The present invention generally relates to robotic systems and in particular, to a robotic system, and a method implemented therein, for providing information of tools by filtering image areas adjacent to or on displayed images of the tools.
In a robotic system, one or more tools may be telerobotically controlled by an operator to perform a procedure on an object at a work site. A camera is provided at the work site to capture images of end effectors of the tools as they interact with the object to perform the procedure, so that the operator may view their movements on a display while telerobotically controlling the tools using associated input devices.
During the procedure, it may be useful to provide the operator with tool information such as whether a tool is energized at the time or which of a plurality of tools is energized at the time or which robotic arm is operatively coupled to a specific tool at the time. The tool information typically may be provided as text or a graphic in an area on the display that is not within a current gaze area of the operator, such as in a boundary area circumscribing the display viewing area or off to one side of the viewing area to avoid obscuring images of the end effectors and an object upon which the end effectors are performing a procedure at the time.
When the tool information is provided outside the gaze area of the operator, however, it may be distracting for the operator to visually find and/or associate the provided tool information with its corresponding tool because the operator's eyes must shift from the area in which the operator is currently gazing to another area on the display. In the case of a stereo display, the situation becomes even more complicated, because the operator's eyes not only have to shift vertically and horizontally around the display to find the tool information, they may also have to look for and focus on tool information at a different depth than the three-dimensional images of the object and tools that the operator is viewing at the time on a stereo vision display.
Accordingly, one object of one or more aspects of the present invention is a robotic system, and method implemented therein, that provides tool information within a gaze area of an operator as the operator is viewing an image of the tool on a display screen.
Another object of one or more aspects of the present invention is a robotic system, and method implemented therein, that provides tool information on a display that is easily associated to a tool being viewed at the time by an operator.
These and additional objects are accomplished by the various aspects of the present invention, wherein the embodiments of the invention are summarized by the claims that follow below.
Additional objects, features and advantages of the various aspects of the present invention will become apparent from the following description of its preferred embodiments, which description should be taken in conjunction with the accompanying drawings.
Although a medical robotic system is described herein, it is to be appreciated that the various aspects of the invention are not to be limited to medical robotic systems. They are applicable to robotic systems in general.
The Console, as further described in reference to
The Surgeon performs the medical procedure by manipulating the input devices 41, 42 so that the processor 43 causes their respectively associated robotic arms 34, 36 to manipulate their respective removably coupled tools 33, 35 accordingly while the Surgeon views real-time images of a work site in three-dimensions (“3D”) on a stereo vision display 45 of the Console. A stereoscopic endoscope 37 (having left and right cameras for capturing left and right stereo views) captures stereo images of the work site. The processor 43 processes the stereo images so that they may be properly displayed on the stereo vision display 45.
Each of the robotic arms 34, 36, 38 is conventionally formed of links, such as link 162, which are coupled together and manipulated through actuatable joints, such as joint 163. Each of the robotic arms includes a setup arm and a slave manipulator. The setup arm positions its held tool so that a pivot point occurs at its entry aperture into the Patient. The slave manipulator may then manipulate its held tool or endoscope so that it may be pivoted about the pivot point, inserted into and retracted out of the entry aperture, and rotated about its shaft axis. The robotic arms 34, 36, 38 may be carted into the operating room via the cart 150 or alternatively, they may be attached to sliders on a wall or ceiling of the operating room.
The processor 43 performs various functions in the medical robotic system. One important function that it performs is to translate and transfer the mechanical motion of input devices 41, 42 through control signals over bus 110 to command actuators of their associated robotic arms to actuate their respective joints so that the Surgeon can effectively manipulate devices, such as the tools 33, 35, and endoscope 37. Another function is to perform various methods described herein. Although described as a processor, it is to be appreciated that the processor 43 may be implemented by any combination of hardware, software and firmware. Also, its functions as described herein may be performed by one unit or divided up among different components, each of which may be implemented in turn by any combination of hardware, software and firmware. Further, although being shown as part of or being physically adjacent to the Console, the processor 43 may also comprise a number of subunits distributed throughout the system.
U.S. Pat. No. 6,659,939 B2 entitled “Cooperative Minimally Invasive Telesurgical System,” which is incorporated herein by reference, provides additional details on a medical robotic system such as described herein.
In block 5002, the method determines the current pose (i.e., position and orientation) of the tool 33 in its tool reference frame. Each tool is operatively coupled to a robotic arm that manipulates the tool according to control commands generated by the processor 43 in response to operator manipulation of its associated input device. The manipulation of the tool is relative to a pivot point, which serves as origin for the tool reference frame. Determination of the current pose for each tool may be performed by using kinematics of the robotic arm and/or other well known techniques. Additional details may be found, for example, in U.S. 2006/0258938 A1 entitled “Methods and System for Performing 3-D Tool Tracking by Fusion of Sensor and/or Camera Derived. Data during Minimally Invasive Robotic Surgery,” which is incorporated herein by reference.
In block 5003, the method translates the determined tool pose in the tool reference frame to a tool pose in an image reference frame which is from the perspective of the stereo camera of the endoscope 37. As an example, the tool pose in the tool reference frame may first be translated to a tool pose in a fixed reference frame using a previously determined transform for the tool reference frame to the fixed reference. The tool pose in the fixed reference frame may then be translated to a tool pose in a camera reference frame using a previously determined transform from the fixed reference frame to the camera reference frame. Finally, the tool pose in the camera reference frame may be translated to a tool pose in the image reference frame using previously determined information of the camera pose in the camera reference frame. Additional details for such translations and transforms may be found, for example, in U.S. Pat. No. 6,424,885 entitled “Camera Referenced Control in a Minimally Invasive Surgical Apparatus”, which is incorporated herein by reference.
In block 5004, the method determines an area of the image of the work site which is to be filtered so as to indicate the tool 33 has been energized. The determination of the area to be filtered depends on a number of factors including the current pose of the tool 33 and the type of filtering to be employed to indicate the tool 33 is being energized. The area to be filtered is part, but not all of the image of the work site.
In block 5005, the method filters the determined area of the work site and displays the filtered image along with unfiltered images of the remainder of the work site in the display 45.
As examples of blocks 5004 and 5005, an area of the image of the object 610, such as area 611 of
Although the various aspects of the present invention have been described with respect to a preferred embodiment, it will be understood that the invention is entitled to full protection within the full scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/689,949 filed Nov. 20, 2019 which is a continuation of U.S. application Ser. No. 13/768,062 (filed Feb. 15, 2013), all of which is are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3628535 | Ostrowsky et al. | Dec 1971 | A |
3818284 | Deversterre | Jun 1974 | A |
3890552 | Devol et al. | Jun 1975 | A |
3905215 | Wright | Sep 1975 | A |
3923166 | Fletcher et al. | Dec 1975 | A |
4150326 | Engelberger et al. | Apr 1979 | A |
4349837 | Hinds | Sep 1982 | A |
4577621 | Patel | Mar 1986 | A |
4588348 | Beni et al. | May 1986 | A |
4644237 | Frushour et al. | Feb 1987 | A |
4672963 | Barken | Jun 1987 | A |
4673988 | Jansson et al. | Jun 1987 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4759074 | Iadipaolo et al. | Jul 1988 | A |
4762455 | Coughlan et al. | Aug 1988 | A |
4762456 | Nelson | Aug 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4815450 | Patel | Mar 1989 | A |
4831549 | Red et al. | May 1989 | A |
4833383 | Skarr et al. | May 1989 | A |
4837703 | Kakazu et al. | Jun 1989 | A |
4837734 | Ichikawa et al. | Jun 1989 | A |
4839838 | LaBiche et al. | Jun 1989 | A |
4853874 | Iwamoto et al. | Aug 1989 | A |
4858149 | Quarendon | Aug 1989 | A |
4860215 | Seraji | Aug 1989 | A |
4863133 | Bonnell | Sep 1989 | A |
4891767 | Rzasa et al. | Jan 1990 | A |
4942539 | McGee et al. | Jul 1990 | A |
4979949 | Matsen, III et al. | Dec 1990 | A |
4984157 | Cline et al. | Jan 1991 | A |
4989253 | Liang et al. | Jan 1991 | A |
5046022 | Conway et al. | Sep 1991 | A |
5053976 | Nose et al. | Oct 1991 | A |
5079699 | Tuy et al. | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5170347 | Tuy et al. | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5176702 | Bales et al. | Jan 1993 | A |
5182641 | Diner et al. | Jan 1993 | A |
5184009 | Wright et al. | Feb 1993 | A |
5184601 | Putman | Feb 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5235510 | Yamada et al. | Aug 1993 | A |
5239246 | Kim | Aug 1993 | A |
5251127 | Raab | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5257203 | Riley et al. | Oct 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5266875 | Slotine et al. | Nov 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5313306 | Kuban et al. | May 1994 | A |
5321353 | Furness | Jun 1994 | A |
5337733 | Bauerfeind et al. | Aug 1994 | A |
5341950 | Sinz | Aug 1994 | A |
5343385 | Joskowicz et al. | Aug 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368428 | Hussey et al. | Nov 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5430643 | Seraji | Jul 1995 | A |
5445166 | Taylor et al. | Aug 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5474571 | Lang | Dec 1995 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5493595 | Schoolman | Feb 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5528955 | Hannaford et al. | Jun 1996 | A |
5531742 | Barken | Jul 1996 | A |
5551432 | Iezzi | Sep 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5601549 | Miyagi | Feb 1997 | A |
5617858 | Taverna et al. | Apr 1997 | A |
5624390 | Van Dyne | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5631973 | Green | May 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5704897 | Truppe | Jan 1998 | A |
5715729 | Toyama et al. | Feb 1998 | A |
5737500 | Seraji et al. | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5755725 | Druais | May 1998 | A |
5759151 | Sturges | Jun 1998 | A |
5759153 | Webler et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5765561 | Chen et al. | Jun 1998 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5788688 | Bauer et al. | Aug 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5808665 | Green et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5810880 | Jensen et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5817022 | Vesely | Oct 1998 | A |
5820545 | Arbter et al. | Oct 1998 | A |
5820623 | Ng | Oct 1998 | A |
5831408 | Jacobus et al. | Nov 1998 | A |
5835693 | Lynch et al. | Nov 1998 | A |
5836880 | Pratt | Nov 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5842473 | Fenster et al. | Dec 1998 | A |
5842993 | Eichelberger et al. | Dec 1998 | A |
5853367 | Chalek et al. | Dec 1998 | A |
5855553 | Tajima et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5859934 | Green | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5877819 | Branson | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5887121 | Funda et al. | Mar 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5938678 | Zirps et al. | Aug 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5964707 | Fenster et al. | Oct 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5980460 | Oestensen et al. | Nov 1999 | A |
5980461 | Rajan | Nov 1999 | A |
5987591 | Jyumonji | Nov 1999 | A |
5993390 | Savord et al. | Nov 1999 | A |
5993391 | Kamiyama | Nov 1999 | A |
5999662 | Burt et al. | Dec 1999 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6036637 | Kudo | Mar 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6072466 | Shah et al. | Jun 2000 | A |
6083170 | Ben-Haim | Jul 2000 | A |
6084371 | Kress et al. | Jul 2000 | A |
6096025 | Borders | Aug 2000 | A |
6115053 | Perlin | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6129670 | Burdette et al. | Oct 2000 | A |
6184868 | Shahoian et al. | Feb 2001 | B1 |
6196081 | Yau | Mar 2001 | B1 |
6201984 | Funda et al. | Mar 2001 | B1 |
6204620 | McGee et al. | Mar 2001 | B1 |
6224542 | Chang et al. | May 2001 | B1 |
6226566 | Funda et al. | May 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6243624 | Wu et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6256529 | Holupka et al. | Jul 2001 | B1 |
6270453 | Sakai | Aug 2001 | B1 |
6292712 | Bullen | Sep 2001 | B1 |
6307285 | Delson et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6330837 | Charles et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6342889 | Callahan | Jan 2002 | B1 |
6358749 | Orthman | Mar 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6402737 | Tajima et al. | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6425865 | Salcudean et al. | Jul 2002 | B1 |
6434416 | Mizoguchi et al. | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6442417 | Shahidi et al. | Aug 2002 | B1 |
6456901 | Xi et al. | Sep 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493608 | Niemeyer | Dec 2002 | B1 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6522908 | Miyashita et al. | Feb 2003 | B1 |
6547782 | Taylor | Apr 2003 | B1 |
6550757 | Sesek | Apr 2003 | B2 |
6569084 | Mizuno et al. | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6594522 | Korenaga | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6599247 | Stetten | Jul 2003 | B1 |
6602185 | Uchikubo | Aug 2003 | B1 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6642836 | Wang et al. | Nov 2003 | B1 |
6643563 | Hosek et al. | Nov 2003 | B2 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6654031 | Ito et al. | Nov 2003 | B1 |
6656110 | Irion et al. | Dec 2003 | B1 |
6659939 | Moll et al. | Dec 2003 | B2 |
6665554 | Charles et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676669 | Charles et al. | Jan 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6702736 | Chen et al. | Mar 2004 | B2 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6765569 | Neumann et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6799065 | Niemeyer | Sep 2004 | B1 |
6817973 | Merril et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6847922 | Wampler, II | Jan 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6876891 | Schuler et al. | Apr 2005 | B1 |
6899672 | Chin et al. | May 2005 | B2 |
6905460 | Wang et al. | Jun 2005 | B2 |
6926709 | Bieger et al. | Aug 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
7041053 | Miyake | May 2006 | B2 |
7107090 | Salisbury et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7144367 | Chen et al. | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7181315 | Watanabe et al. | Feb 2007 | B2 |
7194118 | Harris et al. | Mar 2007 | B1 |
7211978 | Chang et al. | May 2007 | B2 |
7297142 | Brock | Nov 2007 | B2 |
7302288 | Schellenberg et al. | Nov 2007 | B1 |
7413565 | Wang et al. | Aug 2008 | B2 |
7491198 | Kockro | Feb 2009 | B2 |
7493153 | Ahmed et al. | Feb 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7819859 | Prisco et al. | Oct 2010 | B2 |
7833156 | Williams et al. | Nov 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7963913 | Devengenzo et al. | Jun 2011 | B2 |
7967813 | Cooper et al. | Jun 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7996110 | Lipow et al. | Aug 2011 | B2 |
7998058 | Kura et al. | Aug 2011 | B2 |
8004229 | Nowlin et al. | Aug 2011 | B2 |
8005571 | Sutherland et al. | Aug 2011 | B2 |
8016749 | Clerc et al. | Sep 2011 | B2 |
8062288 | Cooper et al. | Nov 2011 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8130907 | Maurer, Jr. et al. | Mar 2012 | B2 |
8142447 | Cooper et al. | Mar 2012 | B2 |
8155479 | Hoffman et al. | Apr 2012 | B2 |
8170716 | Coste-Maniere et al. | May 2012 | B2 |
8175861 | Huang et al. | May 2012 | B2 |
8221304 | Shioda et al. | Jul 2012 | B2 |
8244443 | Oshima et al. | Aug 2012 | B2 |
8256319 | Cooper et al. | Sep 2012 | B2 |
8306656 | Schaible et al. | Nov 2012 | B1 |
8315720 | Mohr et al. | Nov 2012 | B2 |
8335590 | Costa et al. | Dec 2012 | B2 |
8398541 | Dimaio et al. | Mar 2013 | B2 |
8419717 | Diolaiti et al. | Apr 2013 | B2 |
8541970 | Nowlin et al. | Sep 2013 | B2 |
8554368 | Fielding et al. | Oct 2013 | B2 |
8597280 | Cooper et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8624537 | Nowlin et al. | Jan 2014 | B2 |
8749189 | Nowlin et al. | Jun 2014 | B2 |
8749190 | Nowlin et al. | Jun 2014 | B2 |
8786241 | Nowlin et al. | Jul 2014 | B2 |
8801601 | Prisco et al. | Aug 2014 | B2 |
8816628 | Nowlin et al. | Aug 2014 | B2 |
8823308 | Nowlin et al. | Sep 2014 | B2 |
8864652 | Diolaiti et al. | Oct 2014 | B2 |
8864751 | Prisco et al. | Oct 2014 | B2 |
8903546 | Diolaiti et al. | Dec 2014 | B2 |
8918211 | Diolaiti et al. | Dec 2014 | B2 |
8944070 | Guthart et al. | Feb 2015 | B2 |
9084623 | Gomez et al. | Jul 2015 | B2 |
9089256 | Tognaccini et al. | Jul 2015 | B2 |
9101397 | Guthart et al. | Aug 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9232984 | Guthart et al. | Jan 2016 | B2 |
9259283 | Ogawa et al. | Feb 2016 | B2 |
9333042 | Diolaiti et al. | May 2016 | B2 |
9345387 | Larkin | May 2016 | B2 |
9387048 | Donhowe et al. | Jul 2016 | B2 |
9469034 | Diolaiti et al. | Oct 2016 | B2 |
9492927 | Diolaiti et al. | Nov 2016 | B2 |
9516996 | Diolaiti et al. | Dec 2016 | B2 |
9565990 | Lee et al. | Feb 2017 | B2 |
9622826 | Diolaiti et al. | Apr 2017 | B2 |
9629520 | Diolaiti | Apr 2017 | B2 |
9717563 | Tognaccini et al. | Aug 2017 | B2 |
9718190 | Larkin et al. | Aug 2017 | B2 |
9788909 | Larkin et al. | Oct 2017 | B2 |
9789608 | Itkowitz et al. | Oct 2017 | B2 |
9795446 | Dimaio et al. | Oct 2017 | B2 |
9801690 | Larkin et al. | Oct 2017 | B2 |
9901408 | Larkin | Feb 2018 | B2 |
9949798 | Weir et al. | Apr 2018 | B2 |
9956044 | Gomez et al. | May 2018 | B2 |
10008017 | Itkowitz et al. | Jun 2018 | B2 |
10137575 | Itkowitz et al. | Nov 2018 | B2 |
10188472 | Diolaiti et al. | Jan 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10271909 | Guthart et al. | Apr 2019 | B2 |
10271912 | Diolaiti et al. | Apr 2019 | B2 |
10271915 | Diolaiti et al. | Apr 2019 | B2 |
10282881 | Itkowitz et al. | May 2019 | B2 |
10368952 | Tognaccini et al. | Aug 2019 | B2 |
10433919 | Guthart et al. | Oct 2019 | B2 |
10507066 | DiMaio et al. | Dec 2019 | B2 |
10537994 | Diolaiti et al. | Jan 2020 | B2 |
10695136 | Larkin | Jun 2020 | B2 |
10730187 | Larkin et al. | Aug 2020 | B2 |
10737394 | Itkowitz et al. | Aug 2020 | B2 |
10772689 | Gomez et al. | Sep 2020 | B2 |
10773388 | Larkin et al. | Sep 2020 | B2 |
10828774 | Diolaiti et al. | Nov 2020 | B2 |
10959798 | Diolaiti et al. | Mar 2021 | B2 |
10984567 | Itkowitz et al. | Apr 2021 | B2 |
11382702 | Tognaccini et al. | Jul 2022 | B2 |
11389255 | DiMaio et al. | Jul 2022 | B2 |
11399908 | Diolaiti et al. | Aug 2022 | B2 |
11432888 | Diolaiti et al. | Sep 2022 | B2 |
11596490 | Diolaiti et al. | Mar 2023 | B2 |
11638622 | Mustufa et al. | May 2023 | B2 |
11638999 | Itkowitz et al. | May 2023 | B2 |
20010035871 | Bieger et al. | Nov 2001 | A1 |
20020044104 | Friedrich et al. | Apr 2002 | A1 |
20020045888 | Ramans et al. | Apr 2002 | A1 |
20020089544 | Jahn et al. | Jul 2002 | A1 |
20020120188 | Brock et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020156345 | Eppler et al. | Oct 2002 | A1 |
20020193800 | Kienzle, III et al. | Dec 2002 | A1 |
20030023347 | Konno et al. | Jan 2003 | A1 |
20030032878 | Shahidi | Feb 2003 | A1 |
20030055410 | Evans et al. | Mar 2003 | A1 |
20030060927 | Gerbi et al. | Mar 2003 | A1 |
20030109780 | Coste-Maniere et al. | Jun 2003 | A1 |
20030114730 | Hale et al. | Jun 2003 | A1 |
20030144649 | Ghodoussi et al. | Jul 2003 | A1 |
20030167103 | Tang et al. | Sep 2003 | A1 |
20030225479 | Waled | Dec 2003 | A1 |
20040024311 | Quaid, III | Feb 2004 | A1 |
20040034283 | Quaid et al. | Feb 2004 | A1 |
20040039485 | Niemeyer et al. | Feb 2004 | A1 |
20040044295 | Reinert et al. | Mar 2004 | A1 |
20040046711 | Triebfuerst | Mar 2004 | A1 |
20040046916 | Lyu et al. | Mar 2004 | A1 |
20040049205 | Lee et al. | Mar 2004 | A1 |
20040077940 | Kienzle et al. | Apr 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040138700 | Cooper et al. | Jul 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040189675 | Pretlove et al. | Sep 2004 | A1 |
20040210105 | Hale et al. | Oct 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040249508 | Suita et al. | Dec 2004 | A1 |
20040254454 | Kockro | Dec 2004 | A1 |
20040254679 | Nagasaka | Dec 2004 | A1 |
20050022158 | Launay et al. | Jan 2005 | A1 |
20050054895 | Hoeg et al. | Mar 2005 | A1 |
20050059960 | Simaan et al. | Mar 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050096892 | Watanabe et al. | May 2005 | A1 |
20050107680 | Kopf et al. | May 2005 | A1 |
20050113640 | Saadat et al. | May 2005 | A1 |
20050166413 | Crampton et al. | Aug 2005 | A1 |
20050203380 | Sauer et al. | Sep 2005 | A1 |
20050228365 | Wang et al. | Oct 2005 | A1 |
20050251113 | Kienzle, III | Nov 2005 | A1 |
20050267359 | Hussaini et al. | Dec 2005 | A1 |
20050273198 | Bischoff | Dec 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060058988 | Defranoux et al. | Mar 2006 | A1 |
20060079108 | McCoy | Apr 2006 | A1 |
20060142657 | Quaid et al. | Jun 2006 | A1 |
20060149129 | Watts et al. | Jul 2006 | A1 |
20060161045 | Merril et al. | Jul 2006 | A1 |
20060161138 | Orban, Iii et al. | Jul 2006 | A1 |
20060178559 | Kumar et al. | Aug 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20060261770 | Kishi et al. | Nov 2006 | A1 |
20060293592 | Jensen | Dec 2006 | A1 |
20070016174 | Millman et al. | Jan 2007 | A1 |
20070021738 | Hasser et al. | Jan 2007 | A1 |
20070038080 | Salisbury, Jr. et al. | Feb 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070071310 | Kobayashi et al. | Mar 2007 | A1 |
20070081714 | Wallack et al. | Apr 2007 | A1 |
20070106307 | Bodduluri et al. | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070138992 | Prisco et al. | Jun 2007 | A1 |
20070142825 | Prisco et al. | Jun 2007 | A1 |
20070142968 | Prisco et al. | Jun 2007 | A1 |
20070144298 | Miller | Jun 2007 | A1 |
20070151389 | Prisco et al. | Jul 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070156285 | Sillman et al. | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070177009 | Bayer et al. | Aug 2007 | A1 |
20070197896 | Moll et al. | Aug 2007 | A1 |
20070229015 | Yoshida et al. | Oct 2007 | A1 |
20070255454 | Dariush | Nov 2007 | A1 |
20070265491 | Krag et al. | Nov 2007 | A1 |
20070270650 | Eno et al. | Nov 2007 | A1 |
20070270685 | Kang et al. | Nov 2007 | A1 |
20070283970 | Mohr et al. | Dec 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20070287889 | Mohr | Dec 2007 | A1 |
20070287992 | Diolaiti et al. | Dec 2007 | A1 |
20070296366 | Quaid et al. | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080033240 | Hoffman et al. | Feb 2008 | A1 |
20080045800 | Farr | Feb 2008 | A2 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080064921 | Larkin et al. | Mar 2008 | A1 |
20080064927 | Larkin et al. | Mar 2008 | A1 |
20080064931 | Schena et al. | Mar 2008 | A1 |
20080065097 | Duval et al. | Mar 2008 | A1 |
20080065098 | Larkin et al. | Mar 2008 | A1 |
20080065099 | Cooper et al. | Mar 2008 | A1 |
20080065100 | Larkin | Mar 2008 | A1 |
20080065101 | Larkin | Mar 2008 | A1 |
20080065102 | Cooper | Mar 2008 | A1 |
20080065104 | Larkin et al. | Mar 2008 | A1 |
20080065105 | Larkin et al. | Mar 2008 | A1 |
20080065106 | Larkin | Mar 2008 | A1 |
20080065107 | Larkin et al. | Mar 2008 | A1 |
20080065110 | Duval et al. | Mar 2008 | A1 |
20080071288 | Larkin et al. | Mar 2008 | A1 |
20080071289 | Cooper et al. | Mar 2008 | A1 |
20080071290 | Larkin et al. | Mar 2008 | A1 |
20080071291 | Duval et al. | Mar 2008 | A1 |
20080081992 | Kagermeier | Apr 2008 | A1 |
20080118115 | Williamson et al. | May 2008 | A1 |
20080119824 | Weitzner et al. | May 2008 | A1 |
20080140087 | Barbagli | Jun 2008 | A1 |
20080151041 | Shafer et al. | Jun 2008 | A1 |
20080161830 | Sutherland et al. | Jul 2008 | A1 |
20080188986 | Hoppe | Aug 2008 | A1 |
20080243142 | Gildenberg | Oct 2008 | A1 |
20080247506 | Maschke | Oct 2008 | A1 |
20080269862 | Elmouelhi et al. | Oct 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20090005640 | Fehre et al. | Jan 2009 | A1 |
20090012531 | Quaid et al. | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090088634 | Zhao et al. | Apr 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090192523 | Larkin et al. | Jul 2009 | A1 |
20090228145 | Hodgson et al. | Sep 2009 | A1 |
20090248036 | Hoffman et al. | Oct 2009 | A1 |
20090259105 | Miyano et al. | Oct 2009 | A1 |
20090326322 | Diolaiti | Dec 2009 | A1 |
20090326552 | Diolaiti | Dec 2009 | A1 |
20090326711 | Chang et al. | Dec 2009 | A1 |
20100004505 | Umemoto et al. | Jan 2010 | A1 |
20100036198 | Tacchino et al. | Feb 2010 | A1 |
20100106356 | Trepagnier et al. | Apr 2010 | A1 |
20100169815 | Zhao et al. | Jul 2010 | A1 |
20100198232 | Diolaiti | Aug 2010 | A1 |
20100228264 | Robinson et al. | Sep 2010 | A1 |
20100249657 | Nycz et al. | Sep 2010 | A1 |
20100298839 | Castro | Nov 2010 | A1 |
20100317965 | Itkowitz et al. | Dec 2010 | A1 |
20100328363 | Nakanishi | Dec 2010 | A1 |
20100331855 | Zhao et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20100332033 | Diolaiti et al. | Dec 2010 | A1 |
20110071675 | Wells et al. | Mar 2011 | A1 |
20110196199 | Donhowe et al. | Aug 2011 | A1 |
20110258568 | Pandurangan et al. | Oct 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110313573 | Schreiber et al. | Dec 2011 | A1 |
20120132450 | Timm et al. | May 2012 | A1 |
20120154564 | Hoffman et al. | Jun 2012 | A1 |
20130178868 | Roh | Jul 2013 | A1 |
20130289767 | Lim et al. | Oct 2013 | A1 |
20130289768 | Yeung et al. | Oct 2013 | A1 |
20140052150 | Taylor et al. | Feb 2014 | A1 |
20150032126 | Nowlin et al. | Jan 2015 | A1 |
20150051733 | Nowlin et al. | Feb 2015 | A1 |
20170210012 | Larkin et al. | Jul 2017 | A1 |
20180297206 | Larkin et al. | Oct 2018 | A1 |
20190090967 | Guthart et al. | Mar 2019 | A1 |
20190110847 | Diolaiti et al. | Apr 2019 | A1 |
20190201134 | Diolaiti et al. | Jul 2019 | A1 |
20190209262 | Mustufa et al. | Jul 2019 | A1 |
20190298463 | Tognaccini et al. | Oct 2019 | A1 |
20200085520 | DiMaio et al. | Mar 2020 | A1 |
20200331147 | Larkin et al. | Oct 2020 | A1 |
20200368915 | Itkowitz et al. | Nov 2020 | A1 |
20210059780 | Sutherland et al. | Mar 2021 | A1 |
20210153964 | Diolaiti et al. | May 2021 | A1 |
20210256749 | Itkowitz et al. | Aug 2021 | A1 |
20210290326 | Diolaiti et al. | Sep 2021 | A1 |
20220354600 | Tognaccini et al. | Nov 2022 | A1 |
20220361969 | Diolaiti et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
2682992 | Nov 2008 | CA |
1846181 | Oct 2006 | CN |
1879574 | Dec 2006 | CN |
101160104 | Apr 2008 | CN |
101184429 | May 2008 | CN |
101530347 | Sep 2009 | CN |
101594816 | Dec 2009 | CN |
101610712 | Dec 2009 | CN |
514584 | Nov 1992 | EP |
0646358 | Apr 1995 | EP |
812662 | Dec 1997 | EP |
1125557 | Aug 2001 | EP |
0732082 | Sep 2002 | EP |
1310844 | May 2003 | EP |
1424173 | Jun 2004 | EP |
1269389 | Sep 2005 | EP |
1131004 | Oct 2009 | EP |
H01280449 | Nov 1989 | JP |
H01310875 | Dec 1989 | JP |
H04231034 | Aug 1992 | JP |
H07184923 | Jul 1995 | JP |
H07265321 | Oct 1995 | JP |
H0889506 | Apr 1996 | JP |
H08107875 | Apr 1996 | JP |
H08132372 | May 1996 | JP |
H08154321 | Jun 1996 | JP |
H08215211 | Aug 1996 | JP |
H08224241 | Sep 1996 | JP |
HO8275958 | Oct 1996 | JP |
H08299363 | Nov 1996 | JP |
H09141580 | Jun 1997 | JP |
H10146341 | Jun 1998 | JP |
H11309 | Jan 1999 | JP |
2000500679 | Jan 2000 | JP |
2000300579 | Oct 2000 | JP |
2001000448 | Jan 2001 | JP |
2001061850 | Mar 2001 | JP |
2001104333 | Apr 2001 | JP |
2001202531 | Jul 2001 | JP |
2001287183 | Oct 2001 | JP |
2002103258 | Apr 2002 | JP |
2002287613 | Oct 2002 | JP |
2003053684 | Feb 2003 | JP |
2003300444 | Oct 2003 | JP |
2003339725 | Dec 2003 | JP |
2004105638 | Apr 2004 | JP |
3539645 | Jul 2004 | JP |
2004223128 | Aug 2004 | JP |
3587830 | Nov 2004 | JP |
2005110878 | Apr 2005 | JP |
2005135278 | May 2005 | JP |
2005303327 | Oct 2005 | JP |
2005334650 | Dec 2005 | JP |
2007029232 | Feb 2007 | JP |
2007090481 | Apr 2007 | JP |
2007508913 | Apr 2007 | JP |
2007531553 | Nov 2007 | JP |
2008173724 | Jul 2008 | JP |
2009006410 | Jan 2009 | JP |
2009012106 | Jan 2009 | JP |
2009039814 | Feb 2009 | JP |
2009525097 | Jul 2009 | JP |
2009537229 | Oct 2009 | JP |
4883563 | Feb 2012 | JP |
WO-9501757 | Jan 1995 | WO |
WO-9507055 | Mar 1995 | WO |
WO-9729690 | Aug 1997 | WO |
WO-9743942 | Nov 1997 | WO |
WO-9743943 | Nov 1997 | WO |
WO-9823216 | Jun 1998 | WO |
WO-0030548 | Jun 2000 | WO |
WO-03061482 | Jul 2003 | WO |
WO-2004014244 | Feb 2004 | WO |
WO-2004114037 | Dec 2004 | WO |
WO-2005037120 | Apr 2005 | WO |
WO-2005039391 | May 2005 | WO |
WO-2005043319 | May 2005 | WO |
WO-2006079108 | Jul 2006 | WO |
WO-2006091494 | Aug 2006 | WO |
WO-2006124390 | Nov 2006 | WO |
WO-2007005555 | Jan 2007 | WO |
WO-2007012185 | Feb 2007 | WO |
WO-2007030173 | Mar 2007 | WO |
WO-2007047782 | Apr 2007 | WO |
WO-2007088206 | Aug 2007 | WO |
WO-2007088208 | Aug 2007 | WO |
WO-2007136768 | Nov 2007 | WO |
WO-2007146987 | Dec 2007 | WO |
WO-2008002830 | Jan 2008 | WO |
WO-2008065581 | Jun 2008 | WO |
WO-2008094766 | Aug 2008 | WO |
WO-2008103383 | Aug 2008 | WO |
WO-2009034477 | Mar 2009 | WO |
WO-2009037576 | Mar 2009 | WO |
WO-2009044287 | Apr 2009 | WO |
WO-2009158164 | Dec 2009 | WO |
WO-2010039394 | Apr 2010 | WO |
WO-2010040685 | Apr 2010 | WO |
Entry |
---|
3D Slicer, http://slicer.org/welcome.html, downloaded Oct. 25, 2006, p. 1; and Introduction, http://slicer.org/welcome.html, downloaded Oct. 25, 2006, pp. 1-4. |
Abolmaesumi, Purang et al., “A User Interface for Robot-Assisted Diagnostic Ultrasound,” IEEE Robotics and Automation Conference, 2001, pp. 1549-1554, vol. 2, IEEE. |
Abolmaesumi, Purang et al., “Image Guided Control of a Robot for Medical Ultrasound,” IEEE Transactions on Robotics and Automation, 2002, pp. 11-23, vol. 18—Issue 1, IEEE. |
Adams, Ludwig et al., “Computer-Assisted Surgery,” IEEE Computer Graphics & Applications, May 1990, pp. 43-52, vol. 10—Issue 3, IEEE Computer Society Press. |
Ahlering, Thomas. E. et al., “Robotic radical prostatectomy: a technique to reduce pT2 positive margins,” Urology, 2004, pp. 1224-1228, vol. 64 Issue 6, Elsevier Inc. |
Alexander, Arthur D. III, “Impacts of Telemation on Modern Society,” Symposium on Theory and Practice of Robots and Manipulators, Centre for Mechanical Sciences 1st CISM IFToMM Symposium, Sep. 5-8, 1974, pp. 121-136, vol. 2, Springer-Verlag. |
Arai, Tatsuo et al., “Bilateral control for manipulators with different configurations,” IECON Inn Conference on Industrial Electronics Control and Instrumentation, Oct. 22-26, 1984, pp. 40-45, vol. 1. |
Arun, K.S. et al., “Least-Squares Fitting of Two 3-D Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 9, No. 5, pp. 698-700, Sep. 1987. |
Askew R.S., et al., “Ground Control Testbed for Space Station Freedom Robot Manipulators,” IEEE Virtual Reality Annual International Symposium, 1993, pp. 69-75. |
Azuma et al., “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications, Dec. 2001, 14 pages. |
Azuma, Ronald T., “A Survey of Augmented Reality,” Teleoperators and Virtual Environments, 1997, pp. 355-385, vol. 6—No. 4. |
Bajura, Michael et al., “Merging Virtual Objects with the Real World: Seeing Ultrasound Imagery within the Patient,” Computer Graphics, Jul. 26, 1992, pp. 203-210, vol. 26, Issue 2, ACM Press. |
Banovac, F., et al., “Liver Tumor Biopsy in a Respiring Phantom with the Assistance of a Novel Electromagnetic Navigation Device,” Springer-Verlag, 2002, pp. 200-207. |
Bartels, Richard H. et al., “An Introduction to Splines for use in Computer Graphics and Geometric Modeling,” 1987, 6 Pages total , Morgan kaufmann publishers, Inc. |
Bartels, Richard H. et al., “Solution of the Matrix Equation AX+XB=C,” Communications of the ACM, 1972, pp. 820-826, vol. 15—Issue 9, ACM Press. |
Baumann, Roger, “Haptic Interface for Virtual Reality Based Laparoscopic Surgery Training Environment,” These No. 1734 Ecole Pholytechnique Federale de Lausanne, 1997, 104 Total Pages. |
Bejczy, Antal K. et al., “Controlling Remote Manipulators through Kinesthetic Coupling,” Computers in Mechanical Engineering, 1983, pp. 48-60, vol. 1—Issue 1. |
Ben Gayed, M. et al., “An Advanced Control Micromanipulator for Surgical Applications,” Systems Science, 1987, pp. 123-134, vol. 13. |
Berkelman, Peter J. et al., “A Compact Compliant Laparoscopic Endoscope Manipulator,” IEEE International Conference on Robotics and Automation, 2002, pp. 1870-1875, vol. 2, IEEE. |
Berkelman, Peter J. et al., “A miniature Instrument Tip Force Sensor for Robot/Human Cooperative Micro surgical Manipulation with Enhanced Force Feedback,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer-Verlag, 2000, pp. 897-906, vol. 1935. |
Berkelman, Peter J. et al., “A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation,” IEEE Transactions on Robotics and Automation, 2000, pp. 917-922, vol. 19—Issue 5, IEEE. |
Berkelman, Peter J. et al., “Performance Evaluation of a Cooperative Manipulation Microsurgical Assistant Robot Applied to Stapedotomy,” Medical Image Computing and Computer-Assisted Interventions, Lecture Notes in Computer Science, 2001, pp. 1426-1429, vol. 2208. |
Besl, Paul J. et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 14, Issue 2, pp. 239-256, Feb. 1992. |
Bettini, A. et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures: Experiments at Macro and Micro Scales,” IEEE Conference on Robots and Automation (ICRA '02), May 11-15, 2002, pp. 3354-3361, vol. 4, IEEE. |
Bettini, A. et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 29-Nov. 3, 2001, pp. 1171-1176, vol. 2. |
Bettini, Alessandro et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures,” IEEE Transactions on Robotics, 2004, pp. 953-966, vol. 20—Issue 6, IEEE. |
Birkett, Desmond H., “Three-Dimensional Video Imaging Systems,” Chapter 1 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 7-11. |
Boctor, Emad et al., “A Novel Closed Form Solution for Ultrasound Calibration,” IEEE International Symposium on Biomedical Imaging (ISBI), Arlington, VA, vol. 1, pp. 527-530, Apr. 15-18, 2004. |
Boctor, Emad, M. et al., “A dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: a prospective study,” Proc of IEEE 2004 International Conference on Robotics & Automation, 2004, pp. 2517-2522, vol. 3, IEEE. |
Boctor, Emad, M. et al., “A Rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer,” Ultrasonic Imaging and Signal Processing, 2003, pp. 521-532, vol. 5035, SPIE. |
Boctor, Emad, M. et al., “CISUS: An integrated 3D ultrasound system for IGT using a modular tracking API,” Proceedings of the SPIE, 2004, pp. 247-256, vol. 5367, SPIE. |
Boctor, Emad, M. et al., “Development of a Robotically-Assisted 3-D Ultrasound System for Radiofrequency Ablation of Liver Tumors,” 6th World Congress of the Hepato-Pancreato-Biliary Association, Abstract No. 167, 2004, pp. 46, vol. 6—Supplement 1, Taylor & Francis Health Science. |
Boctor, Emad, M. et al., “PC Based system for calibration, Reconstruction Processing and Visualization of 3D Ultrasound Data Based on a Magnetic-Field Position and Orientation Sensing System,” Proceedings of the International Conference on Computational Science—Part II, Lecture Notes in Computer Science , 2001, pp. 13-22, vol. 2074, Springer. |
Boctor, Emad, M. et al., “Robot-assisted 3D strain imaging for monitoring thermal ablation of liver,” Annual congress of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES), Emerging Technology Lunch Poster TP004, 2005, pp. 240-241. |
Boctor, Emad, M. et al., “Robotic Strain Imaging for Monitoring Thermal Ablation of Liver,” Medical Image Computing and Computer-Assisted Intervention MICCAI, 2004, pp. 81-88, vol. 2, Springer-Verlag. |
Boctor, Emad, M. et al., “Robotically assisted intraoperative ultrasound with application to ablative therapy of liver cancer,” Medical Imaging:Visualization, Image Guided Procedures, and Display, 2003, pp. 281-291, vol. 5029, SPIE. |
Boctor, Emad, M. et al., “Tracked 3D ultrasound in radio-frequency liver ablation,” in Medical Imaging 2003:Ultrasonic Imaging and Signal Processing, 2003, pp. 174-182, vol. 5035, SPIE. |
Borovoi, A.V., “Stability of a manipulator with force feedback,” Izv. AN SSSR Mekhanika Tverdogo Teal, 1990, pp. 37-45, vol. 25—Issue 1, Allerton Press, Inc. |
Boudet, Sylvie et al., “An Integrated Robotics and Medical Control Device to Quantify Atheromatous Plaques: Experiments on the Arteries of a Patient,” Proc of IEE/RSH International Conference on Intelligent Robots and Systems, 1997, pp. 1533-1538, vol. 3. |
Brown, Myron M. et al., “Advances in Computational Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2003, pp. 993-1008, vol. 25 Issue, IEEE. |
Burdea, Grigore et al., “Dextrous Telerobotics with Force Feedback—an overview. Part 2: Control and Implementation,” Robotica, 1991, pp. 291-298, vol. 9. |
Burschka, D., et al., “Navigating Inner Space: 3-D Assistance for Minimally Invasive Surgery,” Robotics and Autonomous Systems, 2005, vol. 52(1), pp. 5-26. |
Burschka, Darius et al., “Scale-Invariant Registration of Monocular Endoscopic Images to CT-Scans for Sinus Surgery,” Med Image Anal, 2004, pp. 413-421, vol. 2, Springer-Verlag. |
Burschka, Darius et al., “Scale-Invariant Registration of Monocular Stereo Images to 3D Surface Models,” IEEE Int. Conf. on Robots and Systems, 2004, pp. 2581-2586, vol. 3, IEEE. |
Burschka, Darius et al., “Principle and Practice of Real-Time Visual Tracking for Navigation and Mapping,” IEEE Workshop on Robotic Sensing: Robotics in the Automotive Industry, 2004, pp. 1-8, IEEE. |
Bzostek, Andrew, “Computer-Integrated needle therapy systems: Implementation and Analysis,” Computer Science, 2005, 379 pages. |
Bzostek, Andrew et al., “A Testbed System for Robotically Assisted Percutaneous Pattern Therapy,” Medical Image Computing and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1999, pp. 1098-1107, vol. 1679, Springer. |
Bzostek, Andrew et al., “An automated system for precise percutaneous access of the renal collecting system,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 299-308, vol. 1205, Springer-Verlag. |
Bzostek, Andrew, “Image Guided Percutaneous Pattern Placement in Soft Tissue,” The Johns Hopkins University Dept. of Computer Science: Baltimore, 1997, pp. 2007-01-22. |
Cadeddu, Jeffrey A. et al., “A Robotic System for Percutaneous Renal Access,” The Journal of Urology, 1997, pp. 1589-1593, vol. 158—Issue 4. |
Cadeddu, Jeffrey et al., “A robotic system for percutaneous renal access incorporating a remote center of motion design,” Journal of Endourolog, 1998, S237, vol. 12. |
Cannon, Jeremy W. et al., “Real-time three-dimensional ultrasound for guiding surgical tasks,” Computer Aided Surgery, 2003, pp. 82-90, vol. 8—No. 2, John Wiley & Sons. |
Cao, Caroline L., et al., “Task and motion analysis in endoscopic surgery,” Submitted for Fifth Annual Symposium on Haptic Interfaces for Virtual Environment and Teloperator Systems for the Winter Meeting of ASME, 1996, pp. 1-32. |
Carr, J., “Surface reconstruction in 3D medical imaging,” PhD Thesis, Part 1, University of Canterbury, Christchurch, New Zealand, 1996, 112 Pages. |
Carr, J., “Surface reconstruction in 3D medical imaging,” PhD Thesis, Part 2, University of Canterbury, Christchurch, New Zealand, 1996, 112 Pages. |
Cash, David M. et al., “Incorporation of a laser range scanner into an image-guided surgical system,” The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 269-280, vol. 5029. |
Chang, Jun Keun et al., “Intravascular micro active catheter for minimal invasive surgery,” 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 243-246. |
Chen, Homer H. “A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry,” Computer Vision and Pattern Recognition, 1991, pp. 145-151, IEEE. |
Chinzei, Kiyoyuki et al., “MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study,” in Proceedings of Third International Conference on Medical Imaging and Computer Assisted Surgery (MICCAI), 2000, pp. 921-930, vol. 1935, Springer-Verlag. |
Choti, Michael A. et al., “Trends in Long Term Survival Following Liver Resection for Hepatic Colorectal Metastases,” Ana Surg, 2002, pp. 759-766, vol. 235—No. 6, Lippincott Williams & Wilkins. |
Choti, Michael A., “Hepatic Radiofrequency Ablation,” Cancer Journal, 2000, pp. S291-S292, vol. 6—issue 4, Jones and Bartlett. |
Choti, Michael A., “Surgical Management of Hepatocellular Carcinoma: Resection and Ablation,” Journal of Vascular and Interventional Radiology, 2002, pp. S197-S203, vol. 13—No. 9. |
Christensen, B. et al., “Model based sensor directed remediation of underground storage tanks,” International Conf. on Robotics and Automation, Sacramento, CA, Apr. 1991, pp. 1377-1383, vol. 2. IEEE. |
Christoforou, E.G. et al., “Robotic Arm for Magnetic Resonance Imaging Guided Interventions,” 1st IEEE/RAS—EMBS International Conference on Biomedical Robotics and Biomechatronics, Feb. 20-22, 2006, pp. 911-916. |
Chung, Mathew et al., “Laparascopic Radiofrequency Ablation of Unresectable Hepatic Malignancies,” Surg Endosc, 2001, pp. 1020-1026, vol. 15—No. 9, Springer-Verlag. |
Cleary, Kevin et al., “State of the Art in Surgical Robotics:Clinical Applications and Technology Challenges,” Computer Aided Surgery, 2001 [retrieved on Feb. 24, 2002], pp. 1-26. |
Cleary, Kevin et al., “State of the art surgical robotics clinical applications and technology challenges,” Computer Aided Surgery, 2001, pp. 312-328, vol. 6; Part 6, John Wiley & Sons. |
Cleary, K. et al., “Robotically-assisted spine nerve blocks,” Radiology, 2001, 1 page, vol. 221—No. 618. |
Colgate J.E., “Power and Impedance Scaling in Bilateral Manipulation,” IEEE International Conference on Robotics and Automation, Sacramento, California, Apr. 1991, vol. 3, pp. 2292-2297. |
D'angelica M., “Staging Laparoscopy for Potentially Respectable Noncolorectal,” Ann Surg Oncol, 2002, pp. 204-209, vol. 9—No. 2, Lippincott Williams & Wilkins. |
Daniilidis, Konstantinos, Hand-Eye Calibration Using Dual Quaternions, Int. J. of Robotics Research, 1999, pp. 286-298, vol. 18 (3), Sage Publications, Inc. |
Davies, Brain L. et al., “A Robotic system for tkr surgery,” Proceedings of 3rd Annual North American Program on Computer Assisted Orthopaedic Surgery (CAOS USA), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, published in Computer Aided Surgery, Jun. 17-19, 1999, p. 339, vol. 4—Iss. 6. |
Davies, S.C., et al., “Ultrasound Quantitaion of Respiratory Organ Motion in the Upper Abdomen,” British Journal of Radiology, Nov. 1994, vol. 67 (803), pp. 1096-1102. |
De Cunha, D. et al., The MIDSTEP System for Ultrasound guided Remote Telesurgery, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, pp. 1266-1269, vol. 3—No. 29, IEEE. |
Debus, Thomas et al., “Multichannel Vibrotactile Display for Sensory Substitution During Teleoperation,” Proc. SPIE Telemanipulator and Telepresence Technologies VIII, 2001, pp. 42-49, vol. 4570, SPIE. |
Degoulange, E. et al., “HIPPOCRATE: an intrinsically safe robot for medical applications,” IEEE/RSH International Conference on Intelligent Biomedicine, 1998, pp. 959-964, vol. 2, IEEE. |
Delgorge, Cecile et al., “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robo,” IEEE Transactions on Information Technology in Biomedicine, 2005, pp. 50-58, vol. 9 No 1, IEEE. |
Dewan, Maneesh et al., “Vision-Based Assistance for Ophthalmic Micro-Surgery,” Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2004, pp. 49-57, vol. 3217, Springer-Verlag. |
Dodds, Zachary et al., “A hierarchical architecture for vision-based robotic manipulation tasks,” in Proceedings of the International Conference on Vision Systems, 1999, pp. 312-330, vol. 542, Springer-Verlag. |
Doggett, Stephen W., “Image Registered Real Time Intra-Operative Treatment Planning: Permanent Seed Brachytherapy,” 2000, pp. 4. |
Dolan, J.M et al., “A Robot in an Operating Room: A Bull in a China Shop?,” IEEE Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1987, vol. 2, pp. 1096-1097. |
Elder, Matthew C. et al., “Specifying user interfaces for safety critical medical systems,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 1995, pp. 148-155. |
Eldridge, B. et al., “A Remote Center of Motion Robotic Arm for Computer Assisted Surgery,” Robotica, 1996, pp. 103-109, vol. 14 Issue 1. |
Ellsmere, James et al., “A navigation system for augmenting laparoscopic ultrasound,” Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2003, pp. 184-191, Springer. |
Extended European Search Report for Application No. EP21158299.4 dated May 21, 2021, 09 pages ( P05117-WO3-EP-DIV4). |
Fattal, Lischinsk, “Variational Classification for Visualization of 3D Ultrasound Data,” Proceedings of the conference on Visualization, 2001, pp. 403-410, IEEE Computer Society. |
Fenster, Aaron, et al., “3-D Ultrasound Imaging:A Review,” IEEE Engineering and Medicine and Biology Magazine, Nov.-Dec. 1996, pp. 41-51, vol. 15—Issue 6, IEEE. |
Fenster, Aaron, et al., “Three-dimensional ultrasound imaging of the prostate,” SPIE International Symposium on Medical Imaging, San Diego, California, Published in SPIE: Medical Physics, Feb. 20-26, 1999, pp. 2-11, vol. 3859, SPIE. |
Fichtinger, Gabor et al., “Robotically Assisted Percutaneous Local Therapy and Biopsy,” 10th International Conference of Advance Robotics, 2001, pp. 133-151, IEEE. |
Fichtinger, Gabor et al., “Transrectal prostate biopsy inside closed MRI scanner with remote actuation under real-time image guidance,” Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2002, pp. 91-98, vol. 2488, Springer Veriag. |
Fichtinger, Gabor et al., “Surgical CAD/CAM and its application for robotically assisted percutaneous procedures,” 30th Applied Imagery Pattern Recognition Workshop (AIPR), 2001, pp. 3-8, IEEE. |
Fichtinger, Gabor et al., “System for Robotically Assisted Prostate Biopsy and Therapy With intraOperative CT Guidance,” Journal of Academic Radiology, 2002, pp. 60-74, vol. 9 No 1, Elsevier. |
Fisher, Scott S., “Virtual interface environment,” IEEE/A1AA 7th Digital Avionics Systems Conference Ft. Worth Texas, 1986, pp. 346-350, IEEE. |
Frantz D.D et al., “Accuracy assessment protocols for electromagnetic tracking systems,” Physics in Medicine and Biology, 2003, pp. 2241-2251, Issue 48. |
Fu, K.S. et al., “Robotics: control, sensing, vision, and intelligence,” 1987, pp. 12-76 and 201-265, Ch. 2 & 5, McGraw-Hill Book Company. |
Fuchs, Henry et al., “Augmented Reality Visualization for Laparoscopic Surgery,” Medical Image Computing and Computer-Assisted Intervention, 1998, pp. 934-943, vol. 1496, Springer-Verlag. |
Fukuda, Toshio et al., “A new method of master-slave type of teleoperation for a micro-manipulator system,” IEEE Microrobots and Teleoperations Workshop, 1987, 5 pages, IEEE. |
Funda J., et al., “An experimental user interface for an interactive surgical robot,” In 1st International Symposium on Medical Robotics and Computer Assisted Surgery (MRCAS 94), 1994, pp. 196-203. |
Funda J., et al., “Constrained Cartesian Motion Control for Teleoperated Surgical Robots,” IEEE Transactions on Robotics and Automation, IEEE, Jun. 1996, vol. 12 (3), pp. 453-465. |
Funda, Janez et al., “Comparison of two manipulator designs for laparoscopic surgery,” SPIE International Symposium on Optical Tools for Manufacturing and Advanced Automation, 1994, pp. 172-183, vol. 2351, Telemanipulator and Telepresence Technologies. |
Funda, Janez et al., “Control and evaluation of a 7-axis surgical robot for laparoscopy,” IEEE Int. Conf. on Robotics and Automation, 1995, pp. 1477-1484, vol. 2, IEEE. |
Funda, Janez et al., “Image-Guided Command and Control of a Surgical Robot,” Proc. Medicine Meets Virtual Reality II, 1994, pp. 52-57. |
Funda, Janez et al., “Optimal Motion Control for Teleoperated Surgical Robots,” Intl. Symp. on Optical Tools for Manuf. & Adv Autom, Telemanipulator Technology and Space Telerobotics, 1993, pp. 211-222, vol. 2057, SPIE. |
Furuta, Katsuhisa et al., “Master slave manipulator based on virtual internal model following control concept,” IEEE Intl. Conference on Robotics and Automation, 1987, pp. 567-572, vol. 1, IEEE. |
Ganssle J.G.,, A Guide to Debouncing, The Ganssle Group, Jun. 2008, 26 pages. |
Garrett, William F. et al., “Real-Time Incremental Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees,” IEEE Proceedings Visualization, 1996, pp. 235-240, 490, IEEE. |
Gee, Andrew et al., “Processing and visualizing three-dimensional ultrasound data,” Journal of Radiology, 2004, pp. 186-193, vol. 77. |
Gelb, A., et al., Table of Contents for “Applied Optimal Estimation,” The Analytic Science Corporation, MIT Press, Cambridge, Massachusetts, 1974, 4 pages. |
Gennari, G. et al., “Probabilistic data association methods in visual tracking of groups,” IEEE Conference on Computer Vision and Pattern Recognition, 2004, pp. I-790-1-797, vol. 1—issue. 27, IEEE. |
Gigot, Jean-Francois et al., “Laparoscopic Liver Resection for Malignant Liver Tumors Prclimary Results of a Multicenter European Study,” Ann Surg, 2002, pp. 90-97, vol. 236—issue 1. |
Gonzales, Adriana Vilchis et al., “A System for Robotic Tele-echography,” Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 326-334, vol. 2208, Springer. |
Green, Philip, S. et al., “Mobile telepresence surgery,” 2nd Annual Intl Symposium on Med. Robotics and Computer Assisted Surgery, Maryland Nov. 1995, pp. 97-103. |
Grimson, W. Eric et al., “Automated Registration for Enhanced Reality Visualization in Surgery,” 1st International Symposium on Medical Robotic and Computer Assisted Surgery (MRCAS), Pittsburgh, 1994, pp. 82-89. |
Grimson, W.E.L., et al., “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization,” IEEE Transactions on Medical Imaging, vol. 15, No. 2, Apr. 1996, pp. 129-140. |
Hager G., et al., “The X Vision System: A Portable Substrate for Real Time Vision Applications,” Computer Vision and Image Understanding, 1998, vol. 69 (1), pp. 23-37. |
Hager, Gregory D., “A Modular System for Robust Positioning Using Feedback from Stereo Vision,” IEEE Transactions on Robotics and Automation, Aug. 1997, vol. 13 (4), pp. 582-595. |
Hager, Gregory D. et al., “Efficient Region Tracking With Parametric Models of Geometry and Illumination,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, pp. 1025-1039, vol. 20—issue. 10, IEEE. |
Hager Gregory D. et al., “Multiple Kernel Tracking with SSD,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), 2004, pp. I-790-I-797, vol. 1—issue 27, IEEE. |
Hannaford, Blake et al., “Experimental and simulation studies of hard contact in force reflecting teleoperation,” IEEE International Conference on Robotics and Automation Proceedings, 1988, pp. 584-589, vol. 1, IEEE. |
Hannaford, Blake et al., “Performance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoperator,” IEEE Transactions on Systems, Man, and Cybernetics, 1991, pp. 620-633, vol. 21—No. 3, IEEE. |
Harris, S.J. et al., “A robotic procedure for transurethral resection of the prostate,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, 1995, pp. 264-271. |
Harris, S.J. et al., “Experiences with Robotic Systems for Knee Surgery,” First Joint Conference of CVRMed and MRCAS. Mar. 19-22, 1997, Grenoble, France; Springer, 1997, pp. 757-766. |
Herline A.J., et al., “Image-Guided Surgery: Preliminary Feasibility Studies of Frameless Stereotactic Liver Surgery,” Archives of Surgery, 1999, vol. 134 (6), pp. 644-650. |
Herline, Alan J. et al., “Surface Registration for Use in Interactive,” Image-Guided Liver Surgery, Computer Aided Surgery, 2000, pp. 11-17, vol. 5—No. 2. |
Herman, Barry C., et al., “Telerobotic surgery creates opportunity for augmented reality surgery,” Abstract No. T1F2, Telemedicine Journal and E-Health, vol. 11, Issue 2, p. 203, Apr. 2005. |
Herman, Barry C., “On the Role of Three Dimensional Visualization for Surgical Applications in Interactive Human Machine Systems,” Masters of Science Thesis in Computer Science, The Johns Hopkins University, Baltimore, 2005, 216 pages. |
Herper Matthew, “Watch a $1.5 Million Surgical Robot Play a Board Game,” Forbes. Apr. 12, 2011. 2 pages, Online [Available: http://www.forbes.com/sites/matthewherper/2011/04/12/watch-a-1-5-million-surgical-robot-play-a-board-game/#587224f011f5] Accessed Jun. 7, 2016. |
Hespanha J.P., et al., “What Tasks Can Be Performed with an Uncalibrated Stereo Vision System,” International Journal of Computer Vision, Nov. 1999, vol. 35 (1), 33 pages. |
Hill J.W., et al., “Telepresence surgery demonstration system,” IEEE International Conference on Robotics and Automation, 1994, vol. 3, pp. 2302-2307. |
Ho, S. C.et al., “Robot Assisted Knee Surgery,” IEEE Engineering in Medicine and Biology Magazine, 1995, pp. 292-300, vol. 14—Iss. 3, IEEE. |
Hong, Jae-Sung et al., “A Motion Adaptable Needle Placement Instrument Based on Tumor Specific Ultrasonic Image Segmentation,” Fifth International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI '02, Tokyo, Japan, Jul. 2002, pp. 122-129. |
Horn, Berthold K.P., “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, vol. 4, No. 4, pp. 629-642, Apr. 1987. |
Hunter, Ian W. et al., “A teleoperated microsurgical robot and associated virtual environment for eye surgery,” Presence: Teleoperators and Virtual Environments, 1993, pp. 265-280, vol. 2—No. 4, MIT Press. |
Hunter, Ian W. et al., “Ophthalmic microsurgical robot and associated virtual environment,” Comput. Biol. Med, 1995, vol. 25, Issue 2, pp. 173-182, Pergamon. |
Hurteau et al., “Laparoscopic surgery assisted by a robotic cameraman: Concept and Experimental results,” IEEE International Conference on Robotics and Automation, May 8-13, 1994, pp. 2286-2289, vol. 3, IEEE. |
Hutchinson, Seth et al., “A Tutorial Visual Servo Control,” IEEE Transactions on Robotics and Automation, 1996, pp. 651-670, vol. 12 issue.5, IEEE. |
IEEE Systems and Software Engineering—Recommended Practice for Architectural Description of Software-Intensive Systems, IEEE Std 1471-2000, 34 pages, First Edition, Jul. 15, 2007. |
Inoue, Masao; “Six-Axis bilateral control of an articulated slave manipulator using a Cartesian master manipulator,” Advanced robotics, 1990, pp. 139-150, vol. 4—Issue 2, Robotic society of Japan. |
International Search Report and Written Opinion for Application No. PCT/US2012/064379, dated Mar. 29, 2013, 12 pages (ISRG03930/PCT). |
International Search Report and Written Opinion for Application No. PCT/US2012/064400, dated Mar. 27, 2013, 10 pages (ISRG03940/PCT). |
Intuitive Surgical, Inc., “Intuitive Surgical daVinci API v5.0 Reference Manual,” generated Jul. 17, 2006, 149 pages. |
Jackson, Bernie G. et al., “Force Feedback and Medical Simulation,” Interactive Technology and the New Paradigm for Healthcare, Morgan et al. (Eds ), 1995, pp. 147-151, vol. 24, IOS Press and Ohms. |
Jain, Ameet Kumar et al., “Understanding Bone Responses in B-mode Ultrasound Images and Automatic Bone Surface Extraction using a BayesianProbabilistic Framework,” SPIE Medical Imaging, 2004, pp. 131-142, vol. 5373. |
Johns Hopkins University and Intuitive Surgical, Inc., “System Requirements for the Surgical Assistant Workstation,” Rev. 2, Jan. 29, 2007, 17 pages. |
Jones D.B. et al., Chapter 25, “Next-Generation 3D Videosystems may Improve Laparoscopic Task Performance,” Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 152-160. |
Joskowicz L., et al., “Computers in Imaging and Guided Surgery,” Computing in Science and Engineering, 2001, vol. 3 (5), pp. 65-72. |
Jurie, Frederic et al., “Hyperplane Approximation for Template Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), 2002, pp. 996-1000, vol. 24—Issue 7, IEEE. |
Kane, Robert A., “Intraoperative Ultrasonography, History, Current State of the Art, and Future Directions,” J Ultrasound Med, 2004, pp. 1407-1420, vol. 23. |
Kaplan, Irving, “Minimizing Rectal and Urinary Complications in Prostate Brachytherapy,” Journal of Endourology, 2000, pp. 381-383. |
Kapoor A., et al., “Simple Biomanipulation Tasks with “Steady Hand” Cooperative Manipulator,” Lecture Notes in Computer Science, 2003, vol. 2878, pp. 141-148. |
Kapoor, Ankur and Russell H. Taylor, “A constrained optimization approach to virtual fixtures for multi-handed tasks,” 2008 International Conference on Robotics and Automation (ICRA 2008), May 19-23, 2008, Pasadena, California, pp. 3401-3406. |
Kapoor, Ankur et al., “Constrained Control for Surgical Assistant Robots,” 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, Florida, May 15-19, 2006, pp. 231-236. |
Kapoor, Ankur et al., “Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DOF Robot,” Proceedings, 12th International Conference on Advanced Robotics, 2005, pp. 452-459. |
Kapoor, Ankur, Motion Constrained Control of Robots for Dexterous Surgical Tasks, Ph.D. Dissertation, The Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, Sep. 2007, 351 pages. |
Kato H., et al., “The Effects of Spatial Cues in Augmented Reality Video Conferencing,” Hiroshima City University, Aug. 2001, 4 pages. |
Kato H., et al. “Virtual Object Manipulation on a Table-Top AR Environment,” Hiroshima City University, 2000, 9 pages. |
Kavoussi L.R., “Laparoscopic Donor Neptarectomy,” Kidney International, 2000, vol. 57, pp. 2175-2186. |
Kazanzides P., et al., “Force Sensing and Control for a Surgical Robot,” Int. Conference on Robotics and Automation, May 1992, vol. 1, pp. 612-617. |
Kazanzides, Peter et al., “A cooperatively-controlled image guided robot system for skull base surgery,” Medicine Meets Virtual Reality 16 (MMVR 16) Conference, Jan. 30-Feb. 1, 2008, Long Beach, California, J.D. Westwood et al., eds., IOS Press, 2008, pp. 198-203. |
Kazerooni, H. , “Human Extenders,” ASME J. Dynamic Systems, Measurements and Control, 1993, pp. 281-290, vol. 115 No. 2(B). |
Kazerooni, H., “Design and analysis of the statically balanced direct-drive robot manipulator,” Robotics and Computer-Integrated Manufacturing, 1989, pp. 287-293, vol. 6, Issue 4. |
Kazerooni, H. et al., “The Dynamics and Control of a Haptic Interface Device,” IEEE Transactions on Robotics and Automation, 1994, pp. 453-464, vol. 10—Issue 4, IEEE. |
Kazerooni, H., “Human/Robot Interaction via the Transfer of Power and Information Signals Part I: Dynamics and Control Analysis,” IEEE International Conference on Robotics and Automation, 1989, pp. 1632-1640, IEEE. |
Kilmer, R. D. et al., “Watchdog safety computer design and implementation,” RI/SME Robots 8 Conference, Jun. 1984, pp. 101-117. |
Kim, Won S. et al., “Active compliance and damping in telemanipulator control,” Jet Propulsion Laboratory New technology Report, 1991, pp. 1-14a, vol. 15—Issue 4, JPL & NASA Case No. NP0-1796917466, Item 40. |
Kitagawa, Masaya et al., “Effect of Sensory Substitution on Suture Manipulation Forces for Surgical Teleoperation,” 12th Annual Medicine Meets Virtual Reality Conference, 2005, 8 pages. |
Koizumi, Naoshi et al., “Development of Three-Dimensional Endoscopic Ultrasound System with Optical Tracking,” Medical Image Computing and Computer-Assisted Intervention—MICCAI '02, Tokyo, 2002, pp. 60-65, vol. 2488, Springer-Verlag. |
Koizumi, Norihiro et al., “Continuous Path Controller of Slave Manipulator in Remote Ultrasound Diagnostic System,” Int. Conference on Robotics and Automation (ICRA 2002), 2002, pp. 3368-3373, vol. 4, IEEE. |
Komada, Satoshi et al., “Bilateral robot hand based on estimated force feedback,” IEEE Proceedings IECON 87 Cambridge MA, Nov. 3-6, 1987, pp. 602-607, vol. 2, IEEE. |
Kon, Ryan et al., “An open-source ultrasound calibration toolkit,” Medical Imaging Ultrasonic Imaging and Signal Processing, 2005, pp. 516-523, vol. 5750, SPIE. |
Korein James U. et al., “A Configurable System for Automation Programming and Control,” IEEE Conf. on Robotics and Automation. San Francisco, 1986, pp. 1871-1877, vol. 3, IEEE. |
Kosugi, Yukio et al., “An articulated neurosurgical navigation system using MRI and CT Images,” IEEE Transactions on Biomedical Engineering, 1988, pp. 147-152, vol. 35—Issue 2, IEEE. |
Kragic D. et al., “Human-Machine Collaborative Systems for Microsurgical Applications,” International Symposium on Robotics Research, 2005, pp. 731-741, vol. 24—Issue 9, Sage Publications. |
Kruchten, Philippe B., “The 4+1 View Model of Architecture,” IEEE Software, vol. 12, Issue 6, pp. 42-50, Nov. 1995. |
Krupa, A. et al., “Automatic 3-D Positioning of Surgical Instruments during Laparoscopic Surgery Using Automatic Visual Feedback,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part , Lecture Notes in Computer Science, 2002, pp. 9-16, vol. 2488, Springer Verlag. |
Kumar R., “An Augmented Steady Hand System for Precise Micromanipulation,” PhD thesis in Computer Science, The Johns Hopkins University, Baltimore, Apr. 2001, 118 pages. |
Kumar, R., et al., “An Augmentation System for Fine Manipulation,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2000, vol. 1935, pp. 957-965. |
Kumar, Rajesh et al., “Application of Task-Level Augmentation for Cooperative Fine Manipulation Tasks in Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2001, pp. 1417-1418, vol. 2208, Springer Verlang. |
Kumar, Rajesh et al., “Experiments with a Steady Hand Robot in Constrained Compliant Motion and Path Following”, 1999, pp. 92-97, IEEE. |
Kumar, Rajesh et al., “Preliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted Microsurgical Manipulation,” Conference on Robotics and Automation, 2000, pp. 610-617, vol. 1, IEEE. |
Kumar, Rajesh et al., “Preliminary experiments in robot/human microinjection,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3186-3191, vol. 3, IEEE. |
Kwoh, Yik, San et al., “A Robot With Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery,” IEEE Transactions on Biomedical Engineering, Feb. 1988, pp. 153-160, vol. 35—Issue 2, IEEE. |
Lacroute, P., “The VolPack Volume Rendering Library,” 1995, information downloaded from https://graphics.stanford.edu/software/volpack/, 4 pages. |
Lacroute, Philippe G., “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation PhD Thesis,” Computer Science, Stanford, California, 1995, 236 Pages. |
Lang, Samuel J., Xvision 2—A Framework for Dynamic Vision. Masters Thesis, Computer Science, Johns Hopkins University, Baltimore, 2001, pp. 1-49. |
Lange, Thomas et al., Augmenting Intraoperative 3D Ultrasound with Preoperative Models for Navigation in Liver Surgery, Medical Image Computing and Computer-Assisted Interventions, 2004, pp. 534-541, vol. 3217, Springer Verlag. |
Lau, W.W., et al., “Stereo-Based Endoscopic Tracking of Cardiac Surface Deformation,” Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, 2004, vol. 2, pp. 494-501. |
Lavonius, Maija I. et al., “Staging of Gastric Cancer: A Study with Spiral Computed Tomography, Ultrasonography, Laparoscopy, and Laparoscopic Ultrasonography,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002, pp. 77-81, vol. 12—No. 2, Lippincott Williams & Wilkins, Inc. |
Lawson, Charles L. et al., “Linear least squares with linear inequality constraints Solving Least Squares Problems,” 1974, pp. 158-173, Prentice Hall Inc. |
Lazarevic, Zoran, “Feasibility of a Stewart Platform with Fixed Actuators as a Platform for CABG Surgery Device,” 1997, 45 pages, Master's Thesis Columbia University Department of Bioengineering. |
Lee Jr, F.T., et al., “CT-monitored Percutaneous Cryoablation in a Pig Liver Model: Pilot Study,” Radiology, 1999, vol. 211 (3), pp. 687-692. |
Leven, Joshua, “A Telerobotic Surgical System With Integrated Robot-Assisted Laparoscopic Ultrasound Capability,” Thesis for Master of Science in Engineering in Computer Science, The Johns Hopkins University, Baltimore, Maryland, May 2005, 63 pages. |
Leven, Joshua et al. “DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, J. Duncan et al. Eds., Palm Spring, Springer Veriag, 2005, vol. 3749, pp. 811-818. |
Levoy, Marc, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, 1988, pp. 29-37, vol. 8—Iss. 3, IEEE. |
Li, M., “Intelligent Robotic Surgical Assistance for Sinus Surgery,” Ph.D. Dissertation, Johns Hopkins University, Baltimore, Aug. 2005, 246 pages. |
Li, Ming and Russell H. Taylor, “Spatial Motion Constraints in Medical Robots Using Virtual Fixtures Generated by Anatomy,” IEEE International Conference on Robotics and Automation, New Orleans, Apr. 2004, pp. 1270-1275. |
Li, Ming and Russell H. Taylor, “Performance of surgical robots with automatically generated spatial virtual fixtures,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr. 2005, pp. 217-222. |
Li, Ming et al, “A Constrained Optimization Approach to Virtual Fixtures,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, Alberta, Canada, Aug. 2-6, 2005, pp. 1408-1413. |
Li, Ming et al., “Optimal Robot Control for 3D Virtual Fixture inConstrained ENT Surgery,” Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI, Lecture Notes in Computer Science, 2003, pp. 165-172, vol. I, Springer Verlag. |
Li, Ming et al., “Recognition of Operator Motions for Real-Time Assistance using Virtual Fixtures,” IEEE, Haptics 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar. 22-23, 2003, pp. 125-131, IEEE. |
Lievin et al., “Stereoscopic Augmented Reality System for Computer Assisted Surgery,” CARS 2001, Jun. 27-30, 2001, 5 pages. |
Loser, Michael H. et al., “A New Robotic System for Visually Controlled Percutaneous Interventions under CT Fluoroscopy,” Medical Image Computing and Computer-Assisted Interventions, Lecture Notes in Computer Science, 2000, pp. 887-896, vol. 1935, Springer Verlag. |
Loser, Michael H. et al., “Visual servoing for automatic and uncalibrated percutaneous procedures,” SPIE Medical Imaging, 2000, pp. 270-281, vol. 3976, SPIE. |
Lunwei Z., et al., “FBG Sensor Devices for Spatial Shape Detection of Intelligent Colonoscope,” IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, Louisiana, pp. 835-840. |
Madhani A.J., “Design of Teleoperated Surgical Instruments for Minimally Invasive Surgery,” Feb. 1998, 251 pages. |
Maehara, S. et al., “Laparoscopy-Assisted Hepatectomy Using the Endoclose,” Surgical Endoscopy, 2002, vol. 16 (9), pp. 1363-1364. |
Maier, Georg, E. et al., “A Dynamically Configurable General Purpose Automation Controller,” Proceedings of IFAC/IFIP Symp. on Software for Computer Control, 1986, pp. 47-52, Pergamon Press. |
Mala, T. et al., “A Comparative Study of the Short-Term Outcome Following Open and Laparoscopic Liver Resection of Colorectal Metastases,” Surg Endosc, 2002, pp. 1059-1063, vol. 16(7), Springer Verlag. |
Marayong, Panadda et al., “Spatial Motion Constraints: Theory and Demonstrations for Robot Guidance Using Virtual Fixtures,” IEEE International Conference on Robotics and Automation Robotics and Automation, 2003, pp. 1954-1959, vol. 2, No. 14-19, IEEE. |
Marescaux, Jadques and Francesco Rubino, “Virtual Operative Fields for Surgical Simulation,” Chapter 4 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 26-31. |
Masamune K., et al., “Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, 1995, vol. 1, pp. 242-248. |
Masamune K., et al., “System for Robotically Assisted Percutaneous Procedures With Computed Tomography Guidance,” Journal of Computer-Assisted Surgery, 2001, vol. 6 (6), pp. 370-383. |
Masamune, Ken et al., “Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Image Guid Surg, 1995, pp. 165-172. |
Masamune Ken et al., “Development of CT-PAKY frame system—CT image guided needle puncturing manipulator and a single slice registration for urological surgery,” Proc. 8th annual meeting of Japanese Society for Computer Aided Surgery (JSCAS), 1999, pp. 89-90. |
Masamune, Ken H. et al., “A Newly Developed Stereotactic Robot with Detachable Drive for Neurosurgery,” 1st International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI, Cambridge, Massachusetts; Springer, Oct. 11-13, 1998, pp. 215-222, vol. 1496. |
Massie, Thomas H. et al., “The PHANTOM Haptic Interface: A Device for Probing Virtual Objects,” Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994, 7 pages. |
Mayer, Hermann et al., “Skill Transfer and Learning by Demonstration in a Realistic Scenario of Laparoscopic Surgery,” International Conference on Humanoids, 2003, 17 pages, IEEE. |
Mayer, Hermann et al., “The Endo [PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp. 3637-3642, vol. 4, IEEE. |
Megali, Giusepp et al., “A Computer-Assisted Robotic Ultrasound-Guided Biopsy System for Video-Assisted Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2001, pp. 343-350, vol. 2208, Springer-Verlag. |
Menack, M. et al., “Staging of pancreatic and ampullary cancers for resectability using laparoscopy with laparoscopic ultrasound,” Surg Endosc, 2001, pp. 1129-1134, vol. 15—No. 10, Springer-Verlag. |
Menon, Mani, “Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases,” Urol Clin N Am, 2004, pp. 701-717, vol. 31. |
Merola, Stephen et al., “Comparison of Laparoscopic Colectomy With and Without the Aid of a Robotic Camera Holder,” Surg Laparosc Endosc Percutan Tech, 2002, pp. 45-61, vol. 12—No. 1, Lippincott Williams & Wilkins, Inc. |
Michael B. Cohn's Home Page, http://www.bsac.eecs.berkeley.edu/users/michaelc/, downloaded Nov. 1, 1996, p. 1; UC Berkeley/Endorobotics Corporation Surgical Robotics Project Job Openings, http:/www.bsac.eecs.berkeley.edu/users/michaelc/jobs.html, downloaded Nov. 1, 1996, p. 1; and Medical Robotics, http://robotics.eecs.berkeley.edu/˜mcenk/medical/, downloaded Nov. 1, 1996, pp. 1-8. |
Migga, Michael I. et al., “Intraoperative Registration of the Liver for Image-Guided Surgery System,” The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 350-359, vol. 5029. |
Mitsuishi M., et al., “A tele-micro-surgery system with co-located view and operation points and a rotational-force-feedback-free master manipulator,” 2nd Annual Intl. Symposium on Medical robotics and Computer Assisted Surgery Baltimore Maryland, Nov. 4-7, 1995, pp. 111-118. |
Mitsuishi, Mamoru et al., “Remote Ultrasound Diagnostic System,” Conf. on Robotics and Automation, 2001, pp. 1567-1574, vol. 2, IEEE. |
Mourgues, Fabienet al., “Flexible Calibrations of Actuated Stereoscopic Endoscope for Overlay in Robot Assisted Surgery,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part I, Lecture Notes in Computer Science, 2002, pp. 25-34, vol. 2488, Springer-Verlag. |
Muratore, Diane M. et al., “Beam Calibration Without a Phantom for Creating a 3D Free-hand Ultrasound System,” Ultrasound in Medicine and Biology, 2001, pp. 1557-1566, vol. 27—No. 11, Elsevier. |
Nakakura, Eric K et al., “Hepatocellular Carcinoma: Current Management Recommendations,” Advances on Oncology, 2000, pp. 12-18, vol. 16—No. 2. |
Neisius B. et al., “Robotic manipulator for endoscopic handling of surgical effectors and cameras,” 1st Intl. Symposium on Medical Robotics and Computer Assisted Surgery, 1994, pp. 169-175, vol. 2. |
Nelson, Thomas R. et al., “Interactive Acquisition, Analysis, and Visualization of Sonographic Volume Data,” International Journal of Imaging Systems and Technology, 1997, pp. 26-37, vol. 8, John Wiley & Sons, Inc. |
Nelson, Thomas, R. et al., “Three-dimensional ultrasound imaging,” Ultrasound in Medicine & Biology, 1998, pp. 1243-1270, vol. 24—No. 9, Elsevier. |
Ng, W.S. et al., “Robotic Surgery, A First-Hand Experience in Transurethral Resection of the Prostate,” IEEE Engineering in Medicine and Biology, Mar. 1993, pp. 120-125, vol. 12—Issue 1, IEEE. |
Novotny Paul M. et al., “Tool Localization in 3D Ultrasound Images,” Medical Image Computing and Computer-Assisted Intervention, 2003, pp. 969-970, vol. 2879, Springer. |
Office Action dated Nov. 29, 2019 for U.S. Appl. No. 15/638,172, filed Jun. 29, 2017, 11 pages (ISRG00410C1/US). |
Office Action dated May 1, 2012 for Japanese Application No. 20090518470 filed Jun. 22, 2007, 7 pages (ISRG00410/JP). |
Office Action dated Jun. 12, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 8 pages (ISRG01610D1/JP). |
Office Action dated Jan. 26, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 9 pages (ISRG01610D1/JP). |
Office Action dated Oct. 24, 2019 for Korean Application No. 1020197022941 filed May 11, 2011, 14 pages (ISRG00510D3/KR). |
Ohbuchi R., et al., “Incremental Volume Reconstruction and Rendering for 3D Ultrasound Imaging,” The International Society of Optical Engineering, 1992, vol. 1808, pp. 312-323. |
Park, Shinsuk et al., “Virtual Fixtures for Robotic Cardiac Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 1419-1420, vol. 2208, Springer-Verlag. |
Patriciu A., et al., “Motion-based Robotic Instrument Targeting under C-Arm Fluoroscopy,” Medical Image Computing and Computer-Assisted Interventions, 2000, vol. 1935, pp. 988-998. |
Paul, Howard A. et al., “Development of a Surgical Robot for Cementless Total Hip Arthroplasty,” Clinical Orthopaedics, Dec. 1992, pp. 57-66, vol. 285. |
Payandeh S., et al., “On Application of Virtual Fixtures as an Aid for Telemanipulation and Training,” Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS), Mar. 2002, pp. 18-23. |
PCT/US07/71850 International Search Report and Written Opinion of the International Searching Authority, dated Feb. 13, 2008, 9 pages. |
PCT/US09/46234 International Search Report and Written Opinion of the International Searching Authority, dated Sep. 9, 2009, 13 pages. |
PCT/US09/56078 International Search Report and Written Opinion of the International Searching Authority, dated Jan. 20, 2010, 12 pages. |
PCT/US10/28886 International Search Report and Written Opinion of the International Searching Authority, dated Jul. 6, 2010, 11 pages. |
PCT/US10/28897 International Search Report and Written Opinion of the International Searching Authority, dated Jul. 19, 2010, 16 pages. |
PCT/US10/38246 International Search Report and Written Opinion of the International Searching Authority, dated Sep. 14, 2010, 17 pages. |
PCT/US2011/036109 International Search Report and Written Opinion of the International Searching Authority, dated Oct. 19, 2011, 16 pages. |
PCT/US2011/036109 Invitation to Pay Additional Fees and Partial International Search Report, dated Aug. 18, 2011, 5 pages. |
Podnos Y.D., et al., “Laparoscopic Ultrasound with Radiofrequency Ablation in Cirrhotic Patients with Hepatocellular Carcinoma: Technique and Technical Considerations,” American Surgeon, Dec. 2001, vol. 67 (12), pp. 1181-1184. |
Pose—definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: URL: http://www.merriam-webster.com/dictonary/pose. |
Posture—definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: URL: http://www.merriam-webster.com/dictonary/posture. |
Poulose B.K., et al., “Human vs Robotic Organ Retraction During Laparoscopic Nissen Fundoplication,” Surgical Endoscopy, 1999, vol. 13, pp. 461-465. |
Prager Richard et al., “Practical segmentation of 3D ultrasound,” In Proceedings of Medical Image Understanding and Analysis, 1999, pp. 161-164. |
Prager Richard et al., “Rapid Calibration for 3D Freehand Ultrasound,” Ultrasound in Medicine and Biology, 1998, pp. 855-869, vol. 24—No. 6, Elsevier. |
Prasad, Srinivas K. et al., “A minimally invasive approach to pelvic osteolysis,” 2002, in Proc. Computer-Assisted Orthopaedic Surgery (CAOS), pp. 349-350. |
Prasad Srinivas K. et al., “A Modular 2-DOF Force-Sensing Instrument for Laparoscopic Surgery,” Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI, Lecture Notes in Computer Science, 2003, pp. 279-286, vol. I, Springer. |
Pre-Appeal Examination Report, dated Sep. 3, 2014 for Japanese Application No. JP20120503535 filed Mar. 26, 2010, 7 pages (ISRG01940/JP). |
Preising B., et al., “A Literature Review: Robots in Medicine,” IEEE Engineering in Medicine and Biology, Jun. 1991, vol. 10(2), pp. 13-22. |
Ramey, N. A., “Stereo-Based Direct Surface Tracking with Deformable Parametric Models,” Thesis submitted to The Johns Hopkins University, Maryland, Apr. 2003, 104 pages. |
Ramey, Nicholas A. et al., “Evaluation of Registration Techniques in a robotic approach to pelvic osteolysis,” International Proceedings of Computer Assisted Orthopaedic Surgery (CAOS), 2004, pp. 26-27. |
Rasmussen, Christopher et al., “Probabilistic data association methods for tracking complex visual objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, pp. 560-576, vol. 23, Issue 6, IEEE. |
Ratner, Lioyd E. et al, “Laparoscopic live donor nephrectomy removes disincentives to live donation,” Transplantation, 1997, pp. 3402-3403, vol. 29—Issue 8, Elsevier. |
Ratner, Lioyd E. et al., “Laparoscopic live donor nephrectomy,” Transplantation, 1995, pp. 1047-1049. |
Rau, Beate, M. eta al., “Is There Additional Information From Laparoscopic Ultrasound in Tumor Staging”, Digestive Surgery, 2002, pp. 479-483, vol. 19—No. 6. |
Rockall, Timothy A., “The da Vinci Telerobotic Surgical System,” Chapter 8 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 57-60. |
Rohling, Robert et al., “Three-dimensional spatial compounding of ultrasound images,” Medical Image Analysis, 1996, pp. 177-193, vol. 1—No. 3, Oxford University Press. |
Rohling, Robert N. et al., “Radial basis function interpolation for 3-d ultrasound,” CUED/F-INFENG/TR 327, Cambridge University, Jul. 1998, 28 Pages. |
Rosen J., et al., “The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2002, pp. 1876-1881. |
Rosenberg, Louis B., “Human interface hardware for virtual laparoscopic surgery,” Proceedings of the Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 322-325, Amsterdam: IOS Press. |
Rosenberg, Louis B., “Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation,” IEEE Virtual Reality International Symposium, 1993, pp. 76-82, IEEE. |
Rothbaum Daniel L. et al., “Robot-assisted stapedotomy: micropick fenestration of the stapes footplate,” Otolaryngology—Head and NeckSurgery, 2002, pp. 417-426, vol. 127. |
Rothbaum Daniel L. et al., “Task Performance in stapedotomy: Comparison between surgeons of different experience levels,” Otolaryngology—Head and Neck Surgery, 2003, pp. 71-77, vol. 128—No. 1. |
Roy, Jaydeep, “Advances in the design, analysis and control of force controlled robots,” Master's Thesis, Mechanical Engineering, Johns Hopkins University, Baltimore, 2001, 210 Pages. |
Sakas, Georgios et al., “Extracting surfaces from fuzzy 3D-Ultrasound data,” Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, pp. 465-474. |
Salcudean, Septimiu E. et al., “A Robot System for Medical Ultrasound,” 9th International Symposium of Robotics Research (ISRR'99), 1999, pp. 195-202. |
Santambrogio, R. et al., “Ultrasound-Guided Interventional Procedures of the Liver During Laparoscopy: Technical Considerations,” Surg Endosc, 2002, pp. 349-354, Springer-Verlag. |
Sastry S., “MilliRobotics in Minimally Invasive Telesurgery,” Retrieved from Internet [URL: http://robotics.eecs.berkeley.edu] 1995, 3 pages. |
Sastry, Shankar et al., “Millirobotics for remote minamally invasive surgery,” Proceedings of the Intl. Workshop on Some Critical Issues in Robotics, Singapore, Oct. 2-3, 1995, pp. 81-98. |
Sastry, Shankar, http://robotics.eecs.berkeley.edu, Nov. 1, 1995, Total 8 pages. |
Schenker, Paul S. et al., “Development of a Telemanipulator for Dexterity Enhanced Microsurgery,” 2nd Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 4-7, Baltimore, Maryland, 1995, pp. 81-88. |
Schorr, O., et al., “Distributed Modular Computer-Integrated Surgical Robotic Systems: Architecture for Intelligent Object Distribution,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes In Computer Science, 2000, vol. 1935, pp. 979-987. |
Schreiner, Steve et al., “A system for percutaneous delivery of treatment with a fluoroscopically-guided robot,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 747-756, Springer-Verlag. |
Schweikard, Achim et al., “Motion Planning in Stereotaxic Radiosurgery,” IEEE Transactions on Robotics and Automation, 1993, pp. 909-916, vol. 1, IEEE. |
Scott D.J., et al., “Accuracy and Effectiveness of Laparoscopic vs Open Hepatic Radiofrequency Ablation,” Surgical Endoscopy, Feb. 2001, vol. 15 (2), pp. 135-140. |
Simaan, Nabil et al., “A Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dextrous Surgical Tool Manipulation,” IEEE International Conference on Robotics and Automation, 2004, pp. 351-357, IEEE. |
Simaan, Nabil et al., “High Dexterity Snake-Like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway,” MICCAI 2004—the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2004, pp. 17-24. |
Solomon S.B., et al., “Robotically Driven Interventions: A Method of Using CT Fluoroscopy without Radiation Exposure to the Physician,” Radiology, 2002, vol. 225, pp. 277-282. |
Solus-3D Ultrasound Project in Obstetrics and Gynaecology, University of Cambridge, http://mi.eng.cam.ac.uk/research/projects/Solus/, downloaded Jul. 5, 2007, 4 pages. |
Sommer, Graham et al., “Liver tumors: utility of characterization at dual frequency US,” Radiology, 1999, pp. 629-636, vol. 211—No. 3. |
Steele, Micah R. et al., “Shared control between human and machine: using a haptic steering wheel to aid in land vehicle guidance,” Human Factors and Ergonomics Society 45th Annual Meeting , Minneapolis, Minnesota, 2001, pp. 1671-1675. |
Steen, Erik et al., “Volume Rendering of 3D Medical Ultrasound Data Using Direct Feature Mapping,” IEEE Transactions on Medical Imaging, 1994, pp. 517-525, vol. 13—Iss. 3, IEEE. |
Stefansic, James D. et al., “Registration of Physical Space to Laparoscopic Image Space for Use in Minimally Invasive Hepatic Surgery,” IEEE Transactions on Medical Imaging, 2000, pp. 1012-1023, vol. 19—No. 10, IEEE. |
Stetten, George D et al., “Overlaying Ultrasound Images on Direct Vision,” Journal of Ultrasound in Medicine, 2001, pp. 235-240, vol. 20—No. 3. |
Stewart, Charles V. et al., “The Dual-Bootstrap Iterative Closest Point Algorithm With Application to Retinal Image Registration,” IEEE Transactions on Medical Imaging, Nov. 2003, pp. 1379-1394, vol. 22—No. 11, IEEE. |
Stoainovici D., et al., “Robotic Telemanipulation for Percutaneous Renal Access,” in 16th World Congress on Endourology, New York City, Sep. 3-6, 1998, Poster Session 17-5, p. S201. |
Stoianovici, Dan, “A Modular Surgical Robotic System for Image Guided Percutaneous Procedures,” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 404-410, vol. 1496, Springer-Verlag, 1998. |
Stoianovici, Dan et al., “Robotic for Precise Percutaneous Needle Insertion,” In Thirteenth Annual Meeting of the Society for Urology and Engineering. San Diego, May 1998, pp. 4. |
Stoll, Jeff, “Ultrasound-based servoing of manipulators for telesurgery,” Telemanipulator and Telepresence Technologies VIII Conference, 2001, pp. 78-85, SPIE. |
Sublett, John W. et al. “Design and implementation of a digital teleultrasound system for real-time remote diagnosis,” 8th IEEE Symposium on Computer-Based Medical Systems, IEEE Computer Society Press, Jun. 9-10, 1995, pp. 292-298. |
Suramo, I. et al., “Cranio-caudal movements of the liver, pancreas and kidneys in respiration,” Acta Radiologica: Diagnosis, 1984, pp. 129-131, vol. 25, Radiological Societies. |
Susil, Robert, C. et al., “A Single Image Registration Method for CT Guided Interventions,” 2nd International Symposium on Medical Image Computing and Computer-Assisted Interventions (MICCAI' 99), Lecture Notes in Computer Science, 1999, pp. 798-808, vol. 1679, Springer-Verlag. |
Szeliski, Richard, “Motion Estimation with Quadtree Splines,” IEEE 5th International Conference on Computer Vision, 1995, pp. 757-763, vol. 18—Issue. 12, IEEE Computer Society Washington, DC, USA. |
Taubes, Gary et al., “Surgery in Cyberspace,” Discover magazine, Dec. 1994, vol. 15, issue 12, pp. 85-92. |
Tavakoli, M., et al, A Force Reflective Master-Slave System for Minimally Invasive Surgery, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3077-3082, vol. 4, IEEE. |
Taylor R., et al., “A Telerobotic System for Augmentation of Endoscopic Surgery,” in IEEE Conference on Engineering in Medicine and Biology, 1992, vol. 14, pp. 1054-1056. |
Taylor R.H., et al., “A Computational Architecture for Programmable Automation Research,” Intelligent Robots and Computer Vision, 1986, vol. 726, pp. 438-440. |
Taylor, R.H., et al., “A General Purpose Control Architecture for Programmable Automation Research,” Proceedings of the Third International Symposium on Robotics, 1986, pp. 165-173, MIT Press. |
Taylor R.H. et al., “Medical Robotics and Computer-Integrated Surgery,” Chapter 52 in Springer Handbook of Robotics, Springer, 2008, pp. 1199-1222. |
Taylor R.H., et al., Table of Contents, “Computer-Integrated Surgery,” Technology and Clinical Applications, The MIT Press, Cambridge, MA, 1996, 8 pages. |
Taylor, R.H., “Medical Robotics and Computer-Integrated Surgery,” Handbook of Industrial Robotics, Second Edition, 1999, pp. 1213-1227, Chapter 65, John Wiley & Sons. |
Taylor, Russell H., “A Perspective on Medical Robotics,” Proceedings of the IEEE, vol. 94, No. 9, Sep. 2006, pp. 1652-1664. |
Taylor, Russell H. “An Image-directed Robotic System for Precise Orthopaedic Surgery,” IEEE Transactions on Robotics mid Automation, 1994, pp. 261-275, vol. 10—No. 3, IEEE. |
Taylor, Russell H. and Christopher Hasser, “Development of a Surgical Assistant Workstation for Teleoperated Surgical Robots,” NSF Proposal No. 0646678, Aug. 2006, 16 pages. |
Taylor, Russell H. and Dan Stoianovici, “Medical Robotic Systems in Computer-Integrated Surgery,” Problems in General Surgery, by Lippincott Williams & Wilkins, Inc., Philadelphia, Pennsylvania. vol. 20, No. 2, pp. 1-9, 2003. |
Taylor, Russell H. and Peter Kazanzides, “Medical Robotics and Computer-Integrated Interventional Medicine,” Chapter 18: Biomedical Information Technology, David Dagan Feng, Ed., Academic Press (Elsevier), 2008, pp. 393-416. |
Taylor, Russell, H et al., “A Steady-Hand Robotic System for Microsurgical Augmentation,” International Journal of Robotics Research, 1999, pp. 1201-1210, vol. 18—No. 12, Springer-Verlag. |
Taylor, Russell H. et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 279-288, vol. 14, Issue 3, IEEE. |
Taylor, Russell, H et al., “AML A Manufacturing Language,” The International Journal of Robotics Research, 1982, pp. 19-41, vol. 1—No. 3, SAGE Publications. |
Taylor, Russell H. et al., “An Image-directed Robotic System for Hip Replacement Surgery,” J. Robotics Society of Japan, 1990, pp. 615-620, vol. 8—issue 5. |
Taylor, Russell, H. et al., “An Integrated Robot Systems Architecture,” Proceedings of the IEEE, 1983, pp. 842-856, vol. 71—Issue 7, IEEE. |
Taylor, Russell H., et al., “An overview of computer-integrated surgery at the IBM Thomas J. Watson Research Center,” IBM J Research and Development, 1996, pp. 163-183, vol. 40, Issue 2, IBM Corp. |
Taylor, Russell H., et al., “Chapter 46: A Telerobotic Assistant for Laparoscopic Surgery,” in Computer-Integrated Surgery, R. H. Taylor, et al., Editors, 1996, MIT Press, pp. 581-592. |
Taylor, Russell H. et al., “Computer-Integrated Revision Total Hip Replacement Surgery: Concept and Preliminary Results,” 1999, Medical image analysis, pp. 301-319, vol. 3—Issue 3, Oxford University Press. |
Taylor, Russell H. et al., “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics md Automation, 2003, pp. 765-781, vol. 19—No. 5, IEEE. |
Taylor, Russell, H. et al., “Redundant Consistency Checking in a Precise Surgical Robot,” in 12'th Annual Conference on Engineering in Medicine and Biology, 1990, pp. 1933-1935, vol. 12—No. 5, IEEE. |
Taylor, Russell H. et al., “Research Report: A Telerobotic Assistant for Laparoscopic Surgery,” Accepted to IEEE EIMBS Magazine, Special Issue on “Robotics in Surgery,” Dec. 1994, 24 pages. |
Taylor, Russell, H et al., “The Architecture of an Integrated Robot System,” First Int. Conf. on Advanced Robotics (ICAR)., 1983, pp. 389-398. |
Taylor, Russell H. “Medical Robots,” in Computer and Robotic Assisted Knee and Hip Surgery, 2004, pp. 54-59, Oxford Press. |
Taylor, Russell H., “Robotics in Orthopedic Surgery,” In Computer Assisted Orthopaedic Surgery (CAOS), L.P. Nolte and R. Ganz, Editors. 1999, Hogrefe and Huber, 1999, pp. 35-41. |
Taylor, Russell H. “The Planning and Execution of Straight Line Manipulator Trajectories,” IBM Journal of Research and Development, 1979, pp. 424-436, vol. 23—Issue 4. |
Taylor, Russell H., “Ultrasound Assistant for a Laparoscopic Surgical Robot,” NIH STTR Phase II Proposal R42-RR019159, revised May 2001, 54 pages. |
Taylor, Russell H., Videotape: “Computer Assisted Surgery at IBM T. J. Watson Research Center,” 22 minutes 10 seconds, 1994 and 1995. |
Teistler, Michael et al., “Virtual Tomography: A New Approach to Efficient Human-Computer Interaction for Medical Imaging,” Proc. of SPIE,, The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 512-519, vol. 5029. |
Tewari, Ashutosh et al., “Technique of da Vinci Robot-Assisted Anatomic Radical Prostatectomy,” Urology, 2002, pp. 569-572, vol. 60—No. 4, Elsevier. |
Thring, M.W., “Robots and Telechirs: Manipulators with Memory; Remote Manipulators; Machine Limbs for the Handicapped,” Ellis Horwood Limited, England, 1983, 79 pages, including Table of Contents, Preface, Chap. 5 (pp. 108-131), Chap. 7 (pp. 194-195, 235), Chap. 8 (pp. 236-278), Chap. 9 (p. 279). |
Toon, John, “Virtual Reality for Eye Surgery,” Georgia Tech Research News, 1993, 4 Pages. |
Toyama, Kentaro et al., “Incremental Focus of Attention for Robust Vision-based Tracking,” International Journal of Computer Vision, 1999, pp. 45-63, vol. 35—No. 1, Kluwer Academic Publishers. |
Trevelyan, James P. et al., “Motion Control for a Sheep Shearing Robot,” IEEE Robotics Research Conference, the 1st International Symposium, Carroll, NH, USA., 1983, pp. 175-190, in Robotics Research, MIT Press. |
Trivedi, Mohan M. et al., “Developing telerobotic systems using virtual reality concepts,” 1993 IEEE/RSJ International Conference on Intelligent Robots and systems, 1993, pp. 352-359, vol. 1, IEEE. |
Troccaz, Jocelyne et al., “The use of localizers, robots, and synergistic devices in CAS,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 727-736, vol. 1205, Springer-Verlag. |
Umeyama, Shinji, “Least-Squares Estimation of Transformation Parameters between Two Point Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 13, No. 4, pp. 376-380, Apr. 1991. |
U.S. Appl. No. 11/583,963 Non-Final Office Action dated Jul. 9, 2009, 40 pages (ISRG00420/US). |
Vertut, J, and Coiffet, P., “Robot Technology: Teleoperation and Robotics Evolution and Development,” English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. |
Vibet, C., “Properties of Master-Slave Robots,” Motor-con, MOTORCON'87, Hannover, Apr. 1987, pp. 309-316. |
Vilchis, Adriana et al., “A New Robot Architecture for Tele-Echography,” IEEE Trans. Robotics & Automation, pp. 922-926, 2003, vol. 19—No. 5, IEEE. |
Viswanathan, Anand et al., “Immediate Ultrasound Calibration with Three Poses and Minimal Image Processing,” MICCAI, 2004, pp. 446-454, vol. 2, Springer-Verlag. |
Webster R.J. et al., “Nonholonomic Modeling of Needle Steering,” The International Journal of Robotics Research, 2006, vol. 25 (5-6), pp. 509-525. |
Webster Robert J. et al., “Design Considerations for Robotic Needle Steering,” International Conference on Robotics and Automation, 2005, pp. 3588-3594, IEEE. |
Wei, Guo-Quing et al., “Real-Time Visual Servoing for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology Magazine, Jan./Feb. 1997, pp. 40-45, vol. 16—Issue 1, IEEE. |
Wei, Zhouping et al “Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation,” Medical Physics, 2004, pp. 539-548, vol. 31—No. 3. |
Wengert, C., “Camera Calibration Toolbox for Matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc/, downloaded Oct. 24, 2006, 9 pages. |
Wilhelm, Dirk et al., “Electromagnetically Navigated Laparoscopic Ultrasound,” Surg. Technol. Int, 2003, pp. 50-54, vol. 11. |
Wood Thomas F. et al., “Radiofrequency ablation of 231 Unresectable hepatic tumors:indications, limitations, and complications,” Ann. Surg. Oncol, 2000, pp. 593-600, vol. 7, Lippincott Williams & Wilkins. |
Wu, Xiaohui et al., “A Framework for Calibration of Electromagnetic Surgical Navigation Systems,” IEEE RSJ International Conference on Intelligent Robot Systems (IROS), 2003, pp. 547-552, vol. 1, IEEE. |
Xu, Sheng et al., “3D Motion Tracking of Pulmonary Lesions Using CT Fluoroscopy Images for Robotically Assisted Lung Biopsy,” Proc. SPIE. 5367, Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, 394. (May 5, 2004), pp. 394-402. |
Yamagata H., et al., “Development of a New Display Method for Compound 3D Ultrasound Images: Fusion 3D Images From B-mode and 3D Doppler Images,” 1999, vol. 70, pp. 43-46. |
Yao, Jianhua et al., “A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot,” Computer Aided Surgery, 2000, pp. 373-390, vol. 5—No. 6, Wiley-Liss, Inc. |
Yao, Jianhua, et al., “A Progressive Cut Refinement Scheme for Revision Total Hip Replacement Surgery Using C-arm Fluoroscopy,” Proceedings of the 2nd International Conference on Medical Image and Computer-Assisted Intervention (MICCAI'99), Springer-Verlag, 1999, pp. 1010-1019, vol. 1679. |
Yao, Jianhua et al., “Deformable registration between a statistical born density atlas and X-ray images,” Second International Conference on Computer Assisted Orthopaedic Surgery, 2002, pp. 168-169. |
Zacherl, Johannes et al., “Current value of intraoperative sonography during surgery for hepatic neoplasms,” World J Surg, 2002, pp. 550-554, vol. 26—No. 5. |
Zhang, Xiaoli and Shahram Payandeh, “Application of Visual Tracking for Robotic-Assisted Laparoscopic Surgery,” Journal of Robotic Systems, vol. 19, No. 7, pp. 315-328, 2002. |
Zhang, Z., “A Flexible New Technique for Camera Calibration,” Technical report MSR-TR-98-71, Microsoft Research, Microsoft Corporation, Redmond, WA, Dec. 1998, pp. 1-21. |
Number | Date | Country | |
---|---|---|---|
20220296317 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16689949 | Nov 2019 | US |
Child | 17832319 | US | |
Parent | 13768062 | Feb 2013 | US |
Child | 16689949 | US |