    • the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;


wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of

    • SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;
    • SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or
    • SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the Fd comprises a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NOs: 55, 54, or 48.


In other embodiments, the Fd comprises the HCDR1, the HCDR2, and the HCDR3 of SEQ ID NOs: 70, 71, and 86, respectively.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 70, 71, and 72, respectively.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 70, 71, and 87, respectively.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 70, 71, and 90, respectively.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 55.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 54.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 48.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 88.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 242.


Homologous Antigen Binding Domains and Antigen Binding Domains with Conservative Substitutions


Variants of the antigen binding domains that bind CD3ε are within the scope of the disclosure. For example, variants may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 amino acid substitutions in the antigen binding domain that bind CD3ε as long as they retain or have improved functional properties when compared to the parent antigen binding domains. In other embodiments, the sequence identity may be about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% to the antigen binding domains that bind CD3ε of the disclosure. In other embodiments, the variation is in the framework regions. In other embodiments, variants are generated by conservative substitutions.


For example, the antigen binding domains that bind CD3ε may comprise substitutions at residue position N106 (residue numbering from N-terminus of SEQ ID NO: 55, 54, or 48). Conservative substitutions may be made at any indicated positions and the resulting variant antigen binding domains that bind CD3ε are tested for their desired characteristics in the assays described herein.


Also provided are antigen binding domains that bind CD3ε comprising the VH and the VL which are at least 80% identical to

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the identity is 85%. In other embodiments, the identity is 90%. In other embodiments, the identity is 91%. In other embodiments, the identity is 91%. In other embodiments, the identity is 92%. In other embodiments, the identity is 93%. In other embodiments, the identity is 94%. In other embodiments, the identity is 94%. In other embodiments, the identity is 95%. In other embodiments, the identity is 96%. In other embodiments, the identity is 97%. In other embodiments, the identity is 98%. In other embodiments, the identity is 99%.


The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=number of identical positions/total number of positions ×100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


The percent identity between two amino acid sequences may be determined using the algorithm of E. Meyers and W. Miller (Comput Appl Biosci 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences may be determined using the Needleman and Wunsch (J Mol Biol 48:444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (can be retrieved from the Internet <URL: http://www.gcg.com>), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


In other embodiments, variant antigen binding domains that bind CD3ε comprise one or two conservative substitutions in any of the CDR regions, while retaining desired functional properties of the parent antigen binding fragments that bind CD3ε.


“Conservative modifications” refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid modifications. Conservative modifications include amino acid substitutions, additions and deletions. Conservative amino acid substitutions are those in which the amino acid is replaced with an amino acid residue having a similar side chain. The families of amino acid residues having similar side chains are well defined and include amino acids with acidic side chains (e.g., aspartic acid, glutamic acid), basic side chains (e.g., lysine, arginine, histidine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), uncharged polar side chains (e.g., glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine, tryptophan), aromatic side chains (e.g., phenylalanine, tryptophan, histidine, tyrosine), aliphatic side chains (e.g., glycine, alanine, valine, leucine, isoleucine, serine, threonine), amide (e.g., asparagine, glutamine), beta-branched side chains (e.g., threonine, valine, isoleucine) and sulfur-containing side chains (cysteine, methionine). Furthermore, any native residue in the polypeptide may also be substituted with alanine, as has been previously described for alanine scanning mutagenesis (MacLennan et al., (1988) Acta Physiol Scand Suppl 643:55-67; Sasaki et al., (1988) Adv Biophys 35:1-24). Amino acid substitutions to the antibodies of the invention may be made by known methods for example by PCR mutagenesis (U.S. Pat. No. 4,683,195). Alternatively, libraries of variants may be generated for example using random (NNK) or non-random codons, for example DVK codons, which encode 11 amino acids (Ala, Cys, Asp, Glu, Gly, Lys, Asn, Arg, Ser, Tyr, Trp). The resulting variants may be tested for their characteristics using assays described herein.


Methods of Generating Antigen Binding Fragment that Bind CD3ε


Antigen binding domains that bind CD3ε provided in the disclosure may be generated using various technologies. For example, the hybridoma method of Kohler and Milstein may be used to identify VH/VL pairs that bind CD3ε. In the hybridoma method, a mouse or other host animal, such as a hamster, rat or chicken is immunized with human and/or cyno CD3ε, followed by fusion of spleen cells from immunized animals with myeloma cells using standard methods to form hybridoma cells. Colonies arising from single immortalized hybridoma cells may be screened for production of the antibodies containing the antigen binding domains that bind CD3ε with desired properties, such as specificity of binding, cross-reactivity or lack thereof, affinity for the antigen, and any desired functionality.


Antigen binding domains that bind CD3ε generated by immunizing non-human animals may be humanized. Exemplary humanization techniques including selection of human acceptor frameworks include CDR grafting (U.S. Pat. No. 5,225,539), SDR grafting (U.S. Pat. No. 6,818,749), Resurfacing (Padlan, (1991) Mol Immunol 28:489-499), Specificity Determining Residues Resurfacing (U.S. Patent Publ. No. 2010/0261620), human framework adaptation (U.S. Pat. No. 8,748,356) or superhumanization (U.S. Pat. No. 7,709,226). In these methods, CDRs or a subset of CDR residues of parental antibodies are transferred onto human frameworks that may be selected based on their overall homology to the parental frameworks, based on similarity in CDR length, or canonical structure identity, or a combination thereof.


Humanized antigen biding domains may be further optimized to improve their selectivity or affinity to a desired antigen by incorporating altered framework support residues to preserve binding affinity (backmutations) by techniques such as those described in Int. Patent Publ. Nos. WO1090/007861 and WO1992/22653, or by introducing variation at any of the CDRs for example to improve affinity of the antigen binding domain.


Transgenic animals, such as mice, rat or chicken carrying human immunoglobulin (Ig) loci in their genome may be used to generate antigen binding fragments that bind CD3ε, and are described in for example U.S. Pat. No. 6,150,584, Int. Patent Publ. No. WO1999/45962, Int. Patent Publ. Nos. WO2002/066630, WO2002/43478, WO2002/043478 and WO1990/04036. The endogenous immunoglobulin loci in such animal may be disrupted or deleted, and at least one complete or partial human immunoglobulin locus may be inserted into the genome of the animal using homologous or non-homologous recombination, using transchromosomes, or using minigenes. Companies such as Regeneron (<URL: http://www.regeneron.com>), Harbour Antibodies (http://www.harbourantibodies.com), Open Monoclonal Technology, Inc. (OMT) (<URL: http://www.omtinc.net>), KyMab (<URL: http://www.kymab.com>), Trianni (<URL: http://www.trianni.com>) and Ablexis (<URL: http://www.ablexis.com>) may be engaged to provide human antibodies directed against a selected antigen using technologies as described above.


Antigen binding domains that bind CD3ε may be selected from a phage display library, where the phage is engineered to express human immunoglobulins or portions thereof such as Fabs, single chain antibodies (scFv), or unpaired or paired antibody variable regions. The antigen binding domains that bind CD3ε may be isolated for example from phage display library expressing antibody heavy and light chain variable regions as fusion proteins with bacteriophage pIX coat protein as described in Shi et al., (2010) J Mol Biol 397:385-96, and Int. Patent Publ. No. WO09/085462). The libraries may be screened for phage binding to human and/or cyno CD3ε and the obtained positive clones may be further characterized, the Fabs isolated from the clone lysates, and converted to scFvs or other configurations of antigen binding fragments.


Preparation of immunogenic antigens and expression and production of antigen binding domains of the disclosure may be performed using any suitable technique, such as recombinant protein production. The immunogenic antigens may be administered to an animal in the form of purified protein, or protein mixtures including whole cells or cell or tissue extracts, or the antigen may be formed de novo in the animal's body from nucleic acids encoding said antigen or a portion thereof.


Conjugation to Half-Life Extending Moieties

The antigen binding domains that bind CD3ε of the disclosure may be conjugated to a half-life extending moiety. Exemplary half-life extending moieties are albumin, albumin variants, albumin-binding proteins and/or domains, transferrin and fragments and analogues thereof, immunoglobulins (Ig) or fragments thereof, such as Fc regions. Amino acid sequences of the aforementioned half-life extending moieties are known. Ig or fragments thereof include all isotypes (i.e., IgG1, IgG2, IgG3, IgG4, IgM, IgA and IgE).


Additional half-life extending moieties that may be conjugated to the antigen binding domains that bind CD3ε of the disclosure include polyethylene glycol (PEG) molecules, such as PEG5000 or PEG20,000, fatty acids and fatty acid esters of different chain lengths, for example laurate, myristate, stearate, arachidate, behenate, oleate, arachidonate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid, docosanedioic acid, and the like, polylysine, octane, carbohydrates (dextran, cellulose, oligo- or polysaccharides) for desired properties. These moieties may be direct fusions with the antigen binding domains that bind CD3ε of the disclosure and may be generated by standard cloning and expression techniques. Alternatively, well known chemical coupling methods may be used to attach the moieties to recombinantly produced antigen binding domains that bind CD3ε of the disclosure.


A pegyl moiety may for example be conjugated to the antigen binding domain that bind CD3ε of the disclosure by incorporating a cysteine residue to the C-terminus of the antigen binding domain that bind CD3ε of the disclosure, or engineering cysteines into residue positions that face away from the CD3ε binding site and attaching a pegyl group to the cysteine using well known methods.


In other embodiments, the antigen binding fragment that binds CD3ε is conjugated to a half-life extending moiety.


In other embodiments, the half-life extending moiety is an immunoglobulin (Ig), a fragment of the Ig, an Ig constant region, a fragment of the Ig constant region, a Fc region, transferrin, albumin, an albumin binding domain or polyethylene glycol. In other embodiments, the half-life extending moiety is an Ig constant region.


In other embodiments, the half-life extending moiety is the Ig.


In other embodiments, the half-life extending moiety is the fragment of the Ig.


In other embodiments, the half-life extending moiety is the Ig constant region.


In other embodiments, the half-life extending moiety is the fragment of the Ig constant region.


In other embodiments, the half-life extending moiety is the Fc region.


In other embodiments, the half-life extending moiety is albumin.


In other embodiments, the half-life extending moiety is the albumin binding domain.


In other embodiments, the half-life extending moiety is transferrin.


In other embodiments, the half-life extending moiety is polyethylene glycol.


The antigen binding domains that bind CD3ε conjugated to a half-life extending moiety may be evaluated for their pharmacokinetic properties utilizing known in vivo models.


Conjugation to Immunoglobulin (Ig) Constant Regions or Fragments of the Ig Constant Regions

The antigen binding domains that bind CD3ε of the disclosure may be conjugated to an Ig constant region or a fragment of the Ig constant region to impart antibody-like properties, including Fc effector functions C1q binding, complement dependent cytotoxicity (CDC), Fc receptor binding, antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis or down regulation of cell surface receptors (e.g., B cell receptor; BCR). The Ig constant region or the fragment of the Ig constant region functions also as a half-life extending moiety as discussed herein. The antigen binding domains that bind CD3ε of the disclosure may be engineered into conventional full-length antibodies using standard methods. The full-length antibodies comprising the antigen binding domain that binds CD3ε may further be engineered as described herein.


Immunoglobulin heavy chain constant region comprised of subdomains CH1, hinge, CH2 and CH3. The CH1 domain spans residues A118-V215, the CH2 domain residues A231-K340 and the CH3 domain residues G341-K447 on the heavy chain, residue numbering according to the EU Index. In some instances, G341 is referred as a CH2 domain residue. Hinge is generally defined as including E216 and terminating at P230 of human IgG1. Ig Fc region comprises at least the CH2 and the CH3 domains of the Ig constant region, and therefore comprises at least a region from about A231 to K447 of Ig heavy chain constant region.


The invention also provides an antigen binding domain that binds CD3ε conjugated to an immunoglobulin (Ig) constant region or a fragment of the Ig constant region.


In other embodiments, the Ig constant region is a heavy chain constant region


In other embodiments, the Ig constant region is a light chain constant region.


In other embodiments, the fragment of the Ig constant region comprises a Fc region.


In other embodiments, the fragment of the Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain. Portion of the hinge refers to one or more amino acid residues of the Ig hinge.


In other embodiments, the fragment of the Ig constant region comprises the hinge, the CH2 domain and the CH3 domain.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 3.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 4.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 5.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 6.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 7.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 8.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 9.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 10.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 11.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 12.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 13.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 14.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 15.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 16.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 19.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 20.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 21.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 22.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 23.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 24.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 25.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 26.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 27.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 28.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 29.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 30.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 36.


The antigen binding domains that bind CD3ε of the disclosure conjugated to Ig constant region or the fragment of the Ig constant region may be assessed for their functionality using several known assays. Binding to CD3ε may be assessed using methods described herein. Altered properties imparted by the Ig constant domain or the fragment of the Ig constant region such as Fc region may be assayed in Fc receptor binding assays using soluble forms of the receptors, such as the FcγRI, FcγRII, FcγRIII or FcRn receptors, or using cell-based assays measuring for example ADCC, CDC or ADCP.


ADCC may be assessed using an in vitro assay using CD3ε expressing cells as target cells and NK cells as effector cells. Cytolysis may be detected by the release of label (e.g. radioactive substrates, fluorescent dyes or natural intracellular proteins) from the lysed cells. In an exemplary assay, target cells are used with a ratio of 1 target cell to 4 effector cells. Target cells are pre-labeled with BATDA and combined with effector cells and the test antibody. The samples are incubated for 2 hours and cell lysis measured by measuring released BATDA into the supernatant. Data is normalized to maximal cytotoxicity with 0.67% Triton X-100 (Sigma Aldrich) and minimal control determined by spontaneous release of BATDA from target cells in the absence of any antibody.


ADCP may be evaluated by using monocyte-derived macrophages as effector cells and any CD3ε expressing cells as target cells which are engineered to express GFP or other labeled molecule. In an exemplary assay, effector:target cell ratio may be for example 4:1. Effector cells may be incubated with target cells for 4 hours with or without the antibody of the invention. After incubation, cells may be detached using accutase. Macrophages may be identified with anti-CD11b and anti-CD14 antibodies coupled to a fluorescent label, and percent phagocytosis may be determined based on % GFP fluorescence in the CD11+CD14+ macrophages using standard methods.


CDC of cells may be measured for example by plating Daudi cells at 1×105 cells/well (50 μL/well) in RPMI-B (RPMI supplemented with 1% BSA), adding 50 μL of test protein to the wells at final concentration between 0-100 μg/mL, incubating the reaction for 15 min at room temperature, adding 11 μL of pooled human serum to the wells, and incubation the reaction for 45 min at 37° C. Percentage (%) lysed cells may be detected as % propidium iodide stained cells in FACS assay using standard methods.


Proteins Comprising the Antigen Binding Domains that Bind CD3ε of the Disclosure


The antigen binding domains that bind CD3ε of the disclosure may be engineered into monospecific or multispecific proteins of various designs using standard methods.


The disclosure also provides a monospecific protein comprising the antigen binding domain that binds CD3ε of the disclosure.


In other embodiments, the monospecific protein is an antibody.


The disclosure also provides a multispecific protein comprising the antigen binding domain that binds CD3ε of the disclosure.


In other embodiments, the multispecific protein is bispecific.


In other embodiments, the multispecific protein is trispecific.


In other embodiments, the multispecific protein is tetraspecific.


In other embodiments, the multispecific protein is monovalent for binding to CD3ε.


In other embodiments, the multispecific protein is bivalent for binding to CD3ε.


The disclosure also provides an isolated multispecific protein comprising a first antigen binding domain that binds CD3ε and a second antigen binding domain that binds a tumor antigen. In other embodiments, the tumor antigen is a protein or a fragment thereof that is present on a cancer cell or specific to a cancer cell.


In other embodiments, the tumor antigen is a BCMA antigen. In other embodiments, the tumor antigen is a PSMA antigen. In other embodiments, the tumor antigen is a CD79b antigen. In other embodiments, the tumor antigen is a CD20 antigen. In other embodiments, the tumor antigen is a CD20 antigen and a CD79b antigen.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a WM.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fab.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the F(ab′)2.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the VHH.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fv.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fd.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the scFv.


In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).


In other embodiments, the L1 comprises about 5-50 amino acids.


In other embodiments, the L1 comprises about 5-40 amino acids.


In other embodiments, the L1 comprises about 10-30 amino acids.


In other embodiments, the L1 comprises about 10-20 amino acids.


In other embodiments, the L1 comprises the amino acid sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 3.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 4.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 5.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 6.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 7.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 8.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 9.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 10.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 11.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 12.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 13.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 14.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 15.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 16.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 17.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 19.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 20.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 21.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 22.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 23.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 24.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 25.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 26.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 27.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 28.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 29.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 30.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 36.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the HCDR1 of SEQ ID NO: 70, the HCDR2 of SEQ ID NO: 71, the HCDR3 of SEQ ID NOs: 72, 87, 90, or 86, the LCDR1 of SEQ ID NO: 79, the LCDR2 of SEQ ID NO: 80, and the LCDR3 of SEQ ID NOs: 81.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of

    • SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;
    • SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or
    • SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58, or 56.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID Nos: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 96.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 97.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 98.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 99.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 100.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 101.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 102.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 103.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 104.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 105.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 106.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 107.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 108.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 109.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 110.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 112.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 113.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 114.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 115.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 116.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 117.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 118.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 119.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 120.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 121.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 122.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 123.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 124.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 125.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 126.


In other embodiments, the second antigen binding domain that binds a tumor antigen is specific to PSMA.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1242 and the LC of SEQ ID NO: 1243.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1244 and the LC of SEQ ID NO: 1245.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1246 and the LC of SEQ ID NO: 1247.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1248.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1250.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1252.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1254.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1256.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1258.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1260.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1262.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1264.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1266.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1268.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1270.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1272.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1274.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1276.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1278.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1280.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1282.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1284.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1286.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1288.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1290.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1292.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1294.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1459 and the LC of SEQ ID NO: 1460.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1461 and the LC of SEQ ID NO: 1462.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1356 and the LC of SEQ ID NO: 1357.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1358 and the LC of SEQ ID NO: 1359.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1360 and the LC of SEQ ID NO: 1361.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1362 and the LC of SEQ ID NO: 1363.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1364 and the LC of SEQ ID NO: 1365.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1366 and the LC of SEQ ID NO: 1367.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1368 and the LC of SEQ ID NO: 1369.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1370 and the LC of SEQ ID NO: 1371.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1372 and the LC of SEQ ID NO: 1373.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1374 and the LC of SEQ ID NO: 1375.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1376 and the LC of SEQ ID NO: 1377.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1378 and the LC of SEQ ID NO: 1379.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1378 and the LC of SEQ ID NO: 1379.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1380 and the LC of SEQ ID NO: 1381.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1382 and the LC of SEQ ID NO: 1383.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1384 and the LC of SEQ ID NO: 1385.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1386 and the LC of SEQ ID NO: 1387.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1388 and the LC of SEQ ID NO: 1389.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1390 and the LC of SEQ ID NO: 1391.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1392 and the LC of SEQ ID NO: 1393.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1394 and the LC of SEQ ID NO: 1395.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1396 and the LC of SEQ ID NO: 1397.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1396 and the LC of SEQ ID NO: 1397.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1396 and the LC of SEQ ID NO: 1397.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1396 and the LC of SEQ ID NO: 1397.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1398 and the LC of SEQ ID NO: 1399.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1400 and the LC of SEQ ID NO: 1401.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1402 and the LC of SEQ ID NO: 1403.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1404 and the LC of SEQ ID NO: 1405.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1406 and the LC of SEQ ID NO: 1407.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1408 and the LC of SEQ ID NO: 1409.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1410 and the LC of SEQ ID NO: 1411.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1412 and the LC of SEQ ID NO: 1413.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1414 and the LC of SEQ ID NO: 1415.


In other embodiments, the second antigen binding domain that binds a tumor antigen is specific to CD79b.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1489 and the LC of SEQ ID NO: 1491.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1493 and the LC of SEQ ID NO: 1495.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1497 and the LC of SEQ ID NO: 1499.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1502 and the LC of SEQ ID NO: 1499.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HC of SEQ ID NO: 1489 and the LC of SEQ ID NO: 1491.


In other embodiments, the first antigen binding domain that binds CD3ε is conjugated to a first immunoglobulin (Ig) constant region or a fragment of the first Ig constant region and/or the second antigen binding domain that binds the tumor antigen is conjugated to a second immunoglobulin (Ig) constant region or a fragment of the second Ig constant region.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a Fc region.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises the hinge, the CH2 domain and the CH3 domain.


In other embodiments, the multispecific protein further comprises a second linker (L2) between the first antigen binding domain that binds CD3ε and the first Ig constant region or the fragment of the first Ig constant region and the second antigen binding domain that binds the tumor antigen and the second Ig constant region or the fragment of the second Ig constant region.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG1, an IgG2, and IgG3 or an IgG4 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG1 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG2 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG3 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG4 isotype.


The first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region can further be engineered as described herein.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that results in reduced binding of the multispecific protein to a FcγR.


In other embodiments, the at least one mutation that results in reduced binding of the multispecific protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that results in enhanced binding of the multispecific protein to a Fcγ receptor (FcγR).


In other embodiments, the at least one mutation that results in enhanced binding of the multispecific protein to the FcγR is selected from the group consisting of S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E, wherein residue numbering is according to the EU index.


In other embodiments, the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that modulates a half-life of the multispecific protein.


In other embodiments, the at least one mutation that modulates the half-life of the multispecific protein is selected from the group consisting of H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R, wherein residue numbering is according to the EU index.


In other embodiments, the multispecific protein comprises at least one mutation in a CH3 domain of the first Ig constant region or in a CH3 domain of the fragment of the first Ig constant region and/or at least one mutation in a CH3 domain of the second Ig constant region or in a CH3 domain of the fragment of the second Ig constant region.


In other embodiments, the at least one mutation in a CH3 domain of the first Ig constant region or in a CH3 domain of the fragment of the first Ig constant region and/or at least one mutation in a CH3 domain of the second Ig constant region or in a CH3 domain of the fragment of the second Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, T366L, F405W, T394W, K392L, T394S, T394W, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprise the following mutations


L235A_L235A_D265S_T350V_L351Y_F405A_Y407V in the first Ig constant region and L235A_L235A_D265S_T350V_T366L_K392L_T394W in the second Ig constant region; or


L235A_L235A_D265S_T350V_T366L_K392L_T394W in the first Ig constant region and L235A_L235A_D265S_T350V_L351Y_F405A_Y407V in the second Ig constant region.


Trispecific Antibodies

In some embodiments, provided herein are trispecific antibodies that bind to CD79b, CD20, and CD3, and trispecific binding fragments thereof. This can be achieved by, for example, making a molecule which comprises a first region binding specifically to CD79b, a second binding region binding specifically to CD3 and a third binding region binding specifically to the CD20. The antigen-binding regions can take any form that allows specific recognition of the target, for example the binding region may be or may include a heavy chain variable domain, an Fv (combination of a heavy chain variable domain and a light chain variable domain), an single-chain Fv (scFv), an Fab, a binding domain based on a fibronectin type III domain (such as from fibronectin, or based on a consensus of the type III domains from fibronectin, or from tenascin or based on a consensus of the type III domains from tenascin, such as the Centyrin molecules from Janssen Biotech, Inc., see e.g. WO2010/051274 and WO2010/093627). Accordingly, trispecific molecules comprising three different antigen-binding regions which bind CD79b, CD20, and CD3, respectively, are provided.


In some embodiments, the CD79b×CD20×CD3-multispecific antibody comprises a first heavy chain (HC1) and a light chain (LC) that pair to form a first antigen-binding site that specifically binds a first antigen and a second heavy chain (HC2) comprises a second antigen-binding site that specifically binds a second antigen. Either the HC1 or the HC2 may further comprise a third antigen-binding site that specifically binds a third antigen. The HC1 and HC2 may each comprise a Fragment crystallizable (Fc) domain comprising a CH2-CH3 domain. In preferred embodiments, the CD79b×CD20×CD3-multispecific antibody is a trispecific antibody comprising a CD79b-specific arm comprising a first heavy chain (HC1) and a light chain (LC) that pair to form a first antigen-binding site that specifically binds CD79b, a second heavy chain (HC2) that comprises a second antigen-binding site that specifically binds a second antigen, and the HC1 or the HC2 further comprises a third antigen-binding site that specifically binds a third antigen. In some embodiments, the second antigen is CD20, and the third antigen is CD3. In some embodiments, the second antigen is CD3, and the third antigen is CD20.


In some embodiment, the HC2 comprises the third antigen-binding site that specifically binds the third antigen. For example, the HC2 may comprise, from N to C-terminus, the second antigen-binding site, the Fc domain, a linker, and the third antigen-binding site.


In some embodiment, the HC1 comprises the third antigen-binding site that specifically binds the third antigen. For example, the HC1 may comprise, from N to C-terminus, a heavy chain variable domain (VH) associated with the first antigen-binding site, a CH1 domain, the Fc domain, a linker, and the third antigen-binding site.


In one embodiment, the CD79b×CD20×CD3-multispecific antibody is a trispecific antibody comprising a CD79b-specific arm comprising an HC1 and a LC that pair to form a first antigen-binding site that specifically binds CD79b, an HC2 that comprises a second antigen-binding site that specifically binds CD3, and the HC2 further comprises a third antigen-binding site that specifically binds CD20.


In one embodiment, the CD79b×CD20×CD3-multispecific antibody is a trispecific antibody comprising a CD79b-specific arm comprising an HC1 and a LC that pair to form a first antigen-binding site that specifically binds CD79b, an HC2 that comprises a second antigen-binding site that specifically binds CD20, and the HC2 further comprises a third antigen-binding site that specifically binds CD3.


In one embodiment, the CD79b×CD20×CD3-multispecific antibody is a trispecific antibody comprising a CD79b-specific arm comprising an HC1 and a LC that pair to form a first antigen-binding site that specifically binds CD79b, an HC2 that comprises a second antigen-binding site that specifically binds CD20, and the HC1 further comprises a third antigen-binding site that specifically binds CD3.


In some embodiments, the first antigen-binding site comprises an antigen-binding fragment (Fab). In some embodiments, the second antigen-binding site comprises a single-chain variable fragment (scFv). In some embodiments, the third antigen-binding site comprises a single-chain variable fragment (scFv).


In one embodiment, the CD79b-binding arm comprises an antigen-binding fragment (Fab), the CD3-binding arm comprises a single-chain variable fragment (scFv), and the CD20-binding arm comprises a single-chain variable fragment (scFv).


Exemplary heavy chains and light chains for the exemplary tri-specific binding proteins of the disclosure are shown in Table 31.


Generation of Multispecific Proteins that Comprise Antigen Binding Fragments that Bind CD3ε.


The antigen binding fragments that bind CD3ε of the disclosure may be engineered into multispecific antibodies which are also encompassed within the scope of the invention.


The antigen binding fragments that bind CD3ε may be engineered into full length multispecific antibodies which are generated using Fab arm exchange, in which substitutions are introduced into two monospecific bivalent antibodies within the Ig constant region CH3 domain which promote Fab arm exchange in vitro. In the methods, two monospecific bivalent antibodies are engineered to have certain substitutions at the CH3 domain that promote heterodimer stability; the antibodies are incubated together under reducing conditions sufficient to allow the cysteines in the hinge region to undergo disulfide bond isomerization; thereby generating the bispecific antibody by Fab arm exchange. The incubation conditions may optimally be restored to non-reducing. Exemplary reducing agents that may be used are 2-mercaptoethylamine (2-MEA), dithiothreitol (DTT), dithioerythritol (DTE), glutathione, tris(2-carboxyethyl)phosphine (TCEP), L-cysteine and beta-mercaptoethanol, preferably a reducing agent selected from the group consisting of: 2-mercaptoethylamine, dithiothreitol and tris(2-carboxyethyl)phosphine. For example, incubation for at least 90 min at a temperature of at least 20° C. in the presence of at least 25 mM 2-MEA or in the presence of at least 0.5 mM dithiothreitol at a pH of from 5-8, for example at pH of 7.0 or at pH of 7.4 may be used.


CH3 mutations that may be used include technologies such as Knob-in-Hole mutations (Genentech), electrostatically-matched mutations (Chugai, Amgen, NovoNordisk, Oncomed), the Strand Exchange Engineered Domain body (SEEDbody) (EMD Serono), Duobody® mutations (Genmab), and other asymmetric mutations (e.g. Zymeworks).


Knob-in-hole mutations are disclosed for example in WO1996/027011 and include mutations on the interface of CH3 region in which an amino acid with a small side chain (hole) is introduced into the first CH3 region and an amino acid with a large side chain (knob) is introduced into the second CH3 region, resulting in preferential interaction between the first CH3 region and the second CH3 region. Exemplary CH3 region mutations forming a knob and a hole are T366Y/F405A, T366W/F405W, F405W/Y407A, T394W/Y407T, T394S/Y407A, T366W/T394S, F405W/T394S and 1366W/1366S_L368A_Y407V.


Heavy chain heterodimer formation may be promoted by using electrostatic interactions by substituting positively charged residues on the first CH3 region and negatively charged residues on the second CH3 region as described in US2010/0015133, US2009/0182127, US2010/028637 or US2011/0123532.


Other asymmetric mutations that can be used to promote heavy chain heterodimerization are L351Y_F405A_Y407V/T394W, T366I_K392M_T394W/F405A_Y407V, T366L_K392M_T394W/F405A_Y407V, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, Y407A/T366A_K409F, or T350V_L351Y_F405A_Y407V/T350V_T366L_K392L_T394W as described in US2012/0149876 or US2013/0195849 (Zymeworks).


SEEDbody mutations involve substituting select IgG residues with IgA residues to promote heavy chain heterodimerization as described in US20070287170.


Other exemplary mutations that may be used are R409D_K370E/D399K_E357K, S354C_T366W/Y349C_T366S_L368A_Y407V, Y349C_T366W/S354C_T366S_L368A_Y407V, T366K/L351D, L351K/Y349E, L351K/Y349D, L351K/L368E, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, K392D/D399K, K392D/E356K, K253E_D282K_K322D/D239K_E240K_K292D, K392D_K409D/D356K_D399K as described in WO2007/147901, WO 2011/143545, WO2013157954, WO2013096291 and US2018/0118849.


Duobody® mutations (Genmab) are disclosed for example in U.S. Pat. No. 9,150,663 and US2014/0303356 and include mutations F405L/K409R, wild-type/F405L_R409K, T350I_K370T_F405L/K409R, K370W/K409R, D399AFGHILMNRSTVWY/K409R, T366ADEFGHILMQVY/K409R, L368ADEGHNRSTVQ/K409AGRH, D399FHKRQ/K409AGRH, F405IKLSTVW/K409AGRH and Y407LWQ/K409AGRH.


Additional bispecific or multispecific structures into which the antigen binding domains that bind


CD3ε can be incorporated include Dual Variable Domain Immunoglobulins (DVD) (Int. Pat. Publ. No. WO2009/134776; DVDs are full length antibodies comprising the heavy chain having a structure VH1-linker-VH2-CH and the light chain having the structure VL1-linker-VL2-CL; linker being optional), structures that include various dimerization domains to connect the two antibody arms with different specificity, such as leucine zipper or collagen dimerization domains (Int. Pat. Publ. No. WO2012/022811, U.S. Pat. Nos. 5,932,448; 6,833,441), two or more domain antibodies (dAbs) conjugated together, diabodies, heavy chain only antibodies such as camelid antibodies and engineered camelid antibodies, Dual Targeting (DT)-Ig (GSK/Domantis), Two-in-one Antibody (Genentech), Cross-linked Mabs (Karmanos Cancer Center), mAb2 (F-Star) and CovX-body (CovX/Pfizer), IgG-like Bispecific (InnClone/Eli Lilly), Ts2Ab (MedImmune/AZ) and BsAb (Zymogenetics), HERCULES (Biogen Idec) and TvAb (Roche), ScFv/Fc Fusions (Academic Institution), SCORPION (Emergent BioSolutions/Trubion, Zymogenetics/BMS), Dual Affinity Retargeting Technology (Fc-DART) (MacroGenics) and Dual(ScFv)2-Fab (National Research Center for Antibody Medicine—China), Dual-Action or Bis-Fab (Genentech), Dock-and-Lock (DNL) (ImmunoMedics), Bivalent Bispecific (Biotecnol) and Fab-Fv (UCB-Celltech). ScFv-, diabody-based, and domain antibodies, include but are not limited to, Bispecific T Cell Engager (BiTE) (Micromet), Tandem Diabody (Tandab) (Affimed), Dual Affinity Retargeting Technology (DART) (MacroGenics), Single-chain Diabody (Academic), TCR-like Antibodies (AIT, ReceptorLogics), Human Serum Albumin ScFv Fusion (Merrimack) and COMBODY (Epigen Biotech), dual targeting nanobodies (Ablynx), dual targeting heavy chain only domain antibodies.


The antigen binding domains that bind CD3ε of the disclosure may also be engineered into multispecific proteins which comprise three polypeptide chains. In such designs, at least one antigen binding domain is in the form of a scFv. Exemplary designs include (in which “1” indicates the first antigen binding domain, “2” indicates the second antigen binding domain and “3” indicates the third antigen binding domain:


Design 1: Chain A) scFv1-CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 2: Chain A) scFv1-hinge-CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 3: Chain A) scFv1-CH1-hinge-CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 4: Chain A) CH2-CH3-scFv1; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


CH3 engineering may be incorporated to the Designs 1-4, such as mutations L351Y_F405A_Y407V/T394W, T366I_K392M_T394W/F405A_Y407V, T366L_K392M_T394W/F405A_Y407V, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, Y407A/T366A_K409F, or T350V_L351Y_F405A_Y407V/T350V_T366L_K392L_T394W as described in US2012/0149876 or US2013/0195849 (Zymeworks).


Isotypes, Allotypes and Fc Engineering

The Ig constant region or the fragment of the Ig constant region, such as the Fc region present in the proteins of the disclosure may be of any allotype or isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG1 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG2 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG3 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG4 isotype.


The Ig constant region or the fragment of the Ig constant region may be of any allotype. It is expected that allotype has no influence on properties of the Ig constant region, such as binding or Fc-mediated effector functions. Immunogenicity of therapeutic proteins comprising Ig constant regions of fragments thereof is associated with increased risk of infusion reactions and decreased duration of therapeutic response (Baert et al., (2003) N Engl J Med 348:602-08). The extent to which therapeutic proteins comprising Ig constant regions of fragments thereof induce an immune response in the host may be determined in part by the allotype of the Ig constant region (Stickler et al., (2011) Genes and Immunity 12:213-21). Ig constant region allotype is related to amino acid sequence variations at specific locations in the constant region sequences of the antibody. Table 3 shows select IgG1, IgG2 and IgG4 allotypes.











TABLE 3









Amino acid residue at position of diversity



(residue numbering: EU Index)











IgG2
IgG4
IgG1















Allotype
189
282
309
422
214
356
358
431





G2m(n)
T
M








G2m(n−)
P
V


G2m(n)/(n−)
T
V


nG4m(a)


L
R


G1m(17)




K
E
M
A


G1m(17, 1)




K
D
L
A


G1m(3)




R
E
M
A









C-terminal lysine (CTL) may be removed from the Ig constant region by endogenous circulating carboxypeptidases in the blood stream (Cai et al., (2011) Biotechnol Bioeng 108:404-412). During manufacturing, CTL removal may be controlled to less than the maximum level by control of concentration of extracellular Zn2+, EDTA or EDTA-Fe3+ as described in U.S. Patent Publ. No. US20140273092. CTL content of proteins may be measured using known methods.


In other embodiments, the antigen binding fragment that binds CD3ε conjugated to the Ig constant region has a C-terminal lysine content from about 10% to about 90%. In other embodiments, the C-terminal lysine content is from about 20% to about 80%. In other embodiments, the C-terminal lysine content is from about 40% to about 70%. In other embodiments, the C-terminal lysine content is from about 55% to about 70%. In other embodiments, the C-terminal lysine content is about 60%.


Fc region mutations may be made to the antigen binding domains that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region to modulate their effector functions such as ADCC, ADCP and/or ADCP and/or pharmacokinetic properties. This may be achieved by introducing mutation(s) into the Fc that modulate binding of the mutated Fc to activating FcγRs (FcγRI, FcγRIIa, FcγRIII), inhibitory FcγRIIb and/or to FcRn.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or the fragment of the Ig constant region comprises at least one mutation in the Ig constant region or in the fragment of the Ig constant region.


In other embodiments, the at least one mutation is in the Fc region.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or fifteen mutations in the Fc region.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that modulates binding of the antibody to FcRn.


Fc positions that may be mutated to modulate half-life (e.g. binding to FcRn) include positions 250, 252, 253, 254, 256, 257, 307, 376, 380, 428, 434 and 435. Exemplary mutations that may be made singularly or in combination are mutations T250Q, M252Y, I253A, S254T, T256E, P257I, T307A, D376V, E380A, M428L, H433K, N434S, N434A, N434H, N434F, H435A and H435R. Exemplary singular or combination mutations that may be made to increase the half-life are mutations M428L/N434S, M252Y/S254T/T256E, T250Q/M428L, N434A and T307A/E380A/N434A. Exemplary singular or combination mutations that may be made to reduce the half-life are mutations H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises M252Y/S254T/T256E mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that reduces binding of the protein to an activating Fcγ receptor (FcγR) and/or reduces Fc effector functions such as C1q binding, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or phagocytosis (ADCP).


Fc positions that may be mutated to reduce binding of the protein to the activating FcγR and subsequently to reduce effector function include positions 214, 233, 234, 235, 236, 237, 238, 265, 267, 268, 270, 295, 297, 309, 327, 328, 329, 330, 331 and 365. Exemplary mutations that may be made singularly or in combination are mutations K214T, E233P, L234V, L234A, deletion of G236, V234A, F234A, L235A, G237A, P238A, P238S, D265A, S267E, H268A, H268Q, Q268A, N297A, A327Q, P329A, D270A, Q295A, V309L, A327S, L328F, A330S and P331S in IgG1, IgG2, IgG3 or IgG4. Exemplary combination mutations that result in proteins with reduced ADCC are mutations L234A/L235A on IgG1, L234A/L235A/D265S on IgG1, V234A/G237A/P238S/H268A/V309L/A330S/P331S on IgG2, F234A/L235A on IgG4, S228P/F234A/L235A on IgG4, N297A on all Ig isotypes, V234A/G237A on IgG2, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M on IgG1, H268Q/V309L/A330S/P331S on IgG2, S267E/L328F on IgG1, L234F/L235E/D265A on IgG1, L234A/L235A/G237A/P238S/H268A/A330S/P331S on IgG1, S228P/F234A/L235A/G237A/P238S on IgG4, and S228P/F234A/L235A/G236-deleted/G237A/P238S on IgG4. Hybrid IgG2/4 Fc domains may also be used, such as Fc with residues 117-260 from IgG2 and residues 261-447 from IgG4.


Exemplary mutation that result in proteins with reduced CDC is a K322A mutation.


Well-known S228P mutation may be made in IgG4 to enhance IgG4 stability.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation selected from the group consisting of K214T, E233P, L234V, L234A, deletion of G236, V234A, F234A, L235A, G237A, P238A, P238S, D265A, S267E, H268A, H268Q, Q268A, N297A, A327Q, P329A, D270A, Q295A, V309L, A327S, L328F, K322, A330S and P331S.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises L234A/L235A/D265S mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises L234A/L235A mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that enhances binding of the protein to an Fcγ receptor (FcγR) and/or enhances Fc effector functions such as C1q binding, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and/or phagocytosis (ADCP).


Fc positions that may be mutated to increase binding of the protein to the activating FcγR and/or enhance Fc effector functions include positions 236, 239, 243, 256, 290, 292, 298, 300, 305, 312, 326, 330, 332, 333, 334, 345, 360, 339, 378, 396 or 430 (residue numbering according to the EU index). Exemplary mutations that may be made singularly or in combination are G236A, S239D, F243L, T256A, K290A, R292P, S298A, Y300L, V305L, K326A, A330K, I332E, E333A, K334A, A339T and P396L. Exemplary combination mutations that result in proteins with increased ADCC or ADCP are a S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E.


Fc positions that may be mutated to enhance CDC include positions 267, 268, 324, 326, 333, 345 and 430. Exemplary mutations that may be made singularly or in combination are S267E, F1268F, S324T, K326A, K326W, E333A, E345K, E345Q, E345R, E345Y, E430S, E430F and E430T. Exemplary combination mutations that result in proteins with increased CDC are K326A/E333A, K326W/E333A, H268F/S324T, S267E/H268F, S267E/S324T and S267E/H268F/S324T.


The specific mutations described herein are mutations when compared to the IgG1, IgG2 and IgG4 wild-type amino acid sequences of SEQ ID NOs: 237, 238, and 239, respectively.









wild-type IgG1,


SEQ ID NO: 237


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





wild-type IgG2;


SEQ ID NO: 238


ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV





ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH





EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGK





EYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLT





CLVKGFYPSDISVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





wild-type IgG4;


SEQ ID NO: 239


ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRV





ESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNG





KEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSL





TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDK





SRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK






Binding of the antibody to FcγR or FcRn may be assessed on cells engineered to express each receptor using flow cytometry. In an exemplary binding assay, 2×105 cells per well are seeded in 96-well plate and blocked in BSA Stain Buffer (BD Biosciences, San Jose, USA) for 30 min at 4° C. Cells are incubated with a test antibody on ice for 1.5 hour at 4° C. After being washed twice with BSA stain buffer, the cells are incubated with R-PE labeled anti-human IgG secondary antibody (Jackson Immunoresearch Laboratories) for 45 min at 4° C. The cells are washed twice in stain buffer and then resuspended in 150 μL of Stain Buffer containing 1:200 diluted DRAQ7 live/dead stain (Cell Signaling Technology, Danvers, USA). PE and DRAQ7 signals of the stained cells are detected by Miltenyi MACSQuant flow cytometer (Miltenyi Biotec, Auburn, USA) using B2 and B4 channel respectively. Live cells are gated on DRAQ7 exclusion and the geometric mean fluorescence signals are determined for at least 10,000 live events collected. FlowJo software (Tree Star) is used for analysis. Data is plotted as the logarithm of antibody concentration versus mean fluorescence signals. Nonlinear regression analysis is performed.


Glycoengineering

The ability of the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region to mediate ADCC can be enhanced by engineering the Ig constant region or the fragment of the Ig constant region oligosaccharide component. Human IgG1 or IgG3 are N-glycosylated at Asn297 with the majority of the glycans in the well-known biantennary G0, G0F, G1, G1F, G2 or G2F forms. Ig constant region containing proteins may be produced by non-engineered CHO cells typically have a glycan fucose content of about at least 85%. The removal of the core fucose from the biantennary complex-type oligosaccharides attached to the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region enhances the ADCC of the protein via improved FcγRIIIa binding without altering antigen binding or CDC activity. Such proteins can be achieved using different methods reported to lead to the successful expression of relatively high defucosylated immunoglobulins bearing the biantennary complex-type of Fc oligosaccharides such as control of culture osmolality (Konno et al., Cytotechnology 64(:249-65, 2012), application of a variant CHO line Lec13 as the host cell line (Shields et al., J Biol Chem 277:26733-26740, 2002), application of a variant CHO line EB66 as the host cell line (Olivier et al., MAbs; 2(4): 405-415, 2010; PMID:20562582), application of a rat hybridoma cell line YB2/0 as the host cell line (Shinkawa et al., J Biol Chem 278:3466-3473, 2003), introduction of small interfering RNA specifically against the a 1,6-fucosyltrasferase (FUT8) gene (Mori et al., Biotechnol Bioeng 88:901-908, 2004), or coexpression of β-1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II or a potent alpha-mannosidase I inhibitor, kifunensine (Ferrara et al., J Biol Chem 281:5032-5036, 2006, Ferrara et al., Biotechnol Bioeng 93:851-861, 2006; Xhou et al., Biotechnol Bioeng 99:652-65, 2008).


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region of the disclosure has a biantennary glycan structure with fucose content of about between 1% to about 15%, for example about 15%, 14%, 13%, 12%, 11% 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1%. In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region has a glycan structure with fucose content of about 50%, 40%, 45%, 40%, 35%, 30%, 25%, or 20%.


“Fucose content” means the amount of the fucose monosaccharide within the sugar chain at Asn297. The relative amount of fucose is the percentage of fucose-containing structures related to all glycostructures. These may be characterized and quantified by multiple methods, for example: 1) using MALDI-TOF of N-glycosidase F treated sample (e.g. complex, hybrid and oligo- and high-mannose structures) as described in Int Pat. Publ. No. WO2008/077546 2); 2) by enzymatic release of the Asn297 glycans with subsequent derivatization and detection/quantitation by HPLC (UPLC) with fluorescence detection and/or HPLC-MS (UPLC-MS); 3) intact protein analysis of the native or reduced mAb, with or without treatment of the Asn297 glycans with Endo S or other enzyme that cleaves between the first and the second GlcNAc monosaccharides, leaving the fucose attached to the first GlcNAc; 4) digestion of the mAb to constituent peptides by enzymatic digestion (e.g., trypsin or endopeptidase Lys-C), and subsequent separation, detection and quantitation by HPLC-MS (UPLC-MS); 5) Separation of the mAb oligosaccharides from the mAb protein by specific enzymatic deglycosylation with PNGase F at Asn 297. The oligosaccharides thus released can be labeled with a fluorophore, separated and identified by various complementary techniques which allow: fine characterization of the glycan structures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry by comparison of the experimental masses with the theoretical masses, determination of the degree of sialylation by ion exchange HPLC (GlycoSep C), separation and quantification of the oligosaccharide forms according to hydrophilicity criteria by normal-phase HPLC (GlycoSep N), and separation and quantification of the oligosaccharides by high performance capillary electrophoresis-laser induced fluorescence (HPCE-LIF).


“Low fucose” or “low fucose content” as used herein refers to the antigen binding domain that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region with fucose content of about between 1%-15%.


“Normal fucose” or ‘normal fucose content” as used herein refers to the antigen binding domain that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region with fucose content of about over 50%, typically about over 80% or over 85%.


Anti-Idiotypic Antibodies

Anti-idiotypic antibodies are antibodies that specifically bind to the antigen binding domain that binds CD3ε of the disclosure.


The invention also provides an anti-idiotypic antibody that specifically binds to the antigen binding domain that binds CD3ε of the disclosure.


The invention also provides an anti-idiotypic antibody that specifically binds to the antigen binding domain that binds CD3ε comprising

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


An anti-idiotypic (Id) antibody is an antibody which recognizes the antigenic determinants (e.g. the paratope or CDRs) of the antibody. The Id antibody may be antigen-blocking or non-blocking. The antigen-blocking Id may be used to detect the free antigen binding domain in a sample (e.g. the antigen binding domain that binds CD3ε of the disclosure). The non-blocking Id may be used to detect the total antibody (free, partially bond to antigen, or fully bound to antigen) in a sample. An Id antibody may be prepared by immunizing an animal with the antibody to which an anti-Id is being prepared.


An anti-Id antibody may also be used as an immunogen to induce an immune response in yet another animal, producing a so-called anti-anti-Id antibody. An anti-anti-Id may be epitopically identical to the original antigen binding domain which induced the anti-Id. Thus, by using antibodies to the idiotypic determinants of the antigen binding domain, it is possible to identify other clones expressing antigen binding domains of identical specificity. Anti-Id antibodies may be varied (thereby producing anti-Id antibody variants) and/or derivatized by any suitable technique, such as those described elsewhere herein.


Immunoconjugates

The antigen binding domains that bind CD3ε of the disclosure, the proteins comprising the antigen binding domains that bind CD3ε or the multispecific proteins that comprise the antigen binding domains that bind CD3ε (collectively referred herein as to CD3ε binding proteins) may be conjugated to a heterologous molecule.


In other embodiments, the heterologous molecule is a detectable label or a cytotoxic agent.


The invention also provides an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides a protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides a multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


The invention also provides a protein comprising an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


The invention also provides a multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


CD3ε binding proteins of the disclosure may be used to direct therapeutics to tumor antigen expressing cells. Alternatively, CD3ε expressing cells may be targeted with a CD3ε binding protein of the disclosure coupled to a therapeutic intended to modify cell function once internalized.


In other embodiments, the detectable label is also a cytotoxic agent.


The CD3ε binding proteins of the disclosure conjugated to a detectable label may be used to evaluate expression of CD3ε on a variety of samples.


Detectable label includes compositions that when conjugated to the CD3ε binding proteins of the disclosure renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means.


Exemplary detectable labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, haptens, luminescent molecules, chemiluminescent molecules, fluorochromes, fluorophores, fluorescent quenching agents, colored molecules, radioactive isotopes, scintillates, avidin, streptavidin, protein A, protein G, antibodies or fragments thereof, polyhistidine, Ni2+, Flag tags, myc tags, heavy metals, enzymes, alkaline phosphatase, peroxidase, luciferase, electron donors/acceptors, acridinium esters, and colorimetric substrates.


A detectable label may emit a signal spontaneously, such as when the detectable label is a radioactive isotope. In other cases, the detectable label emits a signal as a result of being stimulated by an external field.


Exemplary radioactive isotopes may be γ-emitting, Auger-emitting, β-emitting, an alpha-emitting or positron-emitting radioactive isotope. Exemplary radioactive isotopes include 3H, 11C, 13C, 15N, 18F, 19F, 55Co, 57Co, 60Co, 61Cu, 62Cu, 64Cu, 67Cu, 68Ga, 72As, 75Br, 86Y, 89Zr, 90Sr, 94mTc, 99mTc, 115In, 123I, 124I, 125I, 131I, 211At, 212Bi, 213Bi, 223Ra, 226Ra, 225Ac and 227Ac.


Exemplary metal atoms are metals with an atomic number greater than 20, such as calcium atoms, scandium atoms, titanium atoms, vanadium atoms, chromium atoms, manganese atoms, iron atoms, cobalt atoms, nickel atoms, copper atoms, zinc atoms, gallium atoms, germanium atoms, arsenic atoms, selenium atoms, bromine atoms, krypton atoms, rubidium atoms, strontium atoms, yttrium atoms, zirconium atoms, niobium atoms, molybdenum atoms, technetium atoms, ruthenium atoms, rhodium atoms, palladium atoms, silver atoms, cadmium atoms, indium atoms, tin atoms, antimony atoms, tellurium atoms, iodine atoms, xenon atoms, cesium atoms, barium atoms, lanthanum atoms, hafnium atoms, tantalum atoms, tungsten atoms, rhenium atoms, osmium atoms, iridium atoms, platinum atoms, gold atoms, mercury atoms, thallium atoms, lead atoms, bismuth atoms, francium atoms, radium atoms, actinium atoms, cerium atoms, praseodymium atoms, neodymium atoms, promethium atoms, samarium atoms, europium atoms, gadolinium atoms, terbium atoms, dysprosium atoms, holmium atoms, erbium atoms, thulium atoms, ytterbium atoms, lutetium atoms, thorium atoms, protactinium atoms, uranium atoms, neptunium atoms, plutonium atoms, americium atoms, curium atoms, berkelium atoms, californium atoms, einsteinium atoms, fermium atoms, mendelevium atoms, nobelium atoms, or lawrencium atoms.


In other embodiments, the metal atoms may be alkaline earth metals with an atomic number greater than twenty.


In other embodiments, the metal atoms may be lanthanides.


In other embodiments, the metal atoms may be actinides.


In other embodiments, the metal atoms may be transition metals.


In other embodiments, the metal atoms may be poor metals.


In other embodiments, the metal atoms may be gold atoms, bismuth atoms, tantalum atoms, and gadolinium atoms.


In other embodiments, the metal atoms may be metals with an atomic number of 53 (i.e. iodine) to 83 (i.e. bismuth).


In other embodiments, the metal atoms may be atoms suitable for magnetic resonance imaging.


The metal atoms may be metal ions in the form of +1, +2, or +3 oxidation states, such as Ba2+, Bi3+, Cs+, Ca2+, Cr2+, Cr3+, Cr6+, Co2+, Co3+, Cu+, Cu2+, Cu3+, Ga3+, Gd3+, Au+, Au3+, Fe2+, Fe3+, F3+, Pb2+, Mn2+, Mn3+, Mn4+, Mn7+, Hg2+, Ni2+, Ni3+, Ag+, Sn2+, Sn4+, and Zn2+. The metal atoms may comprise a metal oxide, such as iron oxide, manganese oxide, or gadolinium oxide.


Suitable dyes include any commercially available dyes such as, for example, 5(6)-carboxyfluorescein, IRDye 680RD maleimide or IRDye 800CW, ruthenium polypyridyl dyes, and the like.


Suitable fluorophores are fluorescein isothiocyanate (FITC), fluorescein thiosemicarbazide, rhodamine, Texas Red, CyDyes (e.g., Cy3, Cy5, Cy5.5), Alexa Fluors (e.g., Alexa488, Alexa555, Alexa594; Alexa647), near infrared (NIR) (700-900 nm) fluorescent dyes, and carbocyanine and aminostyryl dyes.


The antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


The protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


The multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


In other embodiments, the cytotoxic agent is a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


In other embodiments, the cytotoxic agent is daunomycin, doxorubicin, methotrexate, vindesine, bacterial toxins such as diphtheria toxin, ricin, geldanamycin, maytansinoids or calicheamicin. The cytotoxic agent may elicit their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition.


In other embodiments, the cytotoxic agent is an enzymatically active toxin such as diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), Momordica charantia inhibitor, curcin, crotin, Sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.


In other embodiments, the cytotoxic agent is a radionuclide, such as 212Bi, 131I, 131In, 90Y, and 186Re.


In other embodiments, the cytotoxic agent is dolastatins or dolostatin peptidic analogs and derivatives, auristatin or monomethyl auristatin phenylalanine Exemplary molecules are disclosed in U.S. Pat. Nos. 5,635,483 and 5,780,588. Dolastatins and auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al (2001) Antimicrob Agents and Chemother. 45(12):3580-3584) and have anticancer and antifungal activity. The dolastatin or auristatin drug moiety may be attached to the antibody of the invention through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety (WO02/088172), or via any cysteine engineered into the antibody.


The CD3ε binding proteins of the disclosure may be conjugated to a detectable label using known methods.


In other embodiments, the detectable label is complexed with a chelating agent.


In other embodiments, the detectable label is conjugated to the CD3ε binding proteins of the disclosure via a linker.


The detectable label or the cytotoxic moiety may be linked directly, or indirectly, to the CD3ε binding proteins of the disclosure using known methods. Suitable linkers are known in the art and include, for example, prosthetic groups, non-phenolic linkers (derivatives of N-succimidyl-benzoates; dodecaborate), chelating moieties of both macrocyclics and acyclic chelators, such as derivatives of 1,4,7,10-tetraazacyclododecane-1,4,7,10,tetraacetic acid (DOTA), derivatives of diethylenetriaminepentaacetic avid (DTPA), derivatives of S-2-(4-Isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and derivatives of 1,4,8,11-tetraazacyclodocedan-1,4,8,11-tetraacetic acid (TETA), N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene) and other chelating moieties. Suitable peptide linkers are well known.


In other embodiments, the CD3ε binding proteins of the disclosure is removed from the blood via renal clearance.


Kits

The invention also provides a kit comprising the antigen binding domain that binds CD3ε.


The invention also provides a kit comprising the protein comprising an antigen binding domain that binds CD3ε.


The invention also provides a kit comprising the multispecific protein comprising an antigen binding domain that binds CD3ε.


The kit may be used for therapeutic uses and as diagnostic kits.


The kit may be used to detect the presence of CD3ε in a sample.


In other embodiments, the kit comprises the CD3ε binding protein of the disclosure and reagents for detecting the CD3ε binding protein. The kit can include one or more other elements including: instructions for use; other reagents, e.g., a label, a therapeutic agent, or an agent useful for chelating, or otherwise coupling, an antibody to a label or therapeutic agent, or a radioprotective composition; devices or other materials for preparing the antibody for administration; pharmaceutically acceptable carriers; and devices or other materials for administration to a subject.


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the kit comprises the protein comprising an antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the kit comprises the multispecific protein comprising an antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the protein comprising an antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the multispecific protein comprising an antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε comprising

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε comprising SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


Methods of Detecting CD3ε

The invention also provides a method of detecting CD3ε in a sample, comprising obtaining the sample, contacting the sample with the antigen binding domain that binds CD3ε of the disclosure and detecting the bound CD3ε in the sample.


In other embodiments, the sample may be derived from urine, blood, serum, plasma, saliva, ascites, circulating cells, synovial fluid, circulating cells, cells that are not tissue associated (i.e., free cells), tissues (e.g., surgically resected tissue, biopsies, including fine needle aspiration), histological preparations, and the like.


The antigen binding domain that binds CD3ε of the disclosure may be detected using known methods. Exemplary methods include direct labeling of the antibodies using fluorescent or chemiluminescent labels, or radiolabels, or attaching to the antibodies of the invention a moiety which is readily detectable, such as biotin, enzymes or epitope tags. Exemplary labels and moieties are ruthenium, 111In-DOTA, 111In-diethylenetriaminepentaacetic acid (DTPA), horseradish peroxidase, alkaline phosphatase and beta-galactosidase, poly-histidine (HIS tag), acridine dyes, cyanine dyes, fluorone dyes, oxazin dyes, phenanthridine dyes, rhodamine dyes and Alexafluor® dyes.


The antigen binding domain that binds CD3ε of the disclosure may be used in a variety of assays to detect CD3ε in the sample. Exemplary assays are western blot analysis, radioimmunoassay, surface plasmon resonance, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.


Polynucleotides, Vectors, Host Cells

The disclosure also provides an isolated polynucleotide encoding any of the CD3ε binding proteins of the disclosure. The CD3ε binding protein includes the antigen binding domains that bind CD3ε, the proteins comprising the antigen binding domains that bind CD3ε, the multispecific proteins that comprise the antigen binding domains that bind CD3ε of the disclosure.


The invention also provides an isolated polynucleotide encoding any of CD3ε biding proteins or fragments thereof.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NOs: 55, 54, or 48.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NOs: 59, 58 or 56.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NO: 55.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NO: 54.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NO: 48.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 59.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 58.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 56.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


The invention also provides for an isolated polynucleotide encoding

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 96.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 97.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 98.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 99.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 100.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 101.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 102.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 103.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 104.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 105.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 106.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 107.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 108.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 109.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 110.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 112.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 113.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 114.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 115.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 116.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 117.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 118.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 119.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 120.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 121.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 122.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 123.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 124.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 125.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 126.


Some embodiments of the disclosure also provide an isolated or purified nucleic acid comprising a polynucleotide which is complementary to the polynucleotides encoding the CD3ε binding proteins of the disclosure or polynucleotides which hybridize under stringent conditions to the polynucleotides encoding the CD3ε binding proteins of the disclosure.


The polynucleotides which hybridize under stringent conditions may hybridize under high stringency conditions. By “high stringency conditions” is meant that the polynucleotide specifically hybridizes to a target sequence (the nucleotide sequence of any of the nucleic acids described herein) in an amount that is detectably stronger than non-specific hybridization. High stringency conditions include conditions which would distinguish a polynucleotide with an exact complementary sequence, or one containing only a few scattered mismatches from a random sequence that happened to have a few small regions (e.g., 3-12 bases) that matched the nucleotide sequence. Such small regions of complementarity are more easily melted than a full-length complement of 14-17 or more bases, and high stringency hybridization makes them easily distinguishable. Relatively high stringency conditions would include, for example, low salt and/or high temperature conditions, such as provided by about 0.02-0.1 M NaCl or the equivalent, at temperatures of about 50-70° C. Such high stringency conditions tolerate little, if any, mismatch between the nucleotide sequence and the template or target strand. It is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide.


The polynucleotide sequences of the disclosure may be operably linked to one or more regulatory elements, such as a promoter or enhancer, that allow expression of the nucleotide sequence in the intended host cell. The polynucleotide may be a cDNA. The promoter bay be a strong, weak, tissue-specific, inducible or developmental-specific promoter. Exemplary promoters that may be used are hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, beta-actin, human myosin, human hemoglobin, human muscle creatine, and others. In addition, many viral promoters function constitutively in eukaryotic cells and are suitable for use with the described embodiments. Such viral promoters include Cytomegalovirus (CMV) immediate early promoter, the early and late promoters of SV40, the Mouse Mammary Tumor Virus (MMTV) promoter, the long terminal repeats (LTRs) of Maloney leukemia virus, Human Immunodeficiency Virus (HIV), Epstein Barr Virus (EBV), Rous Sarcoma Virus (RSV), and other retroviruses, and the thymidine kinase promoter of Herpes Simplex Virus. Inducible promoters such as the metallothionein promoter, tetracycline-inducible promoter, doxycycline-inducible promoter, promoters that contain one or more interferon-stimulated response elements (ISRE) such as protein kinase R 2′,5′-oligoadenylate synthetases, Mx genes, ADAR1, and the like may also be sued.


The invention also provides a vector comprising the polynucleotide of the invention. The disclosure also provide an expression vector comprising the polynucleotide of the invention. Such vectors may be plasmid vectors, viral vectors, vectors for baculovirus expression, transposon based vectors or any other vector suitable for introduction of the synthetic polynucleotide of the invention into a given organism or genetic background by any means. Polynucleotides encoding the CD3ε binding proteins of the disclosure may be operably linked to control sequences in the expression vector(s) that ensure the expression of the CD3ε binding proteins. Such regulatory elements may include a transcriptional promoter, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. Expression vectors may also include one or more nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, other 5′ or 3′ flanking nontranscribed sequences, 5′ or 3′ nontranslated sequences (such as necessary ribosome binding sites), a polyadenylation site, splice donor and acceptor sites, or transcriptional termination sequences. An origin of replication that confers the ability to replicate in a host may also be incorporated.


The expression vectors can comprise naturally-occurring or non-naturally-occurring internucleotide linkages, or both types of linkages. The non-naturally occurring or altered nucleotides or internucleotide linkages do not hinder the transcription or replication of the vector.


Once the vector has been incorporated into the appropriate host, the host is maintained under conditions suitable for high level expression of the CD3ε binding proteins of the disclosure encoded by the incorporated polynucleotides. The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. Exemplary vectors may be constructed as described by Okayama and Berg, 3 Mol. Cell. Biol. 280 (1983).


Vectors of the disclosure may also contain one or more Internal Ribosome Entry Site(s) (IRES). Inclusion of an IRES sequence into fusion vectors may be beneficial for enhancing expression of some proteins. In other embodiments, the vector system will include one or more polyadenylation sites (e.g., SV40), which may be upstream or downstream of any of the aforementioned nucleic acid sequences. Vector components may be contiguously linked or arranged in a manner that provides optimal spacing for expressing the gene products (i.e., by the introduction of “spacer” nucleotides between the ORFs) or positioned in another way. Regulatory elements, such as the IRES motif, may also be arranged to provide optimal spacing for expression.


Vectors of the disclosure may be circular or linear. They may be prepared to contain a replication system functional in a prokaryotic or eukaryotic host cell. Replication systems can be derived, e.g., from ColE1, SV40, 2μ plasmid, λ, bovine papilloma virus, and the like.


The recombinant expression vectors can be designed for either transient expression, for stable expression, or for both. Also, the recombinant expression vectors can be made for constitutive expression or for inducible expression.


Further, the recombinant expression vectors can be made to include a suicide gene. As used herein, the term “suicide gene” refers to a gene that causes the cell expressing the suicide gene to die. The suicide gene can be a gene that confers sensitivity to an agent, e.g., a drug, upon the cell in which the gene is expressed, and causes the cell to die when the cell is contacted with or exposed to the agent. Suicide genes are known in the art and include, for example, the Herpes Simplex Virus (HSV) thymidine kinase (TK) gene, cytosine deaminase, purine nucleoside phosphoryl The vectors may also comprise selection markers, which are well known in the art. Selection markers include positive and negative selection marker. Marker genes include biocide resistance, e.g., resistance to antibiotics, heavy metals, etc., complementation in an auxotrophic host to provide prototrophy, and the like. Exemplary marker genes include antibiotic resistance genes (e.g., neomycin resistance gene, a hygromycin resistance gene, a kanamycin resistance gene, a tetracycline resistance gene, a penicillin resistance gene, histidinol resistance gene, histidinol x resistance gene), glutamine synthase genes, HSV-TK, HSV-TK derivatives for ganciclovir selection, or bacterial purine nucleoside phosphorylase gene for 6-methylpurine selection (Gadi et al., 7 Gene Ther. 1738-1743 (2000)). A nucleic acid sequence encoding a selection marker or the cloning site may be upstream or downstream of a nucleic acid sequence encoding a polypeptide of interest or cloning site.


Exemplary vectors that may be used are Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene, La Jolla, Calif., USA); pTrc99A, pKK223-3, pKK233-3, pDR540, and pRIT5 (Pharmacia, Uppsala, Sweden). Eukaryotic: pWLneo, pSV2cat, pOG44, PXR1, pSG (Stratagene) pSVK3, pBPV, pMSG and pSVL (Pharmacia), pEE6.4 (Lonza) and pEE12.4 (Lonza). Additional vectors include the pUC series (Fermentas Life Sciences, Glen Burnie, Md.), the pBluescript series (Stratagene, LaJolla, Calif.), the pET series (Novagen, Madison, Wis.), the pGEX series (Pharmacia Biotech, Uppsala, Sweden), and the pEX series (Clontech, Palo Alto, Calif.). Bacteriophage vectors, such as λGT10, λGT11, λEMBL4, and λNM1149, λZapII (Stratagene) can be used. Exemplary plant expression vectors include pBI01, pBI01.2, pBI121, pBI101.3, and pBIN19 (Clontech). Exemplary animal expression vectors include pEUK-Cl, pMAM, and pMAMneo (Clontech). The expression vector may be a viral vector, e.g., a retroviral vector, e.g., a gamma retroviral vector.ase, and nitroreductase.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 55.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 54.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 48.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 59.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 58.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 56.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58, or 56.


In other embodiments, the vector comprises the polynucleotide encoding

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NOs: SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 96.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 97.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 98.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 99.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 100.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 101.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 102.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 103.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 104.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 105.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 106.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 107.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 108.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 109.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 110.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 112.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 113.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 114.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 115.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 116.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 117.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 118.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 119.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 120.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 121.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 122.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 123.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 124.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 125.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 126.


The invention also provides for a host cell comprising one or more vectors of the invention. “Host cell” refers to a cell into which a vector has been introduced. It is understood that the term host cell is intended to refer not only to the particular subject cell but to the progeny of such a cell, and also to a stable cell line generated from the particular subject cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein. Such host cells may be eukaryotic cells, prokaryotic cells, plant cells or archeal cells. Escherichia coli, bacilli, such as Bacillus subtilis, and other enterobacteriaceae, such as Salmonella, Serratia, and various Pseudomonas species are examples of prokaryotic host cells. Other microbes, such as yeast, are also useful for expression. Saccharomyces (e.g., S. cerevisiae) and Pichia are examples of suitable yeast host cells. Exemplary eukaryotic cells may be of mammalian, insect, avian or other animal origins. Mammalian eukaryotic cells include immortalized cell lines such as hybridomas or myeloma cell lines such as SP2/0 (American Type Culture Collection (ATCC), Manassas, Va., CRL-1581), NS0 (European Collection of Cell Cultures (ECACC), Salisbury, Wiltshire, UK, ECACC No. 85110503), FO (ATCC CRL-1646) and Ag653 (ATCC CRL-1580) murine cell lines. An exemplary human myeloma cell line is U266 (ATTC CRL-TIB-196). Other useful cell lines include those derived from Chinese Hamster Ovary (CHO) cells such as CHO-K1SV (Lonza Biologics, Walkersville, Md.), CHO-K1 (ATCC CRL-61) or DG44.


The disclosure also provides a method of producing the CD3ε binding protein of the disclosure comprising culturing the host cell of the disclosure in conditions that the CD3ε binding protein is expressed, and recovering the CD3ε binding protein produced by the host cell. Methods of making proteins and purifying them are known. Once synthesized (either chemically or recombinantly), the CD3ε binding proteins may be purified according to standard procedures, including ammonium sulfate precipitation, affinity columns, column chromatography, high performance liquid chromatography (HPLC) purification, gel electrophoresis, and the like (see generally Scopes, Protein Purification (Springer-Verlag, N.Y., (1982)). A subject protein may be substantially pure, e.g., at least about 80% to 85% pure, at least about 85% to 90% pure, at least about 90% to 95% pure, or at least about 98% to 99%, or more, pure, e.g., free from contaminants such as cell debris, macromolecules, etc. other than the subject protein


The polynucleotides encoding the CD3ε binding proteins of the disclosure may be incorporated into vectors using standard molecular biology methods. Host cell transformation, culture, antibody expression and purification are done using well known methods.


Modified nucleotides may be used to generate the polynucleotides of the disclosure. Exemplary modified nucleotides are 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, N6-substituted adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-me thoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5″-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queuosine, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine.


Pharmaceutical Compositions/Administration

The disclosure also provides a pharmaceutical composition comprising the CD3ε binding protein of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the protein comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the multispecific protein comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the multispecific protein comprising the antigen binding domain that binds CD3ε and antigen binding domain that binds a tumor antigen of the disclosure and a pharmaceutically acceptable carrier.


For therapeutic use, the CD3ε binding protein of the disclosure may be prepared as pharmaceutical compositions containing an effective amount of the antibody as an active ingredient in a pharmaceutically acceptable carrier. These solutions are sterile and generally free of particulate matter. They may be sterilized by conventional, well-known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, stabilizing, thickening, lubricating and coloring agents, etc.


The term “pharmaceutically acceptable,” as used herein with regard to pharmaceutical compositions, means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals and/or in humans.


Methods of Treatment and Uses

The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in therapy.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in treating a cell proliferative disorder.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in killing cancer cells.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in the manufacture of a medicament for killing cancer cells.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in redirection of cytolytic T cells.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in the manufacture of a medicament for redirection of cytolytic T cells.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in redirection of cytolytic T cells in the tumor microenviroment.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in the manufacture of a medicament for redirection of cytolytic T cells in the tumor microenviroment.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in treating cancer.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in the manufacture of a medicament for treating cancer.


In one aspect, the disclosure relates generally to the treatment of a subject at risk of developing cancer. The invention also includes treating a malignancy in which chemotherapy and/or immunotherapy results in significant immunosuppression in a subject, thereby increasing the risk of the subject developing cancer.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the protein comprising the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the multispecific protein comprising the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the immunoconjugate of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the pharmaceutical composition of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating cancer in a subject, comprising administering a therapeutically effective amount of the multispecific protein comprising the antigen binding domain that binds CD3ε to the subject to treat the cancer, wherein the antigen binding domain that bind CD3ε comprises

    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
    • the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
    • the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
    • the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
    • the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.


The disclosure also provides a method of treating cancer in a subject, comprising administering a therapeutically effective amount of the multispecific protein comprising the antigen binding domain that binds CD3ε to the subject to treat the cancer, wherein the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.


A further aspect of the disclosure is a method of treating a cell proliferative disorder in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure. In other embodiments, the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure, is administered to the subject.


In any of the preceding uses or methods, the cell proliferative disorder is cancer. In other embodiments, the cancer is selected from the group consisting of esophageal cancer, stomach cancer, small intestine cancer, large intestine cancer, colorectal cancer, breast cancer, non-small cell lung cancer, non-Hodgkin's lymphoma (NHL), B cell lymphoma, B cell leukemia, multiple myeloma, renal cancer, prostate cancer, liver cancer, head and neck cancer, melanoma, ovarian cancer, mesothelioma, glioblastoma, germinal-center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, follicular lymphoma (FL), mantle cell lymphoma (MCL), acute myeloid leukemia (AML), chronic lymphoid leukemia (CLL), marginal zone lymphoma (MZL), small lymphocytic leukemia (SLL), lymphoplasmacytic lymphoma (LL), Waldenstrom macroglobulinemia (WM), central nervous system lymphoma (CNSL), Burkitt's lymphoma (BL), B-cell prolymphocytic leukemia, Splenic marginal zone lymphoma, Hairy cell leukemia, Splenic lymphoma/leukemia, unclassifiable, Splenic diffuse red pulp small B-cell lymphoma, Hairy cell leukemia variant, Waldenstrom macroglobulinemia, Heavy chain diseases, Plasma cell myeloma, Solitary plasmacytoma of bone, Extraosseous plasmacytoma, Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), Nodal marginal zone lymphoma, Pediatric nodal marginal zone lymphoma, Pediatric follicular lymphoma, Primary cutaneous follicle centre lymphoma, T-cell/histiocyte rich large B-cell lymphoma, Primary DLBCL of the CNS, Primary cutaneous DLBCL, leg type, EBV-positive DLBCL of the elderly, DLBCL associated with chronic inflammation, Lymphomatoid granulomatosis, Primary mediastinal (thymic) large B-cell lymphoma. Intravascular large B-cell lymphoma, ALK-positive large B-cell lymphoma, Plasmablastic lymphoma, Large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease, Primary effusion lymphoma: B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma, classical Hodgkin lymphoma and light chain amyloidosis.


In other embodiments, the cancer is esophageal cancer. In other embodiments, the cancer is an adenocarcinoma, for example, a metastatic adenocarcinoma (e.g., a colorectal adenocarcinoma, a gastric adenocarcinoma, or a pancreatic adenocarcinoma).


In another aspect, the disclosure features a kit comprising: (a) a composition comprising any one of the preceding the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure and (b) a package insert comprising instructions for administering the composition to a subject to treat or delay progression of a cell proliferative disorder.


In any of the preceding uses or methods, the subject can be a human.


Combination Therapies

The CD3ε binding proteins of the disclosure may be administered in combination with at least one additional therapeutics.


In other embodiments, the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous” or “concurrent delivery”. In other embodiments, the delivery of one treatment ends before the delivery of the other treatment begins. In some embodiments of either case, the treatment is more effective because of combined administration. For example, the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment. In other embodiments, delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other. The delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.


The CD3ε binding proteins described herein and the at least one additional therapeutic agent can be administered simultaneously, in the same or in separate compositions, or sequentially. For sequential administration, the CD3ε binding proteins described herein can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.


Embodiments

This invention provides the following non-limiting embodiments.

    • 1. An isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises:
      • a. a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;
      • b. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
      • c. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; or
      • d. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;
    •  wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K, wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.
    • 2. An isolated protein, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.
    • 3. The isolated protein of embodiment 1 or 2, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of
      • a. SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;
      • b. SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; or
      • c. SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.
    • 4. The isolated protein of embodiments 1-3, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
    • 5. The isolated protein of embodiment 4, wherein the antigen binding domain that binds CD3ε is the Fab.
    • 6. The isolated protein of embodiment 4, wherein the antigen binding domain that binds CD3ε is the scFv.
    • 7. The isolated protein of embodiment 6, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
    • 8. The isolated protein of embodiment 7, wherein the L1 comprises
      • a. about 5-50 amino acids;
      • b. about 5-40 amino acids;
      • c. about 10-30 amino acids; or
      • d. about 10-20 amino acids.
    • 9. The isolated protein of embodiment 7, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 3-36.
    • 10. The isolated protein of embodiment 9 wherein the L1 comprises the amino acid sequence of SEQ ID NO: 3.
    • 11. The isolated protein of any one of embodiments 1-10, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58 or 56.
    • 12. The isolated protein of embodiment 11, wherein the antigen binding domain that binds CD3ε comprises:
      • a. the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;
      • b. the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;
      • c. the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;
      • d. the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;
      • e. the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; or
      • f. the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.
    • 13. The isolated protein of any one of embodiments 1-12, wherein the antigen binding domain that binds CD3ε comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 96-126.
    • 14. The isolated protein of any one of embodiments 1-13, wherein the isolated protein is a multispecific protein.
    • 15. The isolated protein of embodiment 14, wherein the multispecific protein is a bispecific protein.
    • 16. The isolated protein of embodiment 14, wherein the multispecific protein is a trispecific protein.
    • 17. The isolated protein of any one of embodiments 1-16, further comprising an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof
    • 18. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises a Fc region.
    • 19. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises a CH2 domain.
    • 20. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises a CH3 domain.
    • 21. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises a CH2 domain and a CH3 domain.
    • 22. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises at least portion of a hinge, a CH2 domain and a CH3 domain.
    • 23. The isolated protein of embodiment 17, wherein the fragment of the Ig constant region comprises a hinge, a CH2 domain and a CH3 domain.
    • 24. The isolated protein of any one of embodiments 17-24, wherein the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.
    • 25. The isolated protein of any one of embodiments 17-24, wherein the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.
    • 26. The isolated protein of any one of embodiments 17-24, wherein the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).
    • 27. The isolated protein of embodiment 35, wherein the L2 comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 3-36.
    • 28. The isolated protein of any one of embodiments 14-27, wherein the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.
    • 29. The multispecific antibody of embodiment 14-28, wherein the cell antigen is a tumor associated antigen.
    • 30. The isolated protein of any one of embodiments 14-29, wherein the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.
    • 31. The isolated protein of any one of embodiments 1-30, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR).
    • 32. The isolated protein of embodiment 31, wherein the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.
    • 33. The isolated protein of any one of embodiments 31-32, wherein the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.
    • 34. The isolated protein of any one of the embodiments 14-33, wherein the protein comprises at least one mutation in a CH3 domain of the Ig constant region.
    • 35. The isolated protein of embodiment 34, wherein the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, T366L, F405W, T394W, K392L, T394S, T394W, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.
    • 36. A pharmaceutical composition comprising the isolated protein of any one of embodiments 1-35 and a pharmaceutically acceptable carrier.
    • 37. A polynucleotide encoding the isolated protein of any one of embodiments 1-35.
    • 38. A vector comprising the polynucleotide of embodiment 35.
    • 39. A host cell comprising the vector of embodiment 38.
    • 40. A method of producing the isolated protein of any one of embodiments 1-35, comprising culturing the host cell of embodiment 39 in conditions that the protein is expressed, and recovering the protein produced by the host cell.
    • 41. A method of treating a cancer in a subject, comprising administering a therapeutically effective amount of the isolated protein of any one of embodiments 1-35 to the subject in need thereof to treat the cancer.
    • 42. An anti-idiotypic antibody binding to the isolated protein of any one of embodiments 1-35.
    • 43. An isolated protein of any one of embodiments 1-35 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 127-157.
    • 44. An isolated protein of any one of embodiments 1-35 comprising an antibody heavy chain of SEQ ID NO: 224 and antibody light chain of SEQ ID NO: 226.


EXAMPLES
Example 1. Generation and Characterization of Anti-CD3 mAbs

The publicly available mouse Cris7 antibody, specific to human CD3ε (Alberola-Ila, J. et al. Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T lymphocytes. J Immunol 146, 1085-1092 (1991)) was used for these experimentations. The VH and VL sequences of Cris-7 are shown below.


Cris-7 VH (SEQ ID NO: 37):


QVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYINPSSAYT NYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHYDYNGFPYWGQGTLVTVSA


Cris-7 VL (SEQ ID NO: 38):


QVVLTQSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVPA RFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQIT


Humanization and scFv Formatting of CD3 Binding Domains


Evaluation of Optimal Germline Sequences

Murine Cris-7 was humanized in the single-chain fragment variable-domain (scFv) format. To find the binding affinity matched to Cris7 and the most thermal-stable combination of human germline acceptor HC and LC pair for scFv format, two human heavy variable-domain (Hv) germline sequences and two human light variable-domain (Lv) germline sequences were selected for the antibody humanization: IGHV1-69*02-IGHJ1-01 and IGHV5-10-1*01-IIGHJ1-01 for Hv and IGKV3-11*02-IGKJ4-01 or the IGKV1-39*01-IGKJ4-01 germline for Lv (Retrieved from the Internet: <URL: http://www.imgt.org/vquest/refseqh.html>). The CDR-grafted sequences were generated with limited back mutations to enhance stability (see Table 4 below). These CDR-grafted v-regions were then expressed in E. coli in scFv format in both the heavy chain-linker-light chain (HL) and in the light chain-linker-heavy chain (LH) orientations. A matrix of Hv and Lv pairings was evaluated in scFv-format in both orientations of Lv followed by Hv or Hv followed by Lv with a flexible linker between these variable domains, as described below. CD3B1127 and CD3B1128 comprised murine VH and VL sequences (Table 4). There were two main conclusions from this experiment. First, in all cases, the Cris-7-derived scFv molecules displayed significantly stronger binding to recombinant CD3 (TRCW5, SEQ ID NO: 39) in the HL orientation compared to the LH orientation, based primarily on higher maximum signal, as determined by ELISA. Second, the IGHV1-69*02-IGHJ1-01 heavy chain germline with IGKV3-11*02-IGKJ4-01 light chain germline grafted construct containing limited back mutations in the heavy-light orientation exhibited the best expression, binding profile, and potential differentiation, and so was chosen for humanization (FIG. 1, Tables 4 and 5).









TABLE 4







Amino acid sequences of grafted sequences, comprising limited back mutations.










Protein ID
VH
VL
Linker


(orientation)
(SEQ ID NO:)
(SEQ ID NO: )
(SEQ ID NO:)





Cris-7
QVQLQQSGAELARPGASVKMS
QVVLTQSPAIMSAFPGEKV
GGSEGKSSG



CKASGYTFTRSTMHWVKQRPG
TMTCSASSSVSYMNWYQQ
SGSESKSTG



QGLEWIGYINPS SAYTNYNQKF
KSGTSPKRWIYDSSKLASG
GS



KDKATLTADKSSSTAYMQLSSL
VPARFSGSGSGTSYSLTISS
(3)



TSEDSAVYYCASPQVHYDYNG
METEDAATYYCQQWSRNP




FPYWGQGTLVTVSA
PTFGGGTKLQIT




(37)
(38)






CD3B1129
QVQLVQSGAEVKKPGSSVKVS
DIQLTQSPSSLSASVGDRV
GGSEGKSSG


(HL*)
CKASGYTFTRSTMHWVRQAPG
TITCSASSSVSYMNWYQQ
SGSESKSTG



QGLEWMGYINPSSAYTNYNQK
KPGTSPKRLIYDSSKLASG
GS



FQGRVTLTADKSTSTAYMELSS
VPSRFSGSGSGTDYTLTISS
(3)



LRSEDTAVYYCARPQVHYDYN
LQPEDFATYYCQQWSRNP




GFPYWGQGTLVTVSS
PTFGGGTKVEIK




(40)
(42)






CD3B1130
QVQLVQSGAEVKKPGSSVKVS
EIVLTQSPATLSLSPGERAT
GGSEGKSSG


(HL)
CKASGYTFTRSTMHWVRQAPG
LSCSASSSVSYMNWYQQK
SGSESKSTG



QGLEWMGYINPSSAYTNYNQK
PGTSPRRLIYDSSKLASGIP
GS



FQGRVTLTADKSTSTAYMELSS
ARFSGSGSGRDYTLTISSLE
(3)



LRSEDTAVYYCARPQVHYDYN
PEDFAVYYCQQWSRNPPT




GFPYWGQGTLVTVSS
FGGGTKVEIK




(40)
(43)






CD3B1131
EVQLVQSGAEVKKPGESLRISC
DIQLTQSPSSLSASVGDRV
GGSEGKSSG


(HL)
KASGYTFTRSTMHWVRQMPG
TITCSASSSVSYMNWYQQ
SGSESKSTG



KGLEWMGYINPSSAYTNYNPSF
KPGTSPKRLIYDSSKLASG
GS



QGHVTLSADKSISTAYLQWSSL
VPSRFSGSGSGTDYTLTISS
(3)



KASDTAMYYCARPQVHYDYN
LQPEDFATYYCQQWSRNP




GFPYWGQGTLVTVSS
PTFGGGTKVEIK




(41)
(42)






CD3B1132
EVQLVQSGAEVKKPGESLRISC
EIVLTQSPATLSLSPGERAT
GGSEGKSSG


(HL)
KASGYTFTRSTMHWVRQMPG
LSCSASSSVSYMNWYQQK
SGSESKSTG



KGLEWMGYINPSSAYTNYNPSF
PGTSPRRLIYDSSKLASGIP
GS



QGHVTLSADKSISTAYLQWSSL
ARFSGSGSGRDYTLTISSLE
(3)



KASDTAMYYCARPQVHYDYN
PEDFAVYYCQQWSRNPPT




GFPYWGQGTLVTVSS
FGGGTKVEIK




(41)
(43)






CD3B1133
QVQLVQSGAEVKKPGSSVKVS
DIQLTQSPSSLSASVGDRV
GGSEGKSSG


(LH)
CKASGYTFTRSTMHWVRQAPG
TITCSASSSVSYMNWYQQ
SGSESKSTG



QGLEWMGYINPSSAYTNYNQK
KPGTSPKRLIYDSSKLASG
GS



FQGRVTLTADKSTSTAYMELSS
VPSRFSGSGSGTDYTLTISS
(3)



LRSEDTAVYYCARPQVHYDYN
LQPEDFATYYCQQWSRNP




GFPYWGQGTLVTVSS
PTFGGGTKVEIK




(40)
(42)






CD3B1134
EVQLVQSGAEVKKPGESLRISC
DIQLTQSPSSLSASVGDRV
GGSEGKSSG


(LH)
KASGYTFTRSTMHWVRQMPG
TITCSASSSVSYMNWYQQ
SGSESKSTG



KGLEWMGYINPSSAYTNYNPSF
KPGTSPKRLIYDSSKLASG
GS



QGHVTLSADKSISTAYLQWSSL
VPSRFSGSGSGTDYTLTISS
(3)



KASDTAMYYCARPQVHYDYN
LQPEDFATYYCQQWSRNP




GFPYWGQGTLVTVSS
PTFGGGTKVEIK




(41)
(42)






CD3B1135
QVQLVQSGAEVKKPGSSVKVS
EIVLTQSPATLSLSPGERAT
GGSEGKSSG


(LH)
CKASGYTFTRSTMHWVRQAPG
LSCSASSSVSYMNWYQQK
SGSESKSTG



QGLEWMGYINPSSAYTNYNQK
PGTSPRRLIYDSSKLASGIP
GS



FQGRVTLTADKSTSTAYMELSS
ARFSGSGSGRDYTLTISSLE
(3)



LRSEDTAVYYCARPQVHYDYN
PEDFAVYYCQQWSRNPPT




GFPYWGQGTLVTVSS
FGGGTKVEIK




(40)
(43)






CD3B1136
EVQLVQSGAEVKKPGESLRISC
EIVLTQSPATLSLSPGERAT
GGSEGKSSG


(LH)
KASGYTFTRSTMHWVRQMPG
LSCSASSSVSYMNWYQQK
SGSESKSTG



KGLEWMGYINPSSAYTNYNPSF
PGTSPRRLIYDSSKLASGIP
GS



QGHVTLSADKSISTAYLQWSSL
ARFSGSGSGRDYTLTISSLE
(3)



KASDTAMYYCARPQVHYDYN
PEDFAVYYCQQWSRNPPT




GFPYWGQGTLVTVS S
FGGGTKVEIK




(41)
(43)






CD3B1127
QVQLQQSGAELARPGASVKMS
QVVLTQSPAIMSAFPGEKV
GGSEGKSSG


(HL)
CKASGYTFTRSTMHWVKQRPG
TMTCSASSSVSYMNWYQQ
SGSESKSTG



QGLEWIGYINPS SAYTNYNQKF
KSGTSPKRWIYDSSKLASG
GS



KDKATLTADKSSSTAYMQLSSL
VPARFSGSGSGTSYSLTISS
(3)



TSEDSAVYYCASPQVHYDYNG
METEDAATYYCQQWSRNP




FPYWGQGTLVTVSA
PTFGGGTKLQIT




(37)
(38)






CD3B1128
QVQLQQSGAELARPGASVKMS
QVVLTQSPAIMSAFPGEKV
GGSEGKSSG


(LH)
CKASGYTFTRSTMHWVKQRPG
TMTCSASSSVSYMNWYQQ
SGSESKSTG



QGLEWIGYINPS SAYTNYNQKF
KSGTSPKRWIYDSSKLASG
GS



KDKATLTADKSSSTAYMQLSSL
VPARFSGSGSGTSYSLTISS
(3)



TSEDSAVYYCASPQVHYDYNG
METEDAATYYCQQWSRNP




FPYWGQGTLVTVSA
PTFGGGTKLQIT




(37)
(38)





*HL-VH-Lin ker-VL; LH-VL-Linker-VH













TABLE 5







EC50 (nM) for binding of the CD3-specific variants to


recombinant CD3, using ELISA.










Protein
EC50














CD3B1129
0.7124



CD3B1130
0.7465



CD381131
1.137



CD3B1132
~1.101



CD3B1133
0.9583



CD3B1134
~0.006296



CD3B1135
1.036



CD3B1136




CD3B1127
~0.3972



CD3B1128
~0.4369



F5 HL
~0.005701



Media











Human Framework Optimization in the IGHV1-69*02-IGHJ1-01 and IGKV3-11*02-IGKJ4-01 Germline

Since the IGHV1-69*02-IGHJ1-01 and IGKV3-11*02-IGKJ4-01 germline grafted sequences (CD3B1130) displayed enhanced binding compared to the murine parents and represented the human germline most similar to the murine parent, as described above, human framework adaptation was performed starting from this CDR-grafted sequence. Starting from this sequence, several sites in the VH were selected which may influence stability of the molecule were identified and were thus selected for library-based mouse back-mutagenesis (Table 6). In one VH library, 4 sites (M48I, A60N, V67A, and I69L—Kabat numbering) were mutated in binary libraries and R94 (Kabat numbering) was mutated to S, V, L, K, T, R, I, or Y for a total of 128 variants. In a second library, 9 sites (K12A, V20M, R38K, M48I, A60N, R66, V67A, I69L, and R94S—Kabat numbering) were mutated in a binary library for a total of 512 variants. These methods are known in the art and is described, for example, in Chiu et al., Antibodies 2019, 8, 55.









TABLE 6







Murine Cris-7, human Germline VH sequences used for humanization,


and position of binary and mutated residues.








Name
VH





Cris-7 VH
QVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQG



LEWIGYINPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSED



SAVYYCAcustom-character PQVHYDYNGFPYWGQGTLVTVSA



(SEQ ID NO: 37)





IGHV1-69*02-IGHJ1-
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLE


01
WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAV


Library 1
YYCAcustom-character xxxWGQGTTVTVSS



(SEQ ID NO: 44)





IGHV1-69*02-IGHJ1-
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLE


01
WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAV


Library 2
YYCAcustom-character xxxWGQGTTVTVSS



(SEQ ID NO: 45)









Analogously, two libraries were generated for the VL sequence, by identifying sites which may influence stability of the molecule. In library 1, no changes were made to the LC. In library 2, 11 sites were selected for mouse back-mutagenesis in binary fashion (L11M, L13A, A19V, L21M, Q42T, A43S, L46R, L47W, I58V, F71Y, and L78M) for a total of 2048 variants (Table 7).









TABLE 7







Murine Cris-7, human Germline VL sequences used for humanization,


and position of binary and mutated residues.








Name
VL





Cris-7 VL
QVVLTQSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKR





W
IYDSSKLASGVPARFSGSGSGTSYSLTISSMETEDAATYYCQQWS




RNPPTFGGGTKLQIT



(SEQ ID NO: 38)





IGKV3-11*02-IGKJ4-
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLL


01
IYDASNRATGIPARFSGSGSGRDFTLTISSLEPEDFAVYYCQQRSNWP


Library 1
XXXFGGGTKVEIK



(SEQ ID NO: 46)





IGKV3-11*02-IGKJ4-
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRL


01


L
IYDASNRATGIPARFSGSGSGRDFTLTISSLEPEDFAVYYCQQRSN



Library 2
WPXXXFGGGTKVEIK



(SEQ ID NO: 47)









Back mutation libraries were created through molecular biology techniques known in the art (Thomas S., et al. DNA library construction using Gibson Assembly®. Nat Methods, p.i-ii November 2015). Different acceptor germlines were paired with the opposite murine parent chain. In this manner, only one chain was human framework adapted with potential back mutations at a single time.


Briefly, DNA was transformed into an E. coli expression vector to generate scFv molecules having a C-terminal HA-tag, and cells were plated on 2×YT/Carb/2% Glucose grown overnight at 37 C. Colonies were picked and transferred 50ul of overnight growth cultures to new plates containing 500ul of 2×YT/Carb/0.1% Glucose, grown for 6-7 hr, and combined with 50ul 2×YT medium containing 1× carbenicillin & 12×IPTG. Cultures were incubated with shaking ˜600 RPM 30° C. overnight. Streptavidin coated plates were bound with 50 uL of biotinylated TRCW5 antigen (CD3δε-Fc-Avi, SEQ ID NO: 39) at the concentrations indicated in the ELISA graph for 45 min at room temperature with shaking (FIG. 1, FIG. 3, FIG. 4) followed by washing 3× with 1×TBST. Plates were blocked with 200 ul 3% Milk in 1×TBST for ˜45 mins at room temperature followed by washing 3× with 1×TBST. E. coli cultures were harvested by centrifugation at 35000 RPMs for 10 mins 4° C. and 50 uL of supernatant was transferred into CD3-coated plates followed by incubation at 4 C for 45 min. Plates were washed 3× with 1×TBST. Bound scFv was detected with Chicken Polyclonal Anti-HA-HRP (ab1190) [1:1000] for ˜45 mins RT and luminescence detected with chemi-luminescent substrate.









TRCW5 antigen


(CD3δϵ-Fc-Avi, SEQ ID NO: 39)


FKIPIEELEDRVFVNCNTSITWVEGTVGTLLSDITRLDLGKRILDPRGI





YRCNGTDIYKDKESTVQVHYRMGSADDAKKDAAKKDDAKKDDAKKDGSD





GNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDD





KNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVSPP





SPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK





ALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS





DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS





CSVMHEALHNHYTQKSLSLSPGKGGGLNDIFEAQKIEWHE






Clones exhibiting binding greater than the murine parent were selected for sequencing and exposure to titration and thermal stressing ELISA assays. Briefly, scFv were expressed as above and subjected to thermal stress (60° C. heat shock for ˜10 min) followed by ELISA analysis, as described above. Briefly, the clones containing the different combinations of mouse back-mutations that displayed binding from E. coli supernatant were sequenced to determine which residue at each site (either human or mouse germline residue) was more optimal to maintain thermal stability. The proportion of clones harboring each residue at each site were determined (FIGS. 2A and 2B). From the two heavy chain libraries designed, 8 human adapted heavy chain sequences were selected and, from the single light chain library designed, 8 human adapted light chains were selected based on retention of >70% binding (compared to room temperature ELISA binding) after thermal stress. Sequences of the thermally stable humanized Cris-7 VH and VL are shown below (Table 8).









TABLE 8





Sequences of thermally stable humanized Cris-7 VH and VL

















VH

SEQ ID


Variant
VH Sequence
NO:





VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
48


000043392
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
49


000043400
EWIGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDTA




VYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
50


000043401
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
51


000043403
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA




VYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
52


000043404
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
53


000043402
EWIGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDTA




VYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
54


000043405
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSS






VD
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
55


000043406
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA




VYYCASPQVHYDYNGFPYWGQGTLVTVSS





VL




Variant
VL Sequence





VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLI
56


000043397
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQSPRRLI
57


000043398
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
58


000043391
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQSPRRWI
59


000043393
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGTAPRRLI
60


000043394
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGTSPRRLIY
61


000043395
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPP




TFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGTAPRRWI
62


000043396
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK






VD
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGTSPRRWI
63


000043399
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIK









The 8 new heavy chains and 8 new light chains (shown in Table 8) were again matrixed with each other to generate scFvs (Table 9) and further exposed to additional assays including titration, thermal stress, and cell binding (FIG. 3).









TABLE 9







Protein identities of matrixed thermally stable variable domains









VL















VH
VD000043397
VD000043398
VD000043391
VD000043393
VD000043394
VD000043395
VD000043396
VD000043399





VD000043392
CD3B2084
CD3B2083
CD3B2089
CD3B2088
CD3B2087
CD3B2086
CD3B2085
CD3B2082


VD000043400
CD3B2076
CD3B2075
CD3B2081
CD3B2080
CD3B2079
CD3B2078
CD3B2077
CD3B2074


VD000043401
CD3B2068
CD3B2067
CD3B2073
CD3B2072
CD3B2071
CD3B2070
CD3B2069
CD3B2066


VD000043403
CD3B2057
CD3B2056
CD3B2045
CD3B2044
CD3B2043
CD3B2042
CD3B2041
CD3B2055


VD000043404
CD3B2054
CD3B2053
CD3B2040
CD3B2039
CD3B2038
CD3B2037
CD3B2036
CD3B2052


VD000043402
CD3B2060
CD3B2059
CD3B2065
CD3B2064
CD3B2063
CD3B2062
CD3B2061
CD3B2058


VD000043405
CD3B2051
CD3B2050
CD3B2035
CD3B2034
CD3B2033
CD3B2032
CD3B2031
CD3B2049


VD000043406
CD3B2048
CD3B2047
CD3B2030
CD3B2029
CD3B2028
CD3B2027
CD3B2026
CD3B2046









Cell binding was performed against Pan T-cells (Biological Specialty Corp, Item #215-02-11) and Jurkat-CD3-negative cells (ATCC® TIB-153™) to observe an increase in non-specific binding when thermally stressed. Molecules exhibiting an increase in binding to the negative cell line when thermally stressed were not chosen for additional characterization. ELISA assays for binding to recombinant CD3 (TRCW5, SEQ ID NO: 39) were performed as above. Cell binding was performed using primary human T cell and Jurkat cells by flow cytometry. Briefly, E. coli expressed anti CD3 ScFv supernatants, either at room temperature, or 55° C., 60° C. or 65° C. heat treated samples.


Pan T-cells (CD3-positive) and Jurkat-CD3-negative cells were prepared by staining Jurkat-CD3-negative cells with CFSE while keeping pan T-cells unstained. Jurkat-CD3-negative cell suspensions were resuspended at 20 million cells per each 50 mL conical tube. Cells were harvested by centrifugation at 400×g for 5 minutes and resuspended in DPBS followed by washing 2× in DPBS. Cells were stained with 1:25,000 dilution for a final dye concentration of 0.02 uM CFSE (2 uL of staining solution to 50 mL of cell suspension). Cells were incubated for 10 minutes at room temperature and centrifuged for 5 minutes at 400×g. After removal of supernatant, 3 mL of HI-FBS were added to the cell pellet, mixed and centrifuged for 5 min at 400×g. Supernatant was removed and cells were resuspended in BD stain buffer at 2×10{circumflex over ( )}6 cells/mL and incubated on ice or 4 C protected from light. Human pan T cells were thawed at 37 C and transferred gently into a conical tube containing 15 mL of warm or RT culture media (RPMI+10% FBS). T-cells from Donor ID #M7348; Lot #LS 11 62980A were at 97.2% viability. Cells were harvested by centrifugation at 400×g for 5 min and resuspended in culture media (RPMI+10% HI-FBS). Pan T-cells (without staining) were prepared at 2×10{circumflex over ( )}6 cells/mL in flow staining buffer. Equal volumes of CFSE stained Jurkat-CD3-negative cells and unstained T-cells (CD3-positive) cells were mixed and plated 50 uL/well into assay plates. 50 uL/well neat bacterial supernatant samples and control sample (CD3W36 ScFv) were added to each well and plates were incubated 1 hr at 4 C or. Cells were harvested by centrifugation at 400×g for 4 min and 150 uL staining buffer were added to all wells, followed by centrifugation at 400×g for 4 min to pellet cells. To each well, 150 uL staining buffer were added followed by centrifugation at 400×g for 4 minutes to pellet cells. A647 conjugated anti-HIS secondary antibody was prepared at 2 ug/mL (1:100 dilution from stock vial) in staining buffer and added at 50 uL/well to the washed cells followed by incubation for 30 min at 4 C protected from light. Then 150 uL staining buffer were added to all wells, and plates were spun at 400×g for 4 minutes to pellet cells. 150 uL IntelliCyt running buffer were added to all wells, and plates were spun at 400×g for 4 minutes to pellet cells. Cells were resuspended in 20-30 uL running buffer containing 1:1000 dilution of Sytox Blue dead cell stain and run plates on iQue Screener. Briefly, cells were gated on FCS v. SCS to eliminate debris. Singlets were gated on SCS-A vs SCS-H and, separated and gated cells first on BL1 channel based on CFSE staining, then on VL1 channel with low/negative with Sytox blue viability stain for gating live cells. Binding of scFv molecules was assessed by Geomeans on RL1 channel from the live cell population. Data were analyzed in GraphPad Prism. Ultimately, four humanized matrixed clones exhibited the most desired properties: having retained binding after 65° C. heat shock and were selected. These clones were noted as CD3B2029, CD3B2030, CD3B2051, and CD3B2089.


Tables 10, 11, and 12 show amino acid, DNA, and CDR sequences of VH and VL for CD3B2029, CD3B2030, CD3B2051, and CD3B2089.


Table 13 shows thermal stability ELISA binding to recombinant CD3 (TRCW5, SEQ ID NO: 39) data for all the clones tested from Table 9.


Table 14 shows cell stability ELISA binding data for select clones.









TABLE 10







VH and VL amino acid sequences of CD3B2029, CD3B2030, CD3B2051, and CD3B2089.











Binding

VH

VL


domain

SEQ ID

SEQ ID


name
VH amino acid Sequence
NO:
VL amino acid sequence
NO:





CD3B2029
QVQLVQSGAEVKKPGSSVK
55
EIVLTQSPATLSASPGERVT
59



VSCKASGYTFTRSTMHWV

LSCSASSSVSYMNWYQQK




KQAPGQGLEWIGYINPSSA

PGQSPRRWIYDSSKLASGV




YTNYNQKFQGRVTLTADKS

PARFSGSGSGRDYTLTISSL




TSTAYMELSSLRSEDTAVY

EPEDFAVYYCQQWSRNPP




YCASPQVHYDYNGFPYWG

TFGGGTKVEIK




QGTLVTVSS








CD3B2030
QVQLVQSGAEVKKPGSSVK
55
EIVLTQSPATLSASPGERVT
58



VSCKASGYTFTRSTMHWV

LSCSASSSVSYMNWYQQK




KQAPGQGLEWIGYINPSSA

PGQAPRRWIYDSSKLASGV




YTNYNQKFQGRVTLTADKS

PARFSGSGSGRDYTLTISSL




TSTAYMELSSLRSEDTAVY

EPEDFAVYYCQQWSRNPP




YCASPQVHYDYNGFPYWG

TFGGGTKVEIK




QGTLVTVSS








CD3B2051
QVQLVQSGAEVKKPGSSVK
54
EIVLTQSPATLSASPGERVT
56



VSCKASGYTFTRSTMHWV

LSCSASSSVSYMNWYQQK




KQAPGQGLEWMGYINPSSA

PGQAPRRLIYDSSKLASGV




YTNYNQKFQGRVTLTADKS

PARFSGSGSGRDYTLTISSL




TSTAYMELSSLRSEDTAVY

EPEDFAVYYCQQWSRNPP




YCASPQVHYDYNGFPYWG

TFGGGTKVEIK




QGTLVTVSS








CD3B2089
QVQLVQSGAEVKKPGSSVK
48
EIVLTQSPATLSASPGERVT
58



VSCKASGYTFTRSTMHWVR

LSCSASSSVSYMNWYQQK




QAPGQGLEWMGYINPSSAY

PGQAPRRWIYDSSKLASGV




TNYAQKFQGRVTLTADKST

PARFSGSGSGRDYTLTISSL




STAYMELSSLRSEDTAVYY

EPEDFAVYYCQQWSRNPP




CASPQVHYDYNGFPYWGQ

TFGGGTKVEIK




GTLVTVSS
















TABLE 11







VH and VL DNA sequences of CD3B2029, CD3B2030, CD3B2051, and CD3B2089.











Binding

VH

VL


domain

SEQ ID

SEQ ID


name
VH DNA Sequence
NO:
VL DNA sequence
NO:





CD3B2029
caggttcagctggttcagtctggcgccgaa
64
gagatcgtgctgacccagtctcctgccac
67



gtgaagaaacctggctcctccgtcaaggtg

actgtcagcctctccaggcgagagagtca




tcctgcaaggcttccggctacacctttacca

ccctgtcctgctccgcttcctcctccgtgtc




gatccaccatgcactgggtcaaacaggctc

ctacatgaactggtatcagcagaagcccg




caggacaaggcttggagtggatcggctac

gccagtctcctagacggtggatctacgac




atcaaccccagctccgcctacaccaactac

tcctccaagctggcctctggcgtccctgc




aaccagaaattccagggcagagtcaccctc

ccgcttttccggctctgggtctggcagag




accgccgacaagtctacctccaccgcctac

actataccctgaccatctccagcctggaa




atggaactgtccagcctgagatctgaggac

cctgaggacttcgccgtgtactactgcca




accgccgtgtactactgcgccagccctcag

gcagtggtctagaaaccctcctacctttgg




gtgcactacgactacaacggcttcccttatt

cggaggcaccaaggtggaaatcaag




ggggccagggcaccctggttaccgtttctt






ct








CD3B2030
caggttcagctggttcagtctggcgccgaa
64
gagatcgtgctgacccagtctcctgccac
68



gtgaagaaacctggctcctccgtcaaggtg

actgtcagcctctccaggcgagagagtca




tcctgcaaggcttccggctacacctttacca

ccctgtcctgctccgcttcctcctccgtgtc




gatccaccatgcactgggtcaaacaggctc

ctacatgaactggtatcagcagaagcccg




caggacaaggcttggagtggatcggctac

gccaggctcctagacggtggatctacga




atcaaccccagctccgcctacaccaactac

ctcctccaagctggcctctggcgtccctg




aaccagaaattccagggcagagtcaccctc

cccgcttttccggctctggctctggcagag




accgccgacaagtctacctccaccgcctac

actataccctgaccatctccagcctggaa




atggaactgtccagcctgagatctgaggac

cctgaggacttcgccgtgtactactgcca




accgccgtgtactactgcgccagccctcag

gcagtggtctagaaaccctcctacctttgg




gtgcactacgactacaacggcttcccttatt

cggaggcaccaaggtggaaatcaag




ggggccagggcaccctggttaccgtttctt






ct








CD3B2051
caggttcagctggttcagtctggcgccgaa
65
gagatcgtgctgacccagtctcctgccac
69



gtgaagaaacctggctcctccgtcaaggtg

actgtcagcctctccaggcgagagagtca




tcctgcaaggcttccggctacacctttacca

ccctgtcctgctccgcttcctcctccgtgtc




gatccaccatgcactgggtcaaacaggctc

ctacatgaactggtatcagcagaagcccg




caggacaaggcttggagtggatgggctac

gccaggctcctagacggctgatctacgac




atcaaccccagctccgcctacaccaactac

tcctccaagctggcctctggcgtccctgc




aaccagaaattccagggcagagtcaccctc

ccgcttttccggctctgggtctggcagag




accgccgacaagtctacctccaccgcctac

actataccctgaccatctccagcctggaa




atggaactgtccagcctgagatctgaggac

cctgaggacttcgccgtgtactactgcca




accgccgtgtactactgcgccagccctcag

gcagtggtctagaaaccctcctacctttgg






cggaggcaccaaggtggaaatcaag






gttcactacgactacaacggcttcccttattg






gggccagggcaccctggttaccgtttcttct






CD3B2089
caggttcagctggttcagtctggcgccgaa
66
gagatcgtgctgacccagtctcctgccac
68



gtgaagaaacctggctcctccgtcaaggtg

actgtcagcctctccaggcgagagagtca




tcctgcaaggcttccggctacacctttacca

ccctgtcctgctccgcttcctcctccgtgtc




gatccaccatgcactgggtccgacaggctc

ctacatgaactggtatcagcagaagcccg




caggccaaggcttggagtggatgggctac

gccaggctcctagacggtggatctacga




atcaaccccagctccgcctacaccaactac

ctcctccaagctggcctctggcgtccctg




gcccagaaattccagggcagagtcaccct

cccgcttttccggctctggctctggcagag




caccgccgacaagtctacctccaccgccta

actataccctgaccatctccagcctggaa




catggaactgtccagcctgagatctgagga

cctgaggacttcgccgtgtactactgcca




caccgccgtgtactactgcgccagccctca

gcagtggtctagaaaccctcctacctttgg




ggtgcactacgactacaacggcttcccttat

cggaggcaccaaggtggaaatcaag




tggggccagggcaccctggttaccgtttctt






ct
















TABLE 12





CDR amino acid sequences of CD3B2029, CD3B2030, CD3B2051, and CD3B2089, using


different delineations.





















HCDR1
HCDR2
HCDR3




(SEQ ID NO: )
(SEQ ID NO:)
(SEQ ID NO: )





CD3B2029
Kabat
RSTMH
YINPSSAYTNYNQKFQG
PQVHYDYNGFPY


CD3B2089

(70)
(71)
(72)


CD3B2030
Chothia
GYTFTRS
NPSSAY
PQVHYDYNGFP


CD3B2051

(73)
(74)
(75)



IMGT
GYTFTRST
INPSSAYT
ASPQVHYDYNGFPY




(76)
(77)
(78)







LCDR1
LCDR2
LCDR3




(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)





CD3B2029
Kabat
SASSSVSYMN
DSSKLAS
QQWSRNPPT


CD3B2030

(79)
(80)
(81)


CD3B2051
Chothia
SSSVSY
DSS
WSRNPP


CD3B2089

(82)
(83)
(84)



IMGT
SSVSY
DSS
QQWSRNPPT




(85)
(83)
(81)
















TABLE 13







Percent retained binding to recombinant CD3 after heat


exposure, determined by ELISA.











% Retained
% Retained
% Retained


Clone
55° C.
60° C.
65° C.













CD3B2030 NtoQ
111
105
55


CD3B2040
107
106
52


CD3B2065
115
112
48


CD3B2035
110
112
47


CD3B2039
111
103
44


CD3B2089
111
108
41


CD3B2050
108
102
41


CD3B2081
112
114
38


CD3B2034
103
103
38


CD3B2030
106
101
36


CD3B2031
108
104
36


CD3B2036
108
105
35


CD3B2064
111
107
33


CD3B2051
109
94
32


CD3B2053
115
112
30


CD3B2046
111
113
30


CD3B2049
108
105
29


CD3B2029
100
97
29


CD3B2026
106
98
29


CD3B2045
111
105
28


CD3B2073
113
110
27


CD3B2088
116
114
26


CD3B2052
112
111
25


CD3B2037
102
103
23


CD3B2054
106
100
23


CD3B2077
106
107
22


CD3B2038
105
98
22


CD3B2048
105
95
22


CD3B2060
107
100
21


CD3B2058
112
110
20


CD3B2032
106
88
20


CD3B2085
112
117
18


CD3B2069
114
109
17


CD3B2080
109
108
17


CD3B2072
117
111
17


CD3B2041
104
97
16


CD3B2047
106
98
15


CD3B2028
104
92
15


CD3B2062
110
102
14


CD3B2044
103
102
14


CD3B2059
112
98
13


CD3B2066
109
109
11


CD3B2033
100
84
11


CD3B2063
108
92
11


CD3B2055
102
96
11


CD3B2068
103
88
10


CD3B2082
114
116
9


CD3B2027
104
93
9


CD3B2084
108
91
9


CD3B2061
116
107
9


CD3B2056
101
80
9


CD3B2076
100
82
7


CD3B2070
107
82
6


CD3B2075
103
87
6


CD3B2074
104
101
6


CD3B2087
104
94
5


CD3B2067
98
63
5


CD3B2086
104
96
5


CD3B2083
104
84
4


CD3B2043
100
88
4


CD3B2071
103
88
4


Murine LH
10
2
3


CD3B2057
92
66
3


CD3B2079
111
92
2


CDR Graft (LH)
21
3
2


CD3B2078
107
88
2


CD3B2042
96
83
2


CD3B1130
90
11
1


Murine HL
19
0
1


Cris7B
1
1
1
















TABLE 14







shows thermal stability cell binding data.










% Binding retained on T-cells












Sample ID
RT
55° C.
60° C.
65° C.














CD3B2030
1
1.048677
1.095739
0.756759


CD3B2039
1
1.299133
1.003692
0.609466


CD3B2031
1
1.122011
1.204702
0.543271


CD3B2035
1
1.060978
1.141319
0.454924


CD3B2041
1
1.064596
1.110962
0.44659


CD3B2034
1
0.866167
0.783723
0.387208


CD3B2085
1
1.008827
0.410542
0.384652


CD3B2073
1
0.993273
1.099256
0.348245


CD3B2029
1
1.058795
1.08433
0.328698


CD3B2077
1
1.029112
1.098231
0.306981


CD3B2045
1
1.046729
0.996753
0.29597


CD3B2033
1
1.072045
0.9995
0.295245


CD3B2038
1
1.027964
1.095242
0.2791


CD3B2082
1
1.107911
0.681799
0.275996


CD3B2088
1
1.014945
0.46063
0.257713


CD3B2064
1
1.173944
0.741192
0.240813


CD3B2044
1
0.78559
1.040365
0.198246


CD3B2063
1
1.004685
0.996275
0.184745


CD3B2058
1
1.052739
0.807821
0.174434


CD3B2065
1
1.142664
1.33233
0.155581


CD3B2071
1
1.014145
0.898827
0.119915


CD3B2079
1
1.059072
0.978707
0.116397


CD3B2089
1
1.084227
0.494349
0.111322


CD3B2069
1
1.076064
1.479188
0.110357


CD3B2087
1
1.01658
0.963514
0.105331


CD3B2081
1
1.035179
1.204711
0.10163


CD3B2072
1
0.872069
1.269992
0.093343


CD3B2042
1
0.992719
0.934616
0.084226


CD3B2043
1
0.990763
0.906431
0.080453


CD3B2037
1
1.068237
0.986003
0.060975


CD3B2078
1
1.005626
0.761767
0.057399


CD3B2080
1
1.070525
1.133895
0.05733


CD3B2086
1
1.007152
1.119914
0.040405


Murine
1
0.405601
0.079161
0.051493









Mitigation of Post-Translational Modification Risks

It was determined that the parent molecule contained an “NG” motif in CDRH3 at positions #106-107, wherein the position number is counted from the N-terminus of the VH of CD3B2029, CD3B2030, CD3B2051, or CD3B2089 sequence (SEQ ID NOs: 55, 54, or 48). The “NG” motif could potentially present a risk of Post Translational Modification (PTM), specifically Asn deamidation, and lead to loss of activity. To mitigate this PTM risk, selected humanized variants CD3B2029, CD3B2030, CD3B2051, and CD3B2089, were further mutated at the N106 position, respectively, using molecular biology techniques well known in the art (Tables 15 and 16). Position N106 was mutated to one of the following residues A/G/S/F/E/T/R/V/I/Y/L/P/Q/K. These new variants were again exposed to various assays including titration, thermal stress, and cell binding, as described above. EC50 values for binding to Pan T-cells and Jurkat cells, as determined by ELISA are shown in Table 17, and the binding curves for CD3B2030 variants to recombinant CD3 (TRCW5, SEQ ID NO: 39), as an example, are shown in FIG. 4. The % retained binding following the indicated heat exposure is shown in Table 18. From these assays, 4 separate amino acid substitutions for the N position were selected for further testing. Most mutations at N106 maintained binding to some degree, and all were considered valuable since they provided a way to both tune the efficiency of T cell redirection and they could successfully eliminate risk of deamidation at N106.


Table 15 shows the variant CDR sequences made using CD3B2029, CD3B2030, CD3B2051, and CD3B2089 sequences.


Table 16 shows the list of substitutions in HCDR3 sequences that were made using CD3B2029, CD3B2030, CD3B2051, and CD3B2089 sequences, wherein the position number is counted from the N-terminus of the VH of CD3B2029, CD3B2030, CD3B2051, or CD3B2089 (SEQ ID NOs: 55, 54, or 48).









TABLE 15







CDR amino acid sequences of CD3B2029, CD3B2030, CD3B2051, and CD3B2089, using


Kabat delineation.














HCDR1
HCDR2


LCDR2
LCDR3



(SEQ ID
(SEQ ID
HCDR3
LCDR1
(SEQ ID
(SEQ ID



NO:)
NO:)
(SEQ ID NO:)
(SEQ ID NO:)
NO:)
NO:)





CD3B2029
RSTMH
YINPSSAYT
PQVHYDYXG
SASSSVSYMN
DSSKLAS
QQWSRNPPT


CD3B2030
(70)
NYNQKFQG
FPY,
(79)
(80)
(81)


CD3B2051

(71)
wherein X





CD3B2089


can be Q, A,








G, or S








(86)
















TABLE 16







Substitutions in HCDR3 sequences that were made in CD3B2029,


CD3B2030, CD3B2051, and CD3B2089 sequences, wherein the


position number was counted from the N-terminus of the VH of


CD3B2029, CD3B2030, CD3B2051, or CD3B2089


(SEQ ID NOs: 55, 54, or 48).









CD3 variant
CDR
Substitution





CD3B2029
Heavy Chain CDR3
N106Q


CD3B2029
Heavy Chain CDR3
N106A


CD3B2029
Heavy Chain CDR3
N106G


CD3B2029
Heavy Chain CDR3
N106S


CD3B2030
Heavy Chain CDR3
N106Q


CD3B2030
Heavy Chain CDR3
N106A


CD3B2030
Heavy Chain CDR3
N106G


CD3B2030
Heavy Chain CDR3
N106S


CD3B2051
Heavy Chain CDR3
N106Q


CD3B2051
Heavy Chain CDR3
N106A


CD3B2051
Heavy Chain CDR3
N106G


CD3B2051
Heavy Chain CDR3
N106S


CD3B2089
Heavy Chain CDR3
N106Q


CD3B2089
Heavy Chain CDR3
N106A


CD3B2089
Heavy Chain CDR3
N106G


CD3B2089
Heavy Chain CDR3
N106S
















TABLE 17







EC50 values for N106 PTM-mitigated,


humanized Cris-7 variants.










ID
EC50 (nM)














CD3B2030
8.844



CD3B2030N106F
9.699



CD3B2030N106Q
10.04



CD3B2030N106H
10.57



CD3B2030N106R
10.57



CD3B2030N106L
11.36



CD3B2030N106K
11.66



CD3B2030N106A
12.77



CD3B2030N106G
14.28



CD3B2030N106S
19.08



CD3B2030N106I
~13.27



CD3B2030N106P
~23.96



CD3B2051N106E
8.046



CD3B2051
8.727



CD3B2051N106H
10.86



CD3B2051N106P
10.89



CD3B2051N106S
11.12



CD3B2051N106R
11.2



CD3B2051N106K
11.4



CD3B2051N106A
12.07



CD3B2051N106G
13.76



CD3B2051N106V
15.15



CD3B2089
8.794



CD3B2089N106S
10.02



CD3B2089N106F
10.13



CD3B2089N106E
10.3



CD3B2089N106T
11.08



CD3B2089N106R
11.25



CD3B2089G107F
14.4



CD3B2089G107V
17.39



CD3B2089N106I
17.85



CD3B2089G107Y
21.4



CD3B2089N106L
30.8



CD3B2089N106P
~27.4



CD3B2089N106G
~429

















TABLE 18







Thermal stability analysis of PTM-mitigated, humanized


Cris-7 variants.











% Retained
% Retained
% Retained



55° C.
60° C.
65° C.





CD3B2030 N1060
109.6%
 97.5%
72.3%


CD3B2030 N106H
103.5%
 98.9%
55.7%


CD3B2030 N106A
111.0%
102.7%
55.6%


CD3B2030 N106R
107.1%
104.2%
53.8%


CD3B2030
104.4%
102.4%
41.3%


CD3B2030 N106L
107.2%
100.5%
25.6%


CD3B2030 N106F
106.1%
 83.3%
21.8%


CD3B2030 N106K
 99.7%
  87.2%
 7.3%


CD3B2030 N106G
114.7%
 59.8%
 1.7%


CD3B2030 N106S
 64.6%
 19.0%
 0.6%


CD3B2051 N106A
 98.9%
 97.0%
33.3%


CD3B2051
103.9%
 95.0%
10.9%


CD3B2051 N106H
103.1%
 84.2%
 9.0%


CD3B2051 N106R
101.2%
 74.5%
 8.4%


CD3B2051 N106K
116.5%
 91.3%
 4.0%


CD3B2051 N106S
100.9%
 70.9%
 1.5%


CD3B2051 N106G
 98.9%
 33.1%
 1.5%


CD3B2051 N106V
 54.9%
  1.4%
 0.7%


CD3B2051 N106E
 78.4%
 15.4%
 0.5%


CD3B2051 N106P
 87.7%
 32.6%
 0.2%


CD3B2089 N106R
101.6%
103.0%
60.4%


CD3B2089 N106F
112.7%
101.3%
36.2%


CD3B2089 N106E
113.3%
108.3%
33.2%


CD3B2089
104.5%
109.2%
15.1%


CD3B2089 N106S
102.3%
 90.2%
 5.4%


CD3B2089 N106T
108.4%
 76.7%
 1.4%


CD3B2089 N106I
 40.6%
  2.5%
 0.9%









Based on the ELISA data, we chose two substitutions which had similar affinities to the parent molecule. For the NG Motif, we chose substituting a Q or A for the N106 position. Additionally, it was desired to obtain potential substitutions which may lower the affinity. For the NG Motif, we chose G and S for the N position (which modestly lowered the affinity, based on ELISA data). These variants were then formatted as bsAbs for further analysis for their abilities to mediate cytotoxicity and for their biophysical characteristics. Note that Cris-7-based scFv moieties were formatted in both LH and in HL orientation in the bsAbs. LH orientation provided additional ability to modulate the affinity for CD3 and thus to tune the efficiency of T cell redirection.


Table 19 shows sequences for select CD3-specific variants.









TABLE 19







Sequences for select CD3 specific variants, using Kabat delineation..









ID
Heavy Chain
Light Chain





CD3B2030
CDR1: RSTMH (SEQ ID NO: 70)
CDR1: SASSSVSYMN (SEQ ID NO: 79)



CDR2: YINPSSAYTNYNQKFQG (SEQ ID NO: 71)
CDR2: DSSKLAS (SEQ ID NO: 80)



CDR3: PQVHYDYNGFPY (SEQ ID NO: 72)
CDR3: QQWSRNPPT (SEQ ID NO: 81)



VH:
VL:



QVQLVQSGAEVKKPGSSVKVSCKASGY
EIVLTQSPATLSASPGERVTLSCSAS



TFTRSTMHWVKQAPGQGLEWIGYINPS
SSVSYMNWYQQKPGQAPRRWIYD



SAYTNYNQKFQGRVTLTADKSTSTAY
SSKLASGVPARFSGSGSGRDYTLTI



MELSSLRSEDTAVYYCASPQVHYDYNG
SSLEPEDFAVYYCQQWSRNPPTFG



FPYWGQGTLVTVSS (SEQ ID NO: 55)
GGTKVEIK (SEQ ID NO: 58)



VH DNA sequence (SEQ ID NO: 64)
VL DNA sequence (SEQ ID NO: 68)





CD3B2030-
CDR1: RSTMH (SEQ ID NO: 70)
CDR1: SASSSVSYMN (SEQ ID NO: 79)


N106A
CDR2: YINPSSAYTNYNQKFQG (SEQ ID NO: 71)
CDR2: DSSKLAS (SEQ ID NO: 80)



CDR3: PQVHYDYAGFPY (SEQ ID NO: 87)
CDR3: QQWSRNPPT (SEQ ID NO: 81)



VH:
VL:



QVQLVQSGAEVKKPGSSVKVSCKASGY
EIVLTQSPATLSASPGERVTLSCSAS



TFTRSTMHWVKQAPGQGLEWIGYINPS
SSVSYMNWYQQKPGQAPRRWIYD



SAYTNYNQKFQGRVTLTADKSTSTAY
SSKLASGVPARFSGSGSGRDYTLTI



MELSSLRSEDTAVYYCASPQVHYDYAG
SSLEPEDFAVYYCQQWSRNPPTFG



FPYWGQGTLVTVSS (SEQ ID NO: 88)
GGTKVEIK (SEQ ID NO: 58)



VH DNA sequence
VL DNA sequence



CAGGTTCAACTGGTTCAGTCTGGCGC
GAGATCGTGCTGACCCAGTCTCC



CGAAGTGAAGAAACCTGGCTCCTCCG
TGCCACACTGTCAGCCTCTCCAG



TCAAGGTGTCCTGCAAGGCTFCCGGC
GCGAGAGAGTCACCCTGTCCTGC



TACACCTTTACCAGATCCACCATGCAC
TCCGCTTCCTCCTCCGTGTCCTAC



TGGGTCAAGCAGGCCCCTGGACAAGG
ATGAACTGGTATCAGCAGAAGCC



CTTGGAGTGGATCGGCTACATCAACC
CGGCCAGGCTCCTAGACGGTGGA



CCAGCTCCGCCTACACCAACTACAAC
TCTACGACTCCTCCAAGCTGGCCT



CAGAAATTCCAGGGCAGAGTGACCCT
CTGGCGTCCCTGCCCGCTTTTCCG



GACCGCCGACAAGTCTACCTCCACCG
GCTCTGGCTCTGGCAGAGACTAT



CCTACATGGAACTGTCCAGCCTGAGA
ACCCTGACCATCTCCAGCCTGGA



TCTGAGGACACCGCCGTGTACTACTG
ACCTGAGGACTTCGCCGTGTACT



CGCCTCTCCTCAGGTCCACTACGACTA
ACTGCCAGCAGTGGTCTAGAAAC



CGCCGGCTTTCCTTATTGGGGCCAGG
CCTCCTACCTTTGGCGGAGGCAC



GCACACTGGTCACCGTTTCTTCT (SEQ
CAAGGTGGAAATCAAG (SEQ ID



ID NO: 89)
NO: 68)





CD3B2089
CDR1: RSTMH (SEQ ID NO: 70)
CDR1: SASSSVSYMN (SEQ ID NO: 79)



CDR2: YINPSSAYTNYNQKFQG (SEQ ID NO: 71)
CDR2: DSSKLAS (SEQ ID NO: 80)



CDR3: PQVHYDYNGFPY (SEQ ID NO: 72)
CDR3: QQWSRNPPT (SEQ ID NO: 81)



VH:
VL:



QVQLVQSGAEVKKPGSSVKVSCKASGY
EIVLTQSPATLSASPGERVTLSCSAS



TFTRSTMHWVRQAPGQGLEWMGYINP
SSVSYMNWYQQKPGQAPRRWIYD



SSAYTNYAQKFQGRVTLTADKSTSTAY
SSKLASGVPARFSGSGSGRDYTLTI



MELSSLRSEDTAVYYCASPQVHYDYNG
SSLEPEDFAVYYCQQWSRNPPTFG



FPYWGQGTLVTVSS (SEQ ID NO: 48)
GGTKVEIK (SEQ ID NO: 58)



VH DNA sequence (SEQ ID NO: 66)
VL DNA sequence (SEQ ID NO: 68)





CD3B2089-
CDR1: RSTMH (SEQ ID NO: 70)
CDR1: SASSSVSYMN (SEQ ID NO: 79)


N106G
CDR2: YINPSSAYTNYNQKFQG (SEQ ID NO: 71)
CDR2: DSSKLAS (SEQ ID NO: 80)



CDR3: PQVHYDYGGFPY (SEQ ID NO: 90)
CDR3: QQWSRNPPT (SEQ ID NO: 81)



VH:
VL:



QVQLVQSGAEVKKPGSSVKVSCKASGY
EIVLTQSPATLSASPGERVTLSCSAS



TFTRSTMHWVRQAPGQGLEWMGYINP
SSVSYMNWYQQKPGQAPRRWIYD



SSAYTNYAQKFQGRVTLTADKSTSTAY
SSKLASGVPARFSGSGSGRDYTLTI



MELSSLRSEDTAVYYCASPQVHYDYGG
SSLEPEDFAVYYCQQWSRNPPTFG



FPYWGQGTLVTVSS (SEQ ID NO: 242)
GGTKVEIK (SEQ ID NO: 58)



VH DNA sequence
VL DNA sequence (SEQ ID NO: 68)



CAGGTTCAACTGGTTCAGTCTGGCGC




CGAAGTGAAGAAACCTGGCTCCTCCG




TGAAAGTGTCCTGCAAGGCTTCCGGC




TACACTTTTACCAGATCCACCATGCAC




TGGGTCCGACAGGCTCCAGGACAAGG




CTTGGAGTGGATGGGCTACATCAACC




CCAGCTCCGCCTACACCAACTACGCC




CAGAAATTCCAGGGCAGAGTGACCCT




GACCGCCGACAAGTCTACCTCCACCG




CCTACATGGAACTGTCCAGCCTGAGA




TCTGAGGACACCGCCGTGTACTACTG




CGCTTCTCCTCAGGTGCACTACGACTA




CGGCGGCTTTCCTTATTGGGGCCAGG




GCACACTGGTCACCGTTTCTTCT (SEQ




ID NO: 91)









Epitope Identification

The epitope on CD3 was determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). The antibody clone OKT3 was used as a control for the HDX experiment, since its epitope on CD3ε was known from crystal structure (PDB ID 1SY6) (Kjer-Nielsen, L. et al.; Proc Natl Acad Sci USA 101, 7675-7680).


On-Exchange Experiment for HDX-MS. On-exchange reaction was initiated by mixing 10 μL of 10 μM CD3W220 (SEQ ID NO: 5), which was comprised of CD3εγ fused with a 26-aa linker region fused onto a serum albumin domain, with or without 1.2 molar-excess of ligand and 30 μL of H2O or a deuterated buffer (20 mM MES, pH 6.4, 150 mM NaCl in 95% D20 or 20 mM Tris, pH 8.4, 150 mM NaCl in 95% D20). The reaction mixture was incubated for 15, 50, 150, 500, or 1,500 s at 1.2° C. The on-exchanged solution was quenched by the addition of chilled 40 μL of 8 M urea, 1 M TCEP, pH 3.0 and immediately analyzed.









CD3W220 (CD3ϵγ-HSA-6xHis) (SEQ ID NO: 92):


QDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDED





DKNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVGSA





DDAKKDAAKKDDAKKDDAKKDGSQSIKGNHLVKVYDYQEDGSVLLTCDAE





AKNITWFKDGKMIGFLTEDKKKWNLGSNAKDPRGMYQCKGSQNKSKPLQV





YYRMGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKL





VNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCA





KQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEI





ARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKAS





SAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVH





TECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAE





VENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYS





VVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNC





ELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPE





AKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALE





VDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKE





QLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLGGGSHHH





HHHHH






Procedure for HDX-MS Data Acquisition. HDX-MS sample preparation was performed with automated HDx system (LEAP Technologies, Morrisville, N.C.). The columns and pump were; protease, protease type XIII (protease from Aspergillus saitoi, type XIII)/pepsin column (w/w, 1:1; 2.1×30 mm) (NovaBioAssays Inc., Woburn, Mass.); trap, ACQUITY UPLC BEH C18 VanGuard Pre-column (2.1×5 mm) (Waters, Milford, Mass.), analytical, Accucore C18 (2.1×100 mm) (Thermo Fisher Scientific, Waltham, Mass.); and LC pump, VH-P10-A (Thermo Fisher Scientific). The loading pump (from the protease column to the trap column) was set at 600 μL/min with 99% water, 1% acetonitrile, 0.1% formic acid. The gradient pump (from the trap column to the analytical column) was set from 8% to 28% acetonitrile in 0.1% aqueous formic acid in 20 min at 100 μL/min.


MS Data Acquisition. Mass spectrometric analyses were carried out using an LTQ™ Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) with the capillary temperature at 275° C., resolution 150,000, and mass range (m/z) 300-1,800.


HDX-MS Data Extraction. BioPharma Finder 3.0 (Thermo Fisher Scientific) was used for the peptide identification of non-deuterated samples prior to the HDX experiments. HDExaminer version 2.5 (Sierra Analytics, Modesto, Calif.) was used to extract centroid values from the MS raw data files for the HDX experiments.


HDX-MS Data Analysis. The extracted HDX-MS data were further analyzed in Excel. All exchange time points (at pH 6.4 or pH 8.4 at 1.2° C.) were converted to the equivalent time points at pH 7.4 and 23° C. (e.g., 15 s at pH 6.4 at 1.2° C. is equivalent of 0.15 s at pH 7.4 at 23° C.; Table 20).









TABLE 20







HDX reaction conditions and exchange times versus


exchange times corrected to pH 7.4 and 23° C.









Time adjusted to
pH 6.4
pH 8.4


pH 7.4, 23° C. (s)
1.2° C. (s)
1.2° C. (s)












0.015




0.05




0.15
15



0.5
50



1.5
150



5
500



15
1,500
15


50

50


150

150


500

500


1,500

1,500









Results. The antibody clone OKT3 was used as a control for the HDX experiment, since its epitope on CD3ε was known from crystal structure (PDB ID 1SY6). Consistent with the crystal structure of OKT3 bound to CD3ε, the epitope of OKT3 was found to consist of peptides spanning residues 29-37, 79-84 and 87-89. To determine the epitope on CD3ε bound by Cris7b, a bi-specific protein comprising Cris7b-N106Q formatted as Fab (SEQ ID Nos: 93 and 94) and paired with an antigen-specific scFv-Fc arm was used. This experiment showed that Cris7 interacted with an epitope consisting of peptides spanning residues 33-37, 53-54, and 79-84, which partially overlapped with that of OKT3 but also interacted with a peptide spanning residues 53-54, which were unique compared to OKT3.









Cris7b-N106Q HC, SEQ ID NO 93:


QVQLLQSAAEVKKPGESLKISCKGSGYTFTRSTMHWVRQTPGKGLEWMGY





INPSSAYTNYNQKFKDQVTISADKSISTAYLQWSSLKASDTAMYYCARPQ





VHYDYQGFPYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLV





KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPK





PKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY





NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP





QVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP





VLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





Cris7b-N106Q LC, SEQ ID NO: 94


EIVLTQSPSAMSASVGDRVTITCSASSSVSYMNWYQQKPGKVPKRLIYDS





SKLASGVPSRFSGSGSGTEYTLTISSLQPEDFATYYCQQWSRNPPTFGQG





TMLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGL





SSPVTKSFNRGEC






Example 2. Characterization of Novel CD3 Binders in a Bi-Specific Format

The VH/VL regions of the anti-CD3 antibodies generated in Example 1 and the VH/VL regions of the anti-BCMA antibodies described below were engineered into bispecific format and expressed as IgG1 (Table 21).


Engineering of CD3 scFvs for BCMAxCD3 Bispecific Generation.


CD3 VH/VL regions were engineered as scFvs in either VH-Linker-VL (also termed “HL”) or VL-linker-VH (also termed “LH”) orientations using the linker of SEQ ID NO: 3 (Table 22). The VH-Linker-VL or VL-linker-VH scFv molecules binding CD3 were further engineered into a scFv-hinge-CH2-CH3 (also termed scFv-Fc) format comprising Fc silencing mutation (L234A/L235A/D265S) and the T350V/L351Y/F405A/Y407V mutations designed to promote selective heterodimerization (Table 23). The polypeptide of SEQ ID NO: 95 was used as the constant domain hinge-CH2-CH3. DNA sequences of anti-CD3 molecules in scFv format and scFv-hinge-CH2-CH3 format are shown in Table 24.









(huIgG1_Glm(17)-hinge-Fc_C220S_AAS_ZWA)


SEQ ID NO: 95


EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVS





VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN





GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSL





TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDKS





RWQQGNVFSCSVMHEALHNHYTQKSLSLSPG













TABLE 21







CD3xBCMA bi-specific proteins.








ID
Description





BC3B129
HC1: CD3B2089-N106S LH scFv; HC2: BCMB519 Fab


BC3B128
HC1: CD3B2089-N106Q LH scFv; HC2: BCMB519 Fab


BC3B127
HC1: CD3B2089-N106G LH scFv; HC2: BCMB519 Fab


BC3B126
HC1: CD3B2089-N106A LH scFv; HC2: BCMB519 Fab


BC3B125
HC1: CD3B2089 LH scFv; HC2: BCMB519 Fab


BC3B124
HC1: CD3B2051-N106S LH scFv; HC2: BCMB519 Fab


BC3B123
HC1: CD3B2051-N106Q LH scFv; HC2: BCMB519 Fab


BC3B122
HC1: CD3B2051-N106G LH scFv; HC2: BCMB519 Fab


BC3B121
HC1: CD3B2051-N106A LH scFv; HC2: BCMB519 Fab


BC3B120
HC1: CD3B2051 LH scFv; HC2: BCMB519 Fab


BC3B119
HC1: CD3B2030-N106S LH scFv; HC2: BCMB519 Fab


BC3B118
HC1: CD3B2030-N106G LH scFv; HC2: BCMB519 Fab


BC3B117
HC1: CD3B2030-N106A LH scFv; HC2: BCMB519 Fab


BC3B116
HC1: CD3B2030 LH scFv; HC2: BCMB519 Fab


BC3B115
HC1: CD3B2089-N106S HL scFv; HC2: BCMB519 Fab


BC3B114
HC1: CD3B2089-N106Q HL scFv; HC2: BCMB519 Fab


BC3B113
HC1: CD3B2089-N106G HL scFv; HC2: BCMB519 Fab


BC3B112
HC1: CD3B2089-N106A HL scFv; HC2: BCMB519 Fab


BC3B111
HC1: CD3B2089 HL scFv; HC2: BCMB519 Fab


BC3B110
HC1: CD3B2051-N106S HL scFv; HC2: BCMB519 Fab


BC3B109
HC1: CD3B2051-N106Q HL scFv; HC2: BCMB519 Fab


BC3B108
HC1: CD3B2051-N106G HL scFv; HC2: BCMB519 Fab


BC3B107
HC1: CD3B2051-N106A HL scFv; HC2: BCMB519 Fab


BC3B106
HC1: CD3B2051 HL scFv; HC2: BCMB519 Fab


BC3B105
HC1: CD3B2030-N106S HL scFv; HC2: BCMB519 Fab


BC3B104
HC1: CD3B2030-N106G HL scFv; HC2: BCMB519 Fab


BC3B103
HC1: CD3B2030-N106A HL scFv; HC2: BCMB519 Fab


BC3B102
HC1: CD3B2030 HL scFv; HC2: BCMB519 Fab


BC3B53
HC1: CD3B2030-N106Q LH scFv; HC2: BCMB519 Fab


BC3B51
HC1: CD3B2030-N106Q HL scFv; HC2: BCMB519 Fab





HL-VH-Linker-VL fused to Fc;


LH-VL-Linker-VH fused to Fe













TABLE 22







CD3 specific scFvs sequences.











SEQ




ID


ID
Amino acid sequence
NO:





CD3B2089-N106S 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
 96


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVT




LTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYSGF




PYWGQGTLVTVSS






CD3B2089-N106Q 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
 97


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVT




LTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQGF




PYWGQGTLVTVSS






CD3B2089-N106G 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
 98


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVT




LTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYGGF




PYWGQGTLVTVSS






CD3B2089-N106A 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
 99


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVT




LTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYAGF




PYWGQGTLVTVSS






CD3B2089 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
100


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVT




LTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYNGF




PYWGQGTLVTVSS






CD3B2051-N106S 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
101


LH scFv
QAPRRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPED




FAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSES




KSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRST




MHWVKQAPGQGLEWMGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYSGFP




YWGQGTLVTVSS






CD3B2051-N106Q 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
102


LH scFv
QAPRRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPED




FAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSES




KSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRST




MHWVKQAPGQGLEWMGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQGFP




YWGQGTLVTVSS






CD3B2051-N106G 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
103


LH scFv
QAPRRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPED




FAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSES




KSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRST




MHWVKQAPGQGLEWMGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYGGFP




YWGQGTLVTVSS






CD3B2051-N106A 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
104


LH scFv
QAPRRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPED




FAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSES




KSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRST




MHWVKQAPGQGLEWMGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYAGFP




YWGQGTLVTVSS






CD3B2051 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
105


LH scFv
QAPRRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPED




FAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSES




KSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRST




MHWVKQAPGQGLEWMGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYNGFP




YWGQGTLVTVSS






CD3B2030-N106S 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
106


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYSGFP




YWGQGTLVTVSS






CD3B2030-N106G 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
107


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYGGFP




YWGQGTLVTVSS






CD3B2030-N106A 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
108


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYAGFP




YWGQGTLVTVSS






CD3B2030 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
109


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYNGFP




YWGQGTLVTVSS






CD3B2089-N106S 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVR
110


HL scFv
QAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYSGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2089-N106Q 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVR
111


HL scFv
QAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYQGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2089-N106G 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVR
112


HL scFv
QAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYGGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2089-N106A 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVR
113


HL scFv
QAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYAGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2089 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVR
114


HL scFv
QAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYNGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2051-N106S 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
115


HL scFv
QAPGQGLEWMGYINPSSAYTNYNQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYSGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2051-N106Q 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
116


HL scFv
QAPGQGLEWMGYINPSSAYTNYNQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYQGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2051-N106G 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
117


HL scFv
QAPGQGLEWMGYINPSSAYTNYNQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYGGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2051-N106A 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
118


HL scFv
QAPGQGLEWMGYINPSSAYTNYNQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYAGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2051 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
119


HL scFv
QAPGQGLEWMGYINPSSAYTNYNQKFQGRVTLTADKST




STAYMELSSLRSEDTAVYYCASPQVHYDYNGFPYWGQG




TLVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSAS




PGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2030-N106S 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
120


HL scFv
QAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTS




TAYMELSSLRSEDTAVYYCASPQVHYDYSGFPYWGQGT




LVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSASP




GERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2030-N106G 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
121


HL scFv
QAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTS




TAYMELSSLRSEDTAVYYCASPQVHYDYGGFPYWGQGT




LVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSASP




GERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2030-N106A 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
122


HL scFv
QAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTS




TAYMELSSLRSEDTAVYYCASPQVHYDYAGFPYWGQGT




LVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSASP




GERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2030 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
123


HL scFv
QAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTS




TAYMELSSLRSEDTAVYYCASPQVHYDYNGFPYWGQGT




LVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSASP




GERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2030-N106Q 
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPG
124


LH scFv
QAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPE




DFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSE




SKSTGGSQVQLVQSGAEVKKPGSSVKVSCKASGYTFTRS




TMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTL




TADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQGFP




YWGQGTLVTVSS






CD3B2030-N106Q 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVK
125


HL scFv
QAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTS




TAYMELSSLRSEDTAVYYCASPQVHYDYQGFPYWGQGT




LVTVSSGGSEGKSSGSGSESKSTGGSEIVLTQSPATLSASP




GERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKL




ASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRN




PPTFGGGTKVEIK






CD3B2029-N106Q 
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLE
126


HL scFv
WIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYY




CASPQVHYDYQGFPYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSEI




VLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQSPRRWIYDS




SKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPTFGG




GTKVEIK
















TABLE 23







CD3 specific scFv-Fc (scFv-hinge CH2-CH3) arms.











SEQ




ID


Acronym
Amino acid sequence
NO:





CD3B2089-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
127


N106S LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNY




AQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYS




GFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2089-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
128


N106Q LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNY




AQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQ




GFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2089-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
129


N106G LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNY




AQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYG




GFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2089-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
130


N106A LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNY




AQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYA




GFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2089
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
131


LH scFv-Fc
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNY




AQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYN




GFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2051-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIY
132


N106S LH
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPT



scFv-Fc
FGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSS




VKVSCKASGYTFTRSTMHWVKQAPGQGLEWMGYINPSSAYTNYNQ




KFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYSGF




PYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2051-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIY
133


N106Q LH
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPT



scFv-Fc
FGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSS




VKVSCKASGYTFTRSTMHWVKQAPGQGLEWMGYINPSSAYTNYNQ




KFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQGF




PYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2051-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIY
134


N106G LH
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPT



scFv-Fc
FGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSS




VKVSCKASGYTFTRSTMHWVKQAPGQGLEWMGYINPSSAYTNYNQ




KFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYGGF




PYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2051-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIY
135


N106A LH
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPT



scFv-Fc
FGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSS




VKVSCKASGYTFTRSTMHWVKQAPGQGLEWMGYINPSSAYTNYNQ




KFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYAGF




PYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2051
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRLIY
136


LH scFv-Fc
DSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNPPT




FGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSS




VKVSCKASGYTFTRSTMHWVKQAPGQGLEWMGYINPSSAYTNYNQ




KFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYNGF




PYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2030-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
137


N106S LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYN




QKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYSG




FPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2030-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
138


N106G LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYN




QKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYGG




FPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2030-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
139


N106A LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYN




QKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYAG




FPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2030
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
140


LH scFv-Fc
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP




PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYN




QKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYNG




FPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2089-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
141


N106S HL
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYSGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW




SRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG






CD3B2089-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
142


N106Q HL
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYQGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW




SRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG






CD3B2089-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
143


N106G HL
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW




SRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG






CD3B2089-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
144


N106A HL
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYAGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW




SRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG






CD3B2089
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL
145


HL scFv-Fc
EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW




SRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG






CD3B2051-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
146


N106S HL
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYSGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2051-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
147


N106Q HL
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYQGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2051-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
148


N106G HL
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2051-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
149


N106A HL
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT



scFv-Fc
AVYYCASPQVHYDYAGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2051
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
150


HL scFv-Fc
EWMGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDT




AVYYCASPQVHYDYNGFPYWGQGTLVTVSSGGSEGKSSGSGSESKS




TGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAP




RRLIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2030-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
151


N106S HL
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA



scFv-Fc
VYYCASPQVHYDYSGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2030-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
152


N106G HL
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA



scFv-Fc
VYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2030-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
153


N106A HL
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA



scFv-Fc
VYYCASPQVHYDYAGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2030
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
154


HL scFv-Fc
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA




VYYCASPQVHYDYNGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2030-
EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWI
155


N106Q LH
YDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWSRNP



scFv-Fc
PTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG




SSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYN




QKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASPQVHYDYQG




FPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG






CD3B2030-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
156


N106Q HL
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA



scFv-Fc
VYYCASPQVHYDYQGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






CD3B2029-
QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGL
157


N106Q HL
EWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTA



scFv-Fc
VYYCASPQVHYDYQGFPYWGQGTLVTVSSGGSEGKSSGSGSESKST




GGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQSPR




RWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQWS




RNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG
















TABLE 24







DNA SEQ ID NOs for anti-CD3 scFv and scFv-hinge-CH2-CH3 (scFv-Fc)










scFv-Fc DNA
scFv DNA


Acronym
(SEQ ID NO:)
(SEQ ID NO:)





CD3B2089-
GAGATTGTACTGACACAGTCCCCAGCAACCTTGTCCGCTTC
GAGATTGTACTGACACAGTCC


N106S-
TCCCGGCGAAAGGGTCACTCTCTCCTGCTCCGCTAGTTCTT
CCAGCAACCTTGTCCGCTTCTC


LH-scFv
CAGTGTCATATATGAATTGGTACCAACAAAAGCCAGGTCA
CCGGCGAAAGGGTCACTCTCT



GGCTCCAAGAAGATGGATTTACGATTCCTCCAAGTTGGCTT
CCTGCTCCGCTAGTTCTTCAGT



CTGGTGTCCCTGCACGATTTAGCGGGTCAGGGTCAGGGCG
GTCATATATGAATTGGTACCA



CGATTACACACTCACAATTAGTAGTCTCGAACCCGAGGACT
ACAAAAGCCAGGTCAGGCTCC



TTGCCGTATATTACTGTCAGCAATGGAGTCGGAATCCCCCA
AAGAAGATGGATTTACGATTC



ACTTTCGGCGGGGGAACAAAAGTAGAAATAAAAGGCGGC
CTCCAAGTTGGCTTCTGGTGTC



TCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAA
CCTGCACGATTTAGCGGGTCA



GAGCACCGGCGGCAGCCAAGTGCAGTTGGTCCAGTCAGG
GGGTCAGGGCGCGATTACACA



CGCAGAAGTGAAGAAGCCCGGCTCAAGCGTCAAGGTATC
CTCACAATTAGTAGTCTCGAAC



ATGTAAGGCTTCTGGATATACTTTCACCCGAAGCACAATGC
CCGAGGACTTTGCCGTATATT



ACTGGGTTCGCCAGGCCCCTGGACAGGGTCTTGAGTGGAT
ACTGTCAGCAATGGAGTCGGA



GGGGTATATCAACCCATCCTCAGCATATACTAACTATGCTC
ATCCCCCAACTTTCGGCGGGG



AGAAGTTTCAGGGGCGTGTCACTTTGACCGCCGATAAGTC
GAACAAAAGTAGAAATAAAA



CACAAGCACCGCTTATATGGAACTGTCTTCATTGCGCTCTG
GGCGGCTCCGAGGGCAAGAG



AAGACACTGCAGTGTACTATTGCGCCAGCCCACAGGTCCA
CAGCGGCAGCGGCAGCGAGA



CTACGACTATTCTGGATTTCCATACTGGGGGCAGGGGACC
GCAAGAGCACCGGCGGCAGC



TTGGTGACTGTAAGCTCTGAGCCCAAATCTAGCGACAAAA
CAAGTGCAGTTGGTCCAGTCA



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GGCGCAGAAGTGAAGAAGCC



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
CGGCTCAAGCGTCAAGGTATC



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
ATGTAAGGCTTCTGGATATAC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TTTCACCCGAAGCACAATGCA



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CTGGGTTCGCCAGGCCCCTGG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
ACAGGGTCTTGAGTGGATGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
GGTATATCAACCCATCCTCAGC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ATATACTAACTATGCTCAGAA



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
GTTTCAGGGGCGTGTCACTTT



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GACCGCCGATAAGTCCACAAG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
CACCGCTTATATGGAACTGTCT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
TCATTGCGCTCTGAAGACACT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GCAGTGTACTATTGCGCCAGC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CCACAGGTCCACTACGACTATT



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CTGGATTTCCATACTGGGGGC



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
AGGGGACCTTGGTGACTGTAA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
GCTCTG



(158)
(159)





CD3B2089-
GAGATCGTACTGACCCAAAGTCCCGCCACTCTCTCTGCTAG
GAGATCGTACTGACCCAAAGT


N106Q-
CCCAGGCGAGAGAGTTACCTTGTCTTGCTCTGCTAGTTCAA
CCCGCCACTCTCTCTGCTAGCC


LH-scFv
GTGTCAGTTATATGAACTGGTATCAGCAGAAGCCAGGACA
CAGGCGAGAGAGTTACCTTGT



GGCACCTCGAAGATGGATATATGACTCCTCCAAACTCGCA
CTTGCTCTGCTAGTTCAAGTGT



TCAGGCGTACCAGCACGCTTTTCTGGGAGCGGTAGTGGTA
CAGTTATATGAACTGGTATCA



GGGATTATACACTCACCATCTCTAGTTTGGAACCAGAAGAT
GCAGAAGCCAGGACAGGCAC



TTCGCTGTGTACTATTGCCAGCAGTGGAGCCGCAACCCTCC
CTCGAAGATGGATATATGACT



TACCTTCGGCGGTGGGACAAAGGTAGAAATAAAAGGCGG
CCTCCAAACTCGCATCAGGCG



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
TACCAGCACGCTTTTCTGGGA



AGAGCACCGGCGGCAGCCAAGTGCAGTTGGTTCAATCCG
GCGGTAGTGGTAGGGATTATA



GCGCTGAAGTGAAGAAACCTGGGTCATCTGTCAAAGTATC
CACTCACCATCTCTAGTTTGGA



CTGTAAAGCCTCTGGGTACACTTTTACACGTAGCACCATGC
ACCAGAAGATTTCGCTGTGTA



ACTGGGTCCGTCAAGCCCCTGGGCAAGGCCTTGAGTGGAT
CTATTGCCAGCAGTGGAGCCG



GGGTTATATAAACCCATCCTCCGCATACACAAATTACGCTC
CAACCCTCCTACCTTCGGCGGT



AAAAATTTCAAGGGCGAGTCACTCTCACTGCCGATAAATC
GGGACAAAGGTAGAAATAAA



CACTTCAACTGCCTATATGGAGCTTAGTTCATTGCGATCAG
AGGCGGCTCCGAGGGCAAGA



AAGATACTGCAGTCTATTATTGTGCATCACCTCAGGTCCAT
GCAGCGGCAGCGGCAGCGAG



TACGACTACCAAGGGTTCCCCTACTGGGGACAGGGGACTT
AGCAAGAGCACCGGCGGCAG



TGGTAACTGTGTCTTCTGAGCCCAAATCTAGCGACAAAACT
CCAAGTGCAGTTGGTTCAATC



CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGG
CGGCGCTGAAGTGAAGAAAC



GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC
CTGGGTCATCTGTCAAAGTAT



CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG
CCTGTAAAGCCTCTGGGTACA



TGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG
CTTTTACACGTAGCACCATGCA



GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA
CTGGGTCCGTCAAGCCCCTGG



GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT
GCAAGGCCTTGAGTGGATGG



CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC
GTTATATAAACCCATCCTCCGC



AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG
ATACACAAATTACGCTCAAAA



CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC
ATTTCAAGGGCGAGTCACTCT



CCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAG
CACTGCCGATAAATCCACTTCA



GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA
ACTGCCTATATGGAGCTTAGTT



AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA
CATTGCGATCAGAAGATACTG



GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
CAGTCTATTATTGTGCATCACC



CCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA
TCAGGTCCATTACGACTACCA



GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGT
AGGGTTCCCCTACTGGGGACA



CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
GGGGACTTTGGTAACTGTGTC



ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TTCTG



(160)
(161)





CD3B2089-
GAGATCGTATTGACACAATCACCCGCCACATTGTCAGCTA
GAGATCGTATTGACACAATCA


N106G-
GCCCCGGTGAGCGCGTCACACTTTCTTGTAGTGCATCAAG
CCCGCCACATTGTCAGCTAGC


LH-scFv
TAGCGTTTCTTACATGAATTGGTATCAGCAGAAACCAGGA
CCCGGTGAGCGCGTCACACTT



CAAGCACCACGGCGATGGATATACGATTCTAGCAAACTCG
TCTTGTAGTGCATCAAGTAGC



CCAGTGGCGTCCCCGCTCGATTCTCCGGGTCTGGCAGTGG
GTTTCTTACATGAATTGGTATC



TAGAGATTATACACTCACTATCAGTTCTCTGGAACCAGAAG
AGCAGAAACCAGGACAAGCA



ACTTCGCAGTCTATTACTGTCAACAATGGTCACGGAATCCC
CCACGGCGATGGATATACGAT



CCCACATTCGGTGGTGGCACCAAGGTTGAAATTAAGGGCG
TCTAGCAAACTCGCCAGTGGC



GCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC
GTCCCCGCTCGATTCTCCGGG



AAGAGCACCGGCGGCAGCCAAGTTCAGCTTGTGCAGAGC
TCTGGCAGTGGTAGAGATTAT



GGGGCAGAGGTGAAGAAACCCGGATCAAGCGTCAAAGTT
ACACTCACTATCAGTTCTCTGG



TCTTGTAAAGCTAGTGGATATACTTTCACACGCTCAACTAT
AACCAGAAGACTTCGCAGTCT



GCACTGGGTGAGACAAGCTCCTGGTCAGGGCCTGGAGTG
ATTACTGTCAACAATGGTCAC



GATGGGGTACATAAATCCCTCCAGTGCATATACTAACTATG
GGAATCCCCCCACATTCGGTG



CTCAAAAGTTCCAAGGCCGCGTAACTCTCACTGCCGATAA
GTGGCACCAAGGTTGAAATTA



GTCCACCAGCACTGCCTACATGGAACTGTCTAGTTTGCGAT
AGGGCGGCTCCGAGGGCAAG



CCGAGGACACCGCCGTGTACTACTGTGCTTCACCTCAAGTA
AGCAGCGGCAGCGGCAGCGA



CATTATGACTACGGGGGATTTCCCTACTGGGGCCAAGGTA
GAGCAAGAGCACCGGCGGCA



CTTTGGTCACAGTCTCAAGCGAGCCCAAATCTAGCGACAA
GCCAAGTTCAGCTTGTGCAGA



AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCA
GCGGGGCAGAGGTGAAGAAA



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG
CCCGGATCAAGCGTCAAAGTT



ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG
TCTTGTAAAGCTAGTGGATAT



GTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTC
ACTTTCACACGCTCAACTATGC



AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
ACTGGGTGAGACAAGCTCCTG



ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
GTCAGGGCCTGGAGTGGATG



GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA
GGGTACATAAATCCCTCCAGT



ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT
GCATATACTAACTATGCTCAAA



CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG
AGTTCCAAGGCCGCGTAACTC



CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCC
TCACTGCCGATAAGTCCACCA



GGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC
GCACTGCCTACATGGAACTGT



TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG
CTAGTTTGCGATCCGAGGACA



GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC
CCGCCGTGTACTACTGTGCTTC



GCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGA
ACCTCAAGTACATTATGACTAC



GCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGA
GGGGGATTTCCCTACTGGGGC



ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
CAAGGTACTTTGGTCACAGTC



CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TCAAGCG



(162)
(163)





CD3B2089-
GAAATAGTGCTGACCCAGAGCCCCGCTACCCTTTCTGCAA
GAAATAGTGCTGACCCAGAGC


N106A-
GTCCTGGGGAACGTGTTACATTGTCTTGTAGCGCTTCTTCA
CCCGCTACCCTTTCTGCAAGTC


LH-scFv
TCAGTCTCCTATATGAATTGGTATCAACAAAAACCAGGACA
CTGGGGAACGTGTTACATTGT



AGCTCCTCGGCGGTGGATCTACGACAGTTCCAAACTTGCCT
CTTGTAGCGCTTCTTCATCAGT



CTGGTGTGCCTGCTCGGTTTAGTGGGTCTGGAAGTGGACG
CTCCTATATGAATTGGTATCAA



AGATTATACTCTGACCATCAGTTCCTTGGAACCCGAGGATT
CAAAAACCAGGACAAGCTCCT



TTGCTGTTTATTACTGCCAACAATGGAGTAGAAACCCTCCA
CGGCGGTGGATCTACGACAGT



ACCTTTGGAGGTGGAACTAAGGTCGAGATAAAGGGCGGC
TCCAAACTTGCCTCTGGTGTGC



TCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAA
CTGCTCGGTTTAGTGGGTCTG



GAGCACCGGCGGCAGCCAAGTGCAATTGGTCCAAAGTGG
GAAGTGGACGAGATTATACTC



AGCTGAAGTAAAAAAACCCGGCTCCTCTGTGAAGGTCAGT
TGACCATCAGTTCCTTGGAACC



TGCAAAGCCTCAGGGTACACCTTTACTAGGTCAACAATGC
CGAGGATTTTGCTGTTTATTAC



ACTGGGTGCGACAAGCTCCCGGTCAGGGTTTGGAGTGGA
TGCCAACAATGGAGTAGAAAC



TGGGATACATAAACCCCTCATCAGCCTACACAAATTATGCA
CCTCCAACCTTTGGAGGTGGA



CAAAAATTTCAGGGTCGGGTTACACTCACCGCCGACAAAT
ACTAAGGTCGAGATAAAGGG



CCACTTCCACTGCTTATATGGAACTTTCCTCTCTCCGCAGTG
CGGCTCCGAGGGCAAGAGCA



AGGACACAGCAGTGTACTATTGTGCCTCCCCTCAAGTGCAT
GCGGCAGCGGCAGCGAGAGC



TATGACTACGCTGGTTTCCCTTACTGGGGACAAGGTACTCT
AAGAGCACCGGCGGCAGCCA



GGTTACAGTTTCTTCCGAGCCCAAATCTAGCGACAAAACTC
AGTGCAATTGGTCCAAAGTGG



ACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGG
AGCTGAAGTAAAAAAACCCGG



GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC
CTCCTCTGTGAAGGTCAGTTG



CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG
CAAAGCCTCAGGGTACACCTT



TGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG
TACTAGGTCAACAATGCACTG



GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA
GGTGCGACAAGCTCCCGGTCA



GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT
GGGTTTGGAGTGGATGGGAT



CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC
ACATAAACCCCTCATCAGCCTA



AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG
CACAAATTATGCACAAAAATTT



CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC
CAGGGTCGGGTTACACTCACC



CCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAG
GCCGACAAATCCACTTCCACT



GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA
GCTTATATGGAACTTTCCTCTC



AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA
TCCGCAGTGAGGACACAGCAG



GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
TGTACTATTGTGCCTCCCCTCA



CCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA
AGTGCATTATGACTACGCTGG



GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGT
TTTCCCTTACTGGGGACAAGG



CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
TACTCTGGTTACAGTTTCTTCC



ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
G



(164)
(165)





CD3B2089-
GAAATCGTTCTCACACAGAGCCCTGCAACATTGTCAGCTTC
GAAATCGTTCTCACACAGAGC


LH-scFv
ACCCGGTGAACGAGTAACATTGTCCTGTTCTGCCTCAAGTA
CCTGCAACATTGTCAGCTTCAC



GTGTGAGCTATATGAATTGGTATCAACAAAAACCAGGGCA
CCGGTGAACGAGTAACATTGT



GGCCCCTAGAAGGTGGATCTATGATTCAAGCAAACTGGCA
CCTGTTCTGCCTCAAGTAGTGT



TCCGGCGTCCCTGCCCGCTTTAGTGGAAGCGGTTCAGGAA
GAGCTATATGAATTGGTATCA



GGGACTATACTCTTACTATCTCCAGCCTTGAACCTGAAGAT
ACAAAAACCAGGGCAGGCCCC



TTTGCAGTCTACTACTGCCAACAATGGTCTAGGAATCCCCC
TAGAAGGTGGATCTATGATTC



CACTTTTGGTGGAGGGACCAAAGTTGAGATCAAAGGCGG
AAGCAAACTGGCATCCGGCGT



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
CCCTGCCCGCTTTAGTGGAAG



AGAGCACCGGCGGCAGCCAGGTACAACTCGTGCAAAGTG
CGGTTCAGGAAGGGACTATAC



GTGCTGAAGTGAAGAAACCTGGATCAAGCGTCAAGGTATC
TCTTACTATCTCCAGCCTTGAA



CTGTAAAGCATCAGGATACACCTTCACACGCAGTACTATGC
CCTGAAGATTTTGCAGTCTACT



ATTGGGTGCGTCAAGCCCCCGGACAGGGCCTGGAATGGA
ACTGCCAACAATGGTCTAGGA



TGGGCTACATAAACCCTTCTTCCGCCTACACCAATTATGCC
ATCCCCCCACTTTTGGTGGAG



CAAAAGTTCCAGGGAAGGGTGACTCTGACTGCTGATAAAA
GGACCAAAGTTGAGATCAAAG



GTACTAGCACCGCATACATGGAACTGTCTTCACTGAGAAG
GCGGCTCCGAGGGCAAGAGC



CGAGGACACCGCCGTCTATTATTGTGCATCCCCCCAAGTCC
AGCGGCAGCGGCAGCGAGAG



ACTATGATTACAACGGATTTCCTTACTGGGGCCAGGGAAC
CAAGAGCACCGGCGGCAGCC



CTTGGTCACCGTGTCTTCCGAGCCCAAATCTAGCGACAAAA
AGGTACAACTCGTGCAAAGTG



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GTGCTGAAGTGAAGAAACCTG



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
GATCAAGCGTCAAGGTATCCT



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTAAAGCATCAGGATACACCT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TCACACGCAGTACTATGCATT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GGGTGCGTCAAGCCCCCGGAC



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AGGGCCTGGAATGGATGGGC



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TACATAAACCCTTCTTCCGCCT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ACACCAATTATGCCCAAAAGT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TCCAGGGAAGGGTGACTCTGA



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
CTGCTGATAAAAGTACTAGCA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
CCGCATACATGGAACTGTCTTC



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
ACTGAGAAGCGAGGACACCG



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CCGTCTATTATTGTGCATCCCC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CCAAGTCCACTATGATTACAAC



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GGATTTCCTTACTGGGGCCAG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGAACCTTGGTCACCGTGTCT



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TCCG



(166)
(167)





CD3B2051-
GAGATTGTACTCACCCAGTCTCCAGCTACCCTTAGTGCTTC
GAGATTGTACTCACCCAGTCTC


N106S-
ACCTGGTGAGCGCGTGACATTGTCCTGCTCCGCAAGCTCC
CAGCTACCCTTAGTGCTTCACC


LH-scFv
AGTGTTTCATATATGAATTGGTACCAACAAAAGCCTGGGC
TGGTGAGCGCGTGACATTGTC



AAGCACCACGCCGGCTGATCTACGACAGCTCCAAGCTCGC
CTGCTCCGCAAGCTCCAGTGTT



AAGCGGTGTACCTGCTCGCTTTTCCGGCAGCGGGTCAGGT
TCATATATGAATTGGTACCAAC



CGAGATTATACTCTGACCATTTCATCACTCGAACCCGAAGA
AAAAGCCTGGGCAAGCACCAC



CTTTGCAGTGTATTACTGTCAACAGTGGAGTAGGAATCCA
GCCGGCTGATCTACGACAGCT



CCAACATTTGGGGGTGGCACCAAGGTTGAGATAAAGGGC
CCAAGCTCGCAAGCGGTGTAC



GGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAG
CTGCTCGCTTTTCCGGCAGCG



CAAGAGCACCGGCGGCAGCCAAGTGCAACTCGTACAATCT
GGTCAGGTCGAGATTATACTC



GGCGCTGAGGTTAAGAAACCTGGTAGCTCTGTTAAAGTGT
TGACCATTTCATCACTCGAACC



CTTGTAAAGCATCCGGGTATACTTTTACCCGGTCAACTATG
CGAAGACTTTGCAGTGTATTA



CACTGGGTAAAACAAGCTCCTGGACAAGGTTTGGAGTGG
CTGTCAACAGTGGAGTAGGAA



ATGGGTTATATAAATCCCTCCTCAGCATACACTAACTACAA
TCCACCAACATTTGGGGGTGG



CCAGAAGTTCCAGGGGCGCGTTACCCTGACTGCCGATAAG
CACCAAGGTTGAGATAAAGG



AGTACTTCAACTGCTTATATGGAGCTGTCATCCCTGCGTAG
GCGGCTCCGAGGGCAAGAGC



CGAGGACACAGCAGTATACTACTGCGCCAGTCCACAGGTA
AGCGGCAGCGGCAGCGAGAG



CACTACGATTACAGTGGCTTTCCATACTGGGGGCAGGGCA
CAAGAGCACCGGCGGCAGCC



CTCTGGTAACAGTATCTAGTGAGCCCAAATCTAGCGACAA
AAGTGCAACTCGTACAATCTG



AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCA
GCGCTGAGGTTAAGAAACCTG



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG
GTAGCTCTGTTAAAGTGTCTTG



ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG
TAAAGCATCCGGGTATACTTTT



GTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTC
ACCCGGTCAACTATGCACTGG



AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
GTAAAACAAGCTCCTGGACAA



ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
GGTTTGGAGTGGATGGGTTAT



GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA
ATAAATCCCTCCTCAGCATACA



ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT
CTAACTACAACCAGAAGTTCC



CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG
AGGGGCGCGTTACCCTGACTG



CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCC
CCGATAAGAGTACTTCAACTG



GGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC
CTTATATGGAGCTGTCATCCCT



TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG
GCGTAGCGAGGACACAGCAG



GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC
TATACTACTGCGCCAGTCCACA



GCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGA
GGTACACTACGATTACAGTGG



GCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGA
CTTTCCATACTGGGGGCAGGG



ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
CACTCTGGTAACAGTATCTAGT



CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
G



(168)
(169)





CD3B2051-
GAGATCGTGTTGACTCAAAGTCCTGCAACCCTGTCTGCTAG
GAGATCGTGTTGACTCAAAGT


N106Q-
TCCAGGGGAGAGGGTTACTCTCAGTTGTTCTGCAAGCAGT
CCTGCAACCCTGTCTGCTAGTC


LH-scFv
AGCGTATCCTACATGAACTGGTATCAACAAAAGCCTGGTC
CAGGGGAGAGGGTTACTCTCA



AGGCACCACGGCGGTTGATATATGACTCCTCCAAGTTGGC
GTTGTTCTGCAAGCAGTAGCG



CTCTGGGGTGCCCGCAAGATTCTCCGGGTCCGGCTCTGGC
TATCCTACATGAACTGGTATCA



CGCGATTACACACTGACTATAAGCAGTCTGGAACCAGAGG
ACAAAAGCCTGGTCAGGCACC



ATTTTGCCGTTTACTACTGCCAACAATGGAGCCGAAACCCC
ACGGCGGTTGATATATGACTC



CCAACCTTTGGAGGTGGCACTAAGGTAGAGATAAAGGGC
CTCCAAGTTGGCCTCTGGGGT



GGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAG
GCCCGCAAGATTCTCCGGGTC



CAAGAGCACCGGCGGCAGCCAGGTACAGTTGGTCCAAAG
CGGCTCTGGCCGCGATTACAC



TGGCGCAGAGGTAAAGAAACCAGGTTCTTCAGTCAAGGTA
ACTGACTATAAGCAGTCTGGA



AGTTGCAAGGCATCTGGATATACATTTACCCGCAGTACTAT
ACCAGAGGATTTTGCCGTTTA



GCATTGGGTCAAACAGGCTCCAGGACAGGGGCTTGAATG
CTACTGCCAACAATGGAGCCG



GATGGGTTACATCAACCCATCTAGTGCCTATACAAACTATA
AAACCCCCCAACCTTTGGAGG



ATCAGAAATTTCAGGGCAGAGTGACTCTGACAGCCGACAA
TGGCACTAAGGTAGAGATAAA



ATCAACCTCTACAGCATATATGGAGTTGTCCTCTCTCCGTA
GGGCGGCTCCGAGGGCAAGA



GTGAAGATACTGCCGTCTACTATTGTGCAAGCCCCCAAGTC
GCAGCGGCAGCGGCAGCGAG



CACTATGATTATCAGGGTTTCCCTTACTGGGGGCAGGGTA
AGCAAGAGCACCGGCGGCAG



CTTTGGTTACCGTTTCATCCGAGCCCAAATCTAGCGACAAA
CCAGGTACAGTTGGTCCAAAG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
TGGCGCAGAGGTAAAGAAAC



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
CAGGTTCTTCAGTCAAGGTAA



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTTGCAAGGCATCTGGATATA



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CATTTACCCGCAGTACTATGCA



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TTGGGTCAAACAGGCTCCAGG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
ACAGGGGCTTGAATGGATGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
GTTACATCAACCCATCTAGTGC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
CTATACAAACTATAATCAGAA



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
ATTTCAGGGCAGAGTGACTCT



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GACAGCCGACAAATCAACCTC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
TACAGCATATATGGAGTTGTC



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CTCTCTCCGTAGTGAAGATACT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GCCGTCTACTATTGTGCAAGC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CCCCAAGTCCACTATGATTATC



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
AGGGTTTCCCTTACTGGGGGC



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
AGGGTACTTTGGTTACCGTTTC



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
ATCCG



(170)
(171)





CD3B2051-
GAAATTGTTCTTACACAAAGTCCTGCTACACTGTCAGCCAG
GAAATTGTTCTTACACAAAGTC


N106G-
CCCCGGTGAGCGAGTCACATTGTCATGCTCTGCTTCCAGTA
CTGCTACACTGTCAGCCAGCC


LH-scFv
GTGTGAGCTACATGAACTGGTACCAACAGAAACCTGGTCA
CCGGTGAGCGAGTCACATTGT



GGCTCCAAGGCGCTTGATATACGACAGCAGCAAACTGGCA
CATGCTCTGCTTCCAGTAGTGT



AGTGGTGTACCTGCTCGGTTTTCTGGATCAGGCTCAGGTA
GAGCTACATGAACTGGTACCA



GAGACTATACTCTCACCATTTCCTCTCTGGAACCTGAGGAC
ACAGAAACCTGGTCAGGCTCC



TTTGCTGTTTATTATTGCCAGCAGTGGAGTCGCAACCCTCC
AAGGCGCTTGATATACGACAG



CACCTTCGGTGGAGGGACAAAAGTAGAAATAAAGGGCGG
CAGCAAACTGGCAAGTGGTGT



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
ACCTGCTCGGTTTTCTGGATCA



AGAGCACCGGCGGCAGCCAAGTTCAACTGGTCCAAAGCG
GGCTCAGGTAGAGACTATACT



GTGCTGAAGTTAAAAAGCCAGGAAGCAGTGTTAAAGTCTC
CTCACCATTTCCTCTCTGGAAC



ATGTAAGGCCAGCGGTTACACTTTTACTAGGAGTACCATG
CTGAGGACTTTGCTGTTTATTA



CACTGGGTGAAGCAGGCCCCCGGTCAGGGTCTTGAGTGG
TTGCCAGCAGTGGAGTCGCAA



ATGGGATATATAAACCCATCATCCGCCTACACTAATTACAA
CCCTCCCACCTTCGGTGGAGG



CCAAAAGTTTCAGGGTCGCGTGACTTTGACCGCCGACAAA
GACAAAAGTAGAAATAAAGG



TCTACCAGCACAGCCTACATGGAACTCAGTTCTCTCCGATC
GCGGCTCCGAGGGCAAGAGC



CGAAGATACCGCTGTATATTACTGTGCTTCCCCACAAGTAC
AGCGGCAGCGGCAGCGAGAG



ACTATGATTACGGGGGCTTCCCATACTGGGGCCAGGGAAC
CAAGAGCACCGGCGGCAGCC



TCTCGTCACAGTATCATCCGAGCCCAAATCTAGCGACAAAA
AAGTTCAACTGGTCCAAAGCG



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GTGCTGAAGTTAAAAAGCCAG



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
GAAGCAGTGTTAAAGTCTCAT



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTAAGGCCAGCGGTTACACTT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TTACTAGGAGTACCATGCACT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GGGTGAAGCAGGCCCCCGGT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
CAGGGTCTTGAGTGGATGGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
ATATATAAACCCATCATCCGCC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
TACACTAATTACAACCAAAAG



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TTTCAGGGTCGCGTGACTTTG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
ACCGCCGACAAATCTACCAGC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
ACAGCCTACATGGAACTCAGT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
TCTCTCCGATCCGAAGATACC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GCTGTATATTACTGTGCTTCCC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CACAAGTACACTATGATTACG



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GGGGCTTCCCATACTGGGGCC



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
AGGGAACTCTCGTCACAGTAT



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
CATCCG



(172)
(173)





CD3B2051-
GAAATTGTATTGACTCAGTCCCCAGCTACATTGAGCGCAA
GAAATTGTATTGACTCAGTCCC


N106A-
GTCCTGGCGAGAGAGTAACCCTGTCTTGTTCTGCCAGTAG
CAGCTACATTGAGCGCAAGTC


LH-scFv
TAGTGTAAGCTACATGAACTGGTATCAGCAGAAACCCGGA
CTGGCGAGAGAGTAACCCTGT



CAGGCCCCACGCCGACTTATCTATGATTCAAGTAAGCTCGC
CTTGTTCTGCCAGTAGTAGTGT



TAGTGGGGTTCCAGCCAGATTTAGTGGTTCTGGCTCTGGA
AAGCTACATGAACTGGTATCA



CGCGATTACACTCTGACCATTTCTTCTCTGGAGCCTGAGGA
GCAGAAACCCGGACAGGCCCC



CTTCGCAGTATATTACTGCCAACAATGGTCACGCAATCCAC
ACGCCGACTTATCTATGATTCA



CAACATTCGGTGGAGGGACAAAAGTGGAAATCAAAGGCG
AGTAAGCTCGCTAGTGGGGTT



GCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC
CCAGCCAGATTTAGTGGTTCT



AAGAGCACCGGCGGCAGCCAAGTTCAGTTGGTTCAATCCG
GGCTCTGGACGCGATTACACT



GCGCTGAGGTCAAAAAACCTGGATCATCTGTGAAAGTCTC
CTGACCATTTCTTCTCTGGAGC



ATGTAAGGCATCTGGTTATACCTTCACTCGGAGTACCATGC
CTGAGGACTTCGCAGTATATT



ATTGGGTTAAGCAGGCCCCCGGTCAGGGGTTGGAGTGGA
ACTGCCAACAATGGTCACGCA



TGGGTTACATCAACCCTTCCTCAGCCTACACAAATTATAAT
ATCCACCAACATTCGGTGGAG



CAGAAATTTCAGGGGCGCGTTACTCTCACCGCTGACAAGT
GGACAAAAGTGGAAATCAAA



CCACCTCCACAGCCTATATGGAGCTGTCAAGCCTGCGGAG
GGCGGCTCCGAGGGCAAGAG



TGAGGATACAGCCGTATATTACTGTGCCAGTCCTCAGGTTC
CAGCGGCAGCGGCAGCGAGA



ATTATGATTACGCTGGCTTCCCATATTGGGGTCAGGGGAC
GCAAGAGCACCGGCGGCAGC



TCTCGTCACTGTGTCCAGCGAGCCCAAATCTAGCGACAAA
CAAGTTCAGTTGGTTCAATCC



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
GGCGCTGAGGTCAAAAAACCT



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
GGATCATCTGTGAAAGTCTCA



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
TGTAAGGCATCTGGTTATACCT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TCACTCGGAGTACCATGCATT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GGGTTAAGCAGGCCCCCGGTC



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AGGGGTTGGAGTGGATGGGT



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TACATCAACCCTTCCTCAGCCT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ACACAAATTATAATCAGAAAT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TTCAGGGGCGCGTTACTCTCA



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
CCGCTGACAAGTCCACCTCCA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
CAGCCTATATGGAGCTGTCAA



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
GCCTGCGGAGTGAGGATACA



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GCCGTATATTACTGTGCCAGTC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CTCAGGTTCATTATGATTACGC



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
TGGCTTCCCATATTGGGGTCA



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGGGACTCTCGTCACTGTGTC



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
CAGCG



(174)
(175)





CD3B2051-
GAGATAGTTCTTACACAGAGCCCTGCAACCTTGAGTGCAA
GAGATAGTTCTTACACAGAGC


LH-scFv
GTCCAGGGGAACGGGTGACTCTGAGTTGTAGTGCTTCTAG
CCTGCAACCTTGAGTGCAAGT



TTCCGTAAGTTATATGAACTGGTACCAACAGAAGCCAGGT
CCAGGGGAACGGGTGACTCT



CAAGCACCAAGACGCCTTATCTACGACTCATCTAAACTTGC
GAGTTGTAGTGCTTCTAGTTCC



TAGTGGAGTGCCAGCCAGATTTTCCGGTTCAGGAAGTGGG
GTAAGTTATATGAACTGGTAC



AGGGACTACACACTTACCATCTCATCCCTTGAGCCCGAAGA
CAACAGAAGCCAGGTCAAGCA



TTTCGCCGTATATTACTGTCAACAATGGTCAAGAAATCCTC
CCAAGACGCCTTATCTACGACT



CTACATTTGGTGGTGGTACAAAAGTAGAGATCAAGGGCG
CATCTAAACTTGCTAGTGGAG



GCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC
TGCCAGCCAGATTTTCCGGTTC



AAGAGCACCGGCGGCAGCCAAGTGCAGTTGGTGCAGAGT
AGGAAGTGGGAGGGACTACA



GGGGCTGAGGTTAAAAAGCCTGGTTCCAGTGTGAAAGTC
CACTTACCATCTCATCCCTTGA



AGTTGTAAAGCCTCCGGGTACACTTTTACTAGGTCAACAAT
GCCCGAAGATTTCGCCGTATA



GCACTGGGTCAAGCAAGCCCCCGGCCAAGGCTTGGAATG
TTACTGTCAACAATGGTCAAG



GATGGGGTACATAAATCCAAGCAGTGCCTACACCAACTAT
AAATCCTCCTACATTTGGTGGT



AACCAAAAATTTCAAGGTAGAGTAACATTGACTGCTGACA
GGTACAAAAGTAGAGATCAA



AGTCCACATCAACTGCTTATATGGAGCTGTCCTCTCTTCGG
GGGCGGCTCCGAGGGCAAGA



TCTGAAGATACCGCCGTATACTATTGCGCCTCCCCCCAAGT
GCAGCGGCAGCGGCAGCGAG



CCACTACGACTATAACGGATTTCCCTACTGGGGACAAGGA
AGCAAGAGCACCGGCGGCAG



ACCCTGGTAACAGTTTCTTCAGAGCCCAAATCTAGCGACAA
CCAAGTGCAGTTGGTGCAGAG



AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCA
TGGGGCTGAGGTTAAAAAGCC



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG
TGGTTCCAGTGTGAAAGTCAG



ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG
TTGTAAAGCCTCCGGGTACAC



GTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTC
TTTTACTAGGTCAACAATGCAC



AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
TGGGTCAAGCAAGCCCCCGGC



ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
CAAGGCTTGGAATGGATGGG



GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA
GTACATAAATCCAAGCAGTGC



ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT
CTACACCAACTATAACCAAAA



CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG
ATTTCAAGGTAGAGTAACATT



CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCC
GACTGCTGACAAGTCCACATC



GGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC
AACTGCTTATATGGAGCTGTC



TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG
CTCTCTTCGGTCTGAAGATACC



GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC
GCCGTATACTATTGCGCCTCCC



GCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGA
CCCAAGTCCACTACGACTATA



GCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGA
ACGGATTTCCCTACTGGGGAC



ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
AAGGAACCCTGGTAACAGTTT



CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
CTTCAG



(176)
(177)





CD3B2030-
GAAATTGTCCTGACTCAGTCTCCAGCCACACTGAGTGCATC
GAAATTGTCCTGACTCAGTCTC


N106S-
TCCCGGCGAGCGGGTCACTCTTAGTTGCAGCGCCAGTTCT
CAGCCACACTGAGTGCATCTC


LH-scFv
AGTGTATCATATATGAACTGGTATCAGCAAAAGCCAGGTC
CCGGCGAGCGGGTCACTCTTA



AAGCTCCCAGGCGATGGATATACGACTCATCAAAACTCGC
GTTGCAGCGCCAGTTCTAGTG



CTCTGGCGTCCCAGCCCGGTTCTCCGGTTCCGGCTCTGGGC
TATCATATATGAACTGGTATCA



GCGACTATACCCTTACAATTTCTAGCCTCGAACCAGAAGAT
GCAAAAGCCAGGTCAAGCTCC



TTTGCTGTATATTATTGTCAACAGTGGTCACGTAACCCACC
CAGGCGATGGATATACGACTC



AACCTTCGGTGGAGGGACAAAGGTCGAGATAAAAGGCGG
ATCAAAACTCGCCTCTGGCGT



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
CCCAGCCCGGTTCTCCGGTTCC



AGAGCACCGGCGGCAGCCAAGTACAGCTCGTTCAGTCCG
GGCTCTGGGCGCGACTATACC



GTGCAGAAGTCAAGAAACCAGGAAGTAGCGTAAAAGTGT
CTTACAATTTCTAGCCTCGAAC



CATGTAAAGCAAGTGGTTATACCTTTACACGCTCAACTATG
CAGAAGATTTTGCTGTATATTA



CATTGGGTTAAGCAGGCTCCAGGACAAGGGCTTGAGTGG
TTGTCAACAGTGGTCACGTAA



ATAGGATACATCAATCCATCTAGCGCCTACACAAATTATAA
CCCACCAACCTTCGGTGGAGG



CCAGAAGTTCCAGGGGAGAGTTACCCTCACTGCCGATAAG
GACAAAGGTCGAGATAAAAG



TCCACATCAACCGCCTATATGGAATTGAGTTCCCTTCGTAG
GCGGCTCCGAGGGCAAGAGC



TGAGGACACTGCCGTCTACTACTGTGCCTCCCCTCAGGTTC
AGCGGCAGCGGCAGCGAGAG



ATTATGATTACTCAGGTTTTCCATACTGGGGCCAGGGCACC
CAAGAGCACCGGCGGCAGCC



CTCGTAACAGTAAGCAGCGAGCCCAAATCTAGCGACAAAA
AAGTACAGCTCGTTCAGTCCG



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GTGCAGAAGTCAAGAAACCA



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
GGAAGTAGCGTAAAAGTGTCA



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
TGTAAAGCAAGTGGTTATACC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TTTACACGCTCAACTATGCATT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GGGTTAAGCAGGCTCCAGGAC



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AAGGGCTTGAGTGGATAGGA



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TACATCAATCCATCTAGCGCCT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ACACAAATTATAACCAGAAGT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TCCAGGGGAGAGTTACCCTCA



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
CTGCCGATAAGTCCACATCAA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
CCGCCTATATGGAATTGAGTT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CCCTTCGTAGTGAGGACACTG



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CCGTCTACTACTGTGCCTCCCC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
TCAGGTTCATTATGATTACTCA



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GGTTTTCCATACTGGGGCCAG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGCACCCTCGTAACAGTAAGC



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AGCG



(178)
(179)





CD3B2030-
GAAATTGTACTCACACAAAGTCCTGCAACTTTGTCTGCCTC
GAAATTGTACTCACACAAAGT


N106G-
ACCAGGGGAAAGAGTAACTCTTAGTTGTAGTGCTAGTTCA
CCTGCAACTTTGTCTGCCTCAC


LH-scFv
TCCGTTTCTTATATGAATTGGTATCAGCAGAAACCCGGACA
CAGGGGAAAGAGTAACTCTTA



AGCACCCCGGCGGTGGATATACGATTCCAGTAAACTTGCA
GTTGTAGTGCTAGTTCATCCGT



AGCGGAGTCCCCGCACGTTTCAGCGGCAGTGGCTCAGGCC
TTCTTATATGAATTGGTATCAG



GGGACTATACCCTGACTATTTCCTCCTTGGAACCTGAGGAT
CAGAAACCCGGACAAGCACCC



TTTGCTGTGTACTACTGTCAGCAATGGAGTAGAAATCCTCC
CGGCGGTGGATATACGATTCC



CACCTTTGGAGGTGGCACTAAAGTAGAGATCAAAGGCGG
AGTAAACTTGCAAGCGGAGTC



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
CCCGCACGTTTCAGCGGCAGT



AGAGCACCGGCGGCAGCCAGGTGCAACTGGTACAAAGTG
GGCTCAGGCCGGGACTATACC



GTGCCGAGGTGAAGAAGCCAGGGTCCAGTGTGAAAGTAT
CTGACTATTTCCTCCTTGGAAC



CATGTAAAGCCAGCGGGTACACATTCACTAGGAGCACTAT
CTGAGGATTTTGCTGTGTACTA



GCACTGGGTAAAGCAAGCCCCAGGGCAAGGTTTGGAGTG
CTGTCAGCAATGGAGTAGAAA



GATCGGTTATATTAACCCTTCATCTGCTTATACAAATTACAA
TCCTCCCACCTTTGGAGGTGG



TCAGAAATTCCAAGGGAGGGTCACTTTGACCGCTGACAAG
CACTAAAGTAGAGATCAAAGG



TCTACCTCTACTGCATACATGGAACTCTCCAGCCTTCGTTCA
CGGCTCCGAGGGCAAGAGCA



GAAGACACAGCCGTTTATTACTGTGCCTCCCCACAGGTACA
GCGGCAGCGGCAGCGAGAGC



CTACGACTACGGTGGATTCCCATATTGGGGTCAAGGCACC
AAGAGCACCGGCGGCAGCCA



CTTGTAACAGTATCAAGCGAGCCCAAATCTAGCGACAAAA
GGTGCAACTGGTACAAAGTGG



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
TGCCGAGGTGAAGAAGCCAG



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
GGTCCAGTGTGAAAGTATCAT



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTAAAGCCAGCGGGTACACAT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TCACTAGGAGCACTATGCACT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GGGTAAAGCAAGCCCCAGGG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
CAAGGTTTGGAGTGGATCGGT



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TATATTAACCCTTCATCTGCTT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ATACAAATTACAATCAGAAAT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TCCAAGGGAGGGTCACTTTGA



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
CCGCTGACAAGTCTACCTCTAC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
TGCATACATGGAACTCTCCAG



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CCTTCGTTCAGAAGACACAGC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CGTTTATTACTGTGCCTCCCCA



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CAGGTACACTACGACTACGGT



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GGATTCCCATATTGGGGTCAA



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGCACCCTTGTAACAGTATCA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AGCG



(180)
(181)





CD3B2030-
GAAATTGTTTTGACCCAATCACCTGCCACTCTCTCTGCCTCT
GAAATTGTTTTGACCCAATCAC


N106A-
CCTGGTGAGCGAGTTACTTTGTCATGTAGCGCATCATCAA
CTGCCACTCTCTCTGCCTCTCC


LH-scFv
GTGTATCTTACATGAACTGGTACCAACAAAAACCCGGACA
TGGTGAGCGAGTTACTTTGTC



GGCACCACGTCGTTGGATTTATGACAGTAGCAAGCTCGCC
ATGTAGCGCATCATCAAGTGT



TCCGGGGTACCCGCAAGATTTTCCGGGTCAGGGTCTGGCA
ATCTTACATGAACTGGTACCA



GGGACTATACCCTGACAATCAGCAGTCTGGAACCTGAGGA
ACAAAAACCCGGACAGGCACC



CTTTGCTGTGTATTACTGCCAACAGTGGTCTCGCAACCCCC
ACGTCGTTGGATTTATGACAG



CTACTTTCGGGGGAGGTACAAAGGTAGAAATTAAGGGCG
TAGCAAGCTCGCCTCCGGGGT



GCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC
ACCCGCAAGATTTTCCGGGTC



AAGAGCACCGGCGGCAGCCAAGTGCAACTCGTGCAAAGC
AGGGTCTGGCAGGGACTATAC



GGGGCTGAAGTGAAGAAGCCTGGATCAAGCGTGAAGGTC
CCTGACAATCAGCAGTCTGGA



AGTTGCAAAGCCTCTGGATATACCTTCACTCGATCAACCAT
ACCTGAGGACTTTGCTGTGTA



GCACTGGGTCAAGCAGGCCCCAGGGCAAGGGCTCGAATG
TTACTGCCAACAGTGGTCTCG



GATAGGATATATTAACCCAAGTTCTGCCTACACTAACTATA
CAACCCCCCTACTTTCGGGGG



ATCAGAAGTTTCAAGGCCGGGTAACACTTACAGCCGATAA
AGGTACAAAGGTAGAAATTAA



GAGTACCTCAACAGCATACATGGAACTTAGTTCTTTGCGG
GGGCGGCTCCGAGGGCAAGA



AGCGAGGATACCGCTGTGTATTACTGCGCTTCACCTCAGG
GCAGCGGCAGCGGCAGCGAG



TTCACTACGACTACGCTGGATTTCCCTATTGGGGTCAGGGT
AGCAAGAGCACCGGCGGCAG



ACACTGGTTACAGTTTCCTCTGAGCCCAAATCTAGCGACAA
CCAAGTGCAACTCGTGCAAAG



AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCA
CGGGGCTGAAGTGAAGAAGC



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG
CTGGATCAAGCGTGAAGGTCA



ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG
GTTGCAAAGCCTCTGGATATA



GTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTC
CCTTCACTCGATCAACCATGCA



AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
CTGGGTCAAGCAGGCCCCAGG



ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
GCAAGGGCTCGAATGGATAG



GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA
GATATATTAACCCAAGTTCTGC



ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT
CTACACTAACTATAATCAGAA



CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG
GTTTCAAGGCCGGGTAACACT



CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCC
TACAGCCGATAAGAGTACCTC



GGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC
AACAGCATACATGGAACTTAG



TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG
TTCTTTGCGGAGCGAGGATAC



GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC
CGCTGTGTATTACTGCGCTTCA



GCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGA
CCTCAGGTTCACTACGACTAC



GCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGA
GCTGGATTTCCCTATTGGGGT



ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
CAGGGTACACTGGTTACAGTT



CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TCCTCTG



(182)
(183)





CD3B2030-
GAAATTGTCTTGACCCAGTCTCCAGCAACTCTTAGTGCATC
GAAATTGTCTTGACCCAGTCTC


LH-scFv
ACCAGGTGAGCGTGTTACCCTCTCATGTAGCGCCAGCTCAT
CAGCAACTCTTAGTGCATCACC



CTGTTAGTTATATGAATTGGTATCAACAGAAACCAGGGCA
AGGTGAGCGTGTTACCCTCTC



AGCTCCCAGAAGATGGATATATGATTCTTCAAAACTCGCA
ATGTAGCGCCAGCTCATCTGTT



AGTGGTGTCCCAGCCCGCTTCTCAGGCTCTGGTTCCGGTC
AGTTATATGAATTGGTATCAA



GCGATTATACTCTCACCATCAGTAGTTTGGAACCCGAAGAT
CAGAAACCAGGGCAAGCTCCC



TTCGCCGTCTATTATTGCCAGCAATGGAGCAGGAATCCCCC
AGAAGATGGATATATGATTCT



CACATTCGGCGGCGGTACAAAGGTTGAGATTAAGGGCGG
TCAAAACTCGCAAGTGGTGTC



CTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCA
CCAGCCCGCTTCTCAGGCTCTG



AGAGCACCGGCGGCAGCCAAGTTCAGTTGGTTCAATCCGG
GTTCCGGTCGCGATTATACTCT



CGCAGAGGTTAAAAAACCCGGATCAAGCGTTAAGGTTAGT
CACCATCAGTAGTTTGGAACC



TGTAAAGCCTCTGGCTACACTTTCACACGCTCAACAATGCA
CGAAGATTTCGCCGTCTATTAT



TTGGGTTAAGCAGGCCCCTGGGCAGGGACTGGAGTGGAT
TGCCAGCAATGGAGCAGGAAT



CGGTTACATAAACCCATCCAGCGCCTATACAAACTATAACC
CCCCCCACATTCGGCGGCGGT



AGAAGTTCCAAGGGCGGGTTACATTGACCGCTGACAAGTC
ACAAAGGTTGAGATTAAGGGC



CACTAGCACAGCATATATGGAGCTGTCAAGTCTGAGATCC
GGCTCCGAGGGCAAGAGCAG



GAAGACACTGCCGTATATTATTGCGCTAGTCCACAAGTGC
CGGCAGCGGCAGCGAGAGCA



ACTATGACTATAACGGTTTTCCCTATTGGGGACAAGGAAC
AGAGCACCGGCGGCAGCCAA



CCTGGTGACCGTTAGCTCCGAGCCCAAATCTAGCGACAAA
GTTCAGTTGGTTCAATCCGGC



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
GCAGAGGTTAAAAAACCCGG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
ATCAAGCGTTAAGGTTAGTTG



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
TAAAGCCTCTGGCTACACTTTC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
ACACGCTCAACAATGCATTGG



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
GTTAAGCAGGCCCCTGGGCAG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
GGACTGGAGTGGATCGGTTAC



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
ATAAACCCATCCAGCGCCTAT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ACAAACTATAACCAGAAGTTC



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
CAAGGGCGGGTTACATTGACC



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GCTGACAAGTCCACTAGCACA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GCATATATGGAGCTGTCAAGT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CTGAGATCCGAAGACACTGCC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GTATATTATTGCGCTAGTCCAC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
AAGTGCACTATGACTATAACG



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GTTTTCCCTATTGGGGACAAG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GAACCCTGGTGACCGTTAGCT



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
CCG



(184)
(185)





CD3B2089-
CAAGTGCAGTTGGTCCAGTCAGGCGCAGAAGTGAAGAAG
CAAGTGCAGTTGGTCCAGTCA


N106S-
CCCGGCTCAAGCGTCAAGGTATCATGTAAGGCTTCTGGAT
GGCGCAGAAGTGAAGAAGCC


HL-scFv
ATACTTTCACCCGAAGCACAATGCACTGGGTTCGCCAGGC
CGGCTCAAGCGTCAAGGTATC



CCCTGGACAGGGTCTTGAGTGGATGGGGTATATCAACCCA
ATGTAAGGCTTCTGGATATAC



TCCTCAGCATATACTAACTATGCTCAGAAGTTTCAGGGGCG
TTTCACCCGAAGCACAATGCA



TGTCACTTTGACCGCCGATAAGTCCACAAGCACCGCTTATA
CTGGGTTCGCCAGGCCCCTGG



TGGAACTGTCTTCATTGCGCTCTGAAGACACTGCAGTGTAC
ACAGGGTCTTGAGTGGATGG



TATTGCGCCAGCCCACAGGTCCACTACGACTATTCTGGATT
GGTATATCAACCCATCCTCAGC



TCCATACTGGGGGCAGGGGACCTTGGTGACTGTAAGCTCT
ATATACTAACTATGCTCAGAA



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
GTTTCAGGGGCGTGTCACTTT



GAGCAAGAGCACCGGCGGCAGCGAGATTGTACTGACACA
GACCGCCGATAAGTCCACAAG



GTCCCCAGCAACCTTGTCCGCTTCTCCCGGCGAAAGGGTC
CACCGCTTATATGGAACTGTCT



ACTCTCTCCTGCTCCGCTAGTTCTTCAGTGTCATATATGAAT
TCATTGCGCTCTGAAGACACT



TGGTACCAACAAAAGCCAGGTCAGGCTCCAAGAAGATGG
GCAGTGTACTATTGCGCCAGC



ATTTACGATTCCTCCAAGTTGGCTTCTGGTGTCCCTGCACG
CCACAGGTCCACTACGACTATT



ATTTAGCGGGTCAGGGTCAGGGCGCGATTACACACTCACA
CTGGATTTCCATACTGGGGGC



ATTAGTAGTCTCGAACCCGAGGACTTTGCCGTATATTACTG
AGGGGACCTTGGTGACTGTAA



TCAGCAATGGAGTCGGAATCCCCCAACTTTCGGCGGGGGA
GCTCTGGCGGCTCCGAGGGCA



ACAAAAGTAGAAATAAAAGAGCCCAAATCTAGCGACAAA
AGAGCAGCGGCAGCGGCAGC



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
GAGAGCAAGAGCACCGGCGG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
CAGCGAGATTGTACTGACACA



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTCCCCAGCAACCTTGTCCGCT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
TCTCCCGGCGAAAGGGTCACT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CTCTCCTGCTCCGCTAGTTCTT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
CAGTGTCATATATGAATTGGT



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
ACCAACAAAAGCCAGGTCAGG



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
CTCCAAGAAGATGGATTTACG



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
ATTCCTCCAAGTTGGCTTCTGG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
TGTCCCTGCACGATTTAGCGG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GTCAGGGTCAGGGCGCGATTA



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CACACTCACAATTAGTAGTCTC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GAACCCGAGGACTTTGCCGTA



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
TATTACTGTCAGCAATGGAGT



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CGGAATCCCCCAACTTTCGGC



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGGGGAACAAAAGTAGAAAT



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AAAAG



(186)
(187)





CD3B2089-
CAAGTGCAGTTGGTTCAATCCGGCGCTGAAGTGAAGAAAC
CAAGTGCAGTTGGTTCAATCC


N106Q-
CTGGGTCATCTGTCAAAGTATCCTGTAAAGCCTCTGGGTAC
GGCGCTGAAGTGAAGAAACCT


HL-scFv
ACTTTTACACGTAGCACCATGCACTGGGTCCGTCAAGCCCC
GGGTCATCTGTCAAAGTATCC



TGGGCAAGGCCTTGAGTGGATGGGTTATATAAACCCATCC
TGTAAAGCCTCTGGGTACACT



TCCGCATACACAAATTACGCTCAAAAATTTCAAGGGCGAG
TTTACACGTAGCACCATGCACT



TCACTCTCACTGCCGATAAATCCACTTCAACTGCCTATATG
GGGTCCGTCAAGCCCCTGGGC



GAGCTTAGTTCATTGCGATCAGAAGATACTGCAGTCTATTA
AAGGCCTTGAGTGGATGGGTT



TTGTGCATCACCTCAGGTCCATTACGACTACCAAGGGTTCC
ATATAAACCCATCCTCCGCATA



CCTACTGGGGACAGGGGACTTTGGTAACTGTGTCTTCTGG
CACAAATTACGCTCAAAAATTT



CGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGA
CAAGGGCGAGTCACTCTCACT



GCAAGAGCACCGGCGGCAGCGAGATCGTACTGACCCAAA
GCCGATAAATCCACTTCAACT



GTCCCGCCACTCTCTCTGCTAGCCCAGGCGAGAGAGTTAC
GCCTATATGGAGCTTAGTTCAT



CTTGTCTTGCTCTGCTAGTTCAAGTGTCAGTTATATGAACT
TGCGATCAGAAGATACTGCAG



GGTATCAGCAGAAGCCAGGACAGGCACCTCGAAGATGGA
TCTATTATTGTGCATCACCTCA



TATATGACTCCTCCAAACTCGCATCAGGCGTACCAGCACGC
GGTCCATTACGACTACCAAGG



TTTTCTGGGAGCGGTAGTGGTAGGGATTATACACTCACCA
GTTCCCCTACTGGGGACAGGG



TCTCTAGTTTGGAACCAGAAGATTTCGCTGTGTACTATTGC
GACTTTGGTAACTGTGTCTTCT



CAGCAGTGGAGCCGCAACCCTCCTACCTTCGGCGGTGGGA
GGCGGCTCCGAGGGCAAGAG



CAAAGGTAGAAATAAAAGAGCCCAAATCTAGCGACAAAA
CAGCGGCAGCGGCAGCGAGA



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GCAAGAGCACCGGCGGCAGC



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
GAGATCGTACTGACCCAAAGT



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
CCCGCCACTCTCTCTGCTAGCC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CAGGCGAGAGAGTTACCTTGT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CTTGCTCTGCTAGTTCAAGTGT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
CAGTTATATGAACTGGTATCA



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
GCAGAAGCCAGGACAGGCAC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
CTCGAAGATGGATATATGACT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
CCTCCAAACTCGCATCAGGCG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
TACCAGCACGCTTTTCTGGGA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GCGGTAGTGGTAGGGATTATA



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CACTCACCATCTCTAGTTTGGA



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
ACCAGAAGATTTCGCTGTGTA



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CTATTGCCAGCAGTGGAGCCG



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CAACCCTCCTACCTTCGGCGGT



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGGACAAAGGTAGAAATAAA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AG



(188)
(189)





CD3B2089-
CAAGTTCAGCTTGTGCAGAGCGGGGCAGAGGTGAAGAAA
CAAGTTCAGCTTGTGCAGAGC


N106G-
CCCGGATCAAGCGTCAAAGTTTCTTGTAAAGCTAGTGGAT
GGGGCAGAGGTGAAGAAACC


HL-scFv
ATACTTTCACACGCTCAACTATGCACTGGGTGAGACAAGCT
CGGATCAAGCGTCAAAGTTTC



CCTGGTCAGGGCCTGGAGTGGATGGGGTACATAAATCCCT
TTGTAAAGCTAGTGGATATAC



CCAGTGCATATACTAACTATGCTCAAAAGTTCCAAGGCCGC
TTTCACACGCTCAACTATGCAC



GTAACTCTCACTGCCGATAAGTCCACCAGCACTGCCTACAT
TGGGTGAGACAAGCTCCTGGT



GGAACTGTCTAGTTTGCGATCCGAGGACACCGCCGTGTAC
CAGGGCCTGGAGTGGATGGG



TACTGTGCTTCACCTCAAGTACATTATGACTACGGGGGATT
GTACATAAATCCCTCCAGTGC



TCCCTACTGGGGCCAAGGTACTTTGGTCACAGTCTCAAGC
ATATACTAACTATGCTCAAAA



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
GTTCCAAGGCCGCGTAACTCT



GAGCAAGAGCACCGGCGGCAGCGAGATCGTATTGACACA
CACTGCCGATAAGTCCACCAG



ATCACCCGCCACATTGTCAGCTAGCCCCGGTGAGCGCGTC
CACTGCCTACATGGAACTGTCT



ACACTTTCTTGTAGTGCATCAAGTAGCGTTTCTTACATGAA
AGTTTGCGATCCGAGGACACC



TTGGTATCAGCAGAAACCAGGACAAGCACCACGGCGATG
GCCGTGTACTACTGTGCTTCAC



GATATACGATTCTAGCAAACTCGCCAGTGGCGTCCCCGCTC
CTCAAGTACATTATGACTACG



GATTCTCCGGGTCTGGCAGTGGTAGAGATTATACACTCAC
GGGGATTTCCCTACTGGGGCC



TATCAGTTCTCTGGAACCAGAAGACTTCGCAGTCTATTACT
AAGGTACTTTGGTCACAGTCT



GTCAACAATGGTCACGGAATCCCCCCACATTCGGTGGTGG
CAAGCGGCGGCTCCGAGGGC



CACCAAGGTTGAAATTAAGGAGCCCAAATCTAGCGACAAA
AAGAGCAGCGGCAGCGGCAG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
CGAGAGCAAGAGCACCGGCG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
GCAGCGAGATCGTATTGACAC



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
AATCACCCGCCACATTGTCAG



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CTAGCCCCGGTGAGCGCGTCA



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CACTTTCTTGTAGTGCATCAAG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
TAGCGTTTCTTACATGAATTGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TATCAGCAGAAACCAGGACAA



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCACCACGGCGATGGATATAC



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
GATTCTAGCAAACTCGCCAGT



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GGCGTCCCCGCTCGATTCTCC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GGGTCTGGCAGTGGTAGAGA



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
TTATACACTCACTATCAGTTCT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CTGGAACCAGAAGACTTCGCA



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
GTCTATTACTGTCAACAATGGT



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CACGGAATCCCCCCACATTCG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GTGGTGGCACCAAGGTTGAAA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TTAAGG



(190)
(191)





CD3B2089-
CAAGTGCAATTGGTCCAAAGTGGAGCTGAAGTAAAAAAA
CAAGTGCAATTGGTCCAAAGT


N106A-
CCCGGCTCCTCTGTGAAGGTCAGTTGCAAAGCCTCAGGGT
GGAGCTGAAGTAAAAAAACCC


HL-scFv
ACACCTTTACTAGGTCAACAATGCACTGGGTGCGACAAGC
GGCTCCTCTGTGAAGGTCAGT



TCCCGGTCAGGGTTTGGAGTGGATGGGATACATAAACCCC
TGCAAAGCCTCAGGGTACACC



TCATCAGCCTACACAAATTATGCACAAAAATTTCAGGGTCG
TTTACTAGGTCAACAATGCACT



GGTTACACTCACCGCCGACAAATCCACTTCCACTGCTTATA
GGGTGCGACAAGCTCCCGGTC



TGGAACTTTCCTCTCTCCGCAGTGAGGACACAGCAGTGTA
AGGGTTTGGAGTGGATGGGA



CTATTGTGCCTCCCCTCAAGTGCATTATGACTACGCTGGTT
TACATAAACCCCTCATCAGCCT



TCCCTTACTGGGGACAAGGTACTCTGGTTACAGTTTCTTCC
ACACAAATTATGCACAAAAAT



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
TTCAGGGTCGGGTTACACTCA



GAGCAAGAGCACCGGCGGCAGCGAAATAGTGCTGACCCA
CCGCCGACAAATCCACTTCCAC



GAGCCCCGCTACCCTTTCTGCAAGTCCTGGGGAACGTGTT
TGCTTATATGGAACTTTCCTCT



ACATTGTCTTGTAGCGCTTCTTCATCAGTCTCCTATATGAAT
CTCCGCAGTGAGGACACAGCA



TGGTATCAACAAAAACCAGGACAAGCTCCTCGGCGGTGGA
GTGTACTATTGTGCCTCCCCTC



TCTACGACAGTTCCAAACTTGCCTCTGGTGTGCCTGCTCGG
AAGTGCATTATGACTACGCTG



TTTAGTGGGTCTGGAAGTGGACGAGATTATACTCTGACCA
GTTTCCCTTACTGGGGACAAG



TCAGTTCCTTGGAACCCGAGGATTTTGCTGTTTATTACTGC
GTACTCTGGTTACAGTTTCTTC



CAACAATGGAGTAGAAACCCTCCAACCTTTGGAGGTGGAA
CGGCGGCTCCGAGGGCAAGA



CTAAGGTCGAGATAAAGGAGCCCAAATCTAGCGACAAAA
GCAGCGGCAGCGGCAGCGAG



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
AGCAAGAGCACCGGCGGCAG



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
CGAAATAGTGCTGACCCAGAG



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
CCCCGCTACCCTTTCTGCAAGT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CCTGGGGAACGTGTTACATTG



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TCTTGTAGCGCTTCTTCATCAG



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
TCTCCTATATGAATTGGTATCA



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
ACAAAAACCAGGACAAGCTCC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
TCGGCGGTGGATCTACGACAG



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
TTCCAAACTTGCCTCTGGTGTG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
CCTGCTCGGTTTAGTGGGTCT



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GGAAGTGGACGAGATTATACT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CTGACCATCAGTTCCTTGGAAC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CCGAGGATTTTGCTGTTTATTA



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CTGCCAACAATGGAGTAGAAA



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CCCTCCAACCTTTGGAGGTGG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
AACTAAGGTCGAGATAAAGG



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
(193)



(192)






CD3B2089-
CAGGTACAACTCGTGCAAAGTGGTGCTGAAGTGAAGAAA
CAGGTACAACTCGTGCAAAGT


HL-scFv
CCTGGATCAAGCGTCAAGGTATCCTGTAAAGCATCAGGAT
GGTGCTGAAGTGAAGAAACCT



ACACCTTCACACGCAGTACTATGCATTGGGTGCGTCAAGC
GGATCAAGCGTCAAGGTATCC



CCCCGGACAGGGCCTGGAATGGATGGGCTACATAAACCCT
TGTAAAGCATCAGGATACACC



TCTTCCGCCTACACCAATTATGCCCAAAAGTTCCAGGGAAG
TTCACACGCAGTACTATGCATT



GGTGACTCTGACTGCTGATAAAAGTACTAGCACCGCATAC
GGGTGCGTCAAGCCCCCGGAC



ATGGAACTGTCTTCACTGAGAAGCGAGGACACCGCCGTCT
AGGGCCTGGAATGGATGGGC



ATTATTGTGCATCCCCCCAAGTCCACTATGATTACAACGGA
TACATAAACCCTTCTTCCGCCT



TTTCCTTACTGGGGCCAGGGAACCTTGGTCACCGTGTCTTC
ACACCAATTATGCCCAAAAGT



CGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCG
TCCAGGGAAGGGTGACTCTGA



AGAGCAAGAGCACCGGCGGCAGCGAAATCGTTCTCACAC
CTGCTGATAAAAGTACTAGCA



AGAGCCCTGCAACATTGTCAGCTTCACCCGGTGAACGAGT
CCGCATACATGGAACTGTCTTC



AACATTGTCCTGTTCTGCCTCAAGTAGTGTGAGCTATATGA
ACTGAGAAGCGAGGACACCG



ATTGGTATCAACAAAAACCAGGGCAGGCCCCTAGAAGGT
CCGTCTATTATTGTGCATCCCC



GGATCTATGATTCAAGCAAACTGGCATCCGGCGTCCCTGC
CCAAGTCCACTATGATTACAAC



CCGCTTTAGTGGAAGCGGTTCAGGAAGGGACTATACTCTT
GGATTTCCTTACTGGGGCCAG



ACTATCTCCAGCCTTGAACCTGAAGATTTTGCAGTCTACTA
GGAACCTTGGTCACCGTGTCT



CTGCCAACAATGGTCTAGGAATCCCCCCACTTTTGGTGGA
TCCGGCGGCTCCGAGGGCAA



GGGACCAAAGTTGAGATCAAAGAGCCCAAATCTAGCGAC
GAGCAGCGGCAGCGGCAGCG



AAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAG
AGAGCAAGAGCACCGGCGGC



CAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG
AGCGAAATCGTTCTCACACAG



GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT
AGCCCTGCAACATTGTCAGCTT



GGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTT
CACCCGGTGAACGAGTAACAT



CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA
TGTCCTGTTCTGCCTCAAGTAG



GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCG
TGTGAGCTATATGAATTGGTA



TGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
TCAACAAAAACCAGGGCAGGC



AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC
CCCTAGAAGGTGGATCTATGA



CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG
TTCAAGCAAACTGGCATCCGG



GGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATC
CGTCCCTGCCCGCTTTAGTGG



CCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTG
AAGCGGTTCAGGAAGGGACT



CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG
ATACTCTTACTATCTCCAGCCT



TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC
TGAACCTGAAGATTTTGCAGT



ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGT
CTACTACTGCCAACAATGGTCT



GAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG
AGGAATCCCCCCACTTTTGGT



GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA
GGAGGGACCAAAGTTGAGAT



ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
CAAAG



(194)
(195)





CD3B2051-
CAAGTGCAACTCGTACAATCTGGCGCTGAGGTTAAGAAAC
CAAGTGCAACTCGTACAATCT


N106S-
CTGGTAGCTCTGTTAAAGTGTCTTGTAAAGCATCCGGGTAT
GGCGCTGAGGTTAAGAAACCT


HL-scFv
ACTTTTACCCGGTCAACTATGCACTGGGTAAAACAAGCTCC
GGTAGCTCTGTTAAAGTGTCTT



TGGACAAGGTTTGGAGTGGATGGGTTATATAAATCCCTCC
GTAAAGCATCCGGGTATACTT



TCAGCATACACTAACTACAACCAGAAGTTCCAGGGGCGCG
TTACCCGGTCAACTATGCACTG



TTACCCTGACTGCCGATAAGAGTACTTCAACTGCTTATATG
GGTAAAACAAGCTCCTGGACA



GAGCTGTCATCCCTGCGTAGCGAGGACACAGCAGTATACT
AGGTTTGGAGTGGATGGGTTA



ACTGCGCCAGTCCACAGGTACACTACGATTACAGTGGCTTT
TATAAATCCCTCCTCAGCATAC



CCATACTGGGGGCAGGGCACTCTGGTAACAGTATCTAGTG
ACTAACTACAACCAGAAGTTC



GCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAG
CAGGGGCGCGTTACCCTGACT



AGCAAGAGCACCGGCGGCAGCGAGATTGTACTCACCCAG
GCCGATAAGAGTACTTCAACT



TCTCCAGCTACCCTTAGTGCTTCACCTGGTGAGCGCGTGAC
GCTTATATGGAGCTGTCATCCC



ATTGTCCTGCTCCGCAAGCTCCAGTGTTTCATATATGAATT
TGCGTAGCGAGGACACAGCA



GGTACCAACAAAAGCCTGGGCAAGCACCACGCCGGCTGA
GTATACTACTGCGCCAGTCCA



TCTACGACAGCTCCAAGCTCGCAAGCGGTGTACCTGCTCG
CAGGTACACTACGATTACAGT



CTTTTCCGGCAGCGGGTCAGGTCGAGATTATACTCTGACC
GGCTTTCCATACTGGGGGCAG



ATTTCATCACTCGAACCCGAAGACTTTGCAGTGTATTACTG
GGCACTCTGGTAACAGTATCT



TCAACAGTGGAGTAGGAATCCACCAACATTTGGGGGTGGC
AGTGGCGGCTCCGAGGGCAA



ACCAAGGTTGAGATAAAGGAGCCCAAATCTAGCGACAAA
GAGCAGCGGCAGCGGCAGCG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
AGAGCAAGAGCACCGGCGGC



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
AGCGAGATTGTACTCACCCAG



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
TCTCCAGCTACCCTTAGTGCTT



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CACCTGGTGAGCGCGTGACAT



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TGTCCTGCTCCGCAAGCTCCA



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
GTGTTTCATATATGAATTGGTA



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
CCAACAAAAGCCTGGGCAAGC



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
ACCACGCCGGCTGATCTACGA



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
CAGCTCCAAGCTCGCAAGCGG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
TGTACCTGCTCGCTTTTCCGGC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
AGCGGGTCAGGTCGAGATTAT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
ACTCTGACCATTTCATCACTCG



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
AACCCGAAGACTTTGCAGTGT



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
ATTACTGTCAACAGTGGAGTA



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GGAATCCACCAACATTTGGGG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GTGGCACCAAGGTTGAGATAA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AGG



(196)
(197)





CD3B2051-
CAGGTACAGTTGGTCCAAAGTGGCGCAGAGGTAAAGAAA
CAGGTACAGTTGGTCCAAAGT


N106Q-
CCAGGTTCTTCAGTCAAGGTAAGTTGCAAGGCATCTGGAT
GGCGCAGAGGTAAAGAAACC


HL-scFv
ATACATTTACCCGCAGTACTATGCATTGGGTCAAACAGGCT
AGGTTCTTCAGTCAAGGTAAG



CCAGGACAGGGGCTTGAATGGATGGGTTACATCAACCCAT
TTGCAAGGCATCTGGATATAC



CTAGTGCCTATACAAACTATAATCAGAAATTTCAGGGCAG
ATTTACCCGCAGTACTATGCAT



AGTGACTCTGACAGCCGACAAATCAACCTCTACAGCATAT
TGGGTCAAACAGGCTCCAGGA



ATGGAGTTGTCCTCTCTCCGTAGTGAAGATACTGCCGTCTA
CAGGGGCTTGAATGGATGGG



CTATTGTGCAAGCCCCCAAGTCCACTATGATTATCAGGGTT
TTACATCAACCCATCTAGTGCC



TCCCTTACTGGGGGCAGGGTACTTTGGTTACCGTTTCATCC
TATACAAACTATAATCAGAAA



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
TTTCAGGGCAGAGTGACTCTG



GAGCAAGAGCACCGGCGGCAGCGAGATCGTGTTGACTCA
ACAGCCGACAAATCAACCTCT



AAGTCCTGCAACCCTGTCTGCTAGTCCAGGGGAGAGGGTT
ACAGCATATATGGAGTTGTCC



ACTCTCAGTTGTTCTGCAAGCAGTAGCGTATCCTACATGAA
TCTCTCCGTAGTGAAGATACT



CTGGTATCAACAAAAGCCTGGTCAGGCACCACGGCGGTTG
GCCGTCTACTATTGTGCAAGC



ATATATGACTCCTCCAAGTTGGCCTCTGGGGTGCCCGCAA
CCCCAAGTCCACTATGATTATC



GATTCTCCGGGTCCGGCTCTGGCCGCGATTACACACTGAC
AGGGTTTCCCTTACTGGGGGC



TATAAGCAGTCTGGAACCAGAGGATTTTGCCGTTTACTACT
AGGGTACTTTGGTTACCGTTTC



GCCAACAATGGAGCCGAAACCCCCCAACCTTTGGAGGTGG
ATCCGGCGGCTCCGAGGGCAA



CACTAAGGTAGAGATAAAGGAGCCCAAATCTAGCGACAA
GAGCAGCGGCAGCGGCAGCG



AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCA
AGAGCAAGAGCACCGGCGGC



GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG
AGCGAGATCGTGTTGACTCAA



ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTG
AGTCCTGCAACCCTGTCTGCTA



GTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTC
GTCCAGGGGAGAGGGTTACTC



AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
TCAGTTGTTCTGCAAGCAGTA



ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT
GCGTATCCTACATGAACTGGT



GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA
ATCAACAAAAGCCTGGTCAGG



ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT
CACCACGGCGGTTGATATATG



CCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG
ACTCCTCCAAGTTGGCCTCTGG



CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCC
GGTGCCCGCAAGATTCTCCGG



GGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC
GTCCGGCTCTGGCCGCGATTA



TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG
CACACTGACTATAAGCAGTCT



GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC
GGAACCAGAGGATTTTGCCGT



GCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGA
TTACTACTGCCAACAATGGAG



GCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGA
CCGAAACCCCCCAACCTTTGG



ACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
AGGTGGCACTAAGGTAGAGA



CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TAAAGG



(198)
(199)





CD3B2051-
CAAGTTCAACTGGTCCAAAGCGGTGCTGAAGTTAAAAAGC
CAAGTTCAACTGGTCCAAAGC


N106G-
CAGGAAGCAGTGTTAAAGTCTCATGTAAGGCCAGCGGTTA
GGTGCTGAAGTTAAAAAGCCA


HL-scFv
CACTTTTACTAGGAGTACCATGCACTGGGTGAAGCAGGCC
GGAAGCAGTGTTAAAGTCTCA



CCCGGTCAGGGTCTTGAGTGGATGGGATATATAAACCCAT
TGTAAGGCCAGCGGTTACACT



CATCCGCCTACACTAATTACAACCAAAAGTTTCAGGGTCGC
TTTACTAGGAGTACCATGCACT



GTGACTTTGACCGCCGACAAATCTACCAGCACAGCCTACAT
GGGTGAAGCAGGCCCCCGGT



GGAACTCAGTTCTCTCCGATCCGAAGATACCGCTGTATATT
CAGGGTCTTGAGTGGATGGG



ACTGTGCTTCCCCACAAGTACACTATGATTACGGGGGCTTC
ATATATAAACCCATCATCCGCC



CCATACTGGGGCCAGGGAACTCTCGTCACAGTATCATCCG
TACACTAATTACAACCAAAAG



GCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAG
TTTCAGGGTCGCGTGACTTTG



AGCAAGAGCACCGGCGGCAGCGAAATTGTTCTTACACAAA
ACCGCCGACAAATCTACCAGC



GTCCTGCTACACTGTCAGCCAGCCCCGGTGAGCGAGTCAC
ACAGCCTACATGGAACTCAGT



ATTGTCATGCTCTGCTTCCAGTAGTGTGAGCTACATGAACT
TCTCTCCGATCCGAAGATACC



GGTACCAACAGAAACCTGGTCAGGCTCCAAGGCGCTTGAT
GCTGTATATTACTGTGCTTCCC



ATACGACAGCAGCAAACTGGCAAGTGGTGTACCTGCTCGG
CACAAGTACACTATGATTACG



TTTTCTGGATCAGGCTCAGGTAGAGACTATACTCTCACCAT
GGGGCTTCCCATACTGGGGCC



TTCCTCTCTGGAACCTGAGGACTTTGCTGTTTATTATTGCCA
AGGGAACTCTCGTCACAGTAT



GCAGTGGAGTCGCAACCCTCCCACCTTCGGTGGAGGGACA
CATCCGGCGGCTCCGAGGGCA



AAAGTAGAAATAAAGGAGCCCAAATCTAGCGACAAAACTC
AGAGCAGCGGCAGCGGCAGC



ACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGG
GAGAGCAAGAGCACCGGCGG



GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC
CAGCGAAATTGTTCTTACACA



CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG
AAGTCCTGCTACACTGTCAGC



TGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG
CAGCCCCGGTGAGCGAGTCAC



GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA
ATTGTCATGCTCTGCTTCCAGT



GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT
AGTGTGAGCTACATGAACTGG



CAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC
TACCAACAGAAACCTGGTCAG



AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAG
GCTCCAAGGCGCTTGATATAC



CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC
GACAGCAGCAAACTGGCAAGT



CCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAG
GGTGTACCTGCTCGGTTTTCTG



GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCA
GATCAGGCTCAGGTAGAGACT



AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA
ATACTCTCACCATTTCCTCTCT



GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
GGAACCTGAGGACTTTGCTGT



CCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA
TTATTATTGCCAGCAGTGGAG



GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGT
TCGCAACCCTCCCACCTTCGGT



CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
GGAGGGACAAAAGTAGAAAT



ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AAAGG



(200)
(201)





CD3B2051-
CAAGTTCAGTTGGTTCAATCCGGCGCTGAGGTCAAAAAAC
CAAGTTCAGTTGGTTCAATCC


N106A-
CTGGATCATCTGTGAAAGTCTCATGTAAGGCATCTGGTTAT
GGCGCTGAGGTCAAAAAACCT


HL-scFv
ACCTTCACTCGGAGTACCATGCATTGGGTTAAGCAGGCCC
GGATCATCTGTGAAAGTCTCA



CCGGTCAGGGGTTGGAGTGGATGGGTTACATCAACCCTTC
TGTAAGGCATCTGGTTATACCT



CTCAGCCTACACAAATTATAATCAGAAATTTCAGGGGCGC
TCACTCGGAGTACCATGCATT



GTTACTCTCACCGCTGACAAGTCCACCTCCACAGCCTATAT
GGGTTAAGCAGGCCCCCGGTC



GGAGCTGTCAAGCCTGCGGAGTGAGGATACAGCCGTATA
AGGGGTTGGAGTGGATGGGT



TTACTGTGCCAGTCCTCAGGTTCATTATGATTACGCTGGCT
TACATCAACCCTTCCTCAGCCT



TCCCATATTGGGGTCAGGGGACTCTCGTCACTGTGTCCAG
ACACAAATTATAATCAGAAAT



CGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCG
TTCAGGGGCGCGTTACTCTCA



AGAGCAAGAGCACCGGCGGCAGCGAAATTGTATTGACTC
CCGCTGACAAGTCCACCTCCA



AGTCCCCAGCTACATTGAGCGCAAGTCCTGGCGAGAGAGT
CAGCCTATATGGAGCTGTCAA



AACCCTGTCTTGTTCTGCCAGTAGTAGTGTAAGCTACATGA
GCCTGCGGAGTGAGGATACA



ACTGGTATCAGCAGAAACCCGGACAGGCCCCACGCCGACT
GCCGTATATTACTGTGCCAGTC



TATCTATGATTCAAGTAAGCTCGCTAGTGGGGTTCCAGCCA
CTCAGGTTCATTATGATTACGC



GATTTAGTGGTTCTGGCTCTGGACGCGATTACACTCTGACC
TGGCTTCCCATATTGGGGTCA



ATTTCTTCTCTGGAGCCTGAGGACTTCGCAGTATATTACTG
GGGGACTCTCGTCACTGTGTC



CCAACAATGGTCACGCAATCCACCAACATTCGGTGGAGGG
CAGCGGCGGCTCCGAGGGCA



ACAAAAGTGGAAATCAAAGAGCCCAAATCTAGCGACAAA
AGAGCAGCGGCAGCGGCAGC



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
GAGAGCAAGAGCACCGGCGG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
CAGCGAAATTGTATTGACTCA



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTCCCCAGCTACATTGAGCGC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
AAGTCCTGGCGAGAGAGTAAC



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CCTGTCTTGTTCTGCCAGTAGT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AGTGTAAGCTACATGAACTGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TATCAGCAGAAACCCGGACAG



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCCCCACGCCGACTTATCTATG



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
ATTCAAGTAAGCTCGCTAGTG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GGGTTCCAGCCAGATTTAGTG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GTTCTGGCTCTGGACGCGATT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
ACACTCTGACCATTTCTTCTCT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GGAGCCTGAGGACTTCGCAGT



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
ATATTACTGCCAACAATGGTC



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
ACGCAATCCACCAACATTCGG



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
TGGAGGGACAAAAGTGGAAA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TCAAAG



(202)
(203)





CD3B2051-
CAAGTGCAGTTGGTGCAGAGTGGGGCTGAGGTTAAAAAG
CAAGTGCAGTTGGTGCAGAGT


HL-scFv
CCTGGTTCCAGTGTGAAAGTCAGTTGTAAAGCCTCCGGGT
GGGGCTGAGGTTAAAAAGCCT



ACACTTTTACTAGGTCAACAATGCACTGGGTCAAGCAAGC
GGTTCCAGTGTGAAAGTCAGT



CCCCGGCCAAGGCTTGGAATGGATGGGGTACATAAATCCA
TGTAAAGCCTCCGGGTACACT



AGCAGTGCCTACACCAACTATAACCAAAAATTTCAAGGTA
TTTACTAGGTCAACAATGCACT



GAGTAACATTGACTGCTGACAAGTCCACATCAACTGCTTAT
GGGTCAAGCAAGCCCCCGGCC



ATGGAGCTGTCCTCTCTTCGGTCTGAAGATACCGCCGTATA
AAGGCTTGGAATGGATGGGG



CTATTGCGCCTCCCCCCAAGTCCACTACGACTATAACGGAT
TACATAAATCCAAGCAGTGCC



TTCCCTACTGGGGACAAGGAACCCTGGTAACAGTTTCTTCA
TACACCAACTATAACCAAAAA



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
TTTCAAGGTAGAGTAACATTG



GAGCAAGAGCACCGGCGGCAGCGAGATAGTTCTTACACA
ACTGCTGACAAGTCCACATCA



GAGCCCTGCAACCTTGAGTGCAAGTCCAGGGGAACGGGT
ACTGCTTATATGGAGCTGTCCT



GACTCTGAGTTGTAGTGCTTCTAGTTCCGTAAGTTATATGA
CTCTTCGGTCTGAAGATACCG



ACTGGTACCAACAGAAGCCAGGTCAAGCACCAAGACGCCT
CCGTATACTATTGCGCCTCCCC



TATCTACGACTCATCTAAACTTGCTAGTGGAGTGCCAGCCA
CCAAGTCCACTACGACTATAA



GATTTTCCGGTTCAGGAAGTGGGAGGGACTACACACTTAC
CGGATTTCCCTACTGGGGACA



CATCTCATCCCTTGAGCCCGAAGATTTCGCCGTATATTACT
AGGAACCCTGGTAACAGTTTC



GTCAACAATGGTCAAGAAATCCTCCTACATTTGGTGGTGG
TTCAGGCGGCTCCGAGGGCAA



TACAAAAGTAGAGATCAAGGAGCCCAAATCTAGCGACAAA
GAGCAGCGGCAGCGGCAGCG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
AGAGCAAGAGCACCGGCGGC



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
AGCGAGATAGTTCTTACACAG



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
AGCCCTGCAACCTTGAGTGCA



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
AGTCCAGGGGAACGGGTGAC



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TCTGAGTTGTAGTGCTTCTAGT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
TCCGTAAGTTATATGAACTGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TACCAACAGAAGCCAGGTCAA



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCACCAAGACGCCTTATCTAC



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
GACTCATCTAAACTTGCTAGTG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GAGTGCCAGCCAGATTTTCCG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GTTCAGGAAGTGGGAGGGAC



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
TACACACTTACCATCTCATCCC



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
TTGAGCCCGAAGATTTCGCCG



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
TATATTACTGTCAACAATGGTC



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
AAGAAATCCTCCTACATTTGGT



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGTGGTACAAAAGTAGAGATC



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AAGG



(204)
(205)





CD3B2030-
CAAGTACAGCTCGTTCAGTCCGGTGCAGAAGTCAAGAAAC
CAAGTACAGCTCGTTCAGTCC


N106S-
CAGGAAGTAGCGTAAAAGTGTCATGTAAAGCAAGTGGTT
GGTGCAGAAGTCAAGAAACC


HL-scFv
ATACCTTTACACGCTCAACTATGCATTGGGTTAAGCAGGCT
AGGAAGTAGCGTAAAAGTGTC



CCAGGACAAGGGCTTGAGTGGATAGGATACATCAATCCAT
ATGTAAAGCAAGTGGTTATAC



CTAGCGCCTACACAAATTATAACCAGAAGTTCCAGGGGAG
CTTTACACGCTCAACTATGCAT



AGTTACCCTCACTGCCGATAAGTCCACATCAACCGCCTATA
TGGGTTAAGCAGGCTCCAGGA



TGGAATTGAGTTCCCTTCGTAGTGAGGACACTGCCGTCTA
CAAGGGCTTGAGTGGATAGG



CTACTGTGCCTCCCCTCAGGTTCATTATGATTACTCAGGTTT
ATACATCAATCCATCTAGCGCC



TCCATACTGGGGCCAGGGCACCCTCGTAACAGTAAGCAGC
TACACAAATTATAACCAGAAG



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
TTCCAGGGGAGAGTTACCCTC



GAGCAAGAGCACCGGCGGCAGCGAAATTGTCCTGACTCA
ACTGCCGATAAGTCCACATCA



GTCTCCAGCCACACTGAGTGCATCTCCCGGCGAGCGGGTC
ACCGCCTATATGGAATTGAGT



ACTCTTAGTTGCAGCGCCAGTTCTAGTGTATCATATATGAA
TCCCTTCGTAGTGAGGACACT



CTGGTATCAGCAAAAGCCAGGTCAAGCTCCCAGGCGATGG
GCCGTCTACTACTGTGCCTCCC



ATATACGACTCATCAAAACTCGCCTCTGGCGTCCCAGCCCG
CTCAGGTTCATTATGATTACTC



GTTCTCCGGTTCCGGCTCTGGGCGCGACTATACCCTTACAA
AGGTTTTCCATACTGGGGCCA



TTTCTAGCCTCGAACCAGAAGATTTTGCTGTATATTATTGT
GGGCACCCTCGTAACAGTAAG



CAACAGTGGTCACGTAACCCACCAACCTTCGGTGGAGGGA
CAGCGGCGGCTCCGAGGGCA



CAAAGGTCGAGATAAAAGAGCCCAAATCTAGCGACAAAA
AGAGCAGCGGCAGCGGCAGC



CTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG
GAGAGCAAGAGCACCGGCGG



GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA
CAGCGAAATTGTCCTGACTCA



CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
GTCTCCAGCCACACTGAGTGC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
ATCTCCCGGCGAGCGGGTCAC



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TCTTAGTTGCAGCGCCAGTTCT



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AGTGTATCATATATGAACTGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TATCAGCAAAAGCCAGGTCAA



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCTCCCAGGCGATGGATATAC



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
GACTCATCAAAACTCGCCTCTG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GCGTCCCAGCCCGGTTCTCCG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GTTCCGGCTCTGGGCGCGACT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
ATACCCTTACAATTTCTAGCCT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CGAACCAGAAGATTTTGCTGT



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
ATATTATTGTCAACAGTGGTCA



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CGTAACCCACCAACCTTCGGT



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGAGGGACAAAGGTCGAGAT



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AAAAG



(206)
(207)





CD3B2030-
CAGGTGCAACTGGTACAAAGTGGTGCCGAGGTGAAGAAG
CAGGTGCAACTGGTACAAAGT


N106G-
CCAGGGTCCAGTGTGAAAGTATCATGTAAAGCCAGCGGGT
GGTGCCGAGGTGAAGAAGCC


HL-scFv
ACACATTCACTAGGAGCACTATGCACTGGGTAAAGCAAGC
AGGGTCCAGTGTGAAAGTATC



CCCAGGGCAAGGTTTGGAGTGGATCGGTTATATTAACCCT
ATGTAAAGCCAGCGGGTACAC



TCATCTGCTTATACAAATTACAATCAGAAATTCCAAGGGAG
ATTCACTAGGAGCACTATGCA



GGTCACTTTGACCGCTGACAAGTCTACCTCTACTGCATACA
CTGGGTAAAGCAAGCCCCAGG



TGGAACTCTCCAGCCTTCGTTCAGAAGACACAGCCGTTTAT
GCAAGGTTTGGAGTGGATCG



TACTGTGCCTCCCCACAGGTACACTACGACTACGGTGGATT
GTTATATTAACCCTTCATCTGC



CCCATATTGGGGTCAAGGCACCCTTGTAACAGTATCAAGC
TTATACAAATTACAATCAGAA



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
ATTCCAAGGGAGGGTCACTTT



GAGCAAGAGCACCGGCGGCAGCGAAATTGTACTCACACA
GACCGCTGACAAGTCTACCTC



AAGTCCTGCAACTTTGTCTGCCTCACCAGGGGAAAGAGTA
TACTGCATACATGGAACTCTCC



ACTCTTAGTTGTAGTGCTAGTTCATCCGTTTCTTATATGAAT
AGCCTTCGTTCAGAAGACACA



TGGTATCAGCAGAAACCCGGACAAGCACCCCGGCGGTGG
GCCGTTTATTACTGTGCCTCCC



ATATACGATTCCAGTAAACTTGCAAGCGGAGTCCCCGCAC
CACAGGTACACTACGACTACG



GTTTCAGCGGCAGTGGCTCAGGCCGGGACTATACCCTGAC
GTGGATTCCCATATTGGGGTC



TATTTCCTCCTTGGAACCTGAGGATTTTGCTGTGTACTACT
AAGGCACCCTTGTAACAGTAT



GTCAGCAATGGAGTAGAAATCCTCCCACCTTTGGAGGTGG
CAAGCGGCGGCTCCGAGGGC



CACTAAAGTAGAGATCAAAGAGCCCAAATCTAGCGACAAA
AAGAGCAGCGGCAGCGGCAG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
CGAGAGCAAGAGCACCGGCG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
GCAGCGAAATTGTACTCACAC



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
AAAGTCCTGCAACTTTGTCTGC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CTCACCAGGGGAAAGAGTAAC



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TCTTAGTTGTAGTGCTAGTTCA



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
TCCGTTTCTTATATGAATTGGT



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
ATCAGCAGAAACCCGGACAAG



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
CACCCCGGCGGTGGATATACG



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
ATTCCAGTAAACTTGCAAGCG



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GAGTCCCCGCACGTTTCAGCG



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GCAGTGGCTCAGGCCGGGACT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
ATACCCTGACTATTTCCTCCTT



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
GGAACCTGAGGATTTTGCTGT



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
GTACTACTGTCAGCAATGGAG



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
TAGAAATCCTCCCACCTTTGGA



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGTGGCACTAAAGTAGAGATC



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AAAG



(208)
(209)





CD3B2030-
CAAGTGCAACTCGTGCAAAGCGGGGCTGAAGTGAAGAAG
CAAGTGCAACTCGTGCAAAGC


N106A-
CCTGGATCAAGCGTGAAGGTCAGTTGCAAAGCCTCTGGAT
GGGGCTGAAGTGAAGAAGCC


HL-scFv
ATACCTTCACTCGATCAACCATGCACTGGGTCAAGCAGGC
TGGATCAAGCGTGAAGGTCAG



CCCAGGGCAAGGGCTCGAATGGATAGGATATATTAACCCA
TTGCAAAGCCTCTGGATATAC



AGTTCTGCCTACACTAACTATAATCAGAAGTTTCAAGGCCG
CTTCACTCGATCAACCATGCAC



GGTAACACTTACAGCCGATAAGAGTACCTCAACAGCATAC
TGGGTCAAGCAGGCCCCAGG



ATGGAACTTAGTTCTTTGCGGAGCGAGGATACCGCTGTGT
GCAAGGGCTCGAATGGATAG



ATTACTGCGCTTCACCTCAGGTTCACTACGACTACGCTGGA
GATATATTAACCCAAGTTCTGC



TTTCCCTATTGGGGTCAGGGTACACTGGTTACAGTTTCCTC
CTACACTAACTATAATCAGAA



TGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCG
GTTTCAAGGCCGGGTAACACT



AGAGCAAGAGCACCGGCGGLAGCGAAATTGTTTTGACCC
TACAGCCGATAAGAGTACCTC



AATCACCTGCCACTCTCTCTGCCTCTCCTGGTGAGCGAGTT
AACAGCATACATGGAACTTAG



ACTTTGTCATGTAGCGCATCATCAAGTGTATCTTACATGAA
TTCTTTGCGGAGCGAGGATAC



CTGGTACCAACAAAAACCCGGACAGGCACCACGTCGTTGG
CGCTGTGTATTACTGCGCTTCA



ATTTATGACAGTAGCAAGCTCGCCTCCGGGGTACCCGCAA
CCTCAGGTTCACTACGACTAC



GATTTTCCGGGTCAGGGTCTGGCAGGGACTATACCCTGAC
GCTGGATTTCCCTATTGGGGT



AATCAGCAGTCTGGAACCTGAGGACTTTGCTGTGTATTACT
CAGGGTACACTGGTTACAGTT



GCCAACAGTGGTCTCGCAACCCCCCTACTTTCGGGGGAGG
TCCTCTGGCGGCTCCGAGGGC



TACAAAGGTAGAAATTAAGGAGCCCAAATCTAGCGACAAA
AAGAGCAGCGGCAGCGGCAG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
CGAGAGCAAGAGCACCGGCG



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
GCAGCGAAATTGTTTTGACCC



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
AATCACCTGCCACTCTCTCTGC



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CTCTCCTGGTGAGCGAGTTAC



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
TTTGTCATGTAGCGCATCATCA



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
AGTGTATCTTACATGAACTGG



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
TACCAACAAAAACCCGGACAG



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCACCACGTCGTTGGATTTAT



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
GACAGTAGCAAGCTCGCCTCC



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
GGGGTACCCGCAAGATTTTCC



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GGGTCAGGGTCTGGCAGGGA



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CTATACCCTGACAATCAGCAG



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
TCTGGAACCTGAGGACTTTGC



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
TGTGTATTACTGCCAACAGTG



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
GTCTCGCAACCCCCCTACTTTC



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
GGGGGAGGTACAAAGGTAGA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
AATTAAGG



(210)
(211)





CD3B2030-
CAAGTTCAGTTGGTTCAATCCGGCGCAGAGGTTAAAAAAC
CAAGTTCAGTTGGTTCAATCC


HL-scFv
CCGGATCAAGCGTTAAGGTTAGTTGTAAAGCCTCTGGCTA
GGCGCAGAGGTTAAAAAACCC



CACTTTCACACGCTCAACAATGCATTGGGTTAAGCAGGCCC
GGATCAAGCGTTAAGGTTAGT



CTGGGCAGGGACTGGAGTGGATCGGTTACATAAACCCATC
TGTAAAGCCTCTGGCTACACTT



CAGCGCCTATACAAACTATAACCAGAAGTTCCAAGGGCGG
TCACACGCTCAACAATGCATT



GTTACATTGACCGCTGACAAGTCCACTAGCACAGCATATAT
GGGTTAAGCAGGCCCCTGGGC



GGAGCTGTCAAGTCTGAGATCCGAAGACACTGCCGTATAT
AGGGACTGGAGTGGATCGGT



TATTGCGCTAGTCCACAAGTGCACTATGACTATAACGGTTT
TACATAAACCCATCCAGCGCCT



TCCCTATTGGGGACAAGGAACCCTGGTGACCGTTAGCTCC
ATACAAACTATAACCAGAAGT



GGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGA
TCCAAGGGCGGGTTACATTGA



GAGCAAGAGCACCGGCGGCAGCGAAATTGTCTTGACCCA
CCGCTGACAAGTCCACTAGCA



GTCTCCAGCAACTCTTAGTGCATCACCAGGTGAGCGTGTTA
CAGCATATATGGAGCTGTCAA



CCCTCTCATGTAGCGCCAGCTCATCTGTTAGTTATATGAAT
GTCTGAGATCCGAAGACACTG



TGGTATCAACAGAAACCAGGGCAAGCTCCCAGAAGATGG
CCGTATATTATTGCGCTAGTCC



ATATATGATTCTTCAAAACTCGCAAGTGGTGTCCCAGCCCG
ACAAGTGCACTATGACTATAA



CTTCTCAGGCTCTGGTTCCGGTCGCGATTATACTCTCACCA
CGGTTTTCCCTATTGGGGACA



TCAGTAGTTTGGAACCCGAAGATTTCGCCGTCTATTATTGC
AGGAACCCTGGTGACCGTTAG



CAGCAATGGAGCAGGAATCCCCCCACATTCGGCGGCGGTA
CTCCGGCGGCTCCGAGGGCAA



CAAAGGTTGAGATTAAGGAGCCCAAATCTAGCGACAAAAC
GAGCAGCGGCAGCGGCAGCG



TCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGG
AGAGCAAGAGCACCGGCGGC



GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC
AGCGAAATTGTCTTGACCCAG



CCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG
TCTCCAGCAACTCTTAGTGCAT



GTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT
CACCAGGTGAGCGTGTTACCC



GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA
TCTCATGTAGCGCCAGCTCATC



AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGG
TGTTAGTTATATGAATTGGTAT



TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG
CAACAGAAACCAGGGCAAGCT



CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCA
CCCAGAAGATGGATATATGAT



GCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGC
TCTTCAAAACTCGCAAGTGGT



CCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGA
GTCCCAGCCCGCTTCTCAGGCT



GGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC
CTGGTTCCGGTCGCGATTATA



AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA
CTCTCACCATCAGTAGTTTGGA



GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
ACCCGAAGATTTCGCCGTCTAT



CCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA
TATTGCCAGCAATGGAGCAGG



GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGT
AATCCCCCCACATTCGGCGGC



CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
GGTACAAAGGTTGAGATTAAG



ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
G



(212)
(213)





CD3B2030-
GAGATCGTTCTGACACAGTCTCCCGCAACCCTCAGCGCTTC
GAGATCGTTCTGACACAGTCT


N106Q-
ACCCGGTGAGCGTGTCACTCTGAGCTGTTCCGCTAGTAGT
CCCGCAACCCTCAGCGCTTCAC


LH-scFv
AGCGTTAGCTACATGAACTGGTATCAACAAAAGCCAGGAC
CCGGTGAGCGTGTCACTCTGA



AGGCACCCAGGCGATGGATTTACGATTCATCAAAACTGGC
GCTGTTCCGCTAGTAGTAGCG



AAGCGGAGTGCCTGCTCGTTTTAGTGGGTCCGGGTCTGGC
TTAGCTACATGAACTGGTATC



CGCGATTACACCCTGACCATATCATCCCTCGAACCTGAGGA
AACAAAAGCCAGGACAGGCA



CTTCGCAGTTTATTATTGCCAACAGTGGAGTAGGAACCCAC
CCCAGGCGATGGATTTACGAT



CTACATTCGGTGGGGGGACCAAAGTCGAGATAAAAGGCG
TCATCAAAACTGGCAAGCGGA



GCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC
GTGCCTGCTCGTTTTAGTGGG



AAGAGCACCGGCGGCAGCCAGGTACAACTCGTACAGAGC
TCCGGGTCTGGCCGCGATTAC



GGAGCTGAGGTGAAAAAACCCGGTAGTTCCGTTAAGGTTA
ACCCTGACCATATCATCCCTCG



GCTGTAAGGCTAGCGGATACACTTTTACTCGATCTACAATG
AACCTGAGGACTTCGCAGTTT



CACTGGGTTAAACAGGCTCCCGGCCAGGGTTTGGAATGGA
ATTATTGCCAACAGTGGAGTA



TCGGATACATCAACCCCAGTAGTGCCTATACCAATTACAAT
GGAACCCACCTACATTCGGTG



CAAAAGTTTCAAGGCAGAGTGACCCTGACCGCTGACAAAT
GGGGGACCAAAGTCGAGATA



CCACAAGTACCGCATATATGGAGCTCTCAAGTTTGCGAAG
AAAGGCGGCTCCGAGGGCAA



TGAAGATACTGCTGTATATTATTGCGCAAGCCCTCAAGTTC
GAGCAGCGGCAGCGGCAGCG



ACTATGACTATCAAGGGTTTCCTTACTGGGGTCAGGGAAC
AGAGCAAGAGCACCGGCGGC



ACTGGTCACAGTATCATCCGAGCCCAAATCTAGCGACAAA
AGCCAGGTACAACTCGTACAG



ACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG
AGCGGAGCTGAGGTGAAAAA



GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGAC
ACCCGGTAGTTCCGTTAAGGT



ACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGT
TAGCTGTAAGGCTAGCGGATA



GGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA
CACTTTTACTCGATCTACAATG



CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
CACTGGGTTAAACAGGCTCCC



AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT
GGCCAGGGTTTGGAATGGATC



GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT
GGATACATCAACCCCAGTAGT



GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC
GCCTATACCAATTACAATCAAA



CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA
AGTTTCAAGGCAGAGTGACCC



GCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGG
TGACCGCTGACAAATCCACAA



GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTG
GTACCGCATATATGGAGCTCT



GTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG
CAAGTTTGCGAAGTGAAGATA



AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC
CTGCTGTATATTATTGCGCAAG



CTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGC
CCCTCAAGTTCACTATGACTAT



AAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAAC
CAAGGGTTTCCTTACTGGGGT



GTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCA
CAGGGAACACTGGTCACAGTA



CTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
TCATCCG



(214)
(215)





CD3B2030-
CAGGTACAACTCGTACAGAGCGGAGCTGAGGTGAAAAAA
CAGGTACAACTCGTACAGAGC


N106Q-
CCCGGTAGTTCCGTTAAGGTTAGCTGTAAGGCTAGCGGAT
GGAGCTGAGGTGAAAAAACC


HL-scFv
ACACTTTTACTCGATCTACAATGCACTGGGTTAAACAGGCT
CGGTAGTTCCGTTAAGGTTAG



CCCGGCCAGGGTTTGGAATGGATCGGATACATCAACCCCA
CTGTAAGGCTAGCGGATACAC



GTAGTGCCTATACCAATTACAATCAAAAGTTTCAAGGCAG
TTTTACTCGATCTACAATGCAC



AGTGACCCTGACCGCTGACAAATCCACAAGTACCGCATAT
TGGGTTAAACAGGCTCCCGGC



ATGGAGCTCTCAAGTTTGCGAAGTGAAGATACTGCTGTAT
CAGGGTTTGGAATGGATCGGA



ATTATTGCGCAAGCCCTCAAGTTCACTATGACTATCAAGGG
TACATCAACCCCAGTAGTGCCT



TTTCCTTACTGGGGTCAGGGAACACTGGTCACAGTATCATC
ATACCAATTACAATCAAAAGTT



CGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCG
TCAAGGCAGAGTGACCCTGAC



AGAGCAAGAGCACCGGCGGCAGCGAGATCGTTCTGACAC
CGCTGACAAATCCACAAGTAC



AGTCTCCCGCAACCCTCAGCGCTTCACCCGGTGAGCGTGTC
CGCATATATGGAGCTCTCAAG



ACTCTGAGCTGTTCCGCTAGTAGTAGCGTTAGCTACATGAA
TTTGCGAAGTGAAGATACTGC



CTGGTATCAACAAAAGCCAGGACAGGCACCCAGGCGATG
TGTATATTATTGCGCAAGCCCT



GATTTACGATTCATCAAAACTGGCAAGCGGAGTGCCTGCT
CAAGTTCACTATGACTATCAA



CGTTTTAGTGGGTCCGGGTCTGGCCGCGATTACACCCTGA
GGGTTTCCTTACTGGGGTCAG



CCATATCATCCCTCGAACCTGAGGACTTCGCAGTTTATTAT
GGAACACTGGTCACAGTATCA



TGCCAACAGTGGAGTAGGAACCCACCTACATTCGGTGGGG
TCCGGCGGCTCCGAGGGCAA



GGACCAAAGTCGAGATAAAAGAGCCCAAATCTAGCGACA
GAGCAGCGGCAGCGGCAGCG



AAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGC
AGAGCAAGAGCACCGGCGGC



AGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAG
AGCGAGATCGTTCTGACACAG



GACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGT
TCTCCCGCAACCCTCAGCGCTT



GGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTT
CACCCGGTGAGCGTGTCACTC



CAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA
TGAGCTGTTCCGCTAGTAGTA



GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCG
GCGTTAGCTACATGAACTGGT



TGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
ATCAACAAAAGCCAGGACAG



AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC
GCACCCAGGCGATGGATTTAC



CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG
GATTCATCAAAACTGGCAAGC



GGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATC
GGAGTGCCTGCTCGTTTTAGT



CCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTG
GGGTCCGGGTCTGGCCGCGAT



CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG
TACACCCTGACCATATCATCCC



TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC
TCGAACCTGAGGACTTCGCAG



ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGT
TTTATTATTGCCAACAGTGGA



GAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG
GTAGGAACCCACCTACATTCG



GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACA
GTGGGGGGACCAAAGTCGAG



ACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT
ATAAAAG



(216)
(217)





CD3B2029-
CAGGTGCAGCTGGTGCAGAGCGGCGCGGAAGTGAAAAAA
CAGGTGCAGCTGGTGCAGAG


N106Q
CCGGGCAGCAGCGTGAAAGTGAGCTGCAAAGCGAGCGGC
CGGCGCGGAAGTGAAAAAAC


HL scFv
TATACCTTTACCCGCAGCACCATGCATTGGGTGAAACAGG
CGGGCAGCAGCGTGAAAGTG



CGCCGGGCCAGGGCCTGGAATGGATTGGCTATATTAACCC
AGCTGCAAAGCGAGCGGCTAT



GAGCAGCGCGTATACCAACTATAACCAGAAATTTCAGGGC
ACCTTTACCCGCAGCACCATGC



CGCGTGACCCTGACCGCGGATAAAAGCACCAGCACCGCGT
ATTGGGTGAAACAGGCGCCG



ATATGGAACTGAGCAGCCTGCGCAGCGAAGATACCGCGG
GGCCAGGGCCTGGAATGGATT



TGTATTATTGCGCGAGCCCGCAGGTGCATTATGATTATCA
GGCTATATTAACCCGAGCAGC



GGGCTTTCCGTATTGGGGCCAGGGCACCCTGGTGACCGTG
GCGTATACCAACTATAACCAG



AGCAGCGGCGGCAGCGAAGGCAAAAGCAGCGGCAGCGG
AAATTTCAGGGCCGCGTGACC



CAGCGAAAGCAAAAGCACCGGCGGCAGCGAAATTGTGCT
CTGACCGCGGATAAAAGCACC



GACCCAGAGCCCGGCGACCCTGAGCGCGAGCCCGGGCGA
AGCACCGCGTATATGGAACTG



ACGCGTGACCCTGAGCTGCAGCGCGAGCAGCAGCGTGAG
AGCAGCCTGCGCAGCGAAGAT



CTATATGAACTGGTATCAGCAGAAACCGGGCCAGAGCCCG
ACCGCGGTGTATTATTGCGCG



CGCCGCTGGATTTATGATAGCAGCAAACTGGCGAGCGGC
AGCCCGCAGGTGCATTATGAT



GTGCCGGCGCGCTTTAGCGGCAGCGGCAGCGGCCGCGAT
TATCAGGGCTTTCCGTATTGG



TATACCCTGACCATTAGCAGCCTGGAACCGGAAGATTTTG
GGCCAGGGCACCCTGGTGACC



CGGTGTATTATTGCCAGCAGTGGAGCCGCAACCCGCCGAC
GTGAGCAGCGGCGGCAGCGA



CTTTGGCGGCGGCACCAAAGTGGAAATTAAAGAACCGAA
AGGCAAAAGCAGCGGCAGCG



AAGCAGCGATAAAACCCATACCTGCCCGCCGTGCCCGGCG
GCAGCGAAAGCAAAAGCACC



CCGGAAGCGGCGGGCGGCCCGAGCGTGTTTCTGTTTCCGC
GGCGGCAGCGAAATTGTGCTG



CGAAACCGAAAGATACCCTGATGATTAGCCGCACCCCGGA
ACCCAGAGCCCGGCGACCCTG



AGTGACCTGCGTGGTGGTGAGCGTGAGCCATGAAGATCC
AGCGCGAGCCCGGGCGAACG



GGAAGTGAAATTTAACTGGTATGTGGATGGCGTGGAAGT
CGTGACCCTGAGCTGCAGCGC



GCATAACGCGAAAACCAAACCGCGCGAAGAACAGTATAA
GAGCAGCAGCGTGAGCTATAT



CAGCACCTATCGCGTGGTGAGCGTGCTGACCGTGCTGCAT
GAACTGGTATCAGCAGAAACC



CAGGATTGGCTGAACGGCAAAGAATATAAATGCAAAGTG
GGGCCAGAGCCCGCGCCGCT



AGCAACAAAGCGCTGCCGGCGCCGATTGAAAAAACCATTA
GGATTTATGATAGCAGCAAAC



GCAAAGCGAAAGGCCAGCCGCGCGAACCGCAGGTGTATG
TGGCGAGCGGCGTGCCGGCG



TGTATCCGCCGAGCCGCGAAGAAATGACCAAAAACCAGGT
CGCTTTAGCGGCAGCGGCAGC



GAGCCTGACCTGCCTGGTGAAAGGCTTTTATCCGAGCGAT
GGCCGCGATTATACCCTGACC



ATTGCGGTGGAATGGGAAAGCAACGGCCAGCCGGAAAAC
ATTAGCAGCCTGGAACCGGAA



AACTATAAAACCACCCCGCCGGTGCTGGATAGCGATGGCA
GATTTTGCGGTGTATTATTGCC



GCTTTGCGCTGGTGAGCAAACTGACCGTGGATAAAAGCCG
AGCAGTGGAGCCGCAACCCGC



CTGGCAGCAGGGCAACGTGTTTAGCTGCAGCGTGATGCAT
CGACCTTTGGCGGCGGCACCA



GAAGCGCTGCATAACCATTATACCCAGAAAAGCCTGAGCC
AAGTGGAAATTAAA



TGAGCCCGGGC
(219)



(218)









Engineering of CD3 Fabs for BCMAxCD3 Bispecific Generation

The CD3 specific VH and VL regions were engineered in VH-CH1-linker-CH2-CH3 and VL-CL formats respectively and expressed as IgG1. The polypeptide of SEQ ID NO: 220 comprising the Fc silencing mutation L234A/L235A/D265S and the CH3 mutation T350V/L351Y/F405A/Y407V designed to promote selective heterodimerization was used to generate the CD3 specific VH-CH1-linker-CH2-CH3 (Table 25).











(huIgG1_G1m(17) _AAS_ZWA)



SEQ ID NO: 220



ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDK






THTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTP






EVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR






EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA






LPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQ






VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV






LDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGK







The polypeptides of SEQ ID NO: 221 or 222 were used to generate the CD3 specific VL-CL (Table 26)











(human kappa light chain)



SEQ ID NO: 221



RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR






EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS






TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG






EC






(human lambda light chain)



SEQ ID NO: 222



GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP






GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS






YLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEC






S







DNA sequences of anti-CD3 molecules as HC in VH-CH1-liker-CH2-CH3 format and LC in VL-CL format are shown in Table 27.









TABLE 25







Amino acid sequence of the anti-CD3 antibody


arm VH-CH1-linker-CH2-CH3 of the bi-


specific antibody.












SEQ



HC

ID



protein
BsAb
NO:
HC amino acid sequence





Cris7b
GCDB131
223
QVQLLQSAAEVKKPGESLKI





SCKGSGYTFTRSTMHWVRQT





PGKGLEWMGYINPSSAYTNY





NQKFKDQVTISADKSISTAY





LQWSSLKASDTAMYYCARPQ





VHYDYNGFPYWGQGTLVTVS





SASTKGPSVFPLAPSSKSTS





GGTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQS





SGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKKVE





PKSCDKTHTCPPCPAPEAAG





GPSVFLFPPKPKDTLMISRT





PEVTCVVVSVSHEDPEVKFN





WYVDGVEVHNAKTKPREEQY





NSTYRVVSVLTVLHQDWLNG





KEYKCKVSNKALPAPIEKTI





SKAKGQPREPQVYVYPPSRE





EMTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPP





VLDSDGSFALVSKLTVDKSR





WQQGNVFSCSVMHEALHNHY





TQKSLSLSPG





Cris7b-
HC3B127
224
QVQLLQSAAEVKKPGESLKI


N106Q


SCKGSGYTFTRSTMHWVRQT





PGKGLEWMGYINPSSAYTNY





NQKFKDQVTISADKSISTAY





LQWSSLKASDTAMYYCARPQ





VHYDYQGFPYWGQGTLVTVS





SASTKGPSVFPLAPSSKSTS





GGTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQS





SGLYSLSSVVTVPSSSLGTQ





TYICNVNHKPSNTKVDKKVE





PKSCDKTHTCPPCPAPEAAG





GPSVFLFPPKPKDTLMISRT





PEVTCVVVSVSHEDPEVKFN





WYVDGVEVHNAKTKPREEQY





NSTYRVVSVLTVLHQDWLNG





KEYKCKVSNKALPAPIEKTI





SKAKGQPREPQVYVYPPSRE





EMTKNQVSLTCLVKGFYPSD





IAVEWESNGQPENNYKTTPP





VLDSDGSFALVSKLTVDKSR





WQQGNVFSCSVMHEALHNHY





TQKSLSLSPG
















TABLE 26







Amino acid sequence of the anti-CD3 antibody


light chain arm (VL-CL) of the bi-specific


antibody










LC

SEQ



protein
BsAb
ID NO:
LC amino acid sequence





Cris7b
GCDB
225
EIVLTQSPSAMSASVGDRVT



131

ITCSASSSVSYMNWYQQKPG





KVPKRLIYDSSKLASGVPSR





FSGSGSGTEYTLTISSLQPE





DFATYYCQQWSRNPPTFGQG





TMLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYP





REAKVQWKVDNALQSGNSQE





SVTEQDSKDSTYSLSSTLTL





SKADYEKHKVYACEVTHQGL





SSPVTKSFNRGEC





Cris7b-
HC3B1
226
EIVLTQSPSAMSASVGDRVT


N106Q
27

ITCSASSSVSYMNWYQQKPG





KVPKRLIYDSSKLASGVPSR





FSGSGSGTEYTLTISSLQPE





DFATYYCQQWSRNPPTFGQG





TMLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYP





REAKVQWKVDNALQSGNSQE





SVTEQDSKDSTYSLSSTLTL





SKADYEKHKVYACEVTHQGL





SSPVTKSFNRGEC
















TABLE 27







cDNA SEQ ID NOs of anti-CD3 ars of bi-specific


antibodies HC in VH-CHl-liker-CH2-


CH3 format and LC in VL-CL format.












HC cDNA
LC cDNA


ID
BsAb
SEQ ID NO:
SEQ ID NO:





Cris7b
GCDB131
caggtgcagctgctg
gaaattgtgctgacc




cagagcgcggcggaa
cagagcccgagcgcg




gtgaaaaaaccgggc
atgagcgcgagcgtg




gaaagcctgaaaatt
ggcgatcgcgtgacc




agctgcaaaggcagc
attacctgcagcgcg




ggctatacctttacc
agcagcagcgtgagc




cgcagcaccatgcat
tatatgaactggtat




tgggtgcgccagacc
cagcagaaaccgggc




ccgggcaaaggcctg
aaagtgccgaaacgc




gaatggatgggctat
ctgatttatgatagc




attaacccgagcagc
agcaaactggcgagc




gcgtataccaactat
ggcgtgccgagccgc




aaccagaaatttaaa
tttagcggcagcggc




gatcaggtgaccatt
agcggcaccgaatat




agcgcggataaaagc
accctgaccattagc




attagcaccgcgtat
agcctgcagccggaa




ctgcagtggagcagc
gattttgcgacctat




ctgaaagcgagcgat
tattgccagcagtgg




accgcgatgtattat
agccgcaacccgccg




tgcgcgcgcccgcag
acctttggccagggc




gtgcattatgattat
accatgctggaaatt




aacggctttccgtat
aaacgtacggtggct




tggggccagggcacc
gcaccatctgtcttc




ctggtgaccgtgagc
atcttcccgccatct




agcgcctccaccaag
gatgagcagttgaaa




ggcccatcggtcttc
tctggaactgectct




cccctggcaccctcc
gttgtgtgcctgctg




tccaagagcacctct
aataacttctatccc




gggggcacagcggcc
agagaggccaaagta




ctgggctgcctggtc
cagtggaaggtggat




aaggactacttcccc
aacgccctccaatcg




gaaccggtgacggtg
ggtaactcccaggag




tcgtggaactcaggc
agtgtcacagagcag




gccctgaccagcggc
gacagcaaggacagc




gtgcacaccttcccg
acctacagcctcagc




gctgtcctacagtcc
agcaccctgacgctg




tcaggactctactcc
agcaaagcagactac




ctcagcagcgtggtg
gagaaacacaaagtc




accgtgccctccagc
tacgcctgcgaagtc




agcttgggcacccag
acccatcagggcctg




acctacatctgcaac
agctcgcccgtcaca




gtgaatcacaagccc
aagagcttcaacagg




agcaacaccaaggtg
ggagagtgt




gacaagaaagttgag
(228)




cccaaatcttgtgac





aaaactcacacatgt





ccaccgtgcccagca





cctgaagcagcaggg





ggaccgtcagtcttc





ctcttccccccaaaa





cccaaggacaccctc





atgatctcccggacc





cctgaggtcacatgc





gtggtggtgagcgtg





agccacgaagaccct





gaggtcaagttcaac





tggtacgtggacggc





gtggaggtgcataat





gccaagacaaagccg





cgggaggagcagtac





aacagcacgtaccgt





gtggtcagcgtcctc





accgtcctgcaccag





gactggctgaatggc





aaggagtacaagtgc





aaggtctccaacaaa





gccctcccagccccc





atcgagaaaaccatc





tccaaagccaaaggg





cagccccgagaacca





caggtgtacgtgtac





cccccatcccgggag





gagatgaccaagaac





caggtcagcctgacc





tgcctggtcaaaggc





ttctatcccagcgac





atcgccgtggagtgg





gagagcaatgggcag





ccggagaacaactac





aagaccacgcctccc





gtgctggactccgac





ggctccttcgccctc





gtgagcaagctcacc





gtggacaagtctaga





tggcagcaggggaac





gtcttctcatgctcc





gtgatgcatgaggct





ctgcacaaccactac





acgcagaagagcctc





tccctgtctccgggt





(227)






Cris7b-
HC3B127
caagtgcaactcctt
gaaattgtgctgacc


N106Q

cagtcagccgccgag
cagagcccgagcgcg




gttaaaaaaccagga
atgagcgcgagcgtg




gaatcactgaaaatc
ggcgatcgcgtgacc




tcctgtaagggtagc
attacctgcagcgcg




ggatataccttcact
agcagcagcgtgagc




agatcaaccatgcat
tatatgaactggtat




tgggtgagacagact
cagcagaaaccgggc




ccaggtaaaggattg
aaagtgccgaaacgc




gagtggatgggatac
ctgatttatgatagc




ataaacccctcctca
agcaaactggcgagc




gcctataccaattac
ggcgtgccgagccgc




aatcaaaaatttaag
tttagcggcagcggc




gatcaagtgactatc
agcggcaccgaatat




agtgctgacaagagc
accctgaccattagc




atctcaaccgcctac
agcctgcagccggaa




cttcagtggtcatca
gattttgcgacctat




ctgaaagcatcagat
tattgccagcagtgg




acagccatgtattac
agccgcaacccgccg




tgtgcaagaccccaa
acctttggccagggc




gttcactatgactat
accatgctggaaatt




cagggtttcccatac
aaacgtacggtggct




tgggggcaaggaaca
gcaccatctgtcttc




ctcgtgaccgtttca
atcttcccgccatct




tctgcctccaccaag
gatgagcagttgaaa




ggcccatcggtcttc
tctggaactgectct




cccctggcaccctcc
gttgtgtgcctgctg




tccaagagcacctct
aataacttctatccc




gggggcacagcggcc
agagaggccaaagta




ctgggctgcctggtc
cagtggaaggtggat




aaggactacttcccc
aacgccctccaatcg




gaaccggtgacggtg
ggtaactcccaggag




tcgtggaactcaggc
agtgtcacagagcag




gccctgaccagcggc
gacagcaaggacagc




gtgcacaccttcccg
acctacagcctcagc




gctgtcctacagtcc
agcaccctgacgctg




tcaggactctactcc
agcaaagcagactac




ctcagcagcgtggtg
gagaaacacaaagtc




accgtgccctccagc
tacgcctgcgaagtc




agcttgggcacccag
acccatcagggcctg




acctacatctgcaac
agctcgcccgtcaca




gtgaatcacaagccc
aagagcttcaacagg




agcaacaccaaggtg
ggagagtgt




gacaagaaagttgag
(228)




cccaaatcttgtgac





aaaactcacacatgt





ccaccgtgcccagca





cctgaagcagcaggg





ggaccgtcagtcttc





ctcttccccccaaaa





cccaaggacaccctc





atgatctcccggacc





cctgaggtcacatgc





gtggtggtgagcgtg





agccacgaagaccct





gaggtcaagttcaac





tggtacgtggacggc





gtggaggtgcataat





gccaagacaaagccg





cgggaggagcagtac





aacagcacgtaccgt





gtggtcagcgtcctc





accgtcctgcaccag





gactggctgaatggc





aaggagtacaagtgc





aaggtctccaacaaa





gccctcccagccccc





atcgagaaaaccatc





tccaaagccaaaggg





cagccccgagaacca





caggtgtacgtgtac





cccccatcccgggag





gagatgaccaagaac





caggtcagcctgacc





tgcctggtcaaaggc





ttctatcccagcgac





atcgccgtggagtgg





gagagcaatgggcag





ccggagaacaactac





aagaccacgcctccc





gtgctggactccgac





ggctccttcgccctc





gtgagcaagctcacc





gtggacaagtctaga





tggcagcaggggaac





gtcttctcatgctcc





gtgatgcatgaggct





ctgcacaaccactac





acgcagaagagcctc





tccctgtctccgggt





(229)









Engineering of BCMA Fab-Fc for BCMAxCD3 Bispecific Generation

The BCMA specific VH and VL regions were engineered in VH-CH1-linker-CH2-CH3 and VL-CL formats respectively. The polypeptide of SEQ ID NO: 230 comprising the Fc silencing mutation L234A/L235A/D265S and the CH3 mutation T350V/T366L/K392L/T394W designed to promote selective heterodimerization was used to generate the CD3 specific VH-CH1-linker-CH2-CH3).











(huIgG1_G1m(17)_AAS_ZWB)



SEQ ID NO: 230



ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE






PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDK






THTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTP






EVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR






EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA






LPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQ






VSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPV






LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL






HNHYTQKSLSLSPGK







The polypeptides of SEQ ID NO: 231 or 232 were used to generate the BCMA specific VL-CL.











(human kappa light chain)



SEQ ID NO: 231



RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR






EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS






TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG






EC






(human lambda light chain)



SEQ ID NO: 232



GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP






GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS






YLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEC






S







The amino acid sequences of BCMA Fab-Fc heavy chain (HC) and light chains (LCs) are shown below.











BCMA Fab-Fc heavy chain



(SEQ ID NO: 233)



EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMS






WVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTI






SRDNSKNTLYLQMNSLRAEDTAVYYCAKDEGYSSG






HYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKS






TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT






FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH






KPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPS






VFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVK






FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR






EPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAV






EWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG






BCMA Fab-Fc light chain



(SEQ ID NO: 234)



EIVLTQSPGTLSLSPGERATLSCRASQSISSSFLT






WYQQKPGQAPRLLIYGASSRATGIPDRFSGGGSGT






DFTLTISRLEPEDFAVYYCQHYGSSPMYTFGQGTK






LEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN






FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY






SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS






FNRGEC







Engineering of BCMA scFvs-Fc for BCMA×CD3 Bispecific Generation


BCMA VH/VL regions engineered as scFvs in either VH-Linker-VL or VL-linker-VH orientations using the linker of SEQ ID NO: 3 (Table 2), as described in Example 2, were further engineered into a scFv-hinge-CH2-CH3 format comprising the Fc silencing mutation (L234A/L235A/D265S) and the T350V/T366L/K392L/T394W mutations designed to promote selective heterodimerization and expressed as IgG1 (Table 28). The polypeptide of SEQ ID NO: 235 was used as the constant domain hinge-CH2-CH3 (Fc).











SEQ ID NO: 235



(huIgG1_G1m(17)-hinge-Fc_C220S_AAS_ZWB)



EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDT






LMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVH






NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK






CKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSR






EEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENN






YLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC






SVMHEALHNHYTQKSLSLSPG













TABLE 28







Amino acid sequences of anti- BCMA scFvs-Fc


for BCMAxCD3 bispecific generation









Protein
SEQ ID NO:
Amino acid sequence





BCMB519-LH-scFv
236
EVQLLESGGGLVQPGGSLRL




SCAASGFTFSSYAMSWVRQA




PGKGLEWVSAISGSGGSTYY




ADSVKGRFTISRDNSKNTLY




LQMNSLRAEDTAVYYCAKDE




GYSSGHYYGMDVWGQGTTVT




VSSASTKGPSVFPLAPSSKS




TSGGTAALGCLVKDYFPEPV




TVSWNSGALTSGVHTFPAVL




QSSGLYSLSSVVTVPSSSLG




TQTYICNVNHKPSNTKVDKK




VEPKSCDKTHTCPPCPAPEA




AGGPSVFLFPPKPKDTLMIS




RTPEVTCVVVSVSHEDPEVK




FNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWL




NGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYVLPPS




REEMTKNQVSLLCLVKGFYP




SDIAVEWESNGQPENNYLTW




PPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPG









The bsAbs were assayed for thermal stability, abilities to bind T cells, and cytotoxicity.


Thermal Stability Analysis

For thermal stability, Thermal unfolding and aggregation were measured from 20° C.-95° C. using a ramp of 1° C./min on a NanoTemper PromethiusNT.48 instrument. Samples were then transferred into nanoDSF capillary by capillary action and assayed in duplicate (Table 2). All variants (except for BC3B126) had similar Tonset, Tm1, and Tagg, indicating that neither the specific back-mutations nor the identity of the mutation at VH N106 had a significant impact on thermostability. On average the bsAbs had Tonset, Tm1, and Tagg of 61, 68, and 77° C., where Tm1 represented the melting temperature of the scFv moiety, suggesting that all the Cris-7 variants could be amenable to therapeutic development.









TABLE Ther







mostability analysis of bsAbs containing Cris-7 scFv moieties.









Tm/Tagg










Protein Batch Name
Tonset
Tml
Tagg





BC3B51.001
61.8° C.
69.1° C.
77.7° C.


BC3B109.001
61.0° C.
68.3° C.
76.3° C.


BC3B114.001
61.1° C.
68.4° C.
78.2° C.


BC3B53.001
61.4° C.
68.9° C.
79.2° C.


BC3B123.001
62.0° C.
68.8° C.
76.8° C.


BC3B128.001
60.7° C.
68.7° C.
77.5° C.


BC3B103.001
61.4° C.
68.8° C.
78.2° C.


BC3B107.001
61.4° C.
68.2° C.
77.6° C.


BC3B112.001
NA
NA
NA


BC3B117.001
61.4° C.
69.1° C.
77.7° C.


BC3B121.001
61.7° C.
68.3° C.
76.6° C.


BC3B126.001
51.1° C.
68.1° C.
76.5° C.


BC3B104.001
60.5° C.
69.0° C.
76.5° C.


BC3B108.001
61.4° C.
68.1° C.
77.7° C.


BC3B113.001
61.1° C.
68.2° C.
77.2° C.


BC3B118.001
62.0° C.
69.2° C.
77.3° C.


BC3B122.001
61.3° C.
68.5° C.
76.3° C.


BC3B127.001
61.4° C.
68.6° C.
75.9° C.


BC3B105.001
61.8° C.
69.3° C.
77.9° C.


BC3B110.001
61.7° C.
68.0° C.
77.3° C.


BC3B115.001
61.0° C.
68.8° C.
76.5° C.


BC3B119.001
61.7° C.
69.6° C.
77.8° C.


BC3B124.001
NA
NA
NA


BC3B129.001
61.4° C.
69.3° C.
77.2° C.









Activity Analysis

The BCMAxCD3 bi-specifics (BsAbs) were tested for their abilities to either bind T cells or to induce T cell-based cytotoxicity against cells expressing each antigen (Tables 29 and 30). Binding and cytotoxicity assays are described below.


The bsAbs were assayed for their abilities bind T cells and to induce T-cell mediated cytotoxicity against H929 cells (ATCC® CRL-9068™). For T cell binding, briefly, bsAbs were prepared at 2× concentration of 600 nM in assay media (RPMI 1640+10% HI-FBS) and diluted in 3-fold serial dilutions in sterile polypropylene (PP) greiner plates in stain buffer for a 11-point titration. Stain buffer with no antibody was added to bottom 4 wells and assign as background control (secondary antibody alone). Parental Cris7b, CD3B695 (bivalent mAb controls) and CD3B375 (bsAb which was monovalent for Cris-7b) were added also with full dose-response curves.


Frozen T-cells were thawed in a 37° C. water bath and transferred gently into conical tube containing warm 5 mL media (RPMI+10% FBS)/1 vial of 1×106 cells. Cells were mixed and centrifuged for 5 minutes at 400×g followed by resuspension in flow staining buffer, and counted and viability checked. Cells were then plated in 50 uL/50,000 cells/well into assay plates. Assay positive control mAb was added in the first column in quadruplicates at 2× at 20 nM in the bottom 4 wells. Stain buffer with no mAb was added to the top 4 wells and assigned as background controls (secondary antibody alone). Serially diluted antibody samples were added at 50 uL/well using Intergra Viaflo according to the attached plate maps and incubated for 1 hr at 37° C. After one hour incubation, 150 uL staining buffer were added to all wells, and cells were spun at 500×g for 5 minutes to pellet cells. Cells were then washed prior to addition of Alexa Fluor 647 (A647) conjugated anti human IgG Fc specific secondary detection antibody at 2 ug/mL in staining buffer. Secondary detection antibody was added at 50 uL/well to the washed cells. Plates were covered with foil and incubated for 30 minutes on ice or in the fridge. 150 uL staining buffer were added to all wells, and cells were spun at 500×g for 5 min to pellet cells. Cells were resuspended in 20 uL running buffer containing 1:1000 dilution of SYTOX™ green dead cell stain and run plates on iQue® Screener flow cytometer (Essen BioScience, Inc.). Briefly, cells were gated on FCS vs. SCS dot plot to eliminate debris. Singlets were gated on SCS-A vs SCS-H dot plot and from singlet population, live cells gated choosing BL1 channel for low/negative with SYTOX™ green viability stain (Thermo Fisher). Cell binding of control mAbs or test panel supernatants was assessed by comparing to negative/isotype control binding by RL1 (A647) Geomeans from the live cell population.


Antibody Sample Preparation

BsAbs were prepared at 20 nM in assay media and serially diluted 3-fold for an 11-point titration in assay media and stored at 4 C.


Target cells (H929, ATCC® CRL-9068™) were prepared by addition of Fc block at 5 uL/1×106 cells (50 uL per 10 million cells), and incubated at room temperature for 20 minutes at 37° C. Cells were diluted to 4×105 cells/ml for plating. Control wells were supplemented with 50 uL of media/well and incubated at 37° C. T cell vials were thawed in at 37° C. into a 50 mL conical tube containing room temperature assay media (5 mL media/1 vial of cells). Cells were spun at 300×g for 5 min, and resuspended in 10 mL fresh media and counted. For E:T ratio of 5:1, a T-cell suspension at 2×10{circumflex over ( )}6/mL was prepared. Cells were prepared at 50 uL/100 k/well to the assay plates already containing tumor target cells (from step above) according to the plate map. Control wells were supplemented with 50 uL of media/well and incubated at 37° C.


Antibodies were added at 100 uL/well and serially diluted starting from 10 nM to the assay plates containing mixed tumor target cells and T-cells. Target cells were at 20,000 cells/well and pan T-cells cell counts at 100,000 cells/well. Total assay volume was 200 uL/well. Plates were incubated at 37° C., 5% CO2 in a humidified cell culture incubator for 48 hr.


Cells were washed by adding 150 uL of BD staining buffer and spun at 300×g for 5 min. Staining solution mixture in BD stain buffer contained:


APC-conjugated anti-Human CD4 (1:100) (R&D Systems FAB3791A-025)


APC-conjugated anti-Human CD8 (1:100) (R&D Systems FAB1509A-025)


Brilliant Violet 421™-conjugated anti-Human CD25 (1:500)


Vybrant™ DyeCycle™ Green Stain (Invitrogen) at 1:12500 dilution were prepared separately and added at 50 uL/well staining solution mixture to all wells of assay plates. 25 uL/well of diluted vibrant green dye were added to top 2 wells of 1st control column of all assay plates followed by incubation at room temperature for 20 min. Plates were washed 2× with 150 uL staining buffer and resuspended in 30 uL IntelliCyt® running buffer containing SYTOX™ green live/dead stain (1:1000) and analyzed using the iQue® PLUS Screener within 4 hr.


Cells were gated on FSC-H vs SSC-H, and T-cell and tumor cell populations were gated from all cells on on APC (RL1) vs SSC-H. Live cells and dead cells (live/dead stain) were gated for both tumor and T cells from their respective dot plots on FSC-H vs Sytox Green (BL2). Using live T-cells, activated/CD25 positive T cell populations were gated on FSC-H vs Brilliant Violet (VL1). Cell populations were determined as follows:





Dead tumor cells=SytoxGreen live-dead stain positive/total tumor cells×100





% Live T-cells=L/D negative T-cells/total T-cells×100





% Activated T-cells=CD25 positive Live T-cells/Live T-cells×100


Cell binding analysis showed that the Cris-7 variants displayed a range of affinity for T cells, and this cell-based affinity was correlated to the EC50 for cytotoxicity (Table 29). In general, variants of the Cris-7 v-region formatted in heavy-light orientation as scFv displayed ˜10-fold tighter than in the LH orientation binding to cells, consistent with ELISA data. The nature of the mutations to eliminate the risk of N106-based deamidation had a significant effect on T cell binding and on cytotoxicity. Altogether, the three different sets of back mutations, (defined by CD3B2030, CD3B2051, and CD3B2089) combined with mutation of N106Q/A/G/S resulted in a panel of Cris-7 variants with EC50 for T cell binding ranging from 3 to ˜300 nM, and correlated with EC50 for cytotoxicity from 0.012 to 3.5 nM. For T cell-redirecting bsAbs (bsTCE), weaker affinity T cell redirection, relative to the affinity for tumor targeting can allow design of the antibody to maximize efficacy while minimizing toxicity associated with aberrant T cell activation, accumulation in secondary lymphoid organs, and cytokine-release-related toxicity. Additionally Cris-7-derived scFvs in the “LH” orientation had weaker binding to T cells, compared to HL orientation. Thus, this panel was considered advantageous—and thus we selected a subset of the Cris-7 variants to display a range of binding affinity to use in lead bsTCE.









TABLE 29







T cell binding and cytotoxicity analysis of Cris-7 × BCMA


bsAbs using H929 cells.














H929





Binding,
Killing
T cell




EC50,
EC50,
activation,



Cris7 Variant
nM
pM
% CD25














BC3B102.001
B2030 HL
3
NA
NA


BC3B106.001
B2051 HL
6.8
NA
NA


BC3B111.001
B2089 HL
6.4
NA
NA


BC3B116.001
B2030 LH
21.8
NA
NA


BC3B120.001
B2051 LH
100.4
NA
NA


BC3B125.001
B2089 LH
36.9
NA
NA


BC3B51.001
B2030 HL NtoQ
1.9
12.9
23.4953116


BC3B109.001
B2051 HL NtoQ
13.8
42.6
110.55834


BC3B114.001
B2089 HL NtoQ
3.2
12.6
24.7547018


BC3B53.001
B2030 LH NtoQ
19.6
27.8
56.6770832


BC3B123.001
B2051 LH NtoQ
65
69.0
129.712199


BC3B128.001
B2089 LH NtoQ
42.9
35.4
81.8260112


BC3B103.001
B2030 HL NtoA
4.6
92.1
153.584034


BC3B107.001
B2051 HL NtoA
8.6
41.5
90.2349376


BC3B112.001
B2089 HL NtoA
300
NA
NA


BC3B117.001
B2030 LH NtoA
60.9
148.6
279.030715


BC3B121.001
B2051 LH NtoA
73.3
100.2
192.322866


BC3B126.001
B2089 LH NtoA
177.3
182.0
339.169276


BC3B104.001
B2030 HL NtoG
64.2
236.6
448.804965


BC3B108.001
B2051 HL NtoG
11
85.3
192.696137


BC3B113.001
B2089 HL NtoG
11.1
44.3
94.2622022


BC3B118.001
B2030 LH NtoG
256.7
745.1
870.792549


BC3B122.001
B2051 LH NtoG
300
4360.5
6136.07165


BC3B127.001
B2089 LH NtoG
300
805.9
1063.42224


BC3B105.001
B2030 HL NtoS
20.7
172.2
272.296713


BC3B110.001
B2051 HL NtoS
31.2
780.5
1662.96965


BC3B115.001
B2089 HL NtoS
24
155.2
323.251509


BC3B119.001
B2030 LH NtoS
300
10000.0
9999.99994


BC3B124.001
B2051 LH NtoS
300
NA
NA


BC3B129.001
B2089 LH NtoS
300
10000.0
9999.99994
















TABLE 30







Functional activity of the bi-specific proteins.













EC50,





Cytotoxicity


Name
BsAb
Description
(M)





Cris7b
GCDB131
HC1 (ZWA): N-Terminal
3.3364E−11




Cris7b-Fab; HC2 (ZWB): N-





Terminal BCMB519-LH-scFv



Cris7-
BC3B51
HC1 (ZWA): CD3B2030NtoQ
2.7847E−11


CD3B2030-

HL scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B53
HC1 (ZWA): CD3B2030NtoQ
2.7847E−11


CD3B2030-

LH scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B103
HC1 (ZWA): CD3B2030NtoA
9.213E−11


CD3B2030-

HL scFv; HC2 (ZWB):



VH-N106A

BCMB519 Fab



Cris7-
BC3B117
HC1 (ZWA): CD3B2030NtoA
1.4858E−10


CD3B2030-

LH scFv; HC2 (ZWB):



VH-N106A

BCMB519 Fab



Cris7-
BC3B104
HC1 (ZWA): CD3B2030NtoG
2.3659E−10


CD3B2030-

HL scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B118
HC1 (ZWA): CD3B2030NtoG
7.4505E−10


CD3B2030-

LH scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B105
HC1 (ZWA): CD3B2030NtoS
1.7224E−10


CD3B2030-

HL scFv; HC2 (ZWB):



VH-N106S

BCMB519 Fab



Cris7-
BC3B119
HC1 (ZWA): CD3B2030NtoS
1E−08


CD3B2030-

LH scFv; HC2 (ZWB):



VH-N106S

BCMB519 Fab



Cris7-
BC3B109
HC1 (ZWA): CD3B2051NtoQ
4.2561E−11


CD3B2051-

HL scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B123
HC1 (ZWA): CD3B2051NtoQ
6.9003E−11


CD3B2051-

LH scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B107
HC1 (ZWA): CD3B2051NtoA
4.1534E−11


CD3B2051-

HL scFv; HC2 (ZWB):



VH-N106A

BCMB519 Fab



Cris7-
BC3B121
HC1 (ZWA): CD3B2051NtoA
1.0015E−10


CD3B2051-

LH scFv; HC2 (ZWB):



VH-N106A

BCMB519 Fab



Cris7-
BC3B108
HC1 (ZWA): CD3B2051NtoG
8.5329E−11


CD3B2051-

HL scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B122
HC1 (ZWA): CD3B2051NtoG
4.3605E−09


CD3B2051-

LH scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B110
HC1 (ZWA): CD3B2051NtoS
7.8052E−10


CD3B2051-

HL scFv; HC2 (ZWB):



VH-N106S

BCMB519 Fab



Cris7-
BC3B114
HC1 (ZWA): CD3B2089NtoQ
1.255E−11


CD3B2089-

HL scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B128
HC1 (ZWA): CD3B2089NtoQ
3.5408E−11


CD3B2089-

LH scFv; HC2 (ZWB):



VH-N1060

BCMB519 Fab



Cris7-
BC3B126
HC1 (ZWA): CD3B2089NtoA
1.8201E−10


CD3B2089-

LH scFv; HC2 (ZWB):



VH-N106A

BCMB519 Fab



Cris7-
BC3B113
HC1 (ZWA): CD3B2089NtoG
4.4345E−11


CD3B2089-

HL scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B127
HC1 (ZWA): CD3B2089NtoG
8.059E−10


CD3B2089-

LH scFv; HC2 (ZWB):



VH-N106G

BCMB519 Fab



Cris7-
BC3B115
HC1 (ZWA): CD3B2089NtoS
1.5516E−10


CD3B2089-

HL scFv; HC2 (ZWB):



VH-N106S

BCMB519 Fab



Cris7-
BC3B129
HC1 (ZWA): CD3B2089NtoS
N.D.


CD3B2089-

LH scFv; HC2 (ZWB):



VH-N106S

BCMB519 Fab









Example 3: Expression and Purification of Bispecific CD79b×CD3 and Trispecific CD79b×CD20×CD3 Antibodies

The CD79b×CD3 bispecific antibody (bsAb) is an immunoglobulin (Ig) G1 bispecific antibody that can bind simultaneously or individually to the cluster of differentiation (CD) 3 receptor complex on T lymphocytes and to CD79b on B lymphocytes. The CD79b×CD20×CD3 trispecific antibody is an immunoglobulin (Ig) G1 trispecific antibody that can bind simultaneously or individually to the CD3 receptor complex on T lymphocytes, and to the CD20 receptor complex on B lymphocytes and to the CD79b receptor complex on B lymphocytes. The antibody has mutations which reduce Fc binding to a Fcγ receptor and heterodimerization has been enhanced using the knobs-in-holes platform mutations. The trispecific antibody was developed to evaluate the therapeutic potential of dual targeting CD20 and CD79b for T cell redirection. An illustration of an exemplary CD79b×CD20×CD3 antibody is depicted in FIG. 6.


Table 31 provides a summary of examples of some CD79b×CD20×CD3 trispecific antibodies described herein:









TABLE 31







Exemplary CD79b × CD20 × CD3 Trispecific antibodies

















HC1

LC


HC2





Amino
HC1
Amino


Amino
HC2




acid
DNA
acid
LC DNA

acid
DNA



HC1/LC
sequence
sequence
sequence
sequence

sequence
sequence



(CD79b
SEQ ID
SEQ ID
SEQ ID
SEQ ID
HC2 (CD3-
SEQ ID
SEQ ID


ID
arm)
NO
NO
NO
NO
CD20 arm)
NO
NO


















C923B38
CD9B374
1489
1490
1491
1492
CD3B2030-
1463
1464








N106A-








scFv-LH-








C20B22


C923B74
CD9B330-
1493
1494
1495
1496
CD3B2030-
1463
1464



N31S




N106A-








scFv-LH-








C20B22


C923B99
CD9B643
1497
1498
1499
1500
CD3B2030-
1463
1464








N106A-








scFv-LH-








C20B22


C923B36
CD9B374
1489
1490
1491
1492
CD3B2089-
1465
1466








N106G-








scFv-LH-








C20B22


C923B73
CD9B330-
1493
1494
1495
1496
CD3B2089-
1465
1466



N31S




N106G-








scFv-LH-








C20B22


C923B95
CD9B643
1497
1498
1499
1500
CD3B2089-
1465
1466








N106G-








scFv-LH-








C20B22


C923B138
CD9B643
1497
1498
1499
1501
CD3W245-
1467
1468








scFv LH-








C20B22


C923B139
CD9B643
1497
1498
1499
1501
CD3B2089-
1469
1470








N106G-scFv








HL-C20B22


C923B140
CD9B643
1497
1498
1499
1501
CD3W245-
1471
1472








scFv LH-








5O10GL


C923B141
CD9B643
1497
1498
1499
1501
CD3W245-
1473
1474








scFv LH-








4A16GL


C923B142
CD9B643
1497
1498
1499
1501
CD3B2030-
1475
1476








N106A-LH








scFv-








5O10GL


C923B143
CD9B643
1497
1498
1499
1501
CD3B2030-
1477
1478








N106A-LH








scFv-








4A16GL


C923B144
CD9B643
1497
1498
1499
1501
CD3B2089-
1479
1480








N106G-HL








scFv-








5O10GL


C923B145
CD9B643
1497
1498
1499
1501
CD3B2089-
1481
1482








N106G-HL








scFv-








4A16GL


C923B147
CD9B643
1502
1503
1499
1500
CD3B2030-
1483
1484








N106A-LH








scFv-








4A16GL


C923B168
CD9B374
1489
1490
1491
1492
CD3W245-
1485
1486








scFv LH-








C20B648








LH


C923B169
CD9B374
1489
1490
1491
1492
CD3B2030-
1487
1488








N106A-LH-








C20B648








LH


















trispecific Ab CD3-CD20 arm



SEQ ID NO: 1463



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPS






SAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGSEGKSSGSGSESKS






TGGSAIQLTQSPSSLSASVGDRVTITCRASSSVSYIHWFQQKPGK






APKPLIYATSNLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYY






CQQWTSNPPTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQLV






QSGAEVKKPGSSVKVSCKASGYTFTSYNMHWVRQAPGQGLEWMGA






IYPGNGDTSYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYY






CARSTYYGGDWYFNVWGQGTLVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1464



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCA






GGCGAGAGAGTGACCCTGTCCTGCTCCGCTTCCTCCTCCGTGTCC






TACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGA






TGGATCTACGACTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGA






TTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACCATCTCC






AGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGG






TCTAGGAACCCTCCTACCTTTGGCGGAGGCACCAAGGTGGAAATC






AAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC






AAGTCCACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCC






GAAGTGAAGAAACCTGGCTCCTCCGTCAAGGTGTCCTGCAAGGCT






TCCGGCTACACCTTTACCAGATCCACCATGCACTGGGTCAAGCAG






GCCCCTGGACAAGGCTTGGAGTGGATCGGCTACATCAACCCCAGC






TCCGCCTACACCAACTACAACCAGAAATTCCAGGGCAGAGTGACC






CTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCC






AGCCTGAGATCTGAGGACACCGCCGTGTACTACTGCGCCTCTCCT






CAGGTCCACTACGACTACGCCGGCTTTCCTTATTGGGGCCAGGGC






ACACTGGTCACCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACT






CACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAAGGA






GGGAGCGAGGGAAAGTCCAGCGGAAGCGGCTCTGAGTCCAAATCC






ACCGGAGGGAGCGCCATTCAGCTGACCCAGTCTCCATCCTCTCTG






TCCGCCTCTGTGGGCGACAGAGTGACAATTACCTGCCGGGCCTCC






TCCTCCGTGTCCTACATCCATTGGTTCCAGCAGAAGCCCGGCAAG






GCCCCTAAGCCTCTGATCTACGCCACCTCCAATCTGGCCTCTGGC






GTGCCCTCCAGATTTTCCGGATCTGGCTCTGGAACCGACTTTACC






CTGACAATCTCCAGCCTGCAGCCTGAGGACTTCGCCACCTACTAC






TGTCAGCAGTGGACCAGCAATCCTCCTACCTTTGGCCAGGGCACC






AAGCTGGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGC






GGCAGCGAGAGCAAGAGCACCGGCGGCAGCCAGGTTCAGCTGGTT






CAGTCTGGTGCCGAAGTGAAGAAACCTGGCTCCTCCGTGAAAGTG






TCCTGCAAGGCTTCCGGCTACACTTTTACCAGCTACAACATGCAC






TGGGTCCGACAGGCCCCTGGACAAGGATTGGAATGGATGGGCGCT






ATCTACCCCGGCAACGGCGATACCTCTTACGCCCAGAAATTCCAG






GGCAGAGTGACCATCACCGCCGACAAGTCTACCTCCACCGCCTAC






ATGGAACTGTCCAGCCTGAGATCTGAGGACACCGCCGTGTACTAC






TGCGCCCGGTCTACCTATTATGGCGGCGACTGGTACTTCAACGTG






TGGGGCCAGGGAACCCTGGTCACAGTCTCTTCT






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1465



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPS






SAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYGGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGSEGKSSGSGSESKS






TGGSAIQLTQSPSSLSASVGDRVTITCRASSSVSYIHWFQQKPGK






APKPLIYATSNLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYY






CQQWTSNPPTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQLV






QSGAEVKKPGSSVKVSCKASGYTFTSYNMHWVRQAPGQGLEWMGA






IYPGNGDTSYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYY






CARSTYYGGDWYFNVWGQGTLVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1466



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCA






GGCGAGAGAGTGACCCTGTCCTGCTCCGCTTCCTCCTCCGTGTCC






TACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGA






TGGATCTACGACTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGA






TTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACCATCTCC






AGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGG






TCTAGGAACCCTCCTACCTTTGGCGGAGGCACCAAGGTGGAAATC






AAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC






AAGTCCACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCC






GAAGTGAAGAAACCTGGCTCCTCCGTGAAAGTGTCCTGCAAGGCT






TCCGGCTACACTTTTACCAGATCCACCATGCACTGGGTCCGACAG






GCTCCAGGACAAGGCTTGGAGTGGATGGGCTACATCAACCCCAGC






TCCGCCTACACCAACTACGCCCAGAAATTCCAGGGCAGAGTGACC






CTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCC






AGCCTGAGATCTGAGGACACCGCCGTGTACTACTGCGCTTCTCCT






CAGGTGCACTACGACTACGGCGGCTTTCCTTATTGGGGCCAGGGC






ACACTGGTCACCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACT






CACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAAGGA






GGGAGCGAGGGAAAGTCCAGCGGAAGCGGCTCTGAGTCCAAATCC






ACCGGAGGGAGCGCCATTCAGCTGACCCAGTCTCCATCCTCTCTG






TCCGCCTCTGTGGGCGACAGAGTGACAATTACCTGCCGGGCCTCC






TCCTCCGTGTCCTACATCCATTGGTTCCAGCAGAAGCCCGGCAAG






GCCCCTAAGCCTCTGATCTACGCCACCTCCAATCTGGCCTCTGGC






GTGCCCTCCAGATTTTCCGGATCTGGCTCTGGAACCGACTTTACC






CTGACAATCTCCAGCCTGCAGCCTGAGGACTTCGCCACCTACTAC






TGTCAGCAGTGGACCAGCAATCCTCCTACCTTTGGCCAGGGCACC






AAGCTGGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGC






GGCAGCGAGAGCAAGAGCACCGGCGGCAGCCAGGTTCAGCTGGTT






CAGTCTGGTGCCGAAGTGAAGAAACCTGGCTCCTCCGTGAAAGTG






TCCTGCAAGGCTTCCGGCTACACTTTTACCAGCTACAACATGCAC






TGGGTCCGACAGGCCCCTGGACAAGGATTGGAATGGATGGGCGCT






ATCTACCCCGGCAACGGCGATACCTCTTACGCCCAGAAATTCCAG






GGCAGAGTGACCATCACCGCCGACAAGTCTACCTCCACCGCCTAC






ATGGAACTGTCCAGCCTGAGATCTGAGGACACCGCCGTGTACTAC






TGCGCCCGGTCTACCTATTATGGCGGCGACTGGTACTTCAACGTG






TGGGGCCAGGGAACCCTGGTCACAGTCTCTTCT






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1467



DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPK






LLIKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ






SGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSEVQLVESG






GGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVSSIST






SSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTR






GWGPFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL






FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA






KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI






EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI






AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV






FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSAIQLTQSPSS






LSASVGDRVTITCRASSSVSYIHWFQQKPGKAPKPLIYATSNLAS






GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWTSNPPTFGQG






TKLEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSSVK






VSCKASGYTFTSYNMHWVRQAPGQGLEWMGAIYPGNGDTSYAQKF






QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARSTYYGGDWYFN






VWGQGTLVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1468



GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTT






GGCGACCGTGTCACTATCACTTGTCGAGCCCGCCAGTCCATAGGT






ACTGCCATTCACTGGTATCAACAGAAGCCTGGCAAGGCTCCCAAA






CTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCA






AGATTTTCCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATA






TCTAGCCTCCAACCAGAAGATTTCGCCACTTACTACTGTCAACAA






TCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATTGGAG






ATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAG






AGCAAGAGCACCGGCGGCAGCGAGGTGCAACTGGTGGAGTCTGGG






GGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCA






GCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGC






CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACT






AGTAGTAATTACATATACTACGCAGACTCAGTGAAGGGCCGATTC






ACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCTGCAAATG






AGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGA






GGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACC






GTCTCCTCAGAGCCCAAATCTAGCGACAAAACTCACACATGTCCA






CCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTC






TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT






GAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAG






GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC






AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG






GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG






GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC






GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG






GTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG






GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC






GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG






ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC






AGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTC






TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG






CAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGAGGCGGAGGGAGT






GGCGGGGGAGGCTCTGCAATCCAACTAACTCAAAGTCCAAGTAGT






CTGTCTGCTTCCGTGGGCGACAGAGTGACAATCACCTGTAGAGCC






TCCAGCAGCGTCTCCTACATCCACTGGTTCCAGCAAAAACCTGGC






AAGGCCCCTAAGCCTCTGATCTACGCCACCTCCAACCTGGCCTCT






GGCGTGCCCTCTCGGTTCTCCGGCTCTGGCTCCGGAACCGACTTC






ACCCTGACCATCTCCAGCCTGCAGCCTGAGGATTTTGCTACCTAC






TACTGCCAGCAGTGGACCTCTAACCCTCCAACATTCGGCCAGGGC






ACCAAGCTGGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGC






AGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGCCAAGTGCAATTA






GTGCAAAGTGGTGCAGAAGTCAAGAAGCCTGGAAGCTCCGTGAAA






GTGTCCTGCAAGGCCTCTGGCTACACCTTTACCTCCTACAACATG






CACTGGGTGCGGCAGGCTCCTGGCCAGGGCCTGGAGTGGATGGGC






GCTATCTACCCCGGCAACGGCGATACCTCTTACGCCCAGAAGTTC






CAGGGCAGAGTGACCATCACCGCCGACAAGTCCACATCTACAGCC






TACATGGAACTGTCCTCCCTGCGGTCCGAGGACACCGCTGTGTAC






TATTGTGCCAGATCTACCTACTACGGCGGCGACTGGTACTTCAAC






GTGTGGGGCCAAGGAACCCTGGTGACCGTGTCTAGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1469



QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL






EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSED






TAVYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSES






KSTGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKP






GQAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAV






YYCQQWSRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSAIQLTQ






SPSSLSASVGDRVTITCRASSSVSYIHWFQQKPGKAPKPLIYATS






NLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWTSNPPT






FGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPG






SSVKVSCKASGYTFTSYNMHWVRQAPGQGLEWMGAIYPGNGDTSY






AQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARSTYYGGD






WYFNVWGQGTLVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1470



CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCTGGC






AGCAGCGTGAAGGTGAGCTGTAAGGCCAGCGGCTACACTTTCACT






AGGAGCACTATGCACTGGGTGAGGCAGGCCCCTGGCCAGGGCCTG






GAGTGGATGGGCTACATCAATCCTAGCAGCGCCTACACTAATTAC






GCCCAGAAGTTCCAGGGCAGGGTGACTCTGACTGCCGATAAGAGC






ACTAGCACTGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGAT






ACTGCCGTGTACTACTGTGCCAGCCCTCAGGTGCACTACGATTAC






GGCGGCTTCCCTTACTGGGGCCAGGGCACTCTGGTGACTGTGAGC






AGCGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC






AAGAGCACCGGCGGCAGCGAGATCGTGCTGACTCAGAGCCCTGCC






ACTCTGAGCGCCAGCCCTGGCGAGAGGGTGACTCTGAGCTGTAGC






GCCAGCAGCAGCGTGAGCTACATGAATTGGTACCAGCAGAAGCCT






GGCCAGGCCCCTAGGAGGTGGATCTACGATAGCAGCAAGCTGGCC






AGCGGCGTGCCTGCCAGGTTCAGCGGCAGCGGCAGCGGCAGGGAT






TACACTCTGACTATCAGCAGCCTGGAGCCTGAGGATTTCGCCGTG






TACTACTGTCAGCAGTGGAGCAGGAATCCTCCTACTTTCGGCGGC






GGCACTAAGGTGGAGATCAAGGAGCCCAAATCTAGCGACAAAACT






CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGA






GGCGGAGGGAGTGGCGGGGGAGGCTCTGCAATCCAACTAACTCAA






AGTCCAAGTAGTCTGTCTGCTTCCGTGGGCGACAGAGTGACAATC






ACCTGTAGAGCCTCCAGCAGCGTCTCCTACATCCACTGGTTCCAG






CAAAAACCTGGCAAGGCCCCTAAGCCTCTGATCTACGCCACCTCC






AACCTGGCCTCTGGCGTGCCCTCTCGGTTCTCCGGCTCTGGCTCC






GGAACCGACTTCACCCTGACCATCTCCAGCCTGCAGCCTGAGGAT






TTTGCTACCTACTACTGCCAGCAGTGGACCTCTAACCCTCCAACA






TTCGGCCAGGGCACCAAGCTGGAAATCAAGGGCGGCTCCGAGGGC






AAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGC






CAAGTGCAATTAGTGCAAAGTGGTGCAGAAGTCAAGAAGCCTGGA






AGCTCCGTGAAAGTGTCCTGCAAGGCCTCTGGCTACACCTTTACC






TCCTACAACATGCACTGGGTGCGGCAGGCTCCTGGCCAGGGCCTG






GAGTGGATGGGCGCTATCTACCCCGGCAACGGCGATACCTCTTAC






GCCCAGAAGTTCCAGGGCAGAGTGACCATCACCGCCGACAAGTCC






ACATCTACAGCCTACATGGAACTGTCCTCCCTGCGGTCCGAGGAC






ACCGCTGTGTACTATTGTGCCAGATCTACCTACTACGGCGGCGAC






TGGTACTTCAACGTGTGGGGCCAAGGAACCCTGGTGACCGTGTCT






AGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1471



DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPK






LLIKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ






SGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSEVQLVESG






GGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVSSIST






SSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTR






GWGPFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL






FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA






KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI






EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI






AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV






FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQSPAI






LSASPGEKVTMTCRASSSVSYMHWYQQKPGSSPQVWIYATSNLAS






GVPVRFSGSGSGTSYSLTISRVEAEDTATYYCQQWIFNPPTFGSG






TKLEIRGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPGASVK






MSCKASGYTFTSYNMHWVKQTPRQGLEWIGAIYPGNGDTSYNQKF






KGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCARVYYGSNYWYFD






VWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1472



GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTT






GGCGACCGTGTCACTATCACTTGTCGAGCCCGCCAGTCCATAGGT






ACTGCCATTCACTGGTATCAACAGAAGCCTGGCAAGGCTCCCAAA






CTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCA






AGATTTTCCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATA






TCTAGCCTCCAACCAGAAGATTTCGCCACTTACTACTGTCAACAA






TCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATTGGAG






ATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAG






AGCAAGAGCACCGGCGGCAGCGAGGTGCAACTGGTGGAGTCTGGG






GGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCA






GCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGC






CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACT






AGTAGTAATTACATATACTACGCAGACTCAGTGAAGGGCCGATTC






ACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCTGCAAATG






AGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGA






GGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACC






GTCTCCTCAGAGCCCAAATCTAGCGACAAAACTCACACATGTCCA






CCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTC






TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT






GAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAG






GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC






AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG






GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG






GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC






GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG






GTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG






GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC






GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG






ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC






AGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTC






TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG






CAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGAGGCGGAGGGAGT






GGCGGGGGAGGCTCTCAAATAGTCCTTTCACAGTCCCCAGCTATT






CTTTCAGCCTCTCCCGGTGAAAAGGTTACAATGACCTGCCGGGCA






AGCTCCAGTGTCTCATATATGCACTGGTACCAACAAAAACCTGGC






AGTAGTCCTCAGGTGTGGATCTACGCTACAAGCAATCTCGCTTCC






GGGGTTCCCGTGAGGTTTAGCGGAAGCGGGTCTGGAACTAGTTAT






TCCTTGACAATTAGTCGGGTTGAAGCCGAGGACACCGCCACTTAC






TATTGCCAACAGTGGATATTCAATCCACCCACCTTCGGTTCAGGT






ACCAAGCTCGAAATCCGTGGCGGCTCCGAGGGCAAGAGCAGCGGC






AGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGCCAAGCATATCTG






CAACAGAGCGGAGCTGAGCTGGTTCGGCCTGGCGCCTCTGTAAAA






ATGAGTTGCAAGGCCAGTGGTTATACATTCACATCATATAATATG






CACTGGGTAAAGCAAACTCCCCGACAGGGGCTTGAATGGATTGGC






GCAATCTATCCCGGCAATGGGGATACATCCTACAATCAGAAATTC






AAGGGCAAGGCAACACTGACCGTTGACAAATCCTCATCAACAGCC






TACATGCAGCTCAGTTCCCTCACTAGCGAAGATTCTGCTGTGTAT






TTCTGTGCAAGGGTGTATTATGGTTCTAATTACTGGTATTTCGAT






GTTTGGGGAACCGGAACTACCGTAACTGTTTCTAGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1473



DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPK






LLIKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ






SGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSEVQLVESG






GGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVSSIST






SSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTR






GWGPFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL






FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA






KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI






EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI






AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV






FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQSPAI






LSASPGEKVTMTCRASLSVSSMHWYQQKPGSSPKPWIYATSNLAS






GVPARFSGSGSGTSYSLTISRVEAEDAATYYCQQWIFNPPTFGGG






TKLEIKGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPGASVK






MSCKTSGYTFSSYNMHWVKQTPRQALEWIGAIYPGNGDTSYNQKF






KGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCTRSNYYGSSGWYF






DVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1474



GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTT






GGCGACCGTGTCACTATCACTTGTCGAGCCCGCCAGTCCATAGGT






ACTGCCATTCACTGGTATCAACAGAAGCCTGGCAAGGCTCCCAAA






CTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCA






AGATTTTCCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATA






TCTAGCCTCCAACCAGAAGATTTCGCCACTTACTACTGTCAACAA






TCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATTGGAG






ATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAG






AGCAAGAGCACCGGCGGCAGCGAGGTGCAACTGGTGGAGTCTGGG






GGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCA






GCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGC






CAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACT






AGTAGTAATTACATATACTACGCAGACTCAGTGAAGGGCCGATTC






ACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCTGCAAATG






AGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGA






GGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACC






GTCTCCTCAGAGCCCAAATCTAGCGACAAAACTCACACATGTCCA






CCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTC






TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT






GAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAG






GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC






AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG






GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG






GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC






GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG






GTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG






GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC






GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG






ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC






AGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTC






TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG






CAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGAGGCGGAGGGAGT






GGCGGGGGAGGCTCTCAGATTGTCCTGAGCCAATCCCCAGCAATT






CTGAGTGCTAGCCCTGGAGAGAAGGTAACAATGACTTGTCGGGCA






TCCCTTAGCGTCTCATCCATGCATTGGTATCAACAAAAGCCAGGT






TCATCTCCAAAACCCTGGATTTACGCTACATCTAACCTGGCATCT






GGGGTGCCTGCCAGATTTAGTGGATCTGGTTCCGGCACATCATAT






TCCCTTACAATCAGCCGAGTGGAAGCCGAGGATGCTGCAACCTAT






TACTGTCAACAATGGATATTTAACCCTCCCACCTTTGGGGGTGGG






ACTAAACTCGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGC






AGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGCCAAGCCTATCTT






CAACAATCTGGGGCTGAGCTTGTCCGGCCAGGAGCCTCCGTCAAA






ATGAGCTGCAAAACCTCAGGTTATACTTTTAGTAGCTATAACATG






CATTGGGTAAAACAAACCCCCCGACAAGCATTGGAGTGGATAGGG






GCCATATACCCCGGCAATGGAGACACAAGTTACAACCAGAAGTTT






AAAGGCAAAGCTACACTCACAGTTGACAAATCCTCAAGTACTGCT






TATATGCAACTCTCCTCTCTCACTTCCGAAGACAGTGCCGTATAT






TTTTGCACTCGGTCCAATTACTATGGATCTAGTGGCTGGTACTTT






GACGTTTGGGGCACTGGGACAACTGTTACAGTGTCCAGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1475



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPS






SAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQ






SPAILSASPGEKVTMTCRASSSVSYMHWYQQKPGSSPQVWIYATS






NLASGVPVRFSGSGSGTSYSLTISRVEAEDTATYYCQQWIFNPPT






FGSGTKLEIRGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPG






ASVKMSCKASGYTFTSYNMHWVKQTPRQGLEWIGAIYPGNGDTSY






NQKFKGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCARVYYGSNY






WYFDVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1476



GAGATCGTGCTGACTCAGAGCCCTGCCACTCTGAGCGCCAGCCCT






GGCGAGAGGGTGACTCTGAGCTGTAGCGCCAGCAGCAGCGTGAGC






TACATGAATTGGTACCAGCAGAAGCCTGGCCAGGCCCCTAGGAGG






TGGATCTACGATAGCAGCAAGCTGGCCAGCGGCGTGCCTGCCAGG






TTCAGCGGCAGCGGCAGCGGCAGGGATTACACTCTGACTATCAGC






AGCCTGGAGCCTGAGGATTTCGCCGTGTACTACTGTCAGCAGTGG






AGCAGGAATCCTCCTACTTTCGGCGGCGGCACTAAGGTGGAGATC






AAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC






AAGAGCACCGGCGGCAGCCAGGTGCAGCTGGTGCAGAGCGGCGCC






GAGGTGAAGAAGCCTGGCAGCAGCGTGAAGGTGAGCTGTAAGGCC






AGCGGCTACACTTTCACTAGGAGCACTATGCACTGGGTGAAGCAG






GCCCCTGGCCAGGGCCTGGAGTGGATCGGCTACATCAATCCTAGC






AGCGCCTACACTAATTACAATCAGAAGTTCCAGGGCAGGGTGACT






CTGACTGCCGATAAGAGCACTAGCACTGCCTACATGGAGCTGAGC






AGCCTGAGGAGCGAGGATACTGCCGTGTACTACTGTGCCAGCCCT






CAGGTGCACTACGATTACGCCGGCTTCCCTTACTGGGGCCAGGGC






ACTCTGGTGACTGTGAGCAGCGAGCCCAAATCTAGCGACAAAACT






CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGA






GGCGGAGGGAGTGGCGGGGGAGGCTCTCAAATAGTCCTTTCACAG






TCCCCAGCTATTCTTTCAGCCTCTCCCGGTGAAAAGGTTACAATG






ACCTGCCGGGCAAGCTCCAGTGTCTCATATATGCACTGGTACCAA






CAAAAACCTGGCAGTAGTCCTCAGGTGTGGATCTACGCTACAAGC






AATCTCGCTTCCGGGGTTCCCGTGAGGTTTAGCGGAAGCGGGTCT






GGAACTAGTTATTCCTTGACAATTAGTCGGGTTGAAGCCGAGGAC






ACCGCCACTTACTATTGCCAACAGTGGATATTCAATCCACCCACC






TTCGGTTCAGGTACCAAGCTCGAAATCCGTGGCGGCTCCGAGGGC






AAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGC






CAAGCATATCTGCAACAGAGCGGAGCTGAGCTGGTTCGGCCTGGC






GCCTCTGTAAAAATGAGTTGCAAGGCCAGTGGTTATACATTCACA






TCATATAATATGCACTGGGTAAAGCAAACTCCCCGACAGGGGCTT






GAATGGATTGGCGCAATCTATCCCGGCAATGGGGATACATCCTAC






AATCAGAAATTCAAGGGCAAGGCAACACTGACCGTTGACAAATCC






TCATCAACAGCCTACATGCAGCTCAGTTCCCTCACTAGCGAAGAT






TCTGCTGTGTATTTCTGTGCAAGGGTGTATTATGGTTCTAATTAC






TGGTATTTCGATGTTTGGGGAACCGGAACTACCGTAACTGTTTCT






AGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1477



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPS






SAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQ






SPAILSASPGEKVTMTCRASLSVSSMHWYQQKPGSSPKPWIYATS






NLASGVPARESGSGSGTSYSLTISRVEAEDAATYYCQQWIFNPPT






FGGGTKLEIKGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPG






ASVKMSCKTSGYTFSSYNMHWVKQTPRQALEWIGAIYPGNGDTSY






NQKFKGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCTRSNYYGSS






GWYFDVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1478



GAGATCGTGCTGACTCAGAGCCCTGCCACTCTGAGCGCCAGCCCT






GGCGAGAGGGTGACTCTGAGCTGTAGCGCCAGCAGCAGCGTGAGC






TACATGAATTGGTACCAGCAGAAGCCTGGCCAGGCCCCTAGGAGG






TGGATCTACGATAGCAGCAAGCTGGCCAGCGGCGTGCCTGCCAGG






TTCAGCGGCAGCGGCAGCGGCAGGGATTACACTCTGACTATCAGC






AGCCTGGAGCCTGAGGATTTCGCCGTGTACTACTGTCAGCAGTGG






AGCAGGAATCCTCCTACTTTCGGCGGCGGCACTAAGGTGGAGATC






AAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC






AAGAGCACCGGCGGCAGCCAGGTGCAGCTGGTGCAGAGCGGCGCC






GAGGTGAAGAAGCCTGGCAGCAGCGTGAAGGTGAGCTGTAAGGCC






AGCGGCTACACTTTCACTAGGAGCACTATGCACTGGGTGAAGCAG






GCCCCTGGCCAGGGCCTGGAGTGGATCGGCTACATCAATCCTAGC






AGCGCCTACACTAATTACAATCAGAAGTTCCAGGGCAGGGTGACT






CTGACTGCCGATAAGAGCACTAGCACTGCCTACATGGAGCTGAGC






AGCCTGAGGAGCGAGGATACTGCCGTGTACTACTGTGCCAGCCCT






CAGGTGCACTACGATTACGCCGGCTTCCCTTACTGGGGCCAGGGC






ACTCTGGTGACTGTGAGCAGCGAGCCCAAATCTAGCGACAAAACT






CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGA






GGCGGAGGGAGTGGCGGGGGAGGCTCTCAGATTGTCCTGAGCCAA






TCCCCAGCAATTCTGAGTGCTAGCCCTGGAGAGAAGGTAACAATG






ACTTGTCGGGCATCCCTTAGCGTCTCATCCATGCATTGGTATCAA






CAAAAGCCAGGTTCATCTCCAAAACCCTGGATTTACGCTACATCT






AACCTGGCATCTGGGGTGCCTGCCAGATTTAGTGGATCTGGTTCC






GGCACATCATATTCCCTTACAATCAGCCGAGTGGAAGCCGAGGAT






GCTGCAACCTATTACTGTCAACAATGGATATTTAACCCTCCCACC






TTTGGGGGTGGGACTAAACTCGAAATCAAGGGCGGCTCCGAGGGC






AAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGC






CAAGCCTATCTTCAACAATCTGGGGCTGAGCTTGTCCGGCCAGGA






GCCTCCGTCAAAATGAGCTGCAAAACCTCAGGTTATACTTTTAGT






AGCTATAACATGCATTGGGTAAAACAAACCCCCCGACAAGCATTG






GAGTGGATAGGGGCCATATACCCCGGCAATGGAGACACAAGTTAC






AACCAGAAGTTTAAAGGCAAAGCTACACTCACAGTTGACAAATCC






TCAAGTACTGCTTATATGCAACTCTCCTCTCTCACTTCCGAAGAC






AGTGCCGTATATTTTTGCACTCGGTCCAATTACTATGGATCTAGT






GGCTGGTACTTTGACGTTTGGGGCACTGGGACAACTGTTACAGTG






TCCAGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1479



QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL






EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSED






TAVYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSES






KSTGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKP






GQAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAV






YYCQQWSRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQ






SPAILSASPGEKVTMTCRASSSVSYMHWYQQKPGSSPQVWIYATS






NLASGVPVRFSGSGSGTSYSLTISRVEAEDTATYYCQQWIFNPPT






FGSGTKLEIRGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPG






ASVKMSCKASGYTFTSYNMHWVKQTPRQGLEWIGAIYPGNGDTSY






NQKFKGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCARVYYGSNY






WYFDVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1480



CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCTGGC






AGCAGCGTGAAGGTGAGCTGTAAGGCCAGCGGCTACACTTTCACT






AGGAGCACTATGCACTGGGTGAGGCAGGCCCCTGGCCAGGGCCTG






GAGTGGATGGGCTACATCAATCCTAGCAGCGCCTACACTAATTAC






GCCCAGAAGTTCCAGGGCAGGGTGACTCTGACTGCCGATAAGAGC






ACTAGCACTGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGAT






ACTGCCGTGTACTACTGTGCCAGCCCTCAGGTGCACTACGATTAC






GGCGGCTTCCCTTACTGGGGCCAGGGCACTCTGGTGACTGTGAGC






AGCGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC






AAGAGCACCGGCGGCAGCGAGATCGTGCTGACTCAGAGCCCTGCC






ACTCTGAGCGCCAGCCCTGGCGAGAGGGTGACTCTGAGCTGTAGC






GCCAGCAGCAGCGTGAGCTACATGAATTGGTACCAGCAGAAGCCT






GGCCAGGCCCCTAGGAGGTGGATCTACGATAGCAGCAAGCTGGCC






AGCGGCGTGCCTGCCAGGTTCAGCGGCAGCGGCAGCGGCAGGGAT






TACACTCTGACTATCAGCAGCCTGGAGCCTGAGGATTTCGCCGTG






TACTACTGTCAGCAGTGGAGCAGGAATCCTCCTACTTTCGGCGGC






GGCACTAAGGTGGAGATCAAGGAGCCCAAATCTAGCGACAAAACT






CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGA






GGCGGAGGGAGTGGCGGGGGAGGCTCTCAAATAGTCCTTTCACAG






TCCCCAGCTATTCTTTCAGCCTCTCCCGGTGAAAAGGTTACAATG






ACCTGCCGGGCAAGCTCCAGTGTCTCATATATGCACTGGTACCAA






CAAAAACCTGGCAGTAGTCCTCAGGTGTGGATCTACGCTACAAGC






AATCTCGCTTCCGGGGTTCCCGTGAGGTTTAGCGGAAGCGGGTCT






GGAACTAGTTATTCCTTGACAATTAGTCGGGTTGAAGCCGAGGAC






ACCGCCACTTACTATTGCCAACAGTGGATATTCAATCCACCCACC






TTCGGTTCAGGTACCAAGCTCGAAATCCGTGGCGGCTCCGAGGGC






AAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGC






CAAGCATATCTGCAACAGAGCGGAGCTGAGCTGGTTCGGCCTGGC






GCCTCTGTAAAAATGAGTTGCAAGGCCAGTGGTTATACATTCACA






TCATATAATATGCACTGGGTAAAGCAAACTCCCCGACAGGGGCTT






GAATGGATTGGCGCAATCTATCCCGGCAATGGGGATACATCCTAC






AATCAGAAATTCAAGGGCAAGGCAACACTGACCGTTGACAAATCC






TCATCAACAGCCTACATGCAGCTCAGTTCCCTCACTAGCGAAGAT






TCTGCTGTGTATTTCTGTGCAAGGGTGTATTATGGTTCTAATTAC






TGGTATTTCGATGTTTGGGGAACCGGAACTACCGTAACTGTTTCT






AGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1481



QVQLVQSGAEVKKPGSSVKVSCKASGYTFTRSTMHWVRQAPGQGL






EWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSED






TAVYYCASPQVHYDYGGFPYWGQGTLVTVSSGGSEGKSSGSGSES






KSTGGSEIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKP






GQAPRRWIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAV






YYCQQWSRNPPTFGGGTKVEIKEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSQIVLSQ






SPAILSASPGEKVTMTCRASLSVSSMHWYQQKPGSSPKPWIYATS






NLASGVPARESGSGSGTSYSLTISRVEAEDAATYYCQQWIFNPPT






FGGGTKLEIKGGSEGKSSGSGSESKSTGGSQAYLQQSGAELVRPG






ASVKMSCKTSGYTFSSYNMHWVKQTPRQALEWIGAIYPGNGDTSY






NQKFKGKATLTVDKSSSTAYMQLSSLTSEDSAVYFCTRSNYYGSS






GWYFDVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1482



CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCTGGC






AGCAGCGTGAAGGTGAGCTGTAAGGCCAGCGGCTACACTTTCACT






AGGAGCACTATGCACTGGGTGAGGCAGGCCCCTGGCCAGGGCCTG






GAGTGGATGGGCTACATCAATCCTAGCAGCGCCTACACTAATTAC






GCCCAGAAGTTCCAGGGCAGGGTGACTCTGACTGCCGATAAGAGC






ACTAGCACTGCCTACATGGAGCTGAGCAGCCTGAGGAGCGAGGAT






ACTGCCGTGTACTACTGTGCCAGCCCTCAGGTGCACTACGATTAC






GGCGGCTTCCCTTACTGGGGCCAGGGCACTCTGGTGACTGTGAGC






AGCGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC






AAGAGCACCGGCGGCAGCGAGATCGTGCTGACTCAGAGCCCTGCC






ACTCTGAGCGCCAGCCCTGGCGAGAGGGTGACTCTGAGCTGTAGC






GCCAGCAGCAGCGTGAGCTACATGAATTGGTACCAGCAGAAGCCT






GGCCAGGCCCCTAGGAGGTGGATCTACGATAGCAGCAAGCTGGCC






AGCGGCGTGCCTGCCAGGTTCAGCGGCAGCGGCAGCGGCAGGGAT






TACACTCTGACTATCAGCAGCCTGGAGCCTGAGGATTTCGCCGTG






TACTACTGTCAGCAGTGGAGCAGGAATCCTCCTACTTTCGGCGGC






GGCACTAAGGTGGAGATCAAGGAGCCCAAATCTAGCGACAAAACT






CACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGA






GGCGGAGGGAGTGGCGGGGGAGGCTCTCAGATTGTCCTGAGCCAA






TCCCCAGCAATTCTGAGTGCTAGCCCTGGAGAGAAGGTAACAATG






ACTTGTCGGGCATCCCTTAGCGTCTCATCCATGCATTGGTATCAA






CAAAAGCCAGGTTCATCTCCAAAACCCTGGATTTACGCTACATCT






AACCTGGCATCTGGGGTGCCTGCCAGATTTAGTGGATCTGGTTCC






GGCACATCATATTCCCTTACAATCAGCCGAGTGGAAGCCGAGGAT






GCTGCAACCTATTACTGTCAACAATGGATATTTAACCCTCCCACC






TTTGGGGGTGGGACTAAACTCGAAATCAAGGGCGGCTCCGAGGGC






AAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGC






CAAGCCTATCTTCAACAATCTGGGGCTGAGCTTGTCCGGCCAGGA






GCCTCCGTCAAAATGAGCTGCAAAACCTCAGGTTATACTTTTAGT






AGCTATAACATGCATTGGGTAAAACAAACCCCCCGACAAGCATTG






GAGTGGATAGGGGCCATATACCCCGGCAATGGAGACACAAGTTAC






AACCAGAAGTTTAAAGGCAAAGCTACACTCACAGTTGACAAATCC






TCAAGTACTGCTTATATGCAACTCTCCTCTCTCACTTCCGAAGAC






AGTGCCGTATATTTTTGCACTCGGTCCAATTACTATGGATCTAGT






GGCTGGTACTTTGACGTTTGGGGCACTGGGACAACTGTTACAGTG






TCCAGC






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1483



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPS






SAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQ






QGNVFSCSVMHEALHNRFTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSQIVLSQSPAILSASPGEKVTMTCRASLSVSSMHWYQQKPGS






SPKPWIYATSNLASGVPARFSGSGSGTSYSLTISRVEAEDAATYY






CQQWIFNPPTFGGGTKLEIKGGSEGKSSGSGSESKSTGGSQAYLQ






QSGAELVRPGASVKMSCKTSGYTFSSYNMHWVKQTPRQALEWIGA






IYPGNGDTSYNQKFKGKATLTVDKSSSTAYMQLSSLTSEDSAVYF






CTRSNYYGSSGWYFDVWGTGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1484



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCA






GGCGAGAGAGTGACCCTGTCCTGCTCCGCTTCCTCCTCCGTGTCC






TACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGA






TGGATCTACGACTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGA






TTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACCATCTCC






AGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGG






TCTAGGAACCCTCCTACCTTTGGCGGAGGCACCAAGGTGGAAATC






AAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC






AAGTCCACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCC






GAAGTGAAGAAACCTGGCTCCTCCGTCAAGGTGTCCTGCAAGGCT






TCCGGCTACACCTTTACCAGATCCACCATGCACTGGGTCAAGCAG






GCCCCTGGACAAGGCTTGGAGTGGATCGGCTACATCAACCCCAGC






TCCGCCTACACCAACTACAACCAGAAATTCCAGGGCAGAGTGACC






CTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCC






AGCCTGAGATCTGAGGACACCGCCGTGTACTACTGCGCCTCTCCT






CAGGTCCACTACGACTACGCCGGCTTTCCTTATTGGGGCCAGGGC






ACACTGGTCACCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACT






CACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTCCTGCGCCGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCGGTTCACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAAGGA






GGCGGAGGATCTGGCGGAGGTGGAAGTGGCGGAGGCGGTTCTGGT






GGTGGTGGATCTCAGATCGTGCTGTCTCAGTCTCCAGCTATCCTG






TCTGCTAGCCCTGGCGAGAAAGTGACCATGACCTGTAGAGCCAGC






CTGTCCGTGTCCTCCATGCACTGGTATCAGCAGAAGCCTGGCAGC






TCCCCTAAGCCTTGGATCTACGCCACCTCCAATCTGGCCTCTGGC






GTGCCAGCTAGATTCTCCGGATCTGGCTCCGGCACCTCCTACAGC






CTGACAATCTCCAGAGTGGAAGCCGAGGATGCCGCCACCTACTAC






TGTCAGCAGTGGATCTTCAACCCTCCTACCTTCGGCGGAGGCACC






AAGCTGGAAATCAAGGGAGGGAGCGAGGGAAAGTCCAGCGGAAGC






GGCTCTGAGTCCAAATCCACCGGAGGGAGCCAGGCTTACTTGCAG






CAGTCTGGTGCCGAACTCGTTAGACCTGGAGCCTCCGTGAAGATG






TCCTGCAAGACCTCCGGCTACACCTTCTCCAGCTACAACATGCAC






TGGGTCAAGCAGACCCCTCGGCAGGCTCTGGAATGGATCGGCGCT






ATCTATCCTGGCAACGGCGACACCTCCTACAACCAGAAGTTCAAG






GGCAAAGCTACCCTGACCGTGGACAAGTCCTCCTCCACCGCTTAC






ATGCAGCTGTCCAGCCTGACCTCTGAGGACTCCGCCGTGTACTTC






TGCACCCGGTCTAACTACTACGGCTCCTCCGGCTGGTACTTCGAT






GTGTGGGGAACCGGAACCACCGTGACAGTCTCTTCT






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1485



DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPK






LLIKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ






SGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSEVQLVESG






GGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVSSIST






SSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTR






GWGPFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL






FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA






KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI






EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI






AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV






FSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS






EIVLTQSPATLSLSPGERATLSCRASLSVSSMHWYQQKPGQAPRL






LIYATSNLASGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQW






IFNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFSSYNMHWVRQAPGQGLEWMGAIYPG






AGDTSYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARS






NYYGSSGWYFDVWGKGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1486



GACATCCAGATGACCCAGTCTCCATCCTCTCTGTCCGCCTCTGTG






GGCGACAGAGTGACCATTACCTGCCGGGCCAGACAGTCTATCGGC






ACCGCTATCCACTGGTATCAGCAGAAGCCTGGCAAGGCCCCTAAG






CTGCTGATTAAGTACGCCTCCGAGTCCATCTCCGGCGTGCCCTCC






AGATTTTCTGGCTCTGGATCTGGCACCGACTTTACCCTGACAATC






TCCAGCCTGCAGCCTGAGGACTTCGCCACCTACTACTGTCAGCAG






TCCGGCTCTTGGCCTTACACCTTTGGTCAGGGCACCAAGCTGGAA






ATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAA






AGCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTTGAATCTGGC






GGAGGACTGGTTAAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCT






GCTTCTGGCTTCACCTTCAGCCGGTACAACATGAACTGGGTCCGA






CAGGCTCCTGGCAAAGGCCTGGAATGGGTGTCCTCCATCTCCACC






TCCAGCAACTACATCTACTACGCCGACTCCGTGAAGGGCAGATTC






ACCTTCTCCAGAGACAACGCCAAGAACTCCCTGGACCTGCAGATG






TCTGGCCTGAGAGCTGAGGACACCGCTATCTACTACTGCACCAGA






GGCTGGGGACCCTTCGATTATTGGGGCCAGGGAACCCTGGTCACC






GTGTCATCTGAGCCCAAATCTAGCGACAAAACTCACACATGCCCA






CCGTGCCCAGCACCTGAAGCCGCCGGGGGACCGTCAGTCTTCCTC






TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT






GAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAG






GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC






AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG






GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG






GAGTACAAGTGCAAGGTGTCGAACAAAGCCCTCCCAGCCCCCATC






GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG






GTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAG






GTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC






GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAG






ACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC






AGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTC






TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG






CAGAAGTCTCTCTCCCTGTCTCCGGGAAAAGGAGGCGGAGGATCT






GGCGGAGGTGGAAGTGGCGGAGGCGGTTCTGGTGGTGGTGGATCT






GAGATCGTGCTGACCCAGTCTCCAGCCACACTGTCACTGTCTCCA






GGCGAGAGAGCTACCCTGTCCTGTAGAGCCTCTCTGTCCGTGTCC






TCCATGCACTGGTATCAGCAGAAGCCTGGACAGGCCCCTCGGCTG






CTGATCTACGCTACCTCTAATCTGGCCAGCGGTATCCCCGCCAGA






TTTTCTGGTTCTGGCTCTGGCACCGACTTTACCCTGACCATCTCC






AGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGG






ATCTTCAACCCTCCTACCTTTGGCGGAGGCACCAAGGTGGAAATC






AAGGGAGGGAGCGAGGGAAAGTCCAGCGGAAGCGGCTCTGAGTCC






AAATCCACCGGAGGGAGCCAGGTTCAACTGGTTCAGTCTGGCGCC






GAAGTGAAGAAACCTGGCTCCTCCGTGAAGGTGTCCTGCAAGGCT






TCCGGCTACACCTTCTCCAGCTACAACATGCACTGGGTCCGACAG






GCCCCTGGACAAGGATTGGAATGGATGGGCGCTATCTACCCTGGC






GCTGGCGATACCTCTTACGCCCAGAAATTCCAGGGCAGAGTGACC






ATCACCGCCGACGAGTCTACCTCCACCGCCTACATGGAACTGTCC






AGCCTGAGATCTGAGGACACCGCCGTGTACTACTGCGCCCGGTCT






AATTACTACGGCTCCAGCGGCTGGTACTTCGACGTGTGGGGAAAG






GGCACCACCGTGACAGTCTCTTCT






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1487



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRR






WIYDSSKLASGVPARFSGSGSGRDYTLTISSLEPEDFAVYYCQQW






SRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGA






EVKKPGSSVKVSCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPS






SAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAVYYCASP






QVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGP






SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL






PAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFY






PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ






QGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG






GGGSEIVLTQSPATLSLSPGERATLSCRASLSVSSMHWYQQKPGQ






APRLLIYATSNLASGIPARFSGSGSGTDFTLTISSLEPEDFAVYY






CQQWIFNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLV






QSGAEVKKPGSSVKVSCKASGYTFSSYNMHWVRQAPGQGLEWMGA






IYPGAGDTSYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYY






CARSNYYGSSGWYFDVWGKGTTVTVSS






trispecific Ab CD3-CD20 arm



SEQ ID NO: 1488



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCA






GGCGAGAGAGTGACCCTGTCCTGCTCCGCTTCCTCCTCCGTGTCC






TACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGA






TGGATCTACGACTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGA






TTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACCATCTCC






AGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGG






TCTAGGAACCCTCCTACCTTTGGCGGAGGCACCAAGGTGGAAATC






AAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC






AAGTCCACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCC






GAAGTGAAGAAACCTGGCTCCTCCGTCAAGGTGTCCTGCAAGGCT






TCCGGCTACACCTTTACCAGATCCACCATGCACTGGGTCAAGCAG






GCCCCTGGACAAGGCTTGGAGTGGATCGGCTACATCAACCCCAGC






TCCGCCTACACCAACTACAACCAGAAATTCCAGGGCAGAGTGACC






CTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCC






AGCCTGAGATCTGAGGACACCGCCGTGTACTACTGCGCCTCTCCT






CAGGTCCACTACGACTACGCCGGCTTTCCTTATTGGGGCCAGGGC






ACACTGGTCACCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACT






CACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCG






TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC






TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC






GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG






GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC






ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG






CTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTC






CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC






CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATG






ACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTAT






CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG






AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC






TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAG






CAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC






AACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAAGGA






GGCGGAGGATCTGGCGGAGGTGGAAGTGGCGGAGGCGGTTCTGGT






GGTGGTGGATCTGAGATCGTGCTGACCCAGTCTCCAGCCACACTG






TCACTGTCTCCAGGCGAGAGAGCTACCCTGTCCTGTAGAGCCTCT






CTGTCCGTGTCCTCCATGCACTGGTATCAGCAGAAGCCTGGACAG






GCCCCTCGGCTGCTGATCTACGCTACCTCTAATCTGGCCAGCGGT






ATCCCCGCCAGATTTTCTGGTTCTGGCTCTGGCACCGACTTTACC






CTGACCATCTCCAGCCTGGAACCTGAGGACTTCGCCGTGTACTAC






TGCCAGCAGTGGATCTTCAACCCTCCTACCTTTGGCGGAGGCACC






AAGGTGGAAATCAAGGGAGGGAGCGAGGGAAAGTCCAGCGGAAGC






GGCTCTGAGTCCAAATCCACCGGAGGGAGCCAGGTTCAACTGGTT






CAGTCTGGCGCCGAAGTGAAGAAACCTGGCTCCTCCGTGAAGGTG






TCCTGCAAGGCTTCCGGCTACACCTTCTCCAGCTACAACATGCAC






TGGGTCCGACAGGCCCCTGGACAAGGATTGGAATGGATGGGCGCT






ATCTACCCTGGCGCTGGCGATACCTCTTACGCCCAGAAATTCCAG






GGCAGAGTGACCATCACCGCCGACGAGTCTACCTCCACCGCCTAC






ATGGAACTGTCCAGCCTGAGATCTGAGGACACCGCCGTGTACTAC






TGCGCCCGGTCTAATTACTACGGCTCCAGCGGCTGGTACTTCGAC






GTGTGGGGAAAGGGCACCACCGTGACAGTCTCTTCT






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1489



QVQLQESGPGLVKPSETLSLTCSVSGASISSFYWSWIRQPADE






GLEWIGRISPSGKTNYIPSLKSRIIMSLDASKNQFSLRLNSVTAA






DTAMYYCARGEYSGTYSYSFDVWGQGTMVTVSSASTKGPSVFPLA






PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS






CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV






SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS






REEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLD






SDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLS






PGK






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1490



CAGGTTCAGCTGCAAGAGTCTGGTCCTGGCCTGGTCAAGCCTT






CCGAGACACTGTCTCTGACCTGCTCTGTGTCCGGCGCCTCCATCT






CTTCCTTCTACTGGTCCTGGATCCGGCAGCCTGCTGACGAAGGAC






TGGAATGGATCGGCCGGATCAGCCCTTCTGGCAAGACCAACTACA






TCCCCAGCCTGAAGTCCCGGATCATCATGTCCCTGGACGCCTCCA






AGAACCAGTTCTCCCTGCGGCTGAACTCTGTGACCGCTGCCGATA






CCGCCATGTACTACTGTGCCAGAGGCGAGTACTCCGGCACCTACT






CCTACAGCTTTGACGTGTGGGGACAAGGCACCATGGTCACAGTTT






CTTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT






CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG






TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG






GCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGT






CCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA






GCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC






CCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTG






ACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCG






GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC






TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCG






TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG






GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT






ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC






AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACA






AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG






GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG






AGGAGATGACCAAGAACCAGGTCAGCCTGTCCTGCGCCGTCAAAG






GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC






AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG






ACGGCTCCTTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCA






GATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG






CTCTGCACAACCGGTTCACGCAGAAGTCTCTCTCCCTGTCTCCGG






GAAAA






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1491



DIVMTQSPLSLSVTPGEPASISCRSSESLLDSEDGNTYLDWFL






QKPGQSPQLLIYTLSYRASGVPDRFSGSGSDTDFTLHISSLEAED






VGLYYCMQRMEFPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS






GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST






YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1492



GACATCGTGATGACCCAGTCTCCACTGAGCCTGTCTGTGACAC






CTGGCGAGCCTGCCTCCATCTCCTGTAGATCTTCTGAGTCCCTGC






TGGACAGCGAGGACGGCAATACCTACCTGGACTGGTTCCTGCAGA






AGCCCGGACAGTCTCCTCAGCTGCTGATCTACACCCTGTCCTACA






GAGCCTCTGGCGTGCCCGATAGATTCTCCGGCTCTGGCTCTGACA






CCGACTTTACCCTGCACATCTCCAGCCTGGAAGCCGAGGATGTGG






GCCTGTACTACTGTATGCAGCGGATGGAATTTCCCCTGACCTTCG






GCCAGGGCACCAAGGTGGAAATCAAGCGCACCGTGGCCGCCCCTA






GCGTGTTTATCTTCCCTCCCTCGGATGAGCAGCTTAAGTCAGGCA






CCGCATCCGTGGTCTGCCTGCTCAACAACTTCTACCCGAGGGAAG






CCAAAGTGCAGTGGAAAGTGGACAACGCGCTCCAGTCGGGAAACT






CCCAGGAGTCCGTGACCGAACAGGACTCCAAGGACAGCACTTATT






CCCTGTCCTCCACTCTGACGCTGTCAAAGGCCGACTACGAGAAGC






ACAAGGTCTACGCCTGCGAAGTGACCCATCAGGGGCTTTCCTCGC






CCGTGACTAAGAGCTTCAATCGGGGCGAATGC






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1493



QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSP






SRGLEWLGRTYYRSKWYNDYTVSVKSRITINPDTSKNQFSLQLNS






VTPEDTAVYYCTRVDIAFDYWGQGTLVTVSSASTKGPSVFPLAPS






SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS






SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD






KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSV






SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ






DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE






EMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG






K






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1494



CAGGTTCAGCTGCAGCAGTCTGGCCCTGGACTGGTCAAGCCCT






CTCAGACCCTGTCTCTGACCTGTGCCATCTCCGGCGACTCCGTGT






CCTCTAATTCTGCCACCTGGAACTGGATCCGGCAGTCCCCTAGTA






GAGGCCTGGAATGGCTGGGCAGAACCTACTACCGGTCCAAGTGGT






ACAACGACTACACCGTGTCCGTGAAGTCCCGGATCACCATCAATC






CCGACACCTCCAAGAACCAGTTCTCCCTGCAGCTCAACAGCGTGA






CCCCTGAGGATACCGCCGTGTACTACTGCACCAGAGTGGATATCG






CCTTCGACTACTGGGGCCAGGGCACACTGGTTACCGTTTCTTCTG






CCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCA






AGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGG






ACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCC






TGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG






GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCT






TGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCA






ACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAA






CTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGAC






CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGA






TCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCC






ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG






AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACA






GCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT






GGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCC






TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGC






CCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGA






TGACCAAGAACCAGGTCAGCCTGTCCTGCGCCGTCAAAGGCTTCT






ATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG






AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT






CCTTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCAGATGGC






AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC






ACAACCGGTTCACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAA






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1495



QTVVTQPPSVSEAPRQRVTISCSGSSSNIGNHGVNWYQQLPGK






APKLLIYNDDLLPSGVSDRFSGSTSGTSGSLAISGLQSEDEADYY






CAAWDDSLNGVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK






ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAA






SSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1496



CAGACAGTGGTCACCCAGCCTCCATCTGTGTCTGAGGCCCCTA






GACAGAGAGTGACCATCTCCTGCTCCGGCTCCTCCTCCAACATCG






GCAATCATGGCGTGAACTGGTATCAGCAGCTGCCCGGCAAGGCTC






CCAAACTGCTGATCTACAACGACGACCTGCTGCCTTCTGGCGTGT






CCGACAGATTCTCCGGCTCTACCTCTGGCACCTCTGGATCCCTGG






CTATCTCTGGCCTGCAGTCTGAGGACGAGGCCGACTACTATTGTG






CCGCCTGGGACGATTCTCTGAACGGCGTTGTGTTTGGCGGAGGCA






CCAAGCTGACAGTGTTGGGACAGCCTAAGGCAGCCCCCTCCGTGA






CCCTGTTCCCGCCATCATCCGAAGAACTGCAGGCCAACAAGGCCA






CGCTCGTGTGCCTGATTTCCGACTTCTACCCGGGGGCCGTGACTG






TGGCCTGGAAGGCAGACTCAAGCCCTGTGAAGGCTGGCGTCGAGA






CTACCACCCCGTCGAAGCAATCCAACAACAAATACGCGGCGTCCA






GCTACCTGAGCCTGACCCCTGAGCAGTGGAAATCCCACCGGTCCT






ACTCGTGCCAAGTCACCCACGAGGGATCCACTGTGGAAAAGACCG






TGGCGCCGACTGAGTGTTCC






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1497



QVQLQESGPGLVKPSQTLSLTCTVSGVSISNYYWSWIRQPPGK






GLEWIGRISPSGRTNYNPSLKSRVTMSLDASKNQFSLKLSSVTAA






DTAVYYCARGEYSGTYSYSFDIWGQGTMVTVSSASTKGPSVFPLA






PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS






CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV






SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS






REEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLD






SDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLS






PGK






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1498



CAGGTTCAGCTGCAAGAGTCTGGCCCTGGCCTGGTCAAGCCCT






CTCAGACCCTGTCTCTGACCTGTACCGTGTCCGGCGTGTCCATCT






CCAACTACTACTGGTCCTGGATCCGGCAGCCTCCTGGCAAAGGAC






TGGAATGGATCGGCCGCATCTCTCCTTCTGGTCGCACCAACTACA






ACCCCAGCCTGAAAAGCAGAGTGACCATGTCTCTGGACGCCTCCA






AGAACCAGTTCTCCCTGAAGCTGTCCTCCGTGACCGCTGCTGATA






CCGCCGTGTACTACTGTGCCAGAGGCGAGTACTCCGGCACCTACT






CCTACAGCTTCGACATCTGGGGCCAGGGCACCATGGTCACAGTCT






CTTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT






CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG






TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG






GCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGT






CCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA






GCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC






CCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTG






ACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCG






GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC






TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCG






TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG






GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT






ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC






AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACA






AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG






GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG






AGGAGATGACCAAGAACCAGGTCAGCCTGTCCTGCGCCGTCAAAG






GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC






AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG






ACGGCTCCTTCTTCCTCGTGAGCAAGCTCACCGTGGACAAGAGCA






GATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG






CTCTGCACAACCGGTTCACGCAGAAGTCTCTCTCCCTGTCTCCGG






GAAAA






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1499



DIQMTQSPSSLSASVGDRVTITCRSSQSLFDSDDGNTYLDWFQ






QKPGQSPKLLIQTLSYRASGVPSRFSGSGSGTDFTLTISSLQPED






FATYYCMQRMEFPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS






GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST






YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1500



GACATCCAGATGACCCAGTCTCCATCCTCTCTGTCCGCCTCTG






TGGGCGACAGAGTGACCATCACCTGTCGGTCCTCTCAGTCCCTGT






TCGACTCTGACGACGGCAACACCTACCTGGACTGGTTCCAGCAGA






AGCCCGGCCAGTCTCCTAAGCTGCTGATCCAGACACTGTCCTACA






GAGCCTCTGGCGTGCCCTCCAGATTTTCCGGCTCTGGCTCTGGCA






CCGACTTTACCCTGACAATCTCCAGCCTGCAGCCTGAGGACTTCG






CCACCTACTACTGTATGCAGCGGATGGAATTTCCCCTGACCTTCG






GCGGAGGCACCAAGGTGGAAATCAAGCGCACCGTGGCCGCCCCTA






GCGTGTTTATCTTCCCTCCCTCGGATGAGCAGCTTAAGTCAGGCA






CCGCATCCGTGGTCTGCCTGCTCAACAACTTCTACCCGAGGGAAG






CCAAAGTGCAGTGGAAAGTGGACAACGCGCTCCAGTCGGGAAACT






CCCAGGAGTCCGTGACCGAACAGGACTCCAAGGACAGCACTTATT






CCCTGTCCTCCACTCTGACGCTGTCAAAGGCCGACTACGAGAAGC






ACAAGGTCTACGCCTGCGAAGTGACCCATCAGGGGCTTTCCTCGC






CCGTGACTAAGAGCTTCAATCGGGGCGAATGC






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1501



GACATCCAGATGACCCAGAGCCCTAGCAGCCTGAGCGCCAGCG






TGGGCGACAGAGTGACCATTACCTGCAGAAGCAGCCAGAGCCTGT






TCGACAGCGACGACGGCAATACCTACCTGGACTGGTTCCAGCAGA






AGCCTGGCCAGAGCCCTAAGCTGCTGATCCAGACCCTGAGCTACA






GAGCCAGCGGCGTGCCTAGCAGATTCTCCGGCAGCGGCTCCGGCA






CCGACTTCACCCTGACCATCAGCAGCCTGCAGCCTGAGGACTTCG






CCACCTACTACTGCATGCAGAGAATGGAGTTCCCTCTGACCTTCG






GCGGCGGCACCAAGGTGGAGATCAAGCGTACGGTGGCTGCACCAT






CTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAA






CTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG






CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACT






CCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACA






GCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAAC






ACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGC






CCGTCACAAAGAGCTTCAACAGGGGAGAGTGT






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1502



QVQLQESGPGLVKPSQTLSLTCTVSGVSISNYYWSWIRQPPGK






GLEWIGRISPSGRTNYNPSLKSRVTMSLDASKNQFSLKLSSVTAA






DTAVYYCARGEYSGTYSYSFDIWGQGTMVTVSSASTKGPSVFPLA






PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL






QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS






CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV






SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL






HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS






REEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD






SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS






PGK






trispecific/bispecific Ab CD79b arm HC



SEQ ID NO: 1503



CAGGTTCAGCTGCAAGAGTCTGGCCCTGGCCTGGTCAAGCCCT






CTCAGACCCTGTCTCTGACCTGTACCGTGTCCGGCGTGTCCATCT






CCAACTACTACTGGTCCTGGATCCGGCAGCCTCCTGGCAAAGGAC






TGGAATGGATCGGCCGCATCTCTCCTTCTGGTCGCACCAACTACA






ACCCCAGCCTGAAAAGCAGAGTGACCATGTCTCTGGACGCCTCCA






AGAACCAGTTCTCCCTGAAGCTGTCCTCCGTGACCGCTGCTGATA






CCGCCGTGTACTACTGTGCCAGAGGCGAGTACTCCGGCACCTACT






CCTACAGCTTCGACATCTGGGGCCAGGGCACCATGGTCACAGTCT






CTTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT






CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG






TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG






GCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGT






CCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA






GCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC






CCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTG






ACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCG






GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC






TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCG






TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG






GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGT






ACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC






AGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACA






AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAG






GGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG






AGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAG






GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC






AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG






ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA






GATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG






CTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGG






GAAAA






trispecific/bispecific Ab CD79b arm LC



SEQ ID NO: 1499



DIQMTQSPSSLSASVGDRVTITCRSSQSLFDSDDGNTYLDWFQ






QKPGQSPKLLIQTLSYRASGVPSRFSGSGSGTDFTLTISSLQPED






FATYYCMQRMEFPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS






GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST






YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC






Table 32 provides a summary of examples of some CD79b×CD3 bispecific antibodies described herein.









TABLE 32







Exemplary CD79b × CD3 bispecific antibodies

















HC1

LC


HC2





amino
HC1
amino


amino
HC2




acid
DNA
acid
LC DNA

acid
DNA



HC1/LC
sequence
sequence
sequence
sequence

sequence
sequence



(CD79b
SEQ ID
SEQ ID
SEQ ID
SEQ ID
HC2
SEQ ID
SEQ ID


ID
arm)
NO
NO
NO
NO
(CD3-arm)
NO
NO


















79C3B601
CD9B374
1489
1490
1491
1492
CD3B2030-
1504
1505








N106A


79C3B646
CD9B330-
1493
1494
1495
1496
CD3B2030-
1504
1505



N31S




N106A


79C3B651
CD9B643
1497
1498
1499
1500
CD3B2030-
1504
1505








N106A


79C3B605
CD9B374
1489
1490
1491
1492
CD3B2089-
1506
1507








N106G


79C3B645
CD9B330-
1493
1494
1495
1496
CD3B2089-
1506
1507



N31S




N106G


79C3B650
CD9B643
1497
1498
1499
1500
CD3B2089-
1506
1507








N106G

















bispecific Ab CD3-arm



SEQ ID NO: 1504



EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKLASGVPARFSGSGSGRDYTLT






ISSLEPEDFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSSVKV





SCKASGYTFTRSTMHWVKQAPGQGLEWIGYINPSSAYTNYNQKFQGRVTLTADKSTSTAYMELSSLRSEDTAV





YYCASPQVHYDYAGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVT





CVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE





KTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL





YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





bispecific Ab CD3-arm


SEQ ID NO: 1505



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCAGGCGAGAGAGTGACCCTGTCCTGCTCCG






CTTCCTCCTCCGTGTCCTACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGATGGATCTACGA





CTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGATTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACC





ATCTCCAGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGGTCTAGGAACCCTCCTACCTTTG





GCGGAGGCACCAAGGTGGAAATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTC





CACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCCGAAGTGAAGAAACCTGGCTCCTCCGTCAAGGTG





TCCTGCAAGGCTTCCGGCTACACCTTTACCAGATCCACCATGCACTGGGTCAAGCAGGCCCCTGGACAAGGCT





TGGAGTGGATCGGCTACATCAACCCCAGCTCCGCCTACACCAACTACAACCAGAAATTCCAGGGCAGAGTGAC





CCTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCCAGCCTGAGATCTGAGGACACCGCCGTG





TACTACTGCGCCTCTCCTCAGGTCCACTACGACTACGCCGGCTTTCCTTATTGGGGCCAGGGCACACTGGTCA





CCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGG





GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC





ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT





GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTCCCAGCCCCCATCGAG





AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGA





TGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA





GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC





TACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG





CTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAA





SEQ ID NO: 1506 bispecific Ab CD3 arm


EIVLTQSPATLSASPGERVTLSCSASSSVSYMNWYQQKPGQAPRRWIYDSSKLASGVPARFSGSGSGRDYTLT





ISSLEPEDFAVYYCQQWSRNPPTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLVQSGAEVKKPGSSVKV





SCKASGYTFTRSTMHWVRQAPGQGLEWMGYINPSSAYTNYAQKFQGRVTLTADKSTSTAYMELSSLRSEDTAV





YYCASPQVHYDYGGFPYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVT





CVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE





KTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL





YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





bispecific Ab CD3 arm


SEQ ID NO: 1507



GAGATCGTGCTGACCCAGTCTCCTGCCACACTGAGTGCTTCTCCAGGCGAGAGAGTGACCCTGTCCTGCTCCG






CTTCCTCCTCCGTGTCCTACATGAACTGGTATCAGCAGAAGCCCGGCCAGGCTCCTCGGAGATGGATCTACGA





CTCTTCCAAGCTGGCCTCTGGTGTGCCAGCCAGATTTTCTGGCTCTGGCTCCGGCAGAGACTATACCCTGACC





ATCTCCAGCCTGGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTGGTCTAGGAACCCTCCTACCTTTG





GCGGAGGCACCAAGGTGGAAATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTC





CACCGGCGGAAGCCAGGTTCAACTGGTTCAGTCTGGCGCCGAAGTGAAGAAACCTGGCTCCTCCGTGAAAGTG





TCCTGCAAGGCTTCCGGCTACACTTTTACCAGATCCACCATGCACTGGGTCCGACAGGCTCCAGGACAAGGCT





TGGAGTGGATGGGCTACATCAACCCCAGCTCCGCCTACACCAACTACGCCCAGAAATTCCAGGGCAGAGTGAC





CCTGACCGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCCAGCCTGAGATCTGAGGACACCGCCGTG





TACTACTGCGCTTCTCCTCAGGTGCACTACGACTACGGCGGCTTTCCTTATTGGGGCCAGGGCACACTGGTCA





CCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGG





GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA





TGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC





ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT





GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACAAAGCCCTCCCAGCCCCCATCGAG





AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGA





TGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA





GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC





TACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG





CTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAA






The antibodies were expressed in ExpiCHO-S™ cells (ThermoFisher Scientific; Waltham, Mass., Cat #A29127) by transient transfection with purified plasmid DNA following the manufacturer's recommendations. Briefly, ExpiCHO-S™ cells were maintained in suspension in ExpiCHO™ expression medium (ThermoFisher Scientific, Cat #A29100) in an orbital shaking incubator set at 37° C., 8% CO2 and 125 RPM. The cells were passaged and diluted prior to transfection to 6.0×106 cells per ml, maintaining cell viability at 99.0% or better. Transient transfections were done using the ExpiFectamine™ CHO transfection kit (ThermoFisher Scientific, Cat #A29131). For each ml of diluted cells to be transfected, 0.5 microgram of bispecific encoding DNA (HC1:HC2:LC=1:2:2) and 0.5 microgram of pAdVAntage DNA (Promega, Cat #E1711) was used and diluted into OptiPRO™ SFM complexation medium. ExpiFectamine™ CHO reagent was used at a 1:4 ratio (v/v, DNA:reagent) and diluted into OptiPRO™. The diluted DNA and transfection reagent were combined for one minute, allowing DNA/lipid complex formation, and then added to the cells. After overnight incubation, ExpiCHO™ feed and ExpiFectamine™ CHO enhancers were added to the cells as per the manufacturer's Standard protocol. Cells were incubated with orbital shaking (125 rpm) at 37° C. for seven days prior to harvesting the culture broth. The culture supernatant from the transiently transfected ExpiCHO-S™ cells was clarified by centrifugation (30 min, 3000 rcf) followed by filtration (0.2 μm PES membrane, Corning; Corning, N.Y.).


The filtered cell culture supernatant was loaded onto a pre-equilibrated (1×DPBS, pH 7.2) Mab Select Sure Protein A column (GE Healthcare) using an AKTAXpress chromatography system. After loading, the column was washed with 10 column volumes of 1×DPBS, pH7.2. The protein was eluted with 10 column volumes of 0.1 M sodium (Na)-Acetate, pH 3.5. Protein fractions were neutralized immediately by the addition of 2.5 M Tris HCl, pH 7.2 to 20% (v/v) of the elution fraction volume. Peak fractions were pooled and loaded onto a CH1 column (Thermofisher). After loading, the column was washed with 10 column volumes of 1×DPBS, pH7.2. The protein was eluted with 10 column volumes of 0.1 M sodium (Na)-Acetate, pH 3.5. Protein fractions were partially neutralized by the addition of 2.5 M Tris HCl, pH 7.2 to 15% (v/v) of the final volume. The high molecular weight species were removed by preparative size exclusion chromatography (SEC) using Superdex 200 (GE Healthcare). Post sample injection, the column was developed with 1×DPBS and the major peak fractions were pooled, dialyzed into 10 mM Histidine, pH6.5 and filtered (0.2 μm).


The concentration of purified protein was determined by absorbance at 280 nm on a Dropsense spectrophotometer. The quality of the purified protein was assessed by cSDS and analytical size exclusion HPLC (Agilent HPLC system). The endotoxin level was measured using a turbidometric LAL assay (Pyrotell®-T, Associates of Cape Cod; Falmouth, Mass.).


Example 4: Bispecific and Trispecific Antibodies Binding Characterization

Binding of Bispecific CD79×CD3 Antibodies on CD79+ Target Cells


The binding affinity of the CD79b binding arm of the CD79×CD3 bispecific molecules were assessed using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b on the cell surface, shown in Table 33.









TABLE 33







CD79b Antigen Density of B Lymphoma Cell Lines











CD79b Antigen




Density (Antigen


Cell Line
Cell Type
Number/cell)












HBL-1
Diffuse large B-cell lymphoma line
429,649


OCI-LY-10
Diffuse large B-cell lymphoma line
38,885


CARNAVAL
Diffuse large B-cell lymphoma line
98,176


WILL2
Diffuse large B-cell lymphoma line
3,824









Diffuse large B-cell lymphoma cell lines were incubated for 1 hour with CD79b×CD3 test molecules 79C3B646, 79C3B651, and 79C3B601 (1 uM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 20 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:200 dilution along with Aqua Fixable Live/Dead stain (Invitrogen; Cat #L34957) at a 1:400 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed and EC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data were then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.


All CD79b×CD3 molecules showed good binding on cell lines expressing endogenous CD79b on the cell surface, with the CD79b binding arm of construct 79C3B651 showing the highest binding affinity across all tested cell lines, shown in FIGS. 7A-7D and Table 34.









TABLE 34







CD79b × CD3 Bispecifics Cell Binding EC50 Values












HBL-1
OCI-LY10
Carnaval
WILL-2



EC50
EC50
EC50
EC50



(nM)
(nM)
(nM)
(nM)














79C3B646
97
undetermined
44
undetermined


79C3B651
15
undetermined
12
undetermined


79C3B601
48
undetermined
89
undetermined









Binding of Trispecific CD79×CD20×CD3 Antibodies on CD79b+ and CD20+ Target Cells


The binding affinity of the CD79b binding arm of the CD79×CD20×CD3 trispecific molecules as well as control CD79b×CD3 and Null×CD20×CD3 were assessed using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b and CD20 on the cell surface, shown in Table 35.









TABLE 35







CD79b and CD20 Antigen Density of B Lymphoma Cell Lines













CD20 Antigen




CD79b Antigen
Density




Density (Antigen
(Antigen


Cell Line
Cell Type
Number/cell)
Number/cell)













HBL-1
Diffuse large B-cell
429,649
73,467



lymphoma line




OCI-LY-10
Diffuse large B-cell
38,885
67,352



lymphoma line




CARNAVAL
Diffuse large B-cell
98,176
118,789



lymphoma line




WILL2
Diffuse large B-cell
3,824
314



lymphoma line











Diffuse large B-cell lymphoma cell lines were incubated for 1 hour with CD79b×CD20×CD3 test molecules C923B74, C923B99, and C923B38; CD79×CD3 test molecules 79C3B646, 79C3B651, and 79C3B601 and Null×CD20×CD3 control molecule C923B98 (1 μM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were then stained for 20 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:200 dilution along with Aqua Fixable Live/Dead stain (Invitrogen; Cat #L34957) at a 1:400 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed and EC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.


All CD79b×CD20×CD3 molecules showed good binding on cell lines expressing endogenous CD79b and CD20 on the cell surface, with some trispecific constructs showing better binding affinity across cell lines when compared to binding of CD79b×CD3 and CD20×CD3 control molecules, shown in FIGS. 8A-8D and Table A-10. The CD79b binding arm of trispecific construct C923B99 showed the highest binding affinity across all tested cell lines, shown in FIGS. 8A-8D and Table 36.









TABLE 36







CD79b × CD20 × CD3 Trispecific Cell Binding EC50 Values












HBL-1
OCI-LY10
Carnaval




EC50
EC50
EC50
WILL-2 EC50



(nM)
(nM)
(nM)
(nM)














C923B38
43
12
16
undetermined


C923B74
52
66
23
undetermined


C923B99
8
2
6
undetermined


79C3B646
97
undetermined
44
undetermined


79C3B651
15
undetermined
12
undetermined


79C3B601
48
undetermined
89
undetermined


C923B98
undetermined
undetermined
Undetermined
undetermined









Kinetic Cell Binding of Bispecific CD79×CD3 Antibodies on CD79+ Target Cells


The binding kinetics of the CD79b binding arm of the CD79×CD3 bispecific molecules were assessed over a time course using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b on the cell surface, shown in Table 37.









TABLE 37







CD79b Antigen Density of B Lymphoma Cell Lines













CD79b Antigen





Density (Antigen



Cell Line
Cell Type
Number/cell)















HBL-1
Diffuse large B-cell
429,649




lymphoma line




OCI-LY10
Diffuse large B-cell
38,885




lymphoma line




CARNAVAL
Diffuse large B-cell
98,176




lymphoma line











Diffuse large B-cell lymphoma cell lines were incubated for 1, 3, 24, and 48 hours with CD79b×CD3 test molecules 79C3B646, 79C3B651, and 79C3B601 (300 nM, 60 nM, 12 nM) at 37° C. At each time point, cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:200 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were resuspended in 50ul of FACS buffer containing a 1:1000 dilution of Cytox Green viability dye (Invitrogen, Cat #S34860). Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed and EC50 values generated using GraphPad PRISM v.8.


All CD79b×CD3 bispecific constructs showed steady CD79b binding kinetics with minimal loss of signal over time, as shown in FIGS. 9A-9I. 79C3B651 showed superior binding kinetics and the least amount of signal loss over time, shown in FIGS. 9A-9I.


Kinetic Cell Binding of Trispecific CD79×CD20×CD3 Antibodies on CD79b+ and CD20+ Target Cells


The binding kinetics of the CD79b and CD20 binding arms of the CD79×CD20×CD3 trispecific molecules were assessed over a time course using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b and CD20 on the cell surface, shown in Table 38.









TABLE 38







CD79b and CD20 Antigen Density of B Lymphoma Cell Lines












CD79b Antigen
CD20 Antigen




Density (Antigen
Density (Antigen


Cell Line
Cell Type
Number/cell)
Number/cell)













HBL-1
Diffuse large B-cell
429,649
73,467



lymphoma line




OCI-LY-10
Diffuse large B-cell
38,885
67,352



lymphoma line




CARNAVAL
Diffuse large B-cell
98,176
118,789



lymphoma line











Diffuse large B-cell lymphoma cell lines were incubated for 1, 3, 24, and 48 hours with CD79b×CD20×CD3 test molecules C923B74, C923B99, and C923B38; CD79×CD3 test molecules 79C3B646, 79C3B651, and 79C3B601 and Null×CD20×CD3 control molecule C923B98 (300 nM, 60 nM, 12 nM) at 37° C. At each time point, cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:200 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were resuspended in 50ul of FACS buffer containing a 1:1000 dilution of Cytox Green viability dye (Invitrogen, Cat #S34860). Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed and EC50 values generated using GraphPad PRISM v.8.


All CD79b×CD20×CD3 bispecific constructs showed steady CD79b binding kinetics with minimal loss of signal over time, shown in FIGS. 10A-10I. Trispecific construct C923B99 and bispecific construct 79C3B651, which both have the same CD79b and CD20 binding arms, showed superior binding kinetics and the least amount of signal loss over time, shown in FIGS. 10A-10I.


Binding of Bispecific CD79×CD3 Antibodies and Trispecific CD79×CD20×CD3 Antibodies on Pan T-Cells


Binding of the CD3 arm of CD79×CD3 bispecific and CD79b×CD20×CD3 trispecific constructs was assessed using cryo-preserved, negatively selected, primary human CD3+ pan T cells. Primary human CD3+ pan T cells from four different donors were incubated for 1 hour with CD79b×CD20×CD3 test molecules C923B74, C923B99, and C923B38 or CD79×CD3 test molecules 79C3B646, 79C3B651 (1 uM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 20 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:300 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were resuspended in 50ul of FACS buffer containing a 1:1000 dilution of Cytox Green viability dye (Invitrogen, Cat #534860). Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.


All CD79b×CD20×CD3 and CD79b×CD3 molecules showed moderate binding on all donor Pan T cells expressing endogenous CD3 on the cell surface, shown in FIGS. 11A-11D.


Example 5: Functional Characterization: Antagonistic Activity of CD79×CD3 Bispecific and CD79×CD20×CD3 Trispecific Antibodies

Bispecific CD79×CD3 and Trispecific CD79×CD20×CD3 Mediated Cytotoxicity Against CD79b+ and CD79BTarget Cells


mKATE2 DLBCL target cells were maintained in complete RPMI (ThermoFisher, catalog #11875093)1640 media containing 10% heat inactivated fetal bovine serum. Prior to the assay, antibodies were made at 3-fold serial dilutions in the at RPMI 1640 media containing 10% heat inactivated fetal bovine serum, at 4-fold expected final concentration. A volume of 50 μL of medium-diluted bsAb or trispecific Ab in each well of a 96-well plate were further diluted into 200 μL by adding a mix of target and effector cell suspension. The target cell lines were harvested by centrifuge at 400×g for 5 min, washed one time with phenol red-free RPMI 1640 media, counted and suspended in fresh complete phenol red-free RPMI 1640 media at 1×106 cells/mL. Healthy donor T cells (isolated by CD3—negative selection provided by Discovery Life Sciences) were thawed in complete phenol red-free media (RPMI 1640 media containing 10% heat inactivated fetal bovine serum), counted and suspended in fresh complete phenol red-free RPMI 1640 media at 1×106 cells/mL. Target cells and T cells were mixed to obtain 5:1 effector to target cell ratio. Cell suspension was added to antibody dilution wells according to plate layout (150 μL/well).


After mixing target and T cells with corresponding bsAb dilution, 80 μL from each well, containing 200 μl with 10000 target and 50000 T cells, were dispensed in a 384 well plate, in duplicate. Plates were sealed using a Breathe-Easy membrane seal. Next, co-cultures were placed in an IncuCyte ZOOM live-content imaging system, and images were automatically acquired in both phase and fluorescence channels every 6 hours for 3 to 6 days with a 4× objective lens (single whole well image). IncuCyte Zoom software was used to detect target cells based on mKATE2 expression using optimized process definition parameters. To measure the amount of target cells/well, the total red area was quantified, and raw values were exported in Excel (Microsoft Office). To quantify cancer cell killing over time, the average values for each replicate were pasted in Prism (GraphPad; version 7 for PC). Expansion indexes (EI) per timepoint were calculated by dividing value at Tx by TO. Growth inhibition (GI) was calculated by normalizing each timepoint to the value of the untreated well average at that timepoint. From the GI values, area under the curve (AUC) values were derived for each condition. After normalizing the AUC to the untreated control (target with effector), antibody concentrations were plotted against the AUC values as a dose response. EC50 values were generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”. Lead CD79b×CD3 bispecific antibodies and CD79b×CD20×CD3 trispecific antibodies (79C3B646, C923B74, 79C3B601, C923B38, 79C3B651, C923B99, 79C3B613, C923B98) were evaluated for cytotoxicity on HBL1 and OCI-Ly10 cells. IC50 (pM) values are listed in Table 39, Table 40, Table 41, and Table 42.









TABLE 39







HBL-1 killing Incucyte (Average of 2 independent experiments)











Protein ID
CD79b
CD20
CD3
IC50 (pM)














79C3B645
CD9B330
NA
CD3B2089
7189.0


79C3B646
CD9B330
NA
CD3B2030
257.4


C923B73
CD9B330
C20B22
CD3B2089
6805.0


C923B74
CD9B330
C20B22
CD3B2030
346.3


79C3B605
CD9B374
NA
CD3B2089
29549.0


79C3B601
CD9B374
NA
CD3B2030
203.9


C923B36
CD9B374
C20B22
CD3B2089
31040.0


C923B38
CD9B374
C20B22
CD3B2030
301.2


79C3B650
CD9B643
NA
CD3B2089
43314.0


79C3B651
CD9B643
NA
CD3B2030
32.5


C923B95
CD9B643
C20B22
CD3B2089
4891.0


C923B99
CD9B643
C20B22
CD3B2030
69.2
















TABLE 40







OCI-Ly10 killing Incucyte (Average of 2 independent experiments)











Protein ID
CD79b
CD20
CD3
IC50 (nM)














79C3B645
CD9B330
NA
CD3B2089
18.0


79C3B646
CD9B330
NA
CD3B2030
18.3


C923B73
CD9B330
C20B22
CD3B2089
132.4


C923B74
CD9B330
C20B22
CD3B2030
25.6


79C3B605
CD9B374
NA
CD3B2089
54.3


79C3B601
CD9B374
NA
CD3B2030
11.7


C923B36
CD9B374
C20B22
CD3B2089
42.0


C923B38
CD9B374
C20B22
CD3B2030
8.0


79C3B650
CD9B643
NA
CD3B2089
7.0


79C3B651
CD9B643
NA
CD3B2030
4.7


C923B95
CD9B643
C20B22
CD3B2089
14.8


C923B99
CD9B643
C20B22
CD3B2030
5.6
















TABLE 41







CARNAVAL killing (Incucyte)













Protein ID
CD79b
CD20
CD3
IC50 (nM)







79C3B646
CD9B330
NA
CD3B2030
1.393



C923B74
CD9B330
C20B22
CD3B2030
0.741



79C3B601
CD9B374
NA
CD3B2030
1.645



C923B38
CD9B374
C20B22
CD3B2030
0.465



C923B99
CD9B643
C20B22
CD3B2030
0.285

















TABLE 42







Daudi killing (Incucyte)











Protein ID
CD79b
CD20
CD3
IC50 (nM)





79C3B646
CD9B330
NA
CD3B2030
0.597


C923B74
CD9B330
C20B22
CD3B2030
0.100


79C3B601
CD9B374
NA
CD3B2030
0.406


C923B38
CD9B374
C20B22
CD3B2030
0.071


C923B99
CD9B643
C20B22
CD3B2030
< Cone tested









FACS T Cell Killing Data on Panel of Target Positive (CD79b+ and CD20+) and Target Negative (CD79B− and CD20−) Cell Lines


Functional activity of the CD79b×CD3 bispecific and CD79b×CD20×CD3 trispecific constructs was assessed at 72 hr time point in an in vitro T cell killing assay by flow cytometry using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b and CD20 on the cell surface, shown in Table 43.









TABLE 43







CD79b and CD20 Antigen Density of B Lymphoma Cell Lines













CD20 Antigen




CD79b Antigen
Density




Density (Antigen
(Antigen


Cell Line
Cell Type
Number/cell)
Number/cell)













HBL-1
Diffuse large B-cell
429,649
73,467



lymphoma line




OCI-LY10
Diffuse large B-cell
38,885
67,352



lymphoma line




CARNAVAL
Diffuse large B-cell
98,176
118,789



lymphoma line




K562
Chronic myelogenous
0
0



leukemia




HEL
Erythroleukemia
0
0









Target cancer cells were maintained in complete RPMI 1640 (ThermoFisher, catalog #11875093) media containing 10% heat inactivated fetal bovine serum. Prior to the assay, antibodies were made at 3-fold serial dilutions in RPMI 1640 media containing 10% heat inactivated fetal bovine serum, at 4-fold expected final concentration. A volume of 50 μL of medium-diluted bispecific or trispecific Ab in each well of a 96-well plate were further diluted into 200 μL by adding a mix of target and effector cell suspension. The target cell lines were harvested by centrifuge at 400×g for 5 min, washed one time with RPMI 1640 media. Target cancer cells were stain targets with CellTrace CFSE (ThermoFisher; Cat #: C34554) diluted 1/5000. Healthy donor T cells (isolated by CD3—negative selection provided by Discovery Life Sciences) were thawed in complete media (RPMI 1640 media containing 10% heat inactivated fetal bovine serum), counted and suspended in fresh complete phenol red-free RPMI 1640 media at 1×106 cells/mL. Target cells and T cells were mixed to obtain 5:1 effector to target cell ratio. Cell suspension was added to antibody dilution wells according to plate layout (150 μL/well). Cells were incubated for 72 hours with CD79b×CD3 or CD79b×CD20x×CD3 test molecules (100 nM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were stained for 15 minutes at room temperature with Fixable Live/Dead stain (ThermoFisher; Cat #65-0865-14) at a 1:1000 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing flow panel antibodies (Table 44), antibodies amount added as listed in the table. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were analyzed using FACS Lyric (BD) flow cytometer and percent of cancer cell killing was generated using Cytobank. Percent of cancer cell killing was graphed and IC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(inhibitor) vs. response-variable slope (four parameter)”.









TABLE 44







Flow Panel Antibodies for T cell killing Assay

















Amount


Antibody
Conjugated

Catalog
LOT
added per


Name
Fluorophore
Vendor
Number
Number:
well (μl)















CD4
V500
BD Biosciences
560768
9340575
 2μ/well


CD8
PerCPCy5.5
BD Biosciences
560662
9290508
2 μl/well


CD69
PE
BD Biosciences
560968
9049603
10 μl/well 


CD25
BV421
BD Biosciences
562443
10302
2 μl/well









CD79b×CD20×CD3 trispecific mediated more potent cytotoxicity as compared to bispecific constructs in CD79b- and CD20-target positive cell lines. IC50 (pM) values are listed in Table 45. No killing has been observed in target negative cell lines (FIG. 12A-12B).









TABLE 45







Killing of target positive (CARNAVAL, OCI-Ly10) cell lines (FACS).

















CARNAVAL
HBL-1
OCI-LY10


Protein ID
CD79b
CD20
CD3
IC50 (nM)*
IC50 (nM)
IC50 (nM)**





79C3B646
CD9B330
NA
CD3B2030
0.29
0.73
>100 nM


C923B74
CD9B330
C20B22
CD3B2030
0.35
2.42
24.19


79C3B601
CD9B374
NA
CD3B2030
NA
2.86
>100 nM


C923B38
CD9B374
C20B22
CD3B2030
0.33
2.71
48.59


79C3B651
CD9B643
NA
CD3B2030
0.25
2.20
>100 nM


C923B99
CD9B643
C20B22
CD3B2030
0.17
1.68
16.95





*average values of T cell mediated killing from 3 independent T cell donors


**average values of T cell mediated killing from 4 independent T cell donors






Bispecific CD79b×CD3 Mediated Cytotoxicity Against Autologous B-Cells


Functional activity of the CD79b×CD3 bispecific constructs was assessed in an in vitro autologous B cell depletion assay. This functional assay utilizes PBMCs to focus on the killing of primary B cells as well as T cell activation on donor matched primary cells. Cryo-preserved PBMCs from 3 different human donors were incubated for 72 hours with CD79b×CD3 test molecules 79C3B646, 79C3B651, and 79C3B601 (300 nM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were stained for 10 minutes at room temperature with BD stain buffer containing Fc blocking agent (Accurate Chemical and Scientific Corp; Cat #NB309) and Near IR Fixable Live/Dead stain (Invitrogen; Cat #L10119) at a 1:400 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing flow panel antibodies (Table 46) at a 1:100 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed and EC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.









TABLE 46







Flow Panel Antibodies for Autologous B Cell Depletion Assay











Conjugated

Catalog


Antibody Name
Fluorophore
Vendor
Number





Anti-human CD25
BV650
BD Biosciences
563719


Anti-Human CD4
BV510
Biolegend
317444


Anti-Human CD8
PE-Cy7
Biolegend
301012


Anti-Human CD20
PE
Biolegend
302306


Anti-Human CD11c
AF647
BD Biosciences
565911


Anti-Human CD2
BV605
BD Biosciences
740391









CD79b×CD3 bispecific constructs showed a maximum drug mediated cytotoxicity of 20 percent with low levels of CD4+ and CD8+ T cell activation as demonstrated by CD25 expression on these T cell subsets, as shown in FIGS. 13A-13C. The CD79b×CD20×CD3 trispecific has a synergistic effect on drug mediated cytotoxicity when compared to control molecules as shown in Table 47.









TABLE 47







CD79b × CD20 × CD3 EC50 Values and Maximum Cytotoxicity











Donor 1
Donor 2
Donor 3




















EC50

EC50

EC50



Construe Name
CD79b Arm
CD20 Arm
CD3 Arm
(nM)
Cmax
(nM)
Cmax
(nM)
Cmax





C923B74
B330-Fab
C20B22 scFv
CD3B2030
78
34%
23
66%
UD*
40%


79C3B646

N/A
CD3B2030
40
 9%
 6
14%
 8
35%


C23B98
N/A
C20B22 scFv
CD3B2030
UD*
11%
UD*
 5%
88
52%


C923B99
B643-Fab
C20B22 srFv
CD3B2030
UD*
35%
 9
67%
23
66%


79C3B651

N/A
CD3B2030
UD*
 5%
UD*
13%
17
34%


C23B98
N/A
C20B22
CD3B2030
UD*
11%
UD*
 5%
88
52%


C923B38
B374-Fab
C20B22 scFv
CD3B2030
 1
24%
50
30%
UD*
50%


79C3B601

N/A
CD3B2030
UD*
10%
UD*
10%
20
32%


C23B98
N/A
C20B22 scFv
CD3B2030
UD*
11%
UD*
 9%
88
52%





*Undetermined






Example 6: Biophysical Characterization

Binding Affinity by SPR


General Protocol for SPR Affinity Assessment: Affinity assessment of the bispecific and trispecific constructs against human CD79b were measured using recombinantly expressed extracellular domain of CD79b short and long isoforms (CD9W7.001 and CD9W8.001, respectively) by Surface Plasmon Resonance (SPR) using a Biacore 8 k SPR system (Biacore) at 25° C. in HBSP+ buffer. Cross-reactivity of the same antibody panel was also assessed against cyno and mouse antigens (CD9W1.001 and CD9W105.001, respectively). Briefly, a C1 sensor chip was immobilized with anti-human Fc (target immobilization levels of >400 RU) using vendor recommended amino coupling protocol. The test antibodies were captured through immobilized anti-Fc and was followed by the injection of different CD79b constructs at different concentration series (human CD79b short and long isoforms: 30 nM-0.37 nM at 3-fold dilutions; cyno and mouse CD79b: 3000 nM-37 nM at 3-fold dilutions). The association and dissociation phases were measured for 2 or 3 minutes and 30 minutes, respectively. Binding of the trispecifics (C923B168 and C923B169) to CD3 was tested by injecting CD3W220.001 at 100 nM-1.23 nM at 3-fold dilutions, with association and dissociation phases were measured for 3 min and 15 min, respectively (CD79b-00478).


The raw binding sensorgrams were processed using Biacore Insight software (Biacore) by double-referencing and the processed sensorgrams were analyzed for cross-reactivity and fitted to a 1:1 Langmuir model to obtain on-rates, off-rates and affinities.


SPR Binding Results: As shown in Table 48 and Table 49, 5he bispecific and trispecific antibodies bound to the human CD79b long isoform (hu CD79b long) with affinities from 0.02-0.06 nM, and to the CD79b short isoform (hu CD79b short) with affinities between 0.27-0.64 nM. The antibody panel showed very poor cross-reactivity to cyno CD79b (KD estimated >3000 nM) or did not bind to mouse CD79b. C923B168 binds recombinant CD3 antigen with an affinity of 0.5 nM. No quantitative kinetics/affinities were reported for those with complex kinetic binding profiles using the specified antigens, as noted in the summary tables below.









TABLE 48







Binding affinities for bispecific antibody constructs













KD to hu
KD to hu





CD79b
CD79b
KD to hu



Name
long (M)
short (M)
CD3 (M)







79C3B601
4.6E−11
5.6E−10
n.d**



79C3B646
2.2E−11
5.8E−10
n.d**



79C3B651
5.2E−11
3.5E−10
n.d**



79C3B605
n.d*
n.d*
n.d**



79C3B645
n.d*
n.d*
n.d**



79C3B650
n.d*
n.d*
n.d**







*samples not submittedfor SPR binding analysis



**Affinities for CD3 not determined due to complex SPR binding profiles observed for Cris7b derived CD3 antibodies (historically observed results).













TABLE 49







Binding affinities for trispecific antibody constructs












KD to hu
KD to hu
KD to hu
KD to



CD79b
CD79b
CD20
hu CD3


Name
long (M)
short (M)
(M)
(M)





C923B38
 6.5E−11
6.4E−10
n.d**
n.d**


C923B74
 2.3E−11
3.9E−10
n.d**
n.d**


C923B99
 4.0E−11
2.7E−10
n.d**
n.d**


C923B36
n.d*
n.d*
n.d**
n.d**


C923B73
n.d*
n.d*
n.d**
n.d**


C923B95
n.d*
n.d*
n.d**
n.d**


C923B168
1.92E−10
n.d*
n.d**
4.96E−10


C923B169
1.64E−10
n.d*
n.d**
n.d**





*samples not submittedfor SPR binding analysis


**Affinities for CD20 or CD3 not determined due to SPR constraints with CD20 nanodiscs or complex binding profiles observedfor Cris7b derived CD3 antibodies (historically observed results)






Binding Epitope by HDX-MS


The CD79b epitopes bound by trispecific molecules CD9B374 and CD9B643 were mapped by Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) according to the following protocol.


General Procedure for HDX-MS Data Acquisition. HDX-MS sample preparation was performed with automated HDx system (LEAP Technologies, Morrisville, N.C.). The columns and pump were: protease, protease type XIII (protease from Aspergillus saitoi, type XIII)/pepsin column (w/w, 1:1; 2.1×30 mm) (NovaBioAssays Inc., Woburn, Mass.); trap, ACQUITY UPLC BEH C18 VanGuard Pre-column (2.1×5 mm) (Waters, Milford, Mass.), analytical, Accucore C18 (2.1×100 mm) (Thermo Fisher Scientific, Waltham, Mass.); and LC pump, VH-P10-A (Thermo Fisher Scientific). The loading pump (from the protease column to the trap column) was set at 600 μL/min with 0.1% aqueous formic acid. The gradient pump (from the trap column to the analytical column) was set from 9% to 35% acetonitrile in 0.1% aqueous formic acid in 20 min at 100 μL/min.


MS Data Acquisition. Mass spectrometric analyses were carried out using an LTQ™ Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) with the capillary temperature at 275° C., resolution 120,000, and mass range (m/z) 300-1,800.


HDX-MS Data Extraction. BioPharma Finder 3.0 (Thermo Fisher Scientific) was used for the peptide identification of non-deuterated samples prior to the HDX experiments. HDExaminer version 2.5 (Sierra Analytics, Modesto, Calif.) was used to extract centroid values from the MS raw data files for the HDX experiments.


HDX-MS Data Analysis. The extracted HDX-MS data were further analyzed in Excel. All exchange time points (at pH 6.4 or pH 7.4 at 3.2° C.) were converted to the equivalent time points at pH 7.4 and 23° C.


Results


HDX-MS analysis of CD9B374 and CD9B643 indicate binding to a nearly identical, conformational epitope of CD79 made up of residues 30-42 (SEDRYRNPKGSAC; SEQ ID NO: 253), 50-52 (PRF), 81-86 (EMENP; SEQ ID NO: 254), and 144-148 (GFSTL; SEQ ID NO: 255). The residue numbers are those of CD79B_Human (P40259).


Thermal Stability of Trispecific CD79b×CD20×CD3 Antibodies by DSC and DSF


The thermal stability of C923B168 and C923B169 was determined by Differential Scanning calorimetry (DSC) and differential scanning fluorimetry (DSF).


In this characterization, Tonset and Tagg were determined by DSF and the other thermal stability transitions of Tms were determined by DSC. As shown in Table 50, C923B168 and C923B169 have good thermal stability with Tonset >61° C. and Tm1 >65° C.









TABLE 50







Transition temperatures for trispecific CD79b × CD20 × CD3 antibodies:


















Tonset

Tm1

Tm2

Tm3

Tagg



Sample ID
° C.
σ
° C.
σ
° C.
σ
° C.
σ
° C.
σ




















C923B168.008
61.3
0.15
65.5
0.03
73.5
0.18
77.3
0.07
73.8
0.37


C923B169.008
61.7
0.07
68.4
0.03
75.1
0.44
77.7
0.21
74.2
0.5









Example 7: Functional Characterization of CD79×CD20×CD3 Trispecific Antibodies

Binding of Trispecific CD79b×CD20×CD3 Antibodies to Pan T-Cells


Binding of the CD3 arm of CD79b×CD20×CD3 trispecific constructs was assessed using cryo-preserved, negatively selected, primary human CD3+ pan T cells. Primary human CD3+ pan T cells from three different donors were incubated for 1 hour with CD79b×CD20×CD3 test molecules C923B169 and C923B168 (1 uM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 20 minutes at 4° C. with BD stain buffer containing AlexaFluor 647 labeled anti-human IgG secondary antibody (Jackson Immuno; Cat #109-606-098) at a 1:300 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were resuspended in 50ul of FACS buffer containing a 1:1000 dilution of Cytox Green viability dye (Invitrogen, Cat #S34860). Cells were analyzed using Intellicyt (Sartorius) flow cytometer and mean fluorescent intensity (MFI) was generated using Forcyt software (Sartorius). MFI was graphed using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.


All CD79b×CD20×CD3 molecules showed binding on all donor Pan T cells expressing endogenous CD3 on the cell surface, shown in Table 51.









TABLE 51







C923B169 and C923B168 CD79b × CD20 ×


CD3 binding to Pan CD3 T cells.










Pan T cell binding,
Pan T cell max binding,


Construct
EC50 (nM)
MFI (×106)













Name
Donor 1
Donor 2
Donor 3
Donor 1
Donor 2
Donor 3
















C923B168
125
91
97
1.3
1.0
1.0


C923B169
UD*
UD*
UD*
0.1
0.03
0.04





UD* = undetermined






FACS T Cell Killing Data on Panel of Target Positive (CD79b+ and CD20+) Cell Lines


Functional activity of the CD79b×CD20×CD3 trispecific constructs was assessed at 48 and 72 hr time point in an in vitro T cell killing assay by flow cytometry using cell lines that were validated by flow cytometry to have different endogenous expression levels of CD79b and CD20 on the cell surface, shown in Table 52.









TABLE 52







CD79b and CD20 Antigen Density of B Lymphoma Cell Lines













CD20 Antigen




CD79b Antigen
Density




Density (Antigen
(Antigen


Cell Line
Cell Type
Number/cell)
Number/cell)













OCI-LY10
Diffuse large B-cell
38,885
67,352



lymphoma line




CARNAVAL
Diffuse large B-cell
98,176
118,789



lymphoma line




JEKO-1
Mantle cell lymphoma
280,000
50,000









Target cancer cells were maintained in complete RPMI-1640 (ThermoFisher, catalog #11875093) media containing 10% heat inactivated fetal bovine serum. Prior to the assay, antibodies were made at 3-fold serial dilutions in RPMI 1640 media containing 10% heat inactivated fetal bovine serum, at 4-fold expected final concentration. A volume of 50 μL of medium-diluted bispecific or trispecific Ab in each well of a 96-well plate were further diluted into 200 μL by adding a mix of target and effector cell suspension. The target cell lines were harvested by centrifuge at 400×g for 5 min, washed one time with RPMI 1640 media. Target cancer cells were stain targets with CellTrace CFSE (ThermoFisher; Cat #: C34554) diluted 1/5000. Healthy donor T cells (isolated by CD3—negative selection provided by Discovery Life Sciences) were thawed in complete media (RPMI 1640 media containing 10% heat inactivated fetal bovine serum), counted and suspended in fresh complete phenol red-free RPMI 1640 media at 1×106 cells/mL. Target cells and T cells were mixed to obtain 5:1 effector to target cell ratio. Cell suspension was added to antibody dilution wells according to plate layout (150 μL/well). Cells were incubated for 48 and 72 hours with CD79b×CD20x×CD3 test molecules C923B169 and C923B168 (100 nM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were stained for 15 minutes at room temperature with Fixable Live/Dead stain (ThermoFisher; Cat #65-0865-14) at a 1:1000 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing flow panel antibodies (Table 53), antibodies amount added as listed in the table. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were analyzed using FACS Lyric (BD) flow cytometer and percent of cancer cell killing was generated using Cytobank. Percent of cancer cell killing was graphed and IC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(inhibitor) vs. response-variable slope (four parameter)”.









TABLE 53







Flow Panel Antibodies for T cell killing Assay

















Amount


Antibody
Conjugated

Catalog
LOT
added per


Name
Fluorophore
Vendor
Number
Number:
well (μl)















CD4
V500
BD
560768
9340575
 2/well




Biosciences





CD8
PerCPCy5.5
BD
560662
9290508
2 ul/well




Biosciences





CD69
PE
BD
560968
9049603
10 ul/well 




Biosciences





CD25
BV421
BD
562443
10302
2 ul/well




Biosciences












CD79b×CD20×CD3 trispecific mediated potent cytotoxicity. IC50 (nM) values and Max killing values are listed in Table 54 and Table 55.









TABLE 54







C923B169 and C923B168 CD79b × CD20 × CD3 killing of target positive (CARNAVAL,


OCI-Ly10, JEK0-1) cell lines (FACS) at 48 hours. IC50 (nM) and percent of maximal


killing are listed in the table. Average values from 2 independent T cell donors.














Killing
Killing
Killing
Killing
Killing
Killing



CARNAVAL
CARNAVAL
JEKO-1
JEKO-1
OCI-Ly10
OCI-Ly10



1:1 48 hr
5:1 48 hr
1:1 48 hr
5:1 48 hr
1:1 48 hr
5:14 8 hr



















Protein ID
IC50
Max
IC50
Max
IC50
Max
IC50
Max
IC50
Max
IC50
Max






















C923B169
110.3
49.7%
0.179
87.2%
27.307
60.8%
0.027
93.5%
>100
22.2%
>100
19.7%


C923B168
13.6
58.8%
0.012
95.0%
7.466
65.3%
0.002
96.7%
>100
25.1%
>100
29.8%
















TABLE 55







C923B169 and C923B168 CD79b × CD20 × CD3 killing of target positive CARNAVAL,


OCI-Ly10, JEK0-1) cell lines (FACS) at 72 hours. IC50 (nM) and percent of maximal


killing are listed in the table. Average values from 2 independent T cell donors.














Killing
Killing
Killing
Killing
Killing
Killing



CARNAVAL;
CARNAVAL;
JEKO-1;
JEKO-1;
OCI-Ly10;
OCI-Ly10;



1:1 72 hr
5:1 72 hr
1:1 72 hr
5:1 72 hr
1:1 72 hr
5:1 72 hr



















Protein ID
IC50
Max
IC50
Max
IC50
Max
IC50
Max
IC50
Max
IC50
Max






















C923B169
50.15
66.8%
0.026
98.3%
0.087
82.2
0.003
99.4%
>100
43.5%
24.58
70.0%


C923B168
15.53
75.9%
0.003
99.3%
0.010
85.8%
0.001
99.6%
0.81
61.0%
0.51
90.7%









C923B169 and C923B168 CD79b×CD20×CD3 Mediated Cytotoxicity Against Autologous B-Cells


Functional activity of the C923B169 and C923B168 CD79b×CD20×CD3 constructs was assessed in an in vitro autologous B cell depletion assay. This functional assay utilizes PBMCs to focus on the killing of primary B cells as well as T cell activation on donor matched primary cells. Cryo-preserved PBMCs from 3 different human donors were incubated for 72 hours with CD79b×CD20×CD3 test molecules C923B169 and C923B168 (300 nM starting concentration at 1:3 serial dilutions) at 37° C. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 minutes, with supernatant discarded. Cells were stained for 10 minutes at room temperature with BD stain buffer containing Fc blocking agent (Accurate Chemical and Scientific Corp; Cat #NB309) and Near IR Fixable Live/Dead stain (Invitrogen; Cat #L10119) at a 1:400 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were then stained for 30 minutes at 4° C. with BD stain buffer containing flow panel antibodies (Table 56) at a 1:100 dilution. All cells were washed with BD stain buffer (BD Biosciences; Cat #554657), centrifuged at 1200 RPM for 3 mins, with supernatant discarded. Cells were analyzed using Intellicyt (Sartorius) flow cytometer. EC50 values generated using GraphPad PRISM v.8. Dose response curves were generated by transforming the x axis values using the formula x=lox. Data was then graphed using non-linear regression curve fit analysis “log(agonist) vs. response-variable slope (four parameter)”.









TABLE 56







Flow Panel Antibodies for Autologous B Cell Depletion Assay











Conjugated

Catalog


Antibody Name
Fluorophore
Vendor
Number





Anti-human CD25
BV650
BD Biosciences
563719


Anti-Human CD4
BV510
Biolegend
317444


Anti-Human CD8
PE-Cy7
Biolegend
301012


Anti-Human CD20
PE
Biolegend
302306


Anti-Human CD11c
AF647
BD Biosciences
565911


Anti-Human CD2
BV605
BD Biosciences
740391









CD79b×CD20×CD3 C923B169 and C923B168 constructs showed a maximum drug mediated cytotoxicity of 69-95 percent (Table 57) with low levels of CD4+ and CD8+ T cell activation as demonstrated by CD25 expression on these T cell subsets.









TABLE 57







C923B169 and C923B168 CD79b × CD20 × CD3 killing of B cell in the primary


autologous B cell depletion assay at 72 hours. EC50 (nM) and percent of maximal


killing are listed in the table. Values from 3 independent T cell donors listed.












D329465
D198013
D221837
Average values
















EC50
Max Kill
EC50
Max Kill
EC50
Max Kill
EC50
Max Kill


Name
(nM)
(%)
(nM)
(%)
(nM)
(%)
(nM)
(%)


















C923B168
0.1
69
0.02
92
0.1
95
0.07
84


C923B169
2.0
69
1.70
92
6.30
81
2.80
80









Example 8: Generation of Bispecific PSMAxCD3 Antibodies
Example 8.1: FAB-ARM Exchange of Anti-PSMA and Anti-CD3 Antibodies

The formation of bispecific antibodies requires two parental monoclonal antibodies (mAbs), one specific for the targeting arm (e.g. PMSA) and one specific for the effector arm (e.g. CD3). Selected monospecific anti-PSMA and anti-CD3 antibodies were expressed as IgG1/κ engineered to have L234A, L235A and D265S substitutions for cF silencing, (EU numbering). Selected monospecific anti-PSMA and anti-CD3 antibodies are also expressed as IgG4 antibodies. Mutations designed to promote selective heterodimerization of the Fc domain were also engineered in the Fc domain.


The monospecific antibodies were expressed in CHO cell lines under CMV promoters as described above). The parental PSMA and CD3 antibodies were purified using a protein A column with an elution buffer of 100 mM NaAc pH3.5 and a neutralization puffer of 2 M Tris pH 7.5 and 150 mM NaCl. The anti-PSMA and anti-CD3 monoclonal antibodies were dialyzed into D-PBS, pH 7.2 buffer.


For DuoBody antibodies, post purification of parental monospecific antibodies, bispecific PSMAxCD3 antibodies were generated by mixing the parental PSMA antibodies with the desired parental CD3 antibody under reducing conditions in 75 mM cysteamine-HCl and incubated overnight at room temperature for in vitro Fab arm exchange as described in Int. Patent Publ. No. WO2011/131746. The recombination reactions were based on molar ratios, where a set amount of PSMA antibody (e.g., 10 mg, or ˜74.6 nanomoles) was combined with CD3 antibody (e.g., ˜70.87 nanomoles), where the PSMA antibody was added in a 5% excess of the CD3 antibody. The concentrations of the PSMA antibody stocks varied from 0.8 to 6 mg/mL, and the volumes the recombination reactions varied for each pairing. The recombinations were subsequently dialyzed overnight against PBS to remove the reductant. The PSMAxCD3 bispecific antibody reactions were performed with an excess of the PSMA antibody (ratio) to minimize the amount of unreacted CD3 parental antibody remaining after recombination.


Other bispecifics were generated via co-transfection of HC1:HC2:LC2, typically at a DNA ratio of 1:1:3. Purification was performed by protein A chromatography and CH1 affinity capture, followed by an ion exchange-based chromatography.


Exemplary PSMAxCD3 multispecific antibodies are provided in Tables 58 through 63.









TABLE 58







PSMA × CD3 Bispecific Antibodies: Clone Descriptions








Name
Bispecific Description





PS3B1353
HC1 (F405L): CD3B376 × HC2 (K409R): PSMB896


PS3B1505
HC1 CD3B376-Fab × HC2 PSMB896-G100A IgG1



DuoBody


PS3B1508
HC1 (Knob3): CD3W245-LH-scFv; HC2 (Hole3-RF)



PSMB896-G100A-Fab-RF: IgG1 AAS


PS3B1917
HC1 (ZWA w/o K447_RF): CD3B376-Fab, HC2 (ZWB w/o



K447): PSMA_P72_A10-HC-G54E-scFv LH


PS3B1918
HC1 (ZWA w/o K447_RF): CD3B376-Fab, HC2 (ZWB w/o



K447): PSMA_P72_D01-HC-D95E-scFv LH


PS3B1919
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P75_F01, LH


PS3B1920
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_F07, LH


PS3B1921
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_E07, LH


PS3B1922
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_D01, LH


PS3B1923
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_C01, LH


PS3B1924
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_A10, LH


PS3B1925
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P70_F02, LH


PS3B1926
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_G02, HL


PS3B1927
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_C01, HL


PS3B1928
HC1 (ZWA w/o K447_RF): CD3B376-Fab; HC2 (ZWB w/o



K447): PSMA_P72_A11, HL


PSMB1041
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P70_F02,



LH


PSMB1045
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_A10,



LH


PSMB1047
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_C01,



LH


PSMB1049
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_D01,



LH


PSMB1051
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_E07,



LH


PSMB1052
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_F07,



LH


PSMB1060
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P75_F01,



LH


PSMB1068
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_A11,



HL


PSMB1069
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_C01,



HL


PSMB1075
HC1 (ZWA): B23B62-Fab; HC2 (ZWB): PSMA_P72_G02,



HL


PSMB2908
HC1 (ZWA w/o K447): B23B62-Fab, HC2 (ZWB w/o



K447): PSMA_P72_D01-HC-D95E-scFv LH


PSMB2909
HC1 (ZWA w/o K447): B23B62-Fab, HC2 (ZWB w/o



K447)): PSMA_P72_A10-HC-G54E-scFv LH


PS3B1391
HC 1: N-term scFv LH CD3B2030 N106A LH-scFv (MA),



HC 2: N-term_Fab_PSMHB49SC1133_011A11_1


PS3B1396
HC1 (Knob3): CD3B2030-N106A-scFv LH, HC2 (Hole3):



PSMB896-G100A-Fab
















TABLE 59







PSMA x CD3 Bispecific Antibodies: CD3 Arm Descriptions














SEQ

SEQ
CD3 Arm


Name
HC1
ID NO.
LC1
ID NO.
Description





PS3B1353
QVQLQQSGPRLVRPSQTLSLTC
1188
QSALTQPASVSG
1189
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYAVS

SSNIGTYKFVSW

arm



VKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLGQPKAAPSV





EPKSCDKTHTCPPCPAPEAAGG

TLFPPSSEELQAN





PSVFLFPPKPKDTLMISRTPEVT

KATLVCLISDFY





CVVVSVSHEDPEVKFNWYVDG

PGAVTVAWKAD





VEVHNAKTKPREEQYNSTYRV

SSPVKAGVETTT





VSVLTVLHQDWLNGKEYKCK

PSKQSNNKYAAS





VSNKALPAPIEKTISKAKGQPRE

SYLSLTPEQWKS





PQVYTLPPSREEMTKNQVSLTC

HRSYSCQVTHEG





LVKGFYPSDIAVEWESNGQPEN

STVEKTVAPTEC





NYKTTPPVLDSDGSFLLYSKLT

S





VDKSRWQQGNVFSCSVMHEAL







HNHYTQKSLSLSPGK









PS3B1505
QVQLQQSGPRLVRPSQTLSLTC
1190
QSALTQPASVSG
1191
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLGQPKAAPSV





EPKSCDKTHTCPPCPAPEAAGG

TLFPPSSEELQAN





PSVFLFPPKPKDTLMISRTPEVT

KATLVCLISDFY





CVVVSVSHEDPEVKFNWYVDG

PGAVTVAWKAD





VEVHNAKTKPREEQYNSTYRV

SSPVKAGVETTT





VSVLTVLHQDWLNGKEYKCK

PSKQSNNKYAAS





VSNKALPAPIEKTISKAKGQPRE

SYLSLTPEQWKS





PQVYTLPPSREEMTKNQVSLTC

HRSYSCQVTHEG





LVKGFYPSDIAVEWESNGQPEN

STVEKTVAPTEC





NYKTTPPVLDSDGSFLLYSKLT

S





VDKSRWQQGNVFSCSVMHEAL







HNHYTQKSLSLSPGK









PS3B1508
DIQMTQSPSSLSASVGDRVTITC
1192
NA
1193
with



RARQSIGTAIHWYQQKPGKAP



CD3W245



KLLIKYASESISGVPSRFSGSGS



arm



GTDFTLTISSLQPEDFATYYCQQ



(CD3B2183



SGSWPYTFGQGTKLEIKGGSEG



without



KSSGSGSESKSTGGSEVQLVES



K477)



GGGLVKPGGSLRLSCAASGFTF







SRYNMNWVRQAPGKGLEWVS







SISTSSNYIYYADSVKGRFTFSR







DNAKNSLDLQMSGLRAEDTAI







YYCTRGWGPFDYWGQGTLVT







VSSEPKSSDKTHTCPPCPAPEAA







GGPSVFLFPPKPKDTLMISRTPE







VTCVVVSVSHEDPEVKFNWYV







DGVEVHNAKTKPREEQYNSTY







RVVSVLTVLHQDWLNGKEYKC







KVSNKALPAPIEKTISKAKGQP







REPQVYTLPPSREEMTKNQVSL







WCLVKGFYPSDIAVEWESNGQ







PENNYKTTPPVLDSDGSFFLYS







KLTVDKSRWQQGNVFSCSVMH







EALHNHYTQKSLSLSPGK









PS3B1917
QVQLQQSGPRLVRPSQTLSLTC
1194
QSALTQPASVSG
1195
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1918
QVQLQQSGPRLVRPSQTLSLTC
1196
QSALTQPASVSG
1197
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1919
QVQLQQSGPRLVRPSQTLSLTC
1198
QSALTQPASVSG
1199
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1920
QVQLQQSGPRLVRPSQTLSLTC
1200
QSALTQPASVSG
1201
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1921
QVQLQQSGPRLVRPSQTLSLTC
1202
QSALTQPASVSG
1203
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1922
QVQLQQSGPRLVRPSQTLSLTC
1204
QSALTQPASVSG
1205
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1923
QVQLQQSGPRLVRPSQTLSLTC
1206
QSALTQPASVSG
1207
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1924
QVQLQQSGPRLVRPSQTLSLTC
1208
QSALTQPASVSG
1209
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1925
QVQLQQSGPRLVRPSQTLSLTC
1210
QSALTQPASVSG
1211
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1926
QVQLQQSGPRLVRPSQTLSLTC
1212
QSALTQPASVSG
1213
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1927
QVQLQQSGPRLVRPSQTLSLTC
1214
QSALTQPASVSG
1215
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PS3B1928
QVQLQQSGPRLVRPSQTLSLTC
1216
QSALTQPASVSG
1217
with



AISGDSVFNNNAAWSWIRQSPS

SPGQSITISCTGT

CD3B376



RGLEWLGRTYYRSKWLYDYA

SSNIGTYKFVSW

arm



VSVKSRITVNPDTSRNQFTLQL

YQQHPDKAPKV

(CD3B891



NSVTPEDTALYYCARGYSSSFD

LLYEVSKRPSGV

without K477



YWGQGTLVTVSSASTKGPSVFP

SSRFSGSKSGNT

or



LAPSSKSTSGGTAALGCLVKDY

ASLTISGLQAED

CD3B2197



FPEPVTVSWNSGALTSGVHTFP

QADYHCVSYAG

with K477 in



AVLQSSGLYSLSSVVTVPSSSLG

SGTLLFGGGTKL

HC1)



TQTYICNVNHKPSNTKVDKKV

TVLRTVAAPSVF





EPKSCDKTHTCPPCPAPEAAGG

IFPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNRFTQKSLSLSPG









PSMB1041
QITLKESGPTLVKPTQTLTLTCT
1218
DIVMTQSPDSLA
1219
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1045
QITLKESGPTLVKPTQTLTLTCT
1220
DIVMTQSPDSLA
1221
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1047
QITLKESGPTLVKPTQTLTLTCT
1222
DIVMTQSPDSLA
1223
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1049
QITLKESGPTLVKPTQTLTLTCT
1224
DIVMTQSPDSLA
1225
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1051
QITLKESGPTLVKPTQTLTLTCT
1226
DIVMTQSPDSLA
1227
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1052
QITLKESGPTLVKPTQTLTLTCT
1228
DIVMTQSPDSLA
1229
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP







ENNYKTTPPVLDSDGSFALVSK

GLSSPVTKSFNR





LTVDKSRWQQGNVFSCSVMHE

GEC





ALHNRFTQKSLSLSPG









PSMB1060
QITLKESGPTLVKPTQTLTLTCT
1230
DIVMTQSPDSLA
1231
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1068
QITLKESGPTLVKPTQTLTLTCT
1232
DIVMTQSPDSLA
1233
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1069
QITLKESGPTLVKPTQTLTLTCT
1234
DIVMTQSPDSLA
1235
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB1075
QITLKESGPTLVKPTQTLTLTCT
1236
DIVMTQSPDSLA
1237
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPELLGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVDVSHEDPEVKFNWYVD

REAKVQWKVDN





GVEVHNAKTKPREEQYNSTYR

ALQSGNSQESVT





VVSVLTVLHQDWLNGKEYKC

EQDSKDSTYSLS





KVSNKALPAPIEKTISKAKGQP

STLTLSKADYEK





REPQVYVYPPSREEMTKNQVSL

HKVYACEVTHQ





TCLVKGFYPSDIAVEWESNGQP

GLSSPVTKSFNR





ENNYKTTPPVLDSDGSFALVSK

GEC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPG









PSMB2908
QITLKESGPTLVKPTQTLTLTCT
1238
DIVMTQSPDSLA
1239
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPEAAGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNHYTQKSLSLSPG









PSMB2909
QITLKESGPTLVKPTQTLTLTCT
1240
DIVMTQSPDSLA
1241
Null CD3



FSGFSLSTSGMGVSWIRQPPGK

VSLGERATINCR

arm



ALEWLAHIYWDDDKRYNPSLK

ASQSVDYNGISY





SRLTITKDTSKNQVVLTMTNM

MHWYQQKPGQP





DPVDTATYYCARLYGFTYGFA

PKLLIYAASNPES





YWGQGTLVTVSSASTKGPSVFP

GVPDRFSGSGSG





LAPSSKSTSGGTAALGCLVKDY

TDFTLTISSLQAE





FPEPVTVSWNSGALTSGVHTFP

DVAVYYCQQIIE





AVLQSSGLYSLSSVVTVPSSSLG

DPWTFGQGTKV





TQTYICNVNHKPSNTKVDKKV

EIKRTVAAPSVFI





EPKSCDKTHTCPPCPAPEAAGG

FPPSDEQLKSGT





PSVFLFPPKPKDTLMISRTPEVT

ASVVCLLNNFYP





CVVVSVSHEDPEVKFNWYVDG

REAKVQWKVDN





VEVHNAKTKPREEQYNSTYRV

ALQSGNSQESVT





VSVLTVLHQDWLNGKEYKCK

EQDSKDSTYSLS





VSNKALPAPIEKTISKAKGQPRE

STLTLSKADYEK





PQVYVYPPSREEMTKNQVSLTC

HKVYACEVTHQ





LVKGFYPSDIAVEWESNGQPEN

GLSSPVTKSFNR





NYKTTPPVLDSDGSFALVSKLT

GEC





VDKSRWQQGNVFSCSVMHEAL







HNHYTQKSLSLSPG









PS3B1391
EIVLTQSPATLSASPGERVTLSC
1455
NA
1456
CD3B2030



SASSSVSYMNWYQQKPGQAPR







RWIYDSSKLASGVPARFSGSGS







GRDYTLTISSLEPEDFAVYYCQ







QWSRNPPTFGGGTKVEIKGGSE







GKSSGSGSESKSTGGSQVQLVQ







SGAEVKKPGSSVKVSCKASGY







TFTRSTMHWVKQAPGQGLEWI







GYINPSSAYTNYNQKFQGRVTL







TADKSTSTAYMELSSLRSEDTA







VYYCASPQVHYDYAGFPYWG







QGTLVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYTLPPSREE







MTKNQVSLWCLVKGFYPSDIA







VEWESNGQPENNYKTTPPVLD







SDGSFFLYSKLTVDKSRWQQG







NVFSCSVMHEALHNHYTQKSL







SLSPGK









PS3B1396
EIVLTQSPATLSASPGERVTLSC
1457
NA
1458
CD3B2030



SASSSVSYMNWYQQKPGQAPR







RWIYDSSKLASGVPARFSGSGS







GRDYTLTISSLEPEDFAVYYCQ







QWSRNPPTFGGGTKVEIKGGSE







GKSSGSGSESKSTGGSQVQLVQ







SGAEVKKPGSSVKVSCKASGY







TFTRSTMHWVKQAPGQGLEWI







GYINPSSAYTNYNQKFQGRVTL







TADKSTSTAYMELSSLRSEDTA







VYYCASPQVHYDYAGFPYWG







QGTLVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYTLPPSREE







MTKNQVSLWCLVKGFYPSDIA







VEWESNGQPENNYKTTPPVLD







SDGSFFLYSKLTVDKSRWQQG







NVFSCSVMHEALHNHYTQKSL







SLSPGK
















TABLE 60







PSMA x CD3 Bispecific Antibodies: PSMA Arm Descriptions














SEQ

SEQ
PSMA Arm


Name
HC2
ID NO.
LC2
ID NO.
Description





PS3B1353
EVQLVESGGGLVQPGGSLRLSC
1242
QSVLTQPPSVSA
1243
PSMB896



AASGFTFSSYAMSWVRQAPGK

APGQKVTISCSG





GLEWVSAISGGIGSTYYADSVK

SSSNIGINYVSW





GRFTISRDNSKNTLWLQMNSLR

YQQLPGTAPKLL





AEDTAVYYCAKDGVGATPYYF

IYDNNKRPSGIP





DYWGQGTLVTVSSASTKGPSV

DRFSGSKSGTSA





FPLAPSSKSTSGGTAALGCLVK

TLGITGLQTGDE





DYFPEPVTVSWNSGALTSGVHT

ADYYCGTWDSS





FPAVLQSSGLYSLSSVVTVPSSS

LSAVVFGGGTKL





LGTQTYICNVNHKPSNTKVDK

TVLGQPKAAPSV





KVEPKSCDKTHTCPPCPAPEAA

TLFPPSSEELQAN





GGPSVFLFPPKPKDTLMISRTPE

KATLVCLISDFY





VTCVVVSVSHEDPEVKFNWYV

PGAVTVAWKAD





DGVEVHNAKTKPREEQYNSTY

SSPVKAGVETTT





RVVSVLTVLHQDWLNGKEYKC

PSKQSNNKYAAS





KVSNKALPAPIEKTISKAKGQP

SYLSLTPEQWKS





REPQVYTLPPSREEMTKNQVSL

HRSYSCQVTHEG





TCLVKGFYPSDIAVEWESNGQP

STVEKTVAPTEC





ENNYKTTPPVLDSDGSFFLYSR

S





LTVDKSRWQQGNVFSCSVMHE







ALHNHYTQKSLSLSPGK









PS3B1505
EVQLVESGGGLVQPGGSLRLSC
1244
QSVLTQPPSVSA
1245
PSMB896-



AASGFTFSSYAMSWVRQAPGK

APGQKVTISCSG

G100A



GLEWVSAISGGIGSTYYADSVK

SSSNIGINYVSW





GRFTISRDNSKNTLWLQMNSLR

YQQLPGTAPKLL





AEDTAVYYCAKDAVGATPYYF

IYDNNKRPSGIP





DYWGQGTLVTVSSASTKGPSV

DRFSGSKSGTSA





FPLAPSSKSTSGGTAALGCLVK

TLGITGLQTGDE





DYFPEPVTVSWNSGALTSGVHT

ADYYCGTWDSS





FPAVLQSSGLYSLSSVVTVPSSS

LSAVVFGGGTKL





LGTQTYICNVNHKPSNTKVDK

TVLGQPKAAPSV





KVEPKSCDKTHTCPPCPAPEAA

TLFPPSSEELQAN





GGPSVFLFPPKPKDTLMISRTPE

KATLVCLISDFY





VTCVVVSVSHEDPEVKFNWYV

PGAVTVAWKAD





DGVEVHNAKTKPREEQYNSTY

SSPVKAGVETTT





RVVSVLTVLHQDWLNGKEYKC

PSKQSNNKYAAS





KVSNKALPAPIEKTISKAKGQP

SYLSLTPEQWKS





REPQVYTLPPSREEMTKNQVSL

HRSYSCQVTHEG





TCLVKGFYPSDIAVEWESNGQP

STVEKTVAPTEC





ENNYKTTPPVLDSDGSFFLYSR

S





LTVDKSRWQQGNVFSCSVMHE







ALHNHYTQKSLSLSPGK









PS3B1508
EVQLVESGGGLVQPGGSLRLSC
1246
QSVLTQPPSVSA
1247
PSMB896-



AASGFTFSSYAMSWVRQAPGK

APGQKVTISCSG

G100A



GLEWVSAISGGIGSTYYADSVK

SSSNIGINYVSW





GRFTISRDNSKNTLWLQMNSLR

YQQLPGTAPKLL





AEDTAVYYCAKDAVGATPYYF

IYDNNKRPSGIP





DYWGQGTLVTVSSASTKGPSV

DRFSGSKSGTSA





FPLAPSSKSTSGGTAALGCLVK

TLGITGLQTGDE





DYFPEPVTVSWNSGALTSGVHT

ADYYCGTWDSS





FPAVLQSSGLYSLSSVVTVPSSS

LSAVVFGGGTKL





LGTQTYICNVNHKPSNTKVDK

TVLGQPKAAPSV





KVEPKSCDKTHTCPPCPAPEAA

TLFPPSSEELQAN





GGPSVFLFPPKPKDTLMISRTPE

KATLVCLISDFY





VTCVVVSVSHEDPEVKFNWYV

PGAVTVAWKAD





DGVEVHNAKTKPREEQYNSTY

SSPVKAGVETTT





RVVSVLTVLHQDWLNGKEYKC

PSKQSNNKYAAS





KVSNKALPAPIEKTISKAKGQP

SYLSLTPEQWKS





REPQVYTLPPSREEMTKNQVSL

HRSYSCQVTHEG





SCAVKGFYPSDIAVEWESNGQP

STVEKTVAPTEC





ENNYKTTPPVLDSDGSFFLVSK

S





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPGK









PS3B1917
SYELMQPPSVSVSPGQTARITCS
1248
NA
1249
PSMA_P72



GDALPKQYAYWYQQKPGQAP



A10-HC-



VLVIYKDSERPSGIPVRFSGSSS



G54E



GTTVTLTITGVQAEDEADYYCQ







SADSSGTYVFGTGTKVTVLGGS







EGKSSGSGSESKSTGGSQVQLV







ESGGGVVQPGRSLRLSCAASGF







TFSSYNMNWVRQAPGKGLEW







VAIIYYDESNKYYADSVKGRFT







ISRDISKNTLYLQMNSLRAEDT







AVYYCARERGRDYYGMDVWG







QGTTVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PS3B1918
QSVLTQPASVSGSPGQSITISCT
1250
NA
1251
PSMA_P_72_



GTSSDVGGYNYVSWYQQHPG



D01-HC-



KAPKLMIYEVSNRPSGVSNRFS



D95E



GSKSGNTASLTISGLQAEDEAD







YYCSSYTSSYTYVFGTGTKLTV







LGGSEGKSSGSGSESKSTGGSE







VQLVESGGDLVQPGGSLRLSCA







ASGFTFNNYNMNWVRQAPGK







GLEWVSHISTSSSNKYYADSVK







GRFSISRDIAKNSMYLQMNSLR







DEDTAVYYCAREGVGADYGD







YYYYGMDVWGQGTTVTVSSE







PKSSDKTHTCPPCPAPEAAGGP







SVFLFPPKPKDTLMISRTPEVTC







VVVSVSHEDPEVKFNWYVDGV







EVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVS







NKALPAPIEKTISKAKGQPREPQ







VYVLPPSREEMTKNQVSLLCLV







KGFYPSDIAVEWESNGQPENNY







LTWPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHN







HYTQKSLSLSPG









PS3B1919
EIVLTQSPGTLSVSPGERATLSC
1252
NA
1253
PSMA_P75_



RASQSVRSNLAWYQQKPGQAP



F01



RLLIYGASTRATGIPARFSGSGS







GTEFTLTISSLQSEDFAVYYCHQ







YNDWPPYTFGQGTKLEIKGGSE







GKSSGSGSESKSTGGSQVQLQE







SGGGVVQPGRSLRLSCAASGFT







FSTYGMHWVRQAPGKGLEWV







AFISYDGSNKYYADSVKGRFTI







SRDNSKHTLYLQMNSLRAEDT







AVYYCAGRDNLRFLEWFMDV







WGQGTTVTVSSEPKSSDKTHTC







PPCPAPEAAGGPSVFLFPPKPKD







TLMISRTPEVTCVVVSVSHEDP







EVKFNWYVDGVEVHNAKTKP







REEQYNSTYRVVSVLTVLHQD







WLNGKEYKCKVSNKALPAPIE







KTISKAKGQPREPQVYVLPPSR







EEMTKNQVSLLCLVKGFYPSDI







AVEWESNGQPENNYLTWPPVL







DSDGSFFLYSKLTVDKSRWQQ







GNVFSCSVMHEALHNHYTQKS







LSLSPG









PS3B1920
SYELTQPPSVSVAPGQTARITCG
1254
NA
1255
PSMA_P72_



GNNIGSKSVHWYQQKPGQAPV



F07



LVVYDDSDRPSGIPERFSGSNSG







NTATLTISRVEAGDEADYYCQV







WDSSTDHVVFGGGTKLTVLGG







SEGKSSGSGSESKSTGGSEVQL







VESGGGVVQPGRSLRLSCAASG







FTFSSYGMNWVRQAPGKGLEW







VAVTSYDGSNKYYADSVKGRF







TISRDISKNTLYLQMSSLRAEDT







AVYYCARDPYSSSWNGAFDIW







GPGTMVTVSSEPKSSDKTHTCP







PCPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PS3B1921
QSVLTQPPSASGTPGQGVTISCS
1256
NA
1257
PSMA_P72_



GSSSNIGSNTVNWFQQLPGTAP



E07



KLLIYSDNQRPSGVPDRFSGSKS







GTSASLAISGLQSEDEADYYCA







AWDDSLNGYVFGTGTKVTVLG







GSEGKSSGSGSESKSTGGSEVQ







LVESGGGVVQPGRSLRLSCAAS







GFTFITYGMHWVRQAPGKGLE







WVAVVSFDESNKYYADSVKGR







FTISRDNSKNTLYLQMNSLRAE







DTAVYYCARALRDGNNWDYF







NGMDVWGQGTTVTVSSEPKSS







DKTHTCPPCPAPEAAGGPSVFL







FPPKPKDTLMISRTPEVTCVVVS







VSHEDPEVKFNWYVDGVEVHN







AKTKPREEQYNSTYRVVSVLT







VLHQDWLNGKEYKCKVSNKA







LPAPIEKTISKAKGQPREPQVYV







LPPSREEMTKNQVSLLCLVKGF







YPSDIAVEWESNGQPENNYLT







WPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNH







YTQKSLSLSPG









PS3B1922
QSVLTQPASVSGSPGQSITISCT
1258
NA
1259
PSMA_P72_



GTSSDVGGYNYVSWYQQHPG



D01



KAPKLMIYEVSNRPSGVSNRFS







GSKSGNTASLTISGLQAEDEAD







YYCSSYTSSYTYVFGTGTKLTV







LGGSEGKSSGSGSESKSTGGSE







VQLVESGGDLVQPGGSLRLSCA







ASGFTFNNYNMNWVRQAPGK







GLEWVSHISTSSSNKYYADSVK







GRFSISRDIAKNSMYLQMNSLR







DEDTAVYYCARDGVGADYGD







YYYYGMD VWGQGTTVTVSSE







PKSSDKTHTCPPCPAPEAAGGP







SVFLFPPKPKDTLMISRTPEVTC







VVVSVSHEDPEVKFNWYVDGV







EVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVS







NKALPAPIEKTISKAKGQPREPQ







VYVLPPSREEMTKNQVSLLCLV







KGFYPSDIAVEWESNGQPENNY







LTWPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHN







HYTQKSLSLSPG









PS3B1923
QSVLTQPPSVSVAPGQTARITC
1260
NA
1261
PSMA_P72_



GGNNSGSKSVHWYQQKPGQAP



C01



VLVVYDDSDRPSGIPERFSGSNS







GNTATLTISRVEAGDEADYYCQ







VWDSSSDHGVFGGGTKLTVLG







GSEGKSSGSGSESKSTGGSQVQ







LVESGGGEVQPGRSLRLSCAAS







GFSFSGYGMHWVRQAPGKGLE







WVAVMSYDGSNRFYVDSVRG







RFSISRDNSKNTLYLQMNSLRP







EDTAVYYCARDTVWGSHPDAF







DIWGQGTVVTVSSEPKSSDKTH







TCPPCPAPEAAGGPSVFLFPPKP







KDTLMISRTPEVTCVVVSVSHE







DPEVKFNWYVDGVEVHNAKT







KPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAP







IEKTISKAKGQPREPQVYVLPPS







REEMTKNQVSLLCLVKGFYPS







DIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PS3B1924
SYELMQPPSVSVSPGQTARITCS
1262
NA
1263
PSMA_P72_



GDALPKQYAYWYQQKPGQAP



A10



VLVIYKDSERPSGIPVRFSGSSS







GTTVTLTITGVQAEDEADYYCQ







SADSSGTYVFGTGTKVTVLGGS







EGKSSGSGSESKSTGGSQVQLV







ESGGGVVQPGRSLRLSCAASGF







TFSSYNMNWVRQAPGKGLEW







VAIIYYDGSNKYYADSVKGRFT







ISRDISKNTLYLQMNSLRAEDT







AVYYCARERGRDYYGMDVWG







QGTTVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PS3B1925
QSVLTQPPSASGTPGQRVTISCS
1264
NA
1265
PSMA_P70_



GSSSNIGSNTVNWYQQLPGTAP



F02



KLLIYSSNQRPSGVPDRFSGSKS







GTSASLAISGLQSEDEADYYCA







AWDDSLNGVVFGGGTKLTVLG







GSEGKSSGSGSESKSTGGSEVQ







LLESGPGLVKPSETLSLTCTVSG







GSIISYYWSWIRQPAGKGLEWI







GRIYSSGSTNYNPSLKSRVTMS







VDTSKNQFSLKLSSVTAADTAV







YYCAKVGVWPGAFDIWGQGT







MVTVSSEPKSSDKTHTCPPCPA







PEAAGGPSVFLFPPKPKDTLMIS







RTPEVTCVVVSVSHEDPEVKFN







WYVDGVEVHNAKTKPREEQY







NSTYRVVSVLTVLHQDWLNGK







EYKCKVSNKALPAPIEKTISKA







KGQPREPQVYVLPPSREEMTKN







QVSLLCLVKGFYPSDIAVEWES







NGQPENNYLTWPPVLDSDGSFF







LYSKLTVDKSRWQQGNVFSCS







VMHEALHNHYTQKSLSLSPG









PS3B1926
EVQLVESGGGVVQPGRSLRLSC
1266
NA
1267
PSMA_P72_



AASGFSFSGYGMHWVRQAPGK



G02



GLEWVAVISYDGSNKYYADSV







KGRFTISRDNSKNTLYLQMNSL







RVEDTAVYYCARDRIWGSRGY







YYGMDVWGQGTTVTVSSGGS







EGKSSGSGSESKSTGGSQSALT







QPASVSGSPGQSITISCTGASSD







VGGYNYVSWYQQHPGKAPKL







MIYEVSNRPSGVSNRFSGSKSG







NTASLTISGLQAEDEADYYCSS







YTITSTLVFGGGTKLTVLEPKSS







DKTHTCPPCPAPEAAGGPSVFL







FPPKPKDTLMISRTPEVTCVVVS







VSHEDPEVKFNWYVDGVEVHN







AKTKPREEQYNSTYRVVSVLT







VLHQDWLNGKEYKCKVSNKA







LPAPIEKTISKAKGQPREPQVYV







LPPSREEMTKNQVSLLCLVKGF







YPSDIAVEWESNGQPENNYLT







WPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNH







YTQKSLSLSPG









PS3B1927
QVQLVESGGGEVQPGRSLRLSC
1268
NA
1269
PSMA_P72_



AASGFSFSGYGMHWVRQAPGK



C01



GLEWVAVMSYDGSNRFYVDS







VRGRFSISRDNSKNTLYLQMNS







LRPEDTAVYYCARDTVWGSHP







DAFDIWGQGTVVTVSSGGSEG







KSSGSGSESKSTGGSQSVLTQPP







SVSVAPGQTARITCGGNNSGSK







SVHWYQQKPGQAPVLVVYDD







SDRPSGIPERFSGSNSGNTATLTI







SRVEAGDEADYYCQVWDSSSD







HGVFGGGTKLTVLEPKSSDKTH







TCPPCPAPEAAGGPSVFLFPPKP







KDTLMISRTPEVTCVVVSVSHE







DPEVKFNWYVDGVEVHNAKT







KPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAP







IEKTISKAKGQPREPQVYVLPPS







REEMTKNQVSLLCLVKGFYPS







DIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PS3B1928
QVQLQESGGDVVQPGRSLRLS
1270
NA
1271
PSMA_P72_



CAASGFSFSGYGLHWVRQAPG



lA11



RGLEWVTLISYDGSNKYYADS







VKGRFTISRDNSKNTLYLQMNS







LRAEDTAVYYCAKTTVSDPYY







YGMDVWGQGTTVTVSSGGSE







GKSSGSGSESKSTGGSSYELTQP







PSVSVAPGQTARITCGGNNIGS







KSVHWYQQKPGQAPVLVVYD







DSDRPSGIPERFSGTNSGNTATL







TISRAEAGDEADYYCQVWDSS







SDHVVFGGGTKLTVLEPKSSDK







THTCPPCPAPEAAGGPSVFLFPP







KPKDTLMISRTPEVTCVVVSVS







HEDPEVKFNWYVDGVEVHNA







KTKPREEQYNSTYRVVSVLTVL







HQDWLNGKEYKCKVSNKALP







APIEKTISKAKGQPREPQVYVLP







PSREEMTKNQVSLLCLVKGFYP







SDIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PSMB1041
QSVLTQPPSASGTPGQRVTISCS
1272
NA
1273
PSMA_P70_



GSSSNIGSNTVNWYQQLPGTAP



F02



KLLIYSSNQRPSGVPDRFSGSKS







GTSASLAISGLQSEDEADYYCA







AWDDSLNGVVFGGGTKLTVLG







GSEGKSSGSGSESKSTGGSEVQ







LLESGPGLVKPSETLSLTCTVSG







GSIISYYWSWIRQPAGKGLEWI







GRIYSSGSTNYNPSLKSRVTMS







VDTSKNQFSLKLSSVTAADTAV







YYCAKVGVWPGAFDIWGQGT







MVTVSSEPKSSDKTHTCPPCPA







PEAAGGPSVFLFPPKPKDTLMIS







RTPEVTCVVVSVSHEDPEVKFN







WYVDGVEVHNAKTKPREEQY







NSTYRVVSVLTVLHQDWLNGK







EYKCKVSNKALPAPIEKTISKA







KGQPREPQVYVLPPSREEMTKN







QVSLLCLVKGFYPSDIAVEWES







NGQPENNYLTWPPVLDSDGSFF







LYSKLTVDKSRWQQGNVFSCS







VMHEALHNHYTQKSLSLSPG









PSMB1045
SYELMQPPSVSVSPGQTARITCS
1274
NA
1275
PSMA_P72_



GDALPKQYAYWYQQKPGQAP



A10



VLVIYKDSERPSGIPVRFSGSSS







GTTVTLTITGVQAEDEADYYCQ







SADSSGTYVFGTGTKVTVLGGS







EGKSSGSGSESKSTGGSQVQLV







ESGGGVVQPGRSLRLSCAASGF







TFSSYNMNWVRQAPGKGLEW







VAIIYYDGSNKYYADSVKGRFT







ISRDISKNTLYLQMNSLRAEDT







AVYYCARERGRDYYGMDVWG







QGTTVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PSMB1047
QSVLTQPPSVSVAPGQTARITC
1276
NA
1277
PSMA_P72_



GGNNSGSKSVHWYQQKPGQAP



C01



VLVVYDDSDRPSGIPERFSGSNS







GNTATLTISRVEAGDEADYYCQ







VWDSSSDHGVFGGGTKLTVLG







GSEGKSSGSGSESKSTGGSQVQ







LVESGGGEVQPGRSLRLSCAAS







GFSFSGYGMHWVRQAPGKGLE







WVAVMSYDGSNRFYVDSVRG







RFSISRDNSKNTLYLQMNSLRP







EDTAVYYCARDTVWGSHPDAF







DIWGQGTVVTVSSEPKSSDKTH







TCPPCPAPEAAGGPSVFLFPPKP







KDTLMISRTPEVTCVVVSVSHE







DPEVKFNWYVDGVEVHNAKT







KPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAP







IEKTISKAKGQPREPQVYVLPPS







REEMTKNQVSLLCLVKGFYPS







DIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PSMB1049
QSVLTQPASVSGSPGQSITISCT
1278
NA
1279
PSMA_P72_



GTSSDVGGYNYVSWYQQHPG



D01



KAPKLMIYEVSNRPSGVSNRFS







GSKSGNTASLTISGLQAEDEAD







YYCSSYTSSYTYVFGTGTKLTV







LGGSEGKSSGSGSESKSTGGSE







VQLVESGGDLVQPGGSLRLSCA







ASGFTFNNYNMNWVRQAPGK







GLEWVSHISTSSSNKYYADSVK







GRFSISRDIAKNSMYLQMNSLR







DEDTAVYYCARDGVGADYGD







YYYYGMDVWGQGTTVTVSSE







PKSSDKTHTCPPCPAPEAAGGP







SVFLFPPKPKDTLMISRTPEVTC







VVVSVSHEDPEVKFNWYVDGV







EVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVS







NKALPAPIEKTISKAKGQPREPQ







VYVLPPSREEMTKNQVSLLCLV







KGFYPSDIAVEWESNGQPENNY







LTWPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHN







HYTQKSLSLSPG






PSMB1051
QSVLTQPPSASGTPGQGVTISCS
1280
NA
1281
PSMA_P72_



GSSSNIGSNTVNWFQQLPGTAP



E07



KLLIYSDNQRPSGVPDRFSGSKS







GTSASLAISGLQSEDEADYYCA







AWDDSLNGYVFGTGTKVTVLG







GSEGKSSGSGSESKSTGGSEVQ







LVESGGGVVQPGRSLRLSCAAS







GFTFITYGMHWVRQAPGKGLE







WVAVVSFDESNKYYADSVKGR







FTISRDNSKNTLYLQMNSLRAE







DTAVYYCARALRDGNNWDYF







NGMDVWGQGTTVTVSSEPKSS







DKTHTCPPCPAPEAAGGPSVFL







FPPKPKDTLMISRTPEVTCVVVS







VSHEDPEVKFNWYVDGVEVHN







AKTKPREEQYNSTYRVVSVLT







VLHQDWLNGKEYKCKVSNKA







LPAPIEKTISKAKGQPREPQVYV







LPPSREEMTKNQVSLLCLVKGF







YPSDIAVEWESNGQPENNYLT







WPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNH







YTQKSLSLSPG









PSMB1052
SYELTQPPSVSVAPGQTARITCG
1282
NA
1283
PSMA_P72_



GNNIGSKSVHWYQQKPGQAPV



F07



LVVYDDSDRPSGIPERFSGSNSG







NTATLTISRVEAGDEADYYCQV







WDSSTDHVVFGGGTKLTVLGG







SEGKSSGSGSESKSTGGSEVQL







VESGGGVVQPGRSLRLSCAASG







FTFSSYGMNWVRQAPGKGLEW







VAVTSYDGSNKYYADSVKGRF







TISRDISKNTLYLQMSSLRAEDT







AVYYCARDPYSSSWNGAFDIW







GPGTMVTVSSEPKSSDKTHTCP







PCPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PSMB1060
EIVLTQSPGTLSVSPGERATLSC
1284
NA
1285
PSMA_P75_



RASQSVRSNLAWYQQKPGQAP



F01



RLLIYGASTRATGIPARFSGSGS







GTEFTLTISSLQSEDFAVYYCHQ







YNDWPPYTFGQGTKLEIKGGSE







GKSSGSGSESKSTGGSQVQLQE







SGGGVVQPGRSLRLSCAASGFT







FSTYGMHWVRQAPGKGLEWV







AFISYDGSNKYYADSVKGRFTI







SRDNSKHTLYLQMNSLRAEDT







AVYYCAGRDNLRFLEWFMDV







WGQGTTVTVSSEPKSSDKTHTC







PPCPAPEAAGGPSVFLFPPKPKD







TLMISRTPEVTCVVVSVSHEDP







EVKFNWYVDGVEVHNAKTKP







REEQYNSTYRVVSVLTVLHQD







WLNGKEYKCKVSNKALPAPIE







KTISKAKGQPREPQVYVLPPSR







EEMTKNQVSLLCLVKGFYPSDI







AVEWESNGQPENNYLTWPPVL







DSDGSFFLYSKLTVDKSRWQQ







GNVFSCSVMHEALHNHYTQKS







LSLSPG









PSMB1068
QVQLQESGGDVVQPGRSLRLS
1286
NA
1287
PSMA_P72_



CAASGFSFSGYGLHWVRQAPG



A11



RGLEWVTLISYDGSNKYYADS







VKGRFTISRDNSKNTLYLQMNS







LRAEDTAVYYCAKTTVSDPYY







YGMDVWGQGTTVTVSSGGSE







GKSSGSGSESKSTGGSSYELTQP







PSVSVAPGQTARITCGGNNIGS







KSVHWYQQKPGQAPVLVVYD







DSDRPSGIPERFSGTNSGNTATL







TISRAEAGDEADYYCQVWDSS







SDHVVFGGGTKLTVLEPKSSDK







THTCPPCPAPEAAGGPSVFLFPP







KPKDTLMISRTPEVTCVVVSVS







HEDPEVKFNWYVDGVEVHNA







KTKPREEQYNSTYRVVSVLTVL







HQDWLNGKEYKCKVSNKALP







APIEKTISKAKGQPREPQVYVLP







PSREEMTKNQVSLLCLVKGFYP







SDIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PSMB1069
QVQLVESGGGEVQPGRSLRLSC
1288
NA
1289
PSMA_P72_



AASGFSFSGYGMHWVRQAPGK



C01



GLEWVAVMSYDGSNRFYVDS







VRGRFSISRDNSKNTLYLQMNS







LRPEDTAVYYCARDTVWGSHP







DAFDIWGQGTVVTVSSGGSEG







KSSGSGSESKSTGGSQSVLTQPP







SVSVAPGQTARITCGGNNSGSK







SVHWYQQKPGQAPVLVVYDD







SDRPSGIPERFSGSNSGNTATLTI







SRVEAGDEADYYCQVWDSSSD







HGVFGGGTKLTVLEPKSSDKTH







TCPPCPAPEAAGGPSVFLFPPKP







KDTLMISRTPEVTCVVVSVSHE







DPEVKFNWYVDGVEVHNAKT







KPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAP







IEKTISKAKGQPREPQVYVLPPS







REEMTKNQVSLLCLVKGFYPS







DIAVEWESNGQPENNYLTWPP







VLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQ







KSLSLSPG









PSMB1075
EVQLVESGGGVVQPGRSLRLSC
1290
NA
1291
PSMA_P72_



AASGFSFSGYGMHWVRQAPGK



G02



GLEWVAVISYDGSNKYYADSV







KGRFTISRDNSKNTLYLQMNSL







RVEDTAVYYCARDRIWGSRGY







YYGMDVWGQGTTVTVSSGGS







EGKSSGSGSESKSTGGSQSALT







QPASVSGSPGQSITISCTGASSD







VGGYNYVSWYQQHPGKAPKL







MIYEVSNRPSGVSNRFSGSKSG







NTASLTISGLQAEDEADYYCSS







YTITSTLVFGGGTKLTVLEPKSS







DKTHTCPPCPAPEAAGGPSVFL







FPPKPKDTLMISRTPEVTCVVVS







VSHEDPEVKFNWYVDGVEVHN







AKTKPREEQYNSTYRVVSVLT







VLHQDWLNGKEYKCKVSNKA







LPAPIEKTISKAKGQPREPQVYV







LPPSREEMTKNQVSLLCLVKGF







YPSDIAVEWESNGQPENNYLT







WPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNH







YTQKSLSLSPG









PSMB290
QSVLTQPASVSGSPGQSITISCT
1292
NA
1293
PSMA_P72_


8
GTSSDVGGYNYVSWYQQHPG



D01-HC-



KAPKLMIYEVSNRPSGVSNRFS



D95E



GSKSGNTASLTISGLQAEDEAD







YYCSSYTSSYTYVFGTGTKLTV







LGGSEGKSSGSGSESKSTGGSE







VQLVESGGDLVQPGGSLRLSCA







ASGFTFNNYNMNWVRQAPGK







GLEWVSHISTSSSNKYYADSVK







GRFSISRDIAKNSMYLQMNSLR







DEDTAVYYCAREGVGADYGD







YYYYGMDVWGQGTTVTVSSE







PKSSDKTHTCPPCPAPEAAGGP







SVFLFPPKPKDTLMISRTPEVTC







VVVSVSHEDPEVKFNWYVDGV







EVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVS







NKALPAPIEKTISKAKGQPREPQ







VYVLPPSREEMTKNQVSLLCLV







KGFYPSDIAVEWESNGQPENNY







LTWPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHN







HYTQKSLSLSPG









PSMB290
SYELMQPPSVSVSPGQTARITCS
1294
NA
1295
PSMA_P72_


9
GDALPKQYAYWYQQKPGQAP



A10-HC-



VLVIYKDSERPSGIPVRFSGSSS



G54E



GTTVTLTITGVQAEDEADYYCQ







SADSSGTYVFGTGTKVTVLGGS







EGKSSGSGSESKSTGGSQVQLV







ESGGGVVQPGRSLRLSCAASGF







TFSSYNMNWVRQAPGKGLEW







VAIIYYDESNKYYADSVKGRFT







ISRDISKNTLYLQMNSLRAEDT







AVYYCARERGRDYYGMDVWG







QGTTVTVSSEPKSSDKTHTCPP







CPAPEAAGGPSVFLFPPKPKDT







LMISRTPEVTCVVVSVSHEDPE







VKFNWYVDGVEVHNAKTKPR







EEQYNSTYRVVSVLTVLHQDW







LNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPQVYVLPPSREE







MTKNQVSLLCLVKGFYPSDIAV







EWESNGQPENNYLTWPPVLDS







DGSFFLYSKLTVDKSRWQQGN







VFSCSVMHEALHNHYTQKSLS







LSPG









PS3B1391
EVQLVESGGGLVKPGGSLRLSC
1459
EIVMTQSPGTLS
1460
PSMHB49S



VASGFTFSFYSMNWVRQAPGK

LSPGERATLSCR

C1133_011



GLDWVSSISSSGNYIYYADSVK

ASQSVSSSFLAW

A11_1



GRFTISRDNAKNSLHLHMNSLK

YQQKPGQAPRL





AEDTAMYFCARSYSGSYDAFD

LISGASSRATGIP





FWGQGTMVTVSSASTKGPSVF

DRFSVSGSGTDF





PLAPSSKSTSGGTAALGCLVKD

TLTISRLEPEDFA





YFPEPVTVSWNSGALTSGVHTF

VYYCQQYGVSP





PAVLQSSGLYSLSSVVTVPSSSL

WTFGQGTKVEIK





GTQTYICNVNHKPSNTKVDKK

RTVAAPSVFIFPP





VEPKSCDKTHTCPPCPAPEAAG

SDEQLKSGTASV





GPSVFLFPPKPKDTLMISRTPEV

VCLLNNFYPREA





TCVVVSVSHEDPEVKFNWYVD

KVQWKVDNAL





GVEVHNAKTKPREEQYNSTYR

QSGNSQESVTEQ





VVSVLTVLHQDWLNGKEYKC

DSKDSTYSLSST





KVSNKALPAPIEKTISKAKGQP

LTLSKADYEKH





REPQVYTLPPSREEMTKNQVSL

KVYACEVTHQG





SCAVKGFYPSDIAVEWESNGQP

LSSPVTKSFNRG





ENNYKTTPPVLDSDGSFFLVSK

EC





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPGK









PS3B1396
EVQLVESGGGLVQPGGSLRLSC
1461
QSVLTQPPSVSA
1462
PSMB896-



AASGFTFSSYAMSWVRQAPGK

APGQKVTISCSG

G100A



GLEWVSAISGGIGSTYYADSVK

SSSNIGINYVSW





GRFTISRDNSKNTLWLQMNSLR

YQQLPGTAPKLL





AEDTAVYYCAKDAVGATPYYF

IYDNNKRPSGIP





DYWGQGTLVTVSSASTKGPSV

DRFSGSKSGTSA





FPLAPSSKSTSGGTAALGCLVK

TLGITGLQTGDE





DYFPEPVTVSWNSGALTSGVHT

ADYYCGTWDSS





FPAVLQSSGLYSLSSVVTVPSSS

LSAVVFGGGTKL





LGTQTYICNVNHKPSNTKVDK

TVLGQPKAAPSV





KVEPKSCDKTHTCPPCPAPEAA

TLFPPSSEELQAN





GGPSVFLFPPKPKDTLMISRTPE

KATLVCLISDFY





VTCVVVSVSHEDPEVKFNWYV

PGAVTVAWKAD





DGVEVHNAKTKPREEQYNSTY

SSPVKAGVETTT





RVVSVLTVLHQDWLNGKEYKC

PSKQSNNKYAAS





KVSNKALPAPIEKTISKAKGQP

SYLSLTPEQWKS





REPQVYTLPPSREEMTKNQVSL

HRSYSCQVTHEG





SCAVKGFYPSDIAVEWESNGQP

STVEKTVAPTEC





ENNYKTTPPVLDSDGSFFLVSK

S





LTVDKSRWQQGNVFSCSVMHE







ALHNRFTQKSLSLSPGK




















TABLE 61







PSMA × CD3 Bispecific Antibodies: Clone Descriptions








Name
Bispecific Description





PS3B917
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB889


PS3B918
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB890


PS3B913
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB891


PS3B915
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB892


PS3B914
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB893


PS3B916
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB894


PS3B919
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB895


PS3B921
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB896


PS3B920
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB897


PS3B922
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB898


PS3B912
FAB-A: CD3B891 (CD3B376 − K477); FAB-B: PSMB899


PS3B930
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB889


PS3B931
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB890


PS3B926
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB891


PS3B928
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB892


PS3B927
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB893


PS3B929
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB894


PS3B932
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB895


PS3B934
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB896


PS3B933
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB897


PS3B935
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB898


PS3B925
FAB-A: CD3B2183 (CD3W245); FAB-B: PSMB899


PS3B1352
FAB-A: CD3B2197 (CD3B376 + K477); FAB-B: PSMB946



CD3B2197 is CD3B376 but with C-term K



PSMB946 is PSMB895 but with C-term K


PS3B1353
FAB-A: CD3B2197 (CD3B376 + K477); FAB-B: PSMB947



CD3B2197 is CD3B376 but with C-term K



PSMB947 is PSMB896 but with C-term K


PS3B1354
FAB-A: CD3B2197 (CD3B376 + K477); FAB-B: PSMB948



CD3B2197 is CD3B376 but with C-term K



PSMB948 is PSMB897 but with C-term K


PS3B1355
FAB-A: CD3B2197 (CD3B376 + K477); FAB-B: PSMB949



CD3B2197 is CD3B376 with C-term K



PSMB949 is PSMB898 but with C-term K


PS3B1356
FAB-A: CD3B2200 (CD3B450 + K477); FAB-B: PSMB946



CD3B2200 is CD3B450 with the C-term K



PSMB946 is PSMB895 but with C-term K


PS3B1357
FAB-A: CD3B2200 (CD3B450 + K477); FAB-B: PSMB947



CD3B2200 is CD3B450 with the C-term K



PSMB947 is PSMB896 but with C-term K


PS3B1358
FAB-A: CD3B2200 (CD3B450 + K477); FAB-B: PSMB949



CD3B2200 is CD3B450 with the C-term K



PSMB949 is PSMB898 but with C-term K


PSMB937
FAB-A: CD3B2186 (CD3B450 − K477); FAB-B: PSMB897



(PSMB948) CD3B2186 is CD3B450 without the C-term K



PSMB948 is PSMB897 but with C-term K
















TABLE 62







PSMA × CD3 Bispecific Antibodies: CD3 Arm Descriptions














SEQ

SEQ





ID

ID
CD3 Arm


Name
HC1
NO.
LC1
NO.
Description





PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1296
QSALTQPASVS
1297
with CD3B376


B917
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1298
QSALTQPASVS
1299
with CD3B376


B918
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1300
QSALTQPASVS
1301
with CD3B376


B913
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1302
QSALTQPASVS
1303
with CD3B376


B915
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1304
QSALTQPASVS
1305
with CD3B376


B914
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1306
QSALTQPASVS
1307
with CD3B376


B916
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1308
QSALTQPASVS
1309
with CD3B376


B919
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1310
QSALTQPASVS
1311
with CD3B376


B921
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1312
QSALTQPASVS
1313
with CD3B376


B920
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1314
QSALTQPASVS
1315
with CD3B376


B922
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1316
QSALTQPASVS
1317
with CD3B376


B912
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891



EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000100300



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000044707



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQWTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS







PS3
EVQLVESGGGLVKPGGSLRLSCA
1318
DIQMTQSPSSLS
1319
with CD3W245


B930
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1320
DIQMTQSPSSLS
1321
with CD3W245


B931
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1322
DIQMTQSPSSLS
1323
with CD3W245


B926
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1324
DIQMTQSPSSLS
1325
with CD3W245


B928
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1326
DIQMTQSPSSLS
1327
with CD3W245


B927
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1328
DIQMTQSPSSLS
1329
with CD3W245


B929
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1330
DIQMTQSPSSLS
1331
with CD3W245


B932
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1332
DIQMTQSPSSLS
1333
with CD3W245


B934
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1334
DIQMTQSPSSLS
1335
with CD3W245


B933
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1336
DIQMTQSPSSLS
1337
with CD3W245


B935
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
EVQLVESGGGLVKPGGSLRLSCA
1338
DIQMTQSPSSLS
1339
with CD3W245


B925
ASGFTFSRYNMNWVRQAPGKGL

ASVGDRVTITC

arm (CD3B2183



EWVSSISTSSNYIYYADSVKGRFT

RARQSIGTAIH

without K477)



FSRDNAKNSLDLQMSGLRAEDT

WYQQKPGKAP

HC1 Construct



AIYYCTRGWGPFDYWGQGTLVT

KLLIKYASESIS

ID:



VSSASTKGPSVFPLAPSSKSTSGG

GVPSRFSGSGS

PBD000100302



TAALGCLVKDYFPEPVTVSWNS

GTDFTLTISSLQ

LC1 Contruct



GALTSGVHTFPAVLQSSGLYSLSS

PEDFATYYCQQ

ID:



VVTVPSSSLGTQTYICNVNHKPS

SGSWPYTFGQG

PBD000084982



NTKVDKKVEPKSCDKTHTCPPCP

TKLEIKRTVAA





APEAAGGPSVFLFPPKPKDTLMIS

PSVFIFPPSDEQ





RTPEVTCVVVSVSHEDPEVKFNW

LKSGTASVVCL





YVDGVEVHNAKTKPREEQYNST

LNNFYPREAKV





YRVVSVLTVLHQDWLNGKEYKC

QWKVDNALQS





KVSNKALPAPIEKTISKAKGQPRE

GNSQESVTEQD





PQVYTLPPSREEMTKNQVSLTCL

SKDSTYSLSSTL





VKGFYPSDIAVEWESNGQPENNY

TLSKADYEKHK





KTTPPVLDSDGSFLLYSKLTVDK

VYACEVTHQGL





SRWQQGNVFSCSVMHEALHNHY

SSPVTKSFNRGE





TQKSLSLSP

C







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1340
QSALTQPASVS
1341
with CD3B376


B135
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891


2
EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000108469



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108469



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1342
QSALTQPASVS
1343
with CD3B376


B135
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891


3
EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000108469



LSSWTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108469



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1344
QSALTQPASVS
1345
with CD3B376


B135
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891


4
EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000108469



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108469



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPRLVRPSQTLSLTCAI
1346
QSALTQPASVS
1347
with CD3B376


B135
SGDSVFNNNAAWSWIRQSPSRGL

GSPGQSITISCT

arm (CD3B891


5
EWLGRTYYRSKWLYDYAVSVKS

GTSSNIGTYKFV

without K477 or



RITVNPDTSRNQFTLQLNSVTPED

SWYQQHPDKA

CD3B2197 with



TALYYCARGYSSSFDYWGQGTL

PKVLLYEVSKR

K477 in HC1)



VTVSSASTKGPSVFPLAPSSKSTS

PSGVSSRFSGSK

HC1 Construct



GGTAALGCLVKDYFPEPVTVSW

SGNTASLTISGL

ID:



NSGALTSGVHTFPAVLQSSGLYS

QAEDQADYHC

PBD000108469



LSSVVTVPSSSLGTQTYICNVNHK

VSYAGSGTLLF

LC1 Contruct



PSNTKVDKKVEPKSCDKTHTCPP

GGGTKLTVLGQ

ID:



CPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108469



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPGLVKPSQTLSLTCA
1348
QSALTQPASVS
1349
with CD3B450


B135
ISGDSVFNNNAAWSWIRQSPSRG

GSPGQSITISCT

arm (CD3B2186


6
LEWLGRTYYRSKWLYDYAVSVK

GTSSNIGTYKFV

without K477 or



SRITINPDTSKNQFSLQLNSVTPE

SWYQQHPGKA

CD3B2200 with



DTAVYYCARGYSSSFDYWGQGT

PKVMIYEVSKR

K477 in HC1)



LVTVSSASTKGPSVFPLAPSSKST

PSGVSNRFSGS

HC1 Construct



SGGTAALGCLVKDYFPEPVTVS

KSGNTASLTISG

ID:



WNSGALTSGVHTFPAVLQSSGLY

LQAEDEADYYC

PBD000108470



SLSSVVTVPSSSLGTQTYICNVNH

VSYAGSGTLLF

LC1 Contruct



KPSNTKVDKKVEPKSCDKTHTCP

GGGTKLTVLGQ

ID:



PCPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108470



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPGLVKPSQTLSLTCA
1350
QSALTQPASVS
1351
with CD3B450


B135
ISGDSVFNNNAAWSWIRQSPSRG

GSPGQSITISCT

arm (CD3B2186


7
LEWLGRTYYRSKWLYDYAVSVK

GTSSNIGTYKFV

without K477 or



SRITINPDTSKNQFSLQLNSVTPE

SWYQQHPGKA

CD3B2200 with



DTAVYYCARGYSSSFDYWGQGT

PKVMIYEVSKR

K477 in HC1)



LVTVSSASTKGPSVFPLAPSSKST

PSGVSNRFSGS

HC1 Construct



SGGTAALGCLVKDYFPEPVTVS

KSGNTASLTISG

ID:



WNSGALTSGVHTFPAVLQSSGLY

LQAEDEADYYC

PBD000108470



SLSSVVTVPSSSLGTQTYICNVNH

VSYAGSGTLLF

LC1 Contruct



KPSNTKVDKKVEPKSCDKTHTCP

GGGTKLTVLGQ

ID:



PCPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108470



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS







PS3
QVQLQQSGPGLVKPSQTLSLTCA
1352
QSALTQPASVS
1353
with CD3B450


B135
ISGDSVFNNNAAWSWIRQSPSRG

GSPGQSITISCT

arm (CD3B2186


8
LEWLGRTYYRSKWLYDYAVSVK

GTSSNIGTYKFV

without K477 or



SRITINPDTSKNQFSLQLNSVTPE

SWYQQHPGKA

CD3B2200 with



DTAVYYCARGYSSSFDYWGQGT

PKVMIYEVSKR

K477 in HC1)



LVTVSSASTKGPSVFPLAPSSKST

PSGVSNRFSGS

HC1 Construct



SGGTAALGCLVKDYFPEPVTVS

KSGNTASLTISG

ID:



WNSGALTSGVHTFPAVLQSSGLY

LQAEDEADYYC

PBD000108470



SLSSVVTVPSSSLGTQTYICNVNH

VSYAGSGTLLF

LC1 Contruct



KPSNTKVDKKVEPKSCDKTHTCP

GGGTKLTVLGQ

ID:



PCPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000108470



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPGK

ECS




PSM
QVQLQQSGPGLVKPSQTLSLTCA
1354
QSALTQPASVS
1355
with CD3B450


B937
ISGDSVFNNNAAWSWIRQSPSRG

GSPGQSITISCT

arm (CD3B2186



LEWLGRTYYRSKWLYDYAVSVK

GTSSNIGTYKFV

without K477 or



SRITINPDTSKNQFSLQLNSVTPE

SWYQQHPGKA

CD3B2200 with



DTAVYYCARGYSSSFDYWGQGT

PKVMIYEVSKR

K477 in HC1)



LVTVSSASTKGPSVFPLAPSSKST

PSGVSNRFSGS

HC1 Construct



SGGTAALGCLVKDYFPEPVTVS

KSGNTASLTISG

ID:



WNSGALTSGVHTFPAVLQSSGLY

LQAEDEADYYC

PBD000100305



SLSSVVTVPSSSLGTQTYICNVNH

VSYAGSGTLLF

LC1 Contruct



KPSNTKVDKKVEPKSCDKTHTCP

GGGTKLTVLGQ

ID:



PCPAPEAAGGPSVFLFPPKPKDTL

PKAAPSVTLFPP

PBD000045576



MISRTPEVTCVVVSVSHEDPEVK

SSEELQANKAT





FNWYVDGVEVHNAKTKPREEQY

LVCLISDFYPGA





NSTYRVVSVLTVLHQDWLNGKE

VTVAWKADSSP





YKCKVSNKALPAPIEKTISKAKG

VKAGVETTTPS





QPREPQVYTLPPSREEMTKNQVS

KQSNNKYAASS





LTCLVKGFYPSDIAVEWESNGQP

YLSLTPEQWKS





ENNYKTTPPVLDSDGSFLLYSKL

HRSYSCQVTHE





TVDKSRWQQGNVFSCSVMHEAL

GSTVEKTVAPT





HNHYTQKSLSLSPG

ECS
















TABLE 63







PSMA × CD3 Bispecific Antibodies: PSMA Arm Descriptions














SEQ

SEQ
PSMA




ID

ID
Arm


Name
HC2
NO.
LC2
NO.
Description





PS3B
EVQLVESGGGLVKPGGSLRLSCAAS
1356
QSVLTQPPSVSG
1357
PSMB889


917
GFTFSRYNMNWVRQAPGKGLEWV

APGQRVTISCTG

HC2



SSINSNSRYIYYADSVKGRFTISRDS

SSFNLGAGYDV

Construct



AKNSLYLQMNSLRAEDTAVYYCAK

HWYQQVPGTVP

ID:



TMGDYYYYYGMDVWGQGTTVTVS

KLLIYDNSNRPS

PBD000101



SASTKGPSVFPLAPSSKSTSGGTAAL

GVPDRFSGSKSG

312



GCLVKDYFPEPVTVSWNSGALTSG

TSASLAITGLQA





VHTFPAVLQSSGLYSLSSVVTVPSSS

EDETVYYCQSY





LGTQTYICNVNHKPSNTKVDKKVEP

DSSLSGVVFGGG





KSCDKTHTCPPCPAPEAAGGPSVFL

TKLTVLGQPKA





FPPKPKDTLMISRTPEVTCVVVSVSH

APSVTLFPPSSEE





EDPEVKFNWYVDGVEVHNAKTKPR

LQANKATLVCLI





EEQYNSTYRVVSVLTVLHQDWLNG

SDFYPGAVTVA





KEYKCKVSNKALPAPIEKTISKAKG

WKADSSPVKAG





QPREPQVYTLPPSREEMTKNQVSLT

VETTTPSKQSNN





CLVKGFYPSDIAVEWESNGQPENNY

KYAASSYLSLTP





KTTPPVLDSDGSFFLYSRLTVDKSR

EQWKSHRSYSC





WQQGNVFSCSVMHEALHNHYTQK

QVTHEGSTVEKT





SLSLSPG

VAPTECS







PS3B
EVQLVESGGGLVKPGGSLRLSCAAS
1358
SSELTQPPSVSG
1359
PSMB890


918
GFTFSRYNMNWVRQAPGKGLEWV

APGQRVTISCAG

HC2



SSINSNSRYIYYADSVKGRFTISRDS

SLSNIGAGYDVH

Construct



AKNSLYLQMNSLRAEDTAVYYCAK

WYQQLPGTAPK

ID:



TMGDYYYYYGMDVWGQGTTVTVS

LLIYGNINRLSG

PBD000101



SASTKGPSVFPLAPSSKSTSGGTAAL

VPERFSGSKSGT

312



GCLVKDYFPEPVTVSWNSGALTSG

SASLAITGLQAE





VHTFPAVLQSSGLYSLSSVVTVPSSS

DGADYYCQSYD





LGTQTYICNVNHKPSNTKVDKKVEP

SSLSSYVFGTGT





KSCDKTHTCPPCPAPEAAGGPSVFL

KVTVLGQPKAA





FPPKPKDTLMISRTPEVTCVVVSVSH

PSVTLFPPSSEEL





EDPEVKFNWYVDGVEVHNAKTKPR

QANKATLVCLIS





EEQYNSTYRVVSVLTVLHQDWLNG

DFYPGAVTVAW





KEYKCKVSNKALPAPIEKTISKAKG

KADSSPVKAGV





QPREPQVYTLPPSREEMTKNQVSLT

etttpskqsnnk





CLVKGFYPSDIAVEWESNGQPENNY

YAASSYLSLTPE





KTTPPVLDSDGSFFLYSRLTVDKSR

QWKSHRSYSCQ





WQQGNVFSCSVMHEALHNHYTQK

VTHEGSTVEKTV





SLSLSPG

APTECS







PS3B
EVQLVESGGGVVQPGRSLRLSCAAS
1360
QSVLTQPPSASG
1361
PSMB891


913
GFTFITYGMHWVRQAPGKGLEWVA

TPGQGVTISCSG

HC2



VVSFDESNKYYADSVKGRFTISRDN

SSSNIGSNTVNW

Construct



SKNTLYLQMNSLRAEDTAVYYCAR

FQQLPGTAPKLL

ID:



ALRDGNNWDYFNGMDVWGQGTT

IYSDNQRPSGVP

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

DRFSGSKSGTSA

316



TAALGCLVKDYFPEPVTVSWNSGA

SLAISGLQSEDE





LTSGVHTFPAVLQSSGLYSLSSVVT

ADYYCAAWDDS





VPSSSLGTQTYICNVNHKPSNTKVD

LNGYVFGTGTK





KKVEPKSCDKTHTCPPCPAPEAAGG

VTVLGQPKAAPS





PSVFLFPPKPKDTLMISRTPEVTCVV

VTLFPPSSEELQA





VSVSHEDPEVKFNWYVDGVEVHNA

NKATLVCLISDF





KTKPREEQYNSTYRVVSVLTVLHQ

YPGAVTVAWKA





DWLNGKEYKCKVSNKALPAPIEKTI

DSSPVKAGVETT





SKAKGQPREPQVYTLPPSREEMTKN

TPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
EVQLVESGGGVVQPGRSLRLSCAAS
1362
QSVLTQPPSVSG
1363
PSMB892


915
GFTFITYGMHWVRQAPGKGLEWVA

APGQRVTISCTG

HC2



VVSFDESNKYYADSVKGRFTISRDN

SSSNIGADYDVH

Construct



SKNTLYLQMNSLRAEDTAVYYCAR

WYQHLPGTAPK

ID:



ALRDGNNWDYFNGMDVWGQGTT

LLIYGNSNRPSG

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

VPDRFSGSKSGT

316



TAALGCLVKDYFPEPVTVSWNSGA

SASLAITGLQAE





LTSGVHTFPAVLQSSGLYSLSSVVT

DETDYYCQSYD





VPSSSLGTQTYICNVNHKPSNTKVD

SSLSGWVFGGGT





KKVEPKSCDKTHTCPPCPAPEAAGG

KLTVLGQPKAAP





PSVFLFPPKPKDTLMISRTPEVTCVV

SVTLFPPSSEELQ





VSVSHEDPEVKFNWYVDGVEVHNA

ANKATLVCLISD





KTKPREEQYNSTYRVVSVLTVLHQ

FYPGAVTVAWK





DWLNGKEYKCKVSNKALPAPIEKTI

ADSSPVKAGVET





SKAKGQPREPQVYTLPPSREEMTKN

TTPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
QVQLVESGGGVVQPGRSLRLSCVA
1364
QSVLTQPPSASG
1365
PSMB893


914
SGFTFSSYGIHWVRQAPGKGLEWV

TPGQGVTISCSG

HC2



AVIWYDGSNKYYADSVKGRFTISR

SSSNIGSNTVNW

Construct



DNSKNTLYLQMNSLRAEDTAVYYS

FQQLPGTAPKLL

ID:



VRGVGPTSYYYNYGMDVWGQGTT

IYSDNQRPSGVP

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

DRFSGSKSGTSA

318



TAALGCLVKDYFPEPVTVSWNSGA

SLAISGLQSEDE





LTSGVHTFPAVLQSSGLYSLSSVVT

ADYYCAAWDDS





VPSSSLGTQTYICNVNHKPSNTKVD

LNGYVFGTGTK





KKVEPKSCDKTHTCPPCPAPEAAGG

VTVLGQPKAAPS





PSVFLFPPKPKDTLMISRTPEVTCVV

VTLFPPSSEELQA





VSVSHEDPEVKFNWYVDGVEVHNA

NKATLVCLISDF





KTKPREEQYNSTYRVVSVLTVLHQ

YPGAVTVAWKA





DWLNGKEYKCKVSNKALPAPIEKTI

DSSPVKAGVETT





SKAKGQPREPQVYTLPPSREEMTKN

TPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
QVQLVESGGGVVQPGRSLRLSCVA
1366
QSVLTQPPSVSG
1367
PSMB894


916
SGFTFSSYGIHWVRQAPGKGLEWV

APGQRVTISCTG

HC2



AVIWYDGSNKYYADSVKGRFTISR

SSSNIGADYDVH

Construct



DNSKNTLYLQMNSLRAEDTAVYYS

WYQHLPGTAPK

ID:



VRGVGPTSYYYNYGMDVWGQGTT

LLIYGNSNRPSG

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

VPDRFSGSKSGT

318



TAALGCLVKDYFPEPVTVSWNSGA

SASLAITGLQAE





LTSGVHTFPAVLQSSGLYSLSSVVT

DETDYYCQSYD





VPSSSLGTQTYICNVNHKPSNTKVD

SSLSGWVFGGGT





KKVEPKSCDKTHTCPPCPAPEAAGG

KLTVLGQPKAAP





PSVFLFPPKPKDTLMISRTPEVTCVV

SVTLFPPSSEELQ





VSVSHEDPEVKFNWYVDGVEVHNA

ANKATLVCLISD





KTKPREEQYNSTYRVVSVLTVLHQ

FYPGAVTVAWK





DWLNGKEYKCKVSNKALPAPIEKTI

ADSSPVKAGVET





SKAKGQPREPQVYTLPPSREEMTKN

TTPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1368
QSVLTQPPSVSA
1369
PSMB895


919
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

320



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAYVFGTGTKV





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

S







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1370
QSVLTQPPSVSA
1371
PSMB896


921
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

320



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAVVFGGGTKL





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1372
QSVLTQPPSVSA
1373
PSMB897


920
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000101



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

322



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAYVFGTGTKV





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1374
QSVLTQPPSVSA
1375
PSMB898


922
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000101



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

322



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAVVFGGGTKL





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCTAS
1376
QSVLTQPPSVSA
1377
PSMB899


912
GFIFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGYGAPYYADTVKGRFTISRDN

SSSNIGNNYVSW

Construct



SKNTLYLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDDWGQGILVTVSSA

IFDNNKRPSGIPD

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

RFSGSKSGTSAT

324



LVKDYFPEPVTVSWNSGALTSGVH

LGITGLQTGDEA





TFPAVLQSSGLYSLSSVVTVPSSSLG

DYYCGTWDSSL





TQTYICNVNHKPSNTKVDKKVEPKS

SAYVFGTGTKVT





CDKTHTCPPCPAPEAAGGPSVFLFPP

VLGQPKAAPSVT





KPKDTLMISRTPEVTCVVVSVSHED

LFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

s







PS3B
EVQLVESGGGLVKPGGSLRLSCAAS
1378
QSVLTQPPSVSG
1379
PSMB889


930
GFTFSRYNMNWVRQAPGKGLEWV

APGQRVTISCTG

HC2



SSINSNSRYIYYADSVKGRFTISRDS

SSFNLGAGYDV

Construct



AKNSLYLQMNSLRAEDTAVYYCAK

HWYQQVPGTVP

ID:



TMGDYYYYYGMDVWGQGTTVTVS

KLLIYDNSNRPS

PBD000101



SASTKGPSVFPLAPSSKSTSGGTAAL

GVPDRFSGSKSG

312



GCLVKDYFPEPVTVSWNSGALTSG

TSASLAITGLQA





VHTFPAVLQSSGLYSLSSVVTVPSSS

EDETVYYCQSY





LGTQTYICNVNHKPSNTKVDKKVEP

DSSLSGVVFGGG





KSCDKTHTCPPCPAPEAAGGPSVFL

TKLTVLGQPKA





FPPKPKDTLMISRTPEVTCVVVSVSH

APSVTLFPPSSEE





EDPEVKFNWYVDGVEVHNAKTKPR

LQANKATLVCLI





EEQYNSTYRVVSVLTVLHQDWLNG

SDFYPGAVTVA





KEYKCKVSNKALPAPIEKTISKAKG

WKADSSPVKAG





QPREPQVYTLPPSREEMTKNQVSLT

VETTTPSKQSNN





CLVKGFYPSDIAVEWESNGQPENNY

KYAASSYLSLTP





KTTPPVLDSDGSFFLYSRLTVDKSR

EQWKSHRSYSC





WQQGNVFSCSVMHEALHNHYTQK

QVTHEGSTVEKT





SLSLSPG

VAPTECS







PS3B
EVQLVESGGGLVKPGGSLRLSCAAS
1380
SSELTQPPSVSG
1381
PSMB890


931
GFTFSRYNMNWVRQAPGKGLEWV

APGQRVTISCAG

HC2



SSINSNSRYIYYADSVKGRFTISRDS

SLSNIGAGYDVH

Construct



AKNSLYLQMNSLRAEDTAVYYCAK

WYQQLPGTAPK

ID:



TMGDYYYYYGMDVWGQGTTVTVS

LLIYGNINRLSG

PBD000101



SASTKGPSVFPLAPSSKSTSGGTAAL

VPERFSGSKSGT

312



GCLVKDYFPEPVTVSWNSGALTSG

SASLAITGLQAE





VHTFPAVLQSSGLYSLSSVVTVPSSS

DGADYYCQSYD





LGTQTYICNVNHKPSNTKVDKKVEP

SSLSSYVFGTGT





KSCDKTHTCPPCPAPEAAGGPSVFL

KVTVLGQPKAA





FPPKPKDTLMISRTPEVTCVVVSVSH

PSVTLFPPSSEEL





EDPEVKFNWYVDGVEVHNAKTKPR

QANKATLVCLIS





EEQYNSTYRVVSVLTVLHQDWLNG

DFYPGAVTVAW





KEYKCKVSNKALPAPIEKTISKAKG

KADSSPVKAGV





QPREPQVYTLPPSREEMTKNQVSLT

ETTTPSKQSNNK





CLVKGFYPSDIAVEWESNGQPENNY

YAASSYLSLTPE





KTTPPVLDSDGSFFLYSRLTVDKSR

QWKSHRSYSCQ





WQQGNVFSCSVMHEALHNHYTQK

VTHEGSTVEKTV





SLSLSPG

APTECS







PS3B
EVQLVESGGGVVQPGRSLRLSCAAS
1382
QSVLTQPPSASG
1383
PSMB891


926
GFTFITYGMHWVRQAPGKGLEWVA

TPGQGVTISCSG

HC2



VVSFDESNKYYADSVKGRFTISRDN

SSSNIGSNTVNW

Construct



SKNTLYLQMNSLRAEDTAVYYCAR

FQQLPGTAPKLL

ID:



ALRDGNNWDYFNGMDVWGQGTT

IYSDNQRPSGVP

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

DRFSGSKSGTSA

316



TAALGCLVKDYFPEPVTVSWNSGA

SLAISGLQSEDE





LTSGVHTFPAVLQSSGLYSLSSVVT

ADYYCAAWDDS





VPSSSLGTQTYICNVNHKPSNTKVD

LNGYVFGTGTK





KKVEPKSCDKTHTCPPCPAPEAAGG

VTVLGQPKAAPS





PSVFLFPPKPKDTLMISRTPEVTCVV

VTLFPPSSEELQA





VSVSHEDPEVKFNWYVDGVEVHNA

NKATLVCLISDF





KTKPREEQYNSTYRVVSVLTVLHQ

YPGAVTVAWKA





DWLNGKEYKCKVSNKALPAPIEKTI

DSSPVKAGVETT





SKAKGQPREPQVYTLPPSREEMTKN

TPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
EVQLVESGGGVVQPGRSLRLSCAAS
1384
QSVLTQPPSVSG
1385
PSMB892


928
GFTFITYGMHWVRQAPGKGLEWVA

APGQRVTISCTG

HC2



VVSFDESNKYYADSVKGRFTISRDN

SSSNIGADYDVH

Construct



SKNTLYLQMNSLRAEDTAVYYCAR

WYQHLPGTAPK

ID:



ALRDGNNWDYFNGMDVWGQGTT

LLIYGNSNRPSG

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

VPDRFSGSKSGT

316



TAALGCLVKDYFPEPVTVSWNSGA

SASLAITGLQAE





LTSGVHTFPAVLQSSGLYSLSSVVT

DETDYYCQSYD





VPSSSLGTQTYICNVNHKPSNTKVD

SSLSGWVFGGGT





KKVEPKSCDKTHTCPPCPAPEAAGG

KLTVLGQPKAAP





PSVFLFPPKPKDTLMISRTPEVTCVV

SVTLFPPSSEELQ





VSVSHEDPEVKFNWYVDGVEVHNA

ANKATLVCLISD





KTKPREEQYNSTYRVVSVLTVLHQ

FYPGAVTVAWK





DWLNGKEYKCKVSNKALPAPIEKTI

ADSSPVKAGVET





SKAKGQPREPQVYTLPPSREEMTKN

TTPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
QVQLVESGGGVVQPGRSLRLSCVA
1386
QSVLTQPPSASG
1387
PSMB893


927
SGFTFSSYGIHWVRQAPGKGLEWV

TPGQGVTISCSG

HC2



AVIWYDGSNKYYADSVKGRFTISR

SSSNIGSNTVNW

Construct



DNSKNTLYLQMNSLRAEDTAVYYS

FQQLPGTAPKLL

ID:



VRGVGPTSYYYNYGMDVWGQGTT

IYSDNQRPSGVP

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

DRFSGSKSGTSA

318



TAALGCLVKDYFPEPVTVSWNSGA

SLAISGLQSEDE





LTSGVHTFPAVLQSSGLYSLSSVVT

ADYYCAAWDDS





VPSSSLGTQTYICNVNHKPSNTKVD

LNGYVFGTGTK





KKVEPKSCDKTHTCPPCPAPEAAGG

VTVLGQPKAAPS





PSVFLFPPKPKDTLMISRTPEVTCVV

VTLFPPSSEELQA





VSVSHEDPEVKFNWYVDGVEVHNA

NKATLVCLISDF





KTKPREEQYNSTYRVVSVLTVLHQ

YPGAVTVAWKA





DWLNGKEYKCKVSNKALPAPIEKTI

DSSPVKAGVETT





SKAKGQPREPQVYTLPPSREEMTKN

TPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
QVQLVESGGGVVQPGRSLRLSCVA
1388
QSVLTQPPSVSG
1389
PSMB894


929
SGFTFSSYGIHWVRQAPGKGLEWV

APGQRVTISCTG

HC2



AVIWYDGSNKYYADSVKGRFTISR

SSSNIGADYDVH

Construct



DNSKNTLYLQMNSLRAEDTAVYYS

WYQHLPGTAPK

ID:



VRGVGPTSYYYNYGMDVWGQGTT

LLIYGNSNRPSG

PBD000101



VTVSSASTKGPSVFPLAPSSKSTSGG

VPDRFSGSKSGT

318



TAALGCLVKDYFPEPVTVSWNSGA

SASLAITGLQAE





LTSGVHTFPAVLQSSGLYSLSSVVT

DETDYYCQSYD





VPSSSLGTQTYICNVNHKPSNTKVD

SSLSGWVFGGGT





KKVEPKSCDKTHTCPPCPAPEAAGG

KLTVLGQPKAAP





PSVFLFPPKPKDTLMISRTPEVTCVV

SVTLFPPSSEELQ





VSVSHEDPEVKFNWYVDGVEVHNA

ANKATLVCLISD





KTKPREEQYNSTYRVVSVLTVLHQ

FYPGAVTVAWK





DWLNGKEYKCKVSNKALPAPIEKTI

ADSSPVKAGVET





SKAKGQPREPQVYTLPPSREEMTKN

TTPSKQSNNKYA





QVSLTCLVKGFYPSDIAVEWESNGQ

ASSYLSLTPEQW





PENNYKTTPPVLDSDGSFFLYSRLT

KSHRSYSCQVTH





VDKSRWQQGNVFSCSVMHEALHN

EGSTVEKTVAPT





HYTQKSLSLSPG

ECS







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1390
QSVLTQPPSVSA
1391
PSMB895


932
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

320



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAYVFGTGTKV





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1392
QSVLTQPPSVSA
1393
PSMB896


934
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

320



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAVVFGGGTKL





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1394
QSVLTQPPSVSA
1395
PSMB897


933
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000101



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

322



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAYVFGTGTKV





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPG

S







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1396
QSVLTQPPSVSA
1397
PSMB898


935
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000101



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

322



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAVVFGGGTKL





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPG

s







PS3B
EVQLVESGGGLVQPGGSLRLSCTAS
1398
QSVLTQPPSVSA
1399
PSMB899


925
GFIFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGYGAPYYADTVKGRFTISRDN

SSSNIGNNYVSW

Construct



SKNTLYLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDDWGQGILVTVSSA

IFDNNKRPSGIPD

PBD000101



STKGPSVFPLAPSSKSTSGGTAALGC

RFSGSKSGTSAT

324



LVKDYFPEPVTVSWNSGALTSGVH

LGITGLQTGDEA





TFPAVLQSSGLYSLSSVVTVPSSSLG

DYYCGTWDSSL





TQTYICNVNHKPSNTKVDKKVEPKS

SAYVFGTGTKVT





CDKTHTCPPCPAPEAAGGPSVFLFPP

VLGQPKAAPSVT





KPKDTLMISRTPEVTCVVVSVSHED

LFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPG

S







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1400
QSVLTQPPSVSA
1401
PSMB946


1352
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000108



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

502



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAYVFGTGTKV





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPGK

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1402
QSVLTQPPSVSA
1403
PSMB847


1353
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000108



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

503



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAVVFGGGTKL





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPGK

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1404
QSVLTQPPSVSA
1405
PSMB848


1354
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000108



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

504



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAYVFGTGTKV





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPGK

S







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1406
QSVLTQPPSVSA
1407
PSMB849


1355
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000108



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

505



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAVVFGGGTKL





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPGK

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1408
QSVLTQPPSVSA
1409
PSMB946


1356
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000108



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

502



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAYVFGTGTKV





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPGK

S







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1410
QSVLTQPPSVSA
1411
PSMB847


1357
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGIGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLWLQMNSLRAEDTAVYYCAK

YQQLPGTAPKLL

ID:



DGVGATPYYFDYWGQGTLVTVSSA

IYDNNKRPSGIP

PBD000108



STKGPSVFPLAPSSKSTSGGTAALGC

DRFSGSKSGTSA

503



LVKDYFPEPVTVSWNSGALTSGVH

TLGITGLQTGDE





TFPAVLQSSGLYSLSSVVTVPSSSLG

ADYYCGTWDSS





TQTYICNVNHKPSNTKVDKKVEPKS

LSAVVFGGGTKL





CDKTHTCPPCPAPEAAGGPSVFLFPP

TVLGQPKAAPSV





KPKDTLMISRTPEVTCVVVSVSHED

TLFPPSSEELQAN





PEVKFNWYVDGVEVHNAKTKPREE

KATLVCLISDFY





QYNSTYRVVSVLTVLHQDWLNGKE

PGAVTVAWKAD





YKCKVSNKALPAPIEKTISKAKGQP

SSPVKAGVETTT





REPQVYTLPPSREEMTKNQVSLTCL

PSKQSNNKYAAS





VKGFYPSDIAVEWESNGQPENNYK

SYLSLTPEQWKS





TTPPVLDSDGSFFLYSRLTVDKSRW

HRSYSCQVTHEG





QQGNVFSCSVMHEALHNHYTQKSL

STVEKTVAPTEC





SLSPGK

s







PS3B
EVQLVESGGGLVQPGGSLRLSCAAS
1412
QSVLTQPPSVSA
1413
PSMB849


1358
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGINYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000108



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

505



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAVVFGGGTKL





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPGK

S




PSMB
EVQLVESGGGLVQPGGSLRLSCAAS
1414
QSVLTQPPSVSA
1415
PSMB848


937
GFTFSSYAMSWVRQAPGKGLEWVS

APGQKVTISCSG

HC2



AISGGSGSTYYADSVKGRFTISRDNS

SSSNIGNNYVSW

Construct



KNTLYLQMNSLRAEDSAVYYCAKD

YQQLPGTAPKLL

ID:



GVGATPYYFDYWGQGTLVTVSSAS

IYDNNKRPSGIP

PBD000101



TKGPSVFPLAPSSKSTSGGTAALGCL

DRFSGSKSGTSA

322



VKDYFPEPVTVSWNSGALTSGVHTF

TLGITGLQTGDE





PAVLQSSGLYSLSSVVTVPSSSLGTQ

ADYYCGTWDSS





TYICNVNHKPSNTKVDKKVEPKSCD

LSAYVFGTGTKV





KTHTCPPCPAPEAAGGPSVFLFPPKP

TVLGQPKAAPSV





KDTLMISRTPEVTCVVVSVSHEDPE

TLFPPSSEELQAN





VKFNWYVDGVEVHNAKTKPREEQ

KATLVCLISDFY





YNSTYRVVSVLTVLHQDWLNGKEY

PGAVTVAWKAD





KCKVSNKALPAPIEKTISKAKGQPR

SSPVKAGVETTT





EPQVYTLPPSREEMTKNQVSLTCLV

PSKQSNNKYAAS





KGFYPSDIAVEWESNGQPENNYKTT

SYLSLTPEQWKS





PPVLDSDGSFFLYSRLTVDKSRWQQ

HRSYSCQVTHEG





GNVFSCSVMHEALHNHYTQKSLSL

STVEKTVAPTEC





SPG

S









Example 8.2: Analytical Characterization of Bispecific Anti-PSMAxCD3 Antibodies

The protein concentration for each purified bispecific Ab was determined by measuring the absorbance at 280 nm on a NANODROP1000 spectrophotometer or Trinean DROPSENSE96 multichannel spectrophotometer and calculated using the extinction coefficient based on the amino acid sequence. SE HPLC of the purified antibodies was performed by running samples on a TOSOH TSKgel BioAssist G3SWxl column, in 0.2 M Na Phosphate pH 6.8 at 1 mL/min on a Waters Alliance HPLC for 20 min. The column effluent was monitored by absorbance at 280 nm. Anti-PSMA-CD3 bispecific antibodies were further analyzed by Intact Mass Analysis to determine appropriate formation of heterodimers.


Example 9: Epitope Mapping of Anti-PSMAxCD3 Antibodies
Example 9.1: HDX-MS Epitope Mapping

The epitope of two anti-PSMA/CD3 bispecific antibodies PS3B1352 and PS3B1353 were determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). See FIG. 14. Human PSMA antigen was used for epitope mapping experiment. See FIG. 15.


On-Exchange Experiment for HDX-MS. Briefly, on-exchange reaction was initiated by mixing 10 μL of 6.0 μM human PSMA with or without 7.3 μM antibody and 30 μL of H2O or a deuterated buffer (20 mM MES, pH 6.4, 150 mM NaCl in 95% D2O or 20 mM Tris, pH 8.4, 150 mM NaCl in 95% D2O). The reaction mixture was incubated for 15, 50, 150, 500, or 1,500 s at 23° C. and quenched at the different time points described by the addition of chilled 40 μL of 8 M urea, 1 M TCEP, pH 3.0. The quenched solutions were analyzed immediately.


General Procedure for HDX-MS Data Acquisition. HDX-MS sample preparation was performed with automated HDx system (LEAP Technologies, Morrisville, N.C.). The columns and pump were; protease, protease type XIII (protease from Aspergillus saitoi, type XIII)/pepsin column (w/w, 1:1; 2.1×30 mm) (NovaBioAssays Inc., Woburn, Mass.); trap, ACQUITY UPLC BEH C18 VanGuard Pre-column (2.1×5 mm) (Waters, Milford, Mass.), analytical, Accucore C18 (2.1×100 mm) (Thermo Fisher Scientific, Waltham, Mass.); and LC pump, VH-P10-A (Thermo Fisher Scientific). The loading pump (from the protease column to the trap column) was set at 600 μL/min with 99% water, 1% acetonitrile, 0.1% formic acid. The gradient pump (from the trap column to the analytical column) was set from 8% to 28% acetonitrile in 0.1% aqueous formic acid in 20 min at 100 μL/min.


MS Data Acquisition. Mass spectrometric analyses were carried out using an LTQ™ Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) with the capillary temperature at 275° C., resolution 150,000, and mass range (m/z) 300-2,000.


HDX-MS Data Extraction. BioPharma Finder 2.0 (Thermo Fisher Scientific) was used for the peptide identification of non-deuterated samples prior to the HDX experiments. HDExaminer version 2.4 (Sierra Analytics, Modesto, Calif.) was used to extract centroid values from the MS raw data files for the HDX experiments.


Example 10: Characterization of Bispecific Anti-PSMAxCD3 Antibodies
Example 10.1: Binding Affinity of Bispecific Anti-PSMAxCD3 Antibodies to Human PSMA

The binding affinity of anti-PSMA to the recombinant human, cynomolgus or mouse PSMA was determined by surface plasmon resonance (SPR) using a Biacore 8K instrument\. The antibodies were captured on a goat anti-Fc antibody-modified C1 chip and titrated with 3-fold serial dilutions of PSMA antigen spanning concentrations of 100 nM to 11.1 nM. The association and dissociation were monitored for 3 and 15 minutes, respectively, using a flow rate of 50 μL/min. Raw binding data was referenced by subtracting the analyte binding signals from blanks and analyzed using a 1:1 Langmuir binding model using the Biacore Insight evaluation software to obtain the kinetics which were used to calculate the binding affinity. Kd data are summarized in Table 64. The anti-PSMA were captured using an anti-human Fc antibody and the antigens were injected in solution.









TABLE 64







Affinities (KD) for the interaction of anti-PSMA × CD3


bispecific antibodies with human PSMA as obtained by


the BIACORE (SPR) method.










Name
KD (M)







PS3B917
≤2.33E−11  



PS3B918
poor fit



PS3B913
≤2.40E−10  



PS3B915
1.89E−09



PS3B914
Low/No binding



PS3B916
1.75E−09



PS3B919
8.23E−10



PS3B921
≤8.64E−11  



PS3B920
1.35E−09



PS3B922
4.10E−10



PS3B912
1.74E−10



PS3B930
≤2.26E−11  



PS3B931
poor fit



PS3B926
≤2.53E−10  



PS3B928
2.37E−09



PS3B927
1.11E−09



PS3B929
1.83E−09



PS3B932
7.87E−10



PS3B934
≤8.73E−11  



PS3B933
1.44E−09



PS3B935
4.54E−10



PS3B925
1.69E−10










The binding affinity of anti-PSMA antibodies to the recombinant human PSMA was determined by surface plasmon resonance (SPR) using a BIACORE 8K instrument (ELN PSMA-00702). The antibodies were captured on a goat anti-Fc antibody-modified C1 chip and titrated with 3-fold serial dilutions of PSMA antigen spanning concentrations of 1 nM to 100 nM human PSMA. The association and dissociation were monitored for 3 and 30 minutes, respectively, using a flow rate of 50 μL/min. Raw binding data was referenced by subtracting the analyte binding signals from blanks and analyzed using a 1:1 Langmuir binding model by the Biacore Insight evaluation software to obtain the kinetics which were used to calculate the binding affinity. The kinetic parameter of binding of selected antibodies are shown in Table 65. The anti-PSMA were captured using an anti-human Fc antibody and the antigens were injected in solution.









TABLE 65







Affinities (KD) for the interaction of anti-PSMA antibodies with


Human PSMA as obtained by the Biacore (SPR) method.











ka (1/Ms)
kd (1/s)
KD (M)













PSMB1045
2.09E+05
6.98E−05
3.33E−10


PSMB1049
1.07E+05
7.02E−05
6.57E−10


PSMB1051
7.71E+04
7.75E−05
1.01E−09


PSMB1041
2.07E+05
4.35E−04
2.11E−09


PSMB1068
1.51E+05
1.68E−04
1.11E−09


PSMB1052
1.96E+05
3.15E−04
1.61E−09


PSMB1069
1.39E+05
1.97E−04
1.42E−09


PSMB1047
6.94E+05
1.75E−03
2.52E−09


PSMB1075
5.26E+05
4.92E−04
9.36E−10


PSMB1060
1.17E+05
1.19E−04
1.02E−09









The binding affinity of anti-PSMA to the recombinant human or cynomolgus PSMA was determined by surface plasmon resonance (SPR) using a Biacore 8K instrument (ELN PSMA-00721). The antibodies were captured on a goat anti-Fc antibody-modified C1 chip and titrated with 3-fold serial dilutions of PSMA antigen spanning concentrations of 100 nM to 3.7 nM (huma PSMA) or 100 nM to 3.7 nM, or 22.2-600 nM for cyno PSMA. The association and dissociation were monitored for 3 and 60 minutes, respectively, using a flow rate of 50 μL/min. Raw binding data was referenced by subtracting the analyte binding signals from blanks and analyzed using a 1:1 Langmuir binding model by the Biacore Insight evaluation software to obtain the kinetics which were used to calculate the binding affinity. The kinetic parameter of binding of selected antibodies are shown in Table 66. The anti-PSMA were captured using an anti-human Fc antibody and the antigens were injected in solution.









TABLE 66







Affinities (KD)* for the interaction of anti-PSMA antibodies with


Human, cyno or Mouse PSMA as obtained by the Biacore (SPR) method.
















Avg. ka
95%
Avg. kd
95%
Avg. KD
95%


Protein name
Antigen
(1/Ms)
CI
(1/s)
CI
(M)
CI





PS3B1391.002
cy PSMA
1.57E+05
5.77E+04
1.96E−05
6.59E−06
1.26E−10
3.72E−11


PS3B1391.002
hu PSMA
4.80E+05

4.80E−05

1.00E−10


PS3B1508.003
cy PSMA
1.46E+06

3.23E−03

2.20E−09


PS3B1508.003
hu PSMA
2.32E+05

8.89E−05

3.82E−10


PS3B1396.002
cy PSMA
5.87E+05

1.90E−03

5.07E−09


PS3B1396.002
hu PSMA
2.24E+05

8.82E−05

3.95E−10


PS3B1505.001
cy PSMA
4.29E+05

1.24E−03

5.01E−09


PS3B1505.001
hu PSMA
2.32E+05

9.10E−05

3.93E−10





*Data in row 1 is an average of 3. Data in other rows an average of 2.






Example 10.2: Thermal Stability of Bispecific Anti-PSMAxCD3 Antibodies

The thermal stability (conformational stability information including, Tm and Tagg) of anti-PSMAxCD3 antibodies was determined by nanoDSF method using a Prometheus instrument as described above. Briefly, measurements were made by loading sample into 24 well capillary from a 384 well sample plate. Duplicate runs were performed. The thermal scans span from 20° C. to 95° C. at a rate of 1.0° C./minute. The data was processed to obtain integrated data and first derivation analysis for 330 nm, 350 nm, Ratio 330/350, and scatter data from which thermal transitions, onset of unfolding, Tm and Tagg were obtained and summarized in Table 67.









TABLE 67







Thermal stability data for bispecific anti-PSMA × CD3


antibodies as obtained using a nanoDSF instrument.











Name
Tage
Tml
Tm2
Tm3





PS3B917
68.2° C.
63.5° C.
68.8° C.



PS3B918
67.8° C.
63.4° C.
68.2° C.



PS3B913
75.1° C.
63.4° C.
76.3° C.



PS3B915
69.2° C.
63.5° C.




PS3B914
64.5° C.
61.9° C.
67.0° C.
75.8° C.


PS3B916
59.1° C.
59.9° C.




PS3B919
81.0° C.
63.5° C.
68.3° C.
85.7° C.


PS3B921
78.9° C.
63.5° C.
80.8° C.



PS3B920
82.6° C.
63.4° C.
87.5° C.



PS3B922
80.5° C.
63.3° C.
83.4° C.



PS3B912
77.1° C.
63.6° C.
78.4° C.



PS3B930
72.2° C.
70.1° C.




PS3B931
72.2° C.
69.5° C.




PS3B926
75.6° C.
70.2° C.
75.6° C.



PS3B928
72.2° C.
69.1° C.




PS3B927
69.1° C.
66.5° C.
69.4° C.



PS3B929
69.1° C.
58.0° C.
68.0° C.



PS3B932
82.7° C.
70.4° C.
85.8° C.



PS3B934
79.3° C.
70.4° C.
80.9° C.



PS3B933
83.7° C.
70.0° C.
87.8° C.



PS3B935
81.5° C.
70.2° C.
83.7° C.



PS3B925
77.4° C.
70.3° C.
77.9° C.









Example 10.3: Binding of Bispecific PSMAxCD3 Antibodies on PSMA+ Cells

Selected bispecific PSMAxCD3 antibodies were assessed for their ability to bind prostate cancer cell lines expressing PSMA.


22RV1 and C4-2B cells were plated at 50,000 cells per well in 50 μl of assay medium (RPMI, 10% HI FBS) in V bottom plates. Serial dilutions of antibodies were prepared in assay medium with 50 μl of antibody dilutions added to the plates containing cells. The plates were incubated for 60 min at 37° C. at which time 100 μl of staining buffer (Becton Dickinson Cat #554657) was added to all wells of each plate. The plates were centrifuged at 300×G for 5 minutes and the medium was removed from the wells. 200 μl of staining buffer was added to all wells of each plate. The plates were centrifuged at 300×G for 5 minutes and the medium was removed from the wells. 50 μl of 2 μg/ml AlexaFluor647-labeled goat anti-human Fc was added to all wells of the plates and the plates were incubated for 30 minutes at 4° C. 150 μl of staining buffer was added to all wells of each plate. The plates were centrifuged at 300×G for 5 minutes and the medium was removed from the wells. Two hundred microliters of running buffer (Staining buffer plus 1 mM EDTA, 0.1% pluronic acid was added to all wells of the plates. The plates were centrifuged at 300×G for 5 minutes and the medium was removed from the wells. Thirty microliters running buffer was added to all wells with cells and the plates were analyzed on the IQUE Plus instrument (Sartorius). Briefly, cells were gated on a FCS vs. SSC gate to eliminate cellular debris, then the cell populations were gated on singlet cells. Antibody binding was assessed in the red laser channel Signal (Mab plus secondary antibody) to background (secondary antibody only) ratios were calculated for each plate and the resultant data was plotted vs. bispecific antibody concentration in GeneData Screener using 4 parameter curve fitting to generate EC50 values, summarized in Table 68.









TABLE 68







EC50 values of bispecific PSMA × CD3 antibodies binding to


PSMA-expressing cell lines in flow cytometry assays.









Name
22RV1 binding EC50 [M]
C4-2B binding EC50 [M]





PS3B917
7.50E−10
1.90E−09


PS3B918
6.00E−08
6.00E−08


PS3B913
3.42E−09
4.56E−09


PS3B915
6.00E−08
6.00E−08


PS3B914
6.00E−08
6.00E−08


PS3B916
6.00E−08
6.00E−08


PS3B919
2.49E−08
2.33E−08


PS3B921
4.03E−09
6.44E−09


PS3B920
6.00E−08
6.00E−08


PS3B922
3.47E−08
4.41E−08


PS3B912
5.40E−08
3.68E−08


PS3B930
1.06E−09
3.01E−09


PS3B931
6.00E−08
6.00E−08


PS3B926
2.90E−09
4.55E−09


PS3B928
6.00E−08
6.00E−08


PS3B927
6.00E−08
6.00E−08


PS3B929
5.48E−08
6.00E−08


PS3B932
4.87E−08
6.00E−08


PS3B934
4.96E−09
1.10E−08


PS3B933
6.00E−08
6.00E−08


PS3B935
3.95E−08
8.22E−09


PS3B925
2.12E−08
1.17E−08









Binding of anti-PSMA/CD3 bispecific on PAN-T cells via Flow. Human PAN-T Cells (Biological Specialty Corporation, Colmar, Pa.) were thawed and transferred to a 15 mL conical with DPBS. The cells were centrifuged 1300 rpm for 5 minutes. DPBS was aspirated and cells were re-suspended in DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 100K/well in 100 uL DPBS. The plate was centrifuged 1200 rpm for 3 minutes and washed 2× with DPBS. Cells were stained with Violet Live/Dead stain (Thermo-Fisher) and incubated at RT in the dark for 25 min. The cells were centrifuged and washed 2× with FACS staining buffer (BD Pharmingen). Test antibodies were diluted to a final starting concentration of 1 μM in FACS staining buffer and 3-fold serial dilutions were prepared from the starting concentration for a total of 10 dilution points. The serially diluted test antibodies (100 μL/well) were added to the cells and incubated for 30 min at 37° C. Cells were washed 2× with FACS staining buffer and AlexaFluor 647-conjugated Donkey anti-human secondary antibody (Jackson Immunoresearch) was added and allowed to incubate with the cells for 30 min at 4° C. Cells were washed 2× with FACS staining buffer and re-suspended in 100 μL FACS Buffer. Cells were run on BD Celesta using FACS Diva software and analyzed using FLOWJO. FIG. 16 shows that the PSMA/CD3 bispecific antibodies display differential CD3 cell binding profiles detected by flow cytometry.


Binding curves demonstrated in Table 69 below and FIG. 17 were generated against the prostate cell line C4-2B at 37° C. in RPMI media plus 10% fetal bovine serum after 1 hr incubation. Molecule concentrations ranged from 500-0 nM over 12-points at 3-fold dilution. Selective binding to PSMA was validated using an isotype control. Values reported in the Table 69 were generated by fitting the data to a four-parameter function for ligand binding generating values for y-min, y-max, EC50, and Hill. EC90 were calculated using the equation EC90=(90−(100−90)){circumflex over ( )}(1/Hill)*EC50. All curves exhibited a similar Y-min with an average of 7.1+/−1.3E+4 for all curves. See Table 69. None of the Y-min values deviated significantly from the average value. The average fitted Y-max value was 1.7+/−0.6E+6. Molecule PSMB1069 exhibited a 2-fold higher binding signal from the average. None of the other molecules exhibited a significant difference from the average. These molecules exhibited an average EC50=17+/−12 nM.









TABLE 69







EC50 values of anti-PSMA antibodies binding to PSMA-expressing


cell line C4-2B measured by flow cytometry assays.














EC50
EC90


Molecule
Y-min
Y-max
(nM)
(nM)














PSMB1041
7.2E+04
1.1E+06
16
59


PSMB1045
5.3E+04
1.8E+06
7
248


PSMB1047
7.9E+04
1.6E+06
22
71


PSMB1049
8.4E+04
1.5E+06
5
40


PSMB1051
6.7E+04
1.5E+06
10
76


PSMB1052
6.8E+04
1.5E+06
13
100


PSMB1060
8.6E+04
1.6E+06
11
59


PSMB1068
4.8E+04
1.9E+06
8
247


PSMB1069
8.7E+04
3.3E+06
44
254


PSMB1075
6.6E+04
1.3E+06
30
156









Binding of anti-PSMA variants/CD3 bispecific on T cells via flow cytometry. C4-2B human prostate tumor cells were washed with DPBS and 0.25% trypsin was added to allow cells to detach. Media was added to neutralize trypsin and the cells were transferred to a 15 mL conical with DPBS. The cells were centrifuged 1300 rpm for 5 minutes. DPBS was aspirated and cells were re-suspended in DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 100K/well in 100 μL DPBS. The plate was centrifuged 1200 rpm for 3 minutes and washed 2× with DPBS. Cells were stained with Violet Live/Dead stain (Thermo-Fisher) and incubated at RT in the dark for 25 min. The cells were centrifuged and washed 2× with FACS staining buffer (BD Pharmingen). Test antibodies were diluted to a final starting concentration of 100 nM in FACS staining buffer and 3-fold serial dilutions were prepared from the starting concentration for a total of 10 dilution points. The serially diluted test antibodies (100 μL/well) were added to the cells and incubated for 30 min at 37° C. Cells were washed 2× with FACS staining buffer and AlexaFluor 647-conjugated Donkey anti-human secondary antibody (Jackson Immunoresearch) was added and allowed to incubate with the cells for 30 min at 4° C. Cells were washed 2× with FACS staining buffer and re-suspended in 100 μL FACS Buffer. Cells were run on BD CELESTA using FACS Diva software and analyzed using FLOWJO. FIG. 18 shows that PSMA/CD3 bispecific antibodies display similar PSMA cell binding profiles detected by flow cytometry.


Example 10.4: Internalization of PSMA

C4-2B human prostate tumor cells were washed with DPBS and 0.25% trypsin was added to allow cells to detach. Media was added to neutralize trypsin and the cells were transferred to a 15 mL conical with DPBS. The cells were centrifuged 1300 rpm for 5 minutes. DPBS was aspirated and cells were re-suspended in DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 40K/well in 50 μL Phenol Red-Free PRMI+10% HI FBS. The PSMA/CD3 bispecific or control antibodies were incubated with IncuCyte® Human Fab-fluor-pH Red Antibody labeling dye for 15 minutes then 50 μL of conjugated PSMA/CD3:Fab-fluor-pH Red complex was added to the wells containing C4-2B cells. The plates were placed in an IncuCyte S3® (Essen) at 37° C. with 5% CO2 for 24 hours. The Ab:Fab-fluor complex that is internalized by the target cells is processed by acidic lysosomes which produces the red fluorogenic signal that is captured and analyzed by the IncuCyte®. FIG. 19 shows that PSMA/CD3 bispecific antibodies internalize but at a lesser rate than the transferrin receptor.


Example 10.5: T-Cell Mediated Killing of Bispecific PSMAxCD3 Antibodies on PSMA+ Cells Via Flow Cytometry

Selected bispecific PSMA×CD3 antibodies were assessed for their ability to mediate T cell mediated killing of prostate cancer cells.


T cell mediated killing of the PSMA×CD3 bispecific antibodies was measured using an assay that indirectly measures cell killing via flow cytometry. Target cell population are identified base on cell viability Test samples and controls were prepared at 20 nM in assay medium (10% RPMI, 10% HI FCS). Half log serial dilutions for a 11-point titration of compounds in sterile polypropylene plates were prepared. Additional wells were used for controls without compounds, T cells or tumor cell containing wells only in assay medium. C4-2B cells were harvested from the cell culture flasks and cells were resuspended in PBS. Cells were stained with 20 pM CFSE for 10 minutes at room temperature. 25 mL of HI FBS was added to stop the staining reaction and the cells were centrifuged at 300×G for 5 minutes. Cells were diluted to 1×106/ml and then plated as tumor target cells in 50 μL assay medium for 50,000 cells/well into a V-bottom tissue culture treated polystyrene assay plate. 50 μL/well of assay media was added to the control wells that did not receive tumor cells. Human PAN-T cell vials were thawed in a water bath set at 37° C. and washed twice by adding 10 ml assay medium and centrifuging at 400×G for 5 minutes. T cells were resuspended to 1×106/mL in assay medium and 50 μL containing 50,000/well were added to the assay plates containing tumor target cells. 50 μL/well assay media was added to the control wells that did not receive tumor cells. 100 μL/well of serially diluted antibodies were added to the assay plates containing cell mixture of target and effector cells. Plates were incubated at 37° C., 5% CO2 in a humidified cell culture incubator for 72 hours.


Following the incubation assay plates were centrifuged at 500×G for 5 minutes and medium was removed from the wells. 150 μL DPBS was added to each well and the plates were centrifuged at 500×G for 5 minutes and medium was removed from the wells. The cultures were assessed using flow cytometry on the INTELLICYT IQ Plus for viable tumor cells using near IR live/dead stain. T cell activation was assessed using a brilliant violet-labeled anti-CD25 MAB. Cells were gated in an FSC vs SSC gate to eliminate debris. Tumor cells were identified as CFSE positive cells. T cells were identified as CSFE negative cells. Tumor cell viability was calculated as number of live/dead stain positive tumor cells as a percentage of total CSFE cells. Activated T cells were calculated as the number of CD25 positive cells as a percentage of the total number of the live CFSE negative population. The data for percent dead tumor cells and activated T cells were plotted vs. antibody concentration in Gene Data Screener using 4 parameter curve fitting to generate EC50 values. Table 70 shows EC50 values for T cell activation and tumor cell killing.









TABLE 70







In vitro T cell mediated killing of tumor cells and T cell


activation by bispecific PSMA × CD3 antibodies.












Tumor killing
T cell activation



Name
EC50 [M]
EC50 [M]







PS3B917
7.31E−12
4.48E−12



PS3B918
1.00E−08
1.00E−08



PS3B913
3.11E−10
1.55E−10



PS3B915
1.00E−08
1.00E−08



PS3B914
1.00E−08
1.00E−08



PS3B916
1.00E−08
1.00E−08



PS3B919
2.10E−10
1.87E−10



PS3B921
3.11E−11
2.11E−11



PS3B920
3.20E−09
1.77E−09



PS3B922
7.79E−11
5.85E−11



PS3B912
6.51E−11
4.73E−11



PS3B930
4.83E−12
2.40E−12



PS3B931
1.00E−08
1.00E−08



PS3B926
4.78E−11
3.45E−11



PS3B928
4.81E−10
1.84E−10



PS3B927
1.00E−08
1.00E−08



PS3B929
1.00E−08
1.00E−08



PS3B932
6.42E−12
1.20E−11



PS3B934
7.24E−12
4.81E−12



PS3B933
4.76E−11
6.01E−11



PS3B935
7.16E−12
6.72E−12



PS3B925
7.98E−12
4.59E−12










Example 10.6: T-Cell Mediated Killing of Bispecific PSMAxCD3 Antibodies on PSMA+ Cells Via Incucyte

Select bispecific PSMAxCD3 antibodies were assessed for their ability to mediate T cell mediated killing of prostate cancer cells via IncuCyte®-based cytotoxic assay.


Healthy donor T cells. PSMA+C4-2B cells stably expressing red nuclear dye were generated to be used in the IncuCyte-based cytotoxicity assay. Frozen vials of healthy donor T cells (Biological Specialty Corporation, Colmar, Pa.) were thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 5 mL phenol-red-free RPMI/10% HI FBS medium. The cells were counted using the VIACELL XR cell viability analyzer and the T cells were combined with target cells for a final effector T cell to target cell (E: T) ratio of 3:1. The cell mixture was combined in a 50 mL conical tube. The cell mixture (100 μL/well) was added to a clear 96-well flat-bottom plate. Next, the test antibodies were diluted to a final starting concentration of 60 nM in phenol-red-free RPMI/10% HI FBS medium and 3-fold serial dilutions were prepared from the starting concentration for a total of 11 dilution points. The serially diluted test antibodies (100 μL/well) were added to the combined cells. The plates were placed in either an IncuCyte® Zoom or an IncuCyte S3® (Essen) at 37° C. with 5% CO2 for 120 hours. The target cell lines stably express red nuclear dye which is used to track the kinetics of target cell lysis. Percent cell growth inhibition (%)=(Initial viable target cell number−Current viable target cell number)/Initial viable cell number*100%. Table 71 and FIGS. 20A-20H show cytotoxicity for C4-2B cells with increasing concentrations of anti-PSMA. Isolated PAN-T cells were co-incubated with PSMA+C4-2B cells in the presence of bispecific PSMA/T cell redirection antibodies for 120 hours.









TABLE 71







Bispecific anti-PSMA/anti-T cell redirection antibodies


evaluated in an IncuCyte ®-based cytotoxicity assay.









Cytotoxicity (C4-2B cells, 3:1 E:T



ratio, 5 Day)













30
10
3.3
1.1
0.3


Name
nM
nM
nM
nM
nM





PS3B1352
79%
85%
89%
88%
65%


PS3B1356
88%
83%
80%
55%
No







lysis


PS3B1353
92%
95%
97%
98%
98%


PS3B1357
91%
96%
95%
96%
96%


PS3B1354
84%
72%
30%
No
No






lysis
lysis


PSMB937
41%
No
No
No
No




lysis
lysis
lysis
lysis


PS3B1355
94%
95%
96%
97%
92%


PS3B1358
88%
94%
93%
90%
68%









Healthy PBMCs. PSMA+C4-2B human prostate tumor cells expressing red nuclear dye were generated to be used in the IncuCyte®-based cytotoxicity assay. Frozen vials of healthy PBMCs (Hemacare, Los Angeles, Calif.) were thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 5 mL phenol-red-free RPMI/10% HI FBS medium. The cells were counted using the VIACELL XR cell viability analyzer and the PBMCs were combined with target cells for a final PBMC to target cell (E: T) ratio of 1:1. The cell mixture was combined in a 5 0 mL conical tube. The cell mixture (100 μL/well) was added to a clear 96-well flat-bottom plate. Next, the test antibodies were diluted to a final starting concentration of 30 nM in phenol-red-free RPMI/10% HI FBS medium and 3-fold serial dilutions were prepared from the starting concentration for a total of 11 dilution points. The serially diluted test antibodies (100 μL/well) were added to the combined cells. The plates were placed in either an IncuCyte® Zoom or an IncuCyte S3® (Essen) at 37° C. with 5% CO2 for 120 hours. The target cell lines stably express red nuclear dye which is used to track the kinetics of target cell lysis. Percent cell growth inhibition (%)=(Initial viable target cell number−Current viable target cell number)/Initial viable cell number*100%. FIG. 21 shows that the PSMA/CD3 bispecific antibodies induce differential C4-2B cytotoxic effects.


Example 10.7: Evaluating Cytokine Induction by Bispecific Anti-PSMAxCD3 Antibodies

Select bispecific PSMAxCD3 antibodies were assessed for their ability to induce cytokine release.


Supernatants collected from the in-vitro cytotoxicity experiment described above were analyzed using the Human Proinflammatory Panel I tissue culture kit (Meso Scale Discovery). Supernatants were thawed on wet ice, spun at 1,500 rpm for 5 minutes at 4° C., then placed on ice. The MULT-SPOT assay plates were pre-washed per the manufacturer's protocol. A standard curve was prepared by serial dilution of the provided calibrators in MSD Diluent 1. The standards and test antibody samples (254/well) were added to the pre-washed plates. Subsequent incubations and washes were all carried out per manufacturer's protocol. Assay plates were read on the SECTOR Imager 6000. IFNγ concentrations were quantified for each PSMAxCD3 bispecific antibody evaluated. FIG. 22 shows functional cytokine release by T cells activated by PSMAxCD3 antibodies.


Example 10.8: T-Cell Mediated Killing of Bispecific PSMAxCD3 Antibodies on PSMA+ Cells Via xCelligence

Select bispecific PSMAxCD3 antibodies were assessed for their ability to mediate T cell mediated killing of prostate cancer cells, C4-2B. C4-2B, a prostate cancer cell line expressing ˜150,000 PSMA/cell was used at a 3:1 Effector to Target ratio (E:T), using three PAN-T donors. On day 0 of the experiment, xCelligence plates were blanked with 50 μl of growth media. Plates were then seeded with 20,000 C4-2B (50 μL out of 0.4×106 cells/ml) cells per well. Plates were then incubated on the xCelligence machine overnight. On day 1 of the experiment, three PAN-T donors were used to prepare the E:T ratio by adding 50 μL of 1.2×106 cells/mL (60,000 cells). Then 50 μL of the appropriate bispecific antibodies were added to the appropriate wells for each plate. CD3×null was used as a control. Tumor/target only wells were assigned to be used for normalization in the percent cytolysis calculation. Final antibody concentrations were 50 nM, 10 nM, 2 nM, 0.4 nM, 80 pM and 0 nM. Plates were then placed in the XCELLIGENCE machine and impedance was recorded every 15 minutes for 120 hours. Percent cytolysis was calculated on the RTCA software using the equation % cytolysis=[1−(NCI)/(AvgNCIR)]×100, where NCI is the average cell index of the well and AvgNCIR is the average cell index of the tumor only reference wells. Table 72 summarizes cytolysis for each PSMA×CD3 bispecific molecule over time.









TABLE 72







Summary of % cytolysis at time point 120 hours for all four bispecific


antibodies, for three PAN-T donors, at each dose concentration.













Donor ID
Name
50 nM
10 nM
2 nM
0.4 nM
80 pM





#1
PS3B1352
100%
100%
100%
100%
 77%



PS3B1353
100%
100%
100%
100%
100%



PS3B1356
100%
100%
100%
100%
 0%



PS3B1357
100%
100%
100%
100%
100%


#2
PS3B1352
100%
100%
100%
100%
 0%



PS3B1353
100%
100%
100%
100%
100%



PS3B1356
100%
100%
100%
 24%
 0%



PS3B1357
100%
100%
100%
100%
100%


#3
PS3B1352
100%
100%
100%
100%
 9%



PS3B1353
100%
100%
100%
100%
100%



PS3B1356
100%
100%
100%
100%
 0%



PS3B1357
100%
100%
100%
100%
100%









It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the present description.

Claims
  • 1. An isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises: a. a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 55 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 59;b. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 55 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58;c. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 54 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 56; ord. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 48 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 58; wherein the amino acid in position N106 of SEQ ID NO: 55, 54, or 48 is optionally substituted with the amino acid selected from the group consisting of A, G, S, F, E, T, R, V, I, Y, L, P, Q, and K,wherein the residue numbering starts from N-terminus of SEQ ID NO: 55, 54, or 48.
  • 2. The isolated protein of claim 1, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 70, 71, 86, 79, 80, and 81, respectively.
  • 3. The isolated protein of claim 1, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of a. SEQ ID NOs: 70, 71, 72, 79, 80, and 81, respectively;b. SEQ ID NOs: 70, 71, 87, 79, 80, and 81, respectively; orc. SEQ ID NOs: 70, 71, 90, 79, 80, and 81, respectively.
  • 4. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
  • 5. The isolated protein of claim 4, wherein the antigen binding domain that binds CD3ε is the Fab.
  • 6. The isolated protein of claim 4, wherein the antigen binding domain that binds CD3ε is the scFv.
  • 7. The isolated protein of claim 6, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
  • 8. The isolated protein of claim 7, wherein the L1 comprises a. about 5-50 amino acids;b. about 5-40 amino acids;c. about 10-30 amino acids; ord. about 10-20 amino acids.
  • 9. The isolated protein of claim 7, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 3-36.
  • 10. The isolated protein of claim 9 wherein the L1 comprises the amino acid sequence of SEQ ID NO: 3.
  • 11. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 55, 54, or 48 and the VL of SEQ ID NOs: 59, 58 or 56.
  • 12. The isolated protein of claim 11, wherein the antigen binding domain that binds CD3ε comprises: a. the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 59;b. the VH of SEQ ID NO: 55 and the VL of SEQ ID NO: 58;c. the VH of SEQ ID NO: 54 and the VL of SEQ ID NO: 56;d. the VH of SEQ ID NO: 48 and the VL of SEQ ID NO: 58;e. the VH of SEQ ID NO: 88 and the VL of SEQ ID NO: 58; orf. the VH of SEQ ID NO: 242 and the VL of SEQ ID NO: 58.
  • 13. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, or 126.
  • 14. The isolated protein of claim 1, wherein the isolated protein is a multispecific protein.
  • 15. The isolated protein of claim 14, wherein the multispecific protein is a bispecific protein.
  • 16. The isolated protein of claim 14, wherein the multispecific protein is a trispecific protein.
  • 17. The isolated protein of claim 1, further comprising an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof.
  • 18. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises a Fc region.
  • 19. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises a CH2 domain.
  • 20. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises a CH3 domain.
  • 21. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises a CH2 domain and a CH3 domain.
  • 22. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises at least portion of a hinge, a CH2 domain and a CH3 domain.
  • 23. The isolated protein of claim 17, wherein the fragment of the Ig constant region comprises a hinge, a CH2 domain and a CH3 domain.
  • 24. The isolated protein of claim 17, wherein the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.
  • 25. The isolated protein of claim 17, wherein the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.
  • 26. The isolated protein of claim 17, wherein the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).
  • 27. The isolated protein of claim 26, wherein the L2 comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 3-36.
  • 28. The isolated protein of claim 14, wherein the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.
  • 29. The multispecific antibody of claim 14, wherein the antigen is a tumor associated antigen.
  • 30. The isolated protein of claim 14, wherein the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.
  • 31. The isolated protein of claim 1, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR).
  • 32. The isolated protein of claim 31, wherein the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.
  • 33. The isolated protein of claim 31, wherein the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.
  • 34. The isolated protein of claim 14, wherein the protein comprises at least one mutation in a CH3 domain of the Ig constant region.
  • 35. The isolated protein of claim 34, wherein the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, T366L, F405W, T394W, K392L, T394S, T394W, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.
  • 36. A pharmaceutical composition comprising the isolated protein of claim 1 and a pharmaceutically acceptable carrier.
  • 37. A polynucleotide encoding the isolated protein of claim 1.
  • 38. A vector comprising the polynucleotide of claim 37.
  • 39. A host cell comprising the vector of claim 38.
  • 40. A method of producing the isolated protein of claim 1, comprising culturing the host cell of claim 39 in conditions that the protein is expressed, and recovering the protein produced by the host cell.
  • 41. An anti-idiotypic antibody binding to the isolated protein of claim 1.
  • 42. An isolated protein of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 127-157.
  • 43. An isolated protein of any one of claims 1-35 comprising an antibody heavy chain of SEQ ID NO: 224 and antibody light chain of SEQ ID NO: 226.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 63/165,184, filed 24 Mar. 2021. The entire contents of the aforementioned application are incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63165184 Mar 2021 US