PROTEINS COMPRISING CD3 ANTIGEN BINDING DOMAINS AND USES THEREOF

Abstract
The disclosure provides antigen binding domains that bind cluster of differentiation 3 (CD3) protein, comprising the antigen binding domains that bind CD3ε, polynucleotides encoding them, vectors, host cells, methods of making and using them.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 11, 2021, is named JBI6316USNP1_SL.txt and is 1,061 bytes in size.


TECHNICAL FIELD

The disclosure provides antigen binding domains that bind cluster of differentiation 3 (CD3) protein comprising the antigen binding domains that bind CD3, polynucleotides encoding them, vectors, host cells, methods of making and using them.


BACKGROUND

Bispecific antibodies and antibody fragments have been explored as a means to recruit cytolytic T cells to kill tumor cells. However, the clinical use of many T cell-recruiting bispecific antibodies has been limited by challenges including unfavorable toxicity, potential immunogenicity, and manufacturing issues. There thus exists a considerable need for improved bispecific antibodies that recruit cytolytic T cells to kill tumor cells that include, for example, reduced toxicity and favorable manufacturing profiles.


The human CD3 T cell antigen receptor protein complex is composed of six distinct chains: a CD3γ chain (SwissProt P09693), a CD3δ chain (SwissProt P04234), two CD3ε chains (SwissProt P07766), and one CD3ζ chain homodimer (SwissProt P20963) (ε γ: ε δ:ζ), which is associated with the T cell receptor α and β chain. This complex plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. The CD3 complex mediates signal transduction, resulting in T cell activation and proliferation. CD3 is required for immune response.


Redirection of cytotoxic T cells to kill tumor cells has become an important therapeutic mechanism for numerous oncologic indications (Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18, 585-608, doi:10.1038/s41573-019-0028-1 (2019)). T cell activation follows a two-signal hypothesis, in which the first signal is supplied by engagement of the T cell receptor (TCR) complex with its cognate peptide MHC complex on an antigen presenting cell (APC), and the second signal may be either co-stimulatory or co-inhibitory (Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242, doi: 10.1038/nri3405 (2013)). Tumors often fail to present sufficient non-self antigens to induce a T cell-based immune response, and T cell-engaging BsAbs (bsTCE) can overcome this challenge by inducing T cell activation in the absence of TCR-pMHC interaction. T cell receptor signaling occurs through the ITAM motifs in the cytoplasmic region of the CD3 subunits of the TCR (Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10, doi:10.1016/j.immuni.2013.07.012 (2013)). In particular, the CD3ε subunit is present in two copies per TCR complex and represents an attractive antigen for T cell engagement. Indeed, numerous bsTCE that target CD3ε have shown clinical anti-tumor efficacy where mAbs have failed, and significant pharmaceutical development efforts are ongoing for several tumor targets (Labrijn, A. F. et al., 2019). Three major challenges for clinical development of bsTCE are 1) the potential for rapid and severe toxicity associated with cytokine release via systemic or off-tumor T cell activation, 2) practical challenges of formulation and dosing for bsTCE with high potency and sharp therapeutic indices, and 3) the potential for reactivation-induced T cell death, wherein tumor-infiltrating T cells (TILS) undergo apoptosis in response to over-activation by bsTCE (Wu, Z. & Cheung, N. V. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol Ther 182, 161-175, doi:10.1016/j.pharmthera.2017.08.005 (2018)).


Together, these observations suggest that there is a need in the art for novel CD3 specific binding proteins that are more advantageous and can be used to treat cancers.


SUMMARY

The disclosure satisfies this need, for example, by providing novel CD3ε specific binding proteins that possess high affinity for the tumor antigen and weak affinity for the T cell. The proteins comprising an antigen binding domain that binds CD3ε of the disclosure demonstrated high thermostability, reduced deamidation risk, and decreased immunogenicity.


In certain embodiments, the disclosure provides an isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises:


a. a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24;


b. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 27;


c. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 28;


d. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 29; or


e. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 30.


In other embodiments, the isolated protein comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


a. SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


b. SEQ ID NOs:12, 13, 14, 15, 16, and 17, respectively; or


c. SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.


In other embodiments, the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.


In other embodiments, the antigen binding domain that binds CD3ε is the Fab.


In other embodiments, the antigen binding domain that binds CD3ε is the VHH.


In other embodiments, the antigen binding domain that binds CD3ε is the scFv.


In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).


In certain embodiments, the L1 comprises


a. about 5-50 amino acids;


b. about 5-40 amino acids;


c. about 10-30 amino acids; or


d. about 10-20 amino acids.


In certain embodiments, the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.


In certain embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 31, 37, or 64.


In other embodiments, the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the antigen binding domain that binds CD3ε comprises:


a. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


b. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


c. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


d. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


e. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain variable region (VL) of SEQ ID NO: 103. In other embodiments, the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH. In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH). In other embodiments, the L1 comprises a. about 5-50 amino acids; b. about 5-40 amino acids; c. about 10-30 amino acids; or d. about 10-20 amino acids. In other embodiments, the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64. In other embodiments, the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24, 27, 28, 29, or 30. In various embodiments, the antigen binding domain that binds CD3ε comprises: the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24; the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27; the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28; the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the isolated protein is a monospecific protein. In other embodiments, the isolated protein is a multispecific protein. In other embodiments, the multispecific protein is a bispecific protein. In other embodiments, the multispecific protein is a trispecific protein.


In other embodiments, the protein is conjugated to a half-life extending moiety.


In other embodiments, the half-life extending moiety is an immunoglobulin (Ig), a fragment of the Ig, an Ig constant region, a fragment of the Ig constant region, a Fc region, transferrin, albumin, an albumin binding domain or polyethylene glycol.


In other embodiments, the isolated protein further comprises an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof.


In other embodiments, the fragment of the Ig constant region comprises a Fc region.


In other embodiments, the fragment of the Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises a hinge, the CH2 domain and the CH3 domain.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.


In other embodiments, the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.


In other embodiments, the cell antigen is a tumor associated antigen. In other embodiments, the tumor associated antigen is kallikrein related peptidase 2 (hK2) protein. In other embodiments, the tumor associated antigen is human leukocyte antigen G (HLA-G). In other embodiments, the tumor associated antigen is prostate-specific membrane antigen (PSMA). In other embodiments, the tumor associated antigen is delta-like protein 3 (DLL3). In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR). In other embodiments, the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.


In other embodiments, the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in enhanced binding of the protein to the FcγR.


In other embodiments, the at least one mutation that results in enhanced binding of the protein to the FcγR is selected from the group consisting of S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E, wherein residue numbering is according to the EU index.


In other embodiments, the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.


In other embodiments, the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that modulates a half-life of the protein.


In other embodiments, the at least one mutation that modulates the half-life of the protein is selected from the group consisting of H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R, wherein residue numbering is according to the EU index.


In other embodiments, the protein comprises at least one mutation in a CH3 domain of the Ig constant region.


In other embodiments, the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, F405W, K392L, T394W, T394S, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, T366L/K392L/T394W, F405A/Y407V, T366L/K392M/T394W, L351Y/Y407A, T366A/K409F, L351Y/Y407A, L351Y/Y407V, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.


The disclosure also provides a pharmaceutical composition comprising the isolated protein comprising the antigen binding domain that binds to CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a polynucleotide encoding the protein comprising the antigen binding domain that binds to CD3ε of the disclosure.


The disclosure also provides a vector comprising the polynucleotide encoding the protein comprising the antigen binding domain that binds to CD3ε of the disclosure.


The disclosure also provides a host cell comprising the vector comprising the polynucleotide encoding the protein comprising the antigen binding domain that binds to CD3ε of the disclosure.


The disclosure also provides a method of producing the isolated protein of the disclosure, comprising culturing the host cell of the disclosure in conditions that the protein is expressed, and recovering the protein produced by the host cell.


The disclosure also provides a method of treating a cancer in a subject, comprising administering a therapeutically effective amount of the compositions comprising the isolated antibody comprising the antigen binding domain that binds to CD3ε to the subject in need thereof to treat the cancer. In other embodiments, the cancer is a solid tumor or a hematological malignancy. In other embodiments, the solid tumor is a prostate cancer, a colorectal cancer, a gastric cancer, a clear cell renal carcinoma, a bladder cancer, a lung cancer, a squamous cell carcinoma, a glioma, a breast cancer, a kidney cancer, a neovascular disorder, a clear cell renal carcinoma (CCRCC), a pancreatic cancer, a renal cancer, a urothelial cancer or an adenocarcinoma to the liver. In other embodiments, the hematological malignancy is acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphocytic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML) or blastic plasmacytoid dendritic cell neoplasm (DPDCN). In other embodiments, the antibody is administered in combination with a second therapeutic agent.


The disclosure also provides an anti-idiotypic antibody binding to the isolated protein comprising the antigen binding domain that binds to CD3ε of the disclosure.


The disclosure also provides an isolated protein comprising an antigen binding domain that binds to an epitope on CD3ε (SEQ ID NO: 1), wherein the epitope is a discontinuous epitope comprising the amino acid sequences of SEQ ID NO: 100, 101, and 102.


The disclosure also provides an isolated protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 747, 748, 77, 78, 749, 750, 751, 752, 753, and 754.


In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 747. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 748. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 77. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 78. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 749. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 750. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 751. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 752. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 753. In one embodiment, the disclosure provides an isolated protein comprising amino acid sequences of SEQ ID NO: 754.


The disclosure also provides an isolated protein comprising amino acid sequences of SEQ ID NOs: 85 and 86.


The disclosure also provides an isolated protein comprising amino acid sequences of SEQ ID NOs: 85 and 88.


The disclosure also provides an isolated protein comprising amino acid sequences of SEQ ID NOs: 85 and 90.


The disclosure also provides an isolated protein comprising amino acid sequences of SEQ ID NOs: 85 and 92.


The disclosure also provides an isolated protein comprising amino acid sequences of SEQ ID NOs: 85 and 94.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The summary, as well as the following detailed description, is further understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosed antibodies and methods, there are shown in the drawings exemplary embodiments of the antibodies and methods; however, antibodies and methods are not limited to the specific embodiments disclosed. In the drawings:



FIGS. 1A and 1B show binding of hybridoma supernatants to primary human T cells. Clone UCHT1 was used as a positive control (FIG. 1B); mouse IgG1 isotype (mIgG1) was used as a negative control.



FIG. 2 shows binding of anti-CD3 scFv variants, expressed in E. coli, to CD3.



FIG. 3 shows the alignment of the VL regions of CD3B815 (SEQ ID NO: 119), CD3W244 (SEQ ID NO: 27), CD3W245 (SEQ ID NO: 28), CD3W246 (SEQ ID NO: 24), CD3W247 (SEQ ID NO: 29) and CD3W248 (SEQ ID NO: 30).



FIG. 4 shows hydrogen-deuterium exchange rates determined using hydrogen-deuterium exchange mass spectrometry (HDX-MS) measured for the complex of CD3W245 bound to human CD3ε (CD3ε:CD3W245), or the complex of OKT3 bound to human CD3ε (CD3ε:OKT3) (SEQ ID No: 99 which is a fragment of SEQ ID No: 5 is shown). Single underline indicates segments with 10%-30% decrease in deuteration levels and double underline indicates segments with >30% decrease in deuteration levels in the presence of the antibody, as compared to CD3ε alone.



FIG. 5 shows the sequence alignment of the VH domains of mu11B6, hu11B6, KL2B357, KL2B358, KL2B359, KL2B360, HCF3 and HCG5. FIG. 5 discloses SEQ ID NOS 126, 124, 132, 134, 136, 132, 128 and 130, respectively, in order of appearance.



FIG. 6 shows the sequence alignment of the VL domains of mu11B6, hu11B6, KL2B357, KL2B358, KL2B359, KL2B360, LDC6 and LCB7. FIG. 6 discloses SEQ ID NOS 127, 125, 133, 135, 135, 135, 129 and 131, respectively, in order of appearance.



FIG. 7 shows the binding epitopes of selected hK2 antibodies mapped onto the sequence of hK2 antigen. FIG. 7 discloses SEQ ID NO: 745, 741, 741, 741, 741 and 741, respectively, in order of appearance.



FIG. 8A shows in vitro target cytotoxicity of KL2BxCD3 bi-specific molecules measured by incuCyte imaging system in real-time for quantifying target cell death.



FIG. 8B shows in vitro target cytotoxicity of KL2BxCD3 bi-specific molecules measured by fluorescent caspase 3/7 reagent to measure apoptosis signal from target cell death.



FIG. 9A shows in vitro T cell activation and proliferation by KLK2×CD3 bi-specific antibodies by showing the frequency of CD25 positive cells at different doses.



FIG. 9B shows in vitro T cell activation and proliferation by KLK2×CD3 bi-specific antibodies by showing the frequency of cells entering into proliferation gate.



FIG. 10A shows in vitro T cell INF-γ release by KLK2×CD3 bi-specific antibodies.



FIG. 10B shows in vitro T cell TNF-α release by KLK2×CD3 bi-specific antibodies.



FIG. 11 (11A-11F) shows the binding paratope of selected anti-hK2 antibodies and selected anti-hK2/CD3 bispecific antibodies. Underlined sequences indicate CDR regions and highlighted sequences indicate paratope regions. FIG. 11A discloses SEQ ID NOS 219-220, respectively, in order of appearance. FIG. 11B discloses SEQ ID NOS 213 and 224, respectively, in order of appearance. FIG. 11C discloses SEQ ID NOS 208 and 215, respectively, in order of appearance. FIG. 11D discloses SEQ ID NOS 742 and 743, respectively, in order of appearance. FIG. 11E discloses SEQ ID NOS 327 and 221, respectively, in order of appearance. FIG. 11F discloses SEQ ID NOS 329 and 222, respectively, in order of appearance.



FIG. 12 shows the ability of v-regions to bind recombinant HLA-G after heat treatment when formatted as scFv.



FIG. 13 shows the epitope mapping of select antibodies on HLA-G (SEQ ID NO: 691) using the hydrogen-deuterium exchange-based LC-MS. The sequence shown is the fragment of SEQ ID NO: 691, with the amino acid residue numbering staring from the first residue of the mature HLA-G (residues 183-274 are shown). FIG. 13 discloses SEQ ID NO: 746, 746, 744 and 744, respectively, in order of appearance.



FIGS. 14A-14B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB665-derived variable region engineered on either IgG1 (MHGB665) or IgG4 (MHGB523). FIG. 14A shows NKL cell-mediated cytotoxicity; FIG. 14B shows NK-92 cell-mediated cytotoxicity.



FIGS. 15A-15B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB669-derived variable region engineered on either IgG1 (MHGB669) or IgG4 (MHGB526). FIG. 15A shows NKL cell-mediated cytotoxicity; FIG. 15B shows NK-92 cell-mediated cytotoxicity.



FIGS. 16A-16B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB688-derived variable region engineered on either IgG1 (MHGB688) or IgG4 (MHGB596). FIG. 16A shows NKL cell-mediated cytotoxicity; FIG. 16B shows NK-92 cell-mediated cytotoxicity.



FIGS. 17A-17B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB694-derived variable region engineered on either IgG1 (MHGB694) or IgG4 (MHGB616). FIG. 17A shows NKL cell-mediated cytotoxicity; FIG. 17B shows NK-92 cell-mediated cytotoxicity.



FIGS. 18A-18B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB687-derived variable region engineered on either IgG1 (MHGB687) or IgG4 (MHGB585). FIG. 18A shows NKL cell-mediated cytotoxicity; FIG. 18B shows NK-92 cell-mediated cytotoxicity.



FIGS. 19A-19B show the enhancement of NK cell-mediated cytotoxicity of K562-HLA-G cells by the MHGB672-derived variable region engineered on either IgG1 (MHGB672) or IgG4 (MHGB508). FIG. 19A shows NKL cell-mediated cytotoxicity; FIG. 19B shows NK-92 cell-mediated cytotoxicity.



FIG. 20 shows ADCC activity against JEG-3 cells, mediated by the select antibodies MHGB665 (“B665”), MHGB669 (“B669”), MHGB672 (“B672”), MHGB682 (“B682”), MHGB687 (“B687”), and MHGB688 (“B688”).



FIGS. 21A-21B show ADCC activity of the select antibodies.



FIGS. 21C-21D show CDC activity of the select antibodies.



FIGS. 22A-22B show cytotoxicity of HC3B125 against HLA-G expressing tumor cells HUP-T3 and % T-cell activation.



FIGS. 22C-22D show cytotoxicity of HC3B125 against HLA-G expressing tumor cells RERF-LC-Ad-1 and % T-cell activation.



FIG. 23 shows cytotoxicity of HC3B258 and HC3B125 against RERF-LC-Ad-1 cells; Effector (T cell): Target (RERF-LC-Ad1) ratios were 1:3, 1:1, or 3:1, as indicated.



FIGS. 24A-24B show group mean tumor volumes (17A) and individual tumor volumes at day 27 of established pancreatic PDX in CD34+ cell humanized NSG-SGM3 mice treated with either control (HLA-G×Null) or HCB125.



FIG. 25 shows group mean tumor volumes of established Hup-T3 xenografts in T cell humanized NSG mice treated with either control (CD3×Null) or HCB125.



FIGS. 26A and 26B show cells binding of bispecific anti-DLL3×CD3 antibodies to DLL3+ tumor cell lines. FIG. 26A shows cells binding of bispecific anti-DLL3×CD3 antibodies to DLL3+ tumor cell lines, SHP77 cells. FIG. 26B shows cells binding of bispecific anti-DLL3×CD3 antibodies to DLL3+ tumor cell lines, HCC1833 cells.



FIG. 27 shows binding of bispecific anti-DLL3×CD3 antibodies on human pan T cells using FACS.



FIGS. 28A and 28B show in vitro target cytotoxicity of bispecific anti-DLL3×CD3 antibodies measured by incuCyte imaging system in real-time for quantifying target cell death. FIG. 28A shows in vitro target cytotoxicity of anti-DLL3×CD3 bispecific molecules measured by incuCyte imaging system in real-time for quantifying target cell death. Isolated pan-T cells were co-incubated with DLL3+ SHP77 cells in the presence of bispecific anti-DLL3×CD3 antibodies for 120 hours. FIG. 28B shows in vitro target cytotoxicity of anti-DLL3×CD3 bispecific molecules measured by incuCyte imaging system in real-time for quantifying target cell death. Isolated pan-T cells were co-incubated with DLL3-HEK293 cells in the presence of bispecific anti-DLL3×CD3 antibodies for 120 hours.



FIG. 29 shows in vitro T cell IFN-γ release by bispecific anti-DLL3×CD3 antibodies. IFN-γ concentration was measured from supernatants collected at the indicated time points.



FIGS. 30A-30C show the cytotoxicity against DLL3+ target cell lines in PBMCs mediated by bispecific anti-DLL3×CD3 antibodies. FIG. 30A shows the cytotoxicity against DLL3+ target cell lines in PBMCs mediated by bispecific anti-DLL3×CD3 antibodies with an E:T ratio of 10:1. FIG. 30B shows the cytotoxicity against DLL3+ target cell lines in PBMCs mediated by bispecific anti-DLL3×CD3 antibodies with an E:T ratio of 5:1. FIG. 30C shows the cytotoxicity against DLL3+ target cell lines in PBMCs mediated by bispecific anti-DLL3×CD3 antibodies with an E:T ratio of 1:1.



FIG. 31 shows proliferation of CD3+ T cells in response to bispecific anti-DLL3×CD3 antibodies in whole PBMC cytotoxicity assay.



FIG. 32A-32C show activation of T cells in response to bispecific anti-DLL3×CD3 antibodies. FIG. 32A shows activation of T cells in response to bispecific anti-DLL3×CD3 antibodies % CD25+ cells. FIG. 32B shows activation of T cells in response to bispecific anti-DLL3×CD3 antibodies % CD69+ cells. FIG. 32C shows activation of T cells in response to bispecific anti-DLL3×CD3 antibodies % CD71+ cells.



FIG. 33A-33B show the characteristics of the optimized bispecific anti-DLL3×CD3 antibody. FIG. 33A shows tumor Lysis of anti-DLL3×CD3 bispecific antibodies with and without optimized anti-DLL3 sequence evaluated in an IncuCyte-based cytotoxicity assay. FIG. 33B shows isolated pan-T cells were co-incubated with DLL3+ SHP77 cells in the presence of bispecific DLL3/T cell redirection antibodies for 120 hours.





DETAILED DESCRIPTION OF THE INVENTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.


It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.


Although any methods and materials similar or equivalent to those described herein may be used in the practice for testing of the present invention, exemplary materials and methods are described herein. In describing and claiming the present invention, the following terminology will be used.


When a list is presented, unless stated otherwise, it is to be understood that each individual element of that list, and every combination of that list, is a separate embodiment. For example, a list of embodiments presented as “A, B, or C” is to be interpreted as including the embodiments, “A,” “B,” “C,” “A or B,” “A or C,” “B or C,” or “A, B, or C.”


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a cell” includes a combination of two or more cells, and the like.


The transitional terms “comprising,” “consisting essentially of,” and “consisting of” are intended to connote their generally accepted meanings in the patent vernacular; that is, (i) “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps; (ii) “consisting of” excludes any element, step, or ingredient not specified in the claim; and (iii) “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. Embodiments described in terms of the phrase “comprising” (or its equivalents) also provide as embodiments those independently described in terms of “consisting of” and “consisting essentially of”


“About” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. Unless explicitly stated otherwise within the Examples or elsewhere in the Specification in the context of a particular assay, result or embodiment, “about” means within one standard deviation per the practice in the art, or a range of up to 5%, whichever is larger.


“Activation” or “stimulation” or “activated” or “stimulated” refers to induction of a change in the biologic state of a cell resulting in expression of activation markers, cytokine production, proliferation or mediating cytotoxicity of target cells. Cells may be activated by primary stimulatory signals. Co-stimulatory signals can amplify the magnitude of the primary signals and suppress cell death following initial stimulation resulting in a more durable activation state and thus a higher cytotoxic capacity. A “co-stimulatory signal” refers to a signal, which in combination with a primary signal, such as TCR/CD3 ligation, leads to T cell and/or NK cell proliferation and/or upregulation or downregulation of key molecules.


“Alternative scaffold” refers to a single chain protein framework that contains a structured core associated with variable domains of high conformational tolerance. The variable domains tolerate variation to be introduced without compromising scaffold integrity, and hence the variable domains can be engineered and selected for binding to a specific antigen.


“Antibody-dependent cellular cytotoxicity”, “antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to the mechanism of inducing cell death that depends upon the interaction of antibody-coated target cells with effector cells possessing lytic activity, such as natural killer cells (NK), monocytes, macrophages and neutrophils via Fc gamma receptors (FcγR) expressed on effector cells.


“Antibody-dependent cellular phagocytosis” or “ADCP” refers to the mechanism of elimination of antibody-coated target cells by internalization by phagocytic cells, such as macrophages or dendritic cells.


“Antigen” refers to any molecule (e.g., protein, peptide, polysaccharide, glycoprotein, glycolipid, nucleic acid, portions thereof, or combinations thereof) capable of being bound by an antigen binding domain or a T-cell receptor that is capable of mediating an immune response. Exemplary immune responses include antibody production and activation of immune cells, such as T cells, B cells or NK cells. Antigens may be expressed by genes, synthetized, or purified from biological samples such as a tissue sample, a tumor sample, a cell or a fluid with other biological components, organisms, subunits of proteins/antigens, killed or inactivated whole cells or lysates.


“Antigen binding fragment” or “antigen binding domain” refers to a portion of the protein that binds an antigen. Antigen binding fragments may be synthetic, enzymatically obtainable or genetically engineered polypeptides and include portions of an immunoglobulin that bind an antigen, such as the VH, the VL, the VH and the VL, Fab, Fab′, F(ab′)2, Fd and Fv fragments, domain antibodies (dAb) consisting of one VH domain or one VL domain, shark variable IgNAR domains, camelized VH domains, VHH domains, minimal recognition units consisting of the amino acid residues that mimic the CDRs of an antibody, such as FR3-CDR3-FR4 portions, the HCDR1, the HCDR2 and/or the HCDR3 and the LCDR1, the LCDR2 and/or the LCDR3, alternative scaffolds that bind an antigen, and multispecific proteins comprising the antigen binding fragments. Antigen binding fragments (such as VH and VL) may be linked together via a synthetic linker to form various types of single antibody designs where the VH/VL domains may pair intramolecularly, or intermolecularly in those cases when the VH and VL domains are expressed by separate single chains, to form a monovalent antigen binding domain, such as single chain Fv (scFv) or diabody. Antigen binding fragments may also be conjugated to other antibodies, proteins, antigen binding fragments or alternative scaffolds which may be monospecific or multispecific to engineer bispecific and multispecific proteins.


“Antibodies” is meant in a broad sense and includes immunoglobulin molecules including monoclonal antibodies including murine, human, humanized and chimeric monoclonal antibodies, antigen binding fragments, multispecific antibodies, such as bispecific, trispecific, tetraspecific etc., dimeric, tetrameric or multimeric antibodies, single chain antibodies, domain antibodies and any other modified configuration of the immunoglobulin molecule that comprises an antigen binding site of the required specificity. “Full length antibodies” are comprised of two heavy chains (HC) and two light chains (LC) inter-connected by disulfide bonds as well as multimers thereof (e.g. IgM). Each heavy chain is comprised of a heavy chain variable region (VH) and a heavy chain constant region (comprised of domains CH1, hinge, CH2 and CH3). Each light chain is comprised of a light chain variable region (VL) and a light chain constant region (CL). The VH and the VL regions may be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with framework regions (FR). Each VH and VL is composed of three CDRs and four FR segments, arranged from amino-to-carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. Immunoglobulins may be assigned to five major classes, IgA, IgD, IgE, IgG and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. Antibody light chains of any vertebrate species may be assigned to one of two clearly distinct types, namely kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.


“Bispecific” refers to a molecule (such as a protein or an antibody) that specifically binds two distinct antigens or two distinct epitopes within the same antigen. The bispecific molecule may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca cynomolgus (cynomolgus, cyno) or Pan troglodytes, or may bind an epitope that is shared between two or more distinct antigens.


“Bispecific anti-hK2/anti-CD3 antibody”, “hk2/CD3 antibody”, “hk2×CD3 antibody,” “anti-hK2/anti-CD3 protein,” and the like refer to an antibody that binds hk2 and CD3 and that comprises at least one binding domain specifically binding hK2 and at least one binding domain specifically binding CD3. The domains specifically binding hK2 and CD3 are typically VH/VL pairs. The bispecific anti-hk2×CD3 antibody may be monovalent in terms of its binding to either hk2 or CD3.


“Bispecific anti-HLA-G/anti-CD3 antibody”, “HLA-G/CD3 antibody”, “HLA-GxCD3 antibody,” “anti-HLA-G/anti-CD3 protein,” and the like refer to an antibody that binds HLA-G and CD3 and that comprises at least one binding domain specifically binding HLA-G and at least one binding domain specifically binding CD3. The domains specifically binding HLA-G and CD3 are typically VH/VL pairs. The bispecific anti-HLA-GxCD3 antibody may be monovalent in terms of its binding to either HLA-G or CD3.


“Bispecific anti-DLL3/anti-CD3 antibody”, “anti-DLL3×CD3”, “DLL3/CD3 antibody”, “DLL3×CD3 antibody,” “anti-DLL3/anti-CD3 protein,” and the like refer to an antibody that binds DLL3 and CD3 and that comprises at least one binding domain specifically binding DLL3 and at least one binding domain specifically binding CD3. The domains specifically binding DLL3 and CD3 are typically VH/VL pairs. The bispecific anti-DLL3×CD3 antibody may be monovalent in terms of its binding to either DLL3 or CD3.


“Cancer” refers to a broad group of various diseases characterized by the uncontrolled growth of abnormal cells in the body. Unregulated cell division and growth results in the formation of malignant tumors that invade neighboring tissues and may also metastasize to distant parts of the body through the lymphatic system or bloodstream. A “cancer” or “cancer tissue” can include a tumor.


“Cluster of Differentiation 3 ε” or “CD3ε” refers to a known protein which is also called “T-cell surface glycoprotein CD3 epsilon chain”, or “T3E”. CD3ε, together with CD3-gamma, -delta and -zeta, and the T-cell receptor alpha/beta and gamma/delta heterodimers, forms the T-cell receptor-CD3 complex. This complex plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. The CD3 complex mediates signal transduction, resulting in T cell activation and proliferation. CD3 is required for the immune response. The amino acid sequence of a full length CD3ε is shown in SEQ ID NO: 1. The amino acid sequence of the extracellular domain (ECD) of CD3ε is shown in SEQ ID NO: 2. Throughout the specification, “CD3ε-specific” or “specifically binds CD3ε” or “anti-CD3ε antibody” refers to antibodies that bind specifically to the CD3ε polypeptide (SEQ ID NO: 1), including antibodies that bind specifically to the CD3ε extracellular domain (ECD) (SEQ ID NO: 2).









(Human CD3 epsilon)


SEQ ID NO: 1


MQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYKVSISGTTVILTCP





QYPGSEILWQHNDKNIGGDEDDKNIGSDEDHLSLKEFSELEQSGYYVCYP





RGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLLVYY





WSKNRKAKAKPVTRGAGAGGRQRGQNKERPPPVPNPDYEPIRKGQRDLYS





GLNQRRI





(Human CD3 epsilon extracellular domain)


SEQ ID NO: 2


DGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDD





KNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVCENC





MEMD






“Complement-dependent cytotoxicity” or “CDC”, refers to the mechanism of inducing cell death in which the Fc effector domain of a target-bound protein binds and activates complement component C1q which in turn activates the complement cascade leading to target cell death. Activation of complement may also result in deposition of complement components on the target cell surface that facilitate CDC by binding complement receptors (e.g., CR3) on leukocytes.


“Complementarity determining regions” (CDR) are antibody regions that bind an antigen. There are three CDRs in the VH (HCDR1, HCDR2, HCDR3) and three CDRs in the VL (LCDR1, LCDR2, LCDR3). CDRs may be defined using various delineations such as Kabat (Wu et al. (1970) J Exp Med 132: 211-50; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991), Chothia (Chothia et al. (1987) J Mol Biol 196: 901-17), IMGT (Lefranc et al. (2003) Dev Comp Immunol 27: 55-77) and AbM (Martin and Thornton J Bmol Biol 263: 800-15, 1996). The correspondence between the various delineations and variable region numbering is described (see e.g. Lefranc et al. (2003) Dev Comp Immunol 27: 55-77; Honegger and Pluckthun, J Mol Biol (2001) 309:657-70; International ImMunoGeneTics (IMGT) database; Web resources (for example, can be retrieved from the Internet <URL: http://www.imgt.org>)). Available programs such as abYsis by UCL Business PLC may be used to delineate CDRs. The term “CDR”, “HCDR1”, “HCDR2”, “HCDR3”, “LCDR1”, “LCDR2” and “LCDR3” as used herein includes CDRs defined by any of the methods described supra, Kabat, Chothia, IMGT or AbM, unless otherwise explicitly stated in the specification.


“Decrease,” “lower,” “lessen,” “reduce,” or “abate” refers generally to the ability of a test molecule to mediate a reduced response (i.e., downstream effect) when compared to the response mediated by a control or a vehicle. Exemplary responses are T cell expansion, T cell activation or T-cell mediated tumor cell killing or binding of a protein to its antigen or receptor, enhanced binding to a Fcγ or enhanced Fc effector functions such as enhanced ADCC, CDC and/or ADCP. Decrease may be a statistically significant difference in the measured response between the test molecule and the control (or the vehicle), or a decrease in the measured response, such as a decrease of about 1.1, 1.2, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or 30 fold or more, such as 500, 600, 700, 800, 900 or 1000 fold or more (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7, 1.8, etc.).


“Differentiation” refers to a method of decreasing the potency or proliferation of a cell or moving the cell to a more developmentally restricted state.


“Delta-like protein 3” or “DLL3” refers to a known protein which is also called delta-like 3, delta 3, or drosophila Delta homolog 3. Unless specified, as used herein, DLL3 refers to human DLL3. All DLL3 isoforms and variants are encompassed in “DLL3”. The amino acid sequences of the various isoforms are retrievable from NCBI accession numbers NP_058637.1 (isoform 1 precursor, 618 amino acids) and NP_982353.1 (isoform 2 precursor, 587 amino acids). The amino acid sequence of a full length DLL3 is shown in SEQ ID NO: 255. The sequence of DLL3 includes the DSL domain (residues 176-215), EGF-1 domain (residues 216-249), EGF-2 domain (residues 274-310), EGF-3 domain (residues 312-351), EGF-4 domain (residues 353-389), EGF-5 domain (residues 391-427), and EGF-6 domain (residues 429-465).









>(NP_058637.1 delta-like protein 3 isoform 1


precursor [Homo sapiens])


SEQ ID NO: 716


MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGPGAPRSPC





SARLPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPGAPAPD





LPLPDGLLQVPFRDAWPGTFSFIIETWREELGDQIGGPAWSLLARVAGRR





RLAAGGPWARDIQRAGAWELRFSYRARCEPPAVGTACTRLCRPRSAPSRC





GPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTV





PVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTC





PRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNC





EKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRAC





ANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSG





LVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPALGLL





VAAGVAGAALLLVHVRRRGHSQDAGSRLLAGTPEPSVHALPDALNNLRTQ





EGSGDGPSSSVDWNRPEDVDPQGIYVISAPSIYAREVATPLFPPLHTGRA





GQRQHLLFPYPSSILSVK






“Encode” or “encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.


“Enhance,” “promote,” “increase,” “expand” or “improve” refers generally to the ability of a test molecule to mediate a greater response (i.e., downstream effect) when compared to the response mediated by a control or a vehicle. Exemplary responses are T cell expansion, T cell activation or T-cell mediated tumor cell killing or binding of a protein to its antigen or receptor, enhanced binding to a Fcγ or enhanced Fc effector functions such as enhanced ADCC, CDC and/or ADCP. Enhance may be a statistically significant difference in the measured response between the test molecule and control (or vehicle), or an increase in the measured response, such as an increase of about 1.1, 1.2, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or 30 fold or more, such as 500, 600, 700, 800, 900 or 1000 fold or more (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7, 1.8, etc.).


“Epitope” refers to a portion of an antigen to which an antibody, or the antigen binding portion thereof, specifically binds. Epitopes typically consist of chemically active (such as polar, non-polar or hydrophobic) surface groupings of moieties such as amino acids or polysaccharide side chains and may have specific three-dimensional structural characteristics, as well as specific charge characteristics. An epitope may be composed of contiguous and/or discontiguous amino acids that form a conformational spatial unit. For a discontiguous epitope, amino acids from differing portions of the linear sequence of the antigen come in close proximity in 3-dimensional space through the folding of the protein molecule. Antibody “epitope” depends on the methodology used to identify the epitope.


“Expansion” refers to the outcome of cell division and cell death.


“Express” and “expression” refers the to the well-known transcription and translation occurring in cells or in vitro. The expression product, e.g., the protein, is thus expressed by the cell or in vitro and may be an intracellular, extracellular or a transmembrane protein.


“Expression vector” refers to a vector that can be utilized in a biological system or in a reconstituted biological system to direct the translation of a polypeptide encoded by a polynucleotide sequence present in the expression vector.


“dAb” or “dAb fragment” refers to an antibody fragment composed of a VH domain (Ward et al., Nature 341:544 546 (1989)).


“Fab” or “Fab fragment” refers to an antibody fragment composed of VH, CH1, VL and CL domains.


“F(ab′)2” or “F(ab′)2 fragment” refers to an antibody fragment containing two Fab fragments connected by a disulfide bridge in the hinge region.


“Fd” or “Fd fragment” refers to an antibody fragment composed of VH and CH1 domains.


“Fv” or “Fv fragment” refers to an antibody fragment composed of the VH and the VL domains from a single arm of the antibody.


“Full length antibody” is comprised of two heavy chains (HC) and two light chains (LC) inter-connected by disulfide bonds as well as multimers thereof (e.g. IgM). Each heavy chain is comprised of a heavy chain variable domain (VH) and a heavy chain constant domain, the heavy chain constant domain comprised of subdomains CH1, hinge, CH2 and CH3. Each light chain is comprised of a light chain variable domain (VL) and a light chain constant domain (CL). The VH and the VL may be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with framework regions (FR). Each VH and VL is composed of three CDRs and four FR segments, arranged from amino-to-carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.


“Genetic modification” refers to the introduction of a “foreign” (i.e., extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence. The introduced gene or sequence may also be called a “cloned” or “foreign” gene or sequence, may include regulatory or control sequences operably linked to polynucleotide encoding the chimeric antigen receptor, such as start, stop, promoter, signal, secretion, or other sequences used by a cell's genetic machinery. The gene or sequence may include nonfunctional sequences or sequences with no known function. A host cell that receives and expresses introduced DNA or RNA has been “genetically engineered.” The DNA or RNA introduced to a host cell can come from any source, including cells of the same genus or species as the host cell, or from a different genus or species.


“Heterologous” refers to two or more polynucleotides or two or more polypeptides that are not found in the same relationship to each other in nature.


“Heterologous polynucleotide” refers to a non-naturally occurring polynucleotide that encodes two or more neoantigens as described herein.


“Heterologous polypeptide” refers to a non-naturally occurring polypeptide comprising two or more neoantigen polypeptides as described herein.


“Host cell” refers to any cell that contains a heterologous nucleic acid. An exemplary heterologous nucleic acid is a vector (e.g., an expression vector).


“Human antibody” refers to an antibody that is optimized to have minimal immune response when administered to a human subject. Variable regions of human antibody are derived from human immunoglobulin sequences. If human antibody contains a constant region or a portion of the constant region, the constant region is also derived from human immunoglobulin sequences. Human antibody comprises heavy and light chain variable regions that are “derived from” sequences of human origin if the variable regions of the human antibody are obtained from a system that uses human germline immunoglobulin or rearranged immunoglobulin genes. Such exemplary systems are human immunoglobulin gene libraries displayed on phage, and transgenic non-human animals such as mice or rats carrying human immunoglobulin loci. “Human antibody” typically contains amino acid differences when compared to the immunoglobulins expressed in humans due to differences between the systems used to obtain the human antibody and human immunoglobulin loci, introduction of somatic mutations or intentional introduction of substitutions into the frameworks or CDRs, or both. Typically, “human antibody” is at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical in amino acid sequence to an amino acid sequence encoded by human germline immunoglobulin or rearranged immunoglobulin genes. In some cases, “human antibody” may contain consensus framework sequences derived from human framework sequence analyses, for example as described in Knappik et al., (2000) J Mol Biol 296:57-86, or a synthetic HCDR3 incorporated into human immunoglobulin gene libraries displayed on phage, for example as described in Shi et al., (2010) J Mol Biol 397:385-96, and in Int. Patent Publ. No. WO2009/085462. Antibodies in which at least one CDR is derived from a non-human species are not included in the definition of “human antibody”.


“Humanized antibody” refers to an antibody in which at least one CDR is derived from non-human species and at least one framework is derived from human immunoglobulin sequences. Humanized antibody may include substitutions in the frameworks so that the frameworks may not be exact copies of expressed human immunoglobulin or human immunoglobulin germline gene sequences.


“In combination with” means that two or more therapeutic agents are be administered to a subject together in a mixture, concurrently as single agents or sequentially as single agents in any order.


“Intracellular signaling domain” or “cytoplasmic signaling domain” refers to an intracellular portion of a molecule. It is the functional portion of the protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers. The intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CAR-T cell.


“Isolated” refers to a homogenous population of molecules (such as synthetic polynucleotides or polypeptides) which have been substantially separated and/or purified away from other components of the system the molecules are produced in, such as a recombinant cell, as well as a protein that has been subjected to at least one purification or isolation step. “Isolated” refers to a molecule that is substantially free of other cellular material and/or chemicals and encompasses molecules that are isolated to a higher purity, such as to 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% purity.


“Kallikrein related peptidase 2” or “hK2” refers to a known protein which is also called kallikrein-2, grandular kallikrein 2, or HK2. hK2 is produced as a preproprotein and cleaved during proteolysis to generate active protease. All hK2 isoforms and variants are encompassed in “hK2”. The amino acid sequences of the various isoforms are retrievable from GenBank accession numbers NP_005542.1, NP_001002231.1 and NP_001243009. The amino acid sequence of a full length hK2 is shown in SEQ ID NO: 98. The sequence includes the signal peptide (residues 1-18) and the pro-peptide region (residues 19-24).









SEQ ID NO: 98


MWDLVLSIALSVGCTGAVPLIQSRIVGGWECEKHSQPWQVAVYSHGWAHC





GGVLVHPQWVLTAAHCLKKNSQVWLGRHNLFEPEDTGQRVPVSHSFPHPL





YNMSLLKHQSLRPDEDSSHDLMLLRLSEPAKITDVVKVLGLPTQEPALGT





TCYASGWGSIEPEEFLRPRSLQCVSLHLLSNDMCARAYSEKVTEFMLCAG





LWTGGKDTCGGDSGGPLVCNGVLQGITSWGPEPCALPEKPAVYTKVVHYR





KWIKDTIAANP






“Human leukocyte antigen G” or “HLA-G” refers to a known protein which is also called “HLA class I histocompatibility antigen, alpha chain G” or “MHC class I antigen G”. All HLA-G isoforms and variants are encompassed in “HLA-G”. The amino acid sequences of the various isoforms are retrievable from Uniprot ID numbers P17693-1 through P17693-7. SEQ ID No: 691 represents an examplery HLA-G isoform termed HLA-G1.









HLA-G1 (signal sequence: italic), SEQ ID No: 691:



MVVMAPRTLFLLLSGALTLTETWAGSHSMRYFSAAVSRPGRGEPRFIAMG






YVDDTQFVRFDSDSACPRMEPRAPWVEQEGPEYWEEETRNTKAHAQTDRM





NLQTLRGYYNQSEASSHTLQWMIGCDLGSDGRLLRGYEQYAYDGKDYLAL





NEDLRSWTAADTAAQISKRKCEAANVAEQRRAYLEGTCVEWLHRYLENGK





EMLQRADPPKTHVTHHPVFDYEATLRCWALGFYPAEIILTWQRDGEDQTQ





DVELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLMLRWKQ





SSLPTIPIMGIVAGLVVLAAVVTGAAVAAVLWRKKSSD






“Modulate” refers to either enhanced or decreased ability of a test molecule to mediate an enhanced or a reduced response_(i.e., downstream effect) when compared to the response mediated by a control or a vehicle.


“Monoclonal antibody” refers to an antibody obtained from a substantially homogenous population of antibody molecules, i.e., the individual antibodies comprising the population are identical except for possible well-known alterations such as removal of C-terminal lysine from the antibody heavy chain or post-translational modifications such as amino acid isomerization or deamidation, methionine oxidation or asparagine or glutamine deamidation. Monoclonal antibodies typically bind one antigenic epitope. A bispecific monoclonal antibody binds two distinct antigenic epitopes. Monoclonal antibodies may have heterogeneous glycosylation within the antibody population. Monoclonal antibody may be monospecific or multispecific such as bispecific, monovalent, bivalent or multivalent.


“Multispecific” refers to a molecule, such as an antibody that specifically binds two or more distinct antigens or two or more distinct epitopes within the same antigen. Multispecific molecule may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno) or Pan troglodytes, or may bind an epitope that is shared between two or more distinct antigens.


“Natural killer cell” and “NK cell” are used interchangeably and synonymously herein. NK cell refers to a differentiated lymphocyte with a CD16+CD56+ and/or CD57+ TCR phenotype. NK cells are characterized by their ability to bind to and kill cells that fail to express “self” MHC/HLA antigens by the activation of specific cytolytic enzymes, the ability to kill tumor cells or other diseased cells that express a ligand for NK activating receptors, and the ability to release protein molecules called cytokines that stimulate or inhibit the immune response.


“Operatively linked” and similar phrases, when used in reference to nucleic acids or amino acids, refers to the operational linkage of nucleic acid sequences or amino acid sequence, respectively, placed in functional relationships with each other. For example, an operatively linked promoter, enhancer elements, open reading frame, 5′ and 3′ UTR, and terminator sequences result in the accurate production of a nucleic acid molecule (e.g., RNA) and in some instances to the production of a polypeptide (i.e., expression of the open reading frame). Operatively linked peptide refers to a peptide in which the functional domains of the peptide are placed with appropriate distance from each other to impart the intended function of each domain.


The term “paratope” refers to the area or region of an antibody molecule which is involved in binding of an antigen and comprise residues that interact with an antigen. A paratope may composed of continuous and/or discontinuous amino acids that form a conformational spatial unit. The paratope for a given antibody can be defined and characterized at different levels of details using a variety of experimental and computational methods. The experimental methods include hydrogen/deuterium exchange mass spectrometry (HX-MS). The paratope will be defined differently depending on the mapping method employed.


“Pharmaceutical combination” refers to a combination of two or more active ingredients administered either together or separately.


“Pharmaceutical composition” refers to a composition that results from combining an active ingredient and a pharmaceutically acceptable carrier.


“Pharmaceutically acceptable carrier” or “excipient” refers to an ingredient in a pharmaceutical composition, other than the active ingredient, which is nontoxic to a subject. Exemplary pharmaceutically acceptable carriers are a buffer, stabilizer or preservative.


“Polynucleotide” or “nucleic acid” refers to a synthetic molecule comprising a chain of nucleotides covalently linked by a sugar-phosphate backbone or other equivalent covalent chemistry. cDNA is a typical example of a polynucleotide. Polynucleotide may be a DNA or a RNA molecule.


“Prevent,” “preventing,” “prevention,” or “prophylaxis” of a disease or disorder means preventing that a disorder occurs in a subject.


“Proliferation” refers to an increase in cell division, either symmetric or asymmetric division of cells.


“Promoter” refers to the minimal sequences required to initiate transcription. Promoter may also include enhancers or repressor elements which enhance or suppress transcription, respectively.


“Protein” or “polypeptide” are used interchangeably herein and refer to a molecule that comprises one or more polypeptides each comprised of at least two amino acid residues linked by a peptide bond. Protein may be a monomer, or may be protein complex of two or more subunits, the subunits being identical or distinct. Small polypeptides of less than 50 amino acids may be referred to as “peptides”. Protein may be a heterologous fusion protein, a glycoprotein, or a protein modified by post-translational modifications such as phosphorylation, acetylation, myristoylation, palmitoylation, glycosylation, oxidation, formylation, amidation, citrullination, polyglutamylation, ADP-ribosylation, pegylation or biotinylation. Protein may be an antibody or may comprise an antigen binding fragment of an antibody. Protein may be recombinantly expressed.


“Recombinant” refers to polynucleotides, polypeptides, vectors, viruses and other macromolecules that are prepared, expressed, created or isolated by recombinant means.


“Regulatory element” refers to any cis- or trans acting genetic element that controls some aspect of the expression of nucleic acid sequences.


“Relapsed” refers to the return of a disease or the signs and symptoms of a disease after a period of improvement after prior treatment with a therapeutic.


“Refractory” refers to a disease that does not respond to a treatment. A refractory disease can be resistant to a treatment before or at the beginning of the treatment, or a refractory disease can become resistant during a treatment.


“Single chain Fv” or “scFv” refers to a fusion protein comprising at least one antibody fragment comprising a light chain variable region (VL) and at least one antibody fragment comprising a heavy chain variable region (VH), wherein the VL and the VH are contiguously linked via a polypeptide linker, and capable of being expressed as a single chain polypeptide. Unless specified, as used herein, a scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.


“(scFv)2” or “tandem scFv” or “bis-scFv” fragments refers to a fusion protein comprising two light chain variable region (VL) and two heavy chain variable region (VH), wherein the two VL and the two VH are contiguously linked via polypeptide linkers, and capable of being expressed as a single chain polypeptide. The two VL and two VH are fused by peptide linkers to form a bivalent molecule VLA-linker-VHA-linker-VLB-linker-VHB to form two binding sites, capable of binding two different antigens or epitopes concurrently.


“Specifically binds,” “specific binding,” “specifically binding” or “binds” refer to a proteinaceous molecule binding to an antigen or an epitope within the antigen with greater affinity than for other antigens. Typically, the proteinaceous molecule binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1×10−7 M or less, for example about 5×10−8 M or less, about 1×10−8 M or less, about 1×10−9 M or less, about 1×10−0 M or less, about 1×10−1 M or less, or about 1×10−2 M or less, typically with the KD that is at least one hundred fold less than its KD for binding to a non-specific antigen (e.g., BSA, casein). In the context of the prostate neoantigens described here, “specific binding” refers to binding of the proteinaceous molecule to the prostate neoantigen without detectable binding to a wild-type protein the neoantigen is a variant of.


“Subject” includes any human or nonhuman animal. “Nonhuman animal” includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. The terms “subject” and “patient” can be used interchangeably herein.


“T cell” and “T lymphocyte” are interchangeable and used synonymously herein. T cell includes thymocytes, naïve T lymphocytes, memory T cells, immature T lymphocytes, mature T lymphocytes, resting T lymphocytes, or activated T lymphocytes. A T cell can be a T helper (Th) cell, for example a T helper 1 (Th1) or a T helper 2 (Th2) cell. The T cell can be a helper T cell (HTL; CD4+ T cell) CD4+ T cell, a cytotoxic T cell (CTL; CD8+ T cell), a tumor infiltrating cytotoxic T cell (TIL; CD8+ T cell), CD4+CD8+ T cell, or any other subset of T cells. Also included are “NKT cells”, which refer to a specialized population of T cells that express a semi-invariant αβ T-cell receptor, but also express a variety of molecular markers that are typically associated with NK cells, such as NK1.1. NKT cells include NK1.1+ and NK1.1, as well as CD4+, CD4, CD8+ and CD8 cells. The TCR on NKT cells is unique in that it recognizes glycolipid antigens presented by the MHC I-like molecule CD Id. NKT cells can have either protective or deleterious effects due to their abilities to produce cytokines that promote either inflammation or immune tolerance. Also included are “gamma-delta T cells (γδ T cells),” which refer to a specialized population that to a small subset of T cells possessing a distinct TCR on their surface, and unlike the majority of T cells in which the TCR is composed of two glycoprotein chains designated α- and β-TCR chains, the TCR in γδ T cells is made up of a γ-chain and a δ-chain. γδ T cells can play a role in immunosurveillance and immunoregulation, and were found to be an important source of IL-17 and to induce robust CD8+ cytotoxic T cell response. Also included are “regulatory T cells” or “Tregs” which refer to T cells that suppress an abnormal or excessive immune response and play a role in immune tolerance. Tregs are typically transcription factor Foxp3-positive CD4+ T cells and can also include transcription factor Foxp3-negative regulatory T cells that are IL-10-producing CD4+ T cells.


“Therapeutically effective amount” or “effective amount” used interchangeably herein, refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. A therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual. Example indicators of an effective therapeutic or combination of therapeutics that include, for example, improved wellbeing of the patient, reduction of a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body.


“Transduction” refers to the introduction of a foreign nucleic acid into a cell using a viral vector.


“Treat,” “treating” or “treatment” of a disease or disorder such as cancer refers to accomplishing one or more of the following: reducing the severity and/or duration of the disorder, inhibiting worsening of symptoms characteristic of the disorder being treated, limiting or preventing recurrence of the disorder in subjects that have previously had the disorder, or limiting or preventing recurrence of symptoms in subjects that were previously symptomatic for the disorder.


“Tumor cell” or a “cancer cell” refers to a cancerous, pre-cancerous or transformed cell, either in vivo, ex vivo, or in tissue culture, that has spontaneous or induced phenotypic changes. These changes do not necessarily involve the uptake of new genetic material. Although transformation may arise from infection with a transforming virus and incorporation of new genomic nucleic acid, uptake of exogenous nucleic acid or it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation/cancer is exemplified by morphological changes, immortalization of cells, aberrant growth control, foci formation, proliferation, malignancy, modulation of tumor specific marker levels, invasiveness, tumor growth in suitable animal hosts such as nude mice, and the like, in vitro, in vivo, and ex vivo.


“Variant,” “mutant” or “altered” refers to a polypeptide or a polynucleotide that differs from a reference polypeptide or a reference polynucleotide by one or more modifications, for example one or more substitutions, insertions or deletions.


The numbering of amino acid residues in the antibody constant region throughout the specification is according to the EU index as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), unless otherwise explicitly stated.


Mutations in the Ig constant regions are referred to as follows: L351Y_F405A_Y407V refers to L351Y, F405A and Y407V mutations in one immunoglobulin constant region. L351Y_F405A_Y407V/T394W refers to L351Y, F405A and Y407V mutations in the first Ig constant region and T394W mutation in the second Ig constant region, which are present in one multimeric protein.


“VHH” refers to a single-domain antibody or nanobody, exclusively composed by heavy chain homodimers A VHH single domain antibody lack the light chain and the CH1 domain of the heavy chain of conventional Fab region.


Unless otherwise stated, any numerical values, such as a concentration or a concentration range described herein, are to be understood as being modified in all instances by the term “about.” Thus, a numerical value typically includes ±10% of the recited value. For example, a concentration of 1 mg/mL includes 0.9 mg/mL to 1.1 mg/mL. Likewise, a concentration range of 1% to 10% (w/v) includes 0.9% (w/v) to 11% (w/v). As used herein, the use of a numerical range expressly includes all possible subranges, all individual numerical values within that range, including integers within such ranges and fractions of the values unless the context clearly indicates otherwise.


The numbering of amino acid residues in the antibody constant region throughout the specification is according to the EU index as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), unless otherwise explicitly stated.









TABLE 1







Conventional one- and three-letter amino acid codes used herein











Amino acid
Three-letter code
One-letter code







Alanine
Ala
A



Arginine
Arg
R



Asparagine
Asn
N



Aspartate
Asp
D



Cysteine
Cys
C



Glutamate
Glu
E



Glutamine
Gln
Q



Glycine
Gly
G



Histidine
His
H



Isoleucine
Ile
I



Lysine
Lys
K



Methionine
Met
M



Phenylalanine
Phe
F



Proline
Pro
P



Serine
Ser
S



Threonine
Thr
T



Tryptophan
Trp
W



Tyrosine
Tyr
Y



Valine
Val
V










Antigen Binding Domains that Bind CD3ε.


The disclosure provides antigen binding domains that bind CD3ε, monospecific and multispecific proteins comprising the antigen binding domains that bind CD3ε, polynucleotides encoding the foregoing, vectors, host cells and methods of making and using the foregoing. The antigen binding domains that bind CD3ε identified herein demonstrated advantageous properties in terms of high thermostability, reduced deamidation risk, and decreased immunogenicity.


The disclosure also provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain variable region (VL) of SEQ ID NO: 103. SEQ ID NO: 103 represent genus VL amino acid sequences encompassing variants demonstrating improved properties, including high thermostability, reduced deamidation risk, and decreased immunogenicity. For example, the position engineered to confer reduced deamidation risk was residue N92 in the VL (residue numbering using the CD3B815 VL sequence of SEQ ID NO: 24, according to Kabat numbering (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991)) and the positions engineered to confer decreased immunogenicity were human to mouse back mutations at residues Y49 and/or L78 (residue numbering according to Kabat, using the CD3B815 VL of SEQ ID NO: 24). The engineered position at residue N92 was within LCDR3. Even with mutations at this position, antibodies retained the ability to bind antigen.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


The disclosure provides an isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 25 or 26. In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 85 or 86. In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 85 or 88. In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 85 or 90. In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 85 or 92. In other embodiments, the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 85 or 94.


In other embodiments, the antigen binding domain that binds CD3ε is a scFv.


In other embodiments, the antigen binding domain that binds CD3ε is a (scFv)2.


In other embodiments, the antigen binding domain that binds CD3ε is a Fv.


In other embodiments, the antigen binding domain that binds CD3ε is a Fab.


In other embodiments, the antigen binding domain that binds CD3ε is a F(ab′)2.


In other embodiments, the antigen binding domain that binds CD3ε is a Fd.


In other embodiments, the CD3ε antigen binding domain is a dAb.


In other embodiments, the CD3ε antigen binding domain is a VHH.


CD3ε Binding scFvs


Any of the VH and the VL domains identified herein that bind CD3ε may be engineered into scFv format in either VH-linker-VL or VL-linker-VH orientation. Any of the VH and the VL domains identified herein may also be used to generate sc(Fv)2 structures, such as VH-linker-VL-linker-VL-linker-VH, VH-linker-VL-linker-VH-linker-VL. VH-linker-VH-linker-VL-linker-VL. VL-linker-VH-linker-VH-linker-VL. VL-linker-VH-linker-VL-linker-VH or VL-linker-VL-linker-VH-linker-VH.


The VH and the VL domains identified herein may be incorporated into a scFv format and the binding and thermostability of the resulting scFv to CD3ε may be assessed using known methods.


Binding may be assessed using ProteOn XPR36, Biacore 3000 or KinExA instrumentation, ELISA or competitive binding assays known to those skilled in the art. Binding may be evaluated using purified scFvs or E. coli supernatants or lysed cells containing the expressed scFv. The measured affinity of a test scFv to CD3ε may vary if measured under different conditions (e.g., osmolarity, pH). Thus, measurements of affinity and other binding parameters (e.g., KD, Kon, Koff) are typically made with standardized conditions and standardized buffers. Thermostability may be evaluated by heating the test scFv at elevated temperatures, such as at 50° C., 55° C. or 60° C. for a period of time, such as 5 minutes (min), 10 min, 15 min, 20 min, 25 min or 30 min and measuring binding of the test scFv to CD3ε. The scFvs retaining comparable binding to CD3ε when compared to a non-heated scFv sample are referred to as being thermostable.


In recombinant expression systems, the linker is a peptide linker and may include any naturally occurring amino acid. Exemplary amino acids that may be included into the linker are Gly, Ser Pro, Thr, Glu, Lys, Arg, Ile, Leu, His and The. The linker should have a length that is adequate to link the VH and the VL in such a way that they form the correct conformation relative to one another so that they retain the desired activity, such as binding to CD3ε.


The linker may be about 5-50 amino acids long. In other embodiments, the linker is about 10-40 amino acids long. In other embodiments, the linker is about 10-35 amino acids long. In other embodiments, the linker is about 10-30 amino acids long. In other embodiments, the linker is about 10-25 amino acids long. In other embodiments, the linker is about 10-20 amino acids long. In other embodiments, the linker is about 15-20 amino acids long. In other embodiments, the linker is about 16-19 amino acids long. In other embodiments, the linker is 6 amino acids long. In other embodiments, the linker is 7 amino acids long. In other embodiments, the linker is 8 amino acids long. In other embodiments, the linker is 9 amino acids long. In other embodiments, the linker is 10 amino acids long. In other embodiments, the linker is 11 amino acids long. In other embodiments, the linker is 12 amino acids long. In other embodiments, the linker is 13 amino acids long. In other embodiments, the linker is 14 amino acids long. In other embodiments, the linker is 15 amino acids long. In other embodiments, the linker is 16 amino acids long. In other embodiments, the linker is 17 amino acids long. In other embodiments, the linker is 18 amino acids long. In other embodiments, the linker is 19 amino acids long. In other embodiments, the linker is 20 amino acids long. In other embodiments, the linker is 21 amino acids long. In other embodiments, the linker is 22 amino acids long. In other embodiments, the linker is 23 amino acids long. In other embodiments, the linker is 24 amino acids long. In other embodiments, the linker is 25 amino acids long. In other embodiments, the linker is 26 amino acids long. In other embodiments, the linker is 27 amino acids long. In other embodiments, the linker is 28 amino acids long. In other embodiments, the linker is 29 amino acids long. In other embodiments, the linker is 30 amino acids long. In other embodiments, the linker is 31 amino acids long. In other embodiments, the linker is 32 amino acids long. In other embodiments, the linker is 33 amino acids long. In other embodiments, the linker is 34 amino acids long. In other embodiments, the linker is 35 amino acids long. In other embodiments, the linker is 36 amino acids long. In other embodiments, the linker is 37 amino acids long. In other embodiments, the linker is 38 amino acids long. In other embodiments, the linker is 39 amino acids long. In other embodiments, the linker is 40 amino acids long. Exemplary linkers that may be used are Gly rich linkers, Gly and Ser containing linkers, Gly and Ala containing linkers, Ala and Ser containing linkers, and other flexible linkers.


Other linker sequences may include portions of immunoglobulin hinge area, CL or CH1 derived from any immunoglobulin heavy or light chain isotype. Alternatively, a variety of non-proteinaceous polymers, including polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, may find use as linkers. Exemplary linkers that may be used are shown in Table 2. Additional linkers are described for example in Int. Pat. Publ. No. WO2019/060695.









TABLE 2







Linkers.









Linker

SEQ


name
Amino acid sequence
ID NO:





Linker 1
GGSEGKSSGSGSESKSTGGS
31





Linker 2
GGGSGGGS
32





Linker 3
GGGSGGGSGGGS
33





Linker 4
GGGSGGGSGGGSGGGS
34





Linker 5
GGGSGGGSGGGSGGGSGGGS
35





Linker 6
GGGGSGGGGSGGGGS
36





Linker 7
GGGGSGGGGSGGGGSGGGGS
37





Linker 8
GGGGSGGGGSGGGGSGGGGSGGGGS
38





Linker 9
GSTSGSGKPGSGEGSTKG
39





Linker 10
IRPRAIGGSKPRVA
40





Linker 11
GKGGSGKGGSGKGGS
41





Linker 12
GGKGSGGKGSGGKGS
42





Linker 13
GGGKSGGGKSGGGKS
43





Linker 14
GKGKSGKGKSGKGKS
44





Linker 15
GGGKSGGKGSGKGGS
45





Linker 16
GKPGSGKPGSGKPGS
46





Linker 17
GKPGSGKPGSGKPGSGKPGS
47





Linker 18
GKGKSGKGKSGKGKSGKGKS
48





Linker 19
STAGDTHLGGEDFD
49





Linker 20
GEGGSGEGGSGEGGS
50





Linker 21
GGEGSGGEGSGGEGS
51





Linker 22
GEGESGEGESGEGES
52





Linker 23
GGGESGGEGSGEGGS
53





Linker 24
GEGESGEGESGEGESGEGES
54





Linker 25
GSTSGSGKPGSGEGSTKG
55





Linker 26
PRGASKSGSASQTGSAPGS
56





Linker 27
GTAAAGAGAAGGAAAGAAG
57





Linker 28
GTSGSSGSGSGGSGSGGGG
58





Linker 29
GKPGSGKPGSGKPGSGKPGS
59





Linker 30
GSGS
60





Linker 31
APAPAPAPAP
61





Linker 32
APAPAPAPAPAPAPAPAPAP
62





Linker 33
AEAAAKEAAAKEAAAAKEAAAAKEAAAA
63



KAAA






Linker 34
GTEGKSSGSGSESKST
64









In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL).


In other embodiments, the scFv comprises, from the N-to C-terminus, the VL, the L1 and the VH (VL-L1-VH).


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 36.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 37.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 38.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 39.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 40.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 41.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 42.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 43.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 44.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 45.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 46.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 47.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 48.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 49.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 50.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 51.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 52.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 53.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 54.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 55.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 56.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 57.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 58.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 59.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 60.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 61.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 62.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 63.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 64.


In other embodiments, the scFv comprises


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively; or


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively.


In other embodiments, the scFv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29.


In other embodiments, the scFv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 65.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 66.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 67.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 68.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 69.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 70.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 71.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 72.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 73.


In other embodiments, the scFv comprises the amino acid sequence of SEQ ID NO: 74.


Other Antigen Binding Domains that Bind CD3ε


Any of the VH and the VL domains identified herein that bind CD3ε may also be engineered into Fab, F(ab′)2, Fd or Fv format and their binding to CD3ε and thermostability may be assessed using the assays described herein.


In other embodiments, the Fab comprises


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively.


In other embodiments, the Fab comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the Fab comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the F(ab′)2 comprises


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively.


In other embodiments, the F(ab′)2 comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the F(ab′)2 comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In Other Embodiments, the Fv Comprises


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively.


In other embodiments, the Fv comprises the HCDR1, the HCDR1, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of SEQ ID NOs: 18, 19, 20, 21, 16 and 22, respectively.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the Fv comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the Fd comprises


a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 6, 7, and 8, respectively.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 12, 13, and 14, respectively.


In other embodiments, the Fd comprises the HCDR1, the HCDR1, and the HCDR3 of SEQ ID NOs: 18, 19, and 20, respectively.


In other embodiments, the Fd comprises the VH of SEQ ID NO: 23.


Homologous Antigen Binding Domains and Antigen Binding Domains with Conservative Substitutions


Variants of the antigen binding domains that bind CD3ε are within the scope of the disclosure. For example, variants may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 amino acid substitutions in the antigen binding domain that bind CD3ε as long as they retain or have improved functional properties when compared to the parent antigen binding domains. In other embodiments, the sequence identity may be about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% to the antigen binding domains that bind CD3ε of the disclosure. In other embodiments, the variation is in the framework regions. In other embodiments, variants are generated by conservative substitutions.


For example, the antigen binding domains that bind CD3ε may comprise substitutions at residue positions Y49, L78, or N92 in the VL (residue numbering according Kabat). Conservative substitutions may be made at any indicated positions and the resulting variant antigen binding domains that bind CD3ε are tested for their desired characteristics in the assays described herein.


Also provided are antigen binding domains that bind CD3ε comprising the VH and the VL which are at least 80% identical to


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the identity is 85%. In other embodiments, the identity is 90%. In other embodiments, the identity is 91%. In other embodiments, the identity is 91%. In other embodiments, the identity is 92%. In other embodiments, the identity is 93%. In other embodiments, the identity is 94%. In other embodiments, the identity is 94%. In other embodiments, the identity is 95%. In other embodiments, the identity is 96%. In other embodiments, the identity is 97%. In other embodiments, the identity is 98%. In other embodiments, the identity is 99%.


The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=number of identical positions/total number of positions×100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


The percent identity between two amino acid sequences may be determined using the algorithm of E. Meyers and W. Miller (Comput Appl Biosci 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences may be determined using the Needleman and Wunsch (J Mol Biol 48:444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (can be retrieved from the Internet <URL: http://www.gcg.com>), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


In other embodiments, variant antigen binding domains that bind CD3ε comprise one or two conservative substitutions in any of the CDR regions, while retaining desired functional properties of the parent antigen binding fragments that bind CD3ε.


“Conservative modifications” refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid modifications. Conservative modifications include amino acid substitutions, additions and deletions. Conservative amino acid substitutions are those in which the amino acid is replaced with an amino acid residue having a similar side chain. The families of amino acid residues having similar side chains are well defined and include amino acids with acidic side chains (e.g., aspartic acid, glutamic acid), basic side chains (e.g., lysine, arginine, histidine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), uncharged polar side chains (e.g., glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine, tryptophan), aromatic side chains (e.g., phenylalanine, tryptophan, histidine, tyrosine), aliphatic side chains (e.g., glycine, alanine, valine, leucine, isoleucine, serine, threonine), amide (e.g., asparagine, glutamine), beta-branched side chains (e.g., threonine, valine, isoleucine) and sulfur-containing side chains (cysteine, methionine). Furthermore, any native residue in the polypeptide may also be substituted with alanine, as has been previously described for alanine scanning mutagenesis (MacLennan et al., (1988) Acta Physiol Scand Suppl 643:55-67; Sasaki et al., (1988) Adv Biophys 35:1-24). Amino acid substitutions to the antibodies of the invention may be made by known methods for example by PCR mutagenesis (U.S. Pat. No. 4,683,195). Alternatively, libraries of variants may be generated for example using random (NNK) or non-random codons, for example DVK codons, which encode 11 amino acids (Ala, Cys, Asp, Glu, Gly, Lys, Asn, Arg, Ser, Tyr, Trp). The resulting variants may be tested for their characteristics using assays described herein.


Methods of Generating Antigen Binding Fragment that Bind CD3ε


Antigen binding domains that bind CD3ε provided in the disclosure may be generated using various technologies. For example, the hybridoma method of Kohler and Milstein may be used to identify VH/VL pairs that bind CD3ε. In the hybridoma method, a mouse or other host animal, such as a hamster, rat or chicken is immunized with human and/or cyno CD3ε, followed by fusion of spleen cells from immunized animals with myeloma cells using standard methods to form hybridoma cells. Colonies arising from single immortalized hybridoma cells may be screened for production of the antibodies containing the antigen binding domains that bind CD3ε with desired properties, such as specificity of binding, cross-reactivity or lack thereof, affinity for the antigen, and any desired functionality.


Antigen binding domains that bind CD3ε generated by immunizing non-human animals may be humanized. Exemplary humanization techniques including selection of human acceptor frameworks include CDR grafting (U.S. Pat. No. 5,225,539), SDR grafting (U.S. Pat. No. 6,818,749), Resurfacing (Padlan, (1991) Mol Immunol 28:489-499), Specificity Determining Residues Resurfacing (U.S. Patent Publ. No. 2010/0261620), human framework adaptation (U.S. Pat. No. 8,748,356) or superhumanization (U.S. Pat. No. 7,709,226). In these methods, CDRs or a subset of CDR residues of parental antibodies are transferred onto human frameworks that may be selected based on their overall homology to the parental frameworks, based on similarity in CDR length, or canonical structure identity, or a combination thereof.


Humanized antigen biding domains may be further optimized to improve their selectivity or affinity to a desired antigen by incorporating altered framework support residues to preserve binding affinity (backmutations) by techniques such as those described in Int. Patent Publ. Nos. WO1090/007861 and WO1992/22653, or by introducing variation at any of the CDRs for example to improve affinity of the antigen binding domain.


Transgenic animals, such as mice, rat or chicken carrying human immunoglobulin (Ig) loci in their genome may be used to generate antigen binding fragments that bind CD3ε, and are described in for example U.S. Pat. No. 6,150,584, Int. Patent Publ. No. WO1999/45962, Int. Patent Publ. Nos. WO2002/066630, WO2002/43478, WO2002/043478 and WO1990/04036. The endogenous immunoglobulin loci in such animal may be disrupted or deleted, and at least one complete or partial human immunoglobulin locus may be inserted into the genome of the animal using homologous or non-homologous recombination, using transchromosomes, or using minigenes. Companies such as Regeneron (<URL: http://www.regeneron.com>), Harbour Antibodies (http://www.harbourantibodies.com), Open Monoclonal Technology, Inc. (OMT) (<URL: http://www.omtinc.net>), KyMab (<URL: http://www.kymab.com>), Trianni (<URL: http://www.trianni.com>) and Ablexis (<URL: http://www.ablexis.com>) may be engaged to provide human antibodies directed against a selected antigen using technologies as described above.


Antigen binding domains that bind CD3ε may be selected from a phage display library, where the phage is engineered to express human immunoglobulins or portions thereof such as Fabs, single chain antibodies (scFv), or unpaired or paired antibody variable regions. The antigen binding domains that bind CD3ε may be isolated for example from phage display library expressing antibody heavy and light chain variable regions as fusion proteins with bacteriophage pIX coat protein as described in Shi et al., (2010) J Mol Biol 397:385-96, and Int. Patent Publ. No. WO09/085462). The libraries may be screened for phage binding to human and/or cyno CD3ε and the obtained positive clones may be further characterized, the Fabs isolated from the clone lysates, and converted to scFvs or other configurations of antigen binding fragments.


Preparation of immunogenic antigens and expression and production of antigen binding domains of the disclosure may be performed using any suitable technique, such as recombinant protein production. The immunogenic antigens may be administered to an animal in the form of purified protein, or protein mixtures including whole cells or cell or tissue extracts, or the antigen may be formed de novo in the animal's body from nucleic acids encoding said antigen or a portion thereof.


Conjugation to Half-Life Extending Moieties

The antigen binding domains that bind CD3ε of the disclosure may be conjugated to a half-life extending moiety. Exemplary half-life extending moieties are albumin, albumin variants, albumin-binding proteins and/or domains, transferrin and fragments and analogues thereof, immunoglobulins (Ig) or fragments thereof, such as Fc regions. Amino acid sequences of the aforementioned half-life extending moieties are known. Ig or fragments thereof include all isotypes (i.e., IgG1, IgG2, IgG3, IgG4, IgM, IgA and IgE).


Additional half-life extending moieties that may be conjugated to the antigen binding domains that bind CD3ε of the disclosure include polyethylene glycol (PEG) molecules, such as PEG5000 or PEG20,000, fatty acids and fatty acid esters of different chain lengths, for example laurate, myristate, stearate, arachidate, behenate, oleate, arachidonate, octanedioic acid, tetradecanedioic acid, octadecanedioic acid, docosanedioic acid, and the like, polylysine, octane, carbohydrates (dextran, cellulose, oligo- or polysaccharides) for desired properties. These moieties may be direct fusions with the antigen binding domains that bind CD3ε of the disclosure and may be generated by standard cloning and expression techniques. Alternatively, well known chemical coupling methods may be used to attach the moieties to recombinantly produced antigen binding domains that bind CD3ε of the disclosure.


A pegyl moiety may for example be conjugated to the antigen binding domain that bind CD3ε of the disclosure by incorporating a cysteine residue to the C-terminus of the antigen binding domain that bind CD3ε of the disclosure, or engineering cysteines into residue positions that face away from the CD3ε binding site and attaching a pegyl group to the cysteine using well known methods.


In other embodiments, the antigen binding fragment that binds CD3ε is conjugated to a half-life extending moiety.


In other embodiments, the half-life extending moiety is an immunoglobulin (Ig), a fragment of the Ig, an Ig constant region, a fragment of the Ig constant region, a Fc region, transferrin, albumin, an albumin binding domain or polyethylene glycol. In other embodiments, the half-life extending moiety is an Ig constant region.


In other embodiments, the half-life extending moiety is the Ig.


In other embodiments, the half-life extending moiety is the fragment of the Ig.


In other embodiments, the half-life extending moiety is the Ig constant region.


In other embodiments, the half-life extending moiety is the fragment of the Ig constant region.


In other embodiments, the half-life extending moiety is the Fc region.


In other embodiments, the half-life extending moiety is albumin.


In other embodiments, the half-life extending moiety is the albumin binding domain.


In other embodiments, the half-life extending moiety is transferrin.


In other embodiments, the half-life extending moiety is polyethylene glycol.


The antigen binding domains that bind CD3ε conjugated to a half-life extending moiety may be evaluated for their pharmacokinetic properties utilizing known in vivo models.


Conjugation to Immunoglobulin (Ig) Constant Regions or Fragments of the Ig Constant Regions

The antigen binding domains that bind CD3ε of the disclosure may be conjugated to an Ig constant region or a fragment of the Ig constant region to impart antibody-like properties, including Fc effector functions C1q binding, complement dependent cytotoxicity (CDC), Fc receptor binding, antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis or down regulation of cell surface receptors (e.g., B cell receptor; BCR). The Ig constant region or the fragment of the Ig constant region functions also as a half-life extending moiety as discussed herein. The antigen binding domains that bind CD3ε of the disclosure may be engineered into conventional full-length antibodies using standard methods. The full-length antibodies comprising the antigen binding domain that binds CD3ε may further be engineered as described herein.


Immunoglobulin heavy chain constant region comprised of subdomains CH1, hinge, CH2 and CH3. The CH1 domain spans residues A118-V215, the CH2 domain residues A231-K340 and the CH3 domain residues G341-K447 on the heavy chain, residue numbering according to the EU Index. In some instances, G341 is referred as a CH2 domain residue. Hinge is generally defined as including E216 and terminating at P230 of human IgG1. Ig Fc region comprises at least the CH2 and the CH3 domains of the Ig constant region, and therefore comprises at least a region from about A231 to K447 of Ig heavy chain constant region.


The invention also provides an antigen binding domain that binds CD3ε conjugated to an immunoglobulin (Ig) constant region or a fragment of the Ig constant region.


In other embodiments, the Ig constant region is a heavy chain constant region


In other embodiments, the Ig constant region is a light chain constant region.


In other embodiments, the fragment of the Ig constant region comprises a Fc region.


In other embodiments, the fragment of the Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain. Portion of the hinge refers to one or more amino acid residues of the Ig hinge.


In other embodiments, the fragment of the Ig constant region comprises the hinge, the CH2 domain and the CH3 domain.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.


In other embodiments, the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 36.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 37.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 38.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 39.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 40.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 41.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 42.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 43.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 44.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 45.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 46.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 47.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 48.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 49.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 50.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 51.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 52.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 53.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 54.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 55.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 56.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 57.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 58.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 59.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 60.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 61.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 62.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 63.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NO: 64.


The antigen binding domains that bind CD3ε of the disclosure conjugated to Ig constant region or the fragment of the Ig constant region may be assessed for their functionality using several known assays. Binding to CD3ε may be assessed using methods described herein. Altered properties imparted by the Ig constant domain or the fragment of the Ig constant region such as Fc region may be assayed in Fc receptor binding assays using soluble forms of the receptors, such as the FcγRI, FcγRII, FcγRIII or FcRn receptors, or using cell-based assays measuring for example ADCC, CDC or ADCP.


ADCC may be assessed using an in vitro assay using CD3ε expressing cells as target cells and NK cells as effector cells. Cytolysis may be detected by the release of label (e.g. radioactive substrates, fluorescent dyes or natural intracellular proteins) from the lysed cells. In an exemplary assay, target cells are used with a ratio of 1 target cell to 4 effector cells. Target cells are pre-labeled with BATDA and combined with effector cells and the test antibody. The samples are incubated for 2 hours and cell lysis measured by measuring released BATDA into the supernatant. Data is normalized to maximal cytotoxicity with 0.67% Triton X-100 (Sigma Aldrich) and minimal control determined by spontaneous release of BATDA from target cells in the absence of any antibody.


ADCP may be evaluated by using monocyte-derived macrophages as effector cells and any CD3ε expressing cells as target cells which are engineered to express GFP or other labeled molecule. In an exemplary assay, effector:target cell ratio may be for example 4:1. Effector cells may be incubated with target cells for 4 hours with or without the antibody of the invention. After incubation, cells may be detached using accutase. Macrophages may be identified with anti-CD11b and anti-CD14 antibodies coupled to a fluorescent label, and percent phagocytosis may be determined based on % GFP fluorescence in the CD11+CD14+macrophages using standard methods.


CDC of cells may be measured for example by plating Daudi cells at 1×105 cells/well (50 μL/well) in RPMI-B (RPMI supplemented with 1% BSA), adding 50 μL of test protein to the wells at final concentration between 0-100 μg/mL, incubating the reaction for 15 min at room temperature, adding 11 μL of pooled human serum to the wells, and incubation the reaction for 45 min at 37° C. Percentage (%) lysed cells may be detected as % propidium iodide stained cells in FACS assay using standard methods.


Proteins Comprising the Antigen Binding Domains that Bind CD3ε of the Disclosure


The antigen binding domains that bind CD3ε of the disclosure may be engineered into monospecific or multispecific proteins of various designs using standard methods.


The disclosure also provides a monospecific protein comprising the antigen binding domain that binds CD3ε of the disclosure.


In other embodiments, the monospecific protein is an antibody.


The disclosure also provides a multispecific protein comprising the antigen binding domain that binds CD3ε of the disclosure.


In other embodiments, the multispecific protein is bispecific.


In other embodiments, the multispecific protein is trispecific.


In other embodiments, the multispecific protein is tetraspecific.


In other embodiments, the multispecific protein is monovalent for binding to CD3ε.


In other embodiments, the multispecific protein is bivalent for binding to CD3ε.


The disclosure also provides an isolated multispecific protein comprising a first antigen binding domain that binds CD3ε and a second antigen binding domain that binds a tumor antigen.


In other embodiments, the tumor antigen is a hK2 antigen. In other embodiments, the tumor antigen is a HLA-G antigen. In other embodiments, the tumor antigen is a DLL3 antigen.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fab.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the F(ab′)2.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the VHH.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fv.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the Fd.


In other embodiments, the first antigen binding domain that binds CD3ε and/or the second antigen binding domain that binds the tumor antigen comprise the scFv.


In other embodiments, the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).


In other embodiments, the L1 comprises about 5-50 amino acids.


In other embodiments, the L1 comprises about 5-40 amino acids.


In other embodiments, the L1 comprises about 10-30 amino acids.


In other embodiments, the L1 comprises about 10-20 amino acids.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 31.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 32.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 33.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 34.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 35.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 36.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 37.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 38.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 39.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 40.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 41.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 42.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 43.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 44.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 45.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 46.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 47.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 48.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 49.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 50.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 51.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 52.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 53.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 54.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 55.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 56.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 57.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 58.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 59.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 60.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 61.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 62.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 63.


In other embodiments, the L1 comprises the amino acid sequence of SEQ ID NO: 64.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the HCDR1 of SEQ ID NOs: 6, 12, or 18, the HCDR2 of SEQ ID NOs: 7, 13, or 19, the HCDR3 of SEQ ID NOs: 8, 14, or 20, the LCDR1 of SEQ ID NOs: 9, 15, or 21, the LCDR2 of SEQ ID NOs: 10 or 16, and the LCDR3 of SEQ ID NOs: 11, 17, or 22.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of


SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;


SEQ ID NOs: 12, 13, 14, 15, 16, and 17, respectively; or


SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID Nos: 65, 66, 67, 68, 69, 60, 71, 72, 73, or 74.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 65.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 66.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 67.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 68.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 69.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 70.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 71.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 72.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 73.


In other embodiments, the first antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NO: 74.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 150, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 171, the LCDR2 of SEQ ID NO: 172 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 126 and the VL of SEQ ID NO: 127.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 174, the LCDR2 of SEQ ID NO: 175 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 124 and the VL of SEQ ID NO: 125.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 174, the LCDR2 of SEQ ID NO: 175 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 128 and the VL of SEQ ID NO: 129.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 174, the LCDR2 of SEQ ID NO: 175 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 130 and the VL of SEQ ID NO: 131.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 171, the LCDR2 of SEQ ID NO: 172 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 132 and the VL of SEQ ID NO: 133.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 171, the LCDR2 of SEQ ID NO: 172 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 134 and the VL of SEQ ID NO: 135.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 171, the LCDR2 of SEQ ID NO: 172 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 136 and the VL of SEQ ID NO: 135.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 149, the HCDR2 of SEQ ID NO: 152, the HCDR3 of SEQ ID NO: 151, the LCDR1 of SEQ ID NO: 171, the LCDR2 of SEQ ID NO: 172 and the LCDR3 of SEQ ID NO: 173; or


the VH of SEQ ID NO: 132 and the VL of SEQ ID NO: 135.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 153, the HCDR2 of SEQ ID NO: 154, the HCDR3 of SEQ ID NO: 155, the LCDR1 of SEQ ID NO: 176, the LCDR2 of SEQ ID NO: 177 and the LCDR3 of SEQ ID NO: 178; or


the VH of SEQ ID NO: 137 and the VL of SEQ ID NO: 138.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 156, the HCDR2 of SEQ ID NO: 157, the HCDR3 of SEQ ID NO: 158, the LCDR1 of SEQ ID NO: 182, the LCDR2 of SEQ ID NO: 183 and the LCDR3 of SEQ ID NO: 184; or


the VH of SEQ ID NO: 139 and the VL of SEQ ID NO: 140.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 159, the HCDR2 of SEQ ID NO: 160, the HCDR3 of SEQ ID NO: 161, the LCDR1 of SEQ ID NO: 179, the LCDR2 of SEQ ID NO: 180 and the LCDR3 of SEQ ID NO: 181; or


the VH of SEQ ID NO: 141 and the VL of SEQ ID NO: 142.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 162, the HCDR2 of SEQ ID NO: 163, the HCDR3 of SEQ ID NO: 164, the LCDR1 of SEQ ID NO: 185, the LCDR2 of SEQ ID NO: 186 and the LCDR3 of SEQ ID NO: 187; or


the VH of SEQ ID NO: 143 and the VL of SEQ ID NO: 144.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 165, the HCDR2 of SEQ ID NO: 166, the HCDR3 of SEQ ID NO: 167, the LCDR1 of SEQ ID NO: 191, the LCDR2 of SEQ ID NO: 192 and the LCDR3 of SEQ ID NO: 193; or


the VH of SEQ ID NO: 145 and the VL of SEQ ID NO: 146.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises


the HCDR1 of SEQ ID NO: 168, the HCDR2 of SEQ ID NO: 169, the HCDR3 of SEQ ID NO: 170, the LCDR1 of SEQ ID NO: 191, the LCDR2 of SEQ ID NO: 192 and the LCDR3 of SEQ ID NO: 188; or


the VH of SEQ ID NO: 147 and the VL of SEQ ID NO: 148.


In other embodiments, the second antigen binding domain that binds a tumor antigen comprises the VH of SEQ ID NO: 143 and the VL of SEQ ID NO: 358.


In other embodiments, the first antigen binding domain that binds CD3ε is conjugated to a first immunoglobulin (Ig) constant region or a fragment of the first Ig constant region and/or the second antigen binding domain that binds the tumor antigen is conjugated to a second immunoglobulin (Ig) constant region or a fragment of the second Ig constant region.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a Fc region.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a CH2 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises a CH3 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the first Ig constant region and/or the fragment of the second Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain.


In other embodiments, the fragment of the Ig constant region comprises the hinge, the CH2 domain and the CH3 domain.


In other embodiments, the multispecific protein further comprises a second linker (L2) between the first antigen binding domain that binds CD3ε and the first Ig constant region or the fragment of the first Ig constant region and the second antigen binding domain that binds the tumor antigen and the second Ig constant region or the fragment of the second Ig constant region.


In other embodiments, the L2 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG1, an IgG2, and IgG3 or an IgG4 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG1 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG2 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG3 isotype.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region is an IgG4 isotype.


The first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region can further be engineered as described herein.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that results in reduced binding of the multispecific protein to a FcγR.


In other embodiments, the at least one mutation that results in reduced binding of the multispecific protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that results in enhanced binding of the multispecific protein to a Fcγ receptor (FcγR).


In other embodiments, the at least one mutation that results in enhanced binding of the multispecific protein to the FcγR is selected from the group consisting of S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E, wherein residue numbering is according to the EU index.


In other embodiments, the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprises at least one mutation that modulates a half-life of the multispecific protein.


In other embodiments, the at least one mutation that modulates the half-life of the multispecific protein is selected from the group consisting of H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R, wherein residue numbering is according to the EU index.


In other embodiments, the multispecific protein comprises at least one mutation in a CH3 domain of the first Ig constant region or in a CH3 domain of the fragment of the first Ig constant region and/or at least one mutation in a CH3 domain of the second Ig constant region or in a CH3 domain of the fragment of the second Ig constant region.


In other embodiments, the at least one mutation in a CH3 domain of the first Ig constant region or in a CH3 domain of the fragment of the first Ig constant region and/or at least one mutation in a CH3 domain of the second Ig constant region or in a CH3 domain of the fragment of the second Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, F405W, K392L, T394W, T394S, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, T366L/K392L/T394W, F405A/Y407V, T366L/K392M/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, L351Y/Y407A, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.


In other embodiments, the first Ig constant region or the fragment of the first Ig constant region and the second Ig constant region or the fragment of the second Ig constant region comprise the following mutations


L235A_L235A_D265S_T350V_L351Y_F405A_Y407V in the first Ig constant region and L235A_L235A_D265S_T350V_T366L_K392L_T394W in the second Ig constant region; or


L235A_L235A_D265S_T350V_T366L_K392L_T394W in the first Ig constant region and L235A_L235A_D265S_T350V_L351Y_F405A_Y407V in the second Ig constant region.


Generation of Multispecific Proteins that Comprise Antigen Binding Fragments that Bind CD3ε.


The antigen binding fragments that bind CD3ε of the disclosure may be engineered into multispecific antibodies which are also encompassed within the scope of the invention.


The antigen binding fragments that bind CD3ε may be engineered into full length multispecific antibodies which are generated using Fab arm exchange, in which substitutions are introduced into two monospecific bivalent antibodies within the Ig constant region CH3 domain which promote Fab arm exchange in vitro. In the methods, two monospecific bivalent antibodies are engineered to have certain substitutions at the CH3 domain that promote heterodimer stability; the antibodies are incubated together under reducing conditions sufficient to allow the cysteines in the hinge region to undergo disulfide bond isomerization; thereby generating the bispecific antibody by Fab arm exchange. The incubation conditions may optimally be restored to non-reducing. Exemplary reducing agents that may be used are 2-mercaptoethylamine (2-MEA), dithiothreitol (DTT), dithioerythritol (DTE), glutathione, tris(2-carboxyethyl)phosphine (TCEP), L-cysteine and beta-mercaptoethanol, preferably a reducing agent selected from the group consisting of: 2-mercaptoethylamine, dithiothreitol and tris(2-carboxyethyl)phosphine. For example, incubation for at least 90 min at a temperature of at least 20° C. in the presence of at least 25 mM 2-MEA or in the presence of at least 0.5 mM dithiothreitol at a pH of from 5-8, for example at pH of 7.0 or at pH of 7.4 may be used.


CH3 mutations that may be used include technologies such as Knob-in-Hole mutations (Genentech), electrostatically-matched mutations (Chugai, Amgen, NovoNordisk, Oncomed), the Strand Exchange Engineered Domain body (SEEDbody) (EMD Serono), Duobody® mutations (Genmab), and other asymmetric mutations (e.g. Zymeworks).


Knob-in-hole mutations are disclosed for example in WO1996/027011 and include mutations on the interface of CH3 region in which an amino acid with a small side chain (hole) is introduced into the first CH3 region and an amino acid with a large side chain (knob) is introduced into the second CH3 region, resulting in preferential interaction between the first CH3 region and the second CH3 region. Exemplary CH3 region mutations forming a knob and a hole are T366Y/F405A, T366W/F405W, F405W/Y407A, T394W/Y407T, T394S/Y407A, T366W/T394S, F405W/T394S and T366W/T366S_L368A_Y407V.


Heavy chain heterodimer formation may be promoted by using electrostatic interactions by substituting positively charged residues on the first CH3 region and negatively charged residues on the second CH3 region as described in US2010/0015133, US2009/0182127, US2010/028637 or US2011/0123532.


Other asymmetric mutations that can be used to promote heavy chain heterodimerization are L351Y_F405A_Y407V/T394W, T366I_K392M_T394W/F405A_Y407V, T366L_K392M_T394W/F405A_Y407V, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, Y407A/T366A_K409F, or T350V_L351Y_F405A_Y407V/T350V_T366L_K392L_T394W as described in US2012/0149876 or US2013/0195849 (Zymeworks).


SEEDbody mutations involve substituting select IgG residues with IgA residues to promote heavy chain heterodimerization as described in US20070287170.


Other exemplary mutations that may be used are R409D_K370E/D399K_E357K, S354C_T366W/Y349C_T366S_L368A_Y407V, Y349C_T366W/S354C_T366S_L368A_Y407V, T366K/L351D, L351K/Y349E, L351K/Y349D, L351K/L368E, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, K392D/D399K, K392D/E356K, K253E_D282K_K322D/D239K_E240K_K292D, K392D_K409D/D356K D399K as described in WO2007/147901, WO 2011/143545, WO2013157954, WO2013096291 and US2018/0118849.


Duobody® mutations (Genmab) are disclosed for example in U.S. Pat. No. 9,150,663 and US2014/0303356 and include mutations F405L/K409R, wild-type/F405L_R409K, T350I_K370T_F405L/K409R, K370W/K409R, D399AFGHILMNRSTVWY/K409R, T366ADEFGHILMQVY/K409R, L368ADEGHNRSTVQ/K409AGRH, D399FHKRQ/K409AGRH, F405IKLSTVW/K409AGRH and Y407LWQ/K409AGRH.


Additional bispecific or multispecific structures into which the antigen binding domains that bind CD3ε can be incorporated include Dual Variable Domain Immunoglobulins (DVD) (Int. Pat. Publ. No. WO2009/134776; DVDs are full length antibodies comprising the heavy chain having a structure VH1-linker-VH2-CH and the light chain having the structure VL1-linker-VL2-CL; linker being optional), structures that include various dimerization domains to connect the two antibody arms with different specificity, such as leucine zipper or collagen dimerization domains (Int. Pat. Publ. No. WO2012/022811, U.S. Pat. Nos. 5,932,448; 6,833,441), two or more domain antibodies (dAbs) conjugated together, diabodies, heavy chain only antibodies such as camelid antibodies and engineered camelid antibodies, Dual Targeting (DT)-Ig (GSK/Domantis), Two-in-one Antibody (Genentech), Cross-linked Mabs (Karmanos Cancer Center), mAb2 (F-Star) and CovX-body (CovX/Pfizer), IgG-like Bispecific (InnClone/Eli Lilly), Ts2Ab (MedImmune/AZ) and BsAb (Zymogenetics), HERCULES (Biogen Idec) and TvAb (Roche), ScFv/Fc Fusions (Academic Institution), SCORPION (Emergent BioSolutions/Trubion, Zymogenetics/BMS), Dual Affinity Retargeting Technology (Fc-DART) (MacroGenics) and Dual(ScFv)2-Fab (National Research Center for Antibody Medicine—China), Dual-Action or Bis-Fab (Genentech), Dock-and-Lock (DNL) (ImmunoMedics), Bivalent Bispecific (Biotecnol) and Fab-Fv (UCB-Celltech). ScFv-, diabody-based, and domain antibodies, include but are not limited to, Bispecific T Cell Engager (BiTE) (Micromet), Tandem Diabody (Tandab) (Affimed), Dual Affinity Retargeting Technology (DART) (MacroGenics), Single-chain Diabody (Academic), TCR-like Antibodies (AIT, ReceptorLogics), Human Serum Albumin ScFv Fusion (Merrimack) and COMBODY (Epigen Biotech), dual targeting nanobodies (Ablynx), dual targeting heavy chain only domain antibodies.


The antigen binding domains that bind CD3ε of the disclosure may also be engineered into multispecific proteins which comprise three polypeptide chains. In such designs, at least one antigen binding domain is in the form of a scFv. Exemplary designs include (in which “1” indicates the first antigen binding domain, “2” indicates the second antigen binding domain and “3” indicates the third antigen binding domain:


Design 1: Chain A) scFv1-CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 2: Chain A) scFv1-hinge- CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 3: Chain A) scFv1-CH1-hinge-CH2-CH3; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


Design 4: Chain A) CH2-CH3-scFv1; Chain B) VL2-CL; Chain C) VH2-CH1-hinge-CH2-CH3


CH3 engineering may be incorporated to the Designs 1-4, such as mutations L351Y_F405A_Y407V/T394W, T366I_K392M_T394W/F405A_Y407V, T366L_K392M_T394W/F405A_Y407V, L351Y_Y407A/T366A_K409F, L351Y_Y407A/T366V_K409F, Y407A/T366A_K409F, or T350V_L351Y_F405A_Y407V/T350V_T366L_K392L_T394W as described in US2012/0149876 or US2013/0195849 (Zymeworks).


Isotypes, Allotypes and Fc Engineering

The Ig constant region or the fragment of the Ig constant region, such as the Fc region present in the proteins of the disclosure may be of any allotype or isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG1 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG2 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG3 isotype.


In other embodiments, the Ig constant region or the fragment of the Ig constant region is an IgG4 isotype.


The Ig constant region or the fragment of the Ig constant region may be of any allotype. It is expected that allotype has no influence on properties of the Ig constant region, such as binding or Fc-mediated effector functions. Immunogenicity of therapeutic proteins comprising Ig constant regions of fragments thereof is associated with increased risk of infusion reactions and decreased duration of therapeutic response (Baert et al., (2003) N Engl J Med 348:602-08). The extent to which therapeutic proteins comprising Ig constant regions of fragments thereof induce an immune response in the host may be determined in part by the allotype of the Ig constant region (Stickler et al., (2011) Genes and Immunity 12:213-21). Ig constant region allotype is related to amino acid sequence variations at specific locations in the constant region sequences of the antibody. Table 3 shows select IgG1, IgG2 and IgG4 allotypes.











TABLE 3









Amino acid residue at position of diversity



(residue numbering: EU Index)











IgG2
IgG4
IgG1















Allotype
189
282
309
422
214
356
358
431





G2m(n)
T
M








G2m(n−)
P
V


G2m(n)/(n−)
T
V


nG4m(a)


L
R


G1m(17)




K
E
M
A


G1m(17, 1)




K
D
L
A


G1m(3)




R
E
M
A









C-terminal lysine (CTL) may be removed from the Ig constant region by endogenous circulating carboxypeptidases in the blood stream (Cai et al., (2011) Biotechnol Bioeng 108:404-412). During manufacturing, CTL removal may be controlled to less than the maximum level by control of concentration of extracellular Zn2+, EDTA or EDTA—Fe3+ as described in U.S. Patent Publ. No. US20140273092. CTL content of proteins may be measured using known methods.


In other embodiments, the antigen binding fragment that binds CD3ε conjugated to the Ig constant region has a C-terminal lysine content from about 10% to about 90%. In other embodiments, the C-terminal lysine content is from about 20% to about 80%. In other embodiments, the C-terminal lysine content is from about 40% to about 70%. In other embodiments, the C-terminal lysine content is from about 55% to about 70%. In other embodiments, the C-terminal lysine content is about 60%.


Fc region mutations may be made to the antigen binding domains that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region to modulate their effector functions such as ADCC, ADCP and/or ADCP and/or pharmacokinetic properties. This may be achieved by introducing mutation(s) into the Fc that modulate binding of the mutated Fc to activating FcγRs (FcγRI, FcγRIIa, FcγRIII), inhibitory FcγRIIb and/or to FcRn.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or the fragment of the Ig constant region comprises at least one mutation in the Ig constant region or in the fragment of the Ig constant region.


In other embodiments, the at least one mutation is in the Fc region.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or fifteen mutations in the Fc region.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that modulates binding of the antibody to FcRn.


Fc positions that may be mutated to modulate half-life (e.g. binding to FcRn) include positions 250, 252, 253, 254, 256, 257, 307, 376, 380, 428, 434 and 435. Exemplary mutations that may be made singularly or in combination are mutations T250Q, M252Y, I253A, S254T, T256E, P257I, T307A, D376V, E380A, M428L, H433K, N434S, N434A, N434H, N434F, H435A and H435R. Exemplary singular or combination mutations that may be made to increase the half-life are mutations M428L/N434S, M252Y/S254T/T256E, T250Q/M428L, N434A and T307A/E380A/N434A. Exemplary singular or combination mutations that may be made to reduce the half-life are mutations H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises M252Y/S254T/T256E mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that reduces binding of the protein to an activating Fcγ receptor (FcγR) and/or reduces Fc effector functions such as C1q binding, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or phagocytosis (ADCP).


Fc positions that may be mutated to reduce binding of the protein to the activating FcγR and subsequently to reduce effector function include positions 214, 233, 234, 235, 236, 237, 238, 265, 267, 268, 270, 295, 297, 309, 327, 328, 329, 330, 331 and 365. Exemplary mutations that may be made singularly or in combination are mutations K214T, E233P, L234V, L234A, deletion of G236, V234A, F234A, L235A, G237A, P238A, P238S, D265A, S267E, H268A, H268Q, Q268A, N297A, A327Q, P329A, D270A, Q295A, V309L, A327S, L328F, A330S and P331S in IgG1, IgG2, IgG3 or IgG4. Exemplary combination mutations that result in proteins with reduced ADCC are mutations L234A/L235A on IgG1, L234A/L235A/D265S on IgG1, V234A/G237A/P238S/H268A/V309L/A330S/P331S on IgG2, F234A/L235A on IgG4, S228P/F234A/L235A on IgG4, N297A on all Ig isotypes, V234A/G237A on IgG2, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M on IgG1, H268Q/V309L/A330S/P331S on IgG2, S267E/L328F on IgG1, L234F/L235E/D265A on IgG1, L234A/L235A/G237A/P238S/H268A/A330S/P331S on IgG1, S228P/F234A/L235A/G237A/P238S on IgG4, and S228P/F234A/L235A/G236-deleted/G237A/P238S on IgG4. Hybrid IgG2/4 Fc domains may also be used, such as Fc with residues 117-260 from IgG2 and residues 261-447 from IgG4.


Exemplary mutation that result in proteins with reduced CDC is a K322A mutation.


Well-known S228P mutation may be made in IgG4 to enhance IgG4 stability.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation selected from the group consisting of K214T, E233P, L234V, L234A, deletion of G236, V234A, F234A, L235A, G237A, P238A, P238S, D265A, S267E, H268A, H268Q, Q268A, N297A, A327Q, P329A, D270A, Q295A, V309L, A327S, L328F, K322, A330S and P331S.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises L234A/L235A/D265S mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises L234A/L235A mutation.


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region comprises at least one mutation in the Fc region that enhances binding of the protein to an Fcγ receptor (FcγR) and/or enhances Fc effector functions such as C1q binding, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and/or phagocytosis (ADCP).


Fc positions that may be mutated to increase binding of the protein to the activating FcγR and/or enhance Fc effector functions include positions 236, 239, 243, 256, 290, 292, 298, 300, 305, 312, 326, 330, 332, 333, 334, 345, 360, 339, 378, 396 or 430 (residue numbering according to the EU index). Exemplary mutations that may be made singularly or in combination are G236A, S239D, F243L, T256A, K290A, R292P, S298A, Y300L, V305L, K326A, A330K, 1332E, E333A, K334A, A339T and P396L. Exemplary combination mutations that result in proteins with increased ADCC or ADCP are a S239D/1332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E.


Fc positions that may be mutated to enhance CDC include positions 267, 268, 324, 326, 333, 345 and 430. Exemplary mutations that may be made singularly or in combination are S267E, F1268F, S324T, K326A, K326W, E333A, E345K, E345Q, E345R, E345Y, E430S, E430F and E430T. Exemplary combination mutations that result in proteins with increased CDC are K326A/E333A, K326W/E333A, H268F/S324T, S267E/H268F, S267E/S324T and S267E/H268F/S324T.


The specific mutations described herein are mutations when compared to the IgG1, IgG2 and IgG4 wild-type amino acid sequences of SEQ ID NOs: 95, 96, and 97, respectively.









wild-type IgG1


SEQ ID NO: 95


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK,





wild-type IgG2


SEQ ID NO: 96


ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP





EVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG





FYPSDISVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGN





VFSCSVMHEALHNHYTQKSLSLSPGK;





wild-type IgG4


SEQ ID NO: 97


ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVES





KYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED





PEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG





NVFSCSVMHEALHNHYTQKSLSLSLGK;






Binding of the antibody to FcγR or FcRn may be assessed on cells engineered to express each receptor using flow cytometry. In an exemplary binding assay, 2×105 cells per well are seeded in 96-well plate and blocked in BSA Stain Buffer (BD Biosciences, San Jose, USA) for 30 min at 4° C. Cells are incubated with a test antibody on ice for 1.5 hour at 4° C. After being washed twice with BSA stain buffer, the cells are incubated with R-PE labeled anti-human IgG secondary antibody (Jackson Immunoresearch Laboratories) for 45 min at 4° C. The cells are washed twice in stain buffer and then resuspended in 150 μL of Stain Buffer containing 1:200 diluted DRAQ7 live/dead stain (Cell Signaling Technology, Danvers, USA). PE and DRAQ7 signals of the stained cells are detected by Miltenyi MACSQuant flow cytometer (Miltenyi Biotec, Auburn, USA) using B2 and B4 channel respectively. Live cells are gated on DRAQ7 exclusion and the geometric mean fluorescence signals are determined for at least 10,000 live events collected. FlowJo software (Tree Star) is used for analysis. Data is plotted as the logarithm of antibody concentration versus mean fluorescence signals. Nonlinear regression analysis is performed.


Glycoengineering

The ability of the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region to mediate ADCC can be enhanced by engineering the Ig constant region or the fragment of the Ig constant region oligosaccharide component. Human IgG1 or IgG3 are N-glycosylated at Asn297 with the majority of the glycans in the well-known biantennary GO, G0F, G1, G1F, G2 or G2F forms. Ig constant region containing proteins may be produced by non-engineered CHO cells typically have a glycan fucose content of about at least 85%. The removal of the core fucose from the biantennary complex-type oligosaccharides attached to the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region enhances the ADCC of the protein via improved FcγRIIIa binding without altering antigen binding or CDC activity. Such proteins can be achieved using different methods reported to lead to the successful expression of relatively high defucosylated immunoglobulins bearing the biantennary complex-type of Fc oligosaccharides such as control of culture osmolality (Konno et al., Cytotechnology 64(:249-65, 2012), application of a variant CHO line Lec13 as the host cell line (Shields et al., J Biol Chem 277:26733-26740, 2002), application of a variant CHO line EB66 as the host cell line (Olivier et al., MAbs; 2(4): 405-415, 2010; PMID:20562582), application of a rat hybridoma cell line YB2/0 as the host cell line (Shinkawa et al., J Biol Chem 278:3466-3473, 2003), introduction of small interfering RNA specifically against the a 1,6-fucosyltrasferase (FUT8) gene (Mori et al., Biotechnol Bioeng 88:901-908, 2004), or coexpression of β-1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II or a potent alpha-mannosidase I inhibitor, kifunensine (Ferrara et al., J Biol Chem 281:5032-5036, 2006, Ferrara et al., Biotechnol Bioeng 93:851-861, 2006; Xhou et al., Biotechnol Bioeng 99:652-65, 2008).


In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region of the disclosure has a biantennary glycan structure with fucose content of about between 1% to about 15%, for example about 15%, 14%, 13%, 12%, 11% 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1%. In other embodiments, the antigen binding domain that binds CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region has a glycan structure with fucose content of about 50%, 40%, 45%, 40%, 35%, 30%, 25%, or 20%. “Fucose content” means the amount of the fucose monosaccharide within the sugar chain at Asn297. The relative amount of fucose is the percentage of fucose-containing structures related to all glycostructures. These may be characterized and quantified by multiple methods, for example: 1) using MALDI-TOF of N-glycosidase F treated sample (e.g. complex, hybrid and oligo- and high-mannose structures) as described in Int Pat. Publ. No. WO2008/077546 2); 2) by enzymatic release of the Asn297 glycans with subsequent derivatization and detection/quantitation by HPLC (UPLC) with fluorescence detection and/or HPLC-MS (UPLC-MS); 3) intact protein analysis of the native or reduced mAb, with or without treatment of the Asn297 glycans with Endo S or other enzyme that cleaves between the first and the second GlcNAc monosaccharides, leaving the fucose attached to the first GlcNAc; 4) digestion of the mAb to constituent peptides by enzymatic digestion (e.g., trypsin or endopeptidase Lys-C), and subsequent separation, detection and quantitation by HPLC-MS (UPLC-MS); 5) Separation of the mAb oligosaccharides from the mAb protein by specific enzymatic deglycosylation with PNGase F at Asn 297. The oligosaccharides thus released can be labeled with a fluorophore, separated and identified by various complementary techniques which allow: fine characterization of the glycan structures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry by comparison of the experimental masses with the theoretical masses, determination of the degree of sialylation by ion exchange HPLC (GlycoSep C), separation and quantification of the oligosaccharide forms according to hydrophilicity criteria by normal-phase HPLC (GlycoSep N), and separation and quantification of the oligosaccharides by high performance capillary electrophoresis-laser induced fluorescence (HPCE-LIF).


“Low fucose” or “low fucose content” as used herein refers to the antigen binding domain that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region with fucose content of about between 1%-15%.


“Normal fucose” or “normal fucose content” as used herein refers to the antigen binding domain that bind CD3ε conjugated to the Ig constant region or to the fragment of the Ig constant region with fucose content of about over 50%, typically about over 80% or over 85%.


Anti-Idiotypic Antibodies

Anti-idiotypic antibodies are antibodies that specifically bind to the antigen binding domain that binds CD3ε of the disclosure.


The invention also provides an anti-idiotypic antibody that specifically binds to the antigen binding domain that binds CD3ε of the disclosure.


The invention also provides an anti-idiotypic antibody that specifically binds to the antigen binding domain that binds CD3ε comprising


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


An anti-idiotypic (Id) antibody is an antibody which recognizes the antigenic determinants (e.g. the paratope or CDRs) of the antibody. The Id antibody may be antigen-blocking or non-blocking. The antigen-blocking Id may be used to detect the free antigen binding domain in a sample (e.g. the antigen binding domain that binds CD3ε of the disclosure). The non-blocking Id may be used to detect the total antibody (free, partially bond to antigen, or fully bound to antigen) in a sample. An Id antibody may be prepared by immunizing an animal with the antibody to which an anti-Id is being prepared.


An anti-Id antibody may also be used as an immunogen to induce an immune response in yet another animal, producing a so-called anti-anti-Id antibody. An anti-anti-Id may be epitopically identical to the original antigen binding domain which induced the anti-Id. Thus, by using antibodies to the idiotypic determinants of the antigen binding domain, it is possible to identify other clones expressing antigen binding domains of identical specificity. Anti-Id antibodies may be varied (thereby producing anti-Id antibody variants) and/or derivatized by any suitable technique, such as those described elsewhere herein.


Immunoconjugates

The antigen binding domains that bind CD3ε of the disclosure, the proteins comprising the antigen binding domains that bind CD3ε or the multispecific proteins that comprise the antigen binding domains that bind CD3ε (collectively referred herein as to CD3ε binding proteins) may be conjugated to a heterologous molecule.


In other embodiments, the heterologous molecule is a detectable label or a cytotoxic agent.


The invention also provides an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides a protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides a multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label.


The invention also provides an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


The invention also provides a protein comprising an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


The invention also provides a multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a cytotoxic agent.


CD3ε binding proteins of the disclosure may be used to direct therapeutics to tumor antigen expressing cells. Alternatively, CD3ε expressing cells may be targeted with a CD3ε binding protein of the disclosure coupled to a therapeutic intended to modify cell function once internalized.


In other embodiments, the detectable label is also a cytotoxic agent.


The CD3ε binding proteins of the disclosure conjugated to a detectable label may be used to evaluate expression of CD3ε on a variety of samples.


Detectable label includes compositions that when conjugated to the CD3ε binding proteins of the disclosure renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means.


Exemplary detectable labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, haptens, luminescent molecules, chemiluminescent molecules, fluorochromes, fluorophores, fluorescent quenching agents, colored molecules, radioactive isotopes, scintillates, avidin, streptavidin, protein A, protein G, antibodies or fragments thereof, polyhistidine, Ni2+, Flag tags, myc tags, heavy metals, enzymes, alkaline phosphatase, peroxidase, luciferase, electron donors/acceptors, acridinium esters, and colorimetric substrates.


A detectable label may emit a signal spontaneously, such as when the detectable label is a radioactive isotope. In other cases, the detectable label emits a signal as a result of being stimulated by an external field.


Exemplary radioactive isotopes may be γ-emitting, Auger-emitting, β-emitting, an alpha-emitting or positron-emitting radioactive isotope. Exemplary radioactive isotopes include 3H, 11C, 13C, 15N, 18F, 19F, 55Co, 57Co, 60Co, 61Cu, 62Cu, 64Cu, 67Cu, 68Ga, 72As, 75Br, 86Y, 89Zr, 90Sr, 94mTc, 99mTc, 115In, 123I, 124I, 125I, 131I, 211At, 212Bi, 213Bi, 223Ra, 226Ra, 225Ac and 227Ac.


Exemplary metal atoms are metals with an atomic number greater than 20, such as calcium atoms, scandium atoms, titanium atoms, vanadium atoms, chromium atoms, manganese atoms, iron atoms, cobalt atoms, nickel atoms, copper atoms, zinc atoms, gallium atoms, germanium atoms, arsenic atoms, selenium atoms, bromine atoms, krypton atoms, rubidium atoms, strontium atoms, yttrium atoms, zirconium atoms, niobium atoms, molybdenum atoms, technetium atoms, ruthenium atoms, rhodium atoms, palladium atoms, silver atoms, cadmium atoms, indium atoms, tin atoms, antimony atoms, tellurium atoms, iodine atoms, xenon atoms, cesium atoms, barium atoms, lanthanum atoms, hafnium atoms, tantalum atoms, tungsten atoms, rhenium atoms, osmium atoms, iridium atoms, platinum atoms, gold atoms, mercury atoms, thallium atoms, lead atoms, bismuth atoms, francium atoms, radium atoms, actinium atoms, cerium atoms, praseodymium atoms, neodymium atoms, promethium atoms, samarium atoms, europium atoms, gadolinium atoms, terbium atoms, dysprosium atoms, holmium atoms, erbium atoms, thulium atoms, ytterbium atoms, lutetium atoms, thorium atoms, protactinium atoms, uranium atoms, neptunium atoms, plutonium atoms, americium atoms, curium atoms, berkelium atoms, californium atoms, einsteinium atoms, fermium atoms, mendelevium atoms, nobelium atoms, or lawrencium atoms.


In other embodiments, the metal atoms may be alkaline earth metals with an atomic number greater than twenty.


In other embodiments, the metal atoms may be lanthanides.


In other embodiments, the metal atoms may be actinides.


In other embodiments, the metal atoms may be transition metals.


In other embodiments, the metal atoms may be poor metals.


In other embodiments, the metal atoms may be gold atoms, bismuth atoms, tantalum atoms, and gadolinium atoms.


In other embodiments, the metal atoms may be metals with an atomic number of 53 (i.e. iodine) to 83 (i.e. bismuth).


In other embodiments, the metal atoms may be atoms suitable for magnetic resonance imaging.


The metal atoms may be metal ions in the form of +1, +2, or +3 oxidation states, such as Ba2+, Bi3+, Cs+, Ca2+, Cr2+, Cr3+, Cr6+, Co2+, Co3+, Cu+, Cu2+, Cu3+, Ga3+, Gd3+, Au+, Au3+, Fe2+, Fe3+, F3+, Pb2+, Mn2+, Mn+3, Mn4+, Mn7+, Hg2+, Ni2+, Ni3+, Ag+, Sr2+, Sn2+, Sn4+, and Zn2+. The metal atoms may comprise a metal oxide, such as iron oxide, manganese oxide, or gadolinium oxide.


Suitable dyes include any commercially available dyes such as, for example, 5(6)-carboxyfluorescein, IRDye 680RD maleimide or IRDye 800CW, ruthenium polypyridyl dyes, and the like.


Suitable fluorophores are fluorescein isothiocyanate (FITC), fluorescein thiosemicarbazide, rhodamine, Texas Red, CyDyes (e.g., Cy3, Cy5, Cy5.5), Alexa Fluors (e.g., Alexa488, Alexa555, Alexa594; Alexa647), near infrared (NIR) (700-900 nm) fluorescent dyes, and carbocyanine and aminostyryl dyes.


The antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


The protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


The multispecific protein comprising an antigen binding domain that binds CD3ε conjugated to a detectable label may be used as an imaging agent.


In other embodiments, the cytotoxic agent is a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


In other embodiments, the cytotoxic agent is daunomycin, doxorubicin, methotrexate, vindesine, bacterial toxins such as diphtheria toxin, ricin, geldanamycin, maytansinoids or calicheamicin. The cytotoxic agent may elicit their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition.


In other embodiments, the cytotoxic agent is an enzymatically active toxin such as diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), Momordica charantia inhibitor, curcin, crotin, Sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.


In other embodiments, the cytotoxic agent is a radionuclide, such as 212Bi, 131I, 131In, 90Y, and 186Re.


In other embodiments, the cytotoxic agent is dolastatins or dolostatin peptidic analogs and derivatives, auristatin or monomethyl auristatin phenylalanine. Exemplary molecules are disclosed in U.S. Pat. Nos. 5,635,483 and 5,780,588. Dolastatins and auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al (2001) Antimicrob Agents and Chemother. 45(12):3580-3584) and have anticancer and antifungal activity. The dolastatin or auristatin drug moiety may be attached to the antibody of the invention through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety (WO02/088172), or via any cysteine engineered into the antibody.


The CD3ε binding proteins of the disclosure may be conjugated to a detectable label using known methods.


In other embodiments, the detectable label is complexed with a chelating agent.


In other embodiments, the detectable label is conjugated to the CD3ε binding proteins of the disclosure via a linker.


The detectable label or the cytotoxic moiety may be linked directly, or indirectly, to the CD3ε binding proteins of the disclosure using known methods. Suitable linkers are known in the art and include, for example, prosthetic groups, non-phenolic linkers (derivatives of N-succimidyl-benzoates; dodecaborate), chelating moieties of both macrocyclics and acyclic chelators, such as derivatives of 1,4,7,10-tetraazacyclododecane-1,4,7,10,tetraacetic acid (DOTA), derivatives of diethylenetriaminepentaacetic avid (DTPA), derivatives of S-2-(4-Isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and derivatives of 1,4,8,11-tetraazacyclodocedan-1,4,8,11-tetraacetic acid (TETA), N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene) and other chelating moieties. Suitable peptide linkers are well known.


In other embodiments, the CD3ε binding proteins of the disclosure is removed from the blood via renal clearance.


Kits

The invention also provides a kit comprising the antigen binding domain that binds CD3ε.


The invention also provides a kit comprising the protein comprising an antigen binding domain that binds CD3ε.


The invention also provides a kit comprising the multispecific protein comprising an antigen binding domain that binds CD3ε.


The kit may be used for therapeutic uses and as diagnostic kits.


The kit may be used to detect the presence of CD3ε in a sample.


In other embodiments, the kit comprises the CD3ε binding protein of the disclosure and reagents for detecting the CD3ε binding protein. The kit can include one or more other elements including: instructions for use; other reagents, e.g., a label, a therapeutic agent, or an agent useful for chelating, or otherwise coupling, an antibody to a label or therapeutic agent, or a radioprotective composition; devices or other materials for preparing the antibody for administration; pharmaceutically acceptable carriers; and devices or other materials for administration to a subject.


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the kit comprises the protein comprising an antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the kit comprises the multispecific protein comprising an antigen binding domain that binds CD3ε in a container and instructions for use of the kit.


In other embodiments, the antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the protein comprising an antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the multispecific protein comprising an antigen binding domain that binds CD3ε in the kit is labeled.


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε comprising


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30;


In other embodiments, the kit comprises the antigen binding domain that binds CD3ε comprising SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.


Methods of Detecting CD3ε

The invention also provides a method of detecting CD3ε in a sample, comprising obtaining the sample, contacting the sample with the antigen binding domain that binds CD3ε of the disclosure and detecting the bound CD3ε in the sample.


In other embodiments, the sample may be derived from urine, blood, serum, plasma, saliva, ascites, circulating cells, synovial fluid, circulating cells, cells that are not tissue associated (i.e., free cells), tissues (e.g., surgically resected tissue, biopsies, including fine needle aspiration), histological preparations, and the like.


The antigen binding domain that binds CD3ε of the disclosure may be detected using known methods. Exemplary methods include direct labeling of the antibodies using fluorescent or chemiluminescent labels, or radiolabels, or attaching to the antibodies of the invention a moiety which is readily detectable, such as biotin, enzymes or epitope tags. Exemplary labels and moieties are ruthenium, 111In-DOTA, 111In-diethylenetriaminepentaacetic acid (DTPA), horseradish peroxidase, alkaline phosphatase and beta-galactosidase, poly-histidine (HIS tag), acridine dyes, cyanine dyes, fluorone dyes, oxazin dyes, phenanthridine dyes, rhodamine dyes and Alexafluor® dyes.


The antigen binding domain that binds CD3ε of the disclosure may be used in a variety of assays to detect CD3ε in the sample. Exemplary assays are western blot analysis, radioimmunoassay, surface plasmon resonance, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.


Polynucleotides, Vectors, Host Cells

The disclosure also provides an isolated polynucleotide encoding any of the CD3ε binding proteins of the disclosure. The CD3ε binding protein includes the antigen binding domains that bind CD3ε, the proteins comprising the antigen binding domains that bind CD3ε, the multispecific proteins that comprise the antigen binding domains that bind CD3ε of the disclosure.


The invention also provides an isolated polynucleotide encoding any of CD3ε biding proteins or fragments thereof.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NO: 23.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 24.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 27.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 28.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 29.


The invention also provides an isolated polynucleotide encoding the VL of SEQ ID NO: 30.


The invention also provides an isolated polynucleotide encoding the VH of SEQ ID NO: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


The invention also provides for an isolated polynucleotide encoding


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NOs: SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73 or 74.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 65.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 66.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 67.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 68.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 69.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 70.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 71.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 72.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 73.


The invention also provides an isolated polynucleotide encoding the polypeptide of SEQ ID NO: 74.


Some embodiments of the disclosure also provide an isolated or purified nucleic acid comprising a polynucleotide which is complementary to the polynucleotides encoding the CD3ε binding proteins of the disclosure or polynucleotides which hybridize under stringent conditions to the polynucleotides encoding the CD3ε binding proteins of the disclosure.


The polynucleotides which hybridize under stringent conditions may hybridize under high stringency conditions. By “high stringency conditions” is meant that the polynucleotide specifically hybridizes to a target sequence (the nucleotide sequence of any of the nucleic acids described herein) in an amount that is detectably stronger than non-specific hybridization. High stringency conditions include conditions which would distinguish a polynucleotide with an exact complementary sequence, or one containing only a few scattered mismatches from a random sequence that happened to have a few small regions (e.g., 3-12 bases) that matched the nucleotide sequence. Such small regions of complementarity are more easily melted than a full-length complement of 14-17 or more bases, and high stringency hybridization makes them easily distinguishable. Relatively high stringency conditions would include, for example, low salt and/or high temperature conditions, such as provided by about 0.02-0.1 M NaCl or the equivalent, at temperatures of about 50-70° C. Such high stringency conditions tolerate little, if any, mismatch between the nucleotide sequence and the template or target strand. It is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide.


The polynucleotide sequences of the disclosure may be operably linked to one or more regulatory elements, such as a promoter or enhancer, that allow expression of the nucleotide sequence in the intended host cell. The polynucleotide may be a cDNA. The promoter bay be a strong, weak, tissue-specific, inducible or developmental-specific promoter. Exemplary promoters that may be used are hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, beta-actin, human myosin, human hemoglobin, human muscle creatine, and others. In addition, many viral promoters function constitutively in eukaryotic cells and are suitable for use with the described embodiments. Such viral promoters include Cytomegalovirus (CMV) immediate early promoter, the early and late promoters of SV40, the Mouse Mammary Tumor Virus (MMTV) promoter, the long terminal repeats (LTRs) of Maloney leukemia virus, Human Immunodeficiency Virus (HIV), Epstein Barr Virus (EBV), Rous Sarcoma Virus (RSV), and other retroviruses, and the thymidine kinase promoter of Herpes Simplex Virus. Inducible promoters such as the metallothionein promoter, tetracycline-inducible promoter, doxycycline-inducible promoter, promoters that contain one or more interferon-stimulated response elements (ISRE) such as protein kinase R 2′,5′-oligoadenylate synthetases, Mx genes, ADAR1, and the like may also be sued.


The invention also provides a vector comprising the polynucleotide of the invention. The disclosure also provide an expression vector comprising the polynucleotide of the invention. Such vectors may be plasmid vectors, viral vectors, vectors for baculovirus expression, transposon based vectors or any other vector suitable for introduction of the synthetic polynucleotide of the invention into a given organism or genetic background by any means. Polynucleotides encoding the CD3ε binding proteins of the disclosure may be operably linked to control sequences in the expression vector(s) that ensure the expression of the CD3ε binding proteins. Such regulatory elements may include a transcriptional promoter, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. Expression vectors may also include one or more nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, other 5′ or 3′ flanking nontranscribed sequences, 5′ or 3′ nontranslated sequences (such as necessary ribosome binding sites), a polyadenylation site, splice donor and acceptor sites, or transcriptional termination sequences. An origin of replication that confers the ability to replicate in a host may also be incorporated.


The expression vectors can comprise naturally-occurring or non-naturally-occurring internucleotide linkages, or both types of linkages. The non-naturally occurring or altered nucleotides or internucleotide linkages do not hinder the transcription or replication of the vector.


Once the vector has been incorporated into the appropriate host, the host is maintained under conditions suitable for high level expression of the CD3ε binding proteins of the disclosure encoded by the incorporated polynucleotides. The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. Exemplary vectors may be constructed as described by Okayama and Berg, 3 Mol. Cell. Biol. 280 (1983).


Vectors of the disclosure may also contain one or more Internal Ribosome Entry Site(s) (IRES). Inclusion of an IRES sequence into fusion vectors may be beneficial for enhancing expression of some proteins. In other embodiments, the vector system will include one or more polyadenylation sites (e.g., SV40), which may be upstream or downstream of any of the aforementioned nucleic acid sequences. Vector components may be contiguously linked or arranged in a manner that provides optimal spacing for expressing the gene products (i.e., by the introduction of “spacer” nucleotides between the ORFs) or positioned in another way. Regulatory elements, such as the IRES motif, may also be arranged to provide optimal spacing for expression.


Vectors of the disclosure may be circular or linear. They may be prepared to contain a replication system functional in a prokaryotic or eukaryotic host cell. Replication systems can be derived, e.g., from ColE1, SV40, 2 plasmid, bovine papilloma virus, and the like.


The recombinant expression vectors can be designed for either transient expression, for stable expression, or for both. Also, the recombinant expression vectors can be made for constitutive expression or for inducible expression.


Further, the recombinant expression vectors can be made to include a suicide gene. As used herein, the term “suicide gene” refers to a gene that causes the cell expressing the suicide gene to die. The suicide gene can be a gene that confers sensitivity to an agent, e.g., a drug, upon the cell in which the gene is expressed, and causes the cell to die when the cell is contacted with or exposed to the agent. Suicide genes are known in the art and include, for example, the Herpes Simplex Virus (HSV) thymidine kinase (TK) gene, cytosine deaminase, purine nucleoside phosphoryl The vectors may also comprise selection markers, which are well known in the art. Selection markers include positive and negative selection marker. Marker genes include biocide resistance, e.g., resistance to antibiotics, heavy metals, etc., complementation in an auxotrophic host to provide prototrophy, and the like. Exemplary marker genes include antibiotic resistance genes (e.g., neomycin resistance gene, a hygromycin resistance gene, a kanamycin resistance gene, a tetracycline resistance gene, a penicillin resistance gene, histidinol resistance gene, histidinol×resistance gene), glutamine synthase genes, HSV-TK, HSV-TK derivatives for ganciclovir selection, or bacterial purine nucleoside phosphorylase gene for 6-methylpurine selection (Gadi et al., 7 Gene Ther. 1738-1743 (2000)). A nucleic acid sequence encoding a selection marker or the cloning site may be upstream or downstream of a nucleic acid sequence encoding a polypeptide of interest or cloning site.


Exemplary vectors that may be used are Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene, La Jolla, Calif., USA); pTrc99A, pKK223-3, pKK233-3, pDR540, and pRIT5 (Pharmacia, Uppsala, Sweden). Eukaryotic: pWLneo, pSV2cat, pOG44, PXR1, pSG (Stratagene) pSVK3, pBPV, pMSG and pSVL (Pharmacia), pEE6.4 (Lonza) and pEE12.4 (Lonza). Additional vectors include the pUC series (Fermentas Life Sciences, Glen Burnie, Md.), the pBluescript series (Stratagene, LaJolla, Calif.), the pET series (Novagen, Madison, Wis.), the pGEX series (Pharmacia Biotech, Uppsala, Sweden), and the pEX series (Clontech, Palo Alto, Calif.). Bacteriophage vectors, such as λGT10, λGT11, λEMBL4, and λNM1149, λZapII (Stratagene) can be used. Exemplary plant expression vectors include pBI01, pBI01.2, pBIl21, pBI101.3, and pBIN19 (Clontech). Exemplary animal expression vectors include pEUK-Cl, pMAM, and pMAMneo (Clontech). The expression vector may be a viral vector, e.g., a retroviral vector, e.g., a gamma retroviral vector.ase, and nitroreductase.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 23.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 24.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 27.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 28.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 29.


In other embodiments, the vector comprises the polynucleotide encoding the VL of SEQ ID NO: 30.


In other embodiments, the vector comprises the polynucleotide encoding the VH of SEQ ID NO: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.


In other embodiments, the vector comprises the polynucleotide encoding


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NOs: SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73 or 74.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 65.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 66.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 67.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 68.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 69.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 70.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 71.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 72.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 73.


In other embodiments, the vector comprises the polynucleotide encoding the polypeptide of SEQ ID NO: 74.


The invention also provides for a host cell comprising one or more vectors of the invention. “Host cell” refers to a cell into which a vector has been introduced. It is understood that the term host cell is intended to refer not only to the particular subject cell but to the progeny of such a cell, and also to a stable cell line generated from the particular subject cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein. Such host cells may be eukaryotic cells, prokaryotic cells, plant cells or archeal cells. Escherichia coli, bacilli, such as Bacillus subtilis, and other enterobacteriaceae, such as Salmonella, Serratia, and various Pseudomonas species are examples of prokaryotic host cells. Other microbes, such as yeast, are also useful for expression. Saccharomyces (e.g., S. cerevisiae) and Pichia are examples of suitable yeast host cells. Exemplary eukaryotic cells may be of mammalian, insect, avian or other animal origins. Mammalian eukaryotic cells include immortalized cell lines such as hybridomas or myeloma cell lines such as SP2/0 (American Type Culture Collection (ATCC), Manassas, Va., CRL-1581), NS0 (European Collection of Cell Cultures (ECACC), Salisbury, Wiltshire, UK, ECACC No. 85110503), FO (ATCC CRL-1646) and Ag653 (ATCC CRL-1580) murine cell lines. An exemplary human myeloma cell line is U266 (ATTC CRL-TIB-196). Other useful cell lines include those derived from Chinese Hamster Ovary (CHO) cells such as CHO-K1SV (Lonza Biologics, Walkersville, Md.), CHO-K1 (ATCC CRL-61) or DG44.


The disclosure also provides a method of producing the CD3ε binding protein of the disclosure comprising culturing the host cell of the disclosure in conditions that the CD3ε binding protein is expressed, and recovering the CD3ε binding protein produced by the host cell. Methods of making proteins and purifying them are known. Once synthesized (either chemically or recombinantly), the CD3ε binding proteins may be purified according to standard procedures, including ammonium sulfate precipitation, affinity columns, column chromatography, high performance liquid chromatography (HPLC) purification, gel electrophoresis, and the like (see generally Scopes, Protein Purification (Springer-Verlag, N.Y., (1982)). A subject protein may be substantially pure, e.g., at least about 80% to 85% pure, at least about 85% to 90% pure, at least about 90% to 95% pure, or at least about 98% to 99%, or more, pure, e.g., free from contaminants such as cell debris, macromolecules, etc. other than the subject protein


The polynucleotides encoding the CD3ε binding proteins of the disclosure may be incorporated into vectors using standard molecular biology methods. Host cell transformation, culture, antibody expression and purification are done using well known methods.


Modified nucleotides may be used to generate the polynucleotides of the disclosure. Exemplary modified nucleotides are 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, N6-substituted adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5″-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queuosine, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine.


Pharmaceutical Compositions/Administration

The disclosure also provides a pharmaceutical composition comprising the CD3ε binding protein of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the protein comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the multispecific protein comprising the antigen binding domain that binds CD3ε of the disclosure and a pharmaceutically acceptable carrier.


The disclosure also provides a pharmaceutical composition comprising the multispecific protein comprising the antigen binding domain that binds CD3ε and antigen binding domain that binds a tumor antigen of the disclosure and a pharmaceutically acceptable carrier.


For therapeutic use, the CD3ε binding protein of the disclosure may be prepared as pharmaceutical compositions containing an effective amount of the antibody as an active ingredient in a pharmaceutically acceptable carrier. These solutions are sterile and generally free of particulate matter. They may be sterilized by conventional, well-known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, stabilizing, thickening, lubricating and coloring agents, etc.


The term “pharmaceutically acceptable,” as used herein with regard to pharmaceutical compositions, means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals and/or in humans.


Methods of Treatment and Uses

The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in therapy.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in treating a cell proliferative disorder.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in treating cancer.


The disclosure also provides the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure for use in the manufacture of a medicament for treating cancer.


In one aspect, the disclosure relates generally to the treatment of a subject at risk of developing cancer. The invention also includes treating a malignancy in which chemotherapy and/or immunotherapy results in significant immunosuppression in a subject, thereby increasing the risk of the subject developing cancer.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the protein comprising the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the multispecific protein comprising the antigen binding domain that bind CD3ε of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the immunoconjugate of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating a noncancerous condition in a subject at risk of developing a cancerous condition, comprising administering the pharmaceutical composition of the disclosure to the subject to treat the noncancerous condition.


The disclosure also provides a method of treating cancer in a subject, comprising administering a therapeutically effective amount of the multispecific protein comprising the antigen binding domain that binds CD3ε to the subject to treat the cancer, wherein the antigen binding domain that bind CD3ε comprises


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or


the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.


The disclosure also provides a method of treating cancer in a subject, comprising administering a therapeutically effective amount of the multispecific protein comprising the antigen binding domain that binds CD3ε to the subject to treat the cancer, wherein the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.


A further aspect of the disclosure is a method of treating a cell proliferative disorder in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure. In other embodiments, the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure, is administered to the subject.


In any of the preceding uses or methods, the cell proliferative disorder is cancer. In other embodiments, the cancer is selected from the group consisting of esophageal cancer, stomach cancer, small intestine cancer, large intestine cancer, colorectal cancer, breast cancer, non-small cell lung cancer, non-Hodgkin's lymphoma (NHL), B cell lymphoma, B cell leukemia, multiple myeloma, renal cancer, prostate cancer, liver cancer, head and neck cancer, melanoma, ovarian cancer, mesothelioma, glioblastoma, germinal-center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, follicular lymphoma (FL), mantle cell lymphoma (MCL), acute myeloid leukemia (AML), chronic lymphoid leukemia (CLL), marginal zone lymphoma (MZL), small lymphocytic leukemia (SLL), lymphoplasmacytic lymphoma (LL), Waldenstrom macroglobulinemia (WM), central nervous system lymphoma (CNSL), Burkitt's lymphoma (BL), B-cell prolymphocytic leukemia, Splenic marginal zone lymphoma, Hairy cell leukemia, Splenic lymphoma/leukemia, unclassifiable, Splenic diffuse red pulp small B-cell lymphoma, Hairy cell leukemia variant, Waldenstrom macroglobulinemia, Heavy chain diseases, Plasma cell myeloma, Solitary plasmacytoma of bone, Extraosseous plasmacytoma, Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), Nodal marginal zone lymphoma, Pediatric nodal marginal zone lymphoma, Pediatric follicular lymphoma, Primary cutaneous follicle centre lymphoma, T-cell/histiocyte rich large B-cell lymphoma, Primary DLBCL of the CNS, Primary cutaneous DLBCL, leg type, EBV-positive DLBCL of the elderly, DLBCL associated with chronic inflammation, Lymphomatoid granulomatosis, Primary mediastinal (thymic) large B-cell lymphoma. Intravascular large B-cell lymphoma, ALK-positive large B-cell lymphoma, Plasmablastic lymphoma, Large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease, Primary effusion lymphoma: B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma, classical Hodgkin lymphoma and light chain amyloidosis.


In other embodiments, the cancer is esophageal cancer. In other embodiments, the cancer is an adenocarcinoma, for example, a metastatic adenocarcinoma (e.g., a colorectal adenocarcinoma, a gastric adenocarcinoma, or a pancreatic adenocarcinoma).


In another aspect, the disclosure features a kit comprising: (a) a composition comprising any one of the preceding the bispecific or multispecific protein comprising a first antigen biding domain that specifically binds CD3ε and a second antigen biding domain that specifically binds a second antigen of the disclosure and (b) a package insert comprising instructions for administering the composition to a subject to treat or delay progression of a cell proliferative disorder.


In any of the preceding uses or methods, the subject can be a human.


Combination Therapies

The CD3ε binding proteins of the disclosure may be administered in combination with at least one additional therapeutics.


In other embodiments, the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous” or “concurrent delivery”. In other embodiments, the delivery of one treatment ends before the delivery of the other treatment begins. In some embodiments of either case, the treatment is more effective because of combined administration. For example, the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment. In other embodiments, delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other. The delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.


The CD3ε binding proteins described herein and the at least one additional therapeutic agent can be administered simultaneously, in the same or in separate compositions, or sequentially. For sequential administration, the CD3ε binding proteins described herein can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.


Embodiments

This invention provides the following non-limiting embodiments.

    • 1. An isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises:
      • a. a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24;
      • b. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 27;
      • c. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 28;
      • d. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 29; or
      • e. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 30.
    • 2. The isolated protein of embodiment 1, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of
      • a. SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;
      • b. SEQ ID NOs:12, 13, 14, 15, 16, and 17, respectively; or
      • c. SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.
    • 3. The isolated protein of embodiment 1 or 2, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
    • 4. The isolated protein of embodiment 3, wherein the antigen binding domain that binds CD3ε is the Fab.
    • 5. The isolated protein of embodiment 3, wherein the antigen binding domain that binds CD3ε is the VHH.
    • 6. The isolated protein of embodiment 3, wherein the antigen binding domain that binds CD3ε is the scFv.
    • 7. The isolated protein of embodiment 6, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
    • 8. The isolated protein of embodiment 7, wherein the L1 comprises
      • a. about 5-50 amino acids;
      • b. about 5-40 amino acids;
      • c. about 10-30 amino acids; or
      • d. about 10-20 amino acids.
    • 9. The isolated protein of embodiment 7, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
    • 10. The isolated protein of embodiment 9 wherein the L1 comprises the amino acid sequence of SEQ ID NO: 31, 37, or 64.
    • 11. The isolated protein of any one of embodiments 1-10, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.
    • 12. The isolated protein of embodiment 11, wherein the antigen binding domain that binds CD3ε comprises:
      • a. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;
      • b. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;
      • c. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;
      • d. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or
      • e. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.
    • 13. The isolated protein of any one of embodiments 1-12, wherein the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.
    • 14. An isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain variable region (VL) of SEQ ID NO: 103.
    • 15. The isolated protein of embodiment 14, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
    • 16. The isolated protein of embodiment 15, wherein the antigen binding domain that binds CD3ε is the Fab.
    • 17. The isolated protein of embodiment 15, wherein the antigen binding domain that binds CD3ε is the VHH.
    • 18. The isolated protein of embodiment 15, wherein the antigen binding domain that binds CD3ε is the scFv.
    • 19. The isolated protein of embodiment 18, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
    • 20. The isolated protein of embodiment 19, wherein the L1 comprises
      • a. about 5-50 amino acids;
      • b. about 5-40 amino acids;
      • c. about 10-30 amino acids; or
      • d. about 10-20 amino acids.
    • 21. The isolated protein of embodiment 20, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
    • 22. The isolated protein of embodiment 21, wherein the L1 comprises the amino acid sequence of SEQ ID NO: 31, 37, or 64.
    • 23. The isolated protein of embodiment 14-22, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24, 27, 28, 29, or 30.
    • 24. The isolated protein of embodiment 23, wherein the antigen binding domain that binds CD3ε comprises:
      • a. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;
      • b. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;
      • c. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;
      • d. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; or
      • e. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30;
    • 25. The isolated protein of any one of embodiments 1-24, wherein the isolated protein is a multispecific protein.
    • 26. The isolated protein of embodiment 25, wherein the multispecific protein is a bispecific protein.
    • 27. The isolated protein of embodiment 25, wherein the multispecific protein is a trispecific protein.
    • 28. The isolated protein of any one of embodiments 1-27, further comprising an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof.
    • 29. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises a Fc region.
    • 30. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises a CH2 domain.
    • 31. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises a CH3 domain.
    • 32. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises the CH2 domain and the CH3 domain.
    • 33. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises at least portion of a hinge, the CH2 domain and the CH3 domain.
    • 34. The isolated protein of embodiment 28, wherein the fragment of the Ig constant region comprises a hinge, the CH2 domain and the CH3 domain.
    • 35. The isolated protein of any one of embodiments 28-34, wherein the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.
    • 36. The isolated protein of any one of embodiments 28-34, wherein the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.
    • 37. The isolated protein of any one of embodiments 28-36, wherein the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).
    • 38. The isolated protein of embodiment 37, wherein the L2 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
    • 39. The isolated protein of any one of embodiments 28-38, wherein the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.
    • 40. The multispecific antibody of embodiment 39, wherein the cell antigen is a tumor associated antigen.
    • 41. The multispecific antibody of any one of embodiments 39-40, wherein the cell antigen is selected from the group consisting of kallikrein related peptidase 2 (hK2), human leukocyte antigen G (HLA-G), and Delta-like protein 3 (DLL3).
    • 42. The isolated protein of any one of embodiments 28-41, wherein the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.
    • 43. The isolated protein of any one of embodiments 28-42, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR).
    • 44. The isolated protein of embodiment 43, wherein the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.
    • 45. The isolated protein of any one of embodiments 28-42, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in enhanced binding of the protein to the FcγR.
    • 46. The isolated protein of embodiment 45, wherein the at least one mutation that results in enhanced binding of the protein to the FcγR is selected from the group consisting of S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L, F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L and G236A/S239D/I332E, wherein residue numbering is according to the EU index.
    • 47. The isolated protein of any one of embodiments 43-46, wherein the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.
    • 48. The isolated protein of any one of embodiments 28-47, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that modulates a half-life of the protein.
    • 49. The isolated protein of embodiment 48, wherein the at least one mutation that modulates the half-life of the protein is selected from the group consisting of H435A, P257I/N434H, D376V/N434H, M252Y/S254T/T256E/H433K/N434F, T308P/N434A and H435R, wherein residue numbering is according to the EU index.
    • 50. The isolated protein of any one of the embodiments 28-49, wherein the protein comprises at least one mutation in a CH3 domain of the Ig constant region.
    • 51. The isolated protein of embodiment 40, wherein the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, F405W, K392L, T394W, T394S, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, T366A/K409F, L351Y/Y407A, L351Y/Y407V, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.
    • 52. A pharmaceutical composition comprising the isolated protein of any one of embodiments 1-51 and a pharmaceutically acceptable carrier.
    • 53. A polynucleotide encoding the isolated protein of any one of embodiments 1-51.
    • 54. A vector comprising the polynucleotide of embodiment 53.
    • 55. A host cell comprising the vector of embodiment 54.
    • 56. A method of producing the isolated protein of any one of embodiments 1-51, comprising culturing the host cell of embodiment 55 in conditions that the protein is expressed, and recovering the protein produced by the host cell.
    • 57. A method of treating a cancer in a subject, comprising administering a therapeutically effective amount of the isolated antibody of any one of embodiments 1-51 to the subject in need thereof to treat the cancer.
    • 58. The method of embodiment 57, wherein the cancer is a solid tumor or a hematological malignancy.
    • 59. The method of embodiment 58, wherein the solid tumor is a prostate cancer, a colorectal cancer, a gastric cancer, a clear cell renal carcinoma, a bladder cancer, a lung cancer, a squamous cell carcinoma, a glioma, a breast cancer, a kidney cancer, a neovascular disorder, a clear cell renal carcinoma (CCRCC), a pancreatic cancer, a renal cancer, a urothelial cancer or an adenocarcinoma to the liver.
    • 60. The method of embodiment 58, wherein the hematological malignancy is acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphocytic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML) or blastic plasmacytoid dendritic cell neoplasm (DPDCN).
    • 61. The method of any one of embodiments 57-60, wherein the antibody is administered in combination with a second therapeutic agent.
    • 62. An anti-idiotypic antibody binding to the isolated protein of any one of embodiments 1-51.
    • 63. An isolated protein comprising an antigen binding domain that binds to an epitope on CD3ε (SEQ ID NO: 1), wherein the epitope is a discontinuous epitope comprising the amino acid sequences of SEQ ID NO: 100, 101, and 102.
    • 64. An isolated protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 75, 76, 717, 718, 79, 80, 81, 82, 83, and 84.
    • 65. An isolated protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 747, 748, 77, 78, 749, 750, 751, 752, 753, and 754.
    • 66. An isolated protein comprising an amino acid sequences of SEQ ID NO: 75.
    • 67. An isolated protein comprising an amino acid sequences of SEQ ID NO: 76.
    • 68. An isolated protein comprising an amino acid sequences of SEQ ID NO: 717.
    • 69. An isolated protein comprising an amino acid sequences of SEQ ID NO: 718.
    • 70. An isolated protein comprising an amino acid sequences of SEQ ID NO: 79.
    • 71. An isolated protein comprising an amino acid sequences of SEQ ID NO: 80.
    • 72. An isolated protein comprising an amino acid sequences of SEQ ID NO: 81.
    • 73. An isolated protein comprising an amino acid sequences of SEQ ID NO: 82.
    • 74. An isolated protein comprising an amino acid sequences of SEQ ID NO: 83.
    • 75. An isolated protein comprising an amino acid sequences of SEQ ID NO: 84.
    • 76. An isolated protein comprising an amino acid sequences of SEQ ID NO: 747.
    • 77. An isolated protein comprising an amino acid sequences of SEQ ID NO: 748.
    • 78. An isolated protein comprising an amino acid sequences of SEQ ID NO: 77.
    • 79. An isolated protein comprising an amino acid sequences of SEQ ID NO: 78.
    • 80. An isolated protein comprising an amino acid sequences of SEQ ID NO: 749.
    • 81. An isolated protein comprising an amino acid sequences of SEQ ID NO: 750.
    • 82. An isolated protein comprising an amino acid sequences of SEQ ID NO: 751.
    • 83. An isolated protein comprising an amino acid sequences of SEQ ID NO: 752.
    • 84. An isolated protein comprising an amino acid sequences of SEQ ID NO: 753.
    • 85. An isolated protein comprising an amino acid sequences of SEQ ID NO: 754.
    • 86. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 85 and 86.
    • 87. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 85 and 88.
    • 88. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 85 and 90.
    • 89. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 85 and 92.
    • 90. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 85 and 94.
    • 91. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 719 and 86.
    • 92. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 719 and 88.
    • 93. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 719 and 90.
    • 94. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 719 and 92.
    • 95. An isolated protein comprising an amino acid sequences of SEQ ID NOs: 719 and 94.


The following examples are provided to further describe some of the embodiments disclosed herein. The examples are intended to illustrate, not to limit, the disclosed embodiments.


EXAMPLES
Example 1. Generation and Characterization of Anti-CD3 mAbs

Anti-CD3 antibodies were generated using Ablexis® transgenic mouse platform. Ablexis® mice generate antibodies having human variable domains linked to human CH1 and CL domains, chimeric human/mouse hinge region, and mouse Fc regions. The two specific strains termed Ablexis® Kappa Mouse and Lambda Mouse strains lack specific mouse sequences and are described in WO11/123708 and WO2003000737.


Ablexis mice were immunized with TRCW5 (SEQ ID NO: 3), including 13 Kappa mice and 12 Lambda mice. TRCW5 is comprised of the extracellular region of CD3δ fused by a 26 amino acid linker to the extracellular region of CD3ε as reported in Kim et al, JMB (2000) 302(4): 899-916. This polypeptide had at its C-terminus a human IgG1 Fc domain with a C-terminal Avi-tag used for site-specific biotinylation (Fairhead & Howarth, Methods Mol Biol (2015); 1266: 171-184).









TRCW5 (SEQ ID NO: 3):


FKIPIEELEDRVFVNCNTSITWVEGTVGTLLSDITRLDLGKRILDPRGIY





RCNGTDIYKDKESTVQVHYRMGSADDAKKDAAKKDDAKKDDAKKDGSDGN





EEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKNI





GSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVSPPSPAP





ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV





EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI





EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE





SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL





HNHYTQKSLSLSPGKGGGLNDIFEAQKIEWHE






Mice were immunized twice weekly for the duration of 7 weeks. On day 42, mice were boosted for hybridoma fusion by administration of 50 μg TRCW5 and 50 μg CD40 mAb spread over 8 sites, including 6 subcoutaneous and 2 intradermal injections. For a final boost, mice received 20 μL injections of Jurkat cells, a T cell line which endogenously expresses the T cell receptor complex, including CD3ε (Schneider et al (1977) Int. J. Cancer, 19 (5): 621-6), at 4.74×107 cells/mL.


Lymph nodes and spleens were extracted from mice and fusions performed by cohorts. Lymph node cells were counted and combined in a 1:1 ratio with FO myeloma cells (ATCC (CRL-1646)) and incubated for 10 d at 37° C. prior to antibody screening. Supernatants from hybridoma fusion cells were then assayed for binding to TRCW5 using TRCW5 either non-specifically immobilized on the plate (ELISA, Thermo cat. #34022) or by streptavidin conjugation to biotinylated-TRCW5 (SPARCL ELISA, Lumigen), according to manufacturers' instructions. ELISA assays were performed by coating plates with 0.5 ug/mL TRCW5 and 0.5 ug/mL HVEM-Fc (R&D cat. #365-HV) overnight @4° C. Plates were blocked by addition of 0.4% (w/v) bovine serum albumin (BSA) in phosphate-buffered saline (PBS) overnight @ 4° C. Plates were washed with 1×PBS supplemented with 0.02% (v/v) Tween 20. To each well, 50 uL of hybridoma supernatant was applied and incubated for 1 hr at room temperature. Bound antibody was detected by addition of goat anti-mouse IgG Fc conjugated to horseradish peroxidase (Jackson cat. #115-036-071) diluted 1:10,000 in blocking buffer followed by incubation for 30 min at room temperature. 3, 3′, 5, 5′-tetramethylbenzidine (TMB) substrate buffer (Thermo cat. #34022) was added at 25 uL/well and incubated for 10 min in the dark. Reactions were stopped by addition of 25 uL/well of 4 M H2SO4. Luminescence was read at 450 nm using BioTek® Epoch2 Microplate Reader. Hits were selected having signal at least 3-fold higher than background.


The two assay formats resulted in 426 hits (264 hits from ELISA, 194 from SPARCL ELISA, 70 hits were identified in both assays). Of these 426 initial hits, 49 ELISA and 32 SPARCL ELISA hits were confirmed. The hybridoma fusions corresponding to the positive binders were refed and tested for their abilities to bind Jurkat cells, using flow cytometry. The results suggested that three antibodies, including clone 003_F12, clone 036_E10 and clone 065_D03, showed significant binding to Jurkat cells, endogenously expressing CD3, based on mean fluorescence index (MFI, see Table 4). While clones 003_F12 and 036_E10 (from human kappa mice) were confirmed positive for human kappa light chain by ELISA, clone 065_D03 (from human lambda mouse) was negative for human lambda. The variable genes of these three clones were then sequenced.









TABLE 4







Mean fluorescence index (MFI) for binding


of selected clones to Jurkat cells










Clone ID
MFI (arbitrary units)














003_F12
176147



036_E10
43133



065_D03
136269



No Ab
2075.61



10 nM UCHT1
89214.29










Next, these three clones were screened for their abilities to bind primary human and cyno T cells. Briefly, primary human and cyno pan T cells were resuspended at 1×106 cells/mL in flow staining buffer and cells were plated at 50,000 cells/well. To each well, 50 uL of hybridoma supernatant were added and the mixture was incubated on ice for 30 min. After incubation, 200 uL of staining buffer was added and cells were pelleted by centrifugation at 300×G for 5 min. Anti-mouse IgG conjugated to Alexa-647 was added at 2 ug/mL in staining buffer in 50 uL total volume and incubated for 30 min on ice. 150 uL of staining buffer was added and cells were pelleted by centrifugation at 300×G for 5 min. Cells were resuspended in 30 uL of running buffer containing 1:1,000-diluated Sytox green dead cell stain and run on iQue Screener. Cells were gated on FCS vs SCS to eliminate debris. Singlets were gated on SCS-A vs SCS-H, and from singlet population, live cells were chosen using BL1 channel for low-negative with Sytox green. CD3 binding was assessed by comparing test articles to negative control by RL1 (Alexa-647) geomeans. In this assay, clone 065_D03 showed the highest cell binding signal (FIG. 1A-1B).


Thus, the variable region of the Clone 065_D03 was cloned into an IgG1 backbone, resulting in the antibody termed CD3B815 (sequences are shown in Table 5). CD3B815 was screened again for binding to Jurkat cells and showed positive binding to Jurkat cells.









TABLE 5







CD3B815 amino acid sequences.








Protein
Amino acid sequences





CD3B815
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS


Heavy Chain
SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGW


(SEQ ID NO: 25)
GPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPE



PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN



HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR



TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS



VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS



REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF



FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





CD3B815
DILLTQSPGILSVSPGERVSFSCRARQSIGTAIHWYQQRTNGSPRLLIKYASE


Light Chain
SISGIPSRFSGSGSGTDFTLTINSVESEDIADYYCQQSNSWPYTFGGGTKLEI


(SEQ ID NO: 26)
KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS



GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT



KSFNRGEC










Humanization and scFv Formatting of CD3 Binding Domains


The light chain (LC) of the v-region of CD3B815 was humanized in scFv format. Briefly, the LC from CD3B815 was grafted onto the human IGHV3B21*54 germline and two positions (Y49K and L78V, according to Kabat numbering system) were identified for human to mouse back mutations. This resulted in variants, having either Y49K, L78V, or both Y49K and L78V. The LC from CD3B815 also contained an NS motif which presents a risk for deamidation at positions 92-93. Therefore several variants generated also contained N92G. These variants and associated mutations are described in Table 6, and the VH and the VL amino acid and nucleic acid sequences are shown in Tables 7 and 8. CDR sequences are shown in Tables 9-11.









TABLE 6







Mutations in humanized scFv variants, defined


according to Kabat numbering system.









scFv identification
Description
VL mutations





CD3W234
CD3B815-HL-scFV, Contains mouse VL
none


CD3W238
CDR of CD3B815 grafted into IGKV1D-39*01
none


CD3W241
CDR of CD3B815 grafted into IGKV1D-39*01
L78V


CD3W242
CDR of CD3B815 grafted into IGKV1D-39*01
Y49K


CD3W243
CDR of CD3B815 grafted into IGKV1D-39*01
Y49K, L78V


CD3W244
CDR of CD3B815 grafted into IGKV1D-39*01
L78V, N92G


CD3W245
CDR of CD3B815 grafted into IGKV1D-39*01
Y49K, N92G


CD3W246
CDR of CD3B815 grafted into IGKV1D-39*01
Y49K, L78V, N92G


CD3W247
CDR of CD3B815 grafted into IGKV1D-39*01
N92G


CD3W248
CD3B815-HL-scFV, Contains mouse VL
N92G
















TABLE 7







VH and VL amino acid sequences of the humanized scFv variants.











Binding






domain
VH amino acid
VH SEQ

VL SEQ


name
Sequence
ID NO:
VL amino acid sequence
ID NO:














CD3B815
EVQLVESGGGLVKPGGSL
23
DILLTQSPGILSVSPGERV
119



RLSCAASGFTFSRYNMNW

SFSCRARQSIGTAIHWYQ




VRQAPGKGLEWVSSISTSS

QRTNGSPRLLIKYASESIS




NYIYYADSVKGRFTFSRD

GIPSRFSGSGSGTDFTLTI




NAKNSLDLQMSGLRAED

NSVESEDIADYYCQQSNS




TAIYYCTRGWGPFDYWG

WPYTFGGGTKLEIK




QGTLVTVSS








CD3W244
EVQLVESGGGLVKPGGSL
23
DIQMTQSPSSLSASVGDR
27



RLSCAASGFTFSRYNMNW

VTITCRARQSIGTAIHWY




VRQAPGKGLEWVSSISTSS

QQKPGKAPKLLIYYASES




NYIYYADSVKGRFTFSRD

ISGVPSRFSGSGSGTDFTL




NAKNSLDLQMSGLRAED

TISSVQPEDFATYYCQQS




TAIYYCTRGWGPFDYWG

GSWPYTFGQGTKLEIK




QGTLVTVSS








CD3W245
EVQLVESGGGLVKPGGSL
23
DIQMTQSPSSLSASVGDR
28



RLSCAASGFTFSRYNMNW

VTITCRARQSIGTAIHWY




VRQAPGKGLEWVSSISTSS

QQKPGKAPKLLIKYASES




NYIYYADSVKGRFTFSRD

ISGVPSRFSGSGSGTDFTL




NAKNSLDLQMSGLRAED

TISSLQPEDFATYYCQQS




TAIYYCTRGWGPFDYWG

GSWPYTFGQGTKLEIK




QGTLVTVSS








CD3W246
EVQLVESGGGLVKPGGSL
23
DIQMTQSPSSLSASVGDR
24



RLSCAASGFTFSRYNMNW

VTITCRARQSIGTAIHWY




VRQAPGKGLEWVSSISTSS

QQKPGKAPKLLIKYASES




NYIYYADSVKGRFTFSRD

ISGVPSRFSGSGSGTDFTL




NAKNSLDLQMSGLRAED

TISSVQPEDFATYYCQQS




TAIYYCTRGWGPFDYWG

GSWPYTFGQGTKLEIK




QGTLVTVSS








CD3W247
EVQLVESGGGLVKPGGSL
23
DIQMTQSPSSLSASVGDR
29



RLSCAASGFTFSRYNMNW

VTITCRARQSIGTAIHWY




VRQAPGKGLEWVSSISTSS

QQKPGKAPKLLIYYASES




NYIYYADSVKGRFTFSRD

ISGVPSRFSGSGSGTDFTL




NAKNSLDLQMSGLRAED

TISSLQPEDFATYYCQQS




TAIYYCTRGWGPFDYWG

GSWPYTFGQGTKLEIK




QGTLVTVSS








CD3W248
EVQLVESGGGLVKPGGSL
23
DILLTQSPGILSVSPGERV
30



RLSCAASGFTFSRYNMNW

SFSCRARQSIGTAIHWYQ




VRQAPGKGLEWVSSISTSS

QRTNGSPRLLIKYASESIS




NYIYYADSVKGRFTFSRD

GIPSRFSGSGSGTDFTLTI




NAKNSLDLQMSGLRAED

NSVESEDIADYYCQQSGS




TAIYYCTRGWGPFDYWG

WPYTFGGGTKLEIK




QGTLVTVSS
















TABLE 8







VH and VL nucleic acid sequences of the humanized scFv variants.











Binding






domain
VH nucleic acid
VH SEQ
VL nucleic acid
VL SEQ


name
Sequence
ID NO:
sequence
ID NO:














CD3B815
GAGGTGCAACTGGTGG
113
GATATACTTCTTACCCAGA
120



AGTCTGGGGGAGGCCT

GTCCCGGCATCCTCTCCGT




GGTCAAGCCTGGGGGG

TAGCCCTGGGGAGAGAGT




TCCCTGAGACTCTCCTG

CTCATTCTCATGCCGAGCC




TGCAGCCTCTGGATTCA

AGACAGTCAATTGGTACC




CCTTCAGTAGATATAAC

GCAATACACTGGTATCAA




ATGAACTGGGTCCGCCA

CAGCGGACCAATGGTTCT




GGCTCCAGGGAAGGGG

CCCCGACTTCTGATAAAGT




CTGGAGTGGGTCTCATC

ACGCATCAGAATCAATTA




CATTAGTACTAGTAGTA

GTGGAATACCATCAAGAT




ATTACATATACTACGCA

TTAGTGGCTCAGGGAGTG




GACTCAGTGAAGGGCC

GAACCGATTTTACTCTGAC




GATTCACCTTCTCCAGA

CATCAACTCAGTGGAATCT




GACAACGCCAAGAACT

GAGGACATTGCCGACTAC




CACTGGATCTGCAAATG

TACTGTCAACAAAGCAAT




AGCGGCCTGAGAGCCG

AGTTGGCCATATACCTTCG




AGGACACGGCTATTTAT

GAGGCGGAACTAAATTGG




TACTGTACGAGAGGCTG

AGATAAAA




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA








CD3W244
GAGGTGCAACTGGTGG
113
GACATCCAGATGACACAG
114



AGTCTGGGGGAGGCCT

TCACCTTCTAGTTTGTCTG




GGTCAAGCCTGGGGGG

CTTCTGTAGGCGACCGTGT




TCCCTGAGACTCTCCTG

AACTATCACCTGTCGAGCC




TGCAGCCTCTGGATTCA

CGTCAAAGTATTGGTACTG




CCTTCAGTAGATATAAC

CCATTCACTGGTACCAACA




ATGAACTGGGTCCGCCA

AAAACCTGGCAAAGCTCC




GGCTCCAGGGAAGGGG

AAAACTCTTGATCTACTAT




CTGGAGTGGGTCTCATC

GCCTCCGAAAGCATATCA




CATTAGTACTAGTAGTA

GGGGTCCCAAGCAGATTC




ATTACATATACTACGCA

TCAGGCAGTGGCAGTGGC




GACTCAGTGAAGGGCC

ACTGACTTCACTCTCACCA




GATTCACCTTCTCCAGA

TTTCTAGCGTGCAACCAGA




GACAACGCCAAGAACT

GGACTTCGCCACTTATTAC




CACTGGATCTGCAAATG

TGCCAACAGTCAGGGAGC




AGCGGCCTGAGAGCCG

TGGCCCTACACCTTCGGCC




AGGACACGGCTATTTAT

AAGGTACAAAACTGGAGA




TACTGTACGAGAGGCTG

TCAAA




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA








CD3W245
GAGGTGCAACTGGTGG
113
GACATACAAATGACACAA
115



AGTCTGGGGGAGGCCT

TCACCCTCTTCTCTTTCTG




GGTCAAGCCTGGGGGG

CAAGCGTTGGCGACCGTG




TCCCTGAGACTCTCCTG

TCACTATCACTTGTCGAGC




TGCAGCCTCTGGATTCA

CCGCCAGTCCATAGGTACT




CCTTCAGTAGATATAAC

GCCATTCACTGGTATCAAC




ATGAACTGGGTCCGCCA

AGAAGCCTGGCAAGGCTC




GGCTCCAGGGAAGGGG

CCAAACTCCTGATTAAGTA




CTGGAGTGGGTCTCATC

TGCCAGCGAGAGCATTTC




CATTAGTACTAGTAGTA

CGGCGTACCTTCAAGATTT




ATTACATATACTACGCA

TCCGGCTCCGGTAGTGGG




GACTCAGTGAAGGGCC

ACAGATTTCACTCTCACTA




GATTCACCTTCTCCAGA

TATCTAGCCTCCAACCAGA




GACAACGCCAAGAACT

AGATTTCGCCACTTACTAC




CACTGGATCTGCAAATG

TGTCAACAATCAGGTTCAT




AGCGGCCTGAGAGCCG

GGCCTTACACTTTCGGCCA




AGGACACGGCTATTTAT

GGGGACAAAATTGGAGAT




TACTGTACGAGAGGCTG

CAAG




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA








CD3W246
GAGGTGCAACTGGTGG
113
GACATCCAAATGACTCAA
116



AGTCTGGGGGAGGCCT

TCACCTAGCAGCCTCTCCG




GGTCAAGCCTGGGGGG

CCTCCGTTGGAGATAGAG




TCCCTGAGACTCTCCTG

TGACAATAACTTGCCGAG




TGCAGCCTCTGGATTCA

CCCGGCAAAGTATCGGAA




CCTTCAGTAGATATAAC

CTGCTATTCACTGGTATCA




ATGAACTGGGTCCGCCA

ACAAAAACCTGGAAAGGC




GGCTCCAGGGAAGGGG

ACCTAAGCTCTTGATTAAA




CTGGAGTGGGTCTCATC

TACGCTTCTGAGTCCATCT




CATTAGTACTAGTAGTA

CCGGCGTGCCTTCACGATT




ATTACATATACTACGCA

CAGCGGCAGCGGTAGTGG




GACTCAGTGAAGGGCC

TACTGACTTTACCCTCACT




GATTCACCTTCTCCAGA

ATTAGTTCTGTTCAGCCAG




GACAACGCCAAGAACT

AGGACTTCGCAACTTATTA




CACTGGATCTGCAAATG

CTGCCAACAGAGTGGTTC




AGCGGCCTGAGAGCCG

CTGGCCATACACTTTTGGC




AGGACACGGCTATTTAT

CAGGGGACTAAATTGGAA




TACTGTACGAGAGGCTG

ATCAAA




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA








CD3W247
GAGGTGCAACTGGTGG
113
GACATCCAAATGACTCAA
117



AGTCTGGGGGAGGCCT

AGCCCCTCTAGTTTGAGTG




GGTCAAGCCTGGGGGG

CATCTGTAGGTGACCGGG




TCCCTGAGACTCTCCTG

TAACAATCACCTGCCGTGC




TGCAGCCTCTGGATTCA

CCGGCAAAGTATAGGTAC




CCTTCAGTAGATATAAC

TGCAATCCACTGGTACCA




ATGAACTGGGTCCGCCA

GCAAAAACCCGGCAAAGC




GGCTCCAGGGAAGGGG

ACCAAAGCTGCTCATATA




CTGGAGTGGGTCTCATC

CTATGCTAGTGAGAGCATT




CATTAGTACTAGTAGTA

TCTGGCGTTCCTAGTCGAT




ATTACATATACTACGCA

TTTCTGGATCAGGGAGTG




GACTCAGTGAAGGGCC

GAACTGATTTTACACTGAC




GATTCACCTTCTCCAGA

AATCAGCAGCCTCCAACC




GACAACGCCAAGAACT

CGAAGACTTCGCCACCTA




CACTGGATCTGCAAATG

CTATTGTCAGCAGTCTGGG




AGCGGCCTGAGAGCCG

TCCTGGCCTTACACATTCG




AGGACACGGCTATTTAT

GTCAAGGAACTAAATTGG




TACTGTACGAGAGGCTG

AGATCAAA




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA








CD3W248
GAGGTGCAACTGGTGG
113
GACATTTTGCTGACACAG
118



AGTCTGGGGGAGGCCT

AGCCCTGGTATCCTCTCAG




GGTCAAGCCTGGGGGG

TCAGTCCAGGGGAACGCG




TCCCTGAGACTCTCCTG

TTTCATTTAGCTGCCGTGC




TGCAGCCTCTGGATTCA

TCGACAGAGCATTGGGAC




CCTTCAGTAGATATAAC

CGCAATCCACTGGTACCA




ATGAACTGGGTCCGCCA

ACAAAGAACTAACGGTTC




GGCTCCAGGGAAGGGG

ACCACGGCTTTTGATTAAG




CTGGAGTGGGTCTCATC

TATGCCTCCGAATCCATCA




CATTAGTACTAGTAGTA

GTGGCATTCCTAGTCGTTT




ATTACATATACTACGCA

TTCTGGATCAGGATCAGG




GACTCAGTGAAGGGCC

CACCGACTTTACTCTCACA




GATTCACCTTCTCCAGA

ATTAATAGTGTCGAAAGT




GACAACGCCAAGAACT

GAGGACATTGCAGACTAT




CACTGGATCTGCAAATG

TATTGTCAGCAATCCGGTT




AGCGGCCTGAGAGCCG

CCTGGCCCTATACTTTTGG




AGGACACGGCTATTTAT

TGGTGGTACTAAGTTGGA




TACTGTACGAGAGGCTG

AATTAAA




GGGGCCTTTTGACTACT






GGGGCCAGGGAACCCT






GGTCACCGTCTCCTCA
















TABLE 9







CDR sequences determined using Kabat deliniation.














HCDR1

HCDR3

LCDR2
LCDR3



(SEQ ID
HCDR2
(SEQ ID
LCDR1
(SEQ ID
(SEQ ID



NO:)
(SEQ ID NO:)
NO:)
(SEQ ID NO:)
NO:)
NO:)





CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSNSWPYT


B815
(6)
YADSVKG
(8)
(9)
(10)
(121)




(7)









CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSGSWPY


W244
(6)
YADSVKG
(8)
(9)
(10)
T




(7)



(11)





CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSGSWPY


W245
(6)
YADSVKG
(8)
(9)
(10)
T




(7)



(11)





CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSGSWPY


W246
(6)
YADSVKG
(8)
(9)
(10)
T




(7)



(11)





CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSGSWPY


W247
(6)
YADSVKG
(8)
(9)
(10)
T




(7)



(11)





CD3
RYNMN
SISTSSNYIY
GWGPFDY
RARQSIGTAIH
YASESIS
QQSGSWPY


W248
(6)
YADSVKG
(8)
(9)
(10)
T




(7)



(11)
















TABLE 10







CDR sequences determined using Chothia deliniation.














HCDR1
HCDR2
HCDR3
LCDR1
LCDR2
LCDR3



(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID



NO:)
NO:)
NO:)
NO:)
NO:)
NO:)





CD3B815
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SNSWPY



(12)
(13)
(14)
(15)
(16)
(122)





CD3W244
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SGSWPY



(12)
(13)
(14)
(15)
(16)
(17)





CD3W245
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SGSWPY



(12)
(13)
(14)
(15)
(16)
(17)





CD3W246
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SGSWPY



(12)
(13)
(14)
(15)
(16)
(17)





CD3W247
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SGSWPY



(12)
(13)
(14)
(15)
(16)
(17)





CD3W248
GFTFSRY
STSSNY
GWGPFD
RQSIGTA
YAS
SGSWPY



(12)
(13)
(14)
(15)
(16)
(17)
















TABLE 11







CDR sequences determined using IMGT deliniation.














HCDR1
HCDR2
HCDR3
LCDR1





(SEQ ID
(SEQ ID
(SEQ ID NO:)
(SEQ ID
LCDR2
LCDR3



NO:)
NO:)
NO:)
NO:)
(SEQ ID
(SEQ ID NO:)





CD3B815
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSNSWPYT



(18)
(19)
(20)
(21)
(16)
(123)





CD3W244
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSGSWPYT



(18)
(19)
(20)
(21)
(16)
(22)





CD3W245
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSGSWPYT



(18)
(19)
(20)
(21)
(16)
(22)





CD3W246
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSGSWPYT



(18)
(19)
(20)
(21)
(16)
(22)





CD3W247
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSGSWPYT



(18)
(19)
(20)
(21)
(16)
(22)





CD3W248
GFTFSRYN
ISTSSNYI
TRGWGPFDY
QSIGTA
YAS
QQSGSWPYT



(18)
(19)
(20)
(21)
(16)
(22)










FIG. 3 shows the alignment of the VL regions of CD3B3815, CD3W244, CD3W245, CD3W246, and CD3W247. A consensus amino acid sequence of SEQ ID NO: 103 was determined for the VL region, and CDR residues are underlined.











SEQ ID NO: 103



DIQX1TQSPX2X3LSX4SX5GX6RVX7X8X9CRARQSIGTAIHWYQQK







X10X11X12X13PX14LLIX15YASESISGX16PSRFSGSGSGTDFTL







TIX17SX18QX19EDX20AX21YYCQQSX22SWPYTFGX23GTKLEIK







wherein, X1 is L or M; X2 is G or S; X3 is I or S; X4 is V or A; X5 is P or V; X6 is E or D; X7 is S or T; X8 is F on; X9 is S or T; X10 is T or P, X11 is N or G, X12 is G or K, X13 is S or A; X14 is R or K, X15 is K or Y; X16 is I or V; X17 is N or S; X18 is V or L; X19 is S or P, X20 is I or F; X21 is D or T, X22 is N or G; or X23 is G or Q.


Binding of Humanized Anti-CD3 scFv Variants to CD3 after Heat Shock.


The variable region from CD3B3815 was next formatted as scFv in VH-VL orientation using linker GTEGKSSGSGSESKST (SEQ ID No: 64) (Table 12) for expression in E. coli, and then screened for binding to recombinant CD3 (CD3W147, SEQ ID NO: 4), binding to T cells, and thermostability.









TABLE 12





scFv-HL-E.c. amino acid sequences.
















scFv
Amino acid sequence





CD3W234-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 104)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDILLTQSPGILSVS



PGERVSFSCRARQSIGTAIHWYQQRTNGSPRLLIKYASESISGIPSRFSGS



GSGTDFTLTINSVESEDIADYYCQQSNSWPYTFGGGTKLEIKGPGGQHH



HHHHGAYPYDVPDYAS





CD3W238-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 105)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIYYASESISGVPSRFS



GSGSGTDFTLTISSLQPEDFATYYCQQSNSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W242-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 106)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS



GSGSGTDFTLTISSLQPEDFATYYCQQSNSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W243-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO:107)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS



GSGSGTDFTLTISSVQPEDFATYYCQQSNSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W244-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 108)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKWYYASESISGVPSRFS



GSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W245-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 109)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS



GSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W246-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 110)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS



GSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W247-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 111)
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDIQMTQSPSSLSA



SVGDRVTITCRARQSIGTAIHWYQQKPGKAPKWYYASESISGVPSRFS



GSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLEIKGPGGQ



HHHHHHGAYPYDVPDYAS





CD3W248-HL-E.c.
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEW


(SEQ ID NO: 112) 
VSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYC



TRGWGPFDYWGQGTLVTVSSGTEGKSSGSGSESKSTDILLTQSPGILSVS



PGERVSFSCRARQSIGTAIHWYQQRTNGSPRLLIKYASESISGIPSRFSGS



GSGTDFTLTINSVESEDIADYYCQQSGSWPYTFGGGTKLEIKGPGGQHH



HHHHGAYPYDVPDYAS










CD3W147 (SEQ ID NO: 4):


QDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKNIGSDEDH


LSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVGSADDAKKDAAKKDDAKKDDAKKDG


SQSIKGNHLVKVYDYQEDGSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWNLGSNAKDPRG


MYQCKGSQNKSKPLQVYYRMGSGSLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ


FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTIS


KAKGQPREPQVYTFPPSQEEMTKNQVSLRCLVKGFYPSDIAVEWESNGQPENNYKTTKPVLDSD


GSFRLESRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSGGHHHHHH









The binding of anti-CD3 scFv variants (Table 7), expressed in E. coli, to CD3 was determined. Briefly, scFv-coding sequences were cloned into a pADL™-22c vector having a PelB leader sequence for secretion (Antibody Design Labs, San Diego, Calif.). E. coli cells were transformed with plasmid and grown overnight at 37° C. in 2×YT microbial growth medium supplemented with 100 μg/mL Carbenicillin. Overnight cultures were used to inoculate 5 mL expression cultures and grown at 37° C. until OD600˜ 2.0. Protein expression was induced by addition of 1 mM IPTG and cultures were grown overnight. After expression, cells were pelleted by centrifugation at 2,200×g for 5 min and supernatants were collected and tested directly in ELISA analysis.


For ELISA analysis, botinylated CD3W147 (homodimeric CD3εγ-Fc, SEQ ID NO: 4) was immobilized on the plate in concentrations ranging from 0.039 ug/mL to 2.5 ug/mL in 2-fold dilutions followed by incubation at room temperature for 45 min. Plates were blocked with 1×PBS-Tween supplemented with 3% milk. Plates were washed with 1×PBS-Tween. E. coli supernatants were heated to 60° C. then cooled to room temperature to assess their thermal stability. Supernatant was added to each plate and incubated for 45 min at room temperature. Bound scFv was detected using chicken anti-HA-horseradish peroxidase diluted 1:1,000 at 50 uL per well and then detected with chemiluminescence substrate (Sigma cat. #11582950001). All tested scFv molecules derived from CD3B815 bound CD3ε (FIG. 2).


The scFv molecules were then tested for their abilities to bind T cells, using flow cytometry. Briefly, human T cells were thawed and resuspended into flow staining buffer at 1×10{circumflex over ( )}6 cells/mL and plated at 50,000 cells/well. A positive control, CD3W36 was comprised of an anti-CD3 antibody SP34 formatted as LH-scFv, and a negative control, B23, an scFv targeted against the F-glycoprotein from respiratory syncytial virus, were used for comparison of binding. E. coli supernatants were added at 150 uL/well and incubated at 4° C. for 1 hr. After incubation, plates were washed with staining buffer and detected with anti-His antibody conjugated to Alexa-647 diluted 1:100 in staining buffer with incubation for 30 min at 4° C. After incubation, 200 uL of IntelliCyt running buffer was added to the mixture, and cells were resuspended in 30 uL running buffer containing 1:1,000 Sytox Green dead cell stain and analyzed on iQue Screener. Gating and analysis was performed as above. All scFv molecules derived from CD3B815 displayed mean fluorescence indices consistent with T cell binding (Table 13).









TABLE 13







T cell-based binding of humanized scFv molecules.










Protein
MFI (n = 2)














CD3W245-HL-E.C.
178140.0



CD3W244-HL-E.C.
165631.0



CD3W246-HL-E.C.
153895.8



CD3W238-HL-E.C.
137380.4



CD3W242-HL-E.C.
126105.9



CD3W243-HL-E.C.
111347.6



CD3W241-HL-E.C.
120793.8



CD3W247-HL-E.C.
110932.3



CD3W248-HL-E.C.
60437.1



CD3W234-HL-E.C.
66790.3



B23
51.8



CD3W36
99451.6










Epitope Identification

The epitope on CD3 was determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). The antibody clone OKT3 was used as a control for the HDX experiment, since its epitope on CD3ε was known from crystal structure (PDB ID 1SY6) (Kjer-Nielsen, L. et al.; Proc Natl Acad Sci US A 101, 7675-7680).


On-Exchange Experiment for HDX-MS. On-exchange reaction was initiated by mixing 10 μL of 10 μM CD3W220 (SEQ ID NO: 5), which was comprised of CD3εγ fused with a 26-aa linker region fused onto a serum albumin domain, with or without 1.2 molar-excess of ligand and 30 μL of H2O or a deuterated buffer (20 mM MES, pH 6.4, 150 mM NaCl in 95% D20 or 20 mM Tris, pH 8.4, 150 mM NaCl in 95% D20). The reaction mixture was incubated for 15, 50, 150, 500, or 1,500 s at 1.2° C. The on-exchanged solution was quenched by the addition of chilled 40 μL of 8 M urea, 1 M TCEP, pH 3.0 and immediately analyzed.









CD3W220 (CD3εγ-HSA-6xHis) (SEQ ID NO: 5):


QDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDED





DKNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVGSA





DDAKKDAAKKDDAKKDDAKKDGSQSIKGNHLVKVYDYQEDGSVLLTCDAE





AKNITWFKDGKMIGFLTEDKKKWNLGSNAKDPRGMYQCKGSQNKSKPLQV





YYRNIGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVK





LVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCC





AKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYE





IARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKA





SSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKV





HTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIA





EVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDY





SVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQN





CELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHP





EAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSAL





EVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATK





EQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLGGGSHH





HHHHHH






General Procedure for HDX-MS Data Acquisition. HDX-MS sample preparation was performed with automated HDx system (LEAP Technologies, Morrisville, N.C.). The columns and pump were; protease, protease type XIII (protease from Aspergillus saitoi, type XIII)/pepsin column (w/w, 1:1; 2.1×30 mm) (NovaBioAssays Inc., Woburn, Mass.); trap, ACQUITY UPLC BEH C18 VanGuard Pre-column (2.1×5 mm) (Waters, Milford, Mass.), analytical, Accucore C18 (2.1×100 mm) (Thermo Fisher Scientific, Waltham, Mass.); and LC pump, VH-P10-A (Thermo Fisher Scientific). The loading pump (from the protease column to the trap column) was set at 600 μL/min with 99% water, 1% acetonitrile, 0.10% formic acid. The gradient pump (from the trap column to the analytical column) was set from 8% to 28% acetonitrile in 0.1% aqueous formic acid in 20 min at 100 μL/min.


MS Data Acquisition. Mass spectrometric analyses were carried out using an LTQ™ Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) with the capillary temperature at 275° C., resolution 150,000, and mass range (m/z) 300-1,800.


HDX-MS Data Extraction. BioPharma Finder 3.0 (Thermo Fisher Scientific) was used for the peptide identification of non-deuterated samples prior to the HDX experiments. HDExaminer version 2.5 (Sierra Analytics, Modesto, Calif.) was used to extract centroid values from the MS raw data files for the HDX experiments.


HDX-MS Data Analysis. The extracted HDX-MS data were further analyzed in Excel. All exchange time points (at pH 6.4 or pH 8.4 at 1.2° C.) were converted to the equivalent time points at pH 7.4 and 23° C. (e.g., 15 s at pH 6.4 at 1.2° C. is equivalent of 0.15 s at pH 7.4 at 23° C.; Table 14).









TABLE 14







HDX reaction conditions and exchange times versus


exchange times corrected to pH 7.4 and 23° C.









Time adjusted to
pH 6.4
pH 8.4


pH 7.4, 23° C. (s)
1.2° C. (s)
1.2° C. (s)












0.015




0.05




0.15
15



0.5
50



1.5
150



5
500



15
1,500
15


50

50


150

150


500

500


1,500

1,500









Results. Incubation of the KLCB91, the bispecific antibodies comprising CD3W245 as an anti-CD3 arm (described in the Example 3), with recombinant CD3ε (SEQ ID NO: 5) resulted in different patterns of overall protection and degrees of protection at specific segments of the antigen. KLCB91 and OKT3 both protected non-continuous segments (FIG. 4) indicating conformational non-identical epitopes. The protected segments were mapped onto the crystal structure of CD3ε (PDB 1SY6) to visualize the binding epitopes in three dimentions.


Consistent with the crystal structure of OKT3 bound to CD3ε (Uniprot ID P07766), the epitope of OKT3 was found to consist of peptides covering spanning residues 29-37, 79-84, and 87-89 of CD3F (SEQ ID NO: 5 and FIG. 4). CD3W245 bound to an epitope partially overlapping with that of OKT3, and included amino acid residues 29-37 (PQYPGSEIL, SEQ ID NO: 100), 55-63 (GSDEDHLSL, SEQ ID NO: 101), and 79-84 (PRGSKP, SEQ ID NO: 102) of CD3F (SEQ ID NO: 5 and FIG. 4).


Example 2. Generation of Anti-Kallikrein Related Peptidase 2 (hK2) Antibodies and scFvs

Antibody Generation from Humanization of Parental m11B6 Antibody.


A parental mouse anti-kallikrein related peptidase 2 (hK2) antibody, m11B6, has been described in Vaisanen et al (Clinical Chemistry 50:9, 1607-1617 (2004)). Humanized 11B6 (referred herein to as hu11B6) has been generated and described in U.S. Pat. Nos. 9,345,782 and 10,100,125.


Engineering of hu11B6 were initiated to generate additional anti-HK2 antibodies with improved properties, such as improved thermostability. Residue positions were identified in hu11B6 frameworks which could potentially be altered to improve thermostability of hu11B6 using modeling. The positions identified were residues P41, 149, M70, and A88 in the VH and S80, L82, A88 and Y91 in the VL (residue numbering according to the amino acid sequences of hu11B6_VH of SEQ ID NO: 124 and hu11B6_VL of SEQ ID NO: 125).


Binary combinatorial scFv libraries were generated in the orientation VH-linker-VL in which one of the variable regions represented the combinatorial library and the second one being the parental hu11B6 VH or VL. Linker sequence of GGSEGKSSGSGSESKSTGGS (SEQ ID NO: 31) was used to conjugate the VH/VL regions. The engineered scFvs were expressed in E. coli and the produced scFvs in the supernatants were tested for binding to human hK2 by ELISA and compared to the binding of hu11B6. Any new variants exhibiting binding comparable to hu11B6 were consolidated and further tested for binding to human hK2 after incubation of the supernatants at 55° C., 60° C., and 65° C. for 10 minutes. The molecules which retained comparable binding to hu11B6 after incubation at 55° C., 60° C., and 65° C. and improved thermostability were matrixed in both orientations (VH-linker-VL; VL-linker-VH) and converted to mammalian scFvs for further characterization.


In addition, another humanization of parental mouse 11B6 was performed following the approach outlined by Singh et al (MAbs. 2015; 7(4):778-91). with extensive germ line variation and careful screening of the variants for enhanced thermal stability. Based on sequence conservation, the human heavy chain germline IGHV4-30 and the light chain germline IGKV3D-11, were chosen for framework adaption. A binary scFv library was constructed with residues comprising a select set of somatic hypermutation sites and mouse/human germline variations. The variants were cloned and expressed in E. coli as described above. The supernatants were screened at different temperatures in single point ELISA for enhanced thermal stability. A mouse/human chimeric 11B6 scFv was used as parental control. Clone KL2B359 which maintained binding activity similar to murine 11B6 and a Tm value of 67° C. was converted to scFv-Fc for additional profiling. Measured affinity (KD) of KL2B359 to hK2 by SPR was ˜0.7-1 nM. HCF3-LCD6, HCG5-LCB7, KL2B357, KL2B358 and KL2B360 also resulted from this campaign and were further characterized for functionality.


Antibody Generation Using Transgenic Mice (Ablexis®) and Transgenic Rats (OmniRat®) Expressing Human Immunoglobulin Loci.


The OmniRat® contains a chimeric human/rat IgH locus (comprising 22 human VHs, all human D and JH segments in natural configuration linked to the rat CH locus) together with fully human IgL loci (12 Vκs linked to Jκ-Cκ and 16 VWs linked to JR-C). (see e.g., Osborn, et al. (2013) J Immunol 190(4): 1481-1490). Accordingly, the rats exhibit reduced expression of rat immunoglobulin, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity chimeric human/rat IgG monoclonal antibodies with fully human variable regions. The preparation and use of OmniRat®, and the genomic modifications carried by such rats, is described in WO14/093908.


Ablexis® mice (described in Example 1) and OmniRat® rats were immunized with soluble full length KLK2 protein (human Kallikrein-2 6-His protein).









human Kallikrein-2 6-His protein (SEQ ID NO: 355):


VPLIEGRIVGGWECEKHSQPWQVAVYSHGWAHCGGVLVHPQWVLTAAHCL





KKNSQVWLGRHNLFEPEDTGQRVPVSHSFPHPLYNMSLLKHQSLRPDEDS





SHDLMLLRLSEPAKITDVVKVLGLPTQEPALGTTCYASGWGSTEPEEFLR





PRSLQCVSLHYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVCNGVLQGIT





SWGPEPCALPEKPAVYTKVVHYRKWIKDTIIAANPHHHHHH






Lymphocytes from Ablexis mice and OniRats rats were extracted from lymph nodes and fusions performed by cohorts. Cells were combined and sorted for CD138 expression. Hybridoma screening was performed in high throughput miniaturized MSD format using soluble hK2 antigen. Approximately >300 samples were identified to be hK2 binders. The binding of >300 anti-hKLK2 supernatant samples to human KLK2 protein was measured by single cycle kinetics method by Biacore 8K SPR. Additionally the supernatant samples were tested for binding to human KLK3 protein as well. In parallel, supernatants were also tested for binding to KLK2 expressing cell lines VCap and negative cell line DU145 by Flow Cytometry. Selected cell binders were moved forward to scFv conversion in both VH-VL and VL/VH orientation and thermal stability tests as described above. KL2B413, KL2B30, KL2B53 and KL2B242 resulted from the Ablexis mice immunization campaign. KL2B467 and KL2B494 resulted from the OmniRat immunization campaign.


Antibodies generated through the various immunization and humanization campaigns described above were expressed in a Fab format, a mAb format, a scFv format in the VH-linker-VL orientation or a scFv format in VL-linker-VH orientation and were further analyzed as described below. The linker sequence of SEQ ID NO: 31 described above was used to conjugate the VH/VL regions.


Structural Characterization of Anti KLK2 Antibodies


Sequences of antibody variable domains and scFv antibody fragments which showed highest performance in intracellular assay are provided herein. Variable domains were expressed in a Fab format, a scFv format in the VH-linker-VL orientation or a scFv format in VL-linker-VH orientation.


Variable Domains VH, VL and CDRs


Table 15 shows the VH and VL amino acid sequences of selected anti-hK2 antibodies. Table 16 shows the Kabat HCDR1, HCDR2 and HCDR3 of selected anti-hK2 selected antibodies. Table 17 shows the Kabat LCDR1, LCDR2 and LCDR3 of the selected anti-hK2 antibodies. Table 18 shows the AbM HCDR1, HCDR2 and HCDR3 of selected anti-hK2 antibodies. Table 19 shows the AbM LCDR1, LCDR2 and LCDR3 of the anti-hK2. Table 20 summarizes the variable domain sequence and SEQ ID NOs of selected hK2 antibodies. Table 21 shows the protein and DNA SEQ ID NOs for the VH and VL regions.









TABLE 15







VH and VL amino acid sequences of selected anti-hK2 antibodies.
















VH


VL





SEQ


SEQ


mAb

VH amino acid
ID

VL amino acid
ID


name
VH name
Sequence
NO:
VL name
sequence
NO:





m11B6
m11B6_VH
DVQLQESGPGLVKPS
126
m11B6_VL
DIVLTQSPASLAVSLGQ
127




QSLSLTCTVTGNSITS


RATISCRASESVEYFGTS





DYAWNWIRQFPGNR


LMHWYRQKPGQPPKLL





LEWMGYISYSGSTTY


IYAASNVESGVPARFSG





SPSLKSRFSITRDTSKN


SGSGTDFSLNIQPVEED





QFFLQLNSVTPEDTA


DFSMYFCQQTRKVPYT





TYFCATGYYYGSGFW


FGGGTKLEIK





GQGTLVTVSS









h11B6
hu11B6_VH
QVQLQESGPGLVKPS
124
hu11B6_VL
DIVLTQSPDSLAVSLGER
125




DTLSLTCAVSGNSITS


ATINCKASESVEYFGTSL





DYAWNWIRQPPGKG


MHWYQQKPGQPPKLLI





LEWIGYISYSGSTTYN


YAASNRESGVPDRFSGS





PSLKSRVTMSRDTSK


GSGTDFTLTISSLQAEDV





NQFSLKLSSVTAVDTA


AVYYCQQTRKVPYTFG





VYYCATGYYYGSGFW


QGTKLEIK





GQGTLVTVSS









HCF3-
HCF3_VH
QVQLQESGPGLVKPS
128
LCD6_VL
DIVLTQSPDSLAVSLGER
129


LCD6

DTLSLTCAVSGNSITS


ATINCKASESVEYFGTSL





DYAWNWIRQFPGKG


MHWYQQKPGQPPKLLI





LEWIGYISYSGSTTYN


YAASNRESGVPDRFSGS





PSLKSRVTISRDTSKN


GSGTDFTLTIQSVQAED





QFSLKLSSVTPVDTAV


VSVYFCQQTRKVPYTFG





YYCATGYYYGSGFWG


QGTKLEIK





QGTLVTVSS









HCG5-
HCG5_VH
QVQLQESGPGLVKPS
130
LCB7_VL
DIVLTQSPDSLAVSLGER
131


LCB7

DTLSLTCAVSGNSITS


ATINCKASESVEYFGTSL





DYAWNWIRQFPGKG


MHWYQQKPGQPPKLLI





LEWMGYISYSGSTTY


YAASNRESGVPDRFSGS





NPSLKSRVTISRDTSK


GSGTDFTLTISSVQAED





NQFSLKLSSVTPVDTA


VAVYYCQQTRKVPYTF





VYYCATGYYYGSGFW


GQGTKLEIK





GQGTLVTVSS









KL2B357
KL2B357_VH
QVQLQESGPGLVKPS
132
KL2B357_VL
DIVLTQSPDSLAVSLGER
133




QTLSLTCTVSGNSITS


ATINCRASESVEYFGTSL





DYAWNWIRQFPGKG


MHWYQQKPGQPPKLLI





LEWIGYISYSGSTTYN


YAASNVESGVPDRFSGS





PSLKSRVTISRDTSKN


GSGTDFTLTISSLQAEDV





QFSLKLSSVTAADTAV


AVYFCQQTRKVPYTFG





YYCATGYYYGSGFWG


GGTKVEIK





QGTLVTVSS









KL2B358
KL2B358_VH
QVQLQESGPGLVKPS
134
KL2B358_VL
EIVLTQSPATLSLSPGER
135




QTLSLTCTVSGNSITS


ATLSCRASESVEYFGTSL





DYAWNWIRQPPGKG


MHWYQQKPGQPPRLLI





LEWIGYISYSGSTTYN


YAASNVESGIPARFSGS





PSLKSRVTISRDTSKN


GSGTDFTLTISSVEPEDF





QFSLKLSSVTAADTAV


AVYFCQQTRKVPYTFG





YYCATGYYYGSGFWG


GGTKVEIK





QGTLVTVSS









KL2B359
KL2B359_VH
QVQLQESGPGLVKPS
136
KL2B359_VL
EIVLTQSPATLSLSPGER
135




QTLSLTCTVSGNSITS


ATLSCRASESVEYFGTSL





DYAWNWIRQFPGKR


MHWYQQKPGQPPRLLI





LEWIGYISYSGSTTYN


YAASNVESGIPARFSGS





PSLKSRVTISRDTSKN


GSGTDFTLTISSVEPEDF





QFSLKLSSVTAADTAV


AVYFCQQTRKVPYTFG





YYCATGYYYGSGFWG


GGTKVEIK





QGTLVTVSS









KL2B360
KL2B360_VH
QVQLQESGPGLVKPS
132
KL2B360_VL
EIVLTQSPATLSLSPGER
135




QTLSLTCTVSGNSITS


ATLSCRASESVEYFGTSL





DYAWNWIRQFPGKG


MHWYQQKPGQPPRLLI





LEWIGYISYSGSTTYN


YAASNVESGIPARFSGS





PSLKSRVTISRDTSKN


GSGTDFTLTISSVEPEDF





QFSLKLSSVTAADTAV


AVYFCQQTRKVPYTFG





YYCATGYYYGSGFWG


GGTKVEIK





QGTLVTVSS









KL2B413
KL2B413_VH
EVQLVESGGGLVQPG
137
KL2B413_VL
EIVLTQSPSFLSASVGDR
138




GSLRLSCAASGFTFSS


VTITCRASQGISSYLSWY





YWMTWVRQAPGKG


QQKPGKAPKLLIYATSTL





LEWVANIKQDGSERY


QSGVPSRFSGSGSGTEF





YVDSVKGRFTISRDN


TLTISSLQPEDFATYYCQ





AKNSLYLQMNSLRAE


QLNSYPRTFGQGTKVEI





DTAVYYCARDQNYDI


K





LTGHYGMDVWGQG








TTVTVSS









KL2B30
KL2B30_VH
QVQLQESGPGLVKPS
139
KL2B30_VL
DIQMTQSPSFLSASVGD
140




ETLSLTCTVSGGSISSY


RVTITCRASQGISSYLA





YWSWIRQPPGKGLE


WYQQKPGKAPKFLIYA





WIGYIYYSGSTNYNPS


ASTLQSGVPSRFSGSGS





LKSRVTISVDTSKNQF


GTEFTLTISSLQPEDFAT





SLKLSSVTAADTAVYY


YYCQQLNSYPLTFGGGT





CAGTTIFGVVTPNFYY


KVEIK





GMDVWGQGTTVTV








SS









KL2B53
KL2B53_VH
EVQLVESGGGVVQP
141
KL2B53_VL
DIVMTQSPSSLSASVGD
142




GRSLRLSCVASGFTFS


RVTITCRASQDISNYLA





SYDIHWVRQAPGKGL


WYQQKPGKVPKFLIYA





EWVAIISYDGSKKDYT


ASTLHSGVPSRFSGSGS





DSVKGRFTISRDNSKN


GTDFTLTISSLQPEDVAT





TLYLQMDSLRVEDSA


YYCQKYNSAPYTFGQGT





VYSCARESGWSHYYY


RLEIK





YGMDVWGQGTMVT








VSS









KL2B242
KL2B242_VH
QVQLQESGPGLVKPS
143
KL2B242_VL
SYELTQPPSVSVSPGET
144




ETLSLTCTVSGGSISSY


ASITCSGDQLGENYAC





YWSWLRQPAGSGLE


WYQQKPGQSPVLVIYQ





WIGRLYVSGFTNYNP


DSKRPSGIPERFSGSNS





SLKSRVTLSLDPSRNQ


GNTATLTISGTQALDEA





LSLKLSSVTAADTAVY


DYYCQAWDNSIVVFGG





YCAGDSGNYWGWF


GTKLTVL





DPWGQGTLVTVSS









KL2B467
KL2B467_VH
QVQLVESGGGVVQP
145
KL2B467_VL
QSVLTQPPSVSVAPGQ
146




GRSLRLSCAASGFTFS


TASITCGGDNIGSKSVH





YYGMHWVRQAPGK


WYQQKPGQAPVLVVY





GLEWVAFISYDGSNK


DNSDRPSGIPERFSGSN





YYADSVKGRFTISRDN


SGTTATLTISRVEAGDEA





SKNTLYLQMNSLRAE


DYYCQVWDSSSDHPVV





DTAVYYCAHLPYSGSY


FGGGTKVTV





WAFDYWGQGTQVT








VSS









KL2B494
KL2B494_VH
QVQLVESGGGLVQP
147
KL2B494_VL
SSELTQPPSVSVAPGQT
148




GGSLRLSCAASGFTFS


ARITCGGNNIGSKSVH





HYAMSWVRQAPGK


WYQQKPGQAPVLVVY





GLEWVSTIGGSGGST


DDSDRPSGIPERFSGSN





YYADSVKGRFTISRDN


SGNTATLTISRVEAGDE





SKNTLYLQMNSLRAE


ADYYCQVWDSSSDHVV





DTAVYYCAKPHIVMV


FGGGTKLTVL





TALLYDGMDVWGQ








GTMVTVSS









KL2B242
KL2B242_VH
QVQLQESGPGLVKPS
143
KL2B242_LC_C335_VL
SYELTQPPSVSVSPGET
358


LC_C335

ETLSLTCTVSGGSISSY


ASITCSGDQLGENYAS





YWSWLRQPAGSGLE


WYQQKPGQSPVLVIYQ





WIGRLYVSGFTNYNP


DSKRPSGIPERFSGSNS





SLKSRVTLSLDPSRNQ


GNTATLTISGTQALDEA





LSLKLSSVTAADTAVY


DYYCQAWDNSIVVFGG





YCAGDSGNYWGWF


GTKLTVL





DPWGQGTLVTVSS
















TABLE 16







Kabat HCDR1, HCDR2 and HCDR3 amino acid sequences


of selected anti-KLK2 antibodies.











Kabat HCDR1
Kabat HCDR2
Kabat HCDR3















SEQ

SEQ

SEQ


mAb name
Sequence
ID NO:
Sequence
ID NO:
Sequence
ID NO:





m11B6
SDYAWN
149
YISYSGSTTYSPSLKS
150
GYYYGSGF
151





hu11B6
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





HCF3-LCD6
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





HCG5-LCB7
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





KL2B357
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





KL2B358
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





KL2B359
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





KL2B360
SDYAWN
149
YISYSGSTTYNPSLKS
152
GYYYGSGF
151





KL2B413
SYWMT
153
NIKQDGSERYYVDSVKG
154
DQNYDILTGHYGMDV
155





KL2B30
SYYWS
156
YIYYSGSTNYNPSLKS
157
TTIFGVVTPNFYYGMDV
158





KL2B53
SYNH
159
IISYDGSKKDYTDSVKG
160
ESGWSHYYYYGMDV
161





KL2B242
SYYWS
162
RLYVSGFTNYNPSLKS
163
DSGNYWGWFDP
164





KL2B467
YYGMH
165
FISYDGSNKYYADSVKG
166
LPYSGSYWAFDY
167





KL2B494
HYAMS
168
TIGGSGGSTYYADSVKG
169
PHIVMVTALLYDGMDV
170
















TABLE 17







Kabat LCDR1, LCDR2 and LCDR3 amino acid sequences


of selected anti-hK2 antibodies.











Kabat LCDR1
Kabat LCDR2
Kabat LCDR3















SEQ ID

SEQ ID

SEQ ID


mAb name
Sequence
NO
Sequence
NO
Sequence
NO





m11B6
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





hu11B6
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





HCF3-LCD6
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





HCG5-LCB7
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





KL2B357
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B358
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B359
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B360
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B413
RASQGISSYLS
176
ATSTLQS
177
QQLNSYPRT
178





KL2B30
RASQGISSYLA
182
AASTLQS
183
QQLNSYPLT
184





KL2B53
RASQDISNYLA
179
AASTLHS
180
QKYNSAPYT
181





KL2B242
SGDQLGENYAC
185
QDSKRPS
186
QAWDNSIVV
187





KL2B467
GGDNIGSKSVH
720
DNSDRPS
721
QVWDSSSDHPVV
193





KL2B494
GGNNIGSKSVH
191
DDSDRPS
192
QVWDSSSDHVV
188
















TABLE 18







AbM HCDR1, HCDR2 and HCDR3 amino acid sequences


of selected anti-hK2 antibodies.











AbM HCDR1
AbM HCDR2
AbM HCDR3















SEQ

SEQ

SEQ


mAb name
Sequence
ID NO:
Sequence
ID NO
Sequence
ID NO:





m11B6
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





hu11B6
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





HCF3-LCD6
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





HCG5-LCB7
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





KL2B357
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





KL2B358
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





KL2B359
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





KL2B360
GNSITSDYAWN
194
YISYSGSTT
195
GYYYGSGF
151





KL2B413
GFTFSSYWMT
189
NIKQDGSERY
190
DQNYDILTGHYGMDV
155





KL2B30
GGSISSYYWS
202
YIYYSGSTN
203
TTIFGVVTPNFYYGMDV
158





KL2B53
GFTFSSYDIH
196
IISYDGSKKD
197
ESGWSHYYYYGMDV
161





KL2B242
GGSISSYYWS
198
RLYVSGFTN
199
DSGNYWGWFDP
164





KL2B467
GFTFSYY
200
FISYDGSNKY
201
LPYSGSYWAFDY
167





KL2B494
GFTFSHYAMS
204
TIGGSGGSTYY
205
PHIVMVTALLYDGMDV
206
















TABLE 19







AbM LCDR1, LCDR2 and LCDR3 amino acid sequences


of selected anti-hK2 antibodies.











AbM LCDR1
AbM LCDR2
AbM LCDR3















SEQ ID

SEQ ID

SEQ ID


mAb name
Sequence
NO:
Sequence
NO
Sequence
NO:





m11B6
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





hu11B6
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





HCF3-LCD6
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





HCG5-LCB7
KASESVEYFGTSLMH
174
AASNRES
175
QQTRKVPYT
173





KL2B357
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B358
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B359
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B360
RASESVEYFGTSLMH
171
AASNVES
172
QQTRKVPYT
173





KL2B413
RASQGISSYLS
176
ATSTLQS
177
QQLNSYPRT
178





KL2B30
RASQGISSYLA
182
AASTLQS
183
QQLNSYPLT
184





KL2B53
RASQDISNYLA
179
AASTLHS
180
QKYNSAPYT
181





KL2B242
SGDQLGENYAC
185
QDSKRPS
186
QAWDNSIVV
187





KL2B467
GGDNIGSKSVH
720
DNSDRPS
192
QVWDSSSDHPVV
193





KL2B494
GGNNIGSKSVH
191
DDSDRPS
192
QVWDSSSDHVV
188
















TABLE 20







Amino acid sequences of the variable domains of


selected anti-hK2 antibodies













SEQ


Antibody
Region
Amino acid sequence
ID NO:





m11B6
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYSPSLKS
150



HCDR3
GYYYGSGF
151



LCDR1
RASESVEYFGTSLMH
171



LCDR2
AASNVES
172



LCDR3
QQTRKVPYT
173



VH
DVQLQESGPGLVKPSQSLSLTCTVTGNSITSDYAWNWIRQFPG
126



(m11B6_VH)
NRLEWMGYISYSGSTTYSPSLKSRFSITRDTSKNQFFLQLNSVTP





EDTATYFCATGYYYGSGFWGQGTLVTVSS




VL (m11B6_VL)
DIVLTQSPASLAVSLGQRATISCRASESVEYFGTSLMHWYRQKP
127




GQPPKLLIYAASNVESGVPARFSGSGSGTDFSLNIQPVEEDDFS





MYFCQQTRKVPYTFGGGTKLEIK






h11B6
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
KASESVEYFGTSLMH
174



LCDR2
AASNRES
175



LCDR3
QQTRKVPYT
173



VH
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPG
124



(hu11B6_VH)
KGLEWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTA





VDTAVYYCATGYYYGSGFWGQGTLVTVSS




VL
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
125



(hu11B6_VL)
GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV





YYCQQTRKVPYTFGQGTKLEIK






HCF3-
HCDR1
SDYAWN
149


LCD6
HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
KASESVEYFGTSLMH
174



LCDR2
AASNRES
175



LCDR3
QQTRKVPYT
173



VH (HCF3_VH)
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPG
128




KGLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPV





DTAVYYCATGYYYGSGFWGQGTLVTVSS




VL (LCD6_VL)
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
129




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAEDVS





VYFCQQTRKVPYTFGQGTKLEIK






HCG5-
HCDR1
SDYAWN
149


LCB7
HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
KASESVEYFGTSLMH
174



LCDR2
AASNRES
175



LCDR3
QQTRKVPYT
173



VH (HCG5_VH)
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPG
130




KGLEWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTP





VDTAVYYCATGYYYGSGFWGQGTLVTVSS




VL (LCB7_VL)
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
131




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAEDVAV





YYCQQTRKVPYTFGQGTKLEIK






KL2B357
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
RASESVEYFGTSLMH
171



LCDR2
AASNVES
172



LCDR3
QQTRKVPYT
173



VH
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPG
132



(KL2B357_VH)
KGLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAA





DTAVYYCATGYYYGSGFWGQGTLVTVSS




VL
DIVLTQSPDSLAVSLGERATINCRASESVEYFGTSLMHWYQQKP
133



(KL2B_357_VL)
GQPPKLLIYAASNVESGVPDRFSGSGSGTDFTLTISSLQAEDVAV





YFCQQTRKVPYTFGGGTKVEIK






KL2B358
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
RASESVEYFGTSLMH
171



LCDR2
AASNVES
172



LCDR3
QQTRKVPYT
173



VH
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQPPG
134



(KL2B358_VH)
KGLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAA





DTAVYYCATGYYYGSGFWGQGTLVTVSS




VL
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKP
135



(KL213_358_VL)
GQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK






KL2B359
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
RASESVEYFGTSLMH
171



LCDR2
AASNVES
172



LCDR3
QQTRKVPYT
173



VH
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPG
136



(KL2B359_VH)
KRLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAA





DTAVYYCATGYYYGSGFWGQGTLVTVSS




VL
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKP
135



(KL2B_359_VL)
GQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK






KL2B360
HCDR1
SDYAWN
149



HCDR2
YISYSGSTTYNPSLKS
152



HCDR3
GYYYGSGF
151



LCDR1
RASESVEYFGTSLMH
171



LCDR2
AASNVES
172



LCDR3
QQTRKVPYT
173



VH
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPG
132



(KL2B360_VH)
KGLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAA





DTAVYYCATGYYYGSGFWGQGTLVTVSS




VL
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKP
135



(KL2B_360_VL)
GQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK






KL2B413
HCDR1
SYWMT
153



HCDR2
NIKQDGSERYYVDSVKG
154



HCDR3
DQNYDILTGHYGMDV
155



LICDR1
RASQGISSYLS
176



LCDR2
ATSTLQS
177



LCDR3
QQLNSYPRT
178



VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMTWVRQAPG
137



(KL2B413_VH)
KGLEWVANIKQDGSERYYVDSVKGRFTISRDNAKNSLYLQMNS





LRAEDTAVYYCARDQNYDILTGHYGMDVWGQGTTVTVSS




VL
EIVLTQSPSFLSASVGDRVTITCRASQGISSYLSWYQQKPGKAPK
138



(KL213_413_VL)
LLIYATSTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQL





NSYPRTFGQGTKVEIK






KL2B30
HCDR1
SYYWS
156



HCDR2
YIYYSGSTNYNPSLKS
157



HCDR3
TTIFGVVTPNFYYGMDV
158



LCDR1
RASQGISSYLA
182



LCDR2
AASTLQS
183



LCDR3
QQLNSYPLT
184



VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKG
139



(KL2B30_VH)
LEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADT





AVYYCAGTTIFGVVTPNFYYGMDVWGQGTTVTVSS




VL
DIQMTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKA
140



(KL2B30_VL)
PKFLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQ





QLNSYPLTFGGGTKVEIK






KL2B53
HCDR1
SYDIH
159



HCDR2
IISYDGSKKDYTDSVKG
160



HCDR3
ESGWSHYYYYGMDV
161



LCDR1
RASQDISNYLA
179



LCDR2
AASTLHS
180



LCDR3
QKYNSAPYT
181



VH
EVQLVESGGGVVQPGRSLRLSCVASGFTFSSYDIHWVRQAPGK
141



(KL2B53_VH)
GLEWVAIISYDGSKKDYTDSVKGRFTISRDNSKNTLYLQMDSLR





VED SAVYSCARESGWSHYYYYGMDVWGQGTMVTVSS




VL
DIVMTQSPSSLSASVGDRVTITCRASQDISNYLAWYQQKPGKV
142



(KL2B53_VL)
PKFLIYAASTLHSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQ





KYNSAPYTFGQGTRLEIK






KL2B242
HCDR1
SYYWS
162



HCDR2
RLYVSGFTNYNPSLKS
163



HCDR3
DSGNYWGWFDP
164



LCDR1
SGDQLGENYAC
185



LCDR2
QDSKRPS
186



LCDR3
QAWDNSIVV
187



VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWLRQPAGS
143



(KL2B242_VH)
GLEWIGRLYVSGFTNYNPSLKSRVTLSLDPSRNQLSLKLSSVTAA





DTAVYYCAGDSGNYWGWFDPWGQGTLVTVSS




VL
SYELTQPPSVSVSPGETASITCSGDQLGENYACWYQQKPGQSP
144



(KL2B242_VL)
VLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQALDEADYYCQ





AWDNSIVVFGGGTKLTVL






KL2B467
HCDR1
YYGMH
165



HCDR2
FISYDGSNKYYADSVKG
166



HCDR3
LPYSGSYWAFDY
167



LCDR1
GGDNIGSKSVH
191



LCDR2
DNSDRPS
721



LCDR3
QVWDSSSDHPVV
193



VH
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAP
145



(KL2B467_VH)
GKGLEWVAFISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMN





SLRAEDTAVYYCAHLPYSGSYWAFDYWGQGTQVTVSS




VL
QSVLTQPPSVSVAPGQTASITCGGDNIGSKSVHWYQQKPGQA
146



(KL2B467_VL)
PVLVVYDNSDRPSGIPERFSGSNSGTTATLTISRVEAGDEADYYC





QVWDSSSDHPVVFGGGTKVTV






KL2B494
HCDR1
HYAMS
168



HCDR2
TIGGSGGSTYYADSVKG
169



HCDR3
PHIVMVTALLYDGMDV
170



LCDR1
GGNNIGSKSVH
191



LCDR2
DDSDRPS
192



LCDR3
QVWDSSSDHVV
188



VH
QVQLVESGGGLVQPGGSLRLSCAASGFTFSHYAMSWVRQAPG
147



(KL2B494_VH)
KGLEWVSTIGGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSL





RAEDTAVYYCAKPHIVMVTALLYDGMDVWGQGTMVTVSS




VL
SSELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQA
148



(KL2B494_VL)
PVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYC





QVWDSSSDHVVFGGGTKLTVL
















TABLE 21





SEQ ID NOs for protein and DNA sequences of the VH


and VL domains of selected hK2 antibodies.




















VH
VL
VH
VL



Protein
Protein
cDNA
cDNA


Antibody
SEQ ID NO:
SEQ ID NO
SEQ ID NO:
SEQ ID NO:





m11B6
126
127
225
237





hu11B6
124
125
226
238





HCF3-LCD6
128
129
227
239





HCG5-LCB7
130
131
228
240





KL2B357
132
133
229
241





KL2B358
134
135
230
242





KL2B359
139
135
231
242





KL2B360
132
135
229
242





KL2B413
137
138
230
243





KL2B30
139
140
231
244





KL2B53
141
142
234
245





KL2B242
143
144
361
246





KL2B467
145
146
362
247





KL2B494
147
148
235
236










SEQ ID NO: 225 (m11B6 VH cDNA)


GATGTGCAGCTTCAGGAGTCTGGACCCGGACTTGTTAAACCAAGTCAGTCTCTGTCCCTGAC


CTGTACCGTCACCGGCAACAGCATCACAAGCGATTACGCATGGAACTGGATCAGGCAGTTCC


CTGGAAATCGACTCGAATGGATGGGCTACATTTCATACTCCGGTTCAACCACTTACTCTCCAT


CCTTGAAATCTAGGTTCAGCATCACCCGTGATACCTCAAAGAACCAATTTTTTCTGCAACTG


AATAGCGTAACTCCAGAGGACACAGCCACATATTTCTGCGCCACTGGGTATTACTATGGCTC


AGGTTTCTGGGGTCAGGGCACTCTCGTCACCGTCAGCAGC





SEQ ID NO: 226 (hu11B6 VH cDNA)


CAGGTCCAACTGCAAGAGAGCGGACCGGGCCTGGTAAAGCCATCCGACACATTGTCCCTGA


CGTGTGCGGTAAGTGGAAACTCTATCACTAGCGACTATGCGTGGAATTGGATAAGACAACC


GCCGGGCAAGGGGCTGGAATGGATAGGATATATCAGCTATTCCGGTTCTACGACATACAATC


CTTCCCTGAAAAGCAGAGTCACTATGTCACGCGACACGTCCAAGAATCAGTTCTCATTGAAA


TTGTCATCCGTAACGGCCGTTGACACTGCGGTTTATTATTGCGCAACCGGATATTACTACGGC


TCTGGTTTTTGGGGACAGGGAACACTTGTTACTGTTAGTTCA





SEQ ID: NO 227 (HCF3-LCD6 VH cDNA)


CAGGTGCAGCTGCAGGAGAGCGGCCCAGGCCTGGTGAAGCCAAGCGACACCCTGAGCCTGA


CCTGCGCCGTGAGCGGCAACAGCATCACCAGCGACTACGCCTGGAACTGGATCCGCCAGTTC


CCAGGCAAGGGCCTGGAGTGGATCGGCTACATCAGCTACAGCGGCAGCACCACCTACAACC


CAAGCCTGAAGAGCCGCGTCACCATCAGCCGCGACACCAGCAAGAACCAGTTCAGCCTGAA


GCTGAGCAGCGTGACCCCTGTGGACACCGCCGTGTACTACTGCGCCACCGGCTACTACTACG


GCAGCGGCTTCTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 228 (HCG5-LCB7 VH cDNA)


CAGGTGCAGCTGCAGGAGAGCGGCCCAGGCCTGGTGAAGCCAAGCGACACCCTGAGCCTGA


CCTGCGCCGTGAGCGGCAACAGCATCACCAGCGACTACGCCTGGAACTGGATCCGCCAGTTC


CCAGGCAAGGGCCTGGAGTGGATGGGCTACATCAGCTACAGCGGCAGCACCACCTACAACC


CAAGCCTGAAGAGCCGCGTCACCATCAGCCGCGACACCAGCAAGAACCAGTTCAGCCTGAA


GCTGAGCAGCGTGACCCCTGTGGACACCGCCGTGTACTACTGCGCCACCGGCTACTACTACG


GCAGCGGCTTCTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 229 (KL2B357, KL2B360 VH cDNA)


CAGGTTCAGCTGCAAGAGTCTGGACCAGGCCTGGTCAAGCCCTCTCAGACCCTGTCTCTGAC


CTGTACCGTGTCCGGCAACTCCATCACCTCTGACTACGCCTGGAACTGGATTCGGCAGTTCC


CTGGCAAGGGCCTTGAGTGGATCGGCTACATCTCCTACTCCGGTTCCACCACCTACAACCCC


AGCCTGAAGTCCCGGGTCACCATCTCCCGCGACACCTCCAAGAACCAGTTCTCCCTGAAGCT


GTCCTCCGTGACCGCTGCTGATACCGCCGTGTACTACTGTGCCACCGGCTACTACTACGGCTC


CGGCTTTTGGGGACAGGGCACACTGGTTACCGTGTCTAGT





SEQ ID NO: 230 (KL2B358 VH cDNA)


CAGGTTCAGCTGCAAGAGTCTGGACCAGGCCTGGTCAAGCCCTCTCAGACCCTGTCTCTGAC


CTGTACCGTGTCCGGCAACTCCATCACCTCTGACTACGCCTGGAACTGGATTCGGCAGCCAC


CTGGCAAGGGCCTTGAGTGGATCGGCTACATCTCCTACTCCGGTTCCACCACCTACAACCCC


AGCCTGAAGTCCCGGGTCACCATCTCCCGCGACACCTCCAAGAACCAGTTCTCCCTGAAGCT


GTCCTCCGTGACCGCTGCTGATACCGCCGTGTACTACTGTGCCACCGGCTACTACTACGGCTC


CGGCTTTTGGGGACAGGGCACACTGGTTACCGTGTCTAGT





SEQ ID NO: 231 (KL2B359 VH cDNA)


CAGGTTCAGCTGCAAGAGTCTGGACCAGGCCTGGTCAAGCCCTCTCAGACCCTGTCTCTGAC


CTGTACCGTGTCCGGCAACTCCATCACCTCTGACTACGCCTGGAACTGGATTCGGCAGTTCC


CTGGCAAGCGCCTTGAGTGGATCGGCTACATCTCCTACTCCGGTTCCACCACCTACAACCCC


AGCCTGAAGTCCCGGGTCACCATCTCCCGCGACACCTCCAAGAACCAGTTCTCCCTGAAGCT


GTCCTCCGTGACCGCTGCTGATACCGCCGTGTACTACTGTGCCACCGGCTACTACTACGGCTC


CGGCTTTTGGGGACAGGGCACACTGGTTACCGTGTCTAGT





SEQ ID NO: 232 (KL2B413 VH cDNA)


GAGGTGCAACTTGTGGAGAGCGGCGGAGGTCTGGTCCAACCCGGAGGAAGTCTCCGTCTCT


CCTGTGCTGCTAGTGGCTTCACTTTCAGCTCATATTGGATGACATGGGTGAGACAAGCCCCA


GGAAAGGGGCTCGAGTGGGTAGCTAACATTAAACAGGACGGCTCCGAACGGTACTATGTTG


ATTCTGTGAAGGGACGGTTCACTATATCCAGGGATAATGCAAAAAATTCACTCTATCTTCAA


ATGAACTCACTCAGAGCAGAGGACACTGCCGTGTATTATTGCGCCAGGGATCAAAATTATGA


CATACTGACCGGTCATTATGGAATGGATGTTTGGGGCCAGGGAACAACCGTTACCGTCTCAA


GT





SEQ ID NO: 233 (KL2B30 VH cDNA)


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCA


CCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTATTGGAGCTGGCTCCGGCAGCCCGCC


GGGTCGGGACTGGAGTGGATTGGGCGTTTATATGTCAGTGGGTTCACCAACTACAACCCCTC


CCTCAAGAGTCGAGTCACCTTGTCACTAGACCCGTCCAGGAACCAGTTGTCCCTGAAACTGA


GTTCTGTGACCGCCGCGGACACGGCCGTATATTATTGTGCGGGAGATAGTGGGAACTACTGG


GGTTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





SEQ ID NO: 234 (KL2B53 VH cDNA)


GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCT


CCTGTGTAGCCTCTGGATTCACCTTCAGTAGTTATGACATACACTGGGTCCGCCAGGCTCCA


GGCAAGGGGCTGGAGTGGGTGGCAATTATTTCATATGATGGAAGTAAAAAAGACTATACAG


ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAA


ATGGACAGCCTGAGAGTTGAGGACTCGGCTGTGTATTCCTGTGCGAGAGAAAGTGGCTGGTC


CCACTACTACTATTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





SEQ ID NO: 361 (KL2B242 VH cDNA)


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCA


CCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTATTGGAGCTGGCTCCGGCAGCCCGCC


GGGTCGGGACTGGAGTGGATTGGGCGTTTATATGTCAGTGGGTTCACCAACTACAACCCCTC


CCTCAAGAGTCGAGTCACCTTGTCACTAGACCCGTCCAGGAACCAGTTGTCCCTGAAACTGA


GTTCTGTGACCGCCGCGGACACGGCCGTATATTATTGTGCGGGAGATAGTGGGAACTACTGG


GGTTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





SEQ ID NO: 724 (KL2B467 VH cDNA)


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTCAGTTACTATGGCATGCACTGGGTCCGCCAGGCTCCA


GGCAAGGGGCTGGAGTGGGTGGCATTTATATCATATGATGGAAGTAATAAATACTATGCAG


ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAA


ATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCCCACCTCCCTTATAGTGG


GAGCTACTGGGCCTTTGACTACTGGGGCCAGGGAACCCAGGTCACCGTCTCTTCA





SEQ ID NO: 235 (KL2B494 VH cDNA)


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTTAGTCATTATGCCATGAGCTGGGTCCGCCAGGCTCCAG


GGAAGGGGCTGGAGTGGGTCTCAACTATTGGTGGTAGTGGTGGTAGCACATACTACGCAGA


CTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAA


TGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAACCTCATATTGTAATG


GTGACTGCTCTTCTCTACGACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTC


CTCA





SEQ ID NO: 237 (m11B6 VL cDNA)


GACATTGTGCTGACACAGAGTCCAGCATCCTTGGCAGTATCTTTGGGGCAGCGGGCAACAAT


TTCATGCCGTGCATCTGAAAGTGTGGAGTATTTTGGAACTTCTCTTATGCACTGGTATCGCCA


GAAGCCTGGGCAGCCTCCCAAACTCCTTATATATGCCGCTTCCAACGTGGAGTCCGGAGTAC


CAGCACGCTTTTCCGGCTCTGGGTCCGGCACAGACTTTTCCCTCAATATCCAACCTGTTGAAG


AAGACGATTTTTCCATGTATTTTTGCCAACAGACACGCAAGGTTCCATATACATTCGGCGGC


GGCACTAAACTTGAGATCAAA





SEQ ID NO: 238 (hu11B6 VL cDNA)


GACATAGTCTTGACTCAGAGCCCGGATTCCCTTGCTGTGTCTCTGGGAGAACGAGCTACGAT


CAACTGCAAGGCAAGTGAATCCGTAGAATACTTCGGGACATCATTGATGCATTGGTATCAAC


AGAAACCGGGGCAACCGCCCAAATTGCTGATATATGCGGCTAGTAATAGAGAATCAGGAGT


ACCGGATAGGTTTAGTGGTTCAGGATCAGGTACAGATTTCACCCTGACAATAAGTAGCTTGC


AAGCCGAAGACGTAGCAGTGTATTACTGCCAACAAACCCGAAAGGTGCCATATACGTTTGG


ACAGGGTACAAAGTTGGAAATCAAA





SEQ ID NO: 239 (HCF3-LCD6 VL cDNA)


GACATCGTGCTGACCCAGAGCCCAGACAGCCTGGCCGTGAGCCTGGGCGAGCGCGCCACCA


TCAACTGCAAGGCCAGCGAGAGCGTGGAGTACTTCGGCACCAGCCTGATGCACTGGTACCA


GCAGAAGCCAGGCCAGCCACCAAAGCTGCTGATCTACGCTGCCAGCAACCGCGAGAGCGGC


GTGCCAGACCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCCAGAGCG


TGCAGGCCGAGGACGTCTCCGTGTACTTCTGCCAGCAGACCCGCAAGGTGCCATACACCTTC


GGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 240 (HCG5-LCB7 VL cDNA)


GACATCGTGCTGACCCAGAGCCCAGACAGCCTGGCCGTGAGCCTGGGCGAGCGCGCCACCA


TCAACTGCAAGGCCAGCGAGAGCGTGGAGTACTTCGGCACCAGCCTGATGCACTGGTACCA


GCAGAAGCCAGGCCAGCCACCAAAGCTGCTGATCTACGCTGCCAGCAACCGCGAGAGCGGC


GTGCCAGACCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCG


TGCAGGCCGAGGACGTCGCCGTGTACTACTGCCAGCAGACCCGCAAGGTGCCATACACCTTC


GGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 241 (KL2B357 VL cDNA)


GACATCGTGCTGACCCAGTCTCCAGACTCTCTGGCTGTGTCTCTGGGCGAGAGAGCCACCAT


CAACTGCAGAGCCTCCGAGTCCGTGGAATACTTCGGCACCTCTCTGATGCACTGGTACCAGC


AGAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTACGCCGCCTCCAACGTGGAATCTGGCGTG


CCCGATAGATTTTCCGGCTCTGGCTCTGGCACCGACTTTACCCTGACCATCAGCTCTCTGCAG


GCCGAGGATGTGGCCGTGTACTTCTGTCAGCAGACCCGGAAGGTGCCCTACACATTTGGCGG


CGGAACAAAGGTGGAAATCAAG





SEQ ID NO: 242 (KL2B358, KL2B359, KL2B360 VL cDNA)


GAGATCGTGCTGACCCAGTCTCCTGCCACACTGTCACTGTCTCCAGGCGAGAGAGCCACCCT


CTCTTGTAGAGCCTCCGAGTCCGTGGAATACTTCGGCACCTCTCTGATGCACTGGTACCAGC


AGAAGCCCGGCCAGCCTCCTAGACTGCTGATCTACGCCGCCTCCAACGTCGAATCTGGCATC


CCCGCTAGATTCTCCGGCTCTGGCTCTGGCACAGACTTTACCCTGACCATCTCCTCCGTGGAA


CCCGAGGATTTCGCTGTGTACTTTTGCCAGCAGACCCGGAAGGTGCCCTACACATTTGGCGG


CGGAACAAAGGTGGAAATCAAG





SEQ ID NO: 243 (KL2B413 VL cDNA)


GAAATCGTACTGACCCAGTCCCCTTCTTTCTTGAGTGCATCAGTTGGGGATAGAGTGACCAT


TACTTGTAGAGCATCTCAAGGTATTTCTTCATACTTGTCTTGGTATCAACAAAAACCTGGCAA


GGCACCCAAACTCTTGATCTACGCCACCTCTACATTGCAAAGTGGGGTTCCTTCTAGGTTTTC


AGGCTCCGGCTCTGGTACCGAGTTCACCCTCACTATAAGCAGTCTCCAACCTGAAGATTTCG


CTACTTATTATTGTCAGCAGCTTAATTCTTATCCCCGAACCTTTGGTCAAGGAACTAAGGTCG


AGATCAAA





SEQ ID NO: 244 (KL2B30 VL cDNA)


GACATCCAGATGACCCAGTCTCCTTCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCAT


CACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGA


AAGCCCCTAAGTTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTC


AGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTT


TGCAACTTATTACTGTCAACAGCTTAATAGTTACCCTCTCACTTTCGGCGGAGGGACCAAGG


TGGAAATCAAA





SEQ ID NO: 245 (KL2B53 VL cDNA)


GACATCGTGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCAT


CACTTGCCGGGCGAGTCAGGACATTAGCAATTATTTAGCCTGGTATCAGCAGAAACCAGGG


AAAGTTCCTAAGTTCCTGATCTATGCTGCATCCACTTTGCACTCTGGGGTCCCATCTCGGTTC


AGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGT


TGCAACTTATTACTGTCAAAAGTATAACAGTGCCCCGTACACTTTTGGCCAAGGGACACGAC


TGGAGATTAAA





SEQ ID NO: 246 (KL2B242 VL cDNA)


TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGAGAGACAGCCAGCATCAC


CTGCTCTGGAGATCAATTGGGGGAAAATTATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGT


CCCCTGTGTTGGTCATCTATCAAGATAGTAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCT


GGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTCTGGATGAGG


CTGACTATTACTGTCAGGCGTGGGACAACAGTATTGTGGTATTCGGCGGAGGGACCAAGCTG


ACCGTCCTA





SEQ ID NO: 247 (KL2B467 VL cDNA)


CAGTCTGTGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCCGGGCAGACGGCCAGTATTAC


CTGTGGGGGAGACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAG


GCCCCTGTGCTGGTCGTCTATGATAATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTC


TGGCTCCAACTCTGGGACCACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAG


GCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATCCTGTGGTATTCGGCGGAGG


GACCAAGGTCACCGTCCTA





SEQ ID: 235 (KLK2B494_VH DNA)


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTTAGTCATTATGCCATGAGCTGGGTCCGCCAGGCTCCAG


GGAAGGGGCTGGAGTGGGTCTCAACTATTGGTGGTAGTGGTGGTAGCACATACTACGCAGA


CTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAA


TGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAACCTCATATTGTAATG


GTGACTGCTCTTCTCTACGACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTC


CTCA





SEQ ID: 236 (KLK2B494_VL DNA)


TCTTCTGAGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTAC


CTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAG


GCCCCTGTGCTGGTCGTCTATGATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTC


TGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAG


GCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATGTGGTATTCGGCGGAGGGAC


CAAGCTGACCGTCCTA









Consensus VH and VL Sequences



FIG. 5 shows the sequence alignment of the VH domains of mu11B6, hu11B6, KL2B357, KL2B358, KL2B359, KL2B360, HCF3 and HCG5. FIG. 6 shows the sequence alignment of the VL domains of mu11B6, hu11B6, KL2B357, KL2B358, KL2B359, KL2B360, LDC6 and LCB7. Consensus amino acid sequence of SEQ ID NO: 356 and SEQ ID NO:357 were determined for the VH and VL domains, respectively. HCDR and LCDR residues are underlined.









SEQ ID NO: 356


QVQLQESGPGLVKPSX1TLSLTCX2VSGNSITSDYAWNWIRQX3PGKX4LE





WX5GYISYSGSTTYNPSLKSRVTX6SRDTSKNQFSLKLSSVTX7X8DTAVY





YCATGYYYGSGFWGQGTLVTVSS







wherein, X1 is D or Q; X2 is A or T; X3 is P or F; X4 is G or R; X5 is I or M; X6 is I or M; X7 is A or P; or X8 is V or A.









SEQ ID NO: 357


X1IVLTQSPX2X3LX4X5SX6GERATX7X8CX9ASESVEYFGTSLMHWYQQ





KPGQPPX10LLIYAASNX11ESGX12PX13RFSGSGSGTDFTLTIX14S





X15X16QX17EDX18X19VYX20CQQTRKVPYTFGX21GTKX22EIK







wherein, X1 is D or E; X2 is D or A; X3 is S or T; X4 is A or S; X5 is V or L; X6 is L or P; X7 is I or L; X8 is N or S; X9 is R or K; X10 is K or R; X11 is V or R; X12 is V or I; X13 is A or D; X14 is Q or S; X15 is L or V; X16 is Q or E; X17 is P or A; X18 is F or V; X19 is A or S, X20 is Y or F; X21 is Q or G; and X22 is L or V.


Fab-Fc and scFvs


The hK2 specific VH/VL regions were engineered as VH-CH1-linker CH2-CH3 and VL-CL and expressed as IgG2 or IgG4 or were engineered as scFvs in either the VH-Linker-VL or VL-linker-VH orientations. The linker that is used in the scFv was the linker of SEQ ID NO: 31 described above. The scFv were used to generate bispecific antibodies as described in Example 3.


Table 22 shows the HC amino acid sequences of selected anti-hK2 antibodies in the mAb format. Table 23 shows the LC amino acid sequences of selected anti-hK2 antibodies in a mAb. Table 24 summaries the HC and LC DNA SEQ ID NOs of selected anti-hK2 antibodies in the mAb format. Table 25 shows the amino acid sequences of selected scFvs in VH-linker-VL or VL-linker-VH orientation.









TABLE 22







Amino acid sequence of the HC (VH-CH1-linker CH2-CH3)


of selected anti-hK2 antibodies in a mAb format.










HC



KLK2
PROTEIN



HEAVY
SEQ ID



CHAIN
NO:
HC AMINO ACID SEQUENCE





m11B6_HC
207
DVQLQESGPGLVKPSQSLSLTCTVTGNSITSDYAWNWIRQFPGNRLEWMGYISYSG




STTYSPSLKSRFSITRDTSKNQFFLQLNSVTPEDTATYFCATGYYYGSGFWGQGTLVT




VSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTFP




AVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKCP




APNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVVDVSEDDPDVQISWFVNNVEVHTA




QTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKPKGSV




RAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVL




DSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK




QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGKGLEWIGYISYSGS




TTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVDTAVYYCATGYYYGSGFWGQGTLV




TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF




PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPP





h11B6_HC
208
CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK




QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTN




YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAGTTIFGVVTPNFYYGMDVW




GQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPP





KL2B30_HC
210
CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK




EVQLVESGGGVVQPGRSLRLSCVASGFTFSSYDIHWVRQAPGKGLEWVAIISYDGS




KKDYTDSVKGRFTISRDNSKNTLYLQMDSLRVEDSAVYSCARESGWSHYYYYGMDV




WGQGTMVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYG





K2B53_HC
211
PPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI




SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK




QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWLRQPAGSGLEWIGRLYVSGFT




NYNPSLKSRVTLSLDPSRNQLSLKLSSVTAADTAVYYCAGDSGNYWGWFDPWGQG




TLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH





KL2B242_HC
212
TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEV




HNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKG




QPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK




QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEWVAFISYD




GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHLPYSGSYWAFDY




WGQGTQVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC





KL2B467_HC
213
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAP




IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS




PGK





KL2B494_HC
219
QVQLVESGGGLVQPGGSLRLSCAASGFTFSHYAMSWVRQAPGKGLEWVSTIGGS




GGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPHIVMVTALLYD




GMDVWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK




VEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK




ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN




GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK




SLSLSPGK
















TABLE 23







Amino acid sequences of the LC (VL-CL) of selected anti-hK2


antibodies in a mAb (Fab-Fc) format.









KLK2
LC



LIGHT
PROTEIN



CHAIN
SEQ ID NO:
LC AMINO ACID SEQUENCE





m11B6_LC
214
DIVLTQSPASLAVSLGQRATISCRASESVEYFGTSLMHWYRQKPGQPPKLLIYAASN




VESGVPARFSGSGSGTDFSLNIQPVEEDDFSMYFCQQTRKVPYTFGGGTKLEIKRAD




AAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQ




DSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC





h11B6_LC
215
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKPGQPPKLLIYAASN




RESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQTRKVPYTFGQGTKLEIKRTVA




APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD




SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





KL2B30_LC
221
DIQMTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKFLIYAASTLQSG




VPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST




YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





KL2B53_LC
222
DIVMTQSPSSLSASVGDRVTITCRASQDISNYLAWYQQKPGKVPKFLIYAASTLHSG




VPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPYTFGQGTRLEIKRTVAAPSVF




IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST




YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





KL2B242_LC
223
SYELTQPPSVSVSPGETASITCSGDQLGENYACWYQQKPGQSPVLVIYQDSKRPSGI




PERFSGSNSGNTATLTISGTQALDEADYYCQAWDNSIVVFGGGTKLTVLGQPKAAP




SVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNN




KYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS





KL2B467_LC
224
QSVLTQPPSVSVAPGQTASITCGGDNIGSKSVHWYQQKPGQAPVLVVYDNSDRPS




GIPERFSGSNSGTTATLTISRVEAGDEADYYCQVWDSSSDHPVVFGGGTKVTVLGQ




PKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSK




QSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS





KL2B494_LC
220
SSELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPS




GIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTKLTVLGQP




KAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSK




QSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
















TABLE 24





SEQ ID Nos of the cDNA sequences of HC and LC of


selected hK2 antibodies




















HC
LC
HC
LC



Protein
Protein
cDNA
cDNA


Antibody
SEQ ID NO:
SEQ ID NO:
SEQ ID NO:
SEQ ID NO:





m11B6
207
214
248
255





hu11B6
208
215
249
256





KL2B30
210
221
250
257





KL2B53
211
222
251
258





KL2B242
212
223
252
259





KL2B467
213
224
253
260





KL2B494
219
220
254
261










SEQ ID NO: 248 (m11B6 HC cDNA)


GATGTGCAGCTTCAGGAGTCTGGACCCGGACTTGTTAAACCAAGTCAGTCTCTGTCCCTGAC


CTGTACCGTCACCGGCAACAGCATCACAAGCGATTACGCATGGAACTGGATCAGGCAGTTCC


CTGGAAATCGACTCGAATGGATGGGCTACATTTCATACTCCGGTTCAACCACTTACTCTCCAT


CCTTGAAATCTAGGTTCAGCATCACCCGTGATACCTCAAAGAACCAATTTTTTCTGCAACTG


AATAGCGTAACTCCAGAGGACACAGCCACATATTTCTGCGCCACTGGGTATTACTATGGCTC


AGGTTTCTGGGGTCAGGGCACTCTCGTCACCGTCAGCAGCGCCAAAACAACAGCACCAAGT


GTCTATCCACTGGCCCCTGTGTGTGGAGATACAACTGGCTCCTCGGTGACTCTAGGATGCCT


GGTCAAGGGTTATTTCCCTGAGCCAGTGACCTTGACCTGGAACTCTGGATCCCTGTCCAGTG


GTGTGCACACCTTCCCAGCTGTCCTGCAGTCTGACCTCTACACCCTCAGCAGCTCAGTGACTG


TAACCTCGAGCACCTGGCCCAGCCAGTCCATCACCTGCAATGTGGCCCACCCGGCAAGCAGC


ACCAAGGTGGACAAGAAAATTGAGCCCAGAGGGCCCACAATCAAGCCCTGTCCTCCATGCA


AATGCCCAGCACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCAAG


GATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTGGATGTGAGCGAGGA


TGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACA


CAAACCCATAGAGAGGATTACAACAGTACTCTCCGGGTGGTCAGTGCCCTCCCCATCCAGCA


CCAGGACTGGATGAGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCG


CCCATCGAGAGAACCATCTCAAAACCCAAAGGGTCAGTAAGAGCTCCACAGGTATATGTCTT


GCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACTCTGACCTGCATGGTCACCGAC


TTCATGCCTGAAGACATTTACGTGGAGTGGACCAACAACGGGAAAACAGAGCTAAACTACA


AGAACACTGAACCAGTCCTGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTG


GAAAAGAAGAACTGGGTGGAAAGAAATAGCTACTCCTGTTCAGTGGTCCACGAGGGTCTGC


ACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCGGGTAAA





SEQ ID NO: 249 (hu11B6 HC cDNA)


CAGGTCCAACTGCAAGAGAGCGGACCGGGCCTGGTAAAGCCATCCGACACATTGTCCCTGA


CGTGTGCGGTAAGTGGAAACTCTATCACTAGCGACTATGCGTGGAATTGGATAAGACAACC


GCCGGGCAAGGGGCTGGAATGGATAGGATATATCAGCTATTCCGGTTCTACGACATACAATC


CTTCCCTGAAAAGCAGAGTCACTATGTCACGCGACACGTCCAAGAATCAGTTCTCATTGAAA


TTGTCATCCGTAACGGCCGTTGACACTGCGGTTTATTATTGCGCAACCGGATATTACTACGGC


TCTGGTTTTTGGGGACAGGGAACACTTGTTACTGTTAGTTCAGCCTCCACCAAGGGCCCATC


GGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCC


TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC


GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGT


GACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCA


GCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCC


ACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA


AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCAC


GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA


CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT


GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCA


GCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACA


CCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC


CGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT


CTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 250 (KL2B30 HC cDNA)


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCA


CCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCA


GGGAAGGGACTGGAGTGGATTGGATATATCTATTACAGTGGGAGCACCAACTACAACCCCT


CCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTG


AGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGGGGACTACGATTTTTGGAGT


GGTTACCCCCAACTTCTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT


CCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCC


GAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTC


GTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAAACCTAC


ACTTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAAT


ATGGTCCCCCATGCCCACCATGCCCAGCACCTGAGGCCGCCGGGGGACCATCAGTCTTCCTG


TTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGT


GGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAG


GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA


GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTC


CAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCC


TGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG


GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAGGCTAACCGTGGACAAGAGCAGATGGCAGGAGGGGAATGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTA


AA





SEQ ID NO: 251 (KL2B53 HC cDNA)


GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCT


CCTGTGTAGCCTCTGGATTCACCTTCAGTAGTTATGACATACACTGGGTCCGCCAGGCTCCA


GGCAAGGGGCTGGAGTGGGTGGCAATTATTTCATATGATGGAAGTAAAAAAGACTATACAG


ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAA


ATGGACAGCCTGAGAGTTGAGGACTCGGCTGTGTATTCCTGTGCGAGAGAAAGTGGCTGGTC


CCACTACTACTATTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAG


CTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGC


ACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAA


CTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCT


ACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAAACCTACACTTGC


AACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTC


CCCCATGCCCACCATGCCCAGCACCTGAGGCCGCCGGGGGACCATCAGTCTTCCTGTTCCCC


CCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGA


CGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCAT


AATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCC


TCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCA


CAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT


GCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC


GGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA


GCAGGCTAACCGTGGACAAGAGCAGATGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA





SEQ ID NO: 252 (KL2B242 HC cDNA)


CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCA


CCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTATTGGAGCTGGCTCCGGCAGCCCGCC


GGGTCGGGACTGGAGTGGATTGGGCGTTTATATGTCAGTGGGTTCACCAACTACAACCCCTC


CCTCAAGAGTCGAGTCACCTTGTCACTAGACCCGTCCAGGAACCAGTTGTCCCTGAAACTGA


GTTCTGTGACCGCCGCGGACACGGCCGTATATTATTGTGCGGGAGATAGTGGGAACTACTGG


GGTTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGG


CCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGG


GCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTG


ACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAG


CGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAAACCTACACTTGCAACGTAGATCACA


AGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCACC


ATGCCCAGCACCTGAGGCCGCCGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGG


ACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAA


GACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAA


AGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC


CAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCT


CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCT


GCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGC


TTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA


AGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTG


GACAAGAGCAGATGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAA





SEQ ID NO: 253 (KL2B467 HC cDNA)


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTCAGTTACTATGGCATGCACTGGGTCCGCCAGGCTCCA


GGCAAGGGGCTGGAGTGGGTGGCATTTATATCATATGATGGAAGTAATAAATACTATGCAG


ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAA


ATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCCCACCTCCCTTATAGTGG


GAGCTACTGGGCCTTTGACTACTGGGGCCAGGGAACCCAGGTCACCGTCTCTTCAGCCTCCA


CCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCG


GCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG


CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCT


CAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGA


ATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAAC


TCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG


AGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC


ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT


CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC


AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC


CACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGAC


CTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG


CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA


CAGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG


ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 254 (KL2B494 HC cDNA)


CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTTAGTCATTATGCCATGAGCTGGGTCCGCCAGGCTCCAG


GGAAGGGGCTGGAGTGGGTCTCAACTATTGGTGGTAGTGGTGGTAGCACATACTACGCAGA


CTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAA


TGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAACCTCATATTGTAATG


GTGACTGCTCTTCTCTACGACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTC


CTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTG


GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTC


GTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTAC


ATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAAT


CTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCGTC


AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA


CATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA


CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT


GCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG


GCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAAC


CAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA


GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGC


TCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTT


CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGTAAA





SEQ ID NO: 255 (mu11B6 LC cDNA)


GACATTGTGCTGACACAGAGTCCAGCATCCTTGGCAGTATCTTTGGGGCAGCGGGCAACAAT


TTCATGCCGTGCATCTGAAAGTGTGGAGTATTTTGGAACTTCTCTTATGCACTGGTATCGCCA


GAAGCCTGGGCAGCCTCCCAAACTCCTTATATATGCCGCTTCCAACGTGGAGTCCGGAGTAC


CAGCACGCTTTTCCGGCTCTGGGTCCGGCACAGACTTTTCCCTCAATATCCAACCTGTTGAAG


AAGACGATTTTTCCATGTATTTTTGCCAACAGACACGCAAGGTTCCATATACATTCGGCGGC


GGCACTAAACTTGAGATCAAACGGGCTGATGCTGCACCGACTGTGTCCATCTTCCCACCATC


CAGTGAGCAGTTAACATCTGGAGGTGCCTCAGTCGTGTGCTTCTTGAACAACTTCTACCCCA


AAGACATCAATGTCAAGTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTCCTGAACAG


TTGGACTGATCAGGACAGCAAAGACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACC


AAGGACGAGTATGAACGACATAACAGCTATACCTGTGAGGCCACTCACAAGACATCAACTT


CACCCATTGTCAAGAGCTTCAACAGGAATGAGTGT





SEQ ID NO: 256 (hu11B6 LC cDNA)


GACATAGTCTTGACTCAGAGCCCGGATTCCCTTGCTGTGTCTCTGGGAGAACGAGCTACGAT


CAACTGCAAGGCAAGTGAATCCGTAGAATACTTCGGGACATCATTGATGCATTGGTATCAAC


AGAAACCGGGGCAACCGCCCAAATTGCTGATATATGCGGCTAGTAATAGAGAATCAGGAGT


ACCGGATAGGTTTAGTGGTTCAGGATCAGGTACAGATTTCACCCTGACAATAAGTAGCTTGC


AAGCCGAAGACGTAGCAGTGTATTACTGCCAACAAACCCGAAAGGTGCCATATACGTTTGG


ACAGGGTACAAAGTTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGC


CATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATC


CCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGA


GAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTG


AGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA


GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 257 (KL2B30 LC cDNA)


GACATCCAGATGACCCAGTCTCCTTCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCAT


CACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGA


AAGCCCCTAAGTTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTC


AGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTT


TGCAACTTATTACTGTCAACAGCTTAATAGTTACCCTCTCACTTTCGGCGGAGGGACCAAGG


TGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAG


TTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAA


AGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAG


CAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACT


ACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCAC


AAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 258 (KL2B53 LC cDNA)


GACATCGTGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCAT


CACTTGCCGGGCGAGTCAGGACATTAGCAATTATTTAGCCTGGTATCAGCAGAAACCAGGG


AAAGTTCCTAAGTTCCTGATCTATGCTGCATCCACTTTGCACTCTGGGGTCCCATCTCGGTTC


AGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGT


TGCAACTTATTACTGTCAAAAGTATAACAGTGCCCCGTACACTTTTGGCCAAGGGACACGAC


TGGAGATTAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAG


TTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAA


AGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAG


CAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACT


ACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCAC


AAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 259 (KL2B242 LC cDNA)


TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGAGAGACAGCCAGCATCAC


CTGCTCTGGAGATCAATTGGGGGAAAATTATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGT


CCCCTGTGTTGGTCATCTATCAAGATAGTAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCT


GGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTCTGGATGAGG


CTGACTATTACTGTCAGGCGTGGGACAACAGTATTGTGGTATTCGGCGGAGGGACCAAGCTG


ACCGTCCTAGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCTCCTCTGAGGA


GCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGA


CAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTC


CAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGG


AAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAG


TGGCCCCTACAGAATGTTCA





SEQ ID NO: 260 (KL2B467 LC cDNA)


CAGTCTGTGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCCGGGCAGACGGCCAGTATTAC


CTGTGGGGGAGACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAG


GCCCCTGTGCTGGTCGTCTATGATAATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTC


TGGCTCCAACTCTGGGACCACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAG


GCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATCCTGTGGTATTCGGCGGAGG


GACCAAGGTCACCGTCCTAGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCT


CCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG


GGAGCCGTGACAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCA


CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCC


TGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTG


GAGAAGACAGTGGCCCCTACAGAATGTTCA





SEQ ID NO: 261 (KL2B494 LC cDNA)


TCTTCTGAGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTAC


CTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAG


GCCCCTGTGCTGGTCGTCTATGATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTC


TGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAG


GCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATGTGGTATTCGGCGGAGGGAC


CAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCTCCT


CTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGA


GCCGTGACAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCA


CACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGA


GCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAG


AAGACAGTGGCCCCTACAGAATGTTCA
















TABLE 25







Amino acid sequences of the variable domain of selected


anti-hK2 scFvs antibodies in VH-linker-VL (HL) or in VL-linker-VH


(LH) format.













SEQ


scFv


ID


name
Acronym
Amino acid sequence of scFv
NO:





scFv1
HCG5_LDC6_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGK
262




GLEWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAED





VSVYFCQQTRKVPYTFGQGTKLEIK






scFv2
HCG5_hu11B6_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGK
263




GLEWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDV





AVYYCQQTRKVPYTFGQGTKLEIK






scFv3
HCF3_hu11B6_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGK
264




GLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDT





AVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKSTG





GSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQ





KPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAEDV





AVYYCQQTRKVPYTFGQGTKLEIK






scFv4
HCG5_LCB7_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGK
265




GLEWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAED





VAVYYCQQTRKVPYTFGQGTKLEIK






scFv5
LCD6_HCG5_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
266




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAEDVSV





YFCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGL





EWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTA





VYYCATGYYYGSGFWGQGTLVTVSS






scFv6
hu11B6_HCF3_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
267




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY





YCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQ





LQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGLE





WIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTAVY





YCATGYYYGSGFWGQGTLVTVSS






scFv7
hu11B6_HCG5_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
268




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY





YCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQ





LQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGLE





WMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTAV





YYCATGYYYGSGFWGQGTLVTVSS






scFv8
LCB7_HCF3_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
269




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAEDVAV





YYCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGL





EWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTAV





YYCATGYYYGSGFWGQGTLVTVSS






scFv9
LCB7_HCG5_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
270




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAEDVAV





YYCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGL





EWMGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTA





VYYCATGYYYGSGFWGQGTLVTVSS






scFv10
LCD6_HCF3_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
271




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAEDVSV





YFCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQFPGKGL





EWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTPVDTAV





YYCATGYYYGSGFWGQGTLVTVSS






scFv11
hu11B6_LCB7_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGK
272




GLEWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAED





VAVYYCQQTRKVPYTFGQGTKLEIK






scFv12
hu11B6_LCD6_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGK
273




GLEWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAED





VSVYFCQQTRKVPYTFGQGTKLEIK






scFv13
hu11B6_HL
QVQLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGK
274




GLEWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVD





TAVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKST





GGSDIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQ





QKPGQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDV





AVYYCQQTRKVPYTFGQGTKLEIK






scFv14
LCD6_hu11B6_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
275




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTIQSVQAEDVSV





YFCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGKGL





EWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVDTA





VYYCATGYYYGSGFWGQGTLVTVSS






scFv15
hu11B6_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
276




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY





YCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQVQ





LQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGKGLE





WIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVDTA





VYYCATGYYYGSGFWGQGTLVTVSS






scFv16
LCB7_hu11B6_LH
DIVLTQSPDSLAVSLGERATINCKASESVEYFGTSLMHWYQQKP
277




GQPPKLLIYAASNRESGVPDRFSGSGSGTDFTLTISSVQAEDVAV





YYCQQTRKVPYTFGQGTKLEIKGGSEGKSSGSGSESKSTGGSQV





QLQESGPGLVKPSDTLSLTCAVSGNSITSDYAWNWIRQPPGKGL





EWIGYISYSGSTTYNPSLKSRVTMSRDTSKNQFSLKLSSVTAVDTA





VYYCATGYYYGSGFWGQGTLVTVSS






scFv17
KL2B413_HL
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMTWVRQAPG
278




KGLEWVANIKQDGSERYYVDSVKGRFTISRDNAKNSLYLQMNSL





RAEDTAVYYCARDQNYDILTGHYGMDVWGQGTTVTVSSGGSE





GKSSGSGSESKSTGGSEIVLTQSPSFLSASVGDRVTITCRASQGISS





YLSWYQQKPGKAPKLLIYATSTLQSGVPSRFSGSGSGTEFTLTISSL





QPEDFATYYCQQLNSYPRTFGQGTKVEIK






scFv18
KL2B413_LH
EIVLTQSPSFLSASVGDRVTITCRASQGISSYLSWYQQKPGKAPKL
279




LIYATSTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNS





YPRTFGQGTKVEIKGGSEGKSSGSGSESKSTGGSEVQLVESGGGL





VQPGGSLRLSCAASGFTFSSYWMTWVRQAPGKGLEWVANIKQ





DGSERYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA





RDQNYDILTGHYGMDVWGQGTTVTVSS






scFv19
KL2B359_HL
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGK
280




RLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADT





AVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKSTG





GSEIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQK





PGQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK






scFv20
KL2B359_LH
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKPG
281




QPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVYFC





QQTRKVPYTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLQ





ESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGKRLEWI





GYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADTAVYYC





ATGYYYGSGFWGQGTLVTVSS






scFv21
KL2B357_HL
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGK
282




GLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADT





AVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKSTG





GSDIVLTQSPDSLAVSLGERATINCRASESVEYFGTSLMHWYQQ





KPGQPPKLLIYAASNVESGVPDRFSGSGSGTDFTLTISSLQAEDVA





VYFCQQTRKVPYTFGGGTKVEIK



scFv22
KL2B357_LH
DIVLTQSPDSLAVSLGERATINCRASESVEYFGTSLMHWYQQKP
283




GQPPKLLIYAASNVESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY





FCQQTRKVPYTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQ





LQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGKGLE





WIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADTAVY





YCATGYYYGSGFWGQGTLVTVSS



scFv23
KL2B358_HL
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQPPGK
284




GLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADT





AVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKSTG





GSEIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQK





PGQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK



scFv24
KL2B358_LH
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKPG
285




QPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVYFC





QQTRKVPYTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLQ





ESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQPPGKGLEWI





GYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADTAVYYC





ATGYYYGSGFWGQGTLVTVSS






scFv25
KL2B360_HL
QVQLQESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGK
286




GLEWIGYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADT





AVYYCATGYYYGSGFWGQGTLVTVSSGGSEGKSSGSGSESKSTG





GSEIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQK





PGQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVY





FCQQTRKVPYTFGGGTKVEIK






scFv26
KL2B360_LH
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWYQQKPG
287




QPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSVEPEDFAVYFC





QQTRKVPYTFGGGTKVEIKGGSEGKSSGSGSESKSTGGSQVQLQ





ESGPGLVKPSQTLSLTCTVSGNSITSDYAWNWIRQFPGKGLEWI





GYISYSGSTTYNPSLKSRVTISRDTSKNQFSLKLSSVTAADTAVYYC





ATGYYYGSGFWGQGTLVTVSS






scFv27
KL2B467_HL
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPG
288




KGLEWVAFISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL





RAEDTAVYYCAHLPYSGSYWAFDYWGQGTQVTVSSGGSEGKSS





GSGSESKSTGGSQSVLTQPPSVSVAPGQTASITCGGDNIGSKSVH





WYQQKPGQAPVLVVYDNSDRPSGIPERFSGSNSGTTATLTISRV





EAGDEADYYCQVWDSSSDHPVVFGGGTKVTV






scfv28
KL2B467_LH
QSVLTQPPSVSVAPGQTASITCGGDNIGSKSVHWYQQKPGQAP
289




VLVVYDNSDRPSGIPERFSGSNSGTTATLTISRVEAGDEADYYCQ





VWDSSSDHPVVFGGGTKVTVGGSEGKSSGSGSESKSTGGSQVQ





LVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLE





WVAFISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAED





TAVYYCAHLPYSGSYWAFDYWGQGTQVTVSS






scFv39
KL2B494_HL
QVQLVESGGGLVQPGGSLRLSCAASGFTFSHYAMSWVRQAPG
290




KGLEWVSTIGGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSL





RAEDTAVYYCAKPHIVMVTALLYDGMDVWGQGTMVTVSS





GGSEGKSSGSGSESKSTGGSSSELTQPPSVSVAPGQTARITCGGN





NIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGN





TATLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTKLTVL






scFv40
KL2B494_LH
SSELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAP
291




VLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQ





VWDSSSDHVVFGGGTKLTVLGGSEGKSSGSGSESKSTGGSQVQ





LVESGGGLVQPGGSLRLSCAASGFTFSHYAMSWVRQAPGKGLE





WVSTIGGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAED





TAVYYCAKPHIVMVTALLYDGMDVWGQGTMVTVSS






scFv41
KL2B30_HL
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWI
365




RQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTS





KNQFSLKLSSVTAADTAVYYCAGTTIFGVVTPNFYY





GMDVWGQGTTVTVSSGGSEGKSSGSGSESKSTGGS





DIQMTQSPSFLSASVGDRVTITCRASQGISSYLAWYQ





QKPGKAPKFLIYAASTLQSGVPSRFSGSGSGTEFTLTI





SSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK






scFv42
KL2B30_LH
DIQMTQSPSFLSASVGDRVTITCRASQGISSYLAWYQ
366




QKPGKAPKFLIYAASTLQSGVPSRFSGSGSGTEFTLTI





SSLQPEDFATYYCQQLNSYPLTFGGGTKVEIKGGSEG





KSSGSGSESKSTGGSQVQLQESGPGLVKPSETLSLTC





TVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNY





NPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





GTTIFGVVTPNFYYGMDVWGQGTTVTVSS






scFv43
KL2B53_HL
EVQLVESGGGVVQPGRSLRLSCVASGFTFSSYDIHW
367




VRQAPGKGLEWVAIISYDGSKKDYTDSVKGRFTISR





DNSKNTLYLQMDSLRVEDSAVYSCARESGWSHYYY





YGMDVWGQGTMVTVSSGGSEGKSSGSGSESKSTGG





SDIVMTQSPSSLSASVGDRVTITCRASQDISNYLAWY





QQKPGKVPKFLIYAASTLHSGVPSRFSGSGSGTDFTL





TISSLQPEDVATYYCQKYNSAPYTFGQGTRLEIK






scFv44
KL2B53_LH
DIVMTQSPSSLSASVGDRVTITCRASQDISNYLAWYQ
368




QKPGKVPKFLIYAASTLHSGVPSRFSGSGSGTDFTLTI





SSLQPEDVATYYCQKYNSAPYTFGQGTRLEIKGGSE





GKSSGSGSESKSTGGSEVQLVESGGGVVQPGRSLRL





SCVASGFTFSSYDIHWVRQAPGKGLEWVAIISYDGS





KKDYTDSVKGRFTISRDNSKNTLYLQMDSLRVEDSA





VYSCARESGWSHYYYYGMDVWGQGTMVTVSS






scFv45
KL2B242_HL
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWL
369




RQPAGSGLEWIGRLYVSGFTNYNPSLKSRVTLSLDPS





RNQLSLKLSSVTAADTAVYYCAGDSGNYWGWFDP





WGQGTLVTVSSGGSEGKSSGSGSESKSTGGSSYELT





QPPSVSVSPGETASITCSGDQLGENYACWYQQKPGQ





SPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQA





LDEADYYCQAWDNSIVVFGGGTKLTVL






scFv46
KL2B242_LH
SYELTQPPSVSVSPGETASITCSGDQLGENYACWYQ
370




QKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTI





SGTQALDEADYYCQAWDNSIVVFGGGTKLTVLGGS





EGKSSGSGSESKSTGGSQVQLQESGPGLVKPSETLSL





TCTVSGGSISSYYWSWLRQPAGSGLEWIGRLYVSGF





TNYNPSLKSRVTLSLDPSRNQLSLKLSSVTAADTAV





YYCAGDSGNYWGWFDPWGQGTLVTVSS









Biophysical Characterization of Anti-hK2 Antibodies
Affinity and Thermal Stability of Anti-hK2 Antibodies.

Affinity of selected hK2 antibodies for soluble hK2 was measured by surface plasmon resonance (SPR). SPR is a label-free technique to study the strength of an interaction between two binding partners by measuring the change in mass upon complex formation and dissociation. Antibodies were captured on a sensor chip coated with an anti-Fc antibody followed by injection of soluble hK2 at various concentrations and specified association and dissociation times. Post dissociation, the surface was regenerated with an appropriate solution to prepare for the next interaction. Kinetic information (on-rate and off-rate constants) were extracted by fitting sensorgrams to the 1:1 Langmuir model. Binding affinity (KD) are reported as the ratio of rate constants (koff/kon). KD values of selected hK2 antibodies are listed in Table 26.


Thermal stability was determined by Differential Scanning Fluorimetry (NanoDSF) using an automated Prometheus instrument. NanoDSF was used to measure Tm of molecules at a concentration of 0.5 mg/mL in Phosphate Buffered Saline, pH 7.4. Measurements were made by loading samples into 24 well capillary from a 384 well sample plate. Duplicate runs were performed for each sample. The thermal scans span from 20° C. to 95° C. at a rate of 1.0° C./minute. Intrinsic tryptophan and tyrosine fluorescence were monitored at the emission wavelengths of 330 nm and 350 nm, and the F350/F330 nm ratio were plotted against temperature to generate unfolding curves. Measured Tm values are listed in Table 26.









TABLE 26







KD and Tm of selected molecules












KD
Tm



Molecule
(nM)
(° C.)















KL2B413 (scFv-LH-Fc)
34.3
67



KL2B359 (scFv-LH-Fc)
0.7-1
67



KL2B30 (Fab)
0.460
>70



KL2B242 (Fab)
0.040
>70



KL2B53 (Fab)
0.080
>70



KL2B467 (Fab)
0.078
>70



KL2B494 (Fab)
0.053
>70










KL2B413 scFv generated from the Ablexis immunization campaign had a thermal stability (Tm) of 67° C. as measured by Nano DSF and a binding affinity (KD) to human hK2 of about 34 nM. Clone KL2B359 obtained for the re-humanization campaign and which had maintained a binding affinity similar to murine 11B6 was converted to scFv-Fc and CAR-T for additional profiling. KL2B359 scFv shows a Tm of 67° C. and a binding affinity (KD) to hK2 of ˜0.7-1 nM. KL2B30, KL2B242, KL2B53, KL2B467 and KL2B494 Fab showed binding affinities below 0.5 nM and Tm values above 70° C.


Epitope and Paratope Mapping

The epitope and paratope of selected anti-hK2 antibodies was determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). Human KLK2 antigen was used for epitope and paratope mapping experiment.


Briefly, purified the KLK2 antigen was incubated with and without anti-hK2 antibodies in deuterium oxide labeling buffer. The hydrogen-deuterium exchange (HDX) mixture was quenched at different time point by the addition of 8 M urea, 1M TCEP, pH 3.0. The quenched sample was passed over an immobilized pepsin/FPXIII column at 600 μL/min equilibrated with buffer A (1% acetonitrile, 0.1% FA in H2O) at room temperature. Peptic fragments were loaded onto a reverse phase trap column at 600 μL/min with buffer A and desalted for 1 min (600 μL buffer A). The desalted fragments were separated by a C18 column with a linear gradient of 8% to 35% buffer B (95% acetonitrile, 5% H2O, 0.0025% TFA) at 100 μL/min over 20 min and analyzed by mass spectrometry. Mass spectrometric analyses were carried out using an LTQ™ Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) with the capillary temperature at 275° C., resolution 150,000, and mass range (m/z) 300-1,800. BioPharma Finder 3.0 (Thermo Fisher Scientific) was used for the peptide identification of non-deuterated samples prior to the HDX experiments. HDExaminer version 2.5 (Sierra Analytics, Modesto, Calif.) was used to extract centroid values from the MS raw data files for the HDX experiments.


Incubation of hK2 antibodies, hu11B6, KL2B494, KL2B467, KL2B30, KL2B413 and KL2B53 with soluble hK2 protein resulted in different patterns of hydrogen exchange and overall protection. The protected segments were mapped onto the sequence of hK2 antigen to visualize the binding epitopes (FIG. 7). KL2B494, KL2B467 and KL2B30 bound to common sequences of (i) residues 173-178 (SEQ ID NO: 209, KVTEF) (e.g., KL2B494, KL2B467 and KL2B30 bound at least three of the residues of SEQ ID NO: 209, namely, the KVT residues at 173-175) and (ii) residue 230-234 (SEQ ID NO: 216, HYRKW) (e.g., KL2B494, KL2B467 and KL2B30 bound at least three of the residues of SEQ ID NO: 216, namely, the HYR residues at 230-232). KL2B413 also bound all residues of SEQ ID NO: 209 and the KW residues of SEQ ID NO: 216, as shown in FIG. 7. An embodiment of the present invention provides an isolated protein comprising an antigen binding domain that binds hK2, wherein said antigen binding domain binds to hK2 within epitopes having sequences of SEQ ID NO: 209 and SEQ ID NO: 216; for example, said antigen binding domain binds to all residues, or at least four residues, or at least three residues of SEQ ID NO: 209 and binds to all residues, or at least four residues, or at least three residues of SEQ ID NO: 216.


KL2B53 showed a different pattern of protection and bound to a sequence consisting of residues 27-32 (Seq ID NO: 217, SHGWAH), 60-75 (SEQ ID NO: 218, RHNLFEPEDTGQRVP) and 138-147 (SEQ ID NO: 292, GWGSIEPEE).


According to an embodiment, an isolated anti-hK2/anti-CD3 protein (e.g., hu11B6, KL2B494, KL2B467, KL2B30, KL2B413, or KL2B53) comprises an hk2-specific antigen binding domain that specifically binds to a discontinuous epitope (i.e., epitopes whose residues are distantly placed in the sequence) of hK2 comprising one or more amino acid sequences selected from the group consisting of SEQ ID NO: 209, 216, 217, 218, and 292.


The paratope of anti-hK2 antibodies hu11B6, KL2B494, KL2B467, KL2B413 and anti-hK2/CD3 bispecific antibodies KLCB113 and KLCB80 were identified based on significant differences in deuterium uptake from the HDExaminer residue plots. KL2BB494 comprises three paratope regions two of which are located in the KL2B494 heavy chain variable domain (GFTFSH (SEQ ID NO: 729) and TAVYYCAKPHIVMVTAL (SEQ ID NO: 730)) and a single paratope region located within the light chain variable domain (YDDSDRPSGIPER (SEQ ID NO: 731)). KL2B467 comprises three paratope regions, two of which are located in the KL2B467 heavy chain variable domain (FTFSY (SEQ ID NO: 732) and GSYWAFDY (SEQ ID NO: 733)) and a single paratope region within the light chain variable domain (DNSD (SEQ ID NO: 734)). Hu11B6 comprises a single epitope region located in the heavy chain (GNSITSDYA (SEQ ID NO: 735)). KL2B413 comprises two paratope regions located in the heavy chain variable domain (GFTF (SEQ ID NO: 736) and ARDQNYDIL (SEQ ID NO: 737)). KL2B30 of bispecific KLCB80 comprise a paratope region locate in the heavy chain (comprising amino acid residues TIF and VTPNF (SEQ ID NO: 738)) and a paratope region located in the light chain (YAASTLQSG (SEQ ID NO: 739)). KL2B53 of bispecific KLCB113 comprise a single paratope region locate in the heavy chain (comprising amino acid residues ESGWSHY (SEQ ID NO: 740)). FIG. 11 (11A-11F) show the binding paratope of these anti-hK2 antibodies and anti-hK2/CD3 bispecific antibodies (underlined sequences indicate CDR regions and highlighted sequences indicate paratope regions).


Example 3. Generation of Bi-Specific Anti-hK2×Anti-CD3 Antibodies

The VH/VL regions of the anti-hK2 antibodies generated in Example 2 and the VH/VL regions of the anti-CD3 antibodies generated in Example 1 were engineered into bispecific format and expressed as IgG1.


Engineering of CD3 scFvs for hK2/CD3 Bispecific Generation


CD3 VH/VL regions were engineered as scFvs in either VH-Linker-VL or VL-linker-VH orientations using the linker of SEQ ID NO: 31 (Table 27). The VH-Linker-VL or VL-linker-VH scFv molecules binding CD3 were further engineered into a scFv-hinge-CH2-CH3 (also called scFv-Fc) format comprising Fc silencing mutation (L234A/L235A/D265S) and the T350V/L351Y/F405A/Y407V mutations designed to promote selective heterodimerization (Table 28). The polypeptide of SEQ ID NO: 293 was used as the constant domain hinge-CH2-CH3. The scFv-hinge-CH2-CH3 proteins binding CD3 were engineered either having or lacking the C-terminal Lysin in the CH3 domain (Table 28). DNA sequences of anti-CD3 molecules in scFv format and scFv-hinge-CH2-CH3 format are shown in Table 29.









(huIgG1_G1m(17)-hinge-Fc_C220S_AAS_ZWA)


SEQ ID NO: 293


EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSV





SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCL





VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPG













TABLE 27







CD3 specific scFvs sequences.











SEQ ID


Acronym
Amino acid sequence
NO:





CD3W244_HL
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS
65



SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWG




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVG




DRVTITCRARQSIGTAIHWYQQKPGKAPKLLIYYASESISGVPSRFSGSGSGT




DFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKLEIK






CD3W244_LH
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIYYAS
66



ESISGVPSRFSGSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKL




EIKGGSEGKSSGSGSESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTF




SRYNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL




DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSS






CD3W245_HL
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS
67



SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWG




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVG




DRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLEIK






CD3W245_LH
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYAS
68



ESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLE




IKGGSEGKSSGSGSESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFS




RYNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSLD




LQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSS






CD3W246_HL
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS
69



SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWG




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVG




DRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFSGSGSGT




DFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKLEIK






CD3W246_LH
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYAS
70



ESISGVPSRFSGSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTKL




EIKGGSEGKSSGSGSESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTF




SRYNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL




DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSS






CD3W247_HL
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS
71



SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWG




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVG




DRVTITCRARQSIGTAIHWYQQKPGKAPKLLIYYASESISGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLEIK






CD3W247_LH
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLLIYYAS
72



ESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTKLE




IKGGSEGKSSGSGSESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFS




RYNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSLD




LQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSS






CD3W248_HL
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKGLEWVS
73



SISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWG




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDILLTQSPGILSVSPGE




RVSFSCRARQSIGTAIHWYQQRTNGSPRLLIKYASESISGIPSRFSGSGSGTD




FTLTINSVESEDIADYYCQQSGSWPYTFGGGTKLEIK






CD3W248_LH
DILLTQSPGILSVSPGERVSFSCRARQSIGTAIHWYQQRTNGSPRLLIKYASES
74



ISGIPSRFSGSGSGTDFTLTINSVESEDIADYYCQQSGSWPYTFGGGTKLEIK




GGSEGKSSGSGSESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRY




NMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQ




MSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSS
















TABLE 28







CD3 specific scFv-Fc (scFv-hinge CH2-CH3) arms.












SEQ ID NO:
SEQ ID NO:




(with the
(without the



Amino acid sequence
C-terminal
C-terminal


Acronym
(shown with the C-terminal lysin (K))
lysin)
lysin)













CD3W244_HL-Fc
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR
75
747



QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL





DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSSG





GSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVGDRVTIT





CRARQSIGTAIHWYQQKPGKAPKLLIYYASESISGVPSRFS





GSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTK





LEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLM





ISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKP





REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA





PIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKL





TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W244_LH-Fc
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKP
76
748



GKAPKLLIYYASESISGVPSRFSGSGSGTDFTLTISSVQPEDF





ATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKS





TGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMN





WVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNA





KNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVT





VSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI





EKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGF





YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W245_HL-Fc
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR
717
77



QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL





DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSSG





GSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVGDRVTIT





CRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS





GSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTK





LEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLM





ISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKP





REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA





PIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKL





TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W245_LH-Fc
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKP
718
78



GKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDF





ATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKS





TGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMN





WVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNA





KNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVT





VSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI





EKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGF





YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W246_HL-Fc
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR
79
749



QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL





DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSSG





GSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVGDRVTIT





CRARQSIGTAIHWYQQKPGKAPKLLIKYASESISGVPSRFS





GSGSGTDFTLTISSVQPEDFATYYCQQSGSWPYTFGQGTK





LEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLM





ISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKP





REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA





PIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKL





TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W246_LH-Fc
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKP
80
750



GKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSVQPEDF





ATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKS





TGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMN





WVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNA





KNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVT





VSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI





EKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGF





YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W247_HL-Fc
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR
81
751



QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL





DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSSG





GSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVGDRVTIT





CRARQSIGTAIHWYQQKPGKAPKLLIYYASESISGVPSRFS





GSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTFGQGTK





LEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLM





ISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKP





REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA





PIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKL





TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W247_LH-Fc
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKP
82
752



GKAPKLLIYYASESISGVPSRFSGSGSGTDFTLTISSLQPEDF





ATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGSESKS





TGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMN





WVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNA





KNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVT





VSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI





EKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGF





YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W248_HL-Fc
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR
83
753



QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSL





DLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVSSG





GSEGKSSGSGSESKSTGGSDILLTQSPGILSVSPGERVSFSC





RARQSIGTAIHWYQQRTNGSPRLLIKYASESISGIPSRFSGS





GSGTDFTLTINSVESEDIADYYCQQSGSWPYTFGGGTKLEI





KEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISR





TPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK





TISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYP





SDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDK





SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK







CD3W248_LH-Fc
DILLTQSPGILSVSPGERVSFSCRARQSIGTAIHWYQQRTN
84
754



GSPRLLIKYASESISGIPSRFSGSGSGTDFTLTINSVESEDIAD





YYCQQSGSWPYTFGGGTKLEIKGGSEGKSSGSGSESKSTG





GSEVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWV





RQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKN





SLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTVS





SEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISR





TPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK





TISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYP





SDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDK





SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
















TABLE 29





DNA SEQ ID NOs for anti-CD3 scFv and


scFv-hinge-CH2-CH3 (scFv-Fc)


















scFv
scFv-Fc



DNA
DNA



SEQ ID NO
SEQ ID NO





CD3W244_HL
294
304





CD3W244_LH
295
305





CD3W245_HL
296
306





CD3W245_LH
297
307





CD3W246_HL
298
308





CD3W246_LH
299
309





CD3W247_HL
300
310





CD3W247_LH
301
311





CD3W248_HL
302
312





CD3W248_LH
303
313










SEQ ID NO: 294 (CD3W244_HL)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 295 (CD3W244_LH)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 296 (CD3W245_HL)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 297 (CD3W245_LH)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 298 (CD3W246_HL)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 299 (CD3W246_LH)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 300 (CD3W247_HL)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAG





SEQ ID NO: 301 (CD3W247_LH)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC





SEQ ID NO: 302 (CD3W248_HL)


GAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAG


ACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGCCAGG


CTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC


GCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCT


GCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGCTGGGGG


CCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAA


GTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCTTGCTGACTCAG


TCTCCAGGCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGCAGGGCCAGACA


GAGCATTGGCACAGCCATACACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCA


TAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCAGGTTTAGCGGCAGTGGATCAGGG


ACAGATTTTACTCTTACCATCAACAGTGTGGAGTCTGAAGATATTGCAGATTATTACTGTCA


ACAAAGTGGGAGCTGGCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAA





SEQ ID NO: 303 (CD3W248_LH)


GACATCTTGCTGACTCAGTCTCCAGGCATCCTGTCTGTGAGTCCAGGAGAAAGAGTC


AGTTTCTCCTGCAGGGCCAGACAGAGCATTGGCACAGCCATACACTGGTATCAGCAAAGAA


CAAATGGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCA


GGTTTAGCGGCAGTGGATCAGGGACAGATTTTACTCTTACCATCAACAGTGTGGAGTCTGAA


GATATTGCAGATTATTACTGTCAACAAAGTGGGAGCTGGCCGTACACGTTCGGAGGGGGGA


CCAAGCTGGAAATAAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCA


AGTCCACCGGCGGAAGCGAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGG


GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACT


GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAAT


TACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGA


ACTCACTGGATCTGCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACG


AGAGGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





SEQ ID NO: 304 (CD3W244_HL-scFv-Fc)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGG


AGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG


GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC


CTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA


CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG


AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATG


ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT


GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 305 (CD3W244_LH-scFv-Fc)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC


GAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG


GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA


ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG


GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGAT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG


TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA


CTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGG


GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 306 (CD3W245_HL-scFv-Fc)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGG


AGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG


GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC


CTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA


CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG


AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATG


ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT


GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 307 (CD3W245_LH-scFv-Fc)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC


GAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG


GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA


ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG


GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGAT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG


TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA


CTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGG


GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 308 (CD3W246_HL-scFv-Fc)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGG


AGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG


GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC


CTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA


CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG


AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATG


ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT


GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 309 (CD3W246_LH-scFv-Fc)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC


GAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG


GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA


ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG


GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGAT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG


TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA


CTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGG


GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 310 (CD3W247_HL-scFv-Fc)


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCG


CCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAG


CCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTA


CGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGAC


CTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGG


CCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGATCTGAGGGA


AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCCAGATGACCC


AGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCATCACCTGTCGTGCCCG


CCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGCAAGGCCCCAAAGCTG


CTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCTTCAGCGGCAGCGGCA


GCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGACTTCGCCACCTACTAC


TGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGG


AGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGG


GGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCC


CTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG


GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA


CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGG


AGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA


AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATG


ACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT


GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC


TCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 311 (CD3W247_LH-scFv-Fc)


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGT


GACCATCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGC


CAGGCAAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAG


CCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCA


GAGGACTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGG


GCACCAAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA


GCAAGTCCACCGGCGGAAGCGAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCC


AGGTGGCAGCCTGCGCCTGAGCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGA


ACTGGGTGCGCCAAGCCCCAGGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAG


CAACTACATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCA


AGAACAGCCTGGACCTGCAGATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTG


CACCCGCGGTTGGGGCCCATTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC


GAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAG


GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACT


GGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACA


ACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG


GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCA


AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGAT


GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCG


TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA


CTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGG


GGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGC


CTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 312 (CD3W248_HL-scFv-Fc)


GAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAG


ACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGCCAGG


CTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC


GCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCT


GCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGCTGGGGG


CCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAA


GTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCTTGCTGACTCAG


TCTCCAGGCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGCAGGGCCAGACA


GAGCATTGGCACAGCCATACACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCA


TAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCAGGTTTAGCGGCAGTGGATCAGGG


ACAGATTTTACTCTTACCATCAACAGTGTGGAGTCTGAAGATATTGCAGATTATTACTGTCA


ACAAAGTGGGAGCTGGCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAAGAGCC


CAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGA


CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA


GGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC


GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTA


CAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCA


AGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG


ACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAA


CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT


CCCTGTCTCCGGGTAAA





SEQ ID NO: 313 (CD3W248_LH-scFv-Fc)


GACATCTTGCTGACTCAGTCTCCAGGCATCCTGTCTGTGAGTCCAGGAGAAAGAGTC


AGTTTCTCCTGCAGGGCCAGACAGAGCATTGGCACAGCCATACACTGGTATCAGCAAAGAA


CAAATGGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCA


GGTTTAGCGGCAGTGGATCAGGGACAGATTTTACTCTTACCATCAACAGTGTGGAGTCTGAA


GATATTGCAGATTATTACTGTCAACAAAGTGGGAGCTGGCCGTACACGTTCGGAGGGGGGA


CCAAGCTGGAAATAAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCA


AGTCCACCGGCGGAAGCGAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGG


GGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACT


GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAAT


TACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGA


ACTCACTGGATCTGCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACG


AGAGGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGAGCC


CAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGA


CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA


GGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC


GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC


ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTA


CAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC


AAAGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCA


AGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG


TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG


ACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAA


CGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT


CCCTGTCTCCGGGTAAA










Engineering of CD3 Fabs for hK2/CD3 Bispecific Generation


The CD3 specific VH and VL regions were engineered in VH-CH1-linker-CH2-CH3 and VL-CL formats respectively and expressed as IgG1. The polypeptide of SEQ ID NO: 314 comprising the Fc silencing mutation L234A/L235A/D265S and the CH3 mutation T350V/L351Y/F405A/Y407V designed to promote selective heterodimerization was used to generate the CD3 specific VH-CH1-linker-CH2-CH3 (Table 30). The VH-CH1-linker-CH2-CH3 heavy chains were engineered either having or lacking the C-terminal Lysin in the CH3 domain. The VH-CH1-linker-CH2-CH3 heavy chain lacking the C-terminal Lysin is shown in SEQ ID NO: 85.









(huIgG1_G1m(17)_AAS_ZWA)


SEQ ID NO: 314


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV





SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






The polypeptides of SEQ ID NO: 363 or 364 were used to generate the CD3 specific VL-CL (Table 31)









(human kappa light chain)


SEQ ID NO: 363


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV





TKSFNRGEC





(human lambda light chain)


SEQ ID NO: 364


GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPV





KAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK





TVAPTECS







DNA sequences of anti-CD3 molecules as HC in VH-CH1-liker-CH2-CH3 format and LC in VL-CL format are shown in Table 32.









TABLE 30







Amino acid sequence of the anti-CD3 antibody arm VH-CH1-linker-CH2-CH3


of the bi-specific antibody.










SEQ ID



HC protein
NO:
HC amino acid sequence





CD3W244 HC,
719
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVRQAPGKG


CD3W245 HC,

LEWVSSISTSSNYIYYADSVKGRFTFSRDNAKNSLDLQMSGLRAE


CD3W246 HC,

DTAIYYCTRGWGPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKST


CD3W247 HC,

SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL


CD3W248 HC,

YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH




TCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW




LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEM




TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS




FALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





CD3B376 HC
349
QVQLQQSGPRLVRPSQTLSLTCAISGDSVFNNNAAWSWIRQSPSR




GLEWLGRTYYRSKWLYDYAVSVKSRITVNPDTSRNQFTLQLNSV




TPEDTALYYCARGYSSSFDYWGQGTLVTVSSASTKGPSVFPLAPS




SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS




SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSR




EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS




PG
















TABLE 31







Amino acid sequence of the anti-CD3 antibody light chain arm (VL-CL)


of the bi-specific antibody










SEQ ID



LC protein
NO:
LC amino acid sequence












CD3W244 LC
86
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLL




IYYASESISGVPSRFSGSGSGTDFTLTISSVQPEDFATYYCQQSGSWP




YTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE




AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK




HKVYACEVTHQGLSSPVTKSFNRGEC





CD3W245 LC
88
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLL




IKYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSGSWP




YTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE




AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK




HKVYACEVTHQGLSSPVTKSFNRGEC





CD3W246 LC
90
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLL




IKYASESISGVPSRFSGSGSGTDFTLTISSVQPEDFATYYCQQSGSWP




YTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE




AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK




HKVYACEVTHQGLSSPVTKSFNRGEC





CD3W247 LC
92
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQKPGKAPKLL




IYYASESISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSGSWP




YTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE




AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK




HKVYACEVTHQGLSSPVTKSFNRGEC





CD3W248 LC
94
DILLTQSPGILSVSPGERVSFSCRARQSIGTAIHWYQQRTNGSPRLLIK




YASESISGIPSRFSGSGSGTDFTLTINSVESEDIADYYCQQSGSWPYTF




GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK




VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGEC





CD3B376 LC
350
QSALTQPASVSGSPGQSITISCTGTSSNIGTYKFVSWYQQHPDKAPK




VLLYEVSKRPSGVSSRFSGSKSGNTASLTISGLQAEDQADYHCVSYA




GSGTLLFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS




DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPE




QWKSHRSYSCQVTHEGSTVEKTVAPTECS
















TABLE 32





cDNA SEQ ID NOs of anti-CD3 arms of bi-specific antibodies


HC in VH-CH1-liker-CH2-CH3 format and LC in VL-CL format.


















HC cDNA
LC cDNA


Antibody
SEQ ID NO:
SEQ ID NO:





CD3W244
315
316





CD3W245
315
317





CD3W246
315
318





CD3W247
315
319





CD3W248
315
320





CD3B376
351
352










(CD3W244, CDRW245, CD3W246, CD3W247, CD3W248 HC cDNA)


SEQ ID NO: 315


GAGGTGCAGCTGGTGGAGAGCGGTGGCGGTCTGGTGAAGCCAGGTGGCAGCCTGCGCCTGA


GCTGTGCCGCCAGCGGTTTCACCTTCAGCCGCTACAACATGAACTGGGTGCGCCAAGCCCCA


GGCAAGGGCCTGGAGTGGGTGAGCAGCATCAGCACCAGCAGCAACTACATCTACTACGCCG


ACAGCGTGAAGGGCCGCTTCACCTTCAGCCGCGACAACGCCAAGAACAGCCTGGACCTGCA


GATGAGCGGTCTGCGCGCCGAGGACACCGCCATCTACTACTGCACCCGCGGTTGGGGCCCAT


TCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGCCTCCACCAAGGGCCCATC


GGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCC


TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGC


GGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGT


GACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCA


GCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCC


ACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA


AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCAC


GAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA


CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT


GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCA


GCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACG


TGTACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAA


AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAC


TACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCAC


CGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC


TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





(CD3W244 LC cDNA)


SEQ ID NO: 316


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCA


TCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGC


AAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCT


TCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGA


CTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCA


AGCTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG


CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGC


CAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACA


GAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG


ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT


CACAAAGAGCTTCAACAGGGGAGAGTGT





(CD3W245 LC cDNA)


SEQ ID NO: 317


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCA


TCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGC


AAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCT


TCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGA


CTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCA


AGCTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG


CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGC


CAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACA


GAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG


ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT


CACAAAGAGCTTCAACAGGGGAGAGTGT





(CD3W246 LC cDNA)


SEQ ID NO: 318


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCA


TCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGC


AAGGCCCCAAAGCTGCTGATCAAGTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCT


TCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCGTGCAGCCAGAGGA


CTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCA


AGCTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG


CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGC


CAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACA


GAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG


ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT


CACAAAGAGCTTCAACAGGGGAGAGTGT





(CD3W247 LC cDNA)


SEQ ID NO: 319


GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTCGGCGACCGCGTGACCA


TCACCTGTCGTGCCCGCCAGAGCATCGGCACCGCCATCCACTGGTACCAGCAGAAGCCAGGC


AAGGCCCCAAAGCTGCTGATCTACTACGCCAGCGAGAGCATCAGCGGTGTGCCAAGCCGCT


TCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCAGAGGA


CTTCGCCACCTACTACTGCCAGCAGAGCGGCAGCTGGCCATACACCTTCGGCCAGGGCACCA


AGCTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG


CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGC


CAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACA


GAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG


ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGT


CACAAAGAGCTTCAACAGGGGAGAGTGT





(CD3W248 LC cDNA)


SEQ ID NO: 320


GACATCTTGCTGACTCAGTCTCCAGGCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTT


CTCCTGCAGGGCCAGACAGAGCATTGGCACAGCCATACACTGGTATCAGCAAAGAACAAAT


GGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCAGGTTT


AGCGGCAGTGGATCAGGGACAGATTTTACTCTTACCATCAACAGTGTGGAGTCTGAAGATAT


TGCAGATTATTACTGTCAACAAAGTGGGAGCTGGCCGTACACGTTCGGAGGGGGGACCAAG


CTGGAAATAAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCA


GTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA


AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGA


GCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGAC


TACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCA


CAAAGAGCTTCAACAGGGGAGAGTGT





(CD3B376 HC)


SEQ ID NO: 351


CAGGTGCAGCTCCAACAGAGTGGTCCCAGACTCGTGAGACCCTCTCAAACACTCAGTTTGAC


TTGTGCCATCTCAGGCGATTCAGTTTTCAACAACAATGCAGCTTGGAGCTGGATTAGGCAGT


CACCTAGTCGCGGTCTTGAATGGCTTGGGCGTACATACTATCGCTCTAAATGGTTGTATGATT


ACGCTGTGTCCGTGAAGAGCCGAATCACCGTAAACCCTGATACCTCCAGGAATCAGTTCACA


TTGCAACTGAATAGTGTGACTCCCGAGGATACTGCACTCTATTATTGTGCCCGAGGATATAG


CAGTAGCTTCGACTATTGGGGACAAGGGACACTCGTTACCGTTAGTTCAGCCTCCACCAAGG


GCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTG


GGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT


GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCA


GCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCAC


AAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACA


CATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCA


AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT


GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA


CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCT


GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA


GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(CD3B376 LC)


SEQ ID NO: 352


CAGTCTGCTCTGACCCAGCCTGCCTCCGTGTCTGGCTCTCCCGGCCAGTCCATCACCATCAGC


TGTACCGGCACCTCCTCCAACATCGGCACCTACAAGTTCGTGTCCTGGTATCAGCAGCACCC


CGACAAGGCCCCCAAAGTGCTGCTGTACGAGGTGTCCAAGCGGCCCTCTGGCGTGTCCTCCA


GATTCTCCGGCTCCAAGTCTGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCTGAG


GACCAGGCCGACTACCACTGTGTGTCCTACGCTGGCTCTGGCACCCTGCTGTTTGGCGGAGG


CACCAAGCTGACCGTGCTGGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCT


CCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG


GGAGCCGTGACAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCA


CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCC


TGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTG


GAGAAGACAGTGGCCCCTACAGAATGTTCA









Engineering of hK2 scFvs-Fc for hK2/CD3 Bispecific Generation hK2 VH/VL regions engineered as scFvs in either VH-Linker-VL or VL-linker-VH orientations using the linker of SEQ ID NO: 31 (Table 2), as described in Example 2, were further engineered into a scFv-hinge-CH2-CH3 format comprising the Fc silencing mutation (L234A/L235A/D265S) and the T350V/T366L/K392L/T394W mutations designed to promote selective heterodimerization and expressed as IgG1 (Table 33). The polypeptide of SEQ ID NO: 321 was used as the constant domain hinge-CH2-CH3 (Fc).









(huIgG1_G1m(17)-hinge-Fc_C220S_AAS_ZWB)


SEQ ID NO: 321


EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV





SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQ





VSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG













TABLE 33







Amino acid sequences of anti-hK2 scFvs-Fc for hK2/CD3 bispecific generation









Protein
SEQ ID NO:
Amino acid sequence





KL2B359-LH-
322
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHWY


scFv-Fc

QQKPGQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTISSV




EPEDFAVYFCQQTRKVPYTFGGGTKVEIKGGSEGKSSGSG




SESKSTGGSQVQLQESGPGLVKPSQTLSLTCTVSGNSITSD




YAWNWIRQFPGKRLEWIGYISYSGSTTYNPSLKSRVTISR




DTSKNQFSLKLSSVTAADTAVYYCATGYYYGSGFWGQG




TLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKD




TLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK




ALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLC




LVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





KL2B413-LH-
323
EIVLTQSPSFLSASVGDRVTITCRASQGISSYLSWYQQKPG


scFv-Fc

KAPKLLIYATSTLQSGVPSRFSGSGSGTEFTLTISSLQPEDF




ATYYCQQLNSYPRTFGQGTKVEIKGGSEGKSSGSGSESKS




TGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMT




WVRQAPGKGLEWVANIKQDGSERYYVDSVKGRFTISRD




NAKNSLYLQMNSLRAEDTAVYYCARDQNYDILTGHYGM




DVWGQGTTVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMT




KNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVL




DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPG





KL2B467-LH-
324
QSVLTQPPSVSVAPGQTASITCGGDNIGSKSVHWYQQKPG


scFv-Fc

QAPVLVVYDNSDRPSGIPERFSGSNSGTTATLTISRVEAGD




EADYYCQVWDSSSDHPVVFGGGTKVTVLGGSEGKSSGS




GSESKSTGGSQVQLVESGGGVVQPGRSLRLSCAASGFTFS




YYGMHWVRQAPGKGLEWVAFISYDGSNKYYADSVKGR




FTISRDNSKNTLYLQMNSLRAEDTAVYYCAHLPYSGSYW




AFDYWGQGTQVTVSSEPKSSDKTHTCPPCPAPEAAGGPS




VFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK




EYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREE




MTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPG





KL2B494-LH-
325
SSELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPG


scFv-Fc

QAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGD




EADYYCQVWDSSSDHVVFGGGTKLTVLGGSEGKSSGSGS




ESKSTGGSQVQLVESGGGLVQPGGSLRLSCAASGFTFSHY




AMSWVRQAPGKGLEWVSTIGGSGGSTYYADSVKGRFTIS




RDNSKNTLYLQMNSLRAEDTAVYYCAKPHIVMVTALLY




DGMDVWGQGTMVTVSSEPKSSDKTHTCPPCPAPEAAGG




PSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSR




EEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTW




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG










Engineering of hK2 Fab-Fc for hK2/CD3 Bispecific Generation


The hK2 specific VH and VL regions were engineered in VH-CH1-linker-CH2-CH3 and VL-CL formats respectively. The polypeptide of SEQ ID NO: 326 comprising the Fc silencing mutation L234A/L235A/D265S and the CH3 mutation T350V/T366L/K392L/T394W designed to promote selective heterodimerization was used to generate the CD3 specific VH-CH1-linker-CH2-CH3).









(huIgG1_G1m(17)_AAS_ZWB)


SEQ ID NO: 326


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV





SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQ





VSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






The polypeptides of SEQ ID NO: 363 or 364 were used to generate the hK2 specific VL-CL.









(human kappa light chain)


SEQ ID NO: 363


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV





TKSFNRGEC





(human lambda light chain)


SEQ ID NO: 364


GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPV





KAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK





TVAPTECS






The amino acid sequences of hK2 Fab-Fc HCare shown in Table 34.









TABLE 34







Amino acid sequences for anti-hK2 Fab-Fc for hK2/CD3 bispecific generation









Protein
SEQ ID NO:
Amino acid sequence





KL2B30 Fab HC
327
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPP




GKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKL




SSVTAADTAVYYCAGTTIFGVVTPNFYYGMDVWGQGTT




VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP




VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL




GTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYV




LPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENN




YLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPG





KL2B242 Fab HC
328
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWLRQP




AGSGLEWIGRLYVSGFTNYNPSLKSRVTLSLDPSRNQLSL




KLSSVTAADTAVYYCAGDSGNYWGWFDPWGQGTLVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV




SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ




TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAA




GGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW




LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPP




SREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYL




TWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA




LHNHYTQKSLSLSPG





KL2B53 Fab HC
329
EVQLVESGGGVVQPGRSLRLSCVASGFTFSSYDIHWVRQ




APGKGLEWVAIISYDGSKKDYTDSVKGRFTISRDNSKNTL




YLQMDSLRVEDSAVYSCARESGWSHYYYYGMDVWGQG




TMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF




PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCP




APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPE




NNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPG





KL2B30 Fab
330
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPP


w/K477

GKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKL




SSVTAADTAVYYCAGTTIFGVVTPNFYYGMDVWGQGTT




VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP




VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL




GTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYV




LPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENN




YLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK










hK2/CD3 Bispecifics


CD3W245 and CD3B376 anti-CD3 specific arms, engineered as Fabs, and the hK2 VH/VL regions of KL2B359, KL2B413, KL2B467 and KL2B494 engineered as scFvs in both HL and LH orientations as described above, were expressed to generate bispecific antibodies, yielding hK2/CD3 bispecific antibodies with a hK2 binding arm in a format scFv-hinge-CH2-CH3 and a CD3 binding arm in a format of: heavy chain: VH-CH1-linker-CH2-CH3 and light chain: VL-CL. Alternatively, the VH/VL regions of the anti-CD3 antibodies CD3W245 engineered as scFvs in the LH-linker-VH orientation and the VH/VL regions of the anti-hK2 antibodies KL2B30, KL2B242 and KL2B53 engineered as Fabs as described above, were expressed to generate bispecific antibodies, yielding hK2/CD3 bispecific antibodies with a hK2 binding arm in the format of a heavy chain VH-CH1-linker-CH2-CH3 and light chain VL-CL and a CD3 binding arm in a format scFv-hinge-CH2-CH3. The linker used to generate the anti-scFv is the linker of SEQ ID NO: 31.


T350V_L351Y_F405A_Y407V CH3 mutations were engineered into one heavy chain and T350V_T366L_K392L_T394W CH3 mutations were engineered into the other heavy chain as described above. In addition, both HK2 and CD3 binding arms were engineered to contain Fc effector silencing mutations L234A_L235A_D265S as described above.


The engineered chains were expressed, and the resulting bispecific antibodies purified using standard methods. The bispecific antibodies were characterized for their binding to hK2 and CD3, and their cytotoxicity as described in Example 5. Table 35 shows the CDR SEQ ID NOs: of selected anti hKL2/CD3 bispecific antibodies. Table 36 shows the VH, VL and scFv SEQ ID NOs: of selected anti hKL2/CD3 bispecific antibodies. Table 37 shows the HC1, HC2, LC1 and LC2 SEQ ID NOs of selected anti hKL2/CD3 bispecific antibodies. HC1 and LC1 refer to the heavy and light chain of the hKL2 binding arm. Alternatively, HC1 can also refer to the scFv-hinge-CH2-CH3 of the hK12 binding arm. HC2 and LC2 refer to the heavy and light chain of the CD3 binding arm. Alternatively, HC2 can also refer to the scFv-hinge-CH2-CH3 of the CD3 binding arm. Table 38 shows the amino acid sequences of HC1, LC1, HC2 and LC2. Table 39 shows the cDNA sequences of HC1, LC1, HC2 and LC2.









TABLE 35







Kabat CDR SEQ ID NOs of bispecific hK2/CD3 antibodies














Bispecific
Parental (hK2








antibody
arm/CD3 arm)
HCDR1
HCDR2
HCDR3
LCDR1
LCDR2
LCDR3

















KLCB91
KL2B359-LH-scFv
149
152
151
171
172
173



CD3W245 Fab
6
7
8
9
10
11


KLCB105
KL2B359-LH-scFv
149
152
151
171
172
173



CD3B376 Fab
340
341
342
343
344
345


KLCB95
KL2B413-LHscFv
153
154
155
176
177
178



CD3W245 Fab
6
7
8
9
10
11


KLCB96
KL2B413-LH-scFv
153
154
155
176
177
178



CD3B376 Fab
340
341
342
343
344
345


KLCB170
KL2B467-LH-scFv
165
166
167
191
192
193



CD3W245 Fab
6
7
8
9
10
11


KLCB80
KL2B30 Fab
156
157
158
182
183
184



CD3W245-LH-scFv
6
7
8
9
10
11


KLCB81
KL2B242 LC_C33S
162
163
164
185
186
187



Fab



CD3W245-LH-scFv
6
7
8
9
10
11


KLCB113
KL2B53 Fab
159
160
161
179
180
181



CD3W245-LH-scFv
6
7
8
9
10
11


KLCB281
KL2B467-LH-scFv
165
166
167
191
192
193



CD3B376-Fab
340
341
342
343
344
345


KLCB174
KL2B494-LH-scFv
168
169
170
191
192
188



CD3B376-Fab
340
341
342
343
344
345


KLCB153
KL2B494-LH-scFv
168
169
170
191
192
188



CD3W245-Fab
6
7
8
9
10
11


KLCB245
KL2B30-Fab w/
156
157
158
182
183
184



K447



CD3W245-LH-scFv
6
7
8
9
10
11



w/K447
















TABLE 36







SEQ ID NOs of the variable region of the hKL2 arm and


the CD3 arm of selected KL2/CD3 bispecific antibodies.










hK2 arm
CD3 arm

















VH1
VL1
scFv

VH2
VL2
scFv


Bispecific

SEQ
SEQ
SEQ

SEQ
SEQ
SEQ


Name
Name
ID NO:
ID NO:
ID NO
Name
ID NO:
ID NO:
ID NO:


















KLCB91
KL2B359-LH-


281
CD3W245 Fab
23
28




scFv(scFv20)


KLCB105
KL2B359-


281
CD3B376 Fab
346
347



LHscFv



(scFv20)


KLCB95
KL2B413-


279
CD3W245 Fab
23
28



LH-scFv



(scFvl8)


KLCB96
KL2B413-LH-


279
CD3B376 Fab
346
347



scFv(scFvl8)


KLCB170
KL2B467-LH-


289
CD3W245 Fab
23
28



scFv(scFv28)


KLCB80
KL2B30 Fab
139
140

CD3W245-LH-


348







scFv (scFv34)


KLCB81
KL2B242
143
358

CD3W245-LH-


348



LC_C33S Fab



scFv (scFv34)


KLCB113
KL2B53 Fab
141
142

CD3W245-LH-


348







scFv (scFv34)


KLCB281
KL2B467-LH-


289
CD3B376 Fab
346
347



scFv (scFv28)


KLCB174
KL2B494-LH-


291
CD3B376-Fab
346
347



scFv


KLCB153
KL2B494-LH-


352
CD3W245-Fab
23
28



scFv


KLCB245
KL2B30-Fab
139
140

CD3W245-LH-


348



w/K447



scFv w/K447
















TABLE 37







HC and LC amino acid SEQ ID NOs of hK2/CD3 bispecific antibodies










hK2 arm
CD3 arm















HC1 or scFv -
LC1

HC2 or scFv -
LC2


Bispecific

Fc SEQ
SEQ

Fc SEQ
SEQ


Name
Name
ID NO:
ID NO:
Name
ID NO:
ID NO:
















KLCB91
KL2B359 LH-Fc
322

CD3W245 Fab
85
88


KLCB105
KL2B359-LH-Fc
322

CD3B376 Fab
349
350


KLCB95
KL2B413-LH-Fc
323

CD3W245 Fab
85
88


KLCB96
KL2B413-LH-Fc
323

CD3B376 Fab
349
350


KLCB170
KL2B467-LH-Fc
324

CD3W245 Fab
85
88


KLCB80
KL2B30 Fab
327
221
CD3W245-LH-
78






scFv-Fc


KLCB81
KL2B242
328
359
CD3W245-LH-
78



LC_C33S Fab


scFv-Fc


KLCB113
KL2B53 Fab
329
222
CD3W245-LH-
78






scFv-Fc


KLCB281
KL2B467-LH-
324

CD3B376 Fab
349
350



scFv (scFv28)


KLCB174
KL2B494-LH-
325

CD3B376-Fab
349
350



scFv


KLCB153
KL2B494-LH-
325

CD3W245-Fab
85
88



scFv


KLCB245
KL2B30-Fab
330
221
CD3W245-LH-
331



w/K447


scFv w/K447
















TABLE 38







Bispecific HC1 and HC2 amino acid sequences









Protein
SEQ ID NO:
Amino acid sequence












KL2B359-LH-
322
EIVLTQSPATLSLSPGERATLSCRASESVEYFGTSLMHW


scFv-Fc

YQQKPGQPPRLLIYAASNVESGIPARFSGSGSGTDFTLTIS




SVEPEDFAVYFCQQTRKVPYTFGGGTKVEIKGGSEGKSS




GSGSESKSTGGSQVQLQESGPGLVKPSQTLSLTCTVSGN




SITSDYAWNWIRQFPGKRLEWIGYISYSGSTTYNPSLKSR




VTISRDTSKNQFSLKLSSVTAADTAVYYCATGYYYGSGF




WGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLF




PPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE




YKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREE




MTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG





KL2B413-LH-
323
EIVLTQSPSFLSASVGDRVTITCRASQGISSYLSWYQQKP


scFv-Fc

GKAPKLLIYATSTLQSGVPSRFSGSGSGTEFTLTISSLQPE




DFATYYCQQLNSYPRTFGQGTKVEIKGGSEGKSSGSGSE




SKSTGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




WMTWVRQAPGKGLEWVANIKQDGSERYYVDSVKGRF




TISRDNAKNSLYLQMNSLRAEDTAVYYCARDQNYDILT




GHYGMDVWGQGTTVTVSSEPKSSDKTHTCPPCPAPEAA




GGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKF




NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD




WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYV




LPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPG





KL2B467-LH-
324
QSVLTQPPSVSVAPGQTASITCGGDNIGSKSVHWYQQKP


scFv-Fc

GQAPVLVVYDNSDRPSGIPERFSGSNSGTTATLTISRVEA




GDEADYYCQVWDSSSDHPVVFGGGTKVTVLGGSEGKS




SGSGSESKSTGGSQVQLVESGGGVVQPGRSLRLSCAASG




FTFSYYGMHWVRQAPGKGLEWVAFISYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHLPY




SGSYWAFDYWGQGTQVTVSSEPKSSDKTHTCPPCPAPE




AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNG




QPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPG





KL2B30 Fab HC
327
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQ




PPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFS




LKLSSVTAADTAVYYCAGTTIFGVVTPNFYYGMDVWG




QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK




DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVS




VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAV




EWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRW




QQGNVFSCSVMHEALHNHYTQKSLSLSPG





KL2B242 Fab HC
328
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWLRQ




PAGSGLEWIGRLYVSGFTNYNPSLKSRVTLSLDPSRNQL




SLKLSSVTAADTAVYYCAGDSGNYWGWFDPWGQGTL




VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL




TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWES




NGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPG





KL2B242LC_C33S_Fab
359
SYELTQPPSVSVSPGETASITCSGDQLGENYASWYQQKP


LC

GQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQA




LDEADYYCQAWDNSIVVFGGGTKLTVLGQPKAAPSVTL




FPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVK




AGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQ




VTHEGSTVEKTVAPTECS





KL2B53 Fab HC
329
EVQLVESGGGVVQPGRSLRLSCVASGFTFSSYDIHWVR




QAPGKGLEWVAIISYDGSKKDYTDSVKGRFTISRDNSKN




TLYLQMDSLRVEDSAVYSCARESGWSHYYYYGMDVW




GQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLV




KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV




VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH




TCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV




SVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR




VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIA




VEWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPG





KL2B494-LH-
325
SSELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKP


scfV-Fc

GQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEA




GDEADYYCQVWDSSSDHVVFGGGTKLTVLGGSEGKSS




GSGSESKSTGGSQVQLVESGGGLVQPGGSLRLSCAASGF




TFSHYAMSWVRQAPGKGLEWVSTIGGSGGSTYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPHIV




MVTALLYDGMDVWGQGTMVTVSSEPKSSDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL




TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWES




NGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPG





KL2B30 Fab
330
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQ


w/K477

PPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFS




LKLSSVTAADTAVYYCAGTTIFGVVTPNFYYGMDVWG




QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK




DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVS




VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAV




EWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRW




QQGNVFSCSVMHEALHNHYTQKSLSLSPGK





CD3W245 Fab HC
85
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNMNWVR




QAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRDNAKN




SLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTLVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT




VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLG




TQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPG





CD3B376 Fab
349
QVQLQQSGPRLVRPSQTLSLTCAISGDSVFNNNAAWSWI




RQSPSRGLEWLGRTYYRSKWLYDYAVSVKSRITVNPDT




SRNQFTLQLNSVTPEDTALYYCARGYSSSFDYWGQGTL




VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHE




DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL




TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGN




VFSCSVMHEALHNHYTQKSLSLSPG





CD3W245-LH-
78
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQK


scfv-Fc

PGKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGS




ESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSR




YNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFT




FSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWGPFDYW




GQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPP




KPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK




CKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMT




KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPG





CD3W245-LH-
331
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWYQQK


scfv-Fc w/K447

PGKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSGS




ESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSR




YNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFT




FSRDNAKNSLDLQMSGLRAEDTAIYYCTRGWGPFDYW




GQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPP




KPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK




CKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMT




KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGK
















TABLE 39





HC and LC DNA SEQ ID NOs of hK2/CD3 bispecific antibodies


















hK2 arm
CD3 arm















HC1


HC2





or


or





scFv-


scFv-





Fc
LC1

Fc
LC2




DNA
DNA

DNA
DNA




SEQ
SEQ

SEQ
SEQ


Bispecific

ID
ID

ID
ID


Name
Name
NO:
NO:
Name
NO:
NO:





KLCB91
KL2B359 LH-scFv-
332

CD3W245 Fab
315
 88



Fc










KLCB105
KL2B359-LH-scFv-
332

CD3B376 Fab
351
352



Fc










KLCB95
KL2B413-LH-scFv-
333

CD3W245 Fab
315
317



Fc










KLCB96
KL2B413-LH-scFv-Fc
333

CD3B376 Fab
351
352





KLCB170
KL2B467-LH-scFv-
334

CD3W245 Fab
315
317



Fc










KLCB80
KL2B30 Fab
335
257
CD3W245-LH-scFv-Fc
353






KLCB81
KL2B242 LC_C33S
336
360
CD3W245-LH-scFv-Fc
353




Fab










KLCB113
KL2B53 Fab
337
258
CD3W245-LH-scFv-Fc
353






KLCB281
KL2B467-LH-scFv-Fc
334

CD3B376 Fab
351
352





KLCB174
KL2B494-LH-scFv
338

CD3B376-Fab
351
352





KLCB153
KL2B494-LH-scFv
338

CD3W245-Fab
315
317





KLCB245
KL2B30-Fab w/ K447
339
257
CD3W245-LH-scFv-Fc
354







w/ K447










(KL2B359-LH-scFv-Fc)


SEQ ID NO: 332


GAGATTGTTCTCACCCAATCCCCAGCTACTCTCTCTCTTTCACCCGGTGAGCGGGCAACCCTC


TCCTGTAGAGCCAGCGAGAGCGTGGAGTATTTTGGCACATCCCTGATGCACTGGTATCAGCA


AAAACCAGGACAACCCCCCAGACTCCTCATATATGCCGCCTCAAATGTCGAGAGTGGGATA


CCTGCACGGTTTTCAGGAAGCGGCAGCGGTACTGACTTCACATTGACTATATCCTCTGTAGA


GCCAGAGGATTTTGCAGTCTACTTCTGCCAGCAAACTAGGAAGGTTCCATATACTTTTGGGG


GCGGTACAAAAGTTGAGATAAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCG


AGAGCAAGAGCACCGGCGGCAGCCAAGTACAGCTCCAGGAGTCAGGACCTGGGCTCGTCAA


ACCATCTCAGACATTGTCCCTGACATGCACAGTTTCCGGCAACAGTATTACTTCCGACTATGC


TTGGAATTGGATCAGGCAATTCCCAGGAAAGCGGCTCGAGTGGATAGGTTATATTTCTTACT


CTGGATCTACTACCTACAATCCCAGTTTGAAGTCTCGCGTGACAATTAGCCGGGACACATCA


AAAAATCAATTCTCACTTAAACTTAGTTCTGTAACCGCTGCCGATACAGCCGTGTACTACTG


CGCCACTGGTTATTATTATGGAAGCGGATTTTGGGGGCAAGGAACTTTGGTGACCGTCTCTT


CCGAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGC


AGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGA


CCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA


CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC


AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAA


GGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC


AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGA


TGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCC


GTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGG


ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAG


GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAG


CCTCTCCCTGTCTCCGGGT





(KL2B413-LH-scFv-Fc)


SEQ ID NO: 333


GAGGTACAACTTGTCGAAAGTGGCGGTGGAGTCGTCCAGCCTGGGCGATCACTTCGCCTCTC


CTGTGTAGCCTCTGGTTTCACTTTCTCATCTTACGACATACACTGGGTCCGCCAGGCACCTGG


TAAGGGGCTGGAGTGGGTTGCCATCATTAGTTACGATGGCTCCAAAAAAGATTACACCGATA


GCGTAAAGGGCAGATTTACCATTTCCAGGGATAATTCAAAGAACACCCTGTATCTGCAAATG


GACAGCCTCCGCGTCGAAGACTCTGCAGTTTATAGCTGTGCCAGGGAGTCAGGCTGGTCCCA


TTATTACTATTATGGTATGGACGTTTGGGGCCAGGGAACCATGGTCACTGTTAGTTCAGCCTC


CACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG


CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCA


GGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTC


CCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG


TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA


AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCT


TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG


GTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGG


TGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG


CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA


ACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTG


CTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT


ACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG


ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(KL2B467-LH-scFv-Fc)


SEQ ID NO: 334


CAGAGCGTACTTACCCAGCCTCCCAGCGTGTCTGTAGCCCCAGGACAGACAGCCAGTATTAC


ATGCGGTGGTGACAATATAGGTTCCAAATCCGTGCATTGGTACCAGCAGAAGCCAGGGCAA


GCTCCCGTGCTCGTGGTATATGATAATTCCGACCGCCCTTCCGGCATTCCCGAACGGTTTAGT


GGTTCAAATTCAGGCACCACAGCAACTCTGACCATAAGCAGAGTCGAAGCTGGAGACGAAG


CCGACTACTACTGTCAGGTATGGGACTCTAGTAGTGACCACCCTGTCGTCTTCGGTGGGGGA


ACCAAAGTGACCGTTCTGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGC


AAGAGCACCGGCGGCAGCCAGGTCCAGCTCGTAGAAAGTGGGGGCGGCGTAGTTCAGCCAG


GCAGGAGTCTCCGGCTGAGTTGTGCAGCCAGCGGCTTTACTTTTTCCTACTATGGAATGCACT


GGGTACGTCAGGCACCCGGCAAAGGTTTGGAGTGGGTCGCATTCATTTCTTATGATGGATCA


AATAAGTATTATGCCGATAGTGTAAAGGGCAGATTTACAATAAGTCGAGACAACTCAAAGA


ACACTCTCTACCTCCAAATGAATAGTCTTCGGGCAGAGGATACTGCAGTGTACTATTGTGCT


CATCTTCCTTATTCCGGTTCTTACTGGGCATTCGATTATTGGGGGCAAGGGACACAAGTTACC


GTGTCTAGCGAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGA


AGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT


CCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAA


GTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG


CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAA


TGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC


ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGG


AGGAGATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGA


CATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCC


GTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATG


GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC


AGAAGAGCCTCTCCCTGTCTCCGGGT





(KL2B494-LH-scFv-Fc)


SEQ ID NO: 338


AGCAGCGAATTGACCCAACCACCTTCCGTCAGCGTCGCACCAGGGCAAACCGCCCGCATCA


CATGCGGTGGGAACAATATAGGAAGCAAATCTGTCCACTGGTACCAGCAAAAACCAGGACA


AGCCCCTGTTCTGGTCGTCTATGATGACAGCGACAGACCAAGTGGTATTCCCGAGAGATTCT


CCGGTAGCAACTCTGGAAATACAGCTACTTTGACCATCTCCAGAGTTGAGGCTGGTGACGAG


GCAGATTACTATTGCCAGGTCTGGGACAGCTCCAGCGACCACGTCGTATTCGGTGGCGGGAC


CAAGCTGACTGTGCTGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAA


GAGCACCGGCGGCAGCCAGGTGCAGTTGGTAGAGTCAGGAGGGGGCCTCGTTCAACCTGGT


GGCAGCCTCCGTTTGTCTTGTGCTGCCAGTGGATTTACTTTCAGTCACTACGCAATGAGCTGG


GTGAGACAAGCACCTGGCAAGGGCCTTGAGTGGGTCTCCACTATCGGCGGTTCAGGGGGGA


GCACTTACTACGCTGACTCTGTAAAAGGTCGCTTTACTATATCTAGAGATAACTCTAAAAAC


ACACTCTACTTGCAGATGAACAGCCTGCGAGCCGAAGATACAGCCGTGTACTACTGCGCCAA


GCCTCATATTGTAATGGTCACTGCCCTCTTGTATGATGGCATGGATGTTTGGGGCCAAGGGA


CAATGGTGACAGTCTCAAGCGAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTG


CCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACA


CCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGAC


CCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGC


CGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA


GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCC


ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGC


CCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTT


CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACCTC


ACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC


AAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA


CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(KLK2B30 Fab HC cDNA)


SEQ ID NO: 335


CAGGTTCAACTTCAAGAATCCGGGCCAGGTCTGGTCAAGCCTTCAGAGACTTTGTCCCTTAC


TTGCACAGTGAGCGGTGGCTCTATCTCAAGTTACTACTGGTCATGGATACGGCAGCCCCCAG


GAAAGGGGCTTGAGTGGATTGGGTACATTTATTACTCAGGGTCAACAAACTACAATCCCTCC


CTCAAATCCCGAGTGACAATTAGTGTCGATACATCTAAAAACCAGTTTTCCCTGAAATTGAG


CTCAGTCACCGCAGCTGATACTGCAGTCTATTATTGTGCTGGCACAACAATCTTCGGGGTAG


TAACTCCAAACTTCTACTACGGGATGGACGTGTGGGGGCAAGGAACAACCGTAACAGTAAG


TAGTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTG


GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTC


GTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTAC


ATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAAT


CTTGTGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTC


AGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCA


CATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA


CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA


CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT


GCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG


GCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAAC


CAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGA


GAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGC


TCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTT


CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGT


CTCCGGGT





(KLK2B30 Fab LC cDNA)


SEQ ID NO: 722


GATATTCAAATGACCCAGTCACCATCATTCCTGTCCGCCTCAGTGGGAGATCGCGTCACTAT


TACTTGTCGTGCTAGCCAGGGGATATCATCATATTTGGCTTGGTATCAACAAAAGCCAGGAA


AGGCCCCAAAATTCCTTATATATGCAGCTAGTACACTCCAGAGTGGTGTTCCTAGCCGGTTC


TCTGGCAGCGGCTCAGGGACCGAGTTCACCCTGACAATCTCCAGCTTGCAGCCCGAAGACTT


TGCAACCTACTATTGCCAGCAACTGAACTCCTATCCTCTGACTTTCGGGGGAGGAACCAAGG


TTGAGATTAAACGGACAGTGGCCGCTCCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAG


CTGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAA


GGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAG


CAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTA


CGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACC


AAGTCTTTCAACCGGGGCGAGTGT





(KL2B53 Fab HC cDNA)


SEQ ID NO: 337


GAGGTACAACTTGTCGAAAGTGGCGGTGGAGTCGTCCAGCCTGGGCGATCACTTCGCCTCTC


CTGTGTAGCCTCTGGTTTCACTTTCTCATCTTACGACATACACTGGGTCCGCCAGGCACCTGG


TAAGGGGCTGGAGTGGGTTGCCATCATTAGTTACGATGGCTCCAAAAAAGATTACACCGATA


GCGTAAAGGGCAGATTTACCATTTCCAGGGATAATTCAAAGAACACCCTGTATCTGCAAATG


GACAGCCTCCGCGTCGAAGACTCTGCAGTTTATAGCTGTGCCAGGGAGTCAGGCTGGTCCCA


TTATTACTATTATGGTATGGACGTTTGGGGCCAGGGAACCATGGTCACTGTTAGTTCAGCCTC


CACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG


CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCA


GGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTC


CCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG


TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA


AACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCT


TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG


GTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGG


TGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG


CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA


ACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTG


CTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT


ACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG


ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(KL2B53 Fab LC cDNA)


SEQ ID NO: 723


GATATTGTAATGACTCAGTCACCCTCTTCACTGAGTGCATCAGTAGGTGATCGCGTTACCATC


ACTTGCCGTGCCAGTCAAGACATTTCAAATTACCTTGCATGGTACCAACAAAAGCCCGGAAA


AGTGCCAAAGTTTTTGATTTATGCCGCTTCAACACTCCATTCAGGAGTGCCCTCTCGTTTCAG


TGGATCTGGCAGTGGCACCGATTTTACTCTCACAATAAGCAGTCTCCAGCCTGAGGATGTAG


CCACCTATTATTGCCAAAAATATAATTCAGCCCCCTATACTTTTGGACAGGGCACACGCCTT


GAGATTAAACGGACAGTGGCCGCTCCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAGCT


GAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGG


TGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAGCA


GGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTACG


AGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAA


GTCTTTCAACCGGGGCGAGTGT





(KLK2B242 Fab HC cDNA and KL2B242LC_C33S Fab HC)


SEQ ID NO: 336


CAAGTACAACTTCAAGAGTCTGGCCCTGGGCTTGTTAAGCCCTCAGAGACCTTGTCACTGAC


CTGTACCGTATCAGGCGGGTCAATTTCATCTTACTACTGGAGTTGGCTTCGTCAGCCTGCCGG


ATCTGGACTGGAGTGGATAGGTAGACTGTATGTTTCCGGCTTTACAAATTACAACCCATCTTT


GAAAAGCCGTGTGACTCTCAGCCTCGACCCTTCTCGGAATCAACTTTCACTTAAATTGTCTTC


TGTTACAGCTGCCGACACTGCAGTATATTATTGTGCAGGGGACTCAGGCAACTATTGGGGAT


GGTTTGATCCTTGGGGGCAGGGGACCCTGGTAACCGTGAGTTCTGCCTCCACCAAGGGCCCA


TCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTG


CCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCA


GCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTG


GTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCC


CAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGT


CCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACC


CAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCC


ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA


GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTC


CTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC


CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTA


CGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCA


AAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA


CTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC


CGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC


TGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(KLK2B242LC_C33S Fab LC cDNA)


SEQ ID NO: 360


AGTTATGAGCTGACTCAACCACCCAGTGTCAGCGTATCCCCAGGAGAAACTGCCTCTATAAC


ATGCAGCGGAGACCAGTTGGGAGAAAATTACGCCTCCTGGTACCAACAGAAGCCTGGACAA


AGTCCTGTCCTCGTTATTTATCAAGATTCTAAACGTCCCTCTGGGATCCCCGAACGATTCTCC


GGCTCTAACTCTGGGAATACCGCTACCTTGACAATAAGTGGTACACAGGCACTTGATGAAGC


TGATTATTACTGCCAGGCATGGGATAACAGCATTGTGGTTTTCGGGGGCGGCACCAAACTCA


CAGTTCTCGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCTCCTCTGAGGAG


CTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGAC


AGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCC


AAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGA


AGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGT


GGCCCCTACAGAATGTTCA





(KLK2B30 wK477 Fab HC cDNA)


SEQ ID NO: 339


CAGGTTCAGCTGCAAGAGTCTGGCCCTGGCCTGGTCAAGCCTTCCGAGACACTGTCTCTGAC


CTGCACCGTGTCTGGCGGCTCCATCTCCTCCTACTACTGGTCCTGGATCAGACAGCCTCCTGG


CAAAGGCCTGGAATGGATCGGCTACATCTACTACTCCGGCTCCACCAACTACAACCCCAGCC


TGAAGTCCAGAGTGACCATCTCCGTGGACACCTCCAAGAACCAGTTCTCCCTGAAGCTGTCC


TCCGTGACCGCTGCTGATACCGCCGTGTACTATTGTGCTGGCACCACCATCTTCGGCGTGGTC


ACCCCTAACTTCTACTACGGCATGGACGTGTGGGGCCAAGGCACAACAGTGACAGTCTCTTC


TGCCTCCACCAAGGGTCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGG


GCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGG


AACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACT


CTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT


GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTG


TGACAAAACTCACACTTGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCT


TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG


TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG


GTGTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGC


CCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGT


CAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA


ATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTC


TTCCTCTACAGCAAGCTCACCGTGGACAAGTCCAGATGGCAGCAGGGGAACGTCTTCTCATG


CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGG


GAAAA





(CD3W245-LH-scFv-Fc cDNA)


SEQ ID NO: 353


GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTTGGCGACCGTGTCACTATC


ACTTGTCGAGCCCGCCAGTCCATAGGTACTGCCATTCACTGGTATCAACAGAAGCCTGGCAA


GGCTCCCAAACTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCAAGATTTT


CCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATATCTAGCCTCCAACCAGAAGATTTC


GCCACTTACTACTGTCAACAATCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATT


GGAGATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCAC


CGGCGGCAGCGAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCC


CTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCG


CCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATAT


ACTACGCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACT


GGATCTGCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGC


TGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGAGCCCAAATC


TAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC


ATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC


CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTG


CAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAGAACC


AGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG


AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT


CCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTC


TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC


TCCGGGT





(CD3W245-LH-scFv-Fc w/ K447)


SEQ ID NO: 354


GACATCCAGATGACCCAGTCTCCATCCTCTCTGTCCGCCTCTGTGGGCGACAGAGTGACCAT


TACCTGCCGGGCCAGACAGTCTATCGGCACCGCTATCCACTGGTATCAGCAGAAGCCTGGCA


AGGCCCCTAAGCTGCTGATTAAGTACGCCTCCGAGTCCATCTCCGGCGTGCCCTCCAGATTTT


CTGGCTCTGGATCTGGCACCGACTTTACCCTGACAATCTCCAGCCTGCAGCCTGAGGACTTC


GCCACCTACTACTGTCAGCAGTCCGGCTCTTGGCCTTACACCTTTGGTCAGGGCACCAAGCT


GGAAATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACC


GGCGGAAGCGAGGTGCAGCTGGTTGAATCTGGCGGAGGACTGGTTAAGCCTGGCGGCTCTC


TGAGACTGTCTTGTGCTGCTTCTGGCTTCACCTTCAGCCGGTACAACATGAACTGGGTCCGAC


AGGCTCCTGGCAAAGGCCTGGAATGGGTGTCCTCCATCTCCACCTCCAGCAACTACATCTAC


TACGCCGACTCCGTGAAGGGCAGATTCACCTTCTCCAGAGACAACGCCAAGAACTCCCTGGA


CCTGCAGATGTCTGGCCTGAGAGCTGAGGACACCGCTATCTACTACTGCACCAGAGGCTGGG


GACCCTTCGATTATTGGGGCCAGGGAACCCTGGTCACCGTGTCATCTGAGCCCAAATCTAGC


GACAAAACTCACACTTGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTT


CCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG


TGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGT


GGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG


TGTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC


CCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTC


AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA


ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC


GCCCTCGTGAGCAAGCTCACCGTGGACAAGTCCAGATGGCAGCAGGGGAACGTCTTCTCAT


GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCG


GGAAAA





(CD3W245 Fab-HC-Fc)


SEQ ID NO: 725


GAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGCCAGGCTCCA


GGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTACGCAGA


CTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCTGCAAA


TGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGCTGGGGGCCTTTT


GACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGT


CTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG


TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGC


GTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC


CGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCA


ACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCACC


GTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGG


ACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAA


GACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAA


AGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA


CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC


CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGT


ACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC


AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCTCACCGT


GGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC


ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(CD3W245 Fab-LC-Fc)


SEQ ID NO: 726


GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTTGGCGACCGTGTCACTATC


ACTTGTCGAGCCCGCCAGTCCATAGGTACTGCCATTCACTGGTATCAACAGAAGCCTGGCAA


GGCTCCCAAACTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCAAGATTTT


CCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATATCTAGCCTCCAACCAGAAGATTTC


GCCACTTACTACTGTCAACAATCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATT


GGAGATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAGC


TGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAG


GTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAGC


AGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTAC


GAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCA


AGTCTTTCAACCGGGGCGAGTGT





(CD3B376 Fab-HC-Fc)


SEQ ID NO: 351


CAGGTGCAGCTCCAACAGAGTGGTCCCAGACTCGTGAGACCCTCTCAAACACTCAGTTTGAC


TTGTGCCATCTCAGGCGATTCAGTTTTCAACAACAATGCAGCTTGGAGCTGGATTAGGCAGT


CACCTAGTCGCGGTCTTGAATGGCTTGGGCGTACATACTATCGCTCTAAATGGTTGTATGATT


ACGCTGTGTCCGTGAAGAGCCGAATCACCGTAAACCCTGATACCTCCAGGAATCAGTTCACA


TTGCAACTGAATAGTGTGACTCCCGAGGATACTGCACTCTATTATTGTGCCCGAGGATATAG


CAGTAGCTTCGACTATTGGGGACAAGGGACACTCGTTACCGTTAGTTCAGCCTCCACCAAGG


GCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTG


GGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCT


GACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCA


GCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCAC


AAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACA


CATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCA


AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGT


GAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAAT


GCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA


CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC


CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG


GTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCT


GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAA


GCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG


AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





(CD3B376 Fab-LC-Fc)


SEQ ID NO: 352


CAGTCTGCTCTGACCCAGCCTGCCTCCGTGTCTGGCTCTCCCGGCCAGTCCATCACCATCAGC


TGTACCGGCACCTCCTCCAACATCGGCACCTACAAGTTCGTGTCCTGGTATCAGCAGCACCC


CGACAAGGCCCCCAAAGTGCTGCTGTACGAGGTGTCCAAGCGGCCCTCTGGCGTGTCCTCCA


GATTCTCCGGCTCCAAGTCTGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCTGAG


GACCAGGCCGACTACCACTGTGTGTCCTACGCTGGCTCTGGCACCCTGCTGTTTGGCGGAGG


CACCAAGCTGACCGTGCTGGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCCGCCCT


CCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG


GGAGCCGTGACAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCA


CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCC


TGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTG


GAGAAGACAGTGGCCCCTACAGAATGTTCA









Example 4: Biophysical Characterization of hK2×CD3 Bi-Specific Antibodies

Affinity of Selected hK2×CD3 Bispecific Antibodies


Affinity of selected hK2×CD3 bispecific antibodies to hK2 or human CD3 was measured by surface plasmon resonance (SPR). SPR is a label-free technique to study the strength of an interaction between two binding partners by measuring the change in mass upon complex formation and dissociation. Antibodies were captured on a sensor chip coated with an anti-Fc antibody followed by injection of soluble hK2 (or soluble recombinant CD3) at various concentrations and specified association and dissociation times. Post dissociation, the surface was regenerated with an appropriate solution to prepare for the next interaction. Kinetic information (on-rate and off-rate constants) were extracted by fitting sensorgrams to the 1:1 Langmuir model. Binding affinity (KD) are reported as the ratio of rate constants (koff/kon). KD values of selected hK2/CD3 bispecific antibodies are listed in Table 40.









TABLE 40







KD values of selected hK2/CD3 bispecific antibodies


for the respective binding arms











KD



KLK2 arm
(nM)














KL2B467 Fab
0.09



KL2B494 Fab
0.06



KL2B359-LH-scFv
0.63



KL2B413-LH-scFv
16.4



CD3B376 Fab
20-40



CD3W245 Fab
0.14



CD3W245 LH scFv
20-30



KL2B30 Fab
2



KL2853 Fab
0.1



KL2B242 Fab
0.14











Thermal Stability of Selected hK2×CD3 Bispecific Antibodies


Thermal stability of the bispecific antibody samples was determined by NanoDSF method using an automated Prometheus instrument. Measurements were made by loading sample into 24 well capillary from a 384 well sample plate. Duplicate runs were performed for each sample. Prometheus NanoDSF user interface (Melting Scan tab) was used to set up the experimental parameters for the run. The thermal scans for the samples span from 20° C. to 95° C. at a rate of 1.0° C./minute. Dual-UV technology monitors intrinsic tryptophan and tyrosine fluorescence at the emission wavelengths of 330 nm and 350 nm, and this ratio (F350 nm/F330 nm) is plotted against temperature to generate an unfolding curve. Nano DSF is used for measuring Tm of all molecules at 0.5 mg/mL concentration in Phosphate Buffered Saline, pH 7.4. Measured Tm values are listed in Table 41.









TABLE 41







Tm values for KLK2 or CD3 binding arms of


selected hK2 × CD3 bispecific antibodies.











Tm (° C.)



Molecule
by DSF














KL2B413 (scFv)
67



KL2B359 (scFv)
67



KL2B30 (Fab)
>70



KL2B242 (Fab)
>70



KL2B53 (Fab)
>70



KL2B467 (Fab)
>70



KL2B494 (Fab)
>70



CD3B376 (Fab)
61



CD3W245 LH scFv
66










Self-Association Potential by AC-SINS (Affinity Capture-Self Interaction Nanoparticle Spectroscopy)

A high throughput screening assay was used to measure the propensity of an Ab candidate to self-interact. Propensity for self-interaction usually translates into poor Ab solubility and challenges in downstream Ab manufacturing. In this assay, gold nanoparticles (AuNPs) were coated with goat anti-human IgG (H+L) capture antibody and later incubated with candidate Abs in the presence of polyclonal goat IgG. Any candidate Ab that self-associates brings the AuNPs into proximity, resulting in a shift of the nanoparticles' plasmon wavelength (λp), also referred to as the wavelength at maximum absorbance (λmax). The magnitude of the shift (Δλmax) for each candidate Ab is indicative of the strength of its self-association. Proper control antibodies which showed none to high self-association potential were used in this assay. All molecules tested in this assay showed none to low risks for self-association.


Example 5: In Vitro and In Vivo Characterization of Bispecific hK2×CD3 Antibodies

In Vitro Cytotoxicity of hK2×CD3 Bi-Specific Antibodies


The cytotoxicity potential of the generated bispecific antibodies was measured in vitro with a T-cell-mediated cytotoxicity assay using live-time lapse imaging on the Incucyte platform. The bispecific antibodies were tested in hK2 positive cell line VCaP cells, in the presence of isolated pan human CD3+ T cells from healthy donors at a Effector:Target ratio (E:T ratio) of 3:1. Cell death by apoptosis was monitored by measuring the fluorescence signal from a dye which is stably expressed by target VCaP cells.


Normal donor pan T cells were co-incubated with KLK2+VCaP cells. KLK2×CD3 bispecific antibodies were dosed from 0 to 100 nM for 96 hours. 3:1 Effector-to-Target (ET) ratio was used. (A) Target cells were stably expressing a red nuclear dye which was measured by IncuCyte imaging system in real-time for quantifying target cell death. Overall tumor cell lysis was graphed based on AUC of real-time kinetic killing curve of VCaP cells (FIG. 8A). Green fluorescent Caspase 3/7 reagent was used to measure apoptosis signal from target cell death. Total Caspase 3/7 activity was graphed based on AUC of real-time caspase 3/7 activity curve (FIG. 8B). The data showed that the bispecific hK2/CD3 antibodies tested promote a dose-dependent reduction of viable VCaP cells with increasing time and hence induce T cell mediated death of the VCaP tumor cells. Bispecific hK2×CD3 antibodies were effective at mediating T cell activation and show dose-dependent KLK2+ tumor cell killing.


In Vitro T Cell Activation and Proliferation by hK2×CD3 Bi-Specific Molecules


hK2×CD3 bispecific antibodies were tested for their ability to promote T cell activation and proliferation. Normal donor pan T cells were labelled with CFSE (5 uM) and co-cultured with KLK2 (+) VCap cells. KLK2×CD3 bispecific antibodies were dosed from 0 to 100 nM for 96 hours. 3:1 Effector-to-Target (ET) ratio was used. After 96 hours co-incubation, cells were harvested and stained with CD25, live/dead Dye. Flow cytometric analysis was performed on a Fortessa flow cytometer with Flowjo software. The frequencies of CTV dye dilution and activation marker CD25 were determined. The frequency of CD25 positive cells at different doses were used to graph in vitro T activation (FIG. 9A). The proliferation gate was determined using the 0 nM treatment group. The frequency of cells entered into proliferation gate was used to graph in vitro T cell proliferation (FIG. 9B). The data confirm dose dependent activation and proliferation of T cells by various KLK2×CD3 bi-specific antibodies.


In Vitro T Cell Cytokine Release by hK2×CD3 Bi-Specific Molecules.


The effect of anti-hK2×CD3 antibodies on T-cell cytokines release was measured in vitro. Supernatant samples were collected from the in vitro cytotoxicity experiment described above. A 13-plex cytokine Luminex assay was carried out to quantify IFN-γ and TNF-α concentrations at different doses of hK2×CD3 bispecific antibodies. FIGS. 10A and 10B show functional cytokine release by T cells triggered by KLK2×CD3 bi-specific antibodies in a dose-dependent manner.


Efficacy of Bispecific hK2×CD3 Antibodies in Established Subcutaneous (SC) Human Prostate Xenograph Model in T Cell Humanized Mice.


In vivo efficacy of KLK2×CD3 bispecifics was evaluated in human prostate tumor VCaP s.c. mouse xenograft model. The antitumor efficacy of KLK2×CD3 molecules was evaluated in established SC human prostate VCaP xenografts. Intact male NSG mice were used to provide a suitable host for engrafting human tumors and human T cells. The human prostate cell line VCaP was obtained from American Type Culture Collection (ATCC). VCaP cells were harvested during exponential growth and mice were injected with 1×107 cells SC in a volume of 0.2 mL in the right flank. 20e6 human T cells were injected i.p for each animal. Three dose levels were evaluated with 5-fold escalation: 0.2 mg/kg, 1 mg/kg and 5 mg/kg. Bispecific antibodies were dosed twice a week via i.p. Eye blood was sampled at 6 hours post first i.p dosing and functional cytokine levels were measured using Luminex based assays. Tumor volume and body weight measurements were collected twice weekly throughout all studies. The percent delta tumor growth inhibition (ATGI) was defined as the difference between mean tumor burden of the treated and control groups, calculated as % ΔTGI=([(TVc-TVc0)-(TVt-TVt0)]/(TVc-TVc0))×100; where ‘TVc’ is the mean tumor burden of a given control group, ‘TVc0’ is the mean initial tumor burden of a given control group, ‘TVt’ is the mean tumor burden of the treated group, and ‘TVt0’ is the mean initial tumor burden of the treated group. % TGI was defined as ([TVc-TVt]/TVc)×100.


A KLK2×CD3 compound of the present invention showed dose-dependent anti-tumor effect, i.e., at 1 mg/kg, showed marginal tumor growth inhibition and at 5 mg/kg showed anti-tumor effect. Cytokine assessment at 6 hours post first dosing showed above-background functional cytokine release of the active KLK2×CD3 compound, which is consistent with in vivo efficacy.


Example 6. Generation of HLA-G Cell Line

K562 chronic myelogenous leukemia cell line (ATCC, CCL-243) lacking expression of all HLAs, including the MHC class I proteins: HLA-A (Uniprot P01892), HLA-B (Uniprot P18464), HLA-C (Uniprot P30508), and HLA-E (Uniprot P13747) (therefore suitable for NK cell based killing), was transduced using a pCDH lentiviral vector to express HLA-G1-IRES (internal ribosome entry site)—β-2-microglobulin (β2M, LPP—CS-Z7412-I0035-02-200, Genecopoeia) or the human HLA-G (C42S)—IRES—β2M (LPP—CS-Z7412-I0035-01-200, Genecopoeia) in lentiviral particles (Genecopoeia) and cultured in IMDM, 10% FBS. At passage one, selection with 10 μg/ml puromycin (Gibco, A1113803) to ensure stable HLA-G expression. Cells were split 1:10 when density reached ˜ 3×106 cells/ml, approximately every 3-4 days.


Example 7: Generation of HLA-G Antibodies

Anti-HLA-G antibodies were generated using OmniRat® transgenic humanized rats. The OmniRat® contains a chimeric human/rat IgH locus (comprising 22 human VHS, all human D and JH segments in natural configuration linked to the rat CH locus) together with fully human IgL loci (12 Vκs linked to Jκ-Cκ and 16 VWs linked to Jλ-Cλ). (see e.g., Osborn, et al. (2013) J Immunol 190(4): 1481-1490). Accordingly, the rats exhibit reduced expression of rat immunoglobulin, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity chimeric human/rat IgG monoclonal antibodies with fully human variable regions. The preparation and use of OmniRat®, and the genomic modifications carried by such rats, is described in WO14/093908.


OmniRat® rats were immunized using a construct comprising a subunit of either recombinant human HLA-G1 or recombinant human HLA-G5, a soluble isoform of HLA-G containing the α1, α2, and α3 domains but lacking the transmembrane region, fused to the β2m subunit and histone H2A, K562 cells expressing HLA-G1, or DNA encoding HLA-G1 extracellular domain with C42S mutation (Table 42). In some cases the histone H2A peptide was fused to the antigen for enhanced stability. Table 42 shows the sequences of the antigens.









TABLE 42







Sequences of antigens used to generate antibodies.













SEQ


Campaign
Protein AA ID
Sequence
ID NO:





HYB: 420,
MHGW8

MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPS

371


Hybridoma,
(B2m-(3(G4S)-

DIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYY




OMT rats
HLA-G1-G4S-

TEFTPTEKDEYACRVNHVTLSQPKIVKWDRDMG





Avi)
GGGSGGGGSGGGGSGSHSMRYFSAAVSRPGRGEPR





FIAMGYVDDTQFVRFDSDSASPRMEPRAPWVEQEG





PEYWEEETRNTKAHAQTDRMNLQTLRGYYNQSEA





SSHTLQWMIGCDLGSDGRLLRGYEQYAYDGKDYL





ALNEDLRSWTAADTAAQISKRKCEAANVAEQRRA





YLEGTCVEWLHRYLENGKEMLQRADPPKTHVTHH





PVFDYEATLRCWALGFYPAEIILTWQRDGEDQTQD





VELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHV





QHEGLPEPLMLRWKQSSLPTIPIGGGGSGLNDIFEAQ






KIEWHE







HYB: 420,
MHGW2

RIIPRHLQLGGGGSGGGGSIQRTPKIQVYSRHPAEN

372


Hybridoma,
(H2A-2(G4S)-

GKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEH




OMT rats
b2m-3(G4S)-

SDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHV





HLA-G5-G4S-

TLSQPKIVKWDRDMGGGGSGGGGSGGGGSGSHS





His-Avi)
MRYFSAAVSRPGRGEPRFIAMGYVDDTQFVRFDSD





SASPRMEPRAPWVEQEGPEYWEEETRNTKAHAQT





DRMNLQTLRGYYNQSEASSHTLQWMIGCDLGSDG





RLLRGYEQYAYDGKDYLALNEDLRSWTAADTAAQ





ISKRKCEAANVAEQRRAYLEGTCVEWLHRYLENG





KEMLQRADPPKTHVTHHPVFDYEATLRCWALGFY





PAEIILTWQRDGEDQTQDVELVETRPAGDGTFQKW





AAVVVPSGEEQRYTCHVQHEGLPEPLMLRWSKEG





DGGIMSVRESRSLSEDLGGGGSHHHHHHGSGLNDIF






EAQKIEWHE







HYB: 420,

FLHLA-G1

GSHSMRYFSAAVSRPGRGEPRFIAMGYVDDTQFVR
373


Hybridoma,

FDSDSACPRMEPRAPWVEQEGPEYWEEETRNTKAH



OMT rats

AQTDRMNLQTLRGYYNQSEASSHTLQWMIGCDLG





SDGRLLRGYEQYAYDGKDYLALNEDLRSWTAADT





AAQISKRKCEAANVAEQRRAYLEGTCVEWLHRYL





ENGKEMLQRADPPKTHVTHHPVFDYEATLRCWAL





GFYPAEIILTWQRDGEDQTQDVELVETRPAGDGTFQ





KWAAVVVPSGEEQRYTCHVQHEGLPEPLMLRWKQ





SSLPTIPIMGIVAGLVVLAAVVTGAAVAAVLWRKK





SSD






HYB: 423,
pDR000057441
DNA sequence, primary transcript:
374


Hybridoma,
(H2A-
ATGGCTTGGGTGTGGACATTGTTGTTTCTGATGGC



OMT rats
3(G4S)-b2m-
TGCTGCTCAATCTATTCAAGCTAGGATCATTCCTA




3G4S-HLA-
GACATCTGCAACTCGGAGGCGGAGGCAGCGGAG




G1-C42S)
GAGGAGGATCTGGAGGAGGAGGATCTATTCAGA





GGACACCTAAGATTCAAGTGTACTCTAGACATCC





TGCTGAGAACGGCAAGAGCAACTTTCTGAACTGC





TATGTGAGCGGCTTTCATCCTAGCGATATTGAAG





TGGATCTGCTGAAAAACGGCGAACGTATTGAAAA





AGTGGAACATAGCGATCTGAGCTTTAGCAAAGAT





TGGAGCTTTTATCTGCTGTATTATACCGAATTTAC





CCCTACCGAAAAAGATGAATATGCCTGCAGAGTG





AACCATGTGACCCTGAGCCAGCCTAAGATTGTGA





AATGGGATAGAGATATGGGAGGAGGAGGCTCTG





GAGGAGGAGGATCTGGAGGCGGAGGCAGCGGCT





CTCATAGCATGAGATATTTTAGCGCTGCAGTGAG





CCGTCCTGGACGTGGAGAACCTAGGTTTATTGCT





ATGGGCTATGTGGATGATACCCAGTTTGTGAGGT





TTGATAGCGATAGCGCCTCTCCTAGGATGGAACC





TAGAGCTCCCTGGGTGGAACAGGAAGGCCCAGA





ATATTGGGAAGAAGAAACCAGGAACACCAAAGC





ACATGCTCAGACCGATCGTATGAACCTGCAGACC





CTGAGAGGCTATTATAACCAGAGCGAAGCATCTA





GCCATACCCTGCAGTGGATGATTGGCTGCGATCT





GGGCAGCGATGGCAGACTGCTGAGAGGCTATGA





ACAGTATGCATATGATGGCAAAGATTATCTGGCA





CTGAACGAAGATCTGAGGAGCTGGACCGCTGCTG





ATACCGCTGCTCAGATTAGCAAGAGGAAGTGCGA





AGCTGCTAACGTGGCTGAACAGAGACGCGCATAT





CTGGAAGGCACCTGCGTGGAATGGCTGCATAGGT





ATCTGGAAAACGGCAAAGAAATGCTGCAGAGAG





CTGATCCTCCTAAAACCCATGTGACCCATCATCCT





GTGTTTGATTATGAAGCTACCCTGAGGTGCTGGG





CTCTGGGCTTCTATCCTGCTGAGATTATTCTGACC





TGGCAGAGAGATGGAGAAGATCAGACTCAAGAT





GTCGAGTTGGTCGAGACTAGACCTGCTGGAGATG





GCACCTTTCAGAAGTGGGCAGCTGTTGTCGTGCC





TAGCGGAGAAGAACAGAGATATACCTGCCATGTG





CAGCATGAAGGCCTGCCTGAACCTCTGATGCTGA





GGTGGAAACAGAGCAGCTTGCCTACTATTCCTAT





TGGAGGAGGAGGATCTCACCATCATCATCATCAC





TGA





Mature Protein sequence:
375





QARIIPRHLQLGGGGSGGGGSGGGGSIQRTPKIQVY







SRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGE







RIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEY







ACRVNHVTLSQPKIVKWDRDMGGGGSGGGGSGG






GGSGSHSMRYFSAAVSRPGRGEPRFIAMGYVDDTQ





FVRFDSDSASPRMEPRAPWVEQEGPEYWEEETRNT





KAHAQTDRMNLQTLRGYYNQSEASSHTLQWMIGC





DLGSDGRLLRGYEQYAYDGKDYLALNEDLRSWTA





ADTAAQISKRKCEAANVAEQRRAYLEGTCVEWLH





RYLENGKEMLQRADPPKTHVTHEIPVFDYEATLRC





WALGFYPAEIILTWQRDGEDQTQDVELVETRPAGD





GTFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLML





RWKQSSLPTIPIGGGGSHHHHHH






HYB: 421,

DNA sequence, primary transcript:
376


Hybridoma,

ATGGCTTGGGTGTGGACATTGTTGTTTCTGATGGC



OMT rats

TGCTGCTCAATCTATTCAAGCTAGGATCATTCCTA





GACATCTGCAACTCGGAGGCGGAGGCAGCGGAG





GAGGAGGATCTGGAGGAGGAGGATCTATTCAGA





GGACACCTAAGATTCAAGTGTACTCTAGACATCC





TGCTGAGAACGGCAAGAGCAACTTTCTGAACTGC





TATGTGAGCGGCTTTCATCCTAGCGATATTGAAG





TGGATCTGCTGAAAAACGGCGAACGTATTGAAAA





AGTGGAACATAGCGATCTGAGCTTTAGCAAAGAT





TGGAGCTTTTATCTGCTGTATTATACCGAATTTAC





CCCTACCGAAAAAGATGAATATGCCTGCAGAGTG





AACCATGTGACCCTGAGCCAGCCTAAGATTGTGA





AATGGGATAGAGATATGGGAGGAGGAGGCTCTG





GAGGAGGAGGATCTGGAGGCGGAGGCAGCGGCT





CTCATAGCATGAGATATTTTAGCGCTGCAGTGAG





CCGTCCTGGACGTGGAGAACCTAGGTTTATTGCT





ATGGGCTATGTGGATGATACCCAGTTTGTGAGGT





TTGATAGCGATAGCGCCTCTCCTAGGATGGAACC





TAGAGCTCCCTGGGTGGAACAGGAAGGCCCAGA





ATATTGGGAAGAAGAAACCAGGAACACCAAAGC





ACATGCTCAGACCGATCGTATGAACCTGCAGACC





CTGAGAGGCTATTATAACCAGAGCGAAGCATCTA





GCCATACCCTGCAGTGGATGATTGGCTGCGATCT





GGGCAGCGATGGCAGACTGCTGAGAGGCTATGA





ACAGTATGCATATGATGGCAAAGATTATCTGGCA





CTGAACGAAGATCTGAGGAGCTGGACCGCTGCTG





ATACCGCTGCTCAGATTAGCAAGAGGAAGTGCGA





AGCTGCTAACGTGGCTGAACAGAGACGCGCATAT





CTGGAAGGCACCTGCGTGGAATGGCTGCATAGGT





ATCTGGAAAACGGCAAAGAAATGCTGCAGAGAG





CTGATCCTCCTAAAACCCATGTGACCCATCATCCT





GTGTTTGATTATGAAGCTACCCTGAGGTGCTGGG





CTCTGGGCTTCTATCCTGCTGAGATTATTCTGACC





TGGCAGAGAGATGGAGAAGATCAGACTCAAGAT





GTCGAGTTGGTCGAGACTAGACCTGCTGGAGATG





GCACCTTTCAGAAGTGGGCAGCTGTTGTCGTGCC





TAGCGGAGAAGAACAGAGATATACCTGCCATGTG





CAGCATGAAGGCCTGCCTGAACCTCTGATGCTGA





GGTGGAAACAGAGCAGCTTGCCTACTATTCCTAT





TGGAGGAGGAGGATCTCACCATCATCATCATCAC





TGA





Mature Protein sequence:
377





RIIPRHLQLGGGGSGGGGSGGGGSIQRTPKIQVYSR







HPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERI







EKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYAC







RVNHVTLSQPKIVKWDRDMGGGGSGGGGSGGGG






SGSHSMRYFSAAVSRPGRGEPRFIAMGYVDDTQFV





RFDSDSASPRMEPRAPWVEQEGPEYWEEETRNTKA





HAQTDRMNLQTLRGYYNQSEASSHTLQWMIGCDL





GSDGRLLRGYEQYAYDGKDYLALNEDLRSWTAAD





TAAQISKRKCEAANVAEQRRAYLEGTCVEWLHRY





LENGKEMLQRADPPKTHVTHHPVFDYEATLRCWA





LGFYPAEIILTWQRDGEDQTQDVELVETRPAGDGTF





QKWAAVVVPSGEEQRYTCHVQHEGLPEPLMLRWK





QSSLPTIPIGGGGSHHHHHH






HYB: 420,
pDR000066413
GSHSMRYFYTAVSRPGRGQPRFIAVGYVDDTQFVR
378


Hybridoma,
(Mafa-AG-
FDSDAESPRMEPRAPWVEQEGPEYWDRETQNMKT



OMT rats
ECD-G4S-
ATQTYQANLRTLLRYYNQSEAGSHTFQKMYGCDL




6XHis-GS-Avi
GPDGRLLRGYEQFAYDGRDYIILNEDLRSWTAADM




T)
AAQNTQRKWEAAGAAEQHRTYLEGECLEWLRRYL





ENGKETLQRADPPKTNVTHHPVSDYEATLRCWALG





FYPAEITLTWQRDGEEQTEDTELVETRPTGDGTFQK





WAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEPSS





QSTILIGGGGSHHHHHHGSGLNDIFEAQKIEWHE




pDR000047703
IQRTPKIQVYSRHPPENGKPNFLNCYVSGFHPSDIEV
379



(Cynomolgus
DLLKNGEKMGKVEHSDLSFSKDWSFYLLYYTEFTP




monkey beta 2-
NEKDEYACRVNHVTLSGPRTVKWDRDM




microglobulin





(b2M))





H2A peptide is underlined.


The β2M subunit is highlighted bold.


His, Avi-, and Gly-Ser tags are italicized.






For HYB:420, OmniRats were immunized twice weekly for a total of 12 immunization boosts by following a Repetitive Immunizations Multiple Sites (RIMMS) protocol with recombinant human HLA-G1, human HLA-G5 and cynomolgus monkey Mafa-AG (homolog of HLA-G1) proteins. A final cell boost was performed using a hHLA-G1 K562 expressing cell line derived from K562 cells (ATCC© CCL-243™). Sera titers were determined via a solid phase ELISA with immunogen being coated on the plate. Draining lymph nodes were harvested for lymphocytes fusion with FO myeloma cells (ATCC® CRL-1646™) for hybridoma generation.


For HYB:423, OmniRats were immunized with human HLA-G pDNA (pDR000057441 (Table 3); C>S variant) via the tibialis muscle immediately followed by in vivo electroporation multiple times. Rats received a final boost of a combination of both human and cyno HLA-G over expressing cells. Draining lymph nodes were collected and fused with FO myeloma cells for hybridoma generation.


For HYB:421, OmniRats were immunized with human HLA-G pDNA into each tibialis muscle followed by in-vivo electroporation. Titers were assessed and ranged from 0-800 at Day 25. Rats were rested for several months and then further immunized with pDNA followed by a final boost with K562 cells exogenously overexpressing human HLA-G. Lower draining lymph nodes were used in downstream hybridoma generation.


To select antibody clones for downstream screening, hybridoma supernatants were screened for their abilities to bind cells expressing human HLA-G only and not to cells exogenously expressing HLA-A, HLA-B, and HLA-C, or wild type K562 cells, which do not express cell surface MHC class I antigens. Supernatants which displayed >20-fold higher binding to K562-HLA-G and 10-fold lower binding to K562-HLA-A/B/C (compared to isotype control) were selected for v-region sequencing and cloning. Monoclonal antibodies were generated in both silent format—lacking effector function (IgG4 PAA or IgG1 AAS, where “PAA” indicates P228S, L234A, L235A and “AAS” indicates mutation of L234A, L235A, D265S in EU numbering) and in active format—having normal effector function (IgG1). Antibodies were expressed in the supernatant from CHO cells and isolated by protein A affinity chromatography. Recombinant antibodies were then re-screened (as described above) for selectivity to HLA-G expressing cells as well as for their abilities to bind recombinant HLA-G (MHGW2). From these analyses, a panel of 48 unique v-regions was identified and 8 unique v-regions were selected for further analysis. Two of these 8 v-regions, derived from MHGB688 and MHGB694 were germline-optimized to result in MHGB738 and MHGB737, respectively.


Example 8. Structural Characterization of Anti HLA-G Antibodies

Variable domains of the select anti-HLA-G antibodies were expressed in a Fab format, a scFv format in the VH-linker-VL orientation or a scFv format in VL-linker-VH orientation.


Variable Domains VH, VL and CDRs

Table 43 shows the VH and VL amino acid sequences of selected anti-HLA-G antibodies. Table 44 shows the Kabat HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies. Table 45 shows the Kabat LCDR1, LCDR2 and LCDR3 of the selected anti-HLA-G antibodies. Table 46 shows the Chothia HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies. Table 47 shows the Chothia LCDR1, LCDR2 and LCDR3 of the anti-HLA-G. Table 48 shows the IMGT HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies. Table 49 shows the IMGT LCDR1, LCDR2 and LCDR3 of the anti-HLA-G. Table 50 shows the AbM HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies. Table 51 shows the AbM LCDR1, LCDR2 and LCDR3 of the anti-HLA-G.









TABLE 43







Variable region sequences of selected anti-HLA-G antibodies.













SEQ

SEQ




ID

ID


Antibody
VH
No:
VL
No:





MHGB665
QVQLQQSGPGLVKPSQTLSLT
380
DIVMTQSPDSLAVSLGERATI
381


MHGB732
CAISGDSVSSNSAAWNWIRQS

NCKSSQSVLHSSNNKNYLTW




PSRGLEWLGRTYYRSKWYND

FQQKPGQPPKLLIYWASTRES




YAVSVKSRITINPDTSKNQISL

GVPDRFSGSGSGTDFTLTISSL




QLNSVTPEDTAVYYCAGDRR

QAEDVAVYYCHQYYSTPPTF




YGIVGLPFAYWGQGTLVTVSS

GQGTKVEIK






MHGB668
QVQLQQSGPGLVKPSQTLSLT
382
DIVMTQSPDSLAVSLGERATI
383



CAISGDSVSNNSAAWNWIRQS

NCKSSQSVLYSSKNKNYLAW




PSRGLEWLGRTYYRSKWYND

YQQKPGQPPKLLIYWASTRES




YAVSVKSRITINPDTSKNQFSL

GVPDRFSGSGSGTDFTLTISSL




QLNSVTPEDTAVYYCARYGSG

QAEDVAVYYCQQYYSTFPYT




TLLFDYWGQGTLVTVSS

FGQGTKLEIK






MHGB669
QVQLQQSGPGLVRPSQTLSVT
384
DIVMTQSPDSLAVSLGERATI
385



CAISGDSVSSNSASWNWIRQSP

NCKSSQSVLFRSNNKNYLAW




SRGLEWLGRTYYRSEWFNDY

FQQKPGQPPKLLIYWASTRES




AVSVKSRVTINPDTSKNQLSL

GVPDRFSGSGSGTDFTLTISSL




QLNSVIPEDTAVYYCAREARI

QAEDVAVYYCQQYYSTPRTF




GVAGKGFDYWGQGTLVTVSS

GQGTKVEIK






MHGB672
QVQLQQSGPGLVKPSQTLSLT
386
DIVMTQSPDSLAVSLGERATI
387



CAISGDSVSSNRAAWNWIRQT

NCKSSQSVLFSSNNKNYLAW




PSRGLEWLGRTYYRSEWYND

YQQKPGQPPNLLIYWASTRES




YAVSVKSRITINPDTSKNQFSL

GVPDRFSGSVSGTDFTLTISSL




QLNSVTPEDTAVYYCARVRA

QAEDVAIYYCQQYHSTPWTF




AVPFDYWGQGTLVTVSS

GQGTKVEIK






MHGB687
QLQLQESGPGLVKPSETLSLM
388
DIVMTQSPDSLAVSLGERATI
389



CTVSGGSITSSSYYWGWIRQPP

NCKSSQSVLYSSSNKSYLAW




GKGLEWIGNIYYSGTTYYNPS

YQQRPGQPPKLLIYWASTRES




LKSRVTISVDTSKNQFSLKLSS

GVPDRFSGSGSGTDFTLTISSL




VTAADTAVYYCAAGARDFDS

QAEDVAVYYCQQYYSTPRM




WGQGSLVTVSS

YTFGQGTKLEIK






MHGB688
EVQLLESGPGLVKPSQTLSLTC
390
DIVMTQSPDSLAVSLGERATI
391



VISGDSVSSNRAAWNWIRQSP

NCKSSQSVLFSSNKKNYLAW




SRGLEWLGRTYYRSKWYNDY

YQQKPGQPPKLLIYWASTRES




AVSVKSRITINSDTSKNQISLQL

GVPDRFSGSGSGTDFTLTISSL




NSVTPEDTAVYYCARVRPGIP

QAEDVAVYYCQQYNSTPWT




FDYWGQGTPVTVSS

FGQGTKVEIK






MHGB689
QVQLQQSGPGLVKPSQTLSLT
392
DIQMTQSPDSLAVSLGERATI
393



CVISGDSVSSNRAAWNWIRQS

NCESSQSVLFSSNKKNYLAW




PSRGLEWLGRTYYRSKWYND

YQQKPGQPPKLLIYWASTRES




YAVSVKSRITINSDTSKNQISL

GVPDRFSGSGSGTDFTLTINR




QLNSVTPEDTAVYYCARVRPG

LQAEDVAVYYCQQYNSTPW




IPFDYWGQGTTVTVSS

TFGQGTKVEIK






MHGB694
EVQLLESGGGLVQPGGSLRLS
394
DIQMTQSPSTLSASVGDRVTI
395



CAASGFTFSSYAMHWVRQAP

TCRASQSISSWLAWYQQKPG




GKGLDWVSGISGSGFSTYYVD

KAPKLLIYKASSLESGVPSRFS




SVKGRFTISRDNSKHTLYLQM

GSGSGTEFTLTISSLQPDDFAT




NSLRAEDTAVYYCAKDNLVA

YYCQQYNSYSLTFGGGTKVD




GTVFDYWGQGTLVTVSS

IK






MHGB737
EVQLLESGGGLVQPGGSLRLS
396
DIQMTQSPSTLSASVGDRVTI
397


(GL-
CAASGFTFSSYAMEIWVRQAP

TCRASQSISSWLAWYQQKPG



optimized
GKGLEWVSGISGSGFSTYYVD

KAPKLLIYKASSLESGVPSRFS



B694)
SVKGRFTISRDNSKNTLYLQM

GSGSGTEFTLTISSLQPDDFAT




NSLRAEDTAVYYCAKDNLVA

YYCQQYNSYSLTFGGGTKVD




GTVFDYWGQGTLVTVSS

IK






MHGB738
QVQLQQSGPGLVKPSQTLSLT
398
DIVMTQSPDSLAVSLGERATI
399


(GL
CAISGDSVSSNRAAWNWIRQS

NCKSSQSVLFSSNNKNYLAW



optimized
PSRGLEWLGRTYYRSKWYND

YQQKPGQPPKLLIYWASTRES



B688
YAVSVKSRITINPDTSKNQISL

GVPDRFSGSVSGTDFTLTISSL




QLNSVTPEDTAVYYCARVRPG

QAEDVAVYYCQQYHSTPWT




IPFDYWGQGTPVTVSS

FGQGTKVEIK
















TABLE 44







Kabat HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G selected antibodies.











Kabat HCDR1
Kabat HCDR2
Kabat HCDR3















SEQ

SEQ

SEQ




ID

ID

ID


mAb name
Sequence
NO:
Sequence
NO:
Sequence
NO:





MHGB665
SNSAAWN
400
RTYYRSKWYNDYAVSVKS
401
DRRYGIVGLPFAY
402





MHGB668
NNSAAWN
403
RTYYRSKWYNDYAVSVKS
401
YGSGTLLFDY
405





MHGB669
SNSASWN
406
RTYYRSEWFNDYAVSVKS
407
EARIGVAGKGFDY
408





MHGB672
SNRAAWN
409
RTYYRSEWYNDYAVSVKS
410
VRAAVPFDY
411





MHGB687
SSSYYWG
412
NIYYSGTTYYNPSLKS
413
GARDFDS
414





MHGB688
SNRAAWN
409
RTYYRSKWYNDYAVSVKS
401
VRPGIPFDY
415





MHGB689
SNRAAWN
409
RTYYRSKWYNDYAVSVKS
401
VRPGIPFDY
415





MHGB694
SYAMH
416
GISGSGFSTYYVDSVKG
417
DNLVAGTVFDY
418





MHGB732
SNSAAWN
400
RTYYRSKWYNDYAVSVKS
401
DRRYGIVGLPFAY
402





MHGB737
SYAMH
416
GISGSGFSTYYVDSVKG
417
DNLVAGTVFDY
418





MHGB738
SNRAAWN
409
RTYYRSKWYNDYAVSVKS
401
VRPGIPFDY
415
















TABLE 45







Kabat LCDR1, LCDR2 and LCDR3 of the selected anti-HLA-G antibodies.











Kabat LCDR1
Kabat LCDR2
Kabat LCDR3















SEQ

SEQ

SEQ




ID

ID

ID


mAb name
Sequence
NO:
Sequence
NO:
Sequence
NO:





MHGB665
KSSQSVLHSSNNKNYLT
419
WASTRES
420
HQYYSTPPT
421





MHGB668
KSSQSVLYSSKNKNYLA
422
WASTRES
420
QQYYSTFPYT
423





MHGB669
KSSQSVLFRSNNKNYLA
424
WASTRES
420
QQYYSTPRT
425





MHGB672
KSSQSVLFSSNNKNYLA
426
WASTRES
420
QQYHSTPWT
427





MHGB687
KSSQSVLYSSSNKSYLA
428
WASTRES
420
QQYYSTPRMYT
429





MHGB688
KSSQSVLFSSNKKNYLA
430
WASTRES
420
QQYNSTPWT
431





MHGB689
ESSQSVLFSSNKKNYLA
432
WASTRES
420
QQYNSTPWT
431





MHGB694
RASQSISSWLA
433
KASSLES
434
QQYNSYSLT
435





MHGB732
KSSQSVLHSSNNKNYLT
419
WASTRES
420
HQYYSTPPT
421





MHGB737
RASQSISSWLA
433
KASSLES
434
QQYNSYSLT
435





MHGB738
KSSQSVLFSSNNKNYLA
426
WASTRES
420
QQYHSTPWT
427
















TABLE 46







Chothia HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies.











Chothia HCDR1
Chothia HCDR2
Chothia HCDR3















SEQ

SEQ ID

SEQ


mAb name
Sequence
ID NO:
Sequence
NO:
Sequence
ID NO:





MHGB665
GDSVSSNSA
436
YYRSKWY
437
DRRYGIVGLPFA
438





MHGB668
GDSVSNNSA
439
YYRSKWY
437
YGSGTLLFD
440





MHGB669
GDSVSSNSA
436
YYRSEWF
441
EARIGVAGKGFD
442





MHGB672
GDSVSSNRA
443
YYRSEWY
444
VRAAVPFD
445





MHGB687
GGSITSSSY
446
YYSGT
447
GARDFD
448





MHGB688
GDSVSSNRA
443
YYRSKWY
437
VRPGIPFD
449





MHGB689
GDSVSSNRA
443
YYRSKWY
437
VRPGIPFD
449





MHGB694
GFTFSSY
450
SGSGFS
451
DNLVAGTVFD
452





MHGB732
GDSVSSNSA
436
YYRSKWY
437
DRRYGIVGLPFA
438





MHGB737
GFTFSSY
450
SGSGFS
451
DNLVAGTVFD
452





MHGB738
GDSVSSNRA
443
YYRSKWY
437
VRPGIPFD
449
















TABLE 47







Chothia LCDR1, LCDR2 and LCDR3 of the anti-HLA-G antibodies.











Chothia LCDR1
Chothia LCDR2
Chothia LCDR3















SEQ

SEQ

SEQ


mAb name
Sequence
ID NO:
Sequence
ID NO:
Sequence
ID NO:





MHGB665
SQSVLHSSNNKNY
453
WAS
454
YYSTPP
455





MHGB668
SQSVLYSSKNKNY
456
WAS
454
YYSTFPY
457





MHGB669
SQSVLFRSNNKNY
458
WAS
454
YYSTPR
459





MHGB672
SQSVLFSSNNKNY
460
WAS
454
YHSTPW
461





MHGB687
SQSVLYSSSNKSY
462
WAS
454
YYSTPRMY
728





MHGB688
SQSVLFSSNKKNY
463
WAS
454
YNSTPW
464





MHGB689
SQSVLFSSNKKNY
463
WAS
454
YNSTPW
464





MHGB694
SQSISSW
465
KAS
466
YNSYSL
467





MHGB732
SQSVLHSSNNKNY
453
WAS
454
YYSTPP
455





MHGB737
SQSISSW
465
KAS
466
YNSYSL
467





MHGB738
SQSVLFSSNNKNY
460
WAS
454
YHSTPW
461
















TABLE 48







IMGT HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies.











IMGT HCDR1
IMGT HCDR2
IMGT HCDR3















SEQ ID

SEQ ID

SEQ ID


mAb name
Sequence
NO:
Sequence
NO:
Sequence
NO:





MHGB665
GDSVSSNSAA
468
TYYRSKWYN
469
AGDRRYGIVGLPFAY
470





MHGB668
GDSVSNNSAA
471
TYYRSKWYN
469
ARYGSGTLLFDY
472





MHGB669
GDSVSSNSAS
473
TYYRSEWFN
474
AREARIGVAGKGFDY
475





MHGB672
GDSVSSNRAA
476
TYYRSEWYN
477
ARVRAAVPFDY
478





MHGB687
GGSITSSSYY
479
IYYSGTT
480
AAGARDFDS
481





MHGB688
GDSVSSNRAA
476
TYYRSKWYN
469
ARVRPGIPFDY
482





MHGB689
GDSVSSNRAA
476
TYYRSKWYN
469
ARVRPGIPFDY
482





MHGB694
GFTFSSYA
483
ISGSGFST
484
AKDNLVAGTVFDY
485





MHGB732
GDSVSSNSAA
468
TYYRSKWYN
469
AGDRRYGIVGLPFAY
470





MHGB737
GFTFSSYA
483
ISGSGFST
484
AKDNLVAGTVFDY
485





MHGB738
GDSVSSNRAA
476
TYYRSKWYN
469
ARVRPGIPFDY
482
















TABLE 49







IMGT LCDR1, LCDR2 and LCDR3 of the anti-HLA-G antibodies.











IMGT LCDR1
IMGT LCDR2
IMGT LCDR3















SEQ

SEQ

SEQ


mAb name
Sequence
ID NO:
Sequence
ID NO:
Sequence
ID NO:





MHGB665
QSVLHSSNNKNY
486
WAS
454
HQYYSTPPT
487





MHGB668
QSVLYSSKNKNY
488
WAS
454
QQYYSTFPYT
489





MHGB669
QSVLFRSNNKNY
490
WAS
454
QQYYSTPRT
491





MHGB672
QSVLFSSNNKNY
492
WAS
454
QQYHSTPWT
493





MHGB687
QSVLYSSSNKSY
494
WAS
454
QQYYSTPRMYT
495





MHGB688
QSVLFSSNKKNY
496
WAS
454
QQYNSTPWT
497





MHGB689
QSVLFSSNKKNY
496
WAS
454
QQYNSTPWT
497





MHGB694
QSISSW
498
KAS
466
QQYNSYSLT
499





MHGB732
QSVLHSSNNKNY
486
WAS
454
HQYYSTPPT
487





MHGB737
QSISSW
498
KAS
466
QQYNSYSLT
499





MHGB738
QSVLFSSNNKNY
492
WAS
454
QQYHSTPWT
493
















TABLE 50







AbM HCDR1, HCDR2 and HCDR3 of selected anti-HLA-G antibodies.











AbM HCDR1
AbM HCDR2
AbM HCDR3















SEQ ID

SEQ ID

SEQ


mAb name
Sequence
NO:
Sequence
NO:
Sequence
ID NO:





MHGB665
GDSVSSNSAAWN
500
RTYYRSKWYND
501
DRRYGIVGLPFAY
502





MHGB668
GDSVSNNSAAWN
503
RTYYRSKWYND
501
YGSGTLLFDY
504





MHGB669
GDSVSSNSASWN
505
RTYYRSEWFND
506
EARIGVAGKGFDY
507





MHGB672
GDSVSSNRAAWN
508
RTYYRSEWYND
509
VRAAVPFDY
510





MHGB687
GGSITSSSYYWG
511
NIYYSGTTY
512
GARDFDS
513





MHGB688
GDSVSSNRAAWN
508
RTYYRSKWYND
501
VRPGIPFDY
514





MHGB689
GDSVSSNRAAWN
508
RTYYRSKWYND
501
VRPGIPFDY
514





MHGB694
GFTFSSYAMH
515
GISGSGFSTY
516
DNLVAGTVFDY
517





MHGB732
GDSVSSNSAAWN
500
RTYYRSKWYND
501
DRRYGIVGLPFAY
502





MHGB737
GFTFSSYAMH
515
GISGSGFSTY
516
DNLVAGTVFDY
517





MHGB738
GDSVSSNRAAWN
508
RTYYRSKWYND
501
VRPGIPFDY
514
















TABLE 51







AbM LCDR1, LCDR2 and LCDR3 of the anti-HLA-G antibodies.











AbM LCDR1
AbM LCDR2
AbM LCDR3















SEQ

SEQ

SEQ


mAb name
Sequence
ID NO:
Sequence
ID NO:
Sequence
ID NO:





MHGB665
KSSQSVLHSSNNKNYLT
518
WASTRES
519
HQYYSTPPT
520





MHGB668
KSSQSVLYSSKNKNYLA
521
WASTRES
519
QQYYSTFPYT
522





MHGB669
KSSQSVLFRSNNKNYLA
523
WASTRES
519
QQYYSTPRT
524





MHGB672
KSSQSVLFSSNNKNYLA
525
WASTRES
519
QQYHSTPWT
526





MHGB687
KSSQSVLYSSSNKSYLA
527
WASTRES
519
QQYYSTPRMYT
528





MHGB688
KSSQSVLFSSNKKNYLA
529
WASTRES
519
QQYNSTPWT
530





MHGB689
ESSQSVLFSSNKKNYLA
531
WASTRES
519
QQYNSTPWT
530





MHGB694
RASQSISSWLA
532
KASSLES
533
QQYNSYSLT
534





MHGB732
KSSQSVLHSSNNKNYLT
518
WASTRES
519
HQYYSTPPT
520





MHGB737
RASQSISSWLA
532
KASSLES
533
QQYNSYSLT
534





MHGB738
KSSQSVLFSSNNKNYLA
525
WASTRES
519
QQYHSTPWT
526









Germline Optimization

The v-region sequences of the antibodies were analyzed for risks of potential post-translational modifications, for germline fitness, and for their abilities to format as scFv. Two antibodies, MHGB694 and MHGB688 were germline-optimized. The v-region of MHGB694 contained two germline mutations (E46D and N77H), and this v-region was thus was optimized by back-mutation of these residues to the germline sequence at those sites to generate MHGB737 variable region by mutation of D46E and H77N in the VH domain. The v-region of MHGB688 was similarly optimized by mutation of E1Q, L5Q, E6Q, and S71P in the VH domain and by mutation of K30E, G66V in the VL. We found that MHGB688 also contained an “NS” motif at position 92-93 (Kabat) which presents a risk for deamidation. Since the VL of MHGB672 had identical LC-CDRs except that it contained “HS” at positions 92-93, we mutated N92H. This combination of changes resulted in MHGB738.


Fab-Fc and scFvs


The HLA-G specific VH/VL domains were engineered to be expressed either in an antibody format, or as an scFv, or as an arm of a bi-specific (as either Fab-Fc or scFv-Fc). The antibody format and the Fab-Fc bi-specific arm format included a heavy chain as VH-CH1-hinge-CH2-CH3 and the light chain as VL-CL and expressed as IgG2 or IgG4. The scFv-Fc format included either the VH-Linker-VL-Fc or VL-linker-VH-Fc orientations. The linker that is used in the scFv was the linker of SEQ ID NO: 31 described above. The scFv-Fc and Fab-Fc were used to generate bispecific antibodies as described in Example 14.


Table 52 shows the HC amino acid sequences of selected anti-HLA-G antibodies. Table 53 shows the LC amino acid sequences of selected anti-HLA-G antibodies. Table 54 summarizes the HC and LC DNA SEQ ID NOs of selected anti-HLA-G antibodies. Table 55 shows the amino acid sequences of selected scFvs in VH-linker-VL or VL-linker-VH orientation. Table 56 shows the amino acid sequences of selected scFv-Fc. Table 57 shows the scFv and scFv-Fc DNA SEQ ID NOs of selected anti-HLA-G antibodies in the scFv-Fc format.









TABLE 52







Amino acid sequence of the HC (VH-CH1-hinge-CH2-CH3) of selected anti-HLA-G


antibodies in a mAb format.









HLA-G




HEAVY
SEQ



CHAIN
ID NO:
AMINO ACID SEQUENCE





MHGB665 HC
535
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVY




YCAGDRRYGIVGLPFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE




SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK





MHGB668 HC
536
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSNNSAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVY




YCARYGSGTLLFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLSPGK





MHGB669 HC
537
QVQLQQSGPGLVRPSQTLSVTCAISGDSVSSNSASWNWIRQSPSRGLE




WLGRTYYRSEWFNDYAVSVKSRVTINPDTSKNQLSLQLNSVIPEDTAVY




YCAREARIGVAGKGFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE




SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPGK





MHGB672 HC
538
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQTPSRGLE




WLGRTYYRSEVVYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVY




YCARVRAAVPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGK





MHGB687 HC
539
QLQLQESGPGLVKPSETLSLMCTVSGGSITSSSYYWGWIRQPPGKGLE




WIGNIYYSGTTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA




AGARDFDSWGQGSLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLV




KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT




QTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK





MHGB688 HC
540
EVQLLESGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVY




YCARVRPGIPFDYWGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGK





MHGB689 HC
541
QVQLQQSGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVY




YCARVRPGIPFDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGK





MHGB694 HC
542
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLDW




VSGISGSGFSTYYVDSVKGRFTISRDNSKHTLYLQMNSLRAEDTAVYYC




AKDNLVAGTVFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPGK





MHGB732 HC
543
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVY




YCAGDRRYGIVGLPFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG




GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE




SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLSPG





MHGB737 HC
544
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEW




VSGISGSGFSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




AKDNLVAGTVFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPG





MHGB738 HC
545
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLE




WLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVY




YCARVRPGIPFDYWGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN




HYTQKSLSLSPG
















TABLE 53







Amino acid sequences of the LC (VL-CL) of selected


anti-HLA-G antibodies in a mAb (Fab-Fc) format.









HLA-G
SEQ ID



LIGHT CHAIN
NO:
AMINO ACID SEQUENCE





MHGB665
546
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCHQYYSTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS




VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB668
547
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSKNKNYLAVVYQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQQYYSTFPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTA




SVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB669
548
DIVMTQSPDSLAVSLGERATINCKSSQSVLFRSNNKNYLAWFQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQQYYSTPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS




VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB672
549
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAVVYQQK




PGQPPNLLIYWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAI




YYCQQYHSTPVVTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA




SVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB687
550
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSSNKSYLAVVYQQR




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQQYYSTPRMYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGT




ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB688
551
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNKKNYLAVVYQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQQYNSTPVVTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA




SVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB689
552
DIQMTQSPDSLAVSLGERATINCESSQSVLFSSNKKNYLAVVYQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTINRLQAEDVA




VYYCQQYNSTPVVTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGT




ASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY




SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB694
553
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAVVYQQKPGKAPK




LLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NSYSLTFGGGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN




NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS




KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB732
554
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQK




PGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCHQYYSTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS




VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL




SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB737
555
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAVVYQQKPGKAPK




LLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NSYSLTFGGGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN




NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS




KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB738
556
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAVVYQQK




PGQPPKLLIYWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAV




YYCQQYHSTPVVTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA




SVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS




LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
















TABLE 54





SEQ ID Nos of the cDNA sequences of HC and LC of


selected HLA-G antibodies

















Antibody
HC cDNA SEQ ID NO:
LC cDNA SEQ ID NO:





MHGB665
557
558





MHGB668
559
560





MHGB669
561
562





MHGB672
563
564





MHGB687
565
566





MHGB688
567
568





MHGB689
569
570





MHGB694
571
572





MHGB732
573
574





MHGB737
575
576





MHGB738
577
578










SEQ ID NO: 557


CAGGTGCAGCTGCAGCAGAGCGGCCCTGGACTGGTGAAGCCCAGCCAGACCCTGAG


CCTGACCTGCGCTATCAGCGGCGATAGCGTGAGCTCCAACAGCGCCGCCTGGAACTGGATCA


GGCAGAGCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGTA


CAACGACTACGCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCAAGAAC


CAGATCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCG


GCGACAGAAGGTACGGCATCGTGGGCCTGCCTTTCGCCTACTGGGGCCAGGGAACCCTGGT


GACCGTGAGCAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGA


GCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTG


ACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACA


GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCC


AGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGA


GCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGG


GACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT


GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT


ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACA


GCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG


TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAG


CCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGAC


CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGG


AGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTC


CGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG


AACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCT


CTCCCTGTCTCCGGGTAAA





SEQ ID NO: 558


GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGGCGAGAGAGC


CACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGCACAGCAGCAACAACAAGAACTACCTG


ACCTGGTTCCAGCAGAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCTAGCACCAG


AGAGTCCGGCGTGCCTGACAGGTTCAGCGGAAGCGGCAGCGGCACCGACTTCACCCTGACC


ATCAGCAGCCTGCAGGCCGAGGACGTGGCCGTGTACTACTGCCACCAGTACTACAGCACCCC


CCCTACCTTTGGCCAGGGCACCAAGGTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCT


TCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGA


ATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGG


TAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGC


ACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCC


ATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 559


CAGGTGCAGCTGCAGCAGAGCGGACCCGGCCTGGTGAAACCCAGCCAGACCCTGAG


CCTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAACAACAGCGCCGCCTGGAACTGGATC


AGGCAGAGCCCCAGCAGAGGCCTGGAATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGT


ACAACGACTACGCCGTGAGCGTGAAGAGCAGGATCACCATCAACCCCGACACCTCCAAGAA


CCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCA


GGTATGGCAGCGGCACCCTGCTGTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGTGAG


CAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTG


GGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTC


GTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG


GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTAC


ATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAAT


CTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCA


GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC


ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC


GGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC


CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTG


CAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGG


CAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACC


AGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG


AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCT


CCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC


TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC


TCCGGGTAAA





SEQ ID NO: 560


GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGGAGAGAGGGC


CACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTACAGCAGCAAGAACAAGAACTACCTG


GCCTGGTACCAGCAGAAACCCGGCCAGCCCCCCAAGCTGCTGATCTACTGGGCCAGCACAA


GGGAAAGCGGCGTGCCCGACAGATTCAGCGGAAGCGGCAGCGGCACCGACTTCACCCTGAC


CATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAGCAGTACTACAGCACCT


TCCCCTACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGCGTACGGTGGCTGCACCATCT


GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTG


CTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAAT


CGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAG


CAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTC


ACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 561


CAGGTGCAGCTGCAGCAGAGCGGACCCGGACTGGTGAGACCCAGCCAGACCCTGAG


CGTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAGCAACAGCGCCAGCTGGAACTGGATC


AGGCAGAGCCCCAGCAGAGGCCTGGAGTGGCTGGGAAGGACATACTACAGGAGCGAGTGG


TTCAACGACTACGCCGTGAGCGTGAAGAGCAGGGTGACCATCAACCCCGACACCAGCAAGA


ACCAGCTGAGCCTGCAGCTGAACAGCGTGATCCCCGAGGACACCGCCGTGTACTACTGCGCC


AGAGAGGCCAGAATCGGCGTGGCCGGCAAAGGCTTCGACTACTGGGGCCAGGGCACCCTGG


TGACAGTGTCCAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAG


AGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGT


GACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC


AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC


CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTG


AGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGG


GGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC


TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG


TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC


AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAA


GCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGA


CCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTG


GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT


CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGG


GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC


TCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 562


GACATCGTGATGACCCAGAGCCCTGACTCCCTGGCTGTGAGCCTGGGCGAGAGAGCC


ACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTCAGGAGCAACAACAAGAACTACCTGG


CCTGGTTCCAGCAGAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAGA


GAGAGCGGCGTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCACCGACTTTACCCTGACCA


TCAGCTCCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAGCAGTACTACAGCACCCCC


AGAACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTT


CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAA


TAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGT


AACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCA


CCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 563


CAGGTGCAGCTGCAGCAGAGCGGACCTGGCCTGGTGAAGCCCAGCCAGACCCTGAG


CCTGACATGCGCCATCAGCGGCGACAGCGTGAGCAGCAATAGGGCCGCCTGGAACTGGATC


AGGCAGACCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACATACTACAGGAGCGAGTGGT


ACAACGACTACGCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCAAGAA


CCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCA


GAGTGAGAGCCGCCGTGCCTTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGTGAGCAG


CGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGG


GCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGG


AACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACT


CTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCT


GCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTG


TGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCT


TCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC


GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG


TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGT


GGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG


GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGC


CCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGT


CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCA


ATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTC


TTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATG


CTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG


GTAAA





SEQ ID NO: 564


GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGGCGAGAGGGC


CACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTTTCCAGCAACAACAAGAACTACCTG


GCCTGGTACCAGCAGAAACCCGGCCAGCCCCCCAACCTGCTGATCTACTGGGCCAGCACCA


GAGAAAGCGGCGTGCCCGACAGGTTTAGCGGCAGCGTGAGCGGCACCGACTTCACCCTGAC


CATCAGCAGCCTGCAGGCCGAGGACGTGGCCATCTACTACTGCCAGCAGTACCACAGCACC


CCCTGGACATTCGGCCAGGGCACCAAGGTGGAGATCAAGCGTACGGTGGCTGCACCATCTG


TCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGC


TGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATC


GGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGC


AGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCA


CCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 565


CAGCTGCAGCTGCAGGAGAGCGGCCCTGGACTGGTGAAGCCCAGCGAGACCCTGAG


CCTGATGTGCACCGTGAGCGGCGGCAGCATCACCAGCAGCAGCTACTACTGGGGATGGATC


AGACAGCCCCCTGGCAAGGGCCTGGAGTGGATCGGCAACATCTACTACAGCGGCACCACCT


ACTACAACCCCAGCCTGAAGAGCAGGGTGACCATCAGCGTGGACACCAGCAAGAACCAGTT


CAGCCTGAAGCTGAGCAGCGTGACAGCTGCCGACACCGCCGTGTACTACTGTGCCGCCGGA


GCCAGAGACTTCGACAGCTGGGGACAGGGCAGCCTGGTGACCGTGTCCAGCGCCTCCACCA


AGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCC


CTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC


CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCA


GCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT


CACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTC


ACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC


CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA


CGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT


AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCC


TCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA


AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCA


CAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT


GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC


GGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA


GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 566


GACATCGTGATGACCCAGAGCCCTGATAGCCTGGCCGTGAGCCTGGGAGAGAGAGC


CACCATCAACTGCAAGTCCTCCCAGAGCGTGCTGTACAGCTCCAGCAACAAGAGCTACCTGG


CCTGGTACCAGCAGAGGCCCGGACAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAG


AGAGAGCGGCGTGCCTGACAGGTTTAGCGGCTCCGGCTCCGGCACCGACTTTACCCTGACCA


TCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAGCAGTACTACAGCACCCCC


AGGATGTACACCTTCGGCCAGGGCACCAAGCTGGAGATCAAGCGTACGGTGGCTGCACCAT


CTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCC


TGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCA


ATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTC


AGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAG


TCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 567


GAGGTGCAGCTGTTGGAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCA


CTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAACAGAGCTGCTTGGAACTGGATCAG


GCAGTCCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTAT


AATGATTATGCAGTATCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAAGAACCA


GATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAG


TGAGACCGGGGATCCCATTTGACTACTGGGGCCAGGGAACCCCGGTCACCGTCTCCTCAGCC


TCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC


AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACT


CAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTAC


TCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAA


CGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGAC


AAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCT


CTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG


TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT


CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC


CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG


GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA


AA





SEQ ID NO: 568


GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCC


ACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATTCAGCTCCAACAAAAAGAACTACTTAGC


TTGGTACCAGCAGAAACCAGGACAGCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGG


AATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATC


AGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATATAATAGTACTCCGTG


GACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTC


ATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAAT


AACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTA


ACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCAC


CCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCAT


CAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 569


CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCAGACCCTCTCA


CTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAACAGAGCTGCCTGGAACTGGATCAG


GCAGTCCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTAT


AATGATTATGCAGTTTCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAAGAACCA


GATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAG


TGAGACCGGGGATCCCTTTTGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTCAGCC


TCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC


AGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACT


CAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTAC


TCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAA


CGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGAC


AAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCT


CTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG


TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC


AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT


CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG


AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC


CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG


GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC


TCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC


CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA


AA





SEQ ID NO: 570


GACATCCAGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCC


ACCATCAACTGCGAGTCCAGCCAGAGTGTTTTATTCAGCTCCAACAAAAAGAACTACTTAGC


TTGGTACCAGCAGAAACCAGGACAGCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGG


AATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATC


AACCGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATATAATAGTACTCCGTG


GACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTC


ATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAAT


AACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTA


ACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCAC


CCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCAT


CAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 571


GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAG


ACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGCACTGGGTCCGCCAGGC


CCCAGGGAAGGGGCTGGACTGGGTCTCAGGTATTAGTGGTAGTGGCTTTAGCACATACTATG


TAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGCACACGCTGTATCTG


CAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATAATTTAG


TGGCTGGTACCGTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCCTCC


ACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC


GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG


GCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC


CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGT


GAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAA


ACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTT


CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG


TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGT


GCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA


ACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC


TACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG


TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA





SEQ ID NO: 572


GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTC


ACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAGAAACC


AGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAA


GGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGAT


GATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGCTCACTTTCGGCGGAGGGACC


AAGGTGGATATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGA


GCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG


CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCAC


AGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA


GACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCG


TCACAAAGAGCTTCAACAGGGGAGAGTGT





SEQ ID NO: 573


CAAGTACAACTGCAACAAAGTGGTCCTGGGCTCGTGAAGCCTTCCCAGACTCTCAGC


CTCACATGCGCTATAAGTGGGGATTCTGTTTCCTCAAATTCAGCAGCCTGGAATTGGATACG


ACAGTCTCCATCCCGTGGCCTTGAGTGGCTTGGTAGAACTTATTACCGATCCAAGTGGTACA


ATGATTACGCCGTTTCAGTGAAGTCCCGCATTACTATTAATCCCGACACATCTAAGAATCAA


ATTTCATTGCAACTGAATAGCGTAACACCCGAAGATACAGCAGTTTATTATTGTGCAGGTGA


TCGACGCTACGGCATAGTGGGACTTCCTTTCGCCTATTGGGGCCAAGGGACACTGGTCACTG


TGTCATCCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCT


CTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT


GTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCT


CAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACC


TACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCA


AATCTTGTGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAACTGCTGGGGGGACCG


TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC


ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG


ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGT


ACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAA


GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA


GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGA


ACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGG


GAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG


GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTC


TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCT


GTCTCCGGGT





SEQ ID NO: 574


GACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTGGGTGAAAGGGCA


ACAATCAACTGCAAGTCTTCTCAGAGTGTACTGCATAGTTCTAACAATAAGAACTACCTTAC


CTGGTTTCAACAGAAACCAGGTCAGCCCCCCAAGTTGCTGATTTACTGGGCAAGCACCCGCG


AATCCGGCGTTCCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTTGACCATCT


CTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCATCAGTATTACTCTACTCCCCCCA


CATTCGGTCAAGGTACAAAAGTTGAGATAAAACGGACAGTGGCCGCTCCTTCCGTGTTCATC


TTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAA


CTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAAC


TCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACT


GACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAG


GGCCTGTCTAGCCCTGTGACCAAGTCTTTCAACCGGGGCGAGTGT





SEQ ID NO: 575


GAGGTGCAACTCCTTGAATCAGGCGGAGGACTCGTCCAACCTGGAGGGAGTCTTAGG


CTTAGCTGTGCAGCCAGTGGCTTTACTTTTAGCAGCTATGCAATGCACTGGGTCAGGCAGGC


TCCTGGTAAGGGGCTCGAATGGGTCAGCGGCATATCCGGGTCAGGTTTCTCTACATATTATG


TCGATTCTGTAAAAGGACGATTCACCATATCCAGAGACAATTCTAAAAATACCTTGTATCTC


CAGATGAACAGCCTGAGAGCAGAAGATACCGCAGTTTATTACTGTGCAAAGGATAATCTGG


TTGCCGGGACAGTTTTTGATTATTGGGGGCAAGGCACCCTCGTCACAGTATCCAGTGCCTCC


ACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC


GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAG


GCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC


CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGT


GAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAA


ACTCACACATGTCCACCGTGCCCAGCACCTGAACTGCTGGGGGGACCGTCAGTCTTCCTCTT


CCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGG


TGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGT


GCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC


GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA


ACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC


TACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





SEQ ID NO: 576


GATATTCAGATGACTCAATCACCTTCAACCCTTAGCGCCTCCGTTGGAGATCGCGTTA


CCATTACCTGCCGAGCCTCCCAAAGTATCAGCTCATGGTTGGCATGGTATCAACAGAAGCCT


GGAAAGGCACCCAAACTTCTGATTTACAAAGCCAGCTCCTTGGAGTCAGGAGTCCCAAGCC


GGTTCAGCGGATCTGGGTCAGGGACAGAATTTACCCTGACCATATCTTCCCTTCAGCCCGAC


GACTTCGCCACTTACTATTGTCAGCAATACAACTCCTATTCCCTGACTTTCGGCGGTGGCACA


AAGGTTGACATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTCATCTTCCCACCTTCCGACGA


GCAGCTGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAG


CCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGAC


CGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCG


ACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGT


GACCAAGTCTTTCAACCGGGGCGAGTGT





SEQ ID NO: 577


CAGGTGCAGCTTCAACAGAGCGGACCTGGTCTGGTTAAGCCTTCCCAAACCCTGAGC


CTGACTTGTGCTATTTCCGGGGATAGTGTTAGCTCCAATAGGGCAGCATGGAACTGGATCAG


ACAGTCCCCAAGCCGTGGACTTGAGTGGCTTGGACGTACTTATTACAGGAGTAAATGGTACA


ATGATTATGCCGTTTCTGTGAAGAGCCGTATTACTATAAACCCAGATACTTCTAAAAATCAA


ATTTCCCTTCAGCTCAACTCAGTTACACCAGAGGATACTGCAGTCTATTATTGCGCAAGAGTT


CGACCTGGCATTCCCTTCGATTATTGGGGGCAGGGGACACCCGTTACTGTGTCCTCAGCCTC


CACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG


CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCA


GGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTC


CCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG


TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAA


AACTCACACATGTCCACCGTGCCCAGCACCTGAACTGCTGGGGGGACCGTCAGTCTTCCTCT


TCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG


GTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGG


TGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG


CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCA


ACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA


ACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTG


ACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC


AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTC


TACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGT


GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





SEQ ID NO: 578


GATATTGTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGTGAACGGGCT


ACTATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTTCAAATAACAAAAACTACCTGGCA


TGGTATCAGCAAAAGCCTGGTCAACCCCCTAAACTTCTCATATACTGGGCATCCACTCGGGA


GAGCGGTGTGCCAGACCGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACTCACAATTT


CCAGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAATATCACTCTACACCTTGG


ACATTTGGTCAAGGTACTAAAGTCGAAATCAAACGGACAGTGGCCGCTCCTTCCGTGTTCAT


CTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACA


ACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAA


CTCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACAC


TGACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCA


GGGCCTGTCTAGCCCTGTGACCAAGTCTTTCAACCGGGGCGAGTGT
















TABLE 55







Amino acid sequences of the anti-HLA-G scFvs in VH-linker-VL (HL)


or in VL-linker-VH (LH) format.











SEQ




ID


Acronym
Amino acid sequence of scFv
NO:





MHGB665-HL
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGR
579



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGI




VGLPFAYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSL




GERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRESGVPDRF




SGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIK






MHGB665-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLI
580



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVS




SNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQIS




LQLNSVTPEDTAVYYCAGDRRYGIVGLPFAYWGQGTLVTVSS






MHGB668-HL
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSNNSAAWNWIRQSPSRGLEWLGR
581



TYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARYGSGT




LLFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGE




RATINCKSSQSVLYSSKNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGS




GSGTDFTLTISSLQAEDVAVYYCQQYYSTFPYTFGQGTKLEIK






MHGB668-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSKNKNYLAWYQQKPGQPPKLLI
582



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTFPYTFGQG




TKLEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSV




SNNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQ




FSLQLNSVTPEDTAVYYCARYGSGTLLFDYWGQGTLVTVSS






MHGB669-HL
QVQLQQSGPGLVRPSQTLSVTCAISGDSVSSNSASWNWIRQSPSRGLEWLGR
583



TYYRSEWFNDYAVSVKSRVTINPDTSKNQLSLQLNSVIPEDTAVYYCAREARIG




VAGKGFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAV




SLGERATINCKSSQSVLFRSNNKNYLAWFQQKPGQPPKLLIYWASTRESGVPD




RFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGTKVEIK






MHGB669-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLFRSNNKNYLAWFQQKPGQPPKLLI
584



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVRPSQTLSVTCAISGDSV




SSNSASWNWIRQSPSRGLEWLGRTYYRSEWFNDYAVSVKSRVTINPDTSKNQ




LSLQLNSVIPEDTAVYYCAREARIGVAGKGFDYWGQGTLVTVSS






MHGB672-HL
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQTPSRGLEWLGR
585



TYYRSEWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARVRAAV




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGER




ATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPNLLIYWASTRESGVPDRFSGS




VSGTDFTLTISSLQAEDVAIYYCQQYHSTPWTFGQGTKVEIK






MHGB672-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPNLLI
586



YWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAIYYCQQYHSTPVVTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDS




VSSNRAAWNWIRQTPSRGLEWLGRTYYRSEWYNDYAVSVKSRITINPDTSKN




QFSLQLNSVTPEDTAVYYCARVRAAVPFDYWGQGTLVTVSS






MHGB687-HL
QLQLQESGPGLVKPSETLSLMCTVSGGSITSSSYYWGWIRQPPGKGLEWIGNIY
587



YSGTTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAAGARDFDSWG




QGSLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERATINCKS




SQSVLYSSSNKSYLAWYQQRPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTL




TISSLQAEDVAVYYCQQYYSTPRMYTFGQGTKLEIK






MHGB687-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSSNKSYLAWYQQRPGQPPKLLI
588



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRMYTFG




QGTKLEIKGGSEGKSSGSGSESKSTGGSQLQLQESGPGLVKPSETLSLMCTVSG




GSITSSSYYWGWIRQPPGKGLEWIGNIYYSGTTYYNPSLKSRVTISVDTSKNQFS




LKLSSVTAADTAVYYCAAGARDFDSWGQGSLVTVSS






MHGB688-HL
EVQLLESGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLEWLGRT
589



YYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVYYCARVRPGIPF




DYWGQGTPVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERAT




INCKSSQSVLFSSNKKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGS




GTDFTLTISSLQAEDVAVYYCQQYNSTPWTFGQGTKVEIK






MHGB688-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNKKNYLAWYQQKPGQPPKLLI
590



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYNSTPWTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSEVQLLESGPGLVKPSQTLSLTCVISGDSVS




SNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINSDTSKNQIS




LQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSS






MHGB689-HL
QVQLQQSGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLEWLGR
591



TYYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVYYCARVRPGIP




FDYWGQGTTVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPDSLAVSLGERA




TINCESSQSVLFSSNKKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGS




GTDFTLTINRLQAEDVAVYYCQQYNSTPWTFGQGTKVEIK






MHGB689-LH
DIQMTQSPDSLAVSLGERATINCESSQSVLFSSNKKNYLAWYQQKPGQPPKLLI
592



YWASTRESGVPDRFSGSGSGTDFTLTINRLQAEDVAVYYCQQYNSTPWTFGQ




GTKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCVISGD




SVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINSDTSKN




QISLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTTVTVSS






MHGB694-HL
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLDWVSGIS
593



GSGFSTYYVDSVKGRFTISRDNSKHTLYLQMNSLRAEDTAVYYCAKDNLVAGT




VFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSTLSASVGDR




VTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTL




TISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIK






MHGB694-LH
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSL
594



ESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKGG




SEGKSSGSGSESKSTGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMH




WVRQAPGKGLDWVSGISGSGFSTYYVDSVKGRFTISRDNSKHTLYLQMNSLR




AEDTAVYYCAKDNLVAGTVFDYWGQGTLVTVSS






MHGB732-HL
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGR
595



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGI




VGLPFAYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSL




GERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRESGVPDRF




SGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIK






MHGB732-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLI
596



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVS




SNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQIS




LQLNSVTPEDTAVYYCAGDRRYGIVGLPFAYWGQGTLVTVSS






MHGB737-HL
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGEWVSGIS
597



GSGFSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNLVAGT




VFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSTLSASVGDR




VTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTL




TISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIK






MHGB737-LH
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSL
598



ESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKGG




SEGKSSGSGSESKSTGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMH




WVRQAPGKGLEWVSGISGSGFSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRA




EDTAVYYCAKDNLVAGTVFDYWGQGTLVTVSS






MHGB738-HL
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGR
599



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCARVRPGIP




FDYWGQGTPVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERA




TINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSVS




GTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQGTKVEIK






MHGB738-LH
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLI
600



YWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDS




VSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKN




QISLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSS
















TABLE 56







Amino acid sequences of the scFv-Fcs.











SEQ




ID


Acronym
Amino acid sequence of scFv
NO:





MHGB665-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGR
601



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGI




VGLPFAYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSL




GERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRESGVPDRF




SGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIKEPKSSDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQ




PENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






MHGB665-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLI
602



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVS




SNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQIS




LQLNSVTPEDTAVYYCAGDRRYGIVGLPFAYWGQGTLVTVSSEPKSSDKTHTCP




PCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQP




ENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK




SLSLSPGK






MHGB668-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSNNSAAWNWIRQSPSRGLEWLGR
603



TYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARYGSGT




LLFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGER




ATINCKSSQSVLYSSKNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGS




GSGTDFTLTISSLQAEDVAVYYCQQYYSTFPYTFGQGTKLEIKEPKSSDKTHTCP




PCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQP




ENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK




SLSLSPGK






MHGB668-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSKNKNYLAWYQQKPGQPPKLLI
604



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTFPYTFGQG




TKLEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSV




SNNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQ




FSLQLNSVTPEDTAVYYCARYGSGTLLFDYWGQGTLVTVSSEPKSSDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPE




NNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLSPGK






MHGB669-HL-Fc
QVQLQQSGPGLVRPSQTLSVTCAISGDSVSSNSASWNWIRQSPSRGLEWLGR
605



TYYRSEWFNDYAVSVKSRVTINPDTSKNQLSLQLNSVIPEDTAVYYCAREARIGV




AGKGFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSL




GERATINCKSSQSVLFRSNNKNYLAWFQQKPGQPPKLLIYWASTRESGVPDRF




SGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGTKVEIKEPKSSDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQ




PENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






MHGB669-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLFRSNNKNYLAWFQQKPGQPPKLLI
606



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVRPSQTLSVTCAISGDSV




SSNSASWNWIRQSPSRGLEWLGRTYYRSEWFNDYAVSVKSRVTINPDTSKNQ




LSLQLNSVIPEDTAVYYCAREARIGVAGKGFDYWGQGTLVTVSSEPKSSDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQ




PENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






MHGB672-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQTPSRGLEWLGR
607



TYYRSEWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARVRAAV




PFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGER




ATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPNLLIYWASTRESGVPDRFSGS




VSGTDFTLTISSLQAEDVAIYYCQQYHSTPWTFGQGTKVEIKEPKSSDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPE




NNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLSPGK






MHGB672-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPNLLI
608



YWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAIYYCQQYHSTPWTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSV




SSNRAAWNWIRQTPSRGLEWLGRTYYRSEWYNDYAVSVKSRITINPDTSKNQ




FSLQLNSVTPEDTAVYYCARVRAAVPFDYWGQGTLVTVSSEPKSSDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPE




NNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLSPGK






MHGB687-HL-Fc
QLQLQESGPGLVKPSETLSLMCTVSGGSITSSSYYWGWIRQPPGKGLEWIGNIY
609



YSGTTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAAGARDFDSWG




QGSLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERATINCKSS




QSVLYSSSNKSYLAWYQQRPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLT




ISSLQAEDVAVYYCQQYYSTPRMYTFGQGTKLEIKEPKSSDKTHTCPPCPAPEA




AGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLT




WPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP




GK






MHGB687-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSSNKSYLAWYQQRPGQPPKLLIY
610



WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRMYTFGQ




GTKLEIKGGSEGKSSGSGSESKSTGGSQLQLQESGPGLVKPSETLSLMCTVSGGS




ITSSSYYWGWIRQPPGKGLEWIGNIYYSGTTYYNPSLKSRVTISVDTSKNQFSLK




LSSVTAADTAVYYCAAGARDFDSWGQGSLVTVSSEPKSSDKTHTCPPCPAPEA




AGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLT




WPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP




GK






MHGB688-HL-Fc
EVQLLESGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLEWLGRT
611



YYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVYYCARVRPGIPF




DYWGQGTPVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERAT




INCKSSQSVLFSSNKKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGS




GTDFTLTISSLQAEDVAVYYCQQYNSTPWTFGQGTKVEIKEPKSSDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






MHGB688-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNKKNYLAWYQQKPGQPPKLLI
612



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYNSTPWTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSEVQLLESGPGLVKPSQTLSLTCVISGDSVS




SNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINSDTSKNQIS




LQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSSEPKSSDKTHTCPPCP




APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






MHG6689-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCVISGDSVSSNRAAWNWIRQSPSRGLEWLGR
613



TYYRSKWYNDYAVSVKSRITINSDTSKNQISLQLNSVTPEDTAVYYCARVRPGIP




FDYWGQGTTVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPDSLAVSLGERA




TINCESSQSVLFSSNKKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGS




GTDFTLTINRLQAEDVAVYYCQQYNSTPWTFGQGTKVEIKEPKSSDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






MHGB689-LH-Fc
DIQMTQSPDSLAVSLGERATINCESSQSVLFSSNKKNYLAWYQQKPGQPPKLLI
614



YWASTRESGVPDRFSGSGSGTDFTLTINRLQAEDVAVYYCQQYNSTPWTFGQ




GTKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCVISGD




SVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINSDTSKN




QISLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTTVTVSSEPKSSDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPE




NNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLSPGK






MHGB694-HL-Fc
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLDWVSGIS
615



GSGFSTYYVDSVKGRFTISRDNSKHTLYLQMNSLRAEDTAVYYCAKDNLVAGT




VFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSTLSASVGDR




VTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLT




ISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKEPKSSDKTHTCPPCPAPEAAG




GPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP




REPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






MHGB694-LH-Fc
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSL
616



ESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKGG




SEGKSSGSGSESKSTGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMH




WVRQAPGKGLDWVSGISGSGFSTYYVDSVKGRFTISRDNSKHTLYLQMNSLR




AEDTAVYYCAKDNLVAGTVFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAA




GGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ




PREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






MHGB732-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGR
617



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGI




VGLPFAYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSL




GERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRESGVPDRF




SGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIKEPKSSDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYV




DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI




EKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQ




PENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK






MHGB732-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLI
618



YWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGT




KVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVS




SNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQIS




LQLNSVTPEDTAVYYCAGDRRYGIVGLPFAYWGQGTLVTVSSEPKSSDKTHTCP




PCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQP




ENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK




SLSLSPGK






MHGB737-HL-Fc
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVSGIS
619



GSGFSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNLVAGT




VFDYWGQGTLVTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSTLSASVGDR




VTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLT




ISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKEPKSSDKTHTCPPCPAPEAAG




GPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP




REPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






MHGB737-LH-Fc
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSL
620



ESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKGG




SEGKSSGSGSESKSTGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMH




WVRQAPGKGLEWVSGISGSGFSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRA




EDTAVYYCAKDNLVAGTVFDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAG




GPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP




REPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






MHGB738-HL-Fc
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGR
621



TYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCARVRPGIP




FDYWGQGTPVTVSSGGSEGKSSGSGSESKSTGGSDIVMTQSPDSLAVSLGERA




TINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSVS




GTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQGTKVEIKEPKSSDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI




SKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK






MHGB738-LH-Fc
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLI
622



YWASTRESGVPDRFSGSVSGTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQG




TKVEIKGGSEGKSSGSGSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSV




SSNRAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQI




SLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSSEPKSSDKTHTCPPCP




APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS




KAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPEN




NYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLSPGK
















TABLE 57







cDNA sequences of anti-HLA-G scFvs and scFv-Fcs.









scFv
cDNA



or
SEQ



scFv-
ID



Fc
NO:
cDNA





MHG
623
CAGGTGCAGCTGCAGCAGAGCGGCCCTGGACTGGTGAAGCCCAGCCA


B665-

GACCCTGAGCCTGACCTGCGCTATCAGCGGCGATAGCGTGAGCTCCAA


HL

CAGCGCCGCCTGGAACTGGATCAGGCAGAGCCCTAGCAGGGGCCTGG




AATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGTACAACGACTAC




GCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCAA




GAACCAGATCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACCG




CCGTGTACTACTGCGCCGGCGACAGAAGGTACGGCATCGTGGGCCTG




CCTTTCGCCTACTGGGGCCAGGGAACCCTGGTGACCGTGAGCAGCGGC




GGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCAC




CGGCGGAAGCGACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTG




TGAGCCTGGGCGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGC




GTGCTGCACAGCAGCAACAACAAGAACTACCTGACCTGGTTCCAGCA




GAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCTAGCACCAG




AGAGTCCGGCGTGCCTGACAGGTTCAGCGGAAGCGGCAGCGGCACCG




ACTTCACCCTGACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCGTGT




ACTACTGCCACCAGTACTACAGCACCCCCCCTACCTTTGGCCAGGGCA




CCAAGGTGGAGATCAAG





MHG
624
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B665-

CGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGCACA


LH

GCAGCAACAACAAGAACTACCTGACCTGGTTCCAGCAGAAGCCCGGC




CAGCCTCCCAAGCTGCTGATCTACTGGGCTAGCACCAGAGAGTCCGGC




GTGCCTGACAGGTTCAGCGGAAGCGGCAGCGGCACCGACTTCACCCT




GACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCGTGTACTACTGCC




ACCAGTACTACAGCACCCCCCCTACCTTTGGCCAGGGCACCAAGGTGG




AGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAA




AGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGCCC




TGGACTGGTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCGCTATCAG




CGGCGATAGCGTGAGCTCCAACAGCGCCGCCTGGAACTGGATCAGGC




AGAGCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACCTACTACAGG




AGCAAGTGGTACAACGACTACGCCGTGTCCGTGAAGAGCAGGATCAC




CATCAACCCCGACACCAGCAAGAACCAGATCAGCCTGCAGCTGAACA




GCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCGGCGACAGA




AGGTACGGCATCGTGGGCCTGCCTTTCGCCTACTGGGGCCAGGGAACC




CTGGTGACCGTGAGCAGC





MHG
625
CAGGTGCAGCTGCAGCAGAGCGGACCCGGCCTGGTGAAACCCAGCCA


B668-

GACCCTGAGCCTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAACA


HL

ACAGCGCCGCCTGGAACTGGATCAGGCAGAGCCCCAGCAGAGGCCTG




GAATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGTACAACGACTA




CGCCGTGAGCGTGAAGAGCAGGATCACCATCAACCCCGACACCTCCA




AGAACCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGGTATGGCAGCGGCACCCTGCTGTTCGAC




TACTGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCGGCGGATCTGA




GGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAA




GCGACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTG




GGAGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTA




CAGCAGCAAGAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCG




GCCAGCCCCCCAAGCTGCTGATCTACTGGGCCAGCACAAGGGAAAGC




GGCGTGCCCGACAGATTCAGCGGAAGCGGCAGCGGCACCGACTTCAC




CCTGACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTG




CCAGCAGTACTACAGCACCTTCCCCTACACCTTCGGCCAGGGCACCAA




GCTGGAGATCAAG





MHG
626
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B668-

AGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTACA


LH

GCAGCAAGAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGC




CAGCCCCCCAAGCTGCTGATCTACTGGGCCAGCACAAGGGAAAGCGG




CGTGCCCGACAGATTCAGCGGAAGCGGCAGCGGCACCGACTTCACCC




TGACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCC




AGCAGTACTACAGCACCTTCCCCTACACCTTCGGCCAGGGCACCAAGC




TGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGC




GAAAGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGG




ACCCGGCCTGGTGAAACCCAGCCAGACCCTGAGCCTGACCTGCGCCAT




CAGCGGCGACAGCGTGAGCAACAACAGCGCCGCCTGGAACTGGATCA




GGCAGAGCCCCAGCAGAGGCCTGGAATGGCTGGGCAGGACCTACTAC




AGGAGCAAGTGGTACAACGACTACGCCGTGAGCGTGAAGAGCAGGAT




CACCATCAACCCCGACACCTCCAAGAACCAGTTCAGCCTGCAGCTGAA




CAGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCAGGTATG




GCAGCGGCACCCTGCTGTTCGACTACTGGGGCCAGGGCACCCTGGTGA




CAGTGAGCAGC





MHG
627
CAGGTGCAGCTGCAGCAGAGCGGACCCGGACTGGTGAGACCCAGCCA


B669-

GACCCTGAGCGTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAGCA


HL

ACAGCGCCAGCTGGAACTGGATCAGGCAGAGCCCCAGCAGAGGCCTG




GAGTGGCTGGGAAGGACATACTACAGGAGCGAGTGGTTCAACGACTA




CGCCGTGAGCGTGAAGAGCAGGGTGACCATCAACCCCGACACCAGCA




AGAACCAGCTGAGCCTGCAGCTGAACAGCGTGATCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGAGAGGCCAGAATCGGCGTGGCCGGCAA




AGGCTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCAGCG




GCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCC




ACCGGCGGAAGCGACATCGTGATGACCCAGAGCCCTGACTCCCTGGC




TGTGAGCCTGGGCGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGA




GCGTGCTGTTCAGGAGCAACAACAAGAACTACCTGGCCTGGTTCCAGC




AGAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACC




AGAGAGAGCGGCGTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCAC




CGACTTTACCCTGACCATCAGCTCCCTGCAGGCCGAGGATGTGGCCGT




GTACTACTGCCAGCAGTACTACAGCACCCCCAGAACCTTCGGCCAGGG




CACCAAGGTGGAGATCAAG





MHG
628
GACATCGTGATGACCCAGAGCCCTGACTCCCTGGCTGTGAGCCTGGGC


B669-

GAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTCAG


LH

GAGCAACAACAAGAACTACCTGGCCTGGTTCCAGCAGAAGCCCGGCC




AGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAGAGAGAGCGGC




GTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCACCGACTTTACCCTG




ACCATCAGCTCCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAG




CAGTACTACAGCACCCCCAGAACCTTCGGCCAGGGCACCAAGGTGGA




GATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA




GCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGACCC




GGACTGGTGAGACCCAGCCAGACCCTGAGCGTGACCTGCGCCATCAG




CGGCGACAGCGTGAGCAGCAACAGCGCCAGCTGGAACTGGATCAGGC




AGAGCCCCAGCAGAGGCCTGGAGTGGCTGGGAAGGACATACTACAGG




AGCGAGTGGTTCAACGACTACGCCGTGAGCGTGAAGAGCAGGGTGAC




CATCAACCCCGACACCAGCAAGAACCAGCTGAGCCTGCAGCTGAACA




GCGTGATCCCCGAGGACACCGCCGTGTACTACTGCGCCAGAGAGGCC




AGAATCGGCGTGGCCGGCAAAGGCTTCGACTACTGGGGCCAGGGCAC




CCTGGTGACAGTGTCCAGC





MHG
629
CAGGTGCAGCTGCAGCAGAGCGGACCTGGCCTGGTGAAGCCCAGCCA


B672-

GACCCTGAGCCTGACATGCGCCATCAGCGGCGACAGCGTGAGCAGCA


HL

ATAGGGCCGCCTGGAACTGGATCAGGCAGACCCCTAGCAGGGGCCTG




GAATGGCTGGGCAGGACATACTACAGGAGCGAGTGGTACAACGACTA




CGCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCA




AGAACCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGAGTGAGAGCCGCCGTGCCTTTCGACTAC




TGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCGGCGGATCTGAGGG




AAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCG




ACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGGC




GAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTTTC




CAGCAACAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGCC




AGCCCCCCAACCTGCTGATCTACTGGGCCAGCACCAGAGAAAGCGGC




GTGCCCGACAGGTTTAGCGGCAGCGTGAGCGGCACCGACTTCACCCTG




ACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCATCTACTACTGCCA




GCAGTACCACAGCACCCCCTGGACATTCGGCCAGGGCACCAAGGTGG




AGATCAAG





MHG
630
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B672-

CGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTTT


LH

CCAGCAACAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGC




CAGCCCCCCAACCTGCTGATCTACTGGGCCAGCACCAGAGAAAGCGG




CGTGCCCGACAGGTTTAGCGGCAGCGTGAGCGGCACCGACTTCACCCT




GACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCATCTACTACTGCC




AGCAGTACCACAGCACCCCCTGGACATTCGGCCAGGGCACCAAGGTG




GAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGA




AAGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGAC




CTGGCCTGGTGAAGCCCAGCCAGACCCTGAGCCTGACATGCGCCATCA




GCGGCGACAGCGTGAGCAGCAATAGGGCCGCCTGGAACTGGATCAGG




CAGACCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACATACTACAG




GAGCGAGTGGTACAACGACTACGCCGTGTCCGTGAAGAGCAGGATCA




CCATCAACCCCGACACCAGCAAGAACCAGTTCAGCCTGCAGCTGAAC




AGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCAGAGTGAG




AGCCGCCGTGCCTTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGT




GAGCAGC





MHG
631
CAGCTGCAGCTGCAGGAGAGCGGCCCTGGACTGGTGAAGCCCAGCGA


B687-

GACCCTGAGCCTGATGTGCACCGTGAGCGGCGGCAGCATCACCAGCA


HL

GCAGCTACTACTGGGGATGGATCAGACAGCCCCCTGGCAAGGGCCTG




GAGTGGATCGGCAACATCTACTACAGCGGCACCACCTACTACAACCCC




AGCCTGAAGAGCAGGGTGACCATCAGCGTGGACACCAGCAAGAACCA




GTTCAGCCTGAAGCTGAGCAGCGTGACAGCTGCCGACACCGCCGTGT




ACTACTGTGCCGCCGGAGCCAGAGACTTCGACAGCTGGGGACAGGGC




AGCCTGGTGACCGTGTCCAGCGGCGGATCTGAGGGAAAGTCCAGCGG




CTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCGTGATGA




CCCAGAGCCCTGATAGCCTGGCCGTGAGCCTGGGAGAGAGAGCCACC




ATCAACTGCAAGTCCTCCCAGAGCGTGCTGTACAGCTCCAGCAACAAG




AGCTACCTGGCCTGGTACCAGCAGAGGCCCGGACAGCCTCCCAAGCT




GCTGATCTACTGGGCCAGCACCAGAGAGAGCGGCGTGCCTGACAGGT




TTAGCGGCTCCGGCTCCGGCACCGACTTTACCCTGACCATCAGCAGCC




TGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAGCAGTACTACAGC




ACCCCCAGGATGTACACCTTCGGCCAGGGCACCAAGCTGGAGATCAA




G





MHG
632
GACATCGTGATGACCCAGAGCCCTGATAGCCTGGCCGTGAGCCTGGG


B687-

AGAGAGAGCCACCATCAACTGCAAGTCCTCCCAGAGCGTGCTGTACA


LH

GCTCCAGCAACAAGAGCTACCTGGCCTGGTACCAGCAGAGGCCCGGA




CAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAGAGAGAGCGG




CGTGCCTGACAGGTTTAGCGGCTCCGGCTCCGGCACCGACTTTACCCT




GACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCC




AGCAGTACTACAGCACCCCCAGGATGTACACCTTCGGCCAGGGCACC




AAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGG




CAGCGAAAGCAAGTCCACCGGCGGAAGCCAGCTGCAGCTGCAGGAGA




GCGGCCCTGGACTGGTGAAGCCCAGCGAGACCCTGAGCCTGATGTGC




ACCGTGAGCGGCGGCAGCATCACCAGCAGCAGCTACTACTGGGGATG




GATCAGACAGCCCCCTGGCAAGGGCCTGGAGTGGATCGGCAACATCT




ACTACAGCGGCACCACCTACTACAACCCCAGCCTGAAGAGCAGGGTG




ACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAG




CAGCGTGACAGCTGCCGACACCGCCGTGTACTACTGTGCCGCCGGAGC




CAGAGACTTCGACAGCTGGGGACAGGGCAGCCTGGTGACCGTGTCCA




GC





MHG
633
GAGGTGCAGCTGTTGGAGTCAGGTCCAGGACTGGTGAAGCCCTCGCA


B688-

GACCCTCTCACTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAA


HL

CAGAGCTGCTTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTG




AGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTAT




GCAGTATCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAA




GAACCAGATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGC




TGTGTATTACTGTGCAAGAGTGAGACCGGGGATCCCATTTGACTACTG




GGGCCAGGGAACCCCGGTCACCGTCTCCTCAGGCGGATCTGAGGGAA




AGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGAC




ATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAG




AGGGCCACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATTCAGCTCC




AACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCC




CCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGTCCC




TGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCAT




CAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATA




TAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCA




AA





MHG
634
GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC


B688-

GAGAGGGCCACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATTCAGC


LH

TCCAACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACA




GCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGT




CCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCA




ATATAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGA




TCAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC




AAGTCCACCGGCGGAAGCGAGGTGCAGCTGTTGGAGTCAGGTCCAGG




ACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGTCATCTCCGG




GGACAGTGTCTCTAGCAACAGAGCTGCTTGGAACTGGATCAGGCAGT




CCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCC




AAGTGGTATAATGATTATGCAGTATCTGTGAAAAGTCGAATAACCATC




AATTCAGACACATCCAAGAACCAGATCTCCCTGCAGTTGAACTCTGTG




ACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGTGAGACCGGG




GATCCCATTTGACTACTGGGGCCAGGGAACCCCGGTCACCGTCTCCTC




A





MHG
635
CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCA


B689-

GACCCTCTCACTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAA


HL

CAGAGCTGCCTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTG




AGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTAT




GCAGTTTCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAAG




AACCAGATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGCT




GTGTATTACTGTGCAAGAGTGAGACCGGGGATCCCTTTTGACTACTGG




GGCCAGGGAACCACGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAA




GTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACA




TCCAGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGA




GGGCCACCATCAACTGCGAGTCCAGCCAGAGTGTTTTATTCAGCTCCA




ACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCC




CCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCT




GACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATC




AACCGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATAT




AATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAA




A





MHG
636
GACATCCAGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC


B689-

GAGAGGGCCACCATCAACTGCGAGTCCAGCCAGAGTGTTTTATTCAGC


LH

TCCAACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACA




GCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGT




CCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAACCGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCA




ATATAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGA




TCAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC




AAGTCCACCGGCGGAAGCCAGGTACAGCTGCAGCAGTCAGGTCCAGG




ACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGTCATCTCCGG




GGACAGTGTCTCTAGCAACAGAGCTGCCTGGAACTGGATCAGGCAGT




CCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCC




AAGTGGTATAATGATTATGCAGTTTCTGTGAAAAGTCGAATAACCATC




AATTCAGACACATCCAAGAACCAGATCTCCCTGCAGTTGAACTCTGTG




ACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGTGAGACCGGG




GATCCCTTTTGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTC




A





MHG
637
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGG


B694-

GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTAT


HL

GCCATGCACTGGGTCCGCCAGGCCCCAGGGAAGGGGCTGGACTGGGT




CTCAGGTATTAGTGGTAGTGGCTTTAGCACATACTATGTAGACTCCGT




GAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGCACACGCTGT




ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTAC




TGTGCGAAAGATAATTTAGTGGCTGGTACCGTCTTTGACTACTGGGGC




CAGGGAACCCTGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAAGTC




CAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCC




AGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAG




TCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCT




GGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAG




GCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGG




ATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGA




TTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGCTCACTTTC




GGCGGAGGGACCAAGGTGGATATCAAA





MHG
638
GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA


B694-

GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGG


LH

TTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATC




TATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGC




AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCT




GATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGCTCA




CTTTCGGCGGAGGGACCAAGGTGGATATCAAAGGCGGATCTGAGGGA




AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGA




GGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGT




CCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGC




CATGCACTGGGTCCGCCAGGCCCCAGGGAAGGGGCTGGACTGGGTCT




CAGGTATTAGTGGTAGTGGCTTTAGCACATACTATGTAGACTCCGTGA




AGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGCACACGCTGTATC




TGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGT




GCGAAAGATAATTTAGTGGCTGGTACCGTCTTTGACTACTGGGGCCAG




GGAACCCTGGTCACCGTCTCCTCA





MHG
639
CAAGTACAACTGCAACAAAGTGGTCCTGGGCTCGTGAAGCCTTCCCAG


B732-

ACTCTCAGCCTCACATGCGCTATAAGTGGGGATTCTGTTTCCTCAAATT


HL

CAGCAGCCTGGAATTGGATACGACAGTCTCCATCCCGTGGCCTTGAGT




GGCTTGGTAGAACTTATTACCGATCCAAGTGGTACAATGATTACGCCG




TTTCAGTGAAGTCCCGCATTACTATTAATCCCGACACATCTAAGAATC




AAATTTCATTGCAACTGAATAGCGTAACACCCGAAGATACAGCAGTTT




ATTATTGTGCAGGTGATCGACGCTACGGCATAGTGGGACTTCCTTTCG




CCTATTGGGGCCAAGGGACACTGGTCACTGTGTCATCCGGCGGATCTG




AGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGA




AGCGACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTG




GGTGAAAGGGCAACAATCAACTGCAAGTCTTCTCAGAGTGTACTGCAT




AGTTCTAACAATAAGAACTACCTTACCTGGTTTCAACAGAAACCAGGT




CAGCCCCCCAAGTTGCTGATTTACTGGGCAAGCACCCGCGAATCCGGC




GTTCCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTTG




ACCATCTCTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCAT




CAGTATTACTCTACTCCCCCCACATTCGGTCAAGGTACAAAAGTTGAG




ATAAAA





MHG
640
GACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTGGGT


B732-

GAAAGGGCAACAATCAACTGCAAGTCTTCTCAGAGTGTACTGCATAGT


LH

TCTAACAATAAGAACTACCTTACCTGGTTTCAACAGAAACCAGGTCAG




CCCCCCAAGTTGCTGATTTACTGGGCAAGCACCCGCGAATCCGGCGTT




CCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTTGACC




ATCTCTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCATCAG




TATTACTCTACTCCCCCCACATTCGGTCAAGGTACAAAAGTTGAGATA




AAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAA




GTCCACCGGCGGAAGCCAAGTACAACTGCAACAAAGTGGTCCTGGGC




TCGTGAAGCCTTCCCAGACTCTCAGCCTCACATGCGCTATAAGTGGGG




ATTCTGTTTCCTCAAATTCAGCAGCCTGGAATTGGATACGACAGTCTC




CATCCCGTGGCCTTGAGTGGCTTGGTAGAACTTATTACCGATCCAAGT




GGTACAATGATTACGCCGTTTCAGTGAAGTCCCGCATTACTATTAATC




CCGACACATCTAAGAATCAAATTTCATTGCAACTGAATAGCGTAACAC




CCGAAGATACAGCAGTTTATTATTGTGCAGGTGATCGACGCTACGGCA




TAGTGGGACTTCCTTTCGCCTATTGGGGCCAAGGGACACTGGTCACTG




TGTCATCC





MHG
641
GAGGTGCAACTCCTTGAATCAGGCGGAGGACTCGTCCAACCTGGAGG


B737-

GAGTCTTAGGCTTAGCTGTGCAGCCAGTGGCTTTACTTTTAGCAGCTA


HL

TGCAATGCACTGGGTCAGGCAGGCTCCTGGTAAGGGGCTCGAATGGG




TCAGCGGCATATCCGGGTCAGGTTTCTCTACATATTATGTCGATTCTGT




AAAAGGACGATTCACCATATCCAGAGACAATTCTAAAAATACCTTGTA




TCTCCAGATGAACAGCCTGAGAGCAGAAGATACCGCAGTTTATTACTG




TGCAAAGGATAATCTGGTTGCCGGGACAGTTTTTGATTATTGGGGGCA




AGGCACCCTCGTCACAGTATCCAGTGGCGGATCTGAGGGAAAGTCCA




GCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGATATTCAG




ATGACTCAATCACCTTCAACCCTTAGCGCCTCCGTTGGAGATCGCGTT




ACCATTACCTGCCGAGCCTCCCAAAGTATCAGCTCATGGTTGGCATGG




TATCAACAGAAGCCTGGAAAGGCACCCAAACTTCTGATTTACAAAGC




CAGCTCCTTGGAGTCAGGAGTCCCAAGCCGGTTCAGCGGATCTGGGTC




AGGGACAGAATTTACCCTGACCATATCTTCCCTTCAGCCCGACGACTT




CGCCACTTACTATTGTCAGCAATACAACTCCTATTCCCTGACTTTCGGC




GGTGGCACAAAGGTTGACATCAAG





MHG
642
GATATTCAGATGACTCAATCACCTTCAACCCTTAGCGCCTCCGTTGGA


B737-

GATCGCGTTACCATTACCTGCCGAGCCTCCCAAAGTATCAGCTCATGG


LH

TTGGCATGGTATCAACAGAAGCCTGGAAAGGCACCCAAACTTCTGATT




TACAAAGCCAGCTCCTTGGAGTCAGGAGTCCCAAGCCGGTTCAGCGG




ATCTGGGTCAGGGACAGAATTTACCCTGACCATATCTTCCCTTCAGCC




CGACGACTTCGCCACTTACTATTGTCAGCAATACAACTCCTATTCCCTG




ACTTTCGGCGGTGGCACAAAGGTTGACATCAAGGGCGGATCTGAGGG




AAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCG




AGGTGCAACTCCTTGAATCAGGCGGAGGACTCGTCCAACCTGGAGGG




AGTCTTAGGCTTAGCTGTGCAGCCAGTGGCTTTACTTTTAGCAGCTAT




GCAATGCACTGGGTCAGGCAGGCTCCTGGTAAGGGGCTCGAATGGGT




CAGCGGCATATCCGGGTCAGGTTTCTCTACATATTATGTCGATTCTGTA




AAAGGACGATTCACCATATCCAGAGACAATTCTAAAAATACCTTGTAT




CTCCAGATGAACAGCCTGAGAGCAGAAGATACCGCAGTTTATTACTGT




GCAAAGGATAATCTGGTTGCCGGGACAGTTTTTGATTATTGGGGGCAA




GGCACCCTCGTCACAGTATCCAGT





MHG
643
CAGGTGCAGCTTCAACAGAGCGGACCTGGTCTGGTTAAGCCTTCCCAA


B738-

ACCCTGAGCCTGACTTGTGCTATTTCCGGGGATAGTGTTAGCTCCAAT


HL

AGGGCAGCATGGAACTGGATCAGACAGTCCCCAAGCCGTGGACTTGA




GTGGCTTGGACGTACTTATTACAGGAGTAAATGGTACAATGATTATGC




CGTTTCTGTGAAGAGCCGTATTACTATAAACCCAGATACTTCTAAAAA




TCAAATTTCCCTTCAGCTCAACTCAGTTACACCAGAGGATACTGCAGT




CTATTATTGCGCAAGAGTTCGACCTGGCATTCCCTTCGATTATTGGGG




GCAGGGGACACCCGTTACTGTGTCCTCAGGCGGATCTGAGGGAAAGT




CCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGATATT




GTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGTGAACGG




GCTACTATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTTCAAATA




ACAAAAACTACCTGGCATGGTATCAGCAAAAGCCTGGTCAACCCCCT




AAACTTCTCATATACTGGGCATCCACTCGGGAGAGCGGTGTGCCAGAC




CGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACTCACAATTTCC




AGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAATATCAC




TCTACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATCAAA





MHG
644
GATATTGTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGT


B738-

GAACGGGCTACTATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTT


LH

CAAATAACAAAAACTACCTGGCATGGTATCAGCAAAAGCCTGGTCAA




CCCCCTAAACTTCTCATATACTGGGCATCCACTCGGGAGAGCGGTGTG




CCAGACCGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACTCACA




ATTTCCAGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAA




TATCACTCTACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATC




AAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAA




GTCCACCGGCGGAAGCCAGGTGCAGCTTCAACAGAGCGGACCTGGTC




TGGTTAAGCCTTCCCAAACCCTGAGCCTGACTTGTGCTATTTCCGGGG




ATAGTGTTAGCTCCAATAGGGCAGCATGGAACTGGATCAGACAGTCC




CCAAGCCGTGGACTTGAGTGGCTTGGACGTACTTATTACAGGAGTAAA




TGGTACAATGATTATGCCGTTTCTGTGAAGAGCCGTATTACTATAAAC




CCAGATACTTCTAAAAATCAAATTTCCCTTCAGCTCAACTCAGTTACA




CCAGAGGATACTGCAGTCTATTATTGCGCAAGAGTTCGACCTGGCATT




CCCTTCGATTATTGGGGGCAGGGGACACCCGTTACTGTGTCCTCA





MHG
645
CAGGTGCAGCTGCAGCAGAGCGGCCCTGGACTGGTGAAGCCCAGCCA


B665-

GACCCTGAGCCTGACCTGCGCTATCAGCGGCGATAGCGTGAGCTCCAA


HL-Fc

CAGCGCCGCCTGGAACTGGATCAGGCAGAGCCCTAGCAGGGGCCTGG




AATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGTACAACGACTAC




GCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCAA




GAACCAGATCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACCG




CCGTGTACTACTGCGCCGGCGACAGAAGGTACGGCATCGTGGGCCTG




CCTTTCGCCTACTGGGGCCAGGGAACCCTGGTGACCGTGAGCAGCGGC




GGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCAC




CGGCGGAAGCGACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTG




TGAGCCTGGGCGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGC




GTGCTGCACAGCAGCAACAACAAGAACTACCTGACCTGGTTCCAGCA




GAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCTAGCACCAG




AGAGTCCGGCGTGCCTGACAGGTTCAGCGGAAGCGGCAGCGGCACCG




ACTTCACCCTGACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCGTGT




ACTACTGCCACCAGTACTACAGCACCCCCCCTACCTTTGGCCAGGGCA




CCAAGGTGGAGATCAAGGAGCCCAAATCTAGCGACAAAACTCACACT




TGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTC




CTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT




GAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGT




CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA




CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAA




GTGCAAGGTGTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA




TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTG




CCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTGTG




CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA




GCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTG




GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG




TCCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCTCCGGGA




AAA





MHG
646
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B665-

CGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGCACA


LH-Fc

GCAGCAACAACAAGAACTACCTGACCTGGTTCCAGCAGAAGCCCGGC




CAGCCTCCCAAGCTGCTGATCTACTGGGCTAGCACCAGAGAGTCCGGC




GTGCCTGACAGGTTCAGCGGAAGCGGCAGCGGCACCGACTTCACCCT




GACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCGTGTACTACTGCC




ACCAGTACTACAGCACCCCCCCTACCTTTGGCCAGGGCACCAAGGTGG




AGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAA




AGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGCCC




TGGACTGGTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCGCTATCAG




CGGCGATAGCGTGAGCTCCAACAGCGCCGCCTGGAACTGGATCAGGC




AGAGCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACCTACTACAGG




AGCAAGTGGTACAACGACTACGCCGTGTCCGTGAAGAGCAGGATCAC




CATCAACCCCGACACCAGCAAGAACCAGATCAGCCTGCAGCTGAACA




GCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCGGCGACAGA




AGGTACGGCATCGTGGGCCTGCCTTTCGCCTACTGGGGCCAGGGAACC




CTGGTGACCGTGAGCAGCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagc




acctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacc




cctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggc




gtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctc




accgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagccccc




atcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccggga




ggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgg




gagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctcta




cagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctg




cacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
647
CAGGTGCAGCTGCAGCAGAGCGGACCCGGCCTGGTGAAACCCAGCCA


B668-

GACCCTGAGCCTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAACA


HL-Fc

ACAGCGCCGCCTGGAACTGGATCAGGCAGAGCCCCAGCAGAGGCCTG




GAATGGCTGGGCAGGACCTACTACAGGAGCAAGTGGTACAACGACTA




CGCCGTGAGCGTGAAGAGCAGGATCACCATCAACCCCGACACCTCCA




AGAACCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGGTATGGCAGCGGCACCCTGCTGTTCGAC




TACTGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCGGCGGATCTGA




GGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAA




GCGACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTG




GGAGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTA




CAGCAGCAAGAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCG




GCCAGCCCCCCAAGCTGCTGATCTACTGGGCCAGCACAAGGGAAAGC




GGCGTGCCCGACAGATTCAGCGGAAGCGGCAGCGGCACCGACTTCAC




CCTGACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTG




CCAGCAGTACTACAGCACCTTCCCCTACACCTTCGGCCAGGGCACCAA




GCTGGAGATCAAGgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaag




cagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggt




cacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggt




gcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcct




gcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgaga




aaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatg




accaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagca




atgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaag




ctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaacca




ctacacgcagaagtctctctccctgtctccgggaaaa





MHG
648
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B668-

AGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTACA


LH-Fc

GCAGCAAGAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGC




CAGCCCCCCAAGCTGCTGATCTACTGGGCCAGCACAAGGGAAAGCGG




CGTGCCCGACAGATTCAGCGGAAGCGGCAGCGGCACCGACTTCACCC




TGACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCC




AGCAGTACTACAGCACCTTCCCCTACACCTTCGGCCAGGGCACCAAGC




TGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGC




GAAAGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGG




ACCCGGCCTGGTGAAACCCAGCCAGACCCTGAGCCTGACCTGCGCCAT




CAGCGGCGACAGCGTGAGCAACAACAGCGCCGCCTGGAACTGGATCA




GGCAGAGCCCCAGCAGAGGCCTGGAATGGCTGGGCAGGACCTACTAC




AGGAGCAAGTGGTACAACGACTACGCCGTGAGCGTGAAGAGCAGGAT




CACCATCAACCCCGACACCTCCAAGAACCAGTTCAGCCTGCAGCTGAA




CAGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCAGGTATG




GCAGCGGCACCCTGCTGTTCGACTACTGGGGCCAGGGCACCCTGGTGA




CAGTGAGCAGCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcag




cagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcaca




tgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcat




aatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcac




caggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaacc




atctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaa




gaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatggg




cagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcac




cgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactaca




cgcagaagtctctctccctgtctccgggaaaa





MHG
649
CAGGTGCAGCTGCAGCAGAGCGGACCCGGACTGGTGAGACCCAGCCA


B669-

GACCCTGAGCGTGACCTGCGCCATCAGCGGCGACAGCGTGAGCAGCA


HL-Fc

ACAGCGCCAGCTGGAACTGGATCAGGCAGAGCCCCAGCAGAGGCCTG




GAGTGGCTGGGAAGGACATACTACAGGAGCGAGTGGTTCAACGACTA




CGCCGTGAGCGTGAAGAGCAGGGTGACCATCAACCCCGACACCAGCA




AGAACCAGCTGAGCCTGCAGCTGAACAGCGTGATCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGAGAGGCCAGAATCGGCGTGGCCGGCAA




AGGCTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCAGCG




GCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCC




ACCGGCGGAAGCGACATCGTGATGACCCAGAGCCCTGACTCCCTGGC




TGTGAGCCTGGGCGAGAGAGCCACCATCAACTGCAAGAGCAGCCAGA




GCGTGCTGTTCAGGAGCAACAACAAGAACTACCTGGCCTGGTTCCAGC




AGAAGCCCGGCCAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACC




AGAGAGAGCGGCGTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCAC




CGACTTTACCCTGACCATCAGCTCCCTGCAGGCCGAGGATGTGGCCGT




GTACTACTGCCAGCAGTACTACAGCACCCCCAGAACCTTCGGCCAGGG




CACCAAGGTGGAGATCAAGgagcccaaatctagcgacaaaactcacacttgtccaccgtgccca




gcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccgga




cccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacg




gcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtc




ctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcc




cccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccg




ggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtgga




gtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttc




ctctacagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgagg




ctctgcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
650
GACATCGTGATGACCCAGAGCCCTGACTCCCTGGCTGTGAGCCTGGGC


B669-

GAGAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTCAG


LH-Fc

GAGCAACAACAAGAACTACCTGGCCTGGTTCCAGCAGAAGCCCGGCC




AGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAGAGAGAGCGGC




GTGCCCGATAGATTTAGCGGCAGCGGCAGCGGCACCGACTTTACCCTG




ACCATCAGCTCCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAG




CAGTACTACAGCACCCCCAGAACCTTCGGCCAGGGCACCAAGGTGGA




GATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAA




GCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGACCC




GGACTGGTGAGACCCAGCCAGACCCTGAGCGTGACCTGCGCCATCAG




CGGCGACAGCGTGAGCAGCAACAGCGCCAGCTGGAACTGGATCAGGC




AGAGCCCCAGCAGAGGCCTGGAGTGGCTGGGAAGGACATACTACAGG




AGCGAGTGGTTCAACGACTACGCCGTGAGCGTGAAGAGCAGGGTGAC




CATCAACCCCGACACCAGCAAGAACCAGCTGAGCCTGCAGCTGAACA




GCGTGATCCCCGAGGACACCGCCGTGTACTACTGCGCCAGAGAGGCC




AGAATCGGCGTGGCCGGCAAAGGCTTCGACTACTGGGGCCAGGGCAC




CCTGGTGACAGTGTCCAGCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccag




cacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggac




ccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacgg




cgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcct




caccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccc




catcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccggg




aggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtg




ggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctct




acagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctct




gcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
651
CAGGTGCAGCTGCAGCAGAGCGGACCTGGCCTGGTGAAGCCCAGCCA


B672-

GACCCTGAGCCTGACATGCGCCATCAGCGGCGACAGCGTGAGCAGCA


HL-Fc

ATAGGGCCGCCTGGAACTGGATCAGGCAGACCCCTAGCAGGGGCCTG




GAATGGCTGGGCAGGACATACTACAGGAGCGAGTGGTACAACGACTA




CGCCGTGTCCGTGAAGAGCAGGATCACCATCAACCCCGACACCAGCA




AGAACCAGTTCAGCCTGCAGCTGAACAGCGTGACCCCCGAGGACACC




GCCGTGTACTACTGCGCCAGAGTGAGAGCCGCCGTGCCTTTCGACTAC




TGGGGCCAGGGCACCCTGGTGACAGTGAGCAGCGGCGGATCTGAGGG




AAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCG




ACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGGC




GAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTTTC




CAGCAACAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGCC




AGCCCCCCAACCTGCTGATCTACTGGGCCAGCACCAGAGAAAGCGGC




GTGCCCGACAGGTTTAGCGGCAGCGTGAGCGGCACCGACTTCACCCTG




ACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCATCTACTACTGCCA




GCAGTACCACAGCACCCCCTGGACATTCGGCCAGGGCACCAAGGTGG




AGATCAAGgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagg




gggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcg




tggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgc




caagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccagg




actggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctc




caaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaac




caggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagc




cggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtg




gacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgc




agaagtctctctccctgtctccgggaaaa





MHG
652
GACATCGTGATGACCCAGAGCCCCGATAGCCTGGCTGTGAGCCTGGG


B672-

CGAGAGGGCCACCATCAACTGCAAGAGCAGCCAGAGCGTGCTGTTTT


LH-Fc

CCAGCAACAACAAGAACTACCTGGCCTGGTACCAGCAGAAACCCGGC




CAGCCCCCCAACCTGCTGATCTACTGGGCCAGCACCAGAGAAAGCGG




CGTGCCCGACAGGTTTAGCGGCAGCGTGAGCGGCACCGACTTCACCCT




GACCATCAGCAGCCTGCAGGCCGAGGACGTGGCCATCTACTACTGCC




AGCAGTACCACAGCACCCCCTGGACATTCGGCCAGGGCACCAAGGTG




GAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGA




AAGCAAGTCCACCGGCGGAAGCCAGGTGCAGCTGCAGCAGAGCGGAC




CTGGCCTGGTGAAGCCCAGCCAGACCCTGAGCCTGACATGCGCCATCA




GCGGCGACAGCGTGAGCAGCAATAGGGCCGCCTGGAACTGGATCAGG




CAGACCCCTAGCAGGGGCCTGGAATGGCTGGGCAGGACATACTACAG




GAGCGAGTGGTACAACGACTACGCCGTGTCCGTGAAGAGCAGGATCA




CCATCAACCCCGACACCAGCAAGAACCAGTTCAGCCTGCAGCTGAAC




AGCGTGACCCCCGAGGACACCGCCGTGTACTACTGCGCCAGAGTGAG




AGCCGCCGTGCCTTTCGACTACTGGGGCCAGGGCACCCTGGTGACAGT




GAGCAGCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggg




gaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtg




gtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgcc




aagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccagga




ctggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctcc




aaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaacc




aggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagcc




ggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtgg




acaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgca




gaagtctctctccctgtctccgggaaaa





MHG
653
CAGCTGCAGCTGCAGGAGAGCGGCCCTGGACTGGTGAAGCCCAGCGA


B687-

GACCCTGAGCCTGATGTGCACCGTGAGCGGCGGCAGCATCACCAGCA


HL-Fc

GCAGCTACTACTGGGGATGGATCAGACAGCCCCCTGGCAAGGGCCTG




GAGTGGATCGGCAACATCTACTACAGCGGCACCACCTACTACAACCCC




AGCCTGAAGAGCAGGGTGACCATCAGCGTGGACACCAGCAAGAACCA




GTTCAGCCTGAAGCTGAGCAGCGTGACAGCTGCCGACACCGCCGTGT




ACTACTGTGCCGCCGGAGCCAGAGACTTCGACAGCTGGGGACAGGGC




AGCCTGGTGACCGTGTCCAGCGGCGGATCTGAGGGAAAGTCCAGCGG




CTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCGTGATGA




CCCAGAGCCCTGATAGCCTGGCCGTGAGCCTGGGAGAGAGAGCCACC




ATCAACTGCAAGTCCTCCCAGAGCGTGCTGTACAGCTCCAGCAACAAG




AGCTACCTGGCCTGGTACCAGCAGAGGCCCGGACAGCCTCCCAAGCT




GCTGATCTACTGGGCCAGCACCAGAGAGAGCGGCGTGCCTGACAGGT




TTAGCGGCTCCGGCTCCGGCACCGACTTTACCCTGACCATCAGCAGCC




TGCAGGCCGAGGATGTGGCCGTGTACTACTGCCAGCAGTACTACAGC




ACCCCCAGGATGTACACCTTCGGCCAGGGCACCAAGCTGGAGATCAA




Ggagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcag




tcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagc




gtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaag




ccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaat




ggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaa




gggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcct




gctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaa




ctacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccag




atggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctc




cctgtctccgggaaaa





MHG
654
GACATCGTGATGACCCAGAGCCCTGATAGCCTGGCCGTGAGCCTGGG


B687-

AGAGAGAGCCACCATCAACTGCAAGTCCTCCCAGAGCGTGCTGTACA


LH-Fc

GCTCCAGCAACAAGAGCTACCTGGCCTGGTACCAGCAGAGGCCCGGA




CAGCCTCCCAAGCTGCTGATCTACTGGGCCAGCACCAGAGAGAGCGG




CGTGCCTGACAGGTTTAGCGGCTCCGGCTCCGGCACCGACTTTACCCT




GACCATCAGCAGCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCC




AGCAGTACTACAGCACCCCCAGGATGTACACCTTCGGCCAGGGCACC




AAGCTGGAGATCAAGGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGG




CAGCGAAAGCAAGTCCACCGGCGGAAGCCAGCTGCAGCTGCAGGAGA




GCGGCCCTGGACTGGTGAAGCCCAGCGAGACCCTGAGCCTGATGTGC




ACCGTGAGCGGCGGCAGCATCACCAGCAGCAGCTACTACTGGGGATG




GATCAGACAGCCCCCTGGCAAGGGCCTGGAGTGGATCGGCAACATCT




ACTACAGCGGCACCACCTACTACAACCCCAGCCTGAAGAGCAGGGTG




ACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAG




CAGCGTGACAGCTGCCGACACCGCCGTGTACTACTGTGCCGCCGGAGC




CAGAGACTTCGACAGCTGGGGACAGGGCAGCCTGGTGACCGTGTCCA




GCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtca




gtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgag




cgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaa




gccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaa




tggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaa




agggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagc




ctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaac




aactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtcc




agatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctct




ctccctgtctccgggaaaa





MHG
655
GAGGTGCAGCTGTTGGAGTCAGGTCCAGGACTGGTGAAGCCCTCGCA


B688-

GACCCTCTCACTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAA


HL-Fc

CAGAGCTGCTTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTG




AGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTAT




GCAGTATCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAA




GAACCAGATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGC




TGTGTATTACTGTGCAAGAGTGAGACCGGGGATCCCATTTGACTACTG




GGGCCAGGGAACCCCGGTCACCGTCTCCTCAGGCGGATCTGAGGGAA




AGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGAC




ATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAG




AGGGCCACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATTCAGCTCC




AACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCC




CCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGTCCC




TGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCAT




CAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATA




TAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCA




AAgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtca




gtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgag




cgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaa




gccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaa




tggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaa




agggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagc




ctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaac




aactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtcc




agatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctct




ctccctgtctccgggaaaa





MHG
656
GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC


B688-

GAGAGGGCCACCATCAACTGCAAGTCCAGCCAGAGTGTTTTATTCAGC


LH-Fc

TCCAACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACA




GCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGT




CCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCA




ATATAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGA




TCAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC




AAGTCCACCGGCGGAAGCGAGGTGCAGCTGTTGGAGTCAGGTCCAGG




ACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGTCATCTCCGG




GGACAGTGTCTCTAGCAACAGAGCTGCTTGGAACTGGATCAGGCAGT




CCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCC




AAGTGGTATAATGATTATGCAGTATCTGTGAAAAGTCGAATAACCATC




AATTCAGACACATCCAAGAACCAGATCTCCCTGCAGTTGAACTCTGTG




ACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGTGAGACCGGG




GATCCCATTTGACTACTGGGGCCAGGGAACCCCGGTCACCGTCTCCTC




Agagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcag




tcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagc




gtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaag




ccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaat




ggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaa




gggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcct




gctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaa




ctacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccag




atggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctc




cctgtctccgggaaaa





MHG
657
CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCTCGCA


B689-

GACCCTCTCACTCACCTGTGTCATCTCCGGGGACAGTGTCTCTAGCAA


HL-Fc

CAGAGCTGCCTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTG




AGTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAATGATTAT




GCAGTTTCTGTGAAAAGTCGAATAACCATCAATTCAGACACATCCAAG




AACCAGATCTCCCTGCAGTTGAACTCTGTGACTCCCGAGGACACGGCT




GTGTATTACTGTGCAAGAGTGAGACCGGGGATCCCTTTTGACTACTGG




GGCCAGGGAACCACGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAA




GTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACA




TCCAGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGA




GGGCCACCATCAACTGCGAGTCCAGCCAGAGTGTTTTATTCAGCTCCA




ACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCC




CCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCT




GACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATC




AACCGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATAT




AATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAA




Agagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcag




tcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagc




gtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaag




ccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaat




ggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaa




gggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcct




gctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaa




ctacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccag




atggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctc




cctgtctccgggaaaa





MHG
658
GACATCCAGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGC


B689-

GAGAGGGCCACCATCAACTGCGAGTCCAGCCAGAGTGTTTTATTCAGC


LH-Fc

TCCAACAAAAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACA




GCCCCCTAAGCTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGT




CCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAACCGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCA




ATATAATAGTACTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGA




TCAAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGC




AAGTCCACCGGCGGAAGCCAGGTACAGCTGCAGCAGTCAGGTCCAGG




ACTGGTGAAGCCCTCGCAGACCCTCTCACTCACCTGTGTCATCTCCGG




GGACAGTGTCTCTAGCAACAGAGCTGCCTGGAACTGGATCAGGCAGT




CCCCATCGAGAGGCCTTGAGTGGCTGGGAAGGACATACTACAGGTCC




AAGTGGTATAATGATTATGCAGTTTCTGTGAAAAGTCGAATAACCATC




AATTCAGACACATCCAAGAACCAGATCTCCCTGCAGTTGAACTCTGTG




ACTCCCGAGGACACGGCTGTGTATTACTGTGCAAGAGTGAGACCGGG




GATCCCTTTTGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTC




Agagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcag




tcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagc




gtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaag




ccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaat




ggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaa




gggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcct




gctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaa




ctacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccag




atggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctc




cctgtctccgggaaaa





MHG
659
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGG


B694-

GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTAT


HL-Fc

GCCATGCACTGGGTCCGCCAGGCCCCAGGGAAGGGGCTGGACTGGGT




CTCAGGTATTAGTGGTAGTGGCTTTAGCACATACTATGTAGACTCCGT




GAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGCACACGCTGT




ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTAC




TGTGCGAAAGATAATTTAGTGGCTGGTACCGTCTTTGACTACTGGGGC




CAGGGAACCCTGGTCACCGTCTCCTCAGGCGGATCTGAGGGAAAGTC




CAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGACATCC




AGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAG




TCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCT




GGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAG




GCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGG




ATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGA




TTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGCTCACTTTC




GGCGGAGGGACCAAGGTGGATATCAAAgagcccaaatctagcgacaaaactcacacttgt




ccaccgtgcccagcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctc




atgatctcccggacccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaact




ggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgt




gtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaag




ccctcccagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgc




ccccatcccgggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacat




cgccgtggagtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacg




gctccttcttcctctacagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtga




tgcatgaggctctgcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
660
GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGA


B694-

GACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGG


LH-Fc

TTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATC




TATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGC




AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCT




GATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGCTCA




CTTTCGGCGGAGGGACCAAGGTGGATATCAAAGGCGGATCTGAGGGA




AAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGA




GGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGT




CCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGC




CATGCACTGGGTCCGCCAGGCCCCAGGGAAGGGGCTGGACTGGGTCT




CAGGTATTAGTGGTAGTGGCTTTAGCACATACTATGTAGACTCCGTGA




AGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGCACACGCTGTATC




TGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGT




GCGAAAGATAATTTAGTGGCTGGTACCGTCTTTGACTACTGGGGCCAG




GGAACCCTGGTCACCGTCTCCTCAgagcccaaatctagcgacaaaactcacacttgtccaccg




tgcccagcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctc




ccggacccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtg




gacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcag




cgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctccca




gcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcc




cgggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtg




gagtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctccttct




tcctctacagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgag




gctctgcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
661
CAAGTACAACTGCAACAAAGTGGTCCTGGGCTCGTGAAGCCTTCCCAG


B732-

ACTCTCAGCCTCACATGCGCTATAAGTGGGGATTCTGTTTCCTCAAATT


HL-Fc

CAGCAGCCTGGAATTGGATACGACAGTCTCCATCCCGTGGCCTTGAGT




GGCTTGGTAGAACTTATTACCGATCCAAGTGGTACAATGATTACGCCG




TTTCAGTGAAGTCCCGCATTACTATTAATCCCGACACATCTAAGAATC




AAATTTCATTGCAACTGAATAGCGTAACACCCGAAGATACAGCAGTTT




ATTATTGTGCAGGTGATCGACGCTACGGCATAGTGGGACTTCCTTTCG




CCTATTGGGGCCAAGGGACACTGGTCACTGTGTCATCCGGCGGATCTG




AGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGA




AGCGACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTG




GGTGAAAGGGCAACAATCAACTGCAAGTCTTCTCAGAGTGTACTGCAT




AGTTCTAACAATAAGAACTACCTTACCTGGTTTCAACAGAAACCAGGT




CAGCCCCCCAAGTTGCTGATTTACTGGGCAAGCACCCGCGAATCCGGC




GTTCCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTTG




ACCATCTCTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCAT




CAGTATTACTCTACTCCCCCCACATTCGGTCAAGGTACAAAAGTTGAG




ATAAAAgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcaggggg




accgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggt




ggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaa




gacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggact




ggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctcca




aagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaacca




ggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagcc




ggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtgg




acaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgca




gaagtctctctccctgtctccgggaaaa





MHG
662
GACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTGGGT


B732-

GAAAGGGCAACAATCAACTGCAAGTCTTCTCAGAGTGTACTGCATAGT


LH-Fc

TCTAACAATAAGAACTACCTTACCTGGTTTCAACAGAAACCAGGTCAG




CCCCCCAAGTTGCTGATTTACTGGGCAAGCACCCGCGAATCCGGCGTT




CCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTTGACC




ATCTCTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCATCAG




TATTACTCTACTCCCCCCACATTCGGTCAAGGTACAAAAGTTGAGATA




AAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAA




GTCCACCGGCGGAAGCCAAGTACAACTGCAACAAAGTGGTCCTGGGC




TCGTGAAGCCTTCCCAGACTCTCAGCCTCACATGCGCTATAAGTGGGG




ATTCTGTTTCCTCAAATTCAGCAGCCTGGAATTGGATACGACAGTCTC




CATCCCGTGGCCTTGAGTGGCTTGGTAGAACTTATTACCGATCCAAGT




GGTACAATGATTACGCCGTTTCAGTGAAGTCCCGCATTACTATTAATC




CCGACACATCTAAGAATCAAATTTCATTGCAACTGAATAGCGTAACAC




CCGAAGATACAGCAGTTTATTATTGTGCAGGTGATCGACGCTACGGCA




TAGTGGGACTTCCTTTCGCCTATTGGGGCCAAGGGACACTGGTCACTG




TGTCATCCgagcccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcaggg




ggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgt




ggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgc




caagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccagg




actggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctc




caaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaac




caggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagc




cggagaacaactacctcacctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtg




gacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgc




agaagtctctctccctgtctccgggaaaa





MHG
663
GAGGTGCAACTCCTTGAATCAGGCGGAGGACTCGTCCAACCTGGAGG


B737-

GAGTCTTAGGCTTAGCTGTGCAGCCAGTGGCTTTACTTTTAGCAGCTA


HL-Fc

TGCAATGCACTGGGTCAGGCAGGCTCCTGGTAAGGGGCTCGAATGGG




TCAGCGGCATATCCGGGTCAGGTTTCTCTACATATTATGTCGATTCTGT




AAAAGGACGATTCACCATATCCAGAGACAATTCTAAAAATACCTTGTA




TCTCCAGATGAACAGCCTGAGAGCAGAAGATACCGCAGTTTATTACTG




TGCAAAGGATAATCTGGTTGCCGGGACAGTTTTTGATTATTGGGGGCA




AGGCACCCTCGTCACAGTATCCAGTGGCGGATCTGAGGGAAAGTCCA




GCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGATATTCAG




ATGACTCAATCACCTTCAACCCTTAGCGCCTCCGTTGGAGATCGCGTT




ACCATTACCTGCCGAGCCTCCCAAAGTATCAGCTCATGGTTGGCATGG




TATCAACAGAAGCCTGGAAAGGCACCCAAACTTCTGATTTACAAAGC




CAGCTCCTTGGAGTCAGGAGTCCCAAGCCGGTTCAGCGGATCTGGGTC




AGGGACAGAATTTACCCTGACCATATCTTCCCTTCAGCCCGACGACTT




CGCCACTTACTATTGTCAGCAATACAACTCCTATTCCCTGACTTTCGGC




GGTGGCACAAAGGTTGACATCAAGgagcccaaatctagcgacaaaactcacacttgtccacc




gtgcccagcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatc




tcccggacccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacg




tggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtc




agcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcc




cagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccat




cccgggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgt




ggagtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctcctt




cttcctctacagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatg




aggctctgcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
664
GATATTCAGATGACTCAATCACCTTCAACCCTTAGCGCCTCCGTTGGA


B737-

GATCGCGTTACCATTACCTGCCGAGCCTCCCAAAGTATCAGCTCATGG


LH-Fc

TTGGCATGGTATCAACAGAAGCCTGGAAAGGCACCCAAACTTCTGATT




TACAAAGCCAGCTCCTTGGAGTCAGGAGTCCCAAGCCGGTTCAGCGG




ATCTGGGTCAGGGACAGAATTTACCCTGACCATATCTTCCCTTCAGCC




CGACGACTTCGCCACTTACTATTGTCAGCAATACAACTCCTATTCCCTG




ACTTTCGGCGGTGGCACAAAGGTTGACATCAAGGGCGGATCTGAGGG




AAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCG




AGGTGCAACTCCTTGAATCAGGCGGAGGACTCGTCCAACCTGGAGGG




AGTCTTAGGCTTAGCTGTGCAGCCAGTGGCTTTACTTTTAGCAGCTAT




GCAATGCACTGGGTCAGGCAGGCTCCTGGTAAGGGGCTCGAATGGGT




CAGCGGCATATCCGGGTCAGGTTTCTCTACATATTATGTCGATTCTGTA




AAAGGACGATTCACCATATCCAGAGACAATTCTAAAAATACCTTGTAT




CTCCAGATGAACAGCCTGAGAGCAGAAGATACCGCAGTTTATTACTGT




GCAAAGGATAATCTGGTTGCCGGGACAGTTTTTGATTATTGGGGGCAA




GGCACCCTCGTCACAGTATCCAGTgagcccaaatctagcgacaaaactcacacttgtccacc




gtgcccagcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatc




tcccggacccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtcaagttcaactggtacg




tggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtc




agcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtgtccaacaaagccctcc




cagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacgtgctgcccccat




cccgggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatcccagcgacatcgccgt




ggagtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctggactccgacggctcctt




cttcctctacagcaagctcaccgtggacaagtccagatggcagcaggggaacgtcttctcatgctccgtgatgcatg




aggctctgcacaaccactacacgcagaagtctctctccctgtctccgggaaaa





MHG
665
CAGGTGCAGCTTCAACAGAGCGGACCTGGTCTGGTTAAGCCTTCCCAA


B738-

ACCCTGAGCCTGACTTGTGCTATTTCCGGGGATAGTGTTAGCTCCAAT


HL-Fc

AGGGCAGCATGGAACTGGATCAGACAGTCCCCAAGCCGTGGACTTGA




GTGGCTTGGACGTACTTATTACAGGAGTAAATGGTACAATGATTATGC




CGTTTCTGTGAAGAGCCGTATTACTATAAACCCAGATACTTCTAAAAA




TCAAATTTCCCTTCAGCTCAACTCAGTTACACCAGAGGATACTGCAGT




CTATTATTGCGCAAGAGTTCGACCTGGCATTCCCTTCGATTATTGGGG




GCAGGGGACACCCGTTACTGTGTCCTCAGGCGGATCTGAGGGAAAGT




CCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCGATATT




GTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGTGAACGG




GCTACTATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTTCAAATA




ACAAAAACTACCTGGCATGGTATCAGCAAAAGCCTGGTCAACCCCCT




AAACTTCTCATATACTGGGCATCCACTCGGGAGAGCGGTGTGCCAGAC




CGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACTCACAATTTCC




AGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAATATCAC




TCTACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATCAAAgagc




ccaaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcagtcttcct




cttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagcgtgagc




cacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcgg




gaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaag




gagtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaagggcag




ccccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcctgctgtgc




ctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactacctc




acctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccagatggca




gcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctccctgtc




tccgggaaaa





MHG
666
GATATTGTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGT


B738-

GAACGGGCTACTATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTT


LH-Fc

CAAATAACAAAAACTACCTGGCATGGTATCAGCAAAAGCCTGGTCAA




CCCCCTAAACTTCTCATATACTGGGCATCCACTCGGGAGAGCGGTGTG




CCAGACCGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACTCACA




ATTTCCAGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAA




TATCACTCTACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATC




AAAGGCGGATCTGAGGGAAAGTCCAGCGGCTCCGGCAGCGAAAGCAA




GTCCACCGGCGGAAGCCAGGTGCAGCTTCAACAGAGCGGACCTGGTC




TGGTTAAGCCTTCCCAAACCCTGAGCCTGACTTGTGCTATTTCCGGGG




ATAGTGTTAGCTCCAATAGGGCAGCATGGAACTGGATCAGACAGTCC




CCAAGCCGTGGACTTGAGTGGCTTGGACGTACTTATTACAGGAGTAAA




TGGTACAATGATTATGCCGTTTCTGTGAAGAGCCGTATTACTATAAAC




CCAGATACTTCTAAAAATCAAATTTCCCTTCAGCTCAACTCAGTTACA




CCAGAGGATACTGCAGTCTATTATTGCGCAAGAGTTCGACCTGGCATT




CCCTTCGATTATTGGGGGCAGGGGACACCCGTTACTGTGTCCTCAgagcc




caaatctagcgacaaaactcacacttgtccaccgtgcccagcacctgaagcagcagggggaccgtcagtcttcctct




tccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagcgtgagcca




cgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcggg




aggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaagg




agtacaagtgcaaggtgtccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaagggcagc




cccgagaaccacaggtgtacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcctgctgtgcc




tggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactacctca




cctggcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagtccagatggcag




caggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagtctctctccctgtctc




cgggaaaa









Example 9. Biophysical Characterization of Ani-HLA-G Antibodies
Thermal Stability of Ani-HLA-G Antibodies.

The original and germline-optimized v-regions were screened for thermal stability in scFv format. Briefly, v-regions were cloned into scFv format and were expressed in E. coli. The culture supernatants were assessed by ELISA for their abilities to bind recombinant HLA-G. Supernatant samples were also heat shocked at either 55, 60, or 65° C., and the binding of the heat-shocked samples was compared to the unheated samples. This analysis provided an estimate of the thermal stability of the v-regions when formatted as scFv. Based on this analysis, MHGB737 and MHGB738, the germline-optimized versions of MHGB694 and MHGB688, respectively, were preferred.



FIG. 12 and Table 58 show the ability of v-regions to bind recombinant HLA-G after heat treatment when formatted as scFv. V-regions were expressed as scFv in the supernatant from E. coli and were analyzed for their ability to bind recombinant HLA-G by ELISA. Samples were tested at room temperature or after heat treatment for 10 min at 55, 60, or 65° C. B23 was an isotype control.









TABLE 58







Analysis of antigen binding after heat treatment


by v-regions formatted as scFv.










Room



Antibody
temperature


parent of
binding
% Binding retained











scFv
signal
55° C.
60° C.
65° C.














MHGB665
15215600
103
122
11








MHGB668
No binding


MHGB669
No binding


MHGB672
No binding


MHGB687
No binding


MHGB688
No binding











MHGB689
3073733
2
3
4


MHGB694
3073733
85
9
4


MHGB737 (GL
2747333
84
80
48


optimized B694)


MHGB738 (GL
5758400
14
2
1


optimized B688)









Binding Specificity and Affinity

The v-regions in IgG1 mAb format were tested for their abilities to specifically bind cells expressing HLA-G but not other MHC class I molecules (Table 59). Briefly, 1.5×107 cells were washed 2 times with 1×PBS and resuspended in 7 mL of 1×PBS and incubated for 10 min. After incubation, 8 mL of fetal bovine serum (FBS) were added, cells were washed by centrifugation at 300×g for 5 min and resuspended at 1×106 cells/mL in DMEM supplemented with 10% FBS. Cells were then washed by centrifugation at 300×g for 5 min and resuspended in staining buffer supplemented with goat anti-human Fc A647 (Jackson cat. #109-606-098) and incubated for 30 min at 4° C. After incubation, 150 μL of staining buffer were added and cells were washed by centrifugation at 300×g for 5 min. Cells were resuspended in 200 μL of running buffer (staining buffer supplemented with 1 mM EDTA, 0.1% (v/v) pluronic acid) and washed by centrifugation at 300×g for 5 min. Cells were resuspended in 30 mL of running buffer and analyzed for antibody binding by flow cytometry.









TABLE 59







Cell-based selectivity of anti-HLA-G antibodies. Geomean


fluorescence signal reports maximum value for binding.













Antibody
HLA-G
HLA-A
HLA-B
HLA-C

















MHGB665
631628
9956
10436
11586



GeoMean



MHGB668
590753
4574
6323
4941



GeoMean



MHGB669
616340
8142
8312
10950



GeoMean



MHGB672
522292
158
4263
2447



GeoMean



MHGB687
527964
28765
22936
35939



GeoMean



MHGB688
481619
2860
6290
2226



GeoMean



MHGB689
536504
2541
5787
266



GeoMean



MHGB694
472613
2874
4853
3974



GeoMean










Next, the v-regions were tested for their abilities to bind recombinant HLA-G as mAbs using surface plasmon resonance (SPR). SPR is a label-free technique to study the strength of an interaction between two binding partners by measuring the change in mass upon complex formation and dissociation. Briefly, antibodies were immobilized on a sensor chip, which was coupled with goat anti-human Fc. Soluble HLA-G1 extracellular domain (MHGW8) was flowed over the immobilized antibody and association/dissociation responses were monitored. Kinetic information (on-rate and off-rate constants) were extracted by fitting sensorgrams to the 1:1 Langmuir model. Binding affinity (KD) were reported as the ratio of rate constants (koff/kon). Antibody affinities (Kd) ranged from ˜77 pM—2.6 nM and are shown in Table 60.









TABLE 60







SPR-based affinity measurements of variable


regions binding to HLA-G (MHGW8).











ka
kd
KD


Antibody
(1/Ms)
(1/s)
(M)





MHGB665/MHGB732
5.18E+05
4.00E−05
7.71E−11


MHGB669
3.15E+05
4.53E−04
1.44E−09


MHGB672
3.25E+06
1.79E−03
5.50E−10


MHGB687
1.89E+05
1.53E−04
8.09E−10


MHGB688
6.58E+05
2.63E−04
4.00E−10


MHGB694
2.08E+06
2.40E−03
1.15E−09


MHGB737
1.996E+5 
3.103E−4 
2.555E−9 


MHGB738
2.03E+10
2.83E+00
1.39E−10









Example 10. Ligand Blocking

HLA-G is over-expressed on certain tumor types and can thus serve as a marker for tumor cells. Additionally, HLA-G binds to the ligands ILT2 and ILT4, which are expressed on immune effector cells such as NK cells4,5. The interaction between HLA-G and ILT2/ILT4 leads to inhibition of NK cell activity. Thus, we hypothesized that antibodies which bind to HLA-G competitively with ILT2/4 would prevent inhibitory interaction between tumor cells and NK cells and lead to increased NK mediated tumor cell killing. To address this hypothesis, we first assayed whether the antibodies could block interaction between HLA-G and ILT2/4 using a competition assay. Binding between the HLA-G-dextramer complex and HEK293T cells exogenously expressing ILT2 or ILT4 receptors results in a fluorescence signal. Addition of a mAb which competes with the interaction between HLA-G-dextramer and ILT-2/4 cells results in a decrease in fluorescence signal. The inverse of the fluorescence signal inhibition was related to the ligand blocking inhibition of the mAbs (Table 60). Briefly, recombinant biotinylated HLA-G1 (MHGW8) was bound up to a streptavidin APC-dextramer (Immudex cat. #DX01-APC) to a final ratio of approximately 4 HLA-G1 proteins per dextramer molecule. Dextramer-HLA-G complex was mixed with HEK293T cells exogenously expressing ILT-2 or cells exogenously expressing ILT-4 and incubated for 30 min. at 4° C. Anti-HLA-G antibody was added at each concentration and incubated with dextramer-HLA-G complex for 30 min at ° C. Cells were added (25,000 cells) and incubated for 30 min at 4° C. After incubation, the mixture of cells and dextramer HLA-G complex were washed by centrifugation resuspended in 30 μL of running buffer (Thermo BD cat. #554657). The resuspended mixture was analyzed for fluorescence signal by flow cytometry using an Intellicyt® iQue Screener Plus. Gating was done first on singlet cells, then live cells using Sytox™ Blue Dead Cell stain (ThermoFisher), then on GFP for cells expressing ILT-2/4, then on APC for bound dextramer-HLA-G complex. All antibodies except MHGB737 could inhibit HLA-G interaction with ILT4, and all antibodies except MHGB737 and MHGB687 could inhibit interaction with ILT2 (Table 61). This suggested that antibodies discovered in this campaign could both target tumors and relieve immune inhibition by the tumor cells.









TABLE 61







Ligand blocking properties of antibodies












ILT2 EC50
ILT4 EC50



Antibody
(nM)
(nM)















MHGB665
1616.9
1742.7



MHGB669
1700.7
1588.5



MHGB672
2119.2
1612.8



MHGB687
NA
1864.0



MHGB688
1722.8
1420.8



MHGB694
644.5
200.1



MHGB732
1.8
2.0



MHGB737
NA
NA



MHGB738
1.6
1.6










Example 11. Epitope Mapping

We then asked whether this inhibition of ligand binding was due to direct competition with ILT2/4 for the same binding site on HLA-G. To address this hypothesis, we used hydrogen-deuterium exchange-based LC-MS (described in Example 9) to identify the epitopes on HLA-G for either ILT-2, ILT-4, MHGB732, or MHGB738 (FIG. 13). Binding of both MHGB732 and MHGB738 Abs strongly protected the same peptide in the α3 domain (amino acid residues 191-198 of the mature protein, sequence HHPVFDYE (SEQ ID NO: 667)), resulting in average change in deuteration levels >30%. This peptide was also protected in the presence of ILT2 and to a lesser extent in the presence of ILT4. Both MHGB732 and MHGB738 antibodies also significantly protected (average change in deuteration levels 10%-30%) a second epitope comprised of residues 249-251 of the mature protein, sequence VPS. The epitopes were mapped onto the crystal structure of HLA-G (PDB ID 1YDP)6, which showed that the epitope for the MHGB732 and MHGB738 Abs and for ILT2/4 resided in the membrane-proximal region of the α3 domain.


Example 12. Effect on NK Cell-Based Cytotoxicity

We then asked whether inhibition of the interaction with HLA-G with ILT-2/4 could mediate anti-tumor activity via NK cell-based cytotoxicity. To address this, we cloned each variable region onto either an IgG1 or a silent IgG4-PAA constant region which lacks effector function. We then tested the ability of each antibody to mediate cytotoxicity of K562-HLA-G cells mediated by NK cells which either express Fc receptors (NK-92) or which lack Fc receptors (NKL). Briefly, K562 cells overexpressing HLA-G cells were labeled with Carboxyfluorescein succinimidyl ester (CFSE) which served as a cell proliferation dye. Antibodies were diluted into a 96-well plate according to the dilutions in FIG. 14A-19B. K562-HLA-G cells were added to each well of antibody and incubated for 1 hr at 4° C. NKL cells were added at approximately 100,000 cells/well, and the mixture was incubated in the presence of IL2 and NKp46 (to activate NKL cells) overnight (NKL cells) or 4 hr (NK-92 cells) at 4° C. Cells were washed by centrifugation and resuspended in buffer with live/dead stain. The mixture was resuspended in 130 μL of staining buffer and analyzed by flow cytometry using a FACS Fortessa cytometer. Antibodies which could mediate cytotoxicity in the absence of NK receptors were thought to mediate this interaction via blocking the immune checkpoint interaction between HLA-G and ILT-2/4 (FIG. 14A-19B). We found that all antibodies which could block ILT2 (all Abs except MHGB687) could enhance NKL cell-mediated cytotoxicity against K562-HLA-G cells in a 24 hr assay (FIGS. 14A, 15A, 16A, 17A, 18A, 19A) whereas only IgG1-based antibodies could enhance Fc-receptor mediated cytoxicity. This suggested that ligand blocking could serve as an important anti-tumor mechanism, even in the absence of Fc receptor mediated effector function.


Example 13. Effector Functions of mAbs

We tested the ability of antibodies to further mediate tumor cell killing via antibody-dependent cellular cytotoxicity (ADCC) against the choriocarcinoma cell line JEG-3 (ATCC HTB-36) which endogenously expresses HLA-G (FIG. 20). Antibodies were added to JEG-3 cells labeled with BATDA dye (Perkin Elmer cat. #C136-100) which can unidirectionally penetrate into the cells. Upon cell lysis, the dye is released into the solution containing Europium which reacts with the dye to form a fluorescent chelate, whose fluorescence signal can be measured. PBMCs cultured overnight were added at an E:T ratio of 50:1 to JEG-3 cells at 5,000 cells/well and the mixture was incubated for 4 hr at 37° C. The cell mixture was added at 1:10 into Europium solution, incubated for 15 min at room temperature and fluorescence at 610 nm was monitored to determine signal. The fluorescence signal for 100% killing was determined using a well containing BADTA-labeled target cells mixed with Triton-X 100 detergent.


Since the anti-HLA-G Abs could display ADCC in vitro, we asked whether this activity could be enhanced. Several studies showed that antibodies having less than 10% terminal fucosylated Fc display enhanced effector function due to higher affinity binding to Fc receptors 7. Thus, we generated MHGB732 and MHGB738 in a low fucose CHO host to produce an antibody with <10% terminal fucose (MHGB738.CLF) (Table 62, FIG. 21A-D). As a negative control, we generated a version of MHGB738 with an Fc region that could not bind Fc receptors, and this protein was called MHGB745.


The normal fucose and low fucose antibodies were tested for their abilities to induce NK cell-based ADCC against either JEG-3 cells (FIG. 21A) or against RERF-LC-Ad-1 cells (human lung adenocarcinoma cell line, JCRB1020) (FIG. 21B). Low fucose antibodies were generated by expression of the constructs encoding the heavy chain and light chain in CHO cells which natively express the fucosyltransferase enzyme at low levels, leading to production of antibodies have less than 10% core fucose. The ratio of effector cells to target cells is shown in the graph. The assay was performed in the same way as the ADCC assay described above. Both MHGB745 and the isotype control did not induce ADCC in the assay. The two IgG1 Abs, MHGB732 and MHGB738 could induce ADCC while the same antibodies having low fucose Fc regions displayed ˜ 10-fold enhanced ADCC activity. This showed that ADCC enhancement could be obtained by use of a low fucose antibody.


We next tested the abilities of the antibodies to mediate complement-dependent cytotoxicity (CDC) (FIGS. 21C and 21D). Briefly, assays were run in 10% FBS containing DMEM (JEG-3) or RPMI (RERF-LC-Ad-1). Antibodies were added to target cells and incubated for 30 minutes at 37° C. After incubation, 15-20% (stock concentration) of rabbit complement (Cedarlane cat. #CL3441-S) and heat inactivated complement was added to the wells respectively in a volume of 25 μl/well. The mixture was incubated for 4-12 hours at 37° C. Target cell lysis was detected by addition of 100 μl of CellTitre-Glo (Promega cat. #G9242) reagent followed by incubation for 10 minutes at room temperature. Luminescence was monitored using a Tecan Microplate reader SPARK®. The two IgG1 antibodies, MHGB732 and MHGB738 did not mediate CDC. Since the IgG1 Abs could not mediate CDC, we cloned the v-regions into an IgG1 Fc harboring the K248E, T437R (RE) mutations which were shown to specifically enhance CDC activity 8. These Abs, having the identical v-regions as their IgG1 counterparts, could mediate CDC activity. We asked whether the RE Fc variant would impact ADCC activity enhancement in the low fucose Abs and whether the low fucose Fc would impact CDC activity of the RE Fc variants. The RE Abs produced in a low fucose host (having <10% fucosylated Fc), MHGB752 and MHGB758 had identical ADCC activity to the low fucose IgG1 Abs MHGB732 and MHGB738 (FIGS. 21A and 21B). Analogously, the RE Abs produced in a low fucose host had identical CDC activity to the RE Abs produced in a normal fucose host (FIGS. 21C and 21D).









TABLE 62







Description of variants of MHGB738


having modified constant regions.










Protein Name
Description







MHGB732
IgG1



MHGB738
IgG1



MHGB745
L234A, L235A, D265S



MHGB752
IgG1, K248E, T437R (RE)



MHGB758
IgG1, K248E, T437R (RE)



MHGB732.CLF
IgG1, low fucose



MHGB738.CLF
IgG1, low fucose



MHGB758.CLF
IgG1, K248E, T437R (RE), low fucose



MHGB758.CLF
IgG1, K248E, T437R (RE), low fucose










Example 14: Generation of Bispecific HLA-G×CD3 Antibodies

The VH/VL regions of the anti-HLA-G antibodies generated in Examples 7-13 and the VH/VL regions of the anti-CD3 antibody of Example 1 were engineered into bispecific format and expressed as IgG1.


Engineering of CD3 scFv-Fcs and CD3 Fabs for HLA-G×CD3 Bispecific Generation.


The CD3-specific scFvs, scFv-Fcs, and Fab-Fcs were generated as described in Example 3. Additionally, the CD3-specific scFvs, scFv-Fcs, and Fab-Fcs were generated using VH/VL regions from CD3B450, that has been describe in US20200048349, and CD3B219, derived from SP34-2 antibody (BD Biosciences 551916). Null-scFv-Fc and B23B62-Fab-Fc were used as negative controls.










CD3B450-LH-scFv-Fc (SEQ ID NO: 684):



QSALTQPASVSGSPGQSITISCTGTSSNIGTYKFVSWYQQHPGKAPKVMIYEVSKRPSGVSNRFSG





SKSGNTASLTISGLQAEDEADYYCVSYAGSGTLLFGGGTKLTVLGGSEGKSSGSGSESKSTGGSQ





VQLQQSGPGLVKPSQTLSLTCAISGDSVFNNNAAWSWIRQSPSRGLEWLGRTYYRSKWLYDYA





VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARGYSSSFDYWGQGTLVTVSSEPKSSDKTH





TCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAK





TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYP





PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPG





CD3B219-LH-scFv-Fc (SEQ ID NO: 685):


QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF





SGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLGGSEGKSSGSGSESKSTG





GSEVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYAT





YYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVT





VSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWY





VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG





QPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFA





LVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





Null-scFv-Fc (SEQ ID NO: 686):


DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGCAPKLLIYAASSLQSGVPSRFSGSG





SGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGQGTKVEIKGGGSGGSGGCPPCGGSGGEVQLLES





GGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTIS





RDNSKNTLYLQMNSLRAEDTAVYYCAKYDGIYGELDFWGCGTLVTVSSEPKSSDKTHTCPPCPA





PEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ





YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPG





B23B62-Fab-Fc arm heavy chain (SEQ ID NO: 687):


QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGMGVSWIRQPPGKALEWLAHIYWDDDKRYNPSL





KSRLTITKDTSKNQVVLTMTNMDPVDTATYYCARLYGFTYGFAYWGQGTLVTVSSASTKGPSV





FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTP





EVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY





KCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





B23B62-Fab-Fc arm light chain (SEQ ID NO: 688):


DIVMTQSPDSLAVSLGERATINCRASQSVDYNGISYMEIWYQQKPGQPPKLLIYAASNPESGVPDR





FSGSGSGTDFTLTISSLQAEDVAVYYCQQIIEDPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKV





YACEVTHQGLSSPVTKSFNRGEC





CD3B219-Fab-Fc arm heavy chain (SEQ ID NO: 689):


EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYY





AASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS





ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPK





DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ





DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSLTCLVKGFYPS





DIAVEWESNGQPENNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ





KSLSLSPG





CD3B219-Fab-Fc arm light chain (SEQ ID NO: 690):


QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF





SGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEEL





QANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHR





SYSCQVTHEGSTVEKTVAPTECS






Engineering of HLA-G Fab-Fc for HLA-G/CD3 Bispecific Generation

The HLA-G specific VH and VL regions were engineered in VH-CH1-hinge-CH2-CH3 and VL-CL formats respectively. The polypeptide of SEQ ID NO: 326 comprising the Fc silencing mutations L234A/L235A/D265S and the CH3 mutations T350V/T366L/K392L/T394W designed to promote selective heterodimerization was used to generate the HLA-G specific VH-CH1-hinge-CH2-CH3. The polypeptides of SEQ ID NO: 363 or 364 were used to generate the HLA-G specific VL-CL.


The amino acid sequences of HLA-G Fab-Fc HC and LC are shown in Tables 63 and 64, respectively. The cDNA SEQ ID Nos of HLA-G Fab-Fc HC and LC are listed in Table 65.


Table 63 shows the amino acid sequences of anti-HLA-G Fab-Fc heavy chains (HCs).














Fab-Fc
SEQ



Heavy chain
ID NO:
Amino acid sequence







MHGB732-
668
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWY


Fab-Fc HC

NDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGIVGLPFAYWGQGTLVT




VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS




SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGP




SVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTK




NQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSPG





MHGB738-
669
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWY


Fab-Fc HC

NDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSSA




STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY




SLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQV




SLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPG





MHGB712-
670
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNRAAWNWIRQSPSRGLEWLGRTYYRSKWY


Fab-Fc HC

NDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCARVRPGIPFDYWGQGTPVTVSSA




STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY




SLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQV




SLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVF




SCSVMHEALHNHYTQKSLSLSPG









Table 64 shows the amino acid sequences of anti-HLA-G Fab-Fc light chains (LCs).














Fab-Fc
SEQ



Light chain
ID NO:
Amino acid sequence







MHGB732-
671
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRE


Fab-Fc LC

SGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIKRTVAAPSVFIF




PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTL




TLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB738-
672
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLIYWASTRE


Fab-Fc LC

SGVPDRFSGSVSGTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQGTKVEIKRTVAAPSVFI




FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST




LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





MHGB712-
673
DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKNYLAWYQQKPGQPPKLLIYWASTRE


Fab-Fc LC

SGVPDRFSGSVSGTDFTLTISSLQAEDVAVYYCQQYHSTPWTFGQGTKVEIKRTVAAPSVFI




FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST




LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC









Table 65 shows the cDNA sequences of anti-HLA-G Fab-Fc light chains (LCs) and heavy chains (HCs).















SEQ



Fab-Fc
ID NO:
cDNA sequence







MHGB732-
674
CAAGTACAACTGCAACAAAGTGGTCCTGGGCTCGTGAAGCCTTCCCAGACTCTCAGCCT


Fab-Fc HC

CACATGCGCTATAAGTGGGGATTCTGTTTCCTCAAATTCAGCAGCCTGGAATTGGATAC




GACAGTCTCCATCCCGTGGCCTTGAGTGGCTTGGTAGAACTTATTACCGATCCAAGTGG




TACAATGATTACGCCGTTTCAGTGAAGTCCCGCATTACTATTAATCCCGACACATCTAAG




AATCAAATTTCATTGCAACTGAATAGCGTAACACCCGAAGATACAGCAGTTTATTATTG




TGCAGGTGATCGACGCTACGGCATAGTGGGACTTCCTTTCGCCTATTGGGGCCAAGGG




ACACTGGTCACTGTGTCATCCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACC




CTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTAC




TTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA




CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTG




CCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAA




CACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCA




CCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACC




CAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTG




AGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAT




AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC




GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT




CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC




CCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCA




GGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGG




GAGAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCG




ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGG




GAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA




GCCTCTCCCTGTCTCCGGGT





MHGB732-
675
GACATCGTAATGACACAGTCACCAGATTCATTGGCAGTTAGTCTGGGTGAAAGGGCAA


Fab-Fc LC

CAATCAACTGCAAGTCTTCTCAGAGTGTACTGCATAGTTCTAACAATAAGAACTACCTTA




CCTGGTTTCAACAGAAACCAGGTCAGCCCCCCAAGTTGCTGATTTACTGGGCAAGCACC




CGCGAATCCGGCGTTCCCGATCGATTTTCAGGTTCCGGGAGTGGGACCGACTTTACCTT




GACCATCTCTTCCTTGCAGGCCGAAGATGTAGCCGTCTATTACTGCCATCAGTATTACTC




TACTCCCCCCACATTCGGTCAAGGTACAAAAGTTGAGATAAAACGGACAGTGGCCGCT




CCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTC




GTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAGGTGGACA




ATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACAG




CACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAG




GTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAAGTCTTTCAA




CCGGGGCGAGTGT





MHGB738-
676
CAGGTGCAGCTTCAACAGAGCGGACCTGGTCTGGTTAAGCCTTCCC


Fab-Fc HC

AAACCCTGAGCCTGACTTGTGCTATTTCCGGGGATAGTGTTAGCTCC




AATAGGGCAGCATGGAACTGGATCAGACAGTCCCCAAGCCGTGGAC




TTGAGTGGCTTGGACGTACTTATTACAGGAGTAAATGGTACAATGATT




ATGCCGTTTCTGTGAAGAGCCGTATTACTATAAACCCAGATACTTCTA




AAAATCAAATTTCCCTTCAGCTCAACTCAGTTACACCAGAGGATACTG




CAGTCTATTATTGCGCAAGAGTTCGACCTGGCATTCCCTTCGATTATT




GGGGGCAGGGGACACCCGTTACTGTGTCCTCAGCCTCCACCAAGGG




CCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGG




GGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAAC




CGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGC




ACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC




AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACA




TCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAA




GTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCACCGTGCCC




AGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCA




AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATG




CGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC




TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGC




GGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC




CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG




GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAA




AGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCA




TCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGG




TCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA




TGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGAC




TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTC




TAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG




GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG




GT





MHGB738-
677
GATATTGTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGTGAACGGGCTAC


Fab-Fc LC

TATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTTCAAATAACAAAAACTACCTGGC




ATGGTATCAGCAAAAGCCTGGTCAACCCCCTAAACTTCTCATATACTGGGCATCCACTC




GGGAGAGCGGTGTGCCAGACCGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACT




CACAATTTCCAGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAATATCACTC




TACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATCAAACGGACAGTGGCCGCT




CCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTC




GTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAGGTGGACA




ATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACAG




CACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAG




GTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAAGTCTTTCAA




CCGGGGCGAGTGT





MHGB712-
678
CAGGTGCAGCTTCAACAGAGCGGACCTGGTCTGGTTAAGCCTTCCCAAACCCTGAGCCT


Fab-Fc HC

GACTTGTGCTATTTCCGGGGATAGTGTTAGCTCCAATAGGGCAGCATGGAACTGGATC




AGACAGTCCCCAAGCCGTGGACTTGAGTGGCTTGGACGTACTTATTACAGGAGTAAAT




GGTACAATGATTATGCCGTTTCTGTGAAGAGCCGTATTACTATAAACCCAGATACTTCT




AAAAATCAAATTTCCCTTCAGCTCAACTCAGTTACACCAGAGGATACTGCAGTCTATTAT




TGCGCAAGAGTTCGACCTGGCATTCCCTTCGATTATTGGGGGCAGGGGACACCCGTTA




CTGTGTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGA




GCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC




GGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT




GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAG




CTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTG




GACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGTCCACCGTGCCCAG




CACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC




CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAG




ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC




AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTC




CTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTG




TGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC




CTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT




CCGGGT





MHGB712-
679
GATATTGTTATGACACAGTCCCCAGATTCATTGGCAGTAAGCCTCGGTGAACGGGCTAC


Fab-Fc LC

TATTAACTGTAAGTCTTCCCAGAGTGTATTGTTCTCTTCAAATAACAAAAACTACCTGGC




ATGGTATCAGCAAAAGCCTGGTCAACCCCCTAAACTTCTCATATACTGGGCATCCACTC




GGGAGAGCGGTGTGCCAGACCGTTTCTCAGGGAGTGTGTCAGGTACAGATTTTACACT




CACAATTTCCAGCCTCCAAGCCGAAGACGTTGCAGTATATTATTGCCAACAATATCACTC




TACACCTTGGACATTTGGTCAAGGTACTAAAGTCGAAATCAAACGGACAGTGGCCGCT




CCTTCCGTGTTCATCTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTC




GTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAGGTGGACA




ATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACAG




CACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAG




GTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAAGTCTTTCAA




CCGGGGCGAGTGT










Engineering of HLA-G scFv-Fc for HLA-G/CD3 Bispecific Generation


HLA-G VH/VL regions engineered as scFvs in either VH-Linker-VL or VL-linker-VH orientations using the linker of SEQ ID NO: 31 (Table 2) as described in Example 2 were further engineered into a scFv-hinge-CH2-CH3 format comprising the Fc silencing mutation (L234A/L235A/D265S) and the T350V/T366L/K392L/T394W mutations designed to promote selective heterodimerization and expressed as IgG1. The polypeptide of SEQ ID NO: 321 was used as the constant domain hinge-CH2-CH3.


Amino acid sequences of anti-HLA-G molecules in scFv-hinge-CH2-CH3 format (scFv-Fc) are shown in Table 66. cDNA sequences of anti-HLA-G molecules in scFv-hinge-CH2-CH3 format (scFv-Fc) are listed in Table 67.









TABLE 66







amino acid sequences of anti-HLA-G scFv-Fc bi-specific arms.










SEQ



scFv-Fc
ID NO:
Amino acid sequence





MHGB732-
680
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNKNYLTWFQQKPGQPPKLLIYWASTRE


LH-scFv-Fc

SGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCHQYYSTPPTFGQGTKVEIKGGSEGKSSGS




GSESKSTGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWL




GRTYYRSKWYNDYAVSVKSRITINPDTSKNQISLQLNSVTPEDTAVYYCAGDRRYGIVGLPF




AYWGQGTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VSVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK




VSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESN




GQPENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS




PG





MHGB737-
681
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRF


LH-scFv-Fc

SGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSLTFGGGTKVDIKGGSEGKSSGSGSESKSTG




GSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVSGISGSGFST




YYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNLVAGTVFDYWGQGTLVTV




SSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKF




NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT




ISKAKGQPREPQVYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPP




VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
















TABLE 67







cDNA sequences of anti-HLA-G scFv-Fc bi-specific arms.










SEQ



scFv-Fc
ID NO:
cDNA sequence





MHGB732-
682
GACATCGTGATGACCCAGTCTCCAGACAGCCTGGCTGTGTCTCTGGGCGAGAGAGCTA


scFv-LH-Fc

CCATCAACTGCAAGTCCAGCCAGTCCGTGCTGCACTCCTCCAACAACAAGAACTACCTG




ACCTGGTTCCAGCAGAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTACTGGGCCTCCAC




CCGCGAGTCTGGTGTGCCCGATAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTACCC




TGACAATCAGCTCCCTGCAGGCCGAGGATGTGGCCGTGTACTACTGCCACCAGTACTAC




AGCACCCCTCCTACCTTTGGCCAGGGCACCAAGGTGGAAATCAAGGGCGGATCTGAGG




GAAAGTCCAGCGGCTCCGGCAGCGAAAGCAAGTCCACCGGCGGAAGCCAGGTTCAGC




TGCAGCAGTCTGGCCCTGGACTGGTCAAGCCCTCTCAGACCCTGTCTCTGACCTGTGCC




ATCTCCGGCGACTCCGTGTCCTCTAATTCTGCCGCCTGGAACTGGATCCGGCAGTCTCC




TAGTAGAGGCCTGGAATGGCTGGGCAGAACCTACTACCGGTCCAAGTGGTACAACGAC




TACGCCGTGTCCGTGAAGTCCCGGATCACCATCAATCCCGACACCTCCAAGAACCAGAT




CTCCCTGCAGCTCAACAGCGTGACCCCTGAGGATACCGCCGTGTACTACTGTGCCGGCG




ATCGGAGATATGGCATCGTGGGCCTGCCTTTTGCTTACTGGGGACAGGGCACACTGGT




CACCGTTTCTTCTGAGCCCAAATCTAGCGACAAAACTCACACTTGTCCACCGTGCCCAGC




ACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCC




TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGA




CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA




AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCC




TGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAAGCCC




TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACA




GGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCTG




TGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGC




AGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTC




CTCTACAGCAAGCTCACCGTGGACAAGTCCAGATGGCAGCAGGGGAACGTCTTCTCAT




GCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGTCTCTCTCCCTGTCT




CCGGGA





MHG6737-
683
gatattcagatgacccaatcccccagtacccttagtgctagtgtgggagaccgagtgaccattacctgcagagcat


LH-scFv-Fc

cccaatccataagctcctggctcgcctggtatcagcaaaagccaggcaaggcacctaagctgcttatttacaaagc




atcctcattggagtccggcgtaccctcacgtttctctggctcaggctccgggacagagtttacattgaccatctctag




ccttcagccagatgactttgctacatactattgtcaacaatataacagctactctctgaccttcgggggtgggacca




aagtggatattaaaggcggctccgagggcaagagcagcggcagcggcagcgagagcaagagcaccggcggca




gcgaagtccaacttcttgagagtggtggtggcctcgtccagccaggaggttctctccggctctcatgtgctgcaagt




ggctttactttcagctcttacgccatgcactgggtgcgacaggctcccgggaagggtcttgagtgggtgtctggtata




agtggttcaggcttttcaacctactatgtcgattccgtcaagggccggtttacaatttcaagggacaattctaagaat




acactgtatctccaaatgaatagtctcagagccgaagataccgccgtttactactgcgccaaagataatcttgtggc




tgggactgtcttcgactattggggtcagggtacattggtaaccgtaagtagtgagcccaaatctagcgacaaaact




cacacatgtccaccgtgcccagcacctgaagcagcagggggaccgtcagtcttcctcttccccccaaaacccaagg




acaccctcatgatctcccggacccctgaggtcacatgcgtggtggtgagcgtgagccacgaagaccctgaggtca




agttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagc




acgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtct




ccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtg




tacgtgctgcccccatcccgggaggagatgaccaagaaccaggtcagcctgctgtgcctggtcaaaggcttctatc




ccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactacctcacctggcctcccgtgctgg




actccgacggctccttcttcctctacagcaagctcaccgtggacaagtctagatggcagcaggggaacgtcttctca




tgctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctctccctgtctccgggt









HLA-G×CD3 Bispecifics

The VH/VL regions of the anti-CD3 antibodies CD3B376, CD3B450, CD3B219, and CD3W246, engineered as Fab-Fcs and the VH/VL regions of the anti-HLA-G antibodies MHGB738, MHGB732 and MHGB737 engineered as scFv-Fcs in both HL and LH orientations as described above, were expressed to generate bispecific antibodies, yielding HLA-G/CD3 bispecific antibodies with a HLA-G binding arm in a format scFv-hinge-CH2-CH3 and a CD3 binding arm in a format of: heavy chain: VH-CH1-linker-CH2-CH3 and light chain: VL-CL (Table 68). B23B62-Fab-Fc arm was used as an isotype control for the CD3-specific arm.


Alternatively, the VH/VL regions of the anti-CD3 antibodies CD3W246, CD3B450, and CD3B219 engineered as scFv-Fcs in HL and/or LH orientations (see Table 68) and the VH/VL regions of the anti-HLA-G antibodies MHGB738, MHGB732 and MHGB737 engineered as Fabs as described above, were expressed to generate bispecific antibodies, yielding HLA-G/CD3 bispecific antibodies with a HLA-G binding arm in the format of a heavy chain VH-CH1-linker-CH2-CH3 and light chain VL-CL and a CD3 binding arm in a format scFv-hinge-CH2-CH3. The linker used to generate the anti-scFv is the linker of SEQ ID NO: 31 (Table 68).


T350V_L351Y_F405A_Y407V CH3 mutations were engineered into one heavy chain and T350V_T366L_K392L_T394W CH3 mutations were engineered into the other heavy chain as described above. In addition, both HK2 and CD3 binding arms were engineered to contain Fc effector silencing mutations L234A_L235A_D265S as described above.


The engineered chains were expressed, and the resulting bispecific constructs purified using standard methods. The bispecifics were characterized for their binding to HLA-G and CD3, their in vitro cytotoxicity, immune checkpoint response, and in vivo efficacy as described in Examples 15-17.









TABLE 68







HLA-G × CD3 bispecifics.













CD3 arm

HLA-G arm


Bispecific

SEQ ID

SEQ ID


Name
CD3 arm
NO:
HLA-G arm
NO:














HC3B239
null-scFv-Fc
686
MHGB738-Fab-Fc
HC: 669






LC: 672


HC3B238
CD3W246-HL-scFv-Fc
79
MHGB738-Fab-Fc
HC: 669






LC: 672


HC3B237
CD3W246-LH-scFv-Fc
80
MHGB738-Fab-Fc
HC: 669






LC: 672


HC3B236
CD3B450-LH-scFv-Fc
684
MHGB738-Fab-Fc
HC: 669






LC: 672


HC3B235
CD3B219-LH-scFv-Fc
685
MHGB738-Fab-Fc
HC: 669






LC: 672


HC3B234
null-scFv-Fc
686
MHGB732-Fab-Fc
HC: 668






LC: 671


HC3B233
CD3W246-HL-scFv-Fc
79
MHGB732-Fab-Fc
HC: 668






LC: 671


HC3B232
CD3W246-LH-scFv-Fc
80
MHGB732-Fab-Fc
HC: 668






LC: 671


HC3B231
CD3B450-LH-scFv-Fc
684
MHGB732-Fab-Fc
HC: 668






LC: 671


HC3B230
CD3B219-LH-scFv-Fc
685
MHGB732-Fab-Fc
HC: 668






LC: 671


HC3B128
B23B62-Fab-Fc
HC: 687
MHGB732-LH-
680




LC: 688
scFv


HC3B125
CD3B376-Fab-Fc
HC: 349
MHGB732-LH-
680




LC: 350
scFv-Fc


HC3B258
CD3B376-Fab-Fc
HC: 349
MHGB732-LH-
680




LC: 350
scFv-Fc


HC3B124
CD3B219-Fab-Fc
HC: 689
MHGB732-scFv-
680




LC: 690
Fc


HC3B123
CD3W246-Fab-Fc
HC: 85
MHGB732-LH-
680




LC: 90
scFv-Fc


HC3B225
B23B62-Fab
HC: 687
MHGB737-scFv-
681




LC: 688
Fc


HC3B216
CD3B376-Fab-Fc
HC: 349
MHGB737-scFv-
681




LC: 350
Fc


HC3B214
CD3W246-Fab-Fc
HC: 85
MHGB737-scFv-
681




LC: 90
Fc









Example 15. BsAb Formatting and In Vitro Testing

T cell redirection against tumor cells has shown significant promise in the clinic, and we asked whether a bispecific antibody (BsAb) which targets HLA-G and the CD3 subunit of the T cell receptor complex would show cytotoxicity against HLA-G expressing tumor cells. Lead v-regions were formatted as BsAbs with a series of CD3-binding redirection arms (Table 69). Briefly, target cells (NCI-H2009-b2m) at 50,000 cells per well were incubated with antibody at concentrations starting from 10 nM and serially by half-log per well. Purified primary T cells were added at a ratio of 3:1 and the mixture was incubated for 72 hr at 37° C. Staining solution was prepared adding LIVE/DEAD Near-IR stain (Dead Cell Stain, L34976, Invitrogen) at 1 uL per 10{circumflex over ( )}6 cells and Brilliant violet anti CD25 (Biolegend cat. #302630) at 5 uL per 10{circumflex over ( )}6 cells in BD FACS staining buffer. Cell mixtures were dissociated with Accutase prior to addition analysis by flow cytometry. Cells were gated on FSC-A vs SSC-A and CFSE (BL-1) vs SSC-A and non-viable tumor cells were identified by total tumor target cell population for CFSE (BL-1) vs Near IR Live/Dead (RL2-H) gating. Data was analyzed using ForeCyt (Sartorius) advanced metrics to calculate tumor cytoxity. All BsAbs displayed the ability to enhance T cell-mediated cytotoxicity when the HLA-G binding v-region was paired with a CD3 binding arm with EC50 values that were correlated to the binding affinities of both the HLA-G targeting arm and the CD3 targeting arm (Table 69).









TABLE 69







BsAb designs and cytotoxicity













Cytotoxicity,


BsAb Name
CD3 arm
HLA-G arm
EC50 (M)





HC3B239
null-scFv-Fc
MHGB738-Fab-Fc
NA


HC3B238
CD3W246-HL-scFv-Fc
MHGB738-Fab-Fc
1.72542E−11


HC3B237
CD3W246-LH-scFv-Fc
MHGB738-Fab-Fc
1.32773E−10


HC3B236
CD3B450-LH-scFv-Fc
MHGB738-Fab-Fc
4.53748E−09


HC3B235
CD3B219-LH-scFv-Fc
MHGB738-Fab-Fc
  8.37E−11


HC3B234
null-scFv-Fc
MHGB732-Fab-Fc
N/A


HC3B233
CD3W246-HL-scFv-Fc
MHGB732-Fab-Fc
N/A


HC3B232
CD3W246-LH-scFv-Fc
MHGB732-Fab-Fc
6.77438E−12


HC3B231
CD3B450-LH-scFv-Fc
MHGB732-Fab-Fc
1.26465E−10


HC3B230
CD3B219-LH-scFv-Fc
MHGB732-Fab-Fc
9.91577E−12


HC3B128
B23B62-Fab
MHGB732-LH-scFv
No data


HC3B125
CD3B376-Fab-Fc
MHGB732-LH-scFv-Fc
5.65197E−11


HC3B258
CD3B376-Fab-Fc
MHGB732-LH-scFv-Fc
Binding same





as HC3B125


HC3B124
CD3B219-Fab-Fc
MHGB732-scFv-Fc
 3.849E−12


HC3B123
CD3W246-Fab-Fc
MHGB732-LH-scFv-Fc
3.24183E−12


HC3B225
B23B62-Fab
MHGB737-scFv-Fc
No data


HC3B216
CD3B376-Fab-Fc
MHGB737-scFv-Fc
 1.8984E−09


HC3B214
CD3W246-Fab-Fc
MHGB737-scFv-Fc
1.37611E−10









The BsAbs were further tested for their abilities to mediate T-cell activation and T cell-based cytotoxicity against additional cell lines: Hup-T3 and RERF-LC-Ad-1 (FIGS. 22A-22D). FIGS. 22A-22D show cytotoxicity mediated by HC3B125 against HLA-G expressing tumor cells.


Two BsAbs, HC3B125 and HC3B258, differed only in the presence (HC3B258) or absence (HC3B125) of a codon to express the C-terminal lysine, K447 in the heavy chain. Since the C-terminal lysine of the heavy chain of antibodies is normally proteolytically processed, the two Abs displayed identical mass spectra (Table 70). Additionally, they displayed identical biophysical properties, such as thermal stability and binding affinity for both T cells and for K562-HLA-G cells. Additionally, HC3B258 displayed similar cytotoxicity properties as HC3B125 (FIG. 23).









TABLE 70







Comparison of the biophysical properties of HC3B125 and HC3B258.























K562-HLA-



Exp.





T cell
G cell



Mass
Kd




binding
binding


Molecule
(Da)
(pM)
Tonset
Tm1
Tm2
Tagg
(EC50, M)
(EC50, M)





HC3B258
128,772.4
13 ± 1.2
55.0° C.
63.0° C.
81.1° C.
63.9° C.
6.0E−08
1.1E−08


HC3B125
128,772.5
11 ± 0.5
55.3° C.
63.6° C.
81.3° C.
65.3° C.
6.0E−08
1.2E−08









Example 16. Observation of Immune Checkpoint Response

We observed that anti-HLA-G mAbs whose mechanism of cytotoxicity features effector function (e.g. ADCC) and CD3×HLA-G BsAbs could induce killing of all cell types which expressing HLA-G. Tumors often escape immune surveillance via up-regulation of certain immune checkpoint modulators which can inhibit immune cells, such as PD-L1 or CTLA-49. We thus asked whether targeting cancer cells for T cell mediated cytotoxicity via CD3×HLA-G BsAbs could overcome expression of immune checkpoint modulators on tumor cells. We measured whether HLA-G-expressing tumor cells expressed immune checkpoint ligands (Table 71). Briefly, cells were cultured as in Example 11, and were then stained with commercial antibodies targeting the receptors indicated in Table 71. Fluorescence was measured using flow cytometry to determine relative expression levels of each receptor. Interestingly, we observed that RERF-LC-Ad1 cells expressed PD-L1 at levels significantly higher than other target cells and that CD3×HLA-G BsAbs could still mediate T cell based cytotoxicity against RERF-LC-Ad1 cells (FIGS. 22A-22D). We observed that our Abs, which target the α3 domain of HLA-G on tumor cells for T cell based cytotoxicity could overcome immune checkpoint ligand expression on tumor cells.









TABLE 71







Comprehensive analysis of immune checkpoint antigen


expression on HLA-G expressing tumor cells









Signal fold over negative control












Ligand name/Cell line name
RERF-LCAd1
JEG-3
HUP-T3
BICR6
HCC1806















PD-L1(CD274, B7-H1)
43
7
9




PD-L2(CD273, B7-DC)
2
1
2


Nectin-1 (CD111, PVRL1)
2
1
1


Poliovirus receptor (CD155)
18
1
23


HVEM (CD270, TNFRSF14)
3
1
1


B7H3(CD276)
21
9
1


Galectin-9
1
2
3


B7-1 (CD80, CD28L)
1
1
1


MICA/B
6

2

11


ULBP1
1

1

1


ULBP2/5/6
2

2

10


ULBP3
3

2

6


ULBP4
2

1

1


NKG2D-Fc
1

1

1


NKp46-Fc
1

1

1


NKp44-Fc
1

1

1


NKp30-Fc
1

1

1


CD46
1
5
9
12


CD55
141
73
21
15


CD59
78
15
291
120


In vitro T cell-based
yes
no
yes
yes


cytotoxicity


in vitro ADCC background
ok
ok
ok
ok
ok


in vitro CDC
no
partial
not tested
not tested
not tested









Example 17. In Vivo Efficacy

While the correlation between HLA-G expression in patients and a poor prognosis has been established in most types of cancer, the direct role of HLA-G in tumor escape in vivo has thus far not been demonstrated. There are no murine homologues of HLA-G, but also ILT-2, therefore studying of the role of HLA-G requires xenograft models and humanized mice.


Abs and BsAbs were tested for their abilities to mediate anti-tumor efficacy in vivo in a series of mouse studies. The study shown in (FIG. 24A-24B, Table 72) consisted of efficacy experiment with the pancreatic tumor model PAXF 1657 (Charles River Discovery Research Services Germany GmbH) implanted subcutaneously in humanized female hNSG-SGM3 mice (NOD.Cg-Prkdcscid Il2rgtm1Wj1 Tg(CMV-IL3, CSF2, KITLG) from the Jackson Laboratory. Mice engrafted with human umbilical cord blood-derived CD34+ hematopoietic stem cells (HSCs) from three different donors (#2595, #2597 and #5867) had been checked by the animal distributor for the sufficient degree of engraftment of HSCs (>25% human CD45+ cells) 10 to 11 weeks after engraftment. PAXF 1657 tumors were implanted 18 days after arrival and the degree of engraftment was re-checked 2 days prior to randomization. The experiment comprised eight groups of 10 or 11 mice each bearing one PAXF 1657 tumor. The absolute tumor volumes (ATVs) were determined by two-dimensional measurement with a digital caliper (S_Cal EVO Bluetooth, Switzerland) on the day of randomization and then twice weekly. Tumor volumes were calculated according to the formula: Tumor volume=(1×w2)×0.5, where 1=largest diameter and w=width (perpendicular diameter) of the tumor (in mm). At tumor volumes of 46.7 mm3 to 117.7 mm3, mice were distributed among the eight groups, aiming at comparable group mean and median tumor volumes while simultaneously ensuring an even distribution, as much as possible, among the groups of mice humanized with HSCs from the three donors. Each antibody was evaluated at two or three dose levels and was administered on days 0, 3, 7, 10, 14, 17, 21, 24 (intravenously, 2×/week). Antitumor efficacy of all groups was assessed using the vehicle control group as a reference. Tumor growth inhibition (TGI) was determined at the end of the treatment period by the comparison of changes in tumor volumes of the test groups relative to changes in the control group and is expressed as the delta TGI value (denoted TGI in text) in percent. The TGI was calculated using the absolute tumor volumes according to the following formula: Delta TGI, [%]=(1−Mean (Tx−T0)/Mean (Cx−C0))×100, where T0 and C0 are the absolute tumor volumes in the test and the control group at the start of treatment (i.e. day of randomization) and T, and C, are the corresponding absolute tumor volumes at the end of the treatment period. This was day 25 in this study. The experiment was terminated on day 27. HC3B125 significantly inhibited growth of the tumor model PAXF 1657 in hNSG-SGM3 mice. Tumor growth inhibition compared to the vehicle control group was statistically significant for all three dose levels evaluated (Kruskal-Wallis test combined with Dunn's post test, Table 50). Tumors regressed completely in 6/11 animals in the 0.002 mg, 8/11 animals in the 0.006 mg and 9/11 in the 0.02 mg HC3B125 groups. At the end of the experiment, there were 6/7/6 tumor-free survivors in the 0.002 mg/0.006 mg/0.02 mg HC3B125 groups respectively.


Tumor growth was not inhibited by HC3B128 at either dose level tested. While a small reduction in group mean tumor volume was observed at the higher doses of HC3B128 compared to the control group, the differences were not statistically significant (Table 71).









TABLE 72







Pancreatic PDX model efficacy statistics
















Delta




Dose


TGI















Group

Level
Schedule

[%]
Regressions 3
Td
Tq

















ID
Treatment 1
[mg/day]
[Day]
Route
(Day) 2
PR
CR
TFS
[Days]
[Days]







Tumor Model PAXF 1657 - Exp. S317h




















1
Control
0.1 ml/dose
0, 3, 7, 10,
i.v.
n/a
0
0
0
7.2
12.6



Vehicle

14, 17, 21, 24


2
HC3B128.004
0.02
0, 3, 7, 10,
i.v.
8.4
0
0
0
8.9
13.5





14, 17, 21, 24

(25)


3
HC3B128.004
0.2
0, 3, 7, 10,
i.v.
16.2
0
0
0
9.7
15.3





14, 17, 21, 24

(25)


4
HC3B125
0.002
0, 3, 7, 10,
i.v.
98.5
2
6
6
n.r.
n.r.





14, 17, 21, 24

(25)


5
HC3B125
0.006
0, 3, 7, 10,
i.v.
104.4
3
8
7
n.r.
n.r.





14, 17, 21, 24

(25)


6
HC3B125
0.02
0, 3, 7, 10,
i.v.
97.9
1
9
6
n.r.
n.r.





14, 17, 21, 24

(25)





n/a = not applicable;


n.r. = not reached (i.e. group median RTVs always <200%/400%)


Vehicle for antibodies: PBS



2 Delta TGI values in each group were calculated on the first measurement day after the final 2QW treatment was administered (day 25) according to the formula given in the section Error! Reference source not found.; for additional TGI, T/C and tumor regression values, see Appendix 1.




3 Partial (PR) and complete regressions (CR) were determined according to the section Error! Reference source not found.



TFS: tumor-free survivor; Td, tumor doubling time; tq, tumor quadrupling time.






Treatment with HC3B125 could also result in tumor growth inhibition in a HuP-T3 cell line derived xenograft (CDX) model (FIG. 25, Table 73). The study consisted of efficacy experiment with the pancreatic tumor model HuP-T3 (Sigma-Aldrich) implanted subcutaneously (10e6 cells/mouse in 50% Cultrex (R&D Systems)) in T cell humanized NSG (Jackson Laboratories) mice. The experiment comprised six groups of 10 mice each bearing one HuP-T3 tumor. On day 7, at tumor volumes of 75 mm3 to 150 mm3, mice were randomized into six groups, aiming to have comparable group mean and median tumor volumes. Mice were engrafted intraperitoneally with T cells (20e6 cells/mouse, 0.2 mL/animal; ALLCELLS 6093 T Cell Donor) after randomization on the same day as randomization. HC3B125 antibody was evaluated at five dose levels. Antitumor efficacy of all groups was assessed using the NullxCD3 treated group as a reference. Treatment started 1 day post T cell engraftment and was performed on days 8, 11, 14, 17, 21, 24, 28, 31, 35, 38, 42, 48 (intraperitoneally, 2×/week). Tumor growth inhibition was determined at the end of the treatment period by the comparison of changes in group mean tumor volumes of the test groups relative to changes in that of the NullxCD3 treated control group and was expressed as the delta TGI value (denoted TGI in text) in percent. Day 42 post tumor implantation was used as the last day for TGI calculations. The experiment was terminated on day 46. HC3B125 significantly inhibited growth of the tumor model HuPT3 in hNSG mice. Tumor growth inhibition compared to the NullxCD3 treated control group was statistically significant for all five dose levels evaluated (Table 73).









TABLE 73







HuP-T3 model efficacy statistics














%ΔTGI
No of CRs


Group
Construct
Dose/animal
(Day 42)
(Day 42)





1
CD3 × Null















2
HC3B125
0.05
mg/kg
112%







***p < 0.0001


3
HC3B125
0.1
mg/kg
118%
 1/9 CRs






***p < 0.0001


4
HC3B125
0.3
mg/kg
130%
1/10 CRs






***p < 0.0001


5
HC3B125
1
mg/kg
129%






***p < 0.0001


6
HC3B125
5
mg/kg
118%
3/10 CRs






***p < 0.0001









REFERENCES



  • 1 Lee, N. et al. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3, 591-600, doi: 10. 1016/1074-7613(95)90130-2 (1995).

  • 2 Juch, H. et al. A novel sandwich ELISA for alpha1 domain based detection of soluble HLA-G heavy chains. J Immunol Methods 307, 96-106, doi:10.1016/j.jim.2005.09.016 (2005).

  • 3 Morales, P. J., Pace, J. L., Platt, J. S., Langat, D. K. & Hunt, J. S. Synthesis of beta(2)-microglobulin-free, disulphide-linked HLA-G5 homodimers in human placental villous cytotrophoblast cells. Immunology 122, 179-188, doi: 10.1111/j.1365-2567.2007.02623.x (2007).

  • 4 Carosella, E. D., Favier, B., Rouas-Freiss, N., Moreau, P. & Lemaoult, J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 111, 4862-4870, doi: 10.1182/blood-2007-12-127662 (2008).

  • 5 Carosella, E. D., Rouas-Freiss, N., Tronik-Le Roux, D., Moreau, P. & LeMaoult, J. HLA-G: An Immune Checkpoint Molecule. Adv Immunol 127, 33-144, doi: 10.1016/bs.ai.2015.04.001 (2015).

  • 6 Clements, C. S. et al. Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U SA 102, 3360-3365, doi: 10.1073/pnas.0409676102 (2005).

  • 7 Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277, 26733-26740, doi: 10.1074/jbc.M202069200 (2002).

  • 8 Zhang, D. et al. Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization. MAbs 9, 1129-1142, doi:10.1080/19420862.2017.1358838 (2017).

  • 9 Wilky, B. A. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol Rev 290, 6-23, doi:10.1111/imr.12766 (2019).



Example 18. Generation of Bispecific DLL3×CD3

The VH/VL regions of the anti-Delta-like ligand 3 (DLL3) antibodies generated using transgenic mice (Ablexis®) and the VH/VL regions of the anti-CD3 antibodies of Example 1 were engineered into bispecific format and expressed as IgG1. Additionally, the VH/VL regions of CD3-specific antibodies CD3B376 and CD3B450, described in US20200048349, were used.


The designed heavy chain molecules were synthesized into gblocks (IDT; Coralville, Iowa) containing 15 bp overlaps at the 5′ and 3′ ends for ligation independent cloning using InFusion method (ClonTech). All light chain constructs were inserted into pLonza vector containing the BswiI and HindIII restriction sites for in-frame ligation to the human kappa constant domain. Murine IgH signal peptides were encoded to allow for efficient secretion of mAbs into culture supernatant. All gblocks were reconstituted in sterile water and incubated at 50° C. for 10 minutes as per manufacturer protocol. pLonza vector (Lonza; Basel, Switzerland) was linearized using EcoRI and HindIII followed by gel extraction and cleanup. A 2:1 mass ratio of linearized vector to insert was used followed by heat pulse at 50° C. for 15 minutes. The infusion reactions were transformed into Stellar competent cells (ClonTech) and resultant colonies were scaled for miniprep. All constructs were sequence verified and scaled up using Endotoxin free maxi preparation kits (Qiagen; Hilden, Germany).


Engineering of CD3 and DLL3 scFvs for Bispecific DLL3×CD3 Generation


CD3 VH/VL regions were engineered as scFvs in either VH-Linker-VL or VL-linker-VH orientations using the linker of SEQ ID NO:31 (Table 2). The VH-Linker-VL or VL-linker-VH scFv molecules binding CD3 were further engineered into a scFv-hinge-CH2-CH3 format comprising Fc silencing mutation (L234A/L235A/D265S) and dimerization mutations to allow for heterodimerization of the DLL3 and CD3 heavy chains.


DLL3 VH/VL regions were engineered as scFvs in a VL-linker-VH orientation using the same linker as for CD3 scFv generation described above of SEQ ID NO:31 (Table 2). The VL-linker-VH scFv molecules binding DLL3 were further engineered into a scFv-hinge-CH2-CH3 format comprising the Fc silencing mutation (L234A/L235A/D265S). Mutations designed to promote selective heterodimerization of the Fc domain were also engineered in the Fc domain.


Engineering of CD3 and DLL3 Fabs for DLL3/CD3 Bispecific Generation


The CD3 and DLL3 specific VH and VL regions were also engineered in VH-CH1-hinge-CH2-CH3 and VL-CL formats respectively and expressed as IgG1. The Fc silencing mutation L234A/L235A/D265S were introduced in the Fc region. Mutations designed to promote selective heterodimerization of the Fc domain were also engineered in the Fc domain.


Expression of Bispecific DLL3×CD3 Antibodies


The bispecific antibodies were expressed in ExpiCHO-S™ cells by transient transfection with purified plasmid DNA following the manufacturer's recommendations. Briefly, ExpiCHO-S™ cells were maintained in suspension in ExpiCHO™ expression medium (ThermoFisher Scientific, Cat #A29100) in an orbital shaking incubator set at 37° C., 8% CO2 and 125 RPM. The cells were passaged and diluted prior to transfection to 6.0×106 cells per ml, maintaining cell viability at 99.0% or better. Transient transfections were done using the ExpiFectamine™ CHO transfection kit (ThermoFisher Scientific, Cat #A29131). For each ml of diluted cells to be transfected, 0.5 microgram of each bispecific antibody encoding DNA in ratios of HC1:LC1:HC2=1:2:2 and 0.5 microgram of pAdVAntage DNA (Promega, Cat #E1711) was used and diluted into OptiPRO™ SFM complexation medium. For each liter of cells, 2.56 mL of ExpiFectamine™ CHO reagent was diluted into 8 mL of OptiPRO™. The diluted DNA and transfection reagent were combined for one minute, allowing DNA/lipid complex formation, and then added to the cells. After overnight incubation, ExpiCHO™ feed and ExpiFectamine™ CHO enhancers were added to the cells as per the manufacturer's Standard protocol. Cells were incubated with orbital shaking (125 rpm) at 37° C. for seven days prior to harvesting the culture broth. The culture supernatant from the transiently transfected ExpiCHO-S™ cells was clarified by centrifugation (30 min 3000rcf) followed by filtration (0.2 μm PES membrane, Corning; Corning, N.Y.).


Purification of Bispecific DLL3×CD3


The filtered cell culture supernatant was loaded onto a pre-equilibrated (1×DPBS, pH 7.2) HiTrap MabSelect SuRe Protein A column (GE Healthcare) using an AKTA Avant 150 chromatography system. After loading, the column was washed with 5 column volumes of 1×DPBS, pH7.2. The protein was eluted with 8 column volumes of 0.1 M sodium (Na)-Acetate, pH 3.5. Protein fractions were completely neutralized by the addition of 2.5 M Tris HCl, pH 7.2 to 15% (v/v) of the final volume and syringe filtered (0.2 m). The neutralized protein solution was loaded onto 2×5 mL prepacked CaptureSelect™ IgG-CH1 Affinity Matrix (Thermo Fisher Scientific). The column was washed with 10 column volumes of 1×DPBS, pH7.2. The protein was eluted with 10 column volumes of 0.1 M sodium (Na)-Acetate, pH 3.5. Protein fractions were completely neutralized by the addition of 2.5 M Tris HCl, pH 7.2 to 15% (v/v) of the final volume. The major peak fractions were pooled, dialyzed into 1×DPBS, pH 7.2 with a total of 3 dialysis changes and filtered (0.2 in).


Tables 74-77 show sequence information for the select DLL3/CD3 bispecific antibodies.









TABLE 74







HC and LC amino acid SEQ ID NOs of DLL3/CD3 bispecific antibodies










DLL3 arm
CD3 arm















HC1 or
LC1

HC2 or
LC2




scFv -
SEQ

scFv -
SEQ


Bispecific

Fc SEQ
ID

Fc SEQ
ID


Name
Name
ID NO:
NO:
Name
ID NO:
NO:
















DL3B582
DL3B279-Fab-Fc
692
693
CD3W245-LH-
78







scFv-Fc


DL3B583
DL3B279-Fab-Fc
692
693
CD3W245-HL-
77






scFv-Fc


DL3B585
DL3B279-LH-scFv-
694

CD3B376-Fab-Fc
349
350



Fc


DL3B587
DL3B279-LH-scFv-
694

CD3W245-Fab-Fc
85
88



Fc


D3C3B80
DL3B279-VL-
695

CD3B376-K477-
696
350



A99G-VH-


Fab-Fc



N27Q_M105T-LH-



scFv-Fc (ZW)


D3C3BB3
DL3B279-VL-
697

CD3B376-Fab-Fc
349
350



A99G-VH-



N27Q_M105T-LH-



scFv-Fc (KIH)
















TABLE 75







Amino acid sequences of selected bispecific antibodies









Protein
SEQ ID NO:
Amino acid sequence












DL3B279-Fab HC1
692
QVQLVQSGAEVKKPGASVKVSCKASGNTFTNYYI


(VH-CH1-hinge-

HWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGRMTMTR


CH2-CH3)

DTSTSTVYMELSSLRSEDTAVYFCARQGPFIGDAFDIWGQ




GTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDY




FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPC




PAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTV




LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYVLPPSREEMTKNQVSLLCLVKGFYPSDIAVEWESNGQ




PENNYLTWPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC




SVMHEALHNHYTQKSLSLSPG





DL3B279-Fab LC1
693
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAW


(VL-CL)

FQQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFTLTISS




LQPEDFATYYCQQYNSYPYTFAQGTKLEIKRTVAAPSVFI




FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS




GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACE




VTHQGLSSPVTKSFNRGEC





DL3B279-LH-scFv
694
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAW




FQQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFTLTISS




LQPEDFATYYCQQYNSYPYTFAQGTKLEIKGGSEGKSSGS




GSESKSTGGSQVQLVQSGAEVKKPGASVKVSCKASGNTF




TNYYTHWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGR




MTMTRDTSTSTVYMELSSLRSEDTAVYFCARQGPFIGDAF




DIWGQGTMVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMT




KNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVL




DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLS





DL3B279-VL-
695
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAW


A99G-VH-

FQQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFTLTISS


N27Q_M105T-LH-

LQPEDFATYYCQQYNSYPYTFGQGTKLEIKGGSEGKSSGS


scFv-Fc (ZW)

GSESKSTGGSQVQLVQSGAEVKKPGASVKVSCKASGQTF




TNYYIHWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGR




MTMTRDTSTSTVYMELSSLRSEDTAVYFCARQGPFIGDAF




DIWGQGTTVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYVLPPSREEMT




KNQVSLLCLVKGFYPSDIAVEWESNGQPENNYLTWPPVL




DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK





CD3W245-LH-
78
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWY


scFv-Fc

QQKPGKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSGSWPYTFGQGTKLEIKGGSEGKSSGSG




SESKSTGGSEVQLVESGGGLVKPGGSLRLSCAASGFTFSR




YNMNWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTF




SRDNAKNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQ




GTLVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPK




DTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN




KALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVSL




TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFA




LVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS




PG





CD3W245-HL-
77
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNM


scFv-Fc

NWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRD




NAKNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTL




VTVSSGGSEGKSSGSGSESKSTGGSDIQMTQSPSSLSASVG




DRVTITCRARQSIGTAIHWYQQKPGKAPKLLIKYASESISG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSGSWPYTF




GQGTKLEIKEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKP




KDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDGVEVHN




AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS




NKALPAPIEKTISKAKGQPREPQVYVYPPSREEMTKNQVS




LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




ALVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS




LSPG





CD3W245-Fab-Fc
85
EVQLVESGGGLVKPGGSLRLSCAASGFTFSRYNM


HC2

NWVRQAPGKGLEWVSSISTSSNYIYYADSVKGRFTFSRD




NAKNSLDLQMSGLRAEDTAIYYCTRGWGPFDYWGQGTL




VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP




VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL




GTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE




AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYV




YPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPG





CD3W245-Fab-Fc
88
DIQMTQSPSSLSASVGDRVTITCRARQSIGTAIHWY


LC2

QQKPGKAPKLLIKYASESISGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSGSWPYTFGQGTKLEIKRTVAAPSVFIF




PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT




HQGLSSPVTKSFNRGEC





CD3B376-Fab-Fc
349
QVQLQQSGPRLVRPSQTLSLTCAISGDSVFNNNAA


HC2

WSWIRQSPSRGLEWLGRTYYRSKWLYDYAVSVKSRITVN




PDTSRNQFTLQLNSVTPEDTALYYCARGYSSSFDYWGQG




TLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPA




PEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




VYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPG





CD3B376-Fab-Fc
350
QSALTQPASVSGSPGQSITISCTGTSSNIGTYKFVS


LC2

WYQQHPDKAPKVLLYEVSKRPSGVSSRFSGSKSGNTASL




TISGLQAEDQADYHCVSYAGSGTLLFGGGTKLTVLGQPK




AAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA




DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRS




YSCQVTHEGSTVEKTVAPTECS





CD3B376-Fab-Fc
696
QVQLQQSGPRLVRPSQTLSLTCAISGDSVFNNNAA


K477 HC2

WSWIRQSPSRGLEWLGRTYYRSKWLYDYAVSVKSRITVN




PDTSRNQFTLQLNSVTPEDTALYYCARGYSSSFDYWGQG




TLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPA




PEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




VYPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFALVSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPGK





CD3B376-Fab-
350
QSALTQPASVSGSPGQSITISCTGTSSNIGTYKFVS


K477 LC2

WYQQHPDKAPKVLLYEVSKRPSGVSSRFSGSKSGNTASL




TISGLQAEDQADYHCVSYAGSGTLLFGGGTKLTVLGQPK




AAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA




DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRS




YSCQVTHEGSTVEKTVAPTECS





DL3B279-VL-
697
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAW


A99G-VH-

FQQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFTLTISS


N27Q_M105T-LH-

LQPEDFATYYCQQYNSYPYTFGQGTKLEIKGGSEGKSSGS


scFv-Fc (KIH)

GSESKSTGGSQVQLVQSGAEVKKPGASVKVSCKASGQTF




TNYYIHWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGR




MTMTRDTSTSTVYMELSSLRSEDTAVYFCARQGPFIGDAF




DIWGQGTTVTVSSEPKSSDKTHTCPPCPAPEAAGGPSVFL




FPPKPKDTLMISRTPEVTCVVVSVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT




KNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL




DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK





CD3B376-Fab-Fc
727
QVQLQQSGPRLVRPSQTLSLTCAISGDSVFNNNAA


HC2

WSWIRQSPSRGLEWLGRTYYRSKWLYDYAVSVKSRITVN




PDTSRNQFTLQLNSVTPEDTALYYCARGYSSSFDYWGQG




TLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP




EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPA




PEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVSVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH




QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPEN




NYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVM




HEALHNRFTQKSLSLSPGK
















TABLE 76







Kabat CDR SEQ ID NOs of bispecific DLL3/CD3 antibodies
















HCDR1
HCDR2
HCDR3
LCDR1
LCDR2
LCDR3


Bispecific
Parental (DLL3
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ
(SEQ
(SEQ


antibody
arm/CD3 arm)
No)
No)
No)
ID No)
ID No)
ID No)





DL3B582
DL3B279-Fab
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS




(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT





KLQG
(701)
A
(703)
(704)





(700)

(702)





CD3W245 LH-
RYNMN
SISTSSN
GWGPF
RARQS
YASESI
QQSGS



scFv
(6)
YIYYA
DY
IGTAIH
S
WPYT





DSVKG
(8)
(9)
(10)
(11)





(7)









DL3B583
DL3B279 Fab
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS




(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT





KLQG
(701)
A
(703)
(704)





(700)

(702)





CD3W245-HL-
RYNMN
SISTSSN
GWGPF
RARQS
YASESI
QQSGS



scFv
(6)
YIYYA
DY
IGTAIH
S
WPYT





DSVKG
(8)
(9)
(10)
(11)





(7)









DL3B585
DL3B279-LH-
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS



scFv
(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT





KLQG
(701)
A
(703)
(704)





(700)

(702)





CD3B376-Fab
NNNAA
RTYYRS
GYSSSF
TGTSS
EVSKR
VSYAG




WS
KWLYD
DY 342
NIGTY
PS 344
SGTLL




340
YAYSY

KFVS

345





KS 341

343







DL3B587
DL3B279-scFv
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS




(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT





KLQG
(701)
A
(703)
(704)





(700)

(702)





CD3W245-Fab
RYNMN
SISTSSN
GWGPF
RARQS
YASESI
QQSGS




(6)
YIYYA
DY
IGTAIH
S
WPYT





DSVKG
(8)
(9)
(10)
(11)





(7)









D3C3B80
DL3B279-VL-
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS



A99G-VH-
(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT



N27Q_M105T-

KLQG
(701)
A
(703)
(704)



LH-scFv (ZWB)

(700)

(702)





CD3B376-
NNNAA
RTYYRS
GYSSSF
TGTSS
EVSKR
VSYAG



K477-Fab
WS
KWLYD
DY 342
NIGTY
PS 344
SGTLL




340
YAYSY

KFVS

345





KS 341

343







D3C3BB3
DL3B279-VL-
NYYIH
IINPSGG
QGPFIG
RASQG
AASSL
QQYNS



A99G-VH-
(699)
STSYAQ
DAFDI
ISNYL
QS
YPYT



N27Q_M105T-

KLQG
(701)
A
(703)
(704)



LH-scFv (KIH)

(700)

(702)





CD3B376-Fab
NNNAA
RTYYRS
GYSSSF
TGTSS
EVSKR
VSYAG



(KIH)
WS
KWLYD
DY 342
NIGTY
PS 344
SGTLL




340
YAYSY

KFVS

345





KS 341

343
















TABLE 77





HC and LC DNA SEQ ID NOs of DLL3/CD3 bispecific antibodies


















DLL3 arm
CD3 arm















HC1 or
LC1

HC2 or
LC2




 scFv-
SEQ
Name
scFv-Fc
SEQ


Bispecific

Fc SEQ
ID

SEQ ID
ID


Name
Name
ID NO:
NO:

NO:
NO:





DL3B582
DL3B279-Fab-Fc
705
706
CD3W245-LH-
710







scFv-Fc







DL3B583
DL3B279-Fab-Fc
705
706
CD3W245-HL-
711







scFv-Fc







DL3B585
DL3B279-LH-
707

CD3B376-Fab-Fc
351
352



scFv-Fc










DL3B587
DL3B279-LH-
707

CD3W245-Fab-Fc
712
713



scFv-Fc










D3C3B80
DL3B279-VL-
708

CD3B376-K477-
351
352



A99G-VH-


Fab-Fc





N27Q_M105T-LH-








scFv (ZWB)










D3C3BB3
DL3B279-scFv-
709

CD3B376-Fab-Fc
714
715



Fc (KIH)


(KIH)










>SEQ ID NO: 705 (DL3B279-Fab-Fc HC1 cDNA in DL3B582 and DL3B583)


CAGGTTCAGTTGGTCCAGAGTGGTGCCGAAGTAAAGAAGCCCGGAGCATCCGTAAA


GGTGTCCTGTAAAGCCAGTGGCAATACTTTCACTAACTATTACATCCATTGGGTCCGACAAG


CCCCCGGACAAGGATTGGAGTGGATGGGTATTATCAACCCCTCCGGTGGGTCTACTTCTTAC


GCTCAAAAACTCCAGGGCCGAATGACAATGACACGCGACACCTCAACTTCAACCGTTTACAT


GGAGCTTAGCAGTCTTCGATCTGAGGACACTGCTGTTTACTTTTGCGCTAGGCAGGGGCCTTT


CATAGGAGACGCTTTTGACATCTGGGGGCAAGGAACAATGGTCACTGTCAGTTCCGCCTCCA


CCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCG


GCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG


CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCT


CAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGA


ATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAAC


TCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCC


CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG


AGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC


ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGT


CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC


AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC


CACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGCT


GTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG


CCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC


AGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGAT


GCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





>SEQ ID NO: 706 ( DL3B279-Fab-Fc LC1 cDNA in DL3B582 and DL3B583)


GACATCCAGATGACCCAGAGCCCTAGCTCTTTAAGCGCTAGCGTGGGCGATCGTGTG


ACCATCACTTGTCGTGCCAGCCAAGGTATCAGCAACTATTTAGCTTGGTTCCAGCAGAAGCC


CGGCAAGGCTCCCAAGTCTTTAATCTATGCCGCTAGCTCTTTACAGAGCGGAGTGCCCAGCA


AGTTTAGCGGCAGCGGTAGCGGAACCGACTTCACTTTAACCATCAGCTCTCTGCAGCCCGAG


GACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCTACACCTTCGCCCAAGGTAC


CAAGCTGGAGATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATG


AGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAG


GCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCA


CAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGC


AGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCC


GTCACAAAGAGCTTCAACAGGGGAGAGTGT





>SEQ ID NO: 707 (DL3B279 LH scFv-Fc cDNA in DL3B585 and DL3B587)


GATATTCAGATGACACAGTCTCCATCCAGCTTGTCAGCAAGCGTGGGTGATAGGGTT


ACCATCACTTGTCGCGCAAGTCAAGGAATTAGTAACTATTTGGCATGGTTTCAGCAGAAACC


CGGTAAGGCTCCAAAATCACTCATATATGCAGCATCCTCCCTCCAGTCTGGTGTTCCAAGTA


AGTTTTCCGGGAGCGGTTCCGGCACCGATTTCACTCTCACAATCTCTAGCCTTCAACCCGAG


GACTTCGCTACCTATTATTGCCAACAGTATAATAGCTACCCATACACTTTTGCTCAAGGGACC


AAACTCGAGATCAAAGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAAG


AGCACCGGCGGCAGCCAGGTTCAGTTGGTCCAGAGTGGTGCCGAAGTAAAGAAGCCCGGAG


CATCCGTAAAGGTGTCCTGTAAAGCCAGTGGCAATACTTTCACTAACTATTACATCCATTGG


GTCCGACAAGCCCCCGGACAAGGATTGGAGTGGATGGGTATTATCAACCCCTCCGGTGGGTC


TACTTCTTACGCTCAAAAACTCCAGGGCCGAATGACAATGACACGCGACACCTCAACTTCAA


CCGTTTACATGGAGCTTAGCAGTCTTCGATCTGAGGACACTGCTGTTTACTTTTGCGCTAGGC


AGGGGCCTTTCATAGGAGACGCTTTTGACATCTGGGGGCAAGGAACAATGGTCACTGTCAGT


TCCGAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAG


CAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG


ACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCA


ACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA


CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCA


AGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTC


CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGAGGAG


ATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC


CGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCGTGCTG


GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCA


GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGA


GCCTCTCCCTGTCTCCGGGT





>SEQ ID NO: 708 (DL3B279 LH scFv variant-Fc cDNA)


GACATCCAGATGACCCAGTCTCCATCCTCTCTGTCCGCCTCTGTGGGCGACAGAGTG


ACCATCACCTGTAGAGCCTCTCAGGGCATCTCCAACTACCTGGCCTGGTTCCAGCAGAAGCC


TGGCAAGGCTCCCAAGAGCCTGATCTACGCTGCTTCCAGTCTGCAGTCTGGCGTGCCCTCTA


AGTTCTCCGGCTCTGGCTCTGGCACCGACTTTACCCTGACAATCTCCAGCCTGCAGCCTGAG


GACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCTACACCTTTGGCCAGGGCAC


CAAGCTGGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAA


GAGCACCGGCGGCAGCCAGGTTCAGCTGGTTCAGTCTGGCGCCGAAGTGAAGAAACCTGGC


GCCTCTGTGAAGGTGTCCTGCAAGGCTTCTGGACAGACCTTCACCAACTACTACATCCACTG


GGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATCATCAACCCTTCCGGCGGC


TCTACCTCTTACGCCCAGAAACTGCAGGGCAGAATGACCATGACCAGAGACACCTCCACCA


GCACCGTGTACATGGAACTGTCCAGCCTGAGATCCGAGGATACCGCCGTGTACTTCTGTGCC


AGACAGGGACCTTTTATCGGCGACGCCTTCGACATCTGGGGCCAGGGAACAACAGTGACCG


TGTCCTCTGAGCCCAAATCTAGCGACAAAACTCACACTTGTCCACCGTGCCCAGCACCTGAA


GCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC


CCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAG


TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGC


AGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT


GGCAAGGAGTACAAGTGCAAGGTGTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA


TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACGTGCTGCCCCCATCCCGGGA


GGAGATGACCAAGAACCAGGTCAGCCTGCTGTGCCTGGTCAAAGGCTTCTATCCCAGCGAC


ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACCTCACCTGGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCCAGATGG


CAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA


GAAGTCTCTCTCCCTGTCTCCGGGAAAA





>SEQ ID NO: 709 (DL3B279 scFv-Fc variant KIH cDNA)


GACATCCAGATGACCCAGTCTCCATCCTCTCTGTCCGCCTCTGTGGGCGACAGAGTG


ACCATCACCTGTAGAGCCTCTCAGGGCATCTCCAACTACCTGGCCTGGTTCCAGCAGAAGCC


TGGCAAGGCTCCCAAGAGCCTGATCTACGCTGCTTCCAGTCTGCAGTCTGGCGTGCCCTCTA


AGTTCTCCGGCTCTGGCTCTGGCACCGACTTTACCCTGACAATCTCCAGCCTGCAGCCTGAG


GACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCTACACCTTTGGCCAGGGCAC


CAAGCTGGAAATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAA


GAGCACCGGCGGCAGCCAGGTTCAGCTGGTTCAGTCTGGCGCCGAAGTGAAGAAACCTGGC


GCCTCTGTGAAGGTGTCCTGCAAGGCTTCTGGACAGACCTTCACCAACTACTACATCCACTG


GGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATCATCAACCCTTCCGGCGGC


TCTACCTCTTACGCCCAGAAACTGCAGGGCAGAATGACCATGACCAGAGACACCTCCACCA


GCACCGTGTACATGGAACTGTCCAGCCTGAGATCCGAGGATACCGCCGTGTACTTCTGTGCC


AGACAGGGACCTTTTATCGGCGACGCCTTCGACATCTGGGGCCAGGGAACAACAGTGACCG


TGTCCTCTGAGCCCAAATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAA


GCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC


CCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAG


TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGC


AGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT


GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA


TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGA


GGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGAC


ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCG


TGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGTCTAGATGG


CAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCA


GAAGAGCCTCTCCCTGTCTCCGGGTAAA





>SEQ ID NO: 710 (CD3W245 LH scFv-Fc cDNA)


GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTTGGCGACCGTGTCA


CTATCACTTGTCGAGCCCGCCAGTCCATAGGTACTGCCATTCACTGGTATCAACAGAAGCCT


GGCAAGGCTCCCAAACTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCAAG


ATTTTCCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATATCTAGCCTCCAACCAGAAG


ATTTCGCCACTTACTACTGTCAACAATCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACA


AAATTGGAGATCAAGGGCGGCTCCGAGGGCAAGAGCAGCGGCAGCGGCAGCGAGAGCAAG


AGCACCGGCGGCAGCGAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGG


GGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGG


GTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTA


CATATACTACGCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACT


CACTGGATCTGCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAG


AGGCTGGGGGCCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGAGCCCA


AATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACC


GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG


TCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGT


GGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC


GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA


AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA


AGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG


GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACG


TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGT





>SEQ ID NO: 711 (CD3W245 HL scFv-Fc cDNA)


GAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAG


ACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGCCAGG


CTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC


GCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCT


GCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGCTGGGGG


CCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGCGGCTCCGAGGGCAA


GAGCAGCGGCAGCGGCAGCGAGAGCAAGAGCACCGGCGGCAGCGACATACAAATGACACA


ATCACCCTCTTCTCTTTCTGCAAGCGTTGGCGACCGTGTCACTATCACTTGTCGAGCCCGCCA


GTCCATAGGTACTGCCATTCACTGGTATCAACAGAAGCCTGGCAAGGCTCCCAAACTCCTGA


TTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCAAGATTTTCCGGCTCCGGTAGTGGG


ACAGATTTCACTCTCACTATATCTAGCCTCCAACCAGAAGATTTCGCCACTTACTACTGTCAA


CAATCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACAAAATTGGAGATCAAGGAGCCCA


AATCTAGCGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACC


GTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG


TCACATGCGTGGTGGTGAGCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGT


GGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC


GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA


AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA


AGGGCAGCCCCGAGAACCACAGGTGTACGTGTACCCCCCATCCCGGGAGGAGATGACCAAG


AACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTG


GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGAC


GGCTCCTTCGCCCTCGTGAGCAAGCTCACCGTGGACAAGTCTAGATGGCAGCAGGGGAACG


TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCC


CTGTCTCCGGGT





>SEQ ID NO: 712 (CD3W245 Fab-Fc HC2 cDNA)


GAGGTGCAACTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAG


ACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATAACATGAACTGGGTCCGCCAGG


CTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC


GCAGACTCAGTGAAGGGCCGATTCACCTTCTCCAGAGACAACGCCAAGAACTCACTGGATCT


GCAAATGAGCGGCCTGAGAGCCGAGGACACGGCTATTTATTACTGTACGAGAGGCTGGGGG


CCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCC


ATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCT


GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACC


AGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGT


GGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC


CCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATG


TCCACCGTGCCCAGCACCTGAAGCAGCAGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAAC


CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGAGCGTGAGC


CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA


AGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT


CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC


CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGT


ACGTGTACCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT


CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC


AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCGCCCTCGTGAGCAAGCT


CACCGTGGACAAGTCTAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG


CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





>SEQ ID NO: 713 (CD3W245 Fab-Fc LC2 cDNA)


GACATACAAATGACACAATCACCCTCTTCTCTTTCTGCAAGCGTTGGCGACCGTGTCA


CTATCACTTGTCGAGCCCGCCAGTCCATAGGTACTGCCATTCACTGGTATCAACAGAAGCCT


GGCAAGGCTCCCAAACTCCTGATTAAGTATGCCAGCGAGAGCATTTCCGGCGTACCTTCAAG


ATTTTCCGGCTCCGGTAGTGGGACAGATTTCACTCTCACTATATCTAGCCTCCAACCAGAAG


ATTTCGCCACTTACTACTGTCAACAATCAGGTTCATGGCCTTACACTTTCGGCCAGGGGACA


AAATTGGAGATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTCATCTTCCCACCTTCCGACGA


GCAGCTGAAGTCCGGCACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAG


CCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGAC


CGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCACACTGACCCTGTCCAAGGCCG


ACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGT


GACCAAGTCTTTCAACCGGGGCGAGTGT





>SEQ ID NO: 714 (CD3B376 Fab-Fc HC2 KIH cDNA)


CAGGTGCAGCTGCAGCAGTCTGGCCCTAGACTCGTGCGGCCTTCCCAGACCCTGTCT


CTGACCTGTGCCATCTCCGGCGACTCCGTGTTCAACAACAACGCCGCCTGGTCCTGGATCCG


GCAGTCTCCATCTCGCGGTCTGGAGTGGCTCGGTCGCACCTACTACCGCTCTAAATGGCTGT


ACGACTACGCCGTGTCCGTGAAGTCCCGGATCACCGTGAACCCTGACACCTCCCGGAACCAG


TTCACCCTGCAGCTGAACTCCGTGACCCCTGAGGACACCGCCCTGTACTACTGCGCCAGAGG


CTACTCCTCCTCCTTCGACTATTGGGGCCAAGGCACCCTCGTGACCGTGTCCTCTGCCTCCAC


CAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGG


CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGC


GCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC


AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAA


TCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACT


CACACATGCCCACCGTGCCCAGCACCTGAAGCCGCCGGGGGACCGTCAGTCTTCCTCTTCCC


CCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGA


GCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA


TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTC


CTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTGTCGAACA


AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACC


ACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTCC


TGCGCCGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC


CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCGTG


AGCAAGCTCACCGTGGACAAGAGCAGATGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA


TGCATGAGGCTCTGCACAACCGGTTCACGCAGAAGTCTCTCTCCCTGTCTCCGGGAAAA





>SEQ ID NO: 715 (CD3B376 Fab-Fc LC KIH cDNA)


CAGTCTGCTCTGACCCAGCCTGCCTCCGTGTCTGGCTCTCCCGGCCAGTCCATCACCA


TCAGCTGTACCGGCACCTCCTCCAACATCGGCACCTACAAGTTCGTGTCCTGGTATCAGCAG


CACCCCGACAAGGCCCCCAAAGTGCTGCTGTACGAGGTGTCCAAGCGGCCCTCTGGCGTGTC


CTCCAGATTCTCCGGCTCCAAGTCTGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGG


CTGAGGACCAGGCCGACTACCACTGTGTGTCCTACGCTGGCTCTGGCACCCTGCTGTTTGGC


GGAGGCACCAAGCTGACCGTGCTGGGTCAGCCCAAGGCTGCACCCAGTGTCACTCTGTTCCC


GCCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCT


ACCCGGGAGCCGTGACAGTGGCCTGGAAGGCCGATAGCAGCCCCGTCAAGGCGGGAGTGGA


GACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTG


ACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCA


CCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCA









Example 19. Characterization of Bispecific DLL3×CD3 Antibodies

Effect of DLL3 Epitope on the Bispecific DLL3×CD3 Mediated Cytotoxicity


To determine the effect of DLL3 epitope on bispecific DLL3×CD3 mediated killing on DLL3+ target cells, a T cell redirection was performed using human pan T cells as effectors and SHP-77 cells as targets at a 3:1 ratio for 72 hours. An equal volume (100 ul) of 2× test sample, in 1/2 log dilutions from 20 nM (final starting at 10 nM) was added to 50,000 CSFE-labelled SHP-77 cells mixed with 150,000 pan T cells in a final volume of 200 ul RPMI, 10% FBS for 72 hr at 37° C. After 72 hours, plates were washed 1× with PBS, incubated for 20 minutes with Near IR L/D stain and BV421-labeled anti-CD25 antibody in stain buffer. The cells were washed twice with stain buffer, resuspended in 25 ul Accutase for 10 minutes, and then 25 ul of QSol buffer was added. The plates were read on an IQue plus and cells were gated on CSFE positive populations (Tumor cells) and CSFE-negative cells (T cells) and both populations were subsequently gated on live/dead staining. Live T cells were further gated on CD25 staining. Outputs calculated were % Tumor killing, % CD25 T cell activation, and T cell viability. A ruby red stained control (mock 100% dead) and T cell only/SHP-77 only were used to gate nuclei containing cells from debris and then the individual cell populations. Data was analyzed in GeneData Screenr using 4 parameter curve fits. The tables below show the maximal percent lysis of SHP-77 cells observed at the end of 72 hours for each DLL3 binder paired with the various CD3 arms. The results indicate that the % tumor killing is dependent on the binding epitope on DLL3, the further it is from the membrane the lesser the cell lysis (Table 78-80). The % tumor killing was improved as the DLL3 binding epitopes became more membrane proximal. This trend is relatively consistent when the DLL3 binders were paired with 3 different CD3.


Inventors have unexpectedly discovered that an interesting trend appears where maximum killing in each domain increases as the binding domain within the DLL3 moves towards the C-terminus in the primary sequence or proximal to the tumor membrane. In particular, maximum killing efficiency improves from EGF2 to EGF6 and reaches the highest percentage, when the tested antibody binds at the EGF-6 domain or closer to the c-terminus.









TABLE 78







% lysis of SHP-77 on day 3 after coculture with human pan T-cells and bispecific


anti- DLL3 × CD3W245 antibodies at 3:1 ET ratio (CD3:target cells).












Sample


% Max.


Name
description
DLL3 Arm
Epitope
Killing














CD3B1706
CD3W245-Fab-RF;
DL3B279-scFv
EGF6
89.7



DL3B279-scFv


CD3B1506
CD3W245-Fab-RF;
DL3B463-scFv
EGF3/EGF4
94.5



DL3B463-scFv


CD3B1346
CD3W245-Fab-RF;
DL3B419-scFv
EGF2/EGF3
85.2



DL3B419-scFv


CD3B1586
CD3W245-Fab-RF;
DL3B470-scFv
DSL
55.5



DL3B470-scFv
















TABLE 79







% lysis of SHP-77 on day 3 after coculture with human pan T-cells and bispecific


anti- DLL3 × CD3B376 antibodies at 3:1 ET ratio (CD3:target cells).















% Max.


Name
Sample description
DLL3 Arm
Epitope
Killing














CD3B1738
CD3B376-Fab-RF; DL3B279-scFv
DL3B279-
EGF6
74.3




scFv


CD3B1538
CD3B376-Fab-RF; DL3B463-scFv
DL3B463-
EGF3/EGF4
25.9




scFv


CD3B1378
CD3B376-Fab-RF; DL3B419-scFv
DL3B419-
EGF2/EGF3
49.1




scFv


CD3B1618
CD3B376-Fab-RF; DL3B470-scFv
DL3B470-
DSL
3.4




scFv
















TABLE 80







% lysis of SHP-77 on day 3 after coculture with human pan T-cells and bispecific


anti-DLL3 × CD3B219 antibodies at 3:1 ET ratio (CD3:target cells).















% Max.


Name
Sample description
DLL3 Arm
Epitope
Killing














CD3B1737
CD3B219-Fab-RF; DL3B279-scFv
DL3B279-
EGF6
86.4




scFv


CD3B1377
CD3B219-Fab-RF; DL3B419-scFv
DL3B419-
EGF2/EGF3
73.1




scFv


CD3B1617
CD3B219-Fab-RF; DL3B470-scFv
DL3B470-
DSL
21.9




scFv









Binding Affinity of Bispecific Anti-DLL3×CD3 Antibodies to DLL3

The binding affinity of anti-DLL3×CD3 antibodies to the recombinant human DLL3 was determined by surface plasmon resonance (SPR) using a Biacore T200 instrument. The antibodies were captured on a goat anti-Fc antibody-modified C1 chip and titrated with 3-fold serial dilutions of DLL3 antigen spanning concentrations of 90 nM to 1.1 nM. The association was monitored for 2 minutes and the and dissociation for 5 or 60 minutes, using a flow rate of 100 μL/min. Raw binding data was referenced by subtracting the analyte binding signals from blanks and analyzed using a 1:1 Langmuir binding model using the Biacore Insight evaluation software to obtain the kinetics which were used to calculate the binding affinity. Binding affinities of anti-DLL3×CD3 antibodies to the recombinant human DLL3 are summarized in Table 81.









TABLE 81







Affinities (KD) for the interaction of anti-DLL3 CD3 bispecific


antibodies with human DLL3 as obtained by the Biacore (SPR)


method. The antibodies were captured using an anti-human Fc


antibody and the antigens were injected in solution.











Name
Description
kD (pM)















DL3B582
CD3W245-LH-scFv; DL3B279-Fab
16



DL3B583
CD3W245-HL-scFv; DL3B279-Fab
16



DL3B585
CD3B376-Fab; DL3B279-LH-scFv
24



DL3B587
CD3W245-Fab; DL3B279-LH-scFv
31










Thermal Stability of Bispecific Anti-DLL3×CD3 Antibodies


The thermal stability (conformational stability) bispecific anti-DLL3×CD3 antibodies was determined by NanoDSF method using an automated Prometheus instrument. Measurements were made by loading sample into 24 well capillary from a 384 well sample plate. Duplicate runs were performed. The thermal scans span from 20° C. to 95° C. at a rate of 1.0° C./minute. The data was proceed to obtain integrated data and first derivation analysis for 330 nm, 350 nm, Ratio 330/350, and scatter data from which thermal transitions, onset of unfolding, Tm and Tagg were obtained.


The results show that these bispecific anti-DLL3×CD3 antibodies have a first transition (Tm1) higher than 59° C. The results also show that most proteins, except DL3B585 have low aggregation potential with Tagg above 70° C. and 5 degrees or more higher than Tm1 (Table 82).









TABLE 82







Thermal stability data for bispecific anti-DLL3 ×


CD3 antibodies as obtained using a NanoDSF instrument.










Name
Description
Tagg
Tm1





DL3B582
CD3W245-LH-scFv;
74.7° C.
63.3° C.



DL3B279-Fab


DL3B583
CD3W245-HL-scFv;
75.4° C.
63.1° C.



DL3B279-Fab


DL3B585
CD3B376-Fab; DL3B279-
62.7° C.
60.8° C.



LH-scFv


DL3B587
CD3W245-Fab; DL3B279-
74.6° C.
62.4° C.



LH-scFv









Binding of Bispecific Anti-DLL3×CD3 Antibodies on DLL3+ Tumor Cells


We determined the cell binding profiles of the bispecific anti-DLL3×CD3 antibodies to DLL3+ human tumor cell lines (HCC1833 and SHP-77). The adherent SCLC HCC1833 cells were washed with DPBS and 0.25% trypsin was added to allow cells to detach. The media was added to neutralize trypsin and the cells were transferred to a 15 mL conical tube. The suspension SCLC SHP77 cells were transferred to a 15 mL conical tube and were centrifuged 1200 rpm for 3 minutes. The media was aspirated and the cells were washed once more with DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 100K/well in 100 uL DPBS. The plate was centrifuged 1200 rpm for 3 minutes and washed 2× with DPBS. The cells were stained with Violet Live/Dead stain (Thermo-Fisher) and incubated at RT in the dark for 25 min. The cells were centrifuged and washed 2× with FACS staining buffer (BD Pharmingen).


The test antibodies were diluted to a final starting concentration of 100 nM in FACS staining buffer and 3-fold serial dilutions were prepared from the starting concentration for a total of 10 dilution points. The serially diluted test antibodies (100 uL/well) were added to the cells and incubated for 30 min at 37°. The cells were washed 2× with FACS staining buffer and AlexaFluor 647-conjugated Donkey anti-human secondary antibody (Jackson Immunoresearch) was added and allowed to incubate with the cells for 30 min at 4°. Then the cells were washed 2× with FACS staining buffer and re-suspended in 100 uL FACS Buffer. The cells were run on BD Celesta using FACS Diva software and analyzed using FlowJo software. As shown in FIGS. 26A and 26B, the binding profiles between the DLL3-Fab arms (DL3B582 and DL3B583) and DLL3-scFv arms (DL3B585 and DL3B587) are moderately different.


Binding of Bispecific Anti-DLL3×CD3 Antibodies on Pan T-Cells


The cell binding profiles of the bispecific anti-DLL3×CD3 antibodies to normal human T cells were also evaluated. Human Pan T Cells (Biological Specialty Corporation, Colmar, Pa.) were thawed and transferred to a 15 mL conical with DPBS (Dulbecco's Phosphate Saline Buffer). The cells were centrifuged 1300 rpm for 5 minutes. DPBS was aspirated and the cells were re-suspended in DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 100K/well in 100 uL DPBS. The plate was centrifuged 1200 rpm for 3 minutes and washed 2× with DPBS. The cells were stained with Violet Live/Dead stain (Thermo-Fisher) and incubated at RT in the dark for 25 min. The cells were centrifuged and washed 2× with FACS staining buffer (BD Pharmingen). Test antibodies were diluted to a final starting concentration of 100 nM in FACS staining buffer and 3-fold serial dilutions were prepared from the starting concentration for a total of 10 dilution points. The serially diluted test antibodies (100 uL/well) were added to the cells and incubated for 30 min at 37°. Cells were washed 2× with FACS staining buffer and AlexaFluor 647-conjugated Donkey anti-human secondary antibody (Jackson Immunoresearch) was added and allowed to incubate with the cells for 30 min at 4°. Cells were washed 2× with FACS staining buffer and re-suspended in 100 uL FACS Buffer. Cells were run on BD Celesta using FACS Diva software and analyzed using FlowJo software. As shown in FIG. 27, the cell binding profiles are different across the various CD3 arms.


Bispecific DLL3×CD3 Mediated Cytotoxicity Against DLL3+ Target Cell Lines in Pan T-Cells


We evaluated the T-cell mediated killing potential of the bispecific anti-DLL3×CD3 antibodies in DLL3+ and DLL3 cell lines. DLL3+ SHP77 and DLL3-HEK293 stably expressing red nuclear dye were generated to be used in the IncuCyte-based cytotoxicity assay. Frozen vials of healthy donor T-cells (Biological Specialty Corporation, Colmar, Pa.) were thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 5 mL phenol-red-free RPMI/10% HI FBS medium. The cells were counted using the Viacell XR cell viability analyzer and the T-cells were combined with target cells for a final effector T-cell to target cell (E: T) ratio of 5:1. The cell mixture (100 uL/well) was combined in a 50 mL conical tube and added to a clear 96-well flat-bottom plate. The test antibodies were then diluted to a final starting concentration of 60 nM in phenol-red-free RPMI/10% HI FBS medium and 3-fold serial dilutions were prepared from the starting concentration for a total of 11 dilution points. The serially diluted test antibodies (100 uL/well) were added to the combined cells. The plates were placed in either an IncuCyte® Zoom or an IncuCyte S3® (Essen) at 37° C. with 5% CO2 for 120 hours. The target cell lines stably express red nuclear dye which was used to track the kinetics of target cell lysis. Percent cell growth inhibition (%)=(Initial viable target cell number—Current viable target cell number)/Initial viable cell number*100%. As shown in FIGS. 28A and 28B, the T cell cytotoxicity assay results demonstrate that all bispecific anti-DLL3×CD3 antibodies are capable of achieving >95% tumor lysis by 5 days.


Cytokine Induction Mediated by Bispecific DLL3×CD3 Antibodies in Pan T-Cells

We evaluated the cytokine release profiles of the bispecific anti-DLL3×CD3 antibodies in a DLL3+ human tumor cell line. The supernatants were analyzed using the Human Proinflammatory Panel I tissue culture kit (Meso Scale Discovery) and were thawed on wet ice, spun at 1,500 rpm for 5 minutes at 4° C., then placed on ice. The MULT-SPOT assay plates were pre-washed per the manufacturer's protocol. A standard curve was prepared by serial dilution of the provided calibrators in MSD Diluent 1. The standards and test antibody samples (25 uL/well) were added to the pre-washed plates. Assay plates were read on the SECTOR Imager 6000. As shown in FIG. 29, the results of the cytokine profiling experiment demonstrate that IFN-gamma production correlates with the CD3 affinity of the bispecific anti-DLL3×CD3 antibodies.


Bispecific DLL3×CD3 Mediated Cytotoxicity Against DLL3+ Target Cell Lines in PBMCs


In order to test the efficacy of the bispecifics against DLL3+ target cells with varying levels of antigen expression, DLL3 high expression (SHP-77 and HCC1833) and DLL3 low expression cell line (G361) were tested in the cytotoxicity assay. SHP-77 and HCC1833 are lung epithelial and lung adenocarcinoma cell lines, respectively. G361 cells are derived from malignant skin melanoma. DLL3+ SHP-77 cell line stably expressing the nuclear restricted NucLight Red (NLR) protein was used in the cytotoxicity assay. On the day of the assay, SHP-77-NLR cells were collected into a 50 ml falcon tube and spun down at 1300 rpm for 5 min. The cell pellet was then resuspended in modified RPMI 1640 media+10% FBS (complete media) and cell count was estimated using trypan blue live dead marker using a hemocytometer. SHP-77-NLR cells were then plated onto a collagen coated 96 well plate at 10,000 cells/well/90β1 of complete media. The cells were evenly distributed by gentle agitation and allowed to settle for 1 hour in a 5% CO2 incubator. In the case of HCC1833 and G361 target cell lines, 3000 cells/well/90β1 complete media were plated in a 96 well flat bottom tissue culture plates one day prior to the PBMC addition.


The vials of PBMCs frozen from healthy donors (Clinigene) were rapidly thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 10 mL complete medium. The cells were stained with anti-human CD3 antibody and analyzed by flow cytometer to determine the CD3% within PBMCs. PBMCs from each donor were counted using trypan blue live dead marker using a hemocytometer and the number of PBMCs required to get required effector to target (ET) ratios (CD3: target cell) were added to the plated target cells in 90β1 complete media. The test antibodies were then prepared as 10× stocks in complete media and 3-fold serial dilutions were prepared. The serially diluted test antibodies were added to the PBMC-tumor coculture at 20 μl/well so that the final concentration of antibody became 1×. Wells with no antibody (NBS) were used as control for the basal cytotoxicity. The plates were placed in an IncuCyte S3® (Essen BioScience) at 37° C. with 5% CO2 for 5 days. Increase in red signal corresponds to target cell proliferation and a decrease in signal corresponds to target cell death. Results are summarized in Table 83. % lysis was calculated as ={100−(red signal intensity at a specific time point with Antibody/red signal intensity at that time point in NBS wells)*100}.









TABLE 83







% lysis of SHP-77, HCC1833 and G361 cells on day 5 after coculture with whole


PBMCs and bispecific anti-DLL3 × CD3 antibodies at the indicated concentrations


using a 1:1 ET ratio (CD3:target cells). NA indicates not tested.









Cytotoxicity (% Lysis at Day 6, 1:1 ET ratio)










Molecules
SHP-77
G361
HCC1833











Name
Description
30 nM
30 nM
30 nM





DL3B582
CD3W245-LH-scFv
87.3
98.9
93.7



DL3B279-Fab


DL3B583
CD3W245-HL-scFv
99.8
98.9
88.4



DL3B279-Fab


DL3B585
CD3B376-Fab
58.1
NA
NA



DL3B279-LH-scFv


DL3B587
CD3W245-Fab
83.3
NA
NA



DL3B279-LH-ScFv









Potent tumor cell lysis was observed with bispecifics DLL3×CD3 antibodies across cell lines of different origin and antigen densities. To compare the efficacy of the high affinity CD3 bispecific (DL3B583) with the low affinity CD3 bispecific (DL3B585), the cytotoxicity against DLL3 high expression SHP-77 cells was tested at various ET ratios. The whole PBMCs from 3 donors were cultured with DLL3+ SHP-77-NLR cells at the indicated ET ratios (CD3: SHP-77) in the presence of the bispecific DLL3×CD3 antibodies. Wells with PBMCs and target cells but no antibody were used as control for basal cytotoxicity. Plates were scanned for up to 120 hours in an IncuCyte S3® (Essen BioScience) in a 37° C. with 5% CO2 incubator. % lysis was calculated as ={100−(red signal intensity at a specific time point with Antibody/red signal intensity at that time point in NBS wells)*100}. Each point on the graph represents an average of 3 donors. As shown in FIGS. 30A-30C, bispecific DLL3×CD3 antibodies with both the high affinity CD3 (DL3B583) and low affinity CD3 (DL3B585) arms showed robust cytotoxicity against SHP-77 cells. Target cell lysis at 90 nM and 30 nM antibody concentration was similar between the high and low affinity CD3 antibody for 10:1 ET ratio.


Proliferation of CD3+ T Cells in Response to Bispecific DLL3×CD3 Antibodies in Whole PBMC Cytotoxicity Assay

In order to test if the binding of bispecific DLL3×CD3 antibodies to CD8+ T cells can induce proliferation and expansion of CD8+ T cells, the time course analysis of CD8+ T cell proliferation was performed. DLL3+ SHP-77 cells were used for the assay. On the day of the assay, SHP-77 cells were collected into a 50 ml falcon tube and spun down at 1300 rpm for 5 min. The cell pellet was then resuspended in 1 ml modified RPMI 1640 media+10% FBS (complete media) and cell count was estimated using trypan blue live dead marker using a hemocytometer. SHP77 cells were then plated in a U-bottom 96 well plate at 10,000 cells/well/90β1 of complete media.


The vials of PBMCs frozen from healthy donors (Clinigene) were rapidly thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 10 mL complete medium. The cells were stained with anti-human CD3 antibody and analyzed by flow cytometer to determine the CD3% within PBMCs. PBMCs were stained Cell Trace Violet dye (C34571, Thermo Fisher Scientific). PBMCs from each donor were counted using trypan blue live dead marker using a hemocytometer and the number of PBMCs required to get effector to target (ET) ratio of 10:1 (CD3: target cell) were added to the plated target cells in 90β1 complete media.


The test antibodies were then prepared as 10× stocks in complete media and 3-fold serial dilutions were prepared from the starting concentration for a total of 3 dilution points. The serially diluted test antibodies were added to the PBMC-tumor coculture at 20 μl/well so that the final concentration of antibody became 1×. Wells with no antibody (NBS) were used as control for the basal cytotoxicity. The plates were incubated in a 5% CO2 incubator for the indicated time periods. At the end of the incubation period, the cells suspension was transferred to a v-bottom plate and was spun down at 1500 rpm for 5 min. The pellet was resuspended in 100p of DPBS. 10p of the cell suspension was taken for determining the total cell count at each antibody concentration using Trypan blue with a hemocytometer. The rest of the cell suspension was subjected to LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (L10119) and incubated for 20 min on ice. The viability stain was inactivated using FACS buffer and was spun down at 1500 rpm for 5 min. Cells were stained with BD Fc block (564220, BD Pharmingen) for 10 min followed by staining with CD3 and CD8 antibodies and acquired on a flow cytometer. Gating on CD8 T cells was performed to estimate the expansion of the cytotoxic CD8 T cell population within the CD3 T cells. As shown in FIG. 31, binding of the bispecific DLL3×CD3 antibodies to T cells potently mediates the expansion of cytotoxic CD8 T cells.


Activation Profile of CD8 T Cells by Bispecific DLL3×CD3 Antibodies in Whole PBMC Assay

In order to look at the activation status of the cytotoxic CD8 T cell population in response to the binding of the DLL3×CD3 bispecifics, kinetic analysis of CD25, CD69 and CD71 markers was performed. DLL3+ SHP-77 cells were used for the assay. SHP-77 cells were collected into a 50 ml falcon tube and spun down at 1300 rpm for 5 min. The cell pellet was then resuspended in 1 ml modified RPMI 1640 media+10% FBS (complete media) and cell count was estimated using trypan blue live dead marker using a hemocytometer. SHP-77 cells were then plated in a U-bottom 96 well plate at 10,000 cells/well/90β1 of complete media.


Vials of PBMCs frozen from healthy donors (Clinigene) were rapidly thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 10 mL complete medium. The cells were stained with anti-human CD3 antibody and analyzed by flow cytometer to determine the CD3% within PBMCs. PBMCs from each donor were counted using trypan blue live dead marker using a hemocytometer and the number of PBMCs required to get effector to target (ET) ratio of 10:1 (CD3: target cell) were added to the plated target cells in 90β1 complete media.


The test antibodies were prepared as 10× stocks in complete media and 3-fold serial dilutions were prepared from the starting concentration for a total of 3 dilution points. The serially diluted test antibodies were added to the PBMC-tumor coculture at 20 μl/well so that the final concentration of antibody became 1×. Wells with no antibody (NBS) were used as control for the basal cytotoxicity. The plates were incubated in a 5% CO2 incubator for the indicated time periods. At the end of the incubation period the cells suspension was transferred to a v-bottom plate and was spun down at 1500 rpm for 5 min. The pellet was resuspended in 100 μl of DPBS. 10 μl of the cell suspension was taken for determining the total cell count at each antibody concentration using Trypan blue with a hemocytometer.


The rest of the cell suspension was subjected to LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (L10119) and incubated for 20 min on ice. The viability stain was inactivated using FACS buffer and was spun down at 1500 rpm for 5 min. The cells were stained with BD Fc block (564220, BD Pharmingen) for 10 min followed by staining with CD3, CD8, CD25, CD69 and CD71 antibodies and acquired on a flow cytometer. As shown in FIGS. 32A-32C, potent activation of cytotoxic CD8 T cells was seen with the bispecific DLL3×CD3 antibodies as indicated by the upregulation of CD25, CD69 and CD71 expression on the surface of CD8 T cells.


Cytokine Induction Mediated by Bispecific DLL3×CD3 Antibodies in Whole PBMC Assay

T cell redirecting bispecific antibodies can cause toxicity because of the induction of cytokine release syndrome. These cytokines can be produced by T cell themselves or myeloid cells and results in a feedback loop of more cytokine production. In order to understand the release of cytokines such as IL-6, TNF-α, IL-10, GMCSF and other T cell cytokines by the addition of DLL3×CD3 bispecifics, culture supernatants from cytotoxicity assays were tested for the levels of these cytokines. DLL3+ SHP-77 cells were used for the assay. SHP-77 cells were collected into a 50 ml falcon tube and spun down at 1300 rpm for 5 min. The cell pellet was then resuspended in 1 ml modified RPMI 1640 media+10% FBS (complete media) and the cell count was estimated using trypan blue live dead marker using a hemocytometer. SHP-77 cells were then plated in a U-bottom 96 well plate at 10,000 cells/well/90 μl of complete media.


The vials of PBMCs frozen from healthy donors (Clinigene) were rapidly thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 10 mL complete medium. The cells were stained with anti-human CD3 antibody and analyzed by flow cytometer to determine the CD3% within PBMCs. PBMCs from each donor were counted using trypan blue live dead marker using a hemocytometer and the number of PBMCs required to get effector to target (ET) ratio of 10:1 (CD3: target cell) were added to the plated target cells in 90β1 complete media.


The test antibodies were prepared as 10× stocks in complete media and added to the PBMC-tumor coculture at 20 μl/well so that the final concentration of antibody became 1×. Wells with no antibody (NBS) were used as control for the basal cytotoxicity. The plates were incubated in a 5% CO2 incubator for the indicated time periods. At the end of the incubation period the cells suspension was transferred to a v-bottom plate and was spun down at 1500 rpm for 5 min. The supernatant was collected and stored at −20° C. to perform Luminex using the MILLIPLEX MAP Human CD8+ T Cell Magnetic Bead Panel (HCD8MAG-15K, Millipore). Plate was analyzed using MAGPIX with eXPONENT software. Results are summarized in Table 84.









TABLE 84







Cytokine release mediated by bispecific DLL3 × CD3 antibodies


in whole PBMC cytotoxicity assay: Whole PBMCs from 3 donors were


cultured with DLL3+ SHP-77 cells at a 10:1 ET ratio


(CD3: SHP-77) in the presence of the CD3 × DLL3 antibodies


at 30 nM concentration for DL3B582 and DL3B583 and 90 nM


for DL3B585. Supernatant was collected at indicated time


points and analyzed for cytokine release using Luminex.


Each point on the graph is an average of 3 donors.









Bispecific DLL3 × CD3 antibodies












Cytokines (ng/ml)
DL3B582
DL3B584
DL3B585
















TNFα
2.7
2.0
1.1



GMCSF
0.8
1.0
0.5



IL-10
13.5
20.7
1.9



IL-13
0.5
0.4
0.5



Gzm B
9.7
9.6
1.0



IL-2
1.0
0.8
0.0



IL-4
0.2
0.2
0.0



IL-5
0.1
0.1
0.1



IL-6
4.2
4.8
0.9










Low levels of cytokine release was observed with the bispecific DLL3×CD3 antibody with lower affinity CD3 (DL3B585) as compared to the ones with higher affinity CD3 arms (DL3B582 and DL3B583), in particular, IL-10, IL-6, IL-2 and IL-4, while the cytotoxic potency of these bispecific DLL3×CD3 was comparable.


Example 20. Characterization of Bispecific Anti-DLL3×CD3 Antibody with Optimized Anti-DLL3 Antibody Sequence

Binding Affinity of Bispecific Anti-DLL3 Variant×CD3 Antibody to DLL3


In order to ensure the N to Q mutation in the HCDR1 region (or near the HCDR1 region depending on the delineation used) of the DL3B279 variant, as described in Example 1, did not result in change in binding to DLL3, the binding affinity of the DL3B279 variant to the recombinant human DLL3 was determined by surface plasmon resonance (SPR) using a Biacore T200 instrument and compared to the parental DL3B279. The antibody was captured on a goat anti-Fc antibody-modified C1 chip and titrated with 3-fold serial dilutions of human and cyno DLL3 antigen spanning concentrations of 90 nM to 1.1 nM. The association was monitored for 3 minutes and the dissociation for 60 minutes, using a flow rate of 50 μL/min. Raw binding data was referenced by subtracting the analyte binding signals from blanks and analyzed using a 1:1 Langmuir binding model using the Biacore Insight evaluation software to obtain the kinetics which were used to calculate the binding affinity. The results (Table 85) showed that the binding affinity of the DLL3×CD3 bispecific (C3C3B80) containing the DL3B279 variant (DL3B279-VL-A99G-VH-N27Q_M105T-LH-scFV) is comparable to that of the original DLL3×CD3 bispecific (DL3B585) containing the original DL3B279-LH-scFV molecule (DL3B585: 24 pM).









TABLE 85







Affinities (KD) for the interaction of bispecific anti-DLL3 ×


CD3 antibody with human DLL3 as obtained by the Biacore (SPR)


method. The anti-DLL3 antibodies were captured using an anti-


human Fc antibody and the antigens were injected in solution









Name
Description
kD (pM)












DL3B585
HC1: CD3B376-Fab; HC2: DL3B279-LH-
24



scFv


D3C3B80
HC1: CD3B376-Fab × HC2: DL3B279-VL-
33



A99G-VH-N27Q_M105T-LH-scFV









Conformational Stability of Bispecific Anti-DLL3 Variant×CD3 Antibody by DSF

The thermal stability (conformational stability) of bispecific anti-DLL3 CD3 antibody containing the new DL3B279 sequence of the DL3B279 variant (D3C3B80) was determined by NanoDSF method using an automated Prometheus instrument. Measurements were made by loading sample into 24 well capillary from a 384 well sample plate. Duplicate runs were performed. The thermal scans span from 20° C. to 95° C. at a rate of 1.0° C./minute. The data was processed to obtain integrated data and first derivation analysis for 330 nm, 350 nm, Ratio 330/350, and scatter data from which thermal transitions, onset of unfolding, Tm1 and Tagg were obtained. The results (Table 86) showed that the thermostability of the bispecific DLL3×CD3 antibody with DL3B279-VL-A99G-VH-N27Q_M105T-LH-scFV variant (D3C3B80) is comparable to that in the original bispecific molecule with the original DL3B279-LH-scFv sequence (DL3B585: Tagg=62.7, Tm1=60.8 shown in Table 86).









TABLE 86







Thermal stability data for bispecific anti-DLL3 antibodies


as obtained using a nanoDSF instrument.










Name
Description
Tagg
Tm1





DL3B585
HC1: CD3B376-Fab;
62.7° C.
60.8° C.



HC2: DL3B279-LH-scFv


D3C3B80
HC1: CD3B376-Fab ×
62.4° C.
60.9° C.



HC2: DL3B279-VL-A99G-VH



N27Q_M105T-LH-scFv









Binding of Bispecific Anti-DLL3 Variant×CD3 Antibody on T-Cells


Human Pan T Cells (Biological Specialty Corporation, Colmar, Pa.) were thawed and transferred to a 15 mL conical with DPBS. The cells were centrifuged 1300 rpm for 5 minutes. DPBS was aspirated and cells were re-suspended in DPBS. The cells were counted using the Vi-cell XR cell viability analyzer and were plated at 100K/well in 100 uL DPBS. The plate was centrifuged 1200 rpm for 3 minutes and washed 2× with DPBS. Cells were stained with Violet Live/Dead stain (Thermo-Fisher) and incubated at RT in the dark for 25 min. The cells were centrifuged and washed 2× with FACS staining buffer (BD Pharmingen). Test antibodies were diluted to a final starting concentration of 100 nM in FACS staining buffer and 3-fold serial dilutions were prepared from the starting concentration for a total of 10 dilution points. The serially diluted test antibodies (100 uL/well) were added to the cells and incubated for 30 min at 37°. Cells were washed 2× with FACS staining buffer and AlexaFluor 647-conjugated Donkey anti-human secondary antibody (Jackson Immunoresearch) was added and allowed to incubate with the cells for 30 min at 4° C. Cells were washed 2× with FACS staining buffer and re-suspended in 100 uL FACS Buffer. Cells were run on BD Celesta using FACS Diva software and analyzed using FlowJo software. As shown in FIG. 33A, the bispecific DLL3×CD3 antibody with DL3B279-VL-A99G-VH-N27Q_M105T-LH-scFV variant (D3C3B80) has comparable binding on T-cells as the original bispecific molecule with the original DL3B279-LH-scFv sequence (DL3B585).


Bispecific Anti-DLL3 Variant×CD3 Mediated Cytotoxicity Against DLL3+ Target Cell Lines in Pan T-Cells by IncuCyte


DLL3+ SHP77 stably expressing red nuclear dye were generated to be used in the IncuCyte-based cytotoxicity assay. Frozen vials of healthy donor T-cells (Biological Specialty Corporation, Colmar, Pa.) were thawed in a 37° C. water bath, transferred to a 15 mL conical tube, and washed once with 5 mL phenol-red-free RPMI/10% HI FBS medium. The cells were counted using the Viacell XR cell viability analyzer and the T-cells were combined with target cells for a final effector T-cell to target cell (E: T) ratio of 5:1. The cell mixture was combined in a 50 mL conical tube. The cell mixture (100 uL/well) was added to a clear 96-well flat-bottom plate. Next, the test antibodies were diluted to a final starting concentration of 60 nM in phenol-red-free RPMI/10% HI FBS medium and 3-fold serial dilutions were prepared from the starting concentration for a total of 11 dilution points. The serially diluted test antibodies (100 uL/well) were added to the combined cells. The plates were placed in either an IncuCyte® Zoom or an IncuCyte S3® (Essen) at 37° C. with 5% CO2 for 120 hours. The target cell lines stably express red nuclear dye which is used to track the kinetics of target cell lysis. Percent cell growth inhibition is equal to the difference between the initial variable target cell number and the current viable target cell number divided by the initial viable cell number. As shown in FIG. 33B, the bispecific DLL3×CD3 antibody with DL3B279-VL-A99G-VH-N27Q_M105T-LH-scFV variant (D3C3B80) has comparable cell growth inhibition as the original bispecific molecule with the original DL3B279-LH-scFv sequence (DL3B585).


The present examples demonstrate that the isolated multispecific proteins disclosed herein are particularly effective at mediating T cell mediated cytotoxicity, promoting T cell activation and proliferation, increasing T cell cytokine release and/or displaying increased anti-tumor efficacy. These activities are a reflection of the combination of antigen binding domains targeting DLL3 on the target cell and CD3 on the T cell. The skilled person would understand that such activity would be expected from assembling the binding domains into a bispecific antibody, irrespective of the mechanism by which the bispecific antibody is assembled.

Claims
  • 1. An isolated protein comprising an antigen binding domain that binds to cluster of differentiation 3ε (CD3ε), wherein the antigen binding domain that binds CD3ε comprises: a. a heavy chain complementarity determining region (HCDR) 1, a HCDR2 and a HCDR3 of a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain complementarity determining region (LCDR) 1, a LCDR2 and a LCDR3 of a light chain variable region (VL) of SEQ ID NO: 24;b. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 27;c. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 28;d. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 29; ore. the HCDR1, the HCDR2 and the HCDR3 of the VH of SEQ ID NO: 23 and the LCDR1, the LCDR2 and the LCDR3 of the VL of SEQ ID NO: 30.
  • 2. The isolated protein of claim 1, comprising the HCDR1, the HCDR2, the HCDR3, the LCDR1, the LCDR2 and the LCDR3 of a. SEQ ID NOs: 6, 7, 8, 9, 10, and 11, respectively;b. SEQ ID NOs:12, 13, 14, 15, 16, and 17, respectively; orc. SEQ ID NOs: 18, 19, 20, 21, 16, and 22, respectively.
  • 3. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
  • 4. The isolated protein of claim 3, wherein the antigen binding domain that binds CD3, is the Fab.
  • 5. The isolated protein of claim 3, wherein the antigen binding domain that binds CD3ε is the scFv.
  • 6. The isolated protein of claim 5, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
  • 7. The isolated protein of claim 6, wherein the L1 comprises a. about 5-50 amino acids;b. about 5-40 amino acids;c. about 10-30 amino acids; ord. about 10-20 amino acids.
  • 8. The isolated protein of claim 6, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
  • 9. The isolated protein of claim 8 wherein the L1 comprises the amino acid sequence of SEQ ID NO: 31, 37, or 64.
  • 10. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NOs: 23 and the VL of SEQ ID NOs: 24, 27, 28, 29 or 30.
  • 11. The isolated protein of claim 10, wherein the antigen binding domain that binds CD3ε comprises: a. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;b. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;c. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;d. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; ore. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.
  • 12. The isolated protein of claim 1, wherein the antigen binding domain that binds CD3ε comprises the amino acid sequence of SEQ ID NOs: 65, 66, 67, 68, 69, 70, 71, 72, 73, or 74.
  • 13. An isolated protein comprising an antigen binding domain that binds CD3ε, wherein the antigen binding domain that binds CD3ε comprises a heavy chain variable region (VH) of SEQ ID NO: 23 and a light chain variable region (VL) of SEQ ID NO: 103.
  • 14. The isolated protein of claim 13, wherein the antigen binding domain that binds CD3ε is a scFv, a (scFv)2, a Fv, a Fab, a F(ab′)2, a Fd, a dAb or a VHH.
  • 15. The isolated protein of claim 14, wherein the antigen binding domain that binds CD3ε is the Fab.
  • 16. The isolated protein of claim 14, wherein the antigen binding domain that binds CD3ε is the scFv.
  • 17. The isolated protein of claim 16, wherein the scFv comprises, from the N- to C-terminus, a VH, a first linker (L1) and a VL (VH-L1-VL) or the VL, the L1 and the VH (VL-L1-VH).
  • 18. The isolated protein of claim 17, wherein the L1 comprises a. about 5-50 amino acids;b. about 5-40 amino acids;c. about 10-30 amino acids; ord. about 10-20 amino acids.
  • 19. The isolated protein of claim 18, wherein the L1 comprises an amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
  • 20. The isolated protein of claim 19, wherein the L1 comprises the amino acid sequence of SEQ ID NO: 31, 37, or 64.
  • 21. The isolated protein of claim 13, wherein the antigen binding domain that binds CD3ε comprises the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24, 27, 28, 29, or 30.
  • 22. The isolated protein of claim 21, wherein the antigen binding domain that binds CD3ε comprises: a. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 24;b. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 27;c. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 28;d. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 29; ore. the VH of SEQ ID NO: 23 and the VL of SEQ ID NO: 30.
  • 23. The isolated protein of claim 1, wherein the isolated protein is a multispecific protein.
  • 24. The isolated protein of claim 23, wherein the multispecific protein is a bispecific protein.
  • 25. The isolated protein of claim 23, wherein the multispecific protein is a trispecific protein.
  • 26. The isolated protein of claim 1, further comprising an immunoglobulin (Ig) constant region or a fragment of the Ig constant region thereof.
  • 27. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises a Fc region.
  • 28. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises a CH2 domain.
  • 29. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises a CH3 domain.
  • 30. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises a CH2 domain and a CH3 domain.
  • 31. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises at least portion of a hinge, a CH2 domain and a CH3 domain.
  • 32. The isolated protein of claim 26, wherein the fragment of the Ig constant region comprises a hinge, a CH2 domain and a CH3 domain.
  • 33. The isolated protein of claim 26, wherein the antigen binding domain that binds CD3ε is conjugated to the N-terminus of the Ig constant region or the fragment of the Ig constant region.
  • 34. The isolated protein of claim 26, wherein the antigen binding domain that binds CD3ε is conjugated to the C-terminus of the Ig constant region or the fragment of the Ig constant region.
  • 35. The isolated protein of claim 26, wherein the antigen binding domain that binds CD3ε is conjugated to the Ig constant region or the fragment of the Ig constant region via a second linker (L2).
  • 36. The isolated protein of claim 35, wherein the L2 comprises the amino acid sequence of SEQ ID NOs: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or 64.
  • 37. The isolated protein of claim 23, wherein the multispecific protein comprises an antigen binding domain that binds an antigen other than CD3ε.
  • 38. The multispecific antibody of claim 37, wherein the cell antigen is a tumor associated antigen.
  • 39. The isolated protein of claim 26, wherein the Ig constant region or the fragment of the Ig constant region is an IgG1, an IgG2, an IgG3 or an IgG4 isotype.
  • 40. The isolated protein of claim 26, wherein the Ig constant region or the fragment of the Ig constant region comprises at least one mutation that results in reduced binding of the protein to a Fcγ receptor (FcγR).
  • 41. The isolated protein of claim 40, wherein the at least one mutation that results in reduced binding of the protein to the FcγR is selected from the group consisting of F234A/L235A, L234A/L235A, L234A/L235A/D265S, V234A/G237A/P238S/H268A/V309L/A330S/P331S, F234A/L235A, S228P/F234A/L235A, N297A, V234A/G237A, K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M, H268Q/V309L/A330S/P331S, S267E/L328F, L234F/L235E/D265A, L234A/L235A/G237A/P238S/H268A/A330S/P331S, S228P/F234A/L235A/G237A/P238S and S228P/F234A/L235A/G236-deleted/G237A/P238S, wherein residue numbering is according to the EU index.
  • 42. The isolated protein of claim 40, wherein the FcγR is FcγRI, FcγRIIA, FcγRIIB or FcγRIII, or any combination thereof.
  • 43. The isolated protein of claim 26, wherein the protein comprises at least one mutation in a CH3 domain of the Ig constant region.
  • 44. The isolated protein of claim 43, wherein the at least one mutation in the CH3 domain of the Ig constant region is selected from the group consisting of T350V, L351Y, F405A, Y407V, T366Y, T366W, T366L, F405W, T394W, K392L, T394S, Y407T, Y407A, T366S/L368A/Y407V, L351Y/F405A/Y407V, T366I/K392M/T394W, F405A/Y407V, T366L/K392M/T394W, T366L/K392L/T394W, L351Y/Y407A, L351Y/Y407V, T366A/K409F, T366V/K409F, T366A/K409F, T350V/L351Y/F405A/Y407V and T350V/T366L/K392L/T394W, wherein residue numbering is according to the EU index.
  • 45. A pharmaceutical composition comprising the isolated protein of claim 1 and a pharmaceutically acceptable carrier.
  • 46. A polynucleotide encoding the isolated protein of claim 1.
  • 47. A vector comprising the polynucleotide of claim 46.
  • 48. A host cell comprising the vector of claim 47.
  • 49. A method of producing the isolated protein of claim 1, comprising culturing the host cell of claim 48 in conditions that the protein is expressed, and recovering the protein produced by the host cell.
  • 50. A method of treating a cancer in a subject, comprising administering a therapeutically effective amount of the isolated antibody of claim 1 to the subject in need thereof to treat the cancer.
  • 51. An anti-idiotypic antibody binding to the isolated protein of claim 1.
  • 52. An isolated protein comprising an antigen binding domain that binds to an epitope on CD3ε (SEQ ID NO: 1), wherein the epitope is a discontinuous epitope comprising the amino acid sequences of SEQ ID NO: 100, 101, and 102.
  • 53. The isolated protein of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 747, 748, 77, 78, 749, 750, 751, 752, 753, and 754.
  • 54. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 747.
  • 55. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 748.
  • 56. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 77.
  • 57. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 78.
  • 58. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 749.
  • 59. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 750.
  • 60. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 751.
  • 61. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 752.
  • 62. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 753.
  • 63. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NO: 754.
  • 64. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NOs: 85 and 86.
  • 65. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NOs: 85 and 88.
  • 66. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NOs: 85 and 90.
  • 67. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NOs: 85 and 92.
  • 68. The isolated protein of claim 1 comprising amino acid sequences of SEQ ID NOs: 85 and 94.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 63/030,448, filed May 27, 2020, Ser. No. 63/057,958, filed Jul. 29, 2020, and Ser. No. 63/094,931, filed Oct. 22, 2020. The disclosure of each of the aforementioned applications is incorporated herein by reference in its entirety.

Provisional Applications (3)
Number Date Country
63030448 May 2020 US
63057958 Jul 2020 US
63094931 Oct 2020 US