PSMA Imaging Agents

Information

  • Patent Application
  • 20240425547
  • Publication Number
    20240425547
  • Date Filed
    August 20, 2024
    4 months ago
  • Date Published
    December 26, 2024
    22 hours ago
Abstract
Compounds for targeting and agents for imaging, prostate-specific membrane antigen (PSMA) are disclosed. Methods of synthesizing compounds and imaging agents, as well as methods for imaging PSMA are also disclosed. The imaging agents disclosed are suitable for PET and SPECT imaging.
Description
FIELD OF THF INVENTION

The present invention relates to imaging; specifically, positron emission tomography (PET). More specifically, it relates to radiopharmaceuticals used in PET. More particularly, it relates to formulations for imaging, diagnosing and grading prostate cancer to find metastases and to monitor treatment.


BACKGROUND

Prostate cancer is a relatively common type of cancer and the second leading cause of death in men. There are currently no reliable, non-invasive diagnostic tests available for prostate cancer and the only way to fully confirm the diagnosis of prostate cancer is a biopsy. A PSA (prostate specific antigen) test is the only available tumor marker, but PSA blood levels can be elevated for a number of reasons and do not necessary correlate with prostate cancer. Also, there are rare types of aggressive prostate cancers that cannot be diagnosed with the PSA test. This test for screening therefore has limitations and is still controversial.


Further, prostate-related PET tracers known in the art; e.g., mAb PET tracers, are associated with low clearance (high blood activity) due to prolonged biologic half life of the antibody. This generally leads to low tumor-to-muscle ratios.


SUMMARY

In one embodiment, the invention is a compound of Formula I:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X2 is CH or N;
      • X3 is (CH2)1-6 wherein at least one CH2 is optionally replaced by at least one of CONH or aryl;
      • X4 is (CH2)1-5, where at least one CH2 of (CH2)1-5 is optionally replaced by aryl, NH, and







embedded image




    • X5 is selected from the group consisting of CONH, C(O), (CH2)1-2—C(O) and (CH2)1-2—CONH;

    • X6 is aryl or CH;

    • X7 is CH or N;

    • X8 is CH or N;

    • X13 is (CH2)1-5, where at least one CH2 of (CH2)1-5 is optionally replaced by aryl, NH, and







embedded image




    • R1 is selected from the group consisting of alkyne, N3, NO2, —(CH2)1-20—R3 where at least one CH2 of —(CH2)1-20—R3 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R3 is optionally substituted with COOH or NO2; and (—CH2—CH2—O—)1-5—NH2 where at least one CH2 of (—CH2—CH2—O—)1-5—NH2 is optionally replaced by aryl or heteroaryl;

    • R2 is selected from the group consisting of H, COOH or CH2—COOH; and

    • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a compound of Formula Ia




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X18 is selected from the group consisting of aryl or CH2;
      • X19 is selected from the group consisting of (CH2)n and CONH—(CH2)p;
      • R1 is selected from the group consisting of alkyne, N3, NO2, —(CH2)1-20—R3 where at least one CH2 of —(CH2)1-20—R3 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R3 is optionally substituted with COOH or NO2; and (—CH2—CH2—O—)1-5—NH2 where at least one CH2 of (—CH2—CH2—O—)1-5—NH2 is optionally replaced by aryl or heteroaryl;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope,
      • wherein n is 1 or 3; and
      • wherein p is 1, 2 or 4.





In another embodiment, the present invention is a compound of Formula Ib:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X3 is (CH2)1-6 wherein at least one CH2 is optionally replaced by at least one of CONH or aryl;
      • X7 is CH or N;
      • R9 is —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-10—R3 is optionally replaced by at least one of aryl, heteroaryl or CONH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope





In another embodiment, the present invention is a compound of Formula Ic:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X7 is CH or N;
      • X20 is selected from the group consisting of (CH2)1-5 and CONH—(CH2)1-5;
      • R9 is —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-10—R3 is optionally replaced by at least one of aryl, heteroaryl or CONH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope





In another embodiment, the present invention is a compound of Formula II:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X2 is CH or N;
      • X9 is (CH2)1-5 where at least one CH2 is optionally replaced by NH,
      • X10 is CH or N;
      • X11 is selected from the group consisting of (CH2), aryl, or heteroaryl, wherein at least one H of the aryl or heteroaryl is optionally replaced by NO2,
      • X12 is selected from the group consisting of O, CONH and (CH2)1-2 wherein at least one CH2 is optionally replaced by NH;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH;
      • R4 is selected from the group consisting of H, alkyne, N3, NO2, —(CH2)1-20—R8 where at least one CH2 of —(CH2)1-20—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R8 is optionally substituted with COOH or NO2;
      • R5 is selected from the group consisting of H and —(CH2)1-10—R8 where at least one CH2 of —(CH2)1-10—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl or CONH;
      • R6 is selected from the group consisting of H and —(CH2)1-10—R8 where at least one CH2 of —(CH2)1-10—R9 is optionally replaced by at least one of —O—, aryl, heteroaryl or CONH; and
      • R8 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a compound of Formula IIa:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X9 is (CH2)1-5;
      • X10 is CH or N;
      • X15 is selected from the group consisting of O and NH;
      • X16 is (CH2)1-2;
      • X17 is N or CH;
      • R4 is selected from the group consisting of H, alkyne, N3, NO2, —(CH2)1-20—R8 where at least one CH2 of —(CH2)1-20—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R8 is optionally substituted with COOH or NO2;
      • R8 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope; and
      • R9 is H or NO2.





In another embodiment, the present invention is a compound of Formula III:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X13 is (CH2)1-5 wherein at least one CH2 is optionally replaced by aryl;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH;
      • R11 is selected from the group consisting of alkyne, N3, NO2, (CH2)1-10—R12 wherein at least one CH2 is optionally replaced by at least one of CONH, aryl or heteroaryl; and
        • R12 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a compound of Formula IV:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X14 is selected from the group consisting of: C(O) and heteroaryl, wherein at least one H of the heteroaryl is substituted with NO2;
      • X15 is selected from the group consisting of: a bond, NH, CH2, aryl, heteroaryl, cycloalkyl and heterocycloalkyl;
      • X16 is at least one selected from the group consisting of: a bond, aryl, heteroaryl, (CH2)1-25, wherein at least one CH2 of (CH2)1-12 is optionally replaced with heteroaryl, aryl, CONH, and —O—; and
      • R13 is selected from the group consisting of H, NO2, N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a compound of Formula V:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X17 is selected from the group consisting of: N and CH;
      • X18 is selected from the group consisting of: (CH2)1-10 wherein at least one CH2 of (CH2)1-10 is optionally replaced by NH, aryl, heteroaryl and wherein at least one H is optionally substituted with NO2; and
      • R14 is selected from the group consisting of O and S; and
      • R15 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a compound of Formula V:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X19 is selected from the group consisting of: H, NO2, (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is optionally replaced by CONH, aryl, heteroaryl;
      • X20 is selected from the group consisting of: H, NO2, (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is optionally replaced by CONH, aryl, heteroaryl;
      • X21 is selected from the group consisting of (CH2)1-3 wherein at least one CH2 of (CH2)1-3 is optionally replaced by heteroaryl,
      • R14 is selected from the group consisting of O and S; and
      • R16 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.








BRIEF DESCRIPTION OF THF FIGURES


FIG. 1 shows two scans using imaging agents according to embodiments of the present invention against scans using a third party tracer.



FIG. 2 shows two scans using imaging agents according to embodiments of the present invention against scans using a third party tracer.



FIG. 3 shows a comparison of scans of four tracers of the present invention.



FIG. 4 shows a scan using a tracer of the present invention and accompanying data.



FIG. 5 shows scans using a tracer of the present invention and accompanying data.



FIG. 6 shows scans using two tracers of the present invention and accompanying data.



FIG. 7 shows Negative Control data for a tracer of the present invention.



FIG. 8 shows comparative data for five tracers according the present invention.



FIG. 9 shows a comparison of Kd and Ki of tracers of the present invention.



FIGS. 10-12 show a scan using a tracer of the present invention.



FIG. 13 shows a table of data of tracers of the present invention versus a third party tracer.





DETAILED DESCRIPTION

The following description will describe the invention in relation to advantageous embodiments thereof. The invention is in no way limited to these advantageous embodiments as they are purely included to exemplify the invention and the invention is intended to include possible variations and modifications as would be readily apparent to a person skilled in the art without departing from the scope of the invention.


Prostate-specific membrane antigen (PSMA) is a type 2 integral membrane glycoprotein found in prostate tissues and a few other tissues. Expression of PSMA increases proportional to tumor aggressiveness and there is a correlation between PSMA expression and severity of cancer. PSMA has shown to have glutamate carboxypeptidase II activity and catalyzes the hydrolytic cleavage of glutamates from peptides or small molecules. It has been determined that this enzymatic activity of PSMA can be exploited for the design of substrate-based inhibitors. Labeled with [F18], these in turn can be used as PET imaging agents to detect cells expressing PSMA. A PET scan with a PSMA tracer provides a non-invasive diagnostic tool to detect and grade the patient's prostate cancer and allow the physician to choose appropriate treatment methods.


Crystal structures of the active site have been published and show two zinc atoms coordinated by His and Glu/Asp residues, while Arg residues stabilize the C-terminal glutamate-containing substrate. In one embodiment of this invention, we provide substrate based inhibitors in which amide bonds may be replaced with non-hydrolyzable groups such as reverse amides, semi-carbazides, ureas, or heterocycles to name a few. In order to produce a PET ligand, [F18] may be introduced via “click chemistry,” which is particularly suitable for labeling of these highly polar and acidic precursors and will provide an advantage over conventional labeling methods as the click reaction is a one step, fast, and high yielding step.


In some embodiments, the present invention is a urea based PET tracer. Many of these are strong inhibitors (Ki=24 nM) of PSMA and contain a triazole side chain generated through a click reaction, which allows for a fast radiosynthesis of the [F18] tracer. Generally, the compounds of the present invention have better PK/clearance profiles than existing compounds.


For the purposes of this application, unless otherwise stated in the specification, the following terms have the terminology cited below:


Alkyl refers to both straight and branched carbon chains; references to individual alkyl groups are specific for the straight chain (e.g. butyl=n-butyl). In one embodiment of alkyl, the number of carbons atoms is 1-20, in another embodiment of alkyl, the number of carbon atoms is 1-8 carbon atoms and in yet another embodiment of alkyl, the number of carbon atoms is 1-4 carbon atoms. Other ranges of carbon numbers are also contemplated depending on the location of the alkyl moiety on the molecule.


Alkynyl or alkyne refers to both straight and branched carbon chains which have at least one carbon-carbon triple bond. In one embodiment of alkynyl, the number of triple bonds is 1-3; in another embodiment of alkynyl, the number of triple bonds is one. In one embodiment of alkynyl, the number of carbons atoms is 2-20, in another embodiment of alkynyl, the number of carbon atoms is 2-8 and in yet another embodiment of alkynyl, the number of carbon atoms is 2-4. Other ranges of carbon-carbon double bonds and carbon numbers are also contemplated depending on the location of the alkenyl moiety on the molecule;


Aryl refers to a C6-C10 aromatic ring structure. In one embodiment of aryl, the moiety is phenyl, naphthyl, tetrahydronapthyl, phenylcyclopropyl and indanyl; in another embodiment of aryl, the moiety is phenyl.


Alkoxy refers to —O-alkyl, wherein alkyl is as defined in (1);


Cyclo as a prefix (e.g. cycloalkyl, cycloalkenyl, cycloalkynyl) refers to a saturated or unsaturated cyclic ring structure having from three to eight carbon atoms in the ring the scope of which is intended to be separate and distinct from the definition of aryl above. In one embodiment of cyclo, the range of ring sizes is 4-7 carbon atoms; in another embodiment of cyclo the range of ring sizes is 3-4. Other ranges of carbon numbers are also contemplated depending on the location of the cyclo-moiety on the molecule;


Halogen means the atoms fluorine, chlorine, bromine and iodine. The designation of “halo” (e.g. as illustrated in the term haloalkyl) refers to all degrees of substitutions from a single substitution to a perhalo substitution (e.g. as illustrated with methyl as chloromethyl (—CH2Cl), dichloromethyl (—CHCl2), trichloromethyl (—CCl3));


Heterocycle, heterocyclic or heterocyclo refer to fully saturated or unsaturated, including aromatic (i.e. “hetaryl”) cyclic groups, for example, 4 to 7 membered monocyclic, 7 to 11 membered bicyclic, or 10 to 15 membered tricyclic ring systems, which have at least one heteroatom in at least one carbon atom-containing ring. Each ring of the heterocyclic group containing a heteroatom may have 1, 2, 3 or 4 heteroatoms selected from nitrogen atoms, oxygen atoms and/or sulfur atoms, where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized. The heterocyclic group may be attached at any heteroatom or carbon atom of the ring or ring system.


Exemplary monocyclic heterocyclic groups include, but are not limited to, pyrrolidinyl, pyrrolyl, pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxoazepinyl, azepinyl, 4-piperidonyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, tetrahydropyranyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, 1,3-dioxolane and tetrahydro-1,1-dioxothienyl, triazolyl, triazinyl, and the like.


Exemplary bicyclic heterocyclic groups include, but are not limited to, indolyl, benzothiazolyl, benzoxazolyl, benzodioxolyl, benzothienyl, quinuclidinyl, quinolinyl, tetra-hydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuryl, chromonyl, coumarinyl, benzopyranyl, cinnolinyl, quinoxalinyl, indazolyl, pyrrolopyridyl, furopyridinyl (such as furo[2,3-c]pyridinyl, furo[3,2-b]pyridinyl] or furo[2,3-b]pyridinyl), dihydroisoindolyl, dihydroquinazolinyl (such as 3,4-dihydro-4-oxo-quinazolinyl), tetrahydroquinolinyl and the like.


Exemplary tricyclic heterocyclic groups include, but are not limited to, carbazolyl, benzindolyl, phenanthrolinyl, acridinyl, phenanthridinyl, xanthenyl and the like.


The present invention may include derivatives of Formulas I-VIII, which may be precursors to the fluorinated compounds. Such a precursor may include triflate trifluoromethanesulfonate (TFA).


Suitable protecting groups include, but are not limited to, Carbobenzyloxy (Cbz), tert-Butyloxycarbonyl (BOC), 9-Fluorenylmethyloxycarbonyl (FMOC), Benzoyl (Bz), Tosyl (Ts) and p-methoxybenzyl (PMB).


Unless otherwise noted, a compound represented as being substituted by an atom, such as the generic representation by the atom fluorine in fluoroalkyl, F-aryl or F—CH2— for example, is intended to cover both the naturally occurring element 19F (fluorine-19) as well as the 18F (fluorine-18) isotope(s) of the element itself. Isotopes may be designated via any notation used in the art such as, by way of non-limiting example, fluorine-18, 18-F, 18F F-18, etc.


The term “optionally substituted” or “substituted” refers to the specific substituents or groups wherein one to four hydrogen atoms in the group may be replaced by one to four substituents, for example, independently selected from the substituents amino, halo, cyano, nitro, hydroxyl, —SH, —SC1-6alkyl, —C(O)NH2, —C(S)NH2, haloC1-6alkyl, perhaloC1-6alkyl, C1-6alkyl, C3-6cycloalkyl, C3-12cycloalkyl, C6-14 aryl and heteroaryl, or as specifically disclosed herein. In addition, the substituents may also include alkyl, aryl, alkylene-aryl, hydroxy, alkoxy, aryloxy, perhaloalkoxy, heterocyclyl, azido, amino, guanidino, amidino, halo, alkylthio, oxo, acylalkyl, carboxy esters, carboxyl, carboxamido, acyloxy, aminoalkyl, alkylaminoaryl, alkylaminoalkyl, alkoxyaryl, arylamino, phosphono, sulfonyl, carboxamidoaryl, hydroxyalkyl, haloalkyl, alkoxyalkyl and perhaloalkyl. In addition, the term “optionally substituted” or “substituted” in reference to the variables R1 through R18 and X, includes groups substituted by one to four substituents, as identified above, which further comprise a positron or gamma emitter. Such positron emitters include, but are not limited to, 11C, 13N, 15O, 18F, 123I, 124I, 125I, 131I and 77Br.


The phrase “optionally replaced” means that at least one atom or element (e.g., carbon) in a chain may be replaced with another, different atom, element or functional group, such as 0, NH, CONH, aryl, heteroaryl, etc.


The phrase “is replaced” means that at least one atom or element (e.g., carbon) in a chain is replaced with another, different atom, element or functional group, such as 0, NH, CONH, aryl, heteroaryl, etc.


The term “radiolabeled compound” as used herein refers to compounds having an atom or group that may provide a radiolabel or may be converted to a radiolabel, such as from a non-radioactive atom to a radionuclide that is active, such as for example, 11C, 13N, 15O, 18F, 123I, 124I, 125I, 131I and 77Br. In addition, for the purpose of the present application, such “radiolabeled compound” may also refer to an atom or a group that comprises a non-active nuclide, such as a halogen, such as 19F for example, wherein the compound may be used and administered in a therapeutically effective amount.


As used herein, the term “radiolabel,” “radioactive isotope” or “radioactive element” refers to isotopes exhibiting radioactive decay (i.e., emitting positrons) and radiolabeling agents comprising a radioactive isotope. Non-limiting examples may include [11C]methane, [11C]carbon monoxide, [11C]carbon dioxide, [11C]phosgene, [11C]urea, [11C]cyanogen bromide, as well as various acid chlorides, carboxylic acids, alcohols, aldehydes and ketones containing carbon-11. Such isotopes or elements are also referred to in the art as radioisotopes or radionuclides. Radioactive isotopes are named herein using various commonly used combinations of the name or symbol of the element and its mass number (e.g., 18F, F-18, or fluorine-18). Exemplary radioactive isotopes include I-124, F-18 fluoride, C-11, N-13, and O-15, which have half-lives of 4.2 days, 110 minutes, 20 minutes, 10 minutes, and 2 minutes, respectively. The radioactive isotope is preferably dissolved in an organic solvent, such as a polar aprotic solvent. Preferably, the radioactive isotopes used in the present method include F-18, C-11, I-123, I-124, I-127, I-131, Br-76, Cu-64, Tc-99 m, Y-90, Ga-67, Cr-51, Ir-192, Mo-99, Sm-153 and T1-201. Preferably, the radioactive isotope used in the present method is F-18. Other radioactive isotopes that may be employed include: As-72, As-74, Br-75, Co-55, Cu-61, Cu-67, Ga-68, Ge-68, I-125, I-132, In-111, Mn-52, Pb-203 and Ru-97.


Compounds of the Formulas I-VIII may have optical centers and therefore may occur in different enantiomeric and diastereomeric configurations. The present invention includes all enantiomers, diastereomers, and other stereoisomers of such compounds of Formulas I-VIII, as well as racemic compounds and racemic mixtures and other mixtures of stereoisomers thereof.


The compounds of the present application may be in the form of free bases or pharmaceutically acceptable acid addition salts thereof. The term “pharmaceutically-acceptable salts” are salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt may vary, provided that it is pharmaceutically acceptable. Suitable pharmaceutically acceptable acid addition salts of compounds for use in the present methods may be prepared from an inorganic acid or from an organic acid. Non-limiting examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic (or alkyl), cycloalkyl, aromatic, arylalkyl, heterocyclic, carboxylic and sulfonic classes of organic acids, non-limiting examples of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, algenic, hydroxybutyric, salicylic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of use in the present methods include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from amino acids, benzathine, N, NT-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, diethylamine, diolamine, ethylenediamine, meglumine-(N-methylglucamine), procaine and tromethamine. Ascorbic acid may also be used as an excipient. Hemisalts of acids and bases may also be formed, for example, hemisulphate and hemicalcium salts.


In another embodiment, there is provided a pharmaceutical composition for in vivo imaging of PSMA, comprising (a) a compound of any one of the above, and (b) a pharmaceutically acceptable carrier.


The pharmaceutical compositions of the invention may also be in the form of a sterile injectable preparation. Formulations suitable for parenteral administration include, by way of non-limiting example, aqueous and non-aqueous isotonic sterile injection solutions which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.


The compounds of the invention may be synthesized and/or radiolabeled using techniques known in the art.


In one embodiment, the compounds of the invention may be radiolabeled.


In another embodiment, the compounds are not comprised of a radioisotope.


In one embodiment, the invention is a compound of Formula I:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X2 is CH or N;
      • X3 is (CH2)1-6 wherein at least one CH2 is optionally replaced by at least one of CONH or aryl;
      • X4 is selected from the group consisting of aryl, NH, CH2, and







embedded image




    • X5 is selected from the group consisting of CONH, C(O), (CH2)1-2—C(O) and (CH2)1-2—CONH;

    • X6 is aryl or CH;

    • X7 is CH or N;

    • X8 is CH or N;

    • X4 is selected from the group consisting of aryl, NH, CH2, and







embedded image




    • R1 is selected from the group consisting of alkyne, N3, NO2, —(CH2)1-20—R3 where at least one CH2 of —(CH2)1-20—R3 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R3 is optionally substituted with COOH or NO2; and (—CH2—CH2—O—)1-5—NH2 where at least one CH2 of (—CH2—CH2—O—)1-5—NH2 is optionally replaced by aryl or heteroaryl;

    • R2 is selected from the group consisting of H, COOH or CH2—COOH; and

    • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula I, X2 is N.


In one embodiment, in the compound of Formula I, X1 is N.


In one embodiment, in the compound of Formula I, X1 is CH.


In one embodiment, in the compound of Formula I, R2 is COOH.


In one embodiment, in the compound of Formula I, R2 is H.


In one embodiment, in the compound of Formula I, R2 is CH2—COOH.


In one embodiment, in the compound of Formula I, X6 is CH.


In one embodiment, in the compound of Formula I, X6 is C6H6.


In one embodiment, in the compound of Formula I, R1 is N3.


In one embodiment, in the compound of Formula I, R1 is —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-20—R3 is replaced by at least one of aryl, heteroaryl or CONH.


In one embodiment, in the compound of Formula I, at least one CH2 of —(CH2)1-10—R3 is replaced by C6H6.


In one embodiment, in the compound of Formula I, at least one CH2 of —(CH2)1-10—R3 is replaced by a triazole.


In one embodiment, in the compound of Formula I, X5 is CONH.


In one embodiment, in the compound of Formula I, X5 is (CH2)1-2—CONH.


In one embodiment, in the compound of Formula I, X4 and X13 are C6H6.


In one embodiment, in the compound of Formula I, X4 and X13 are (CH2)1-5.


In one embodiment, in the compound of Formula I, X5 is C(O), X13 is C6H6 and X4 is (CH2)1-5, wherein one CH2 of (CH2)1-5 is replaced by NH.


In one embodiment, in the compound of Formula I, X5 is C(O), X4 and X13 are




embedded image


wherein X8 is N.


In one embodiment, in the compound of Formula I, X5 is C(O), X13 is




embedded image


X8 is N and X4 is (CH2)3—NH.


In one embodiment, in the compound of Formula I, X3 is (CH2)1-6.


In one embodiment, in the compound of Formula I, at least one CH2 of (CH2)1-6 is replaced by CONH.


In one embodiment, in the compound of Formula I, X3 is CH2.


In one embodiment, in the compound of Formula I, at least one CH2 of (CH2)1-6 is replaced by aryl.


In one embodiment, in the compound of Formula I, one CH2 of (CH2)1-6 is replaced by CONH.


In one embodiment, in the compound of Formula I, R3 is a radioisotope.


In one embodiment, in the compound of Formula I, R1 is selected from the group consisting of:




embedded image


In one embodiment, in the compound of Formula I, R1 is:




embedded image


In one embodiment, the present invention is a compound that is:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,


      wherein R10 is selected from the group consisting of radionuclide and halo.





In another embodiment, the present invention is a compound of Formula Ia:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X18 is selected from the group consisting of aryl or CH2;
      • X19 is selected from the group consisting of (CH2)n and CONH—(CH2)p;
      • R1 is selected from the group consisting of alkyne, N3, NO2, —(CH2)1-20—R3 where at least one CH2 of —(CH2)1-20—R3 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R3 is optionally substituted with COOH or NO2; and (—CH2—CH2—O—)1-5—NH2 where at least one CH2 of (—CH2—CH2—O—)1-5—NH2 is optionally replaced by aryl or heteroaryl;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope,
      • wherein n is 1 or 3; and
      • wherein p is 1, 2 or 4.





In one embodiment, in the compound of Formula Ia, R1 is N3.


In one embodiment, in the compound of Formula Ia, R1 is selected from the group consisting of —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-10—R3 is optionally replaced by at least one of —O—, aryl, heteroaryl or CONH.


In one embodiment, in the compound of Formula Ia, X18 is CH2.


In one embodiment, in the compound of Formula Ia, X18 is aryl.


In one embodiment, in the compound of Formula Ia, X19 is (CH2)n.


In one embodiment, in the compound of Formula Ia, X19 is CONH—(CH2)p.


In one embodiment, in the compound of Formula Ia, X1 is N.


In one embodiment, in the compound of Formula Ia, R3 is a radioisotope.


In another embodiment, the present invention is a compound of Formula Ib:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X3 is (CH2)1-6 wherein at least one CH2 is optionally replaced by at least one of CONH or aryl;
      • X7 is CH or N;
      • R9 is —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-10—R3 is optionally replaced by at least one of aryl, heteroaryl or CONH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula Ib, X7 is N.


In one embodiment, in the compound of Formula Ib, X7 is CH.


In one embodiment, in the compound of Formula Ib, X3 is CH2.


In one embodiment, in the compound of Formula Ib, X3 is (CH2)1-6, wherein one CH2 is replaced by CONH.


In one embodiment, in the compound of Formula Ib, X3 is (CH2)2-6, wherein one CH2 is replaced by aryl.


In one embodiment, in the compound of Formula Ib, R3 is a radioisotope.


In one embodiment, in the compound of Formula Ib, R9 is selected from the group consisting of:




embedded image


In another embodiment, the present invention is a compound of Formula Ic:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X7 is CH or N;
      • X20 is selected from the group consisting of (CH2)1-5 and CONH—(CH2)1-5;
      • R9 is —(CH2)1-10—R3 where at least one CH2 of —(CH2)1-10—R3 is optionally replaced by at least one of aryl, heteroaryl or CONH; and
      • R3 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula Ic, X7 is N.


In one embodiment, in the compound of Formula Ic, X7 is CH.


In one embodiment, in the compound of Formula Ic, X20 is CH2.


In one embodiment, in the compound of Formula Ic, X20 is CONH—(CH2)4.


In one embodiment, in the compound of Formula Ic, R3 is a radioisotope.


In one embodiment, in the compound of Formula Ic, R9 is selected from the group consisting of:




embedded image


In another embodiment, the present invention is a compound of Formula II:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X2 is CH or N;
      • X9 is (CH2)1-5 where at least one CH2 is optionally replaced by NH,
      • X10 is CH or N;
      • X11 is selected from the group consisting of (CH2), aryl, or heteroaryl, wherein at least one H of the aryl or heteroaryl is optionally replaced by NO2,
      • X12 is selected from the group consisting of O, CONH and (CH2)1-2 wherein at least one CH2 is optionally replaced by NH;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH;
      • R4 is selected from the group consisting of H, alkyne, N3, NO2, —(CH2)1-20—R8 where at least one CH2 of —(CH2)1-20—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R8 is optionally substituted with COOH or NO2;
      • R5 is selected from the group consisting of H and —(CH2)1-10—R8 where at least one CH2 of —(CH2)1-10—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl or CONH;
      • R6 is selected from the group consisting of H and —(CH2)1-10—R8 where at least one CH2 of —(CH2)1-10—R9 is optionally replaced by at least one of —O—, aryl, heteroaryl or CONH; and
      • R8 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula II, X1 is N; X2 is N; R2 is COOH; and R6 is H.


In one embodiment, in the compound of Formula II, X10 is CH.


In one embodiment, in the compound of Formula II, X10 is N.


In one embodiment, in the compound of Formula II, R4 is H, R6 is H and R5 is —(CH2)1-10 —R8 where at least one CH2 of —(CH2)1-10—R8 is replaced by heteroaryl and at least one CH2 is replaced by CONH.


In one embodiment, in the compound of Formula II, the at least one heteroaryl of —(CH2)1-10—R8 is a triazole.


In one embodiment, in the compound of Formula II, R5 is H, R6 is H and R4 is —(CH2)1-10 —R8 where at least one CH2 of —(CH2)1-10—R8 is replaced by heteroaryl.


In one embodiment, in the compound of Formula II, at least one heteroaryl of —(CH2)1-10 —R8 is a triazole.


In one embodiment, in the compound of Formula II, X12 is CONH.


In one embodiment, in the compound of Formula II, X12 is O and X11 is aryl.


In one embodiment, in the compound of Formula II, X12 is NH and X11 is heteroaryl.


In one embodiment, in the compound of Formula II, X11 is CH2.


In one embodiment, in the compound of Formula II, X9 is (CH2)1-5, wherein at least one CH2 is replaced by NH and wherein X11 is aryl or heteroaryl.


In one embodiment, in the compound of Formula II, R8 is a radioisotope.


In another embodiment, the present invention is a compound of Formula IIa:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X9 is (CH2)1-5;
      • X10 is CH or N;
      • X15 is selected from the group consisting of O and NH;
      • X16 is (CH2)1-2;
      • X17 is N or CH;
      • R4 is selected from the group consisting of H, alkyne, N3, NO2, —(CH2)1-20—R8 where at least one CH2 of —(CH2)1-20—R8 is optionally replaced by at least one of —O—, aryl, heteroaryl, NH or CONH and wherein at least one H of —(CH2)1-20—R8 is optionally substituted with COOH or NO2;
      • R8 is selected from the group consisting of COOH, N3, alkyne, protecting group, halo and radioisotope; and
      • R9 is H or NO2.





In one embodiment, in the compound of Formula IIa, R9 is NO2.


In one embodiment, in the compound of Formula IIa, R4 is —(CH2)1-10—R8 where at least one CH2 of —(CH2)1-10—R8 is replaced by a heteroaryl.


In one embodiment, in the compound of Formula IIa, the at least one heteroaryl of —(CH2)1-10—R8 is a triazole.


In one embodiment, in the compound of Formula IIa, X15 is O and X17 is CH.


In one embodiment, in the compound of Formula IIa, X10 is N, X15 is NH.


In one embodiment, in the compound of Formula IIa, R8 is a halo or radionuclide.


In one embodiment, in the compound of Formula IIa, X9 is (CH2)4.


In one embodiment, the invention is a compound of Formula III:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X3 is (CH2)1-5 wherein at least one CH2 is optionally replaced by aryl;
      • R2 is selected from the group consisting of H, COOH or CH2—COOH;
      • R11 is selected from the group consisting of alkyne, N3, NO2, (CH2)1-10—R12 wherein at least one CH2 is optionally replaced by at least one of CONH, aryl or heteroaryl; and
      • R12 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula III, X1 is N.


In one embodiment, in the compound of Formula III, X1 is CH.


In one embodiment, in the compound of Formula III, X13 is (CH2)2 wherein at least one CH2 is replaced by aryl.


In one embodiment, in the compound of Formula III, X13 is (CH2)4.


In one embodiment, in the compound of Formula III, R11 is (CH2)1-10—R12 wherein at least one CH2 is replaced by at least one of CONH, aryl or heteroaryl.


In one embodiment, in the compound of Formula III, at least one CH2 of —(CH2)1-10—R3 is replaced by C6H6.


In one embodiment, in the compound of Formula III, at least one CH2 of —(CH2)1-10—R3 is replaced by a triazole.


In one embodiment, in the compound of Formula III, R11 is selected from the group consisting of:




embedded image


In one embodiment, in the compound of Formula III, R12 is a radioisotope.


In one embodiment, the invention is a compound of Formula IV:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X14 is selected from the group consisting of: C(O) and heteroaryl, wherein at least one H of the heteroaryl is substituted with NO2;
      • X15 is selected from the group consisting of: a bond, NH, CH2, aryl, heteroaryl;
      • X16 is at least one selected from the group consisting of: a bond, aryl, heteroaryl, (CH2)1-25, wherein at least one CH2 of (CH2)1-25 is optionally replaced with heteroaryl, CONH, and —O—; and
      • R13 is selected from the group consisting of H, NO2, N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula IV, X1 is NH.


In one embodiment, in the compound of Formula IV, X14 is




embedded image


In one embodiment, in the compound of Formula IV, X15 is C6H6.


In one embodiment, in the compound of Formula IV, X16 is




embedded image


In one embodiment, in the compound of Formula IV, X15 is a bond.


In one embodiment, in the compound of Formula IV, R13 is a radioisotope.


In one embodiment, the present invention is the following compound:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein R10 is selected from the group consisting of radionuclide and halo.





In one embodiment, in the compound of Formula IV, X14 is C(O) and X15 is a sugar.


In one embodiment, the invention is a compound of Formula V:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X17 is selected from the group consisting of: N and CH;
      • X18 is selected from the group consisting of: (CH2)1-10 wherein at least one CH2 of (CH2)1-10 is optionally replaced by NH, aryl, heteroaryl and wherein at least one H is optionally substituted with NO2;
      • R14 is selected from the group consisting of O and S; and
      • R15 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope





In one embodiment, the invention is a compound of Formula VI:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X19 is selected from the group consisting of: H, NO2, (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is optionally replaced by CONH, aryl, heteroaryl;
      • X20 is selected from the group consisting of: H, NO2, (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is optionally replaced by CONH, aryl, heteroaryl;
      • X21 is selected from the group consisting of (CH2)1-3 wherein at least one CH2 of (CH2)1-3 is optionally replaced by heteroaryl,
      • R14 is selected from the group consisting of O and S; and
      • R16 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.





In one embodiment, in the compound of Formula VI, X1 is N.


In one embodiment, in the compound of Formula VI, X19 is H and X20 is (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is replaced by CONH.


In one embodiment, in the compound of Formula VI, X20 is H and X19 is (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is replaced by CONH.


In one embodiment, in the compound of Formula VI, at least one CH2 of (CH2)1-10—R16 is replaced by triazole.


In one embodiment, in the compound of Formula VI, R16 is a radioisotope.


In one embodiment, the invention is a compound of Formula VII:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X2 is CH or N;
      • X22 is a protecting group; and
      • X23 is (CH2)1-10—NH2 wherein at least one CH2 of (CH2)1-10 is optionally replaced by at least one selected from the group consisting of S, O, NH, CONH, aryl, heteroaryl, cycloalkyl and heterocycloalkyl.





In one embodiment, in the compound of Formula VI, X22 is t-butyl.


In one embodiment, the invention is a method of forming a compound comprising:

    • reacting a compound of Formula VII with




embedded image


to form a first intermediate product;

    • coupling the first intermediate product with another compound of Formula VII to form a second intermediate product; and
    • removing the protecting groups.


In another embodiment, the present invention is a compound of Formula VIII:




embedded image




    • and pharmaceutically acceptable salts and isomers thereof,

    • wherein:
      • X1 is CH or N;
      • X24 is selected from the group consisting of (CH2)1-6 wherein at least one CH2 of (CH2)1-6 is optionally replaced by at least one selected from the group consisting of NH, O, S;
      • X25 is N or CH;
      • X26 is NH or CH2;
      • X27 is selected from the group consisting of: H, NO2, (CH2)1-10—R16 wherein at least one CH2 of (CH2)1-10 is optionally replaced by O, CONH, aryl, heteroaryl; and
      • R16 is selected from the group consisting of N3, alkyne, protecting group, halo and radioisotope.





In another embodiment, the present invention is a method of detecting comprising: administering a compound of any of Formulas I-VI and VIII to a mammal and scanning the mammal. The scanning may be performed after a predetermined time, using a PET or SPECT scanner.


In another embodiment, the present invention is a method of imaging PSMA comprising: administering a compound or a pharmaceutical composition of any of Formulas I-VI and VIII to a mammal and scanning the mammal. The scanning may be performed after a predetermined time, using a PET or SPECT scanner. The compound or composition may comprise a radiolabel.


In another embodiment, the present invention is a precursor to a hot or cold molecule, for example, a precursor to a radiotracer. The precursor preferably comprises an azide or an alkyne. More particularly, the azide or alkyne may be in the following positions: R1, R3, R4, R5, R11, R12, R13, R15 and R16. In one embodiment, any of R1, R3, R4, R5, R11, R12, R13, R15 and R16 comprises an azide. It is noted that precursors may also comprise leaving and/or protecting groups. Some examples of precursors are below.




embedded image


In another embodiment, the present invention is a method of synthesizing a tracer compound of Formulas I-VIII comprising: Reacting a compound of any of Formulas I-VIII, wherein in any of Formulas I-VIII, at least one H of R1, R3, R4, R5, R11, R12, R13, R15 and R16 is replaced by either a first alkyne or a first azide with a second azide or second alkyne having a radioisotope or halo. In the example below, R17 comprises an alkyne or an azide, preferably, an alkyne if any of R1, R3, R4, R5, R11, R12, R13, R15 and R16 comprises an azide.




embedded image


wherein R16 is an azide if Formulas I-VIII comprises an alkyne or R16 is an alkyne if Formulas I-VIII comprises an azide.


Table 1 shows compounds and their properties:
















TABLE 1










PSMA
PSMA
PSMA





Exact

Blkg %
Blkg %
Ki


ID
Structure
MW
Mass
CLogP
(10 μM)
(1.0 μM)
(nM)






















P001


embedded image


402.39
402.1
0.32
 97%

50





P002


embedded image


442.4
442.2
−0.23
 92%

15.6





P003


embedded image


458.9
458.1
0.34
 99%

NA





P004


embedded image


442.4
442.2
−0.23
 90%

15.6





P005


embedded image


488.5
488.2
−1.46
 89%

40.7





P006


embedded image


434.4
434.1
2.70
 0%







P007


embedded image


522.5
522.2
0.80
 0%







P008


embedded image


511.5
511.2
1.52
 21%







P009


embedded image


226.1
226
−1.51
100%

6.6





P010


embedded image


352.3
352.1
−0.07
 0%







P011


embedded image


381.3
381.1
−0.22
 0%







P012


embedded image


526.5
526.2
0.18
 0%







P013


embedded image


385.4
385.1
3.17
 16%







P014


embedded image


461.4
461.2
0.21
 0%







P015


embedded image


396.4
396.1
−0.04
 0%







P016


embedded image


461.4
461.2
0.28
 12%







P017


embedded image


399.4
399.1
2.92
 0%







P018


embedded image


467.4
467.2
1.31
 99%

15.6





P019


embedded image


467.4
467.2
1.31
 97%

37.5





P020


embedded image


431.4
431.2
−1.72
 0%







P021


embedded image


397.3
397.1
−0.11
 0%







P022


embedded image


248.2
248.1
−1.23
 77%







P023


embedded image


373.1
373.1
−0.36
 24%







P024


embedded image


276.2
276.1
−0.66
 6%







P025


embedded image


262.2
262.1
−0.92
 92%







P026


embedded image


262.2
262.1
−1.22
 2%







P027


embedded image


249.2
249.1
−1.17
 31%







P028


embedded image


384.4
384.1
0.91
 24%







P029


embedded image


275.3
275.1
−0.52
 12%







P030


embedded image


261.2
261.1
−1.09
 2%







P031


embedded image


329.3
329.1
−1.18
 19%







P032


embedded image


599.5
502.2
−0.99
 50%








TFA











P033


embedded image


453.4
453.2
−0.08
 89%

0.78





P034


embedded image


513.4
416.4
−0.43
 70%








TFA











P035


embedded image


578.5
481.2
1.83
 0%








TFA











P036


embedded image


645.6
548.2
−0.49
 68%








TFA











P037


embedded image


258.1
258
−0.41
 12%







P038


embedded image


324.3
324.1
1.34
 2%







P039


embedded image


419.4
419.1
−0.61
 77%







P040


embedded image


417.4
417.1
−1.36
 42%







P041


embedded image


319.3
319.1
−4.62
 0%







P042


embedded image


434.4
434.1
−1.90
 0%







P043


embedded image


553.5
553.2
−2.11
 77%







P044


embedded image


567.5
567.2
−1.85
 62%







P045


embedded image


516.5
516.2
−1.00
 95%

10.9





P046


embedded image


530.6
530.3
−0.75
 80%

328





P047


embedded image


418.4
418.2
−2.33
 0%







P048


embedded image


461.5
461.2
−1.89
 0%







P049


embedded image


433.5
433.2
−2.67
 0%







P050


embedded image


415.4
415.2
−2.00
 0%







P051


embedded image


375.4
375.1
−3.68
 4%







P052


embedded image


400.5
400.1
1.13
 2%







P053


embedded image


564.6
564.2
1.20
 94%

31.3





P054


embedded image


550.5
550.2
0.94
100%

1.6





P055


embedded image


521.5
521.2
0.60
 94%

344





P056


embedded image


339.3
339.1
0.22
 0%







P057


embedded image


532.5
532.2
0.55
 32%







P058


embedded image


464.4
464.2
1.00
100%







P059


embedded image


478.4
478.2
1.25
 99%

12.5





P060


embedded image


320.2
320.1
−1.81
 96%







P061


embedded image


205.2
205.1
−2.41
 0%







P062


embedded image


464.3
464.2
1.02
 97%







P063


embedded image


478.4
478.2
1.28
 30%







P064


embedded image


618.6
618.4
0.49
 46%







P065


embedded image


550.5
550.2
−0.04
 96%

19.7





P065


embedded image


550.5
550.2
−0.04

 92%
9.1





P066


embedded image


448.4
448.2
0.66
 12%







P067


embedded image


578.6
578.2
0.48
 52%







P068


embedded image


592.6
592.3
0.73
 27%







P069


embedded image


469.4
469.2
1.06
 94%

250





P070


embedded image


469.5
469.2
1.10
 94%

59





P071


embedded image


485.5
485.2
1.06
 96%

31





P072


embedded image


507.5
507.2
0.11
 39%







P073


embedded image


512.5
512.2
−0.23
 2%







P074


embedded image


556.5
556.2
−1.69
 10%







P075


embedded image


288.3
288.1
−0.55
 32%







P076


embedded image


598.6
598.2
−1.65
 14%







P077


embedded image


549.5
549.2
1.64
 28%







P078


embedded image


549.5
549.2
1.65
 94%

>312





P079


embedded image


577.6
577.2
3.70
 96%

313





P080


embedded image


518.6
518.4
−0.41
 90%

625





P081


embedded image


514.5
514.2
−1.25
 25%







P082


embedded image


307.3
307.1
−1.35
 4%







P083


embedded image


467.5
467.2
0.52
100%







P084


embedded image


522.5
522.2
0.11
 19%







P085


embedded image


536.5
536.2
1.01
 0%







P086


embedded image


460.4
460.2
1.49
 25%







P087


embedded image


288.3
288
0.26
 3%







P088


embedded image


550.5
550.2
1.06
 83%

>407





P089


embedded image


611.5
611.1
0.73
 88%

>407






para:ortho = 3:1











P090


embedded image


493.5
493.2
1.05
 85%

313





P091


embedded image


536.5
536.2
−1.48
 23%







P092


embedded image


566.5
566.2
0.95
 99%

31





P093


embedded image


431.4
431.2
−1.14
 16%







P094


embedded image


660.7
660.3
0.54
 7%







P095


embedded image


348.3
348.1
0.95
 4%







P096


embedded image


517.5
517.2
0.67
 3%







P097


embedded image


362.3
362.1
−2.46
fluorescence interference







P098


embedded image


348.3
348.1
−2.01
 23%







P099


embedded image


356.3
356.1
−1.75
 0%







P100


embedded image


548.5
548.2
0.80
 3%







P101


embedded image


621.6
621.2
3.87
 0%







P102


embedded image


559.5
559.2
1.68
 0%







P103


embedded image


606.6
606.3
1.24
 91%

235





P104


embedded image


713.7
713.3
4.32
 7%







P105


embedded image


789.8
789.3

 5%







P106


embedded image


561.5
561.2
1.47
 67%







P107


embedded image


628.6
628.2
2.40
 19%







P108


embedded image


576.6
576.2
2.31
 11%







P109


embedded image


373.3
373.1
0.03
 24%







P110


embedded image


578.6
578.2
0.07
 8%







P111


embedded image


507.5
507.2
1.30
 9%







P112


embedded image


563.6
563.3
0.25
 4%







P113


embedded image


566.5
566.2
1.41
 11%







P114


embedded image


686.7
686.3
0.82
 8%







P115


embedded image


535.5
535.2
0.51
 36%







P116


embedded image


481.5
481.2
0.19
 31%







P117


embedded image


609.6
609.3
0.23
 18%







P118


embedded image


622.6
622.2
2.44
 13%







P119


embedded image


465.5
465.2
−0.89
 26%







P120


embedded image


566.5
566.2
0.34
 15%







P121


embedded image


372.3
372.1
−0.89
 7%







P122


embedded image


438.4
438.2
0.28
 18%







P123


embedded image


453.4
453.1
0.11
 17%







P124


embedded image


420.4
420.1
−0.68
 10%







P125


embedded image


349.2
349.1
−0.66
 2%







P126


embedded image


258.2
258.1
−2.52
 12%







P127


embedded image


377.3
377.1
−2.24
 10%







P128


embedded image


572.5
572.1
0.30
 12%







P129


embedded image


520.5
520.2
0.21
 10%







P130


embedded image


705.8
705.3
2.56
 10%







P131


embedded image


423.4
423.2
−0.35
 6%







P132


embedded image


396.4
396.2
0.82
 17%







P133


embedded image


456.4
456.2
0.03
 95%

125





P134


embedded image


381.4
381.2
−0.32
 37%







P135


embedded image


411.4
411.1
−0.19
 42%







P136


embedded image


477.5
477.2
−0.06
 91%







P136


embedded image


477.5
477.2
−0.06
 40%







P137


embedded image


473.4
473.2
0.02
 3%







P138


embedded image


593.7
593.2
2.68
 6%







P139


embedded image


455.4
455.2
−0.24
 16%







P140


embedded image


469.4
469.2
1.06
 64%







P141


embedded image


536.5
536.2
0.53
 1%







P142


embedded image


474.4
474.2
−1.48
 5%







P143


embedded image


483.5
483.2
0.00
 15%







P144


embedded image


479.5
479.2
0.67
 7%







P145


embedded image


509.5
509.2
1.24
 7%







P146


embedded image


582.6
582.2
0.95
 45%







P147


embedded image


608.6
608.3
2.79
 69%







P148


embedded image


504.5
504.2
−1.23
 87%

250





P149


embedded image


427.4
427.2
0.60
 0%







P150


embedded image


555.6
555.2
1.16
 9%







P151


embedded image


778.7
778.3
2.17
 17%







P152


embedded image


566.5
566.2
0.95
 93%

128





P153


embedded image


574.6
574.2
−0.17
 63%







P154


embedded image


384.4
384.1
1.05
 50%







P155


embedded image


441.4
441.2
0.65
 97%

3.1





P156


embedded image


455.4
455.2
0.90
 87%

219





P157


embedded image


528.5
528.2
0.33
 79%

>313





P158


embedded image


526.5
526.2
0.58
 99%

34.4





P159


embedded image


507.5
507.2
0.69
 39%







P160


embedded image


499.5
499.2
1.01
 88%

219





P161


embedded image


485.5
485.2
0.76
 96%







P162


embedded image


457.4
457.2
0.66
 79%

>531





P163


embedded image


398.3
398.1
0.39
 0%







P164


embedded image


577.5
577.2
0.35
 80%

>407





P165


embedded image


245.2
245.1
−2.50
 11%







P166


embedded image


504.5
5.4.2
−1.23
 87%

>375





P167


embedded image


501.5
501.2
0.77
 93%

>657





P168


embedded image


463.4
463.2
0.59
 98%







P169


embedded image


457.4
457.2
0.66
 79%

156





P170


embedded image


535.5
535.2
1.55
 58%







P171


embedded image


576.5
576.2
1.33
 87%







P172


embedded image


668.6
668.2
−0.41
 95%

313





P173


embedded image


445.4
445.2
−1.42
 31%







P174


embedded image


499.4
499.2
0.01
 1%







P175


embedded image


466.5
466.2
−0.27
 18%







P176


embedded image


512.5
512.2
−0.14
 77%







P177


embedded image


487.5
487.2
−0.07
 38%







P178


embedded image


360.3
360.1
0.76
 1%







P179


embedded image


376.3
376.1
0.51
 4%







P180


embedded image


376.3
376.1
0.51
 5%







P181


embedded image


413.4
413.1
1.74
 39%







P182


embedded image


458.4
458.1
−0.21
 92%







P183


embedded image


351.3
351.1
0.68
 36%







P184


embedded image


441.5
441.2
−2.11
 10%







P185


embedded image


761.7
761.2
1.22
 99%







P186


embedded image


528.5
528.2
0.33
 85%







P187


embedded image


508.5
508.2
0.90
 77%







P188


embedded image


431.4
431.2
−0.49
 99%

6.6





P189


embedded image


295.2
295.1
−1.50
 81%

>688





P190


embedded image


253.1
253
−2.10
 95%

188





P191


embedded image


564.6
564.2
0.22
 78%







P192


embedded image


520.49
520.19
0.22
 29%







P193


embedded image


513.5
513.2
−3.67
 0%







P194


embedded image


767.8
767.3
1.03
 96%

69





P195


embedded image


509.5
509.2
1.55
 96%

66





P196


embedded image


385.2
271.1
−1.72
 27%







P197


embedded image


329.3
329.1
−0.88
 22%

>3000





P198


embedded image


372.3
372.1
−3.22
 14%







P199


embedded image


484.5
484.2
1.82
 82%

 >188 nM





P200


embedded image


581.6
581.2
1.03
 95%

 <0.3 nM





P201


embedded image


409.4
409.2
−1.33
 83%

>300





P202


embedded image


509.5
509.2
0.07
 97%

94





P203


embedded image


597.6
597.2
0.31
 97%

41





P204


embedded image


368.3
368.1
−0.69
 98%

6.9





P205


embedded image


427.4
427.1
−1.73
 79%







P206


embedded image


568.5
568.2
1.55
 81%







P207


embedded image


582.6
582.2
−1.22
 96%

18.8





P208


embedded image


481.5
481.2
0.19
 75%







P209


embedded image


509.5
509.2
0.39
 44%







P210


embedded image


398.3
398.1
−0.31
 16%







P211


embedded image


426.4
426.1
3.31
 43%







P212


embedded image


599.6
599.2
1.95
 99%

3.1





P213


embedded image


385.3
385.1
−1.20
 33%







P214


embedded image


409.4
409.2
0.22
 34%







P215


embedded image


584.6
584.2
1.64
 99%

2.2





P216


embedded image


654.6
654.2
−0.81
 98%

21.9





P217


embedded image


522.5
522.2
−0.48
 96%

31.3





P218


embedded image


605.6
605.2
3.08
 98%

0.6





P219


embedded image


535.5
535.2
0.51
 74%







P220


embedded image


521.5
521.2
0.13

 34%






P221


embedded image


493.4
493.2
−0.03

 15%






P222


embedded image


599.6
599.2
2.06

 98%
0.56





P223


embedded image


732.7
732.2
−0.28

 98%
1.1





P224


embedded image


524.5
524.2
2.03

 65%






P225


embedded image


596.6
596.2
−2.23

 7%






P226


embedded image


596.6
596.2
−2.38

 32%






P227


embedded image


568.5
568.2
−2.09

 15%






P228


embedded image


431.4
431.2
−1.72

 24%






P229


embedded image


508.5
508.2
1.42

 25%






P230


embedded image


618.7
618.3
0.98

 95%
13





P231


embedded image


600.6
600.3
2.79

 63%






P232


embedded image


496.5
46.1
2.73

 96%






P233


embedded image


523.5
523.1
2.34

 96%






P234


embedded image


534.6
534.1
3.85

 86%






P235


embedded image


522.5
522.1
2.61

100%
<0.3





P236


embedded image


513.9
513.1
1.95

 99%






P237


embedded image


634.6
634.3
1.03

100%
3.8





P238


embedded image


963.9
963.3


100%
<0.3





P239


embedded image


467.4
467.2
−0.08

 33%






P240


embedded image


639.7
639.3
3.97

 94%
28





P241


embedded image


475.4
475.2
1.35

 94%
0.38





P242


embedded image


583.5
583.2
1.05

 99%
0.07





P243


embedded image


502.5
502.2
−2.08

 5%






P244


embedded image


662.7
662.2
2.01

 98%
0.38





P245


embedded image


564.5
564.2
—0.13

 62%
156





P246


embedded image


895.8
895.3


100%
0.16





P247


embedded image


579.5
579.2
0.45

100%
0.63





P248


embedded image


696.7
696.3
0.90

100%
3.4





P249


embedded image


662.7
662.4
0.53


9.4





P250


embedded image


607.6
607.2
1.51

 96%
4.1





P251


embedded image


699.7
699.3
1.59

100%
0.34





P252


embedded image


923.8
923.3


 59%
94





P253


embedded image


628.6
628.2
1.53

 96%
0.2





P254


embedded image


909.9
909.4


 95%
0.4





P255


embedded image


564.6
564.2
0.27

 62%






P256


embedded image


536.5
536.2
−0.17

 27%






P257


embedded image


558.6
558.2
−0.45

 5%






P258


embedded image


709.7
709.3



41





P259


embedded image


594.6
594.2
0.83

 98%






P260


embedded image


649.7
649.3
0.64

 81%






P261


embedded image


918.9
918.4


 98%
1.0





P262


embedded image


706.7
706.3
0.36

 96%






P263


embedded image


1120.1
1119.5


 98%
1.3





P264


embedded image


761.8
761.4


 96%






P265


embedded image


459.4
459.1
0.92

 97%






P266


embedded image


1080
1079.4


 98%
0.3





P267


embedded image


929.9
929.3


 82%






P268


embedded image


723.7
723.3
−1.00

 68%






P269


embedded image


459.4
459.1
0.47

 66%






P270


embedded image


1464.4
1463.6


 71%
  0.2 nM





P271


embedded image


611.6
611.3
0.89

 98%
0.8





P272


embedded image


947.9
947.4


 97%
2.5





P273


embedded image


1194.1
1193.5


 97%
0.2





P274


embedded image


1245.2
1244.5



13.1





P275


embedded image


1188.1
1187.4



6.6





P276


embedded image


918.9
918.4



1.3





P277


embedded image


1095.99
1095.4



0.4





P278


embedded image


980.95
980.4



0.2





P279


embedded image


464.4
464.1
0.35


1.6





P280


embedded image


1076.4
1076.1



0.9





P281


embedded image


1232.6
1232.2



1.3





P282


embedded image


1008.4
1008.1



1.1





P283


embedded image


982.9
952.4


 98%
0.9





P284


embedded image


620.2
620.1
0.58

 96%






P285


embedded image


1464.4
1463.6



0.5





P286


embedded image


1041.99
1041.3


 92%
12.5





P287


embedded image


1382.4
1381.6


 95%
1





P288


embedded image


1041
1040.4


 85%
9.7





P289


embedded image


691.7
691.3


 0%






P290


embedded image


807.8
807.4


 0%






P291


embedded image


1421.5
1421.3


 95%
5





P292


embedded image


1060.5
1060.3


 96%
0.7





P293


embedded image


869.7
869.3


45







90%











P294


embedded image


1109.1
1108.4


99






P295


embedded image


453.4
453.2
1.05

45






P296


embedded image


925.9
925.3


 72%






P297


embedded image


895.8
895.3


 31%






P298


embedded image


869.7
869.3


 88%









It will be understood that the halogens may be replaced by radiolabeled atoms such as 11C and 18F. Radioactive atoms may also be used with those compounds that do not show a halogen or radioactive atom. It will also be understood that these compounds may be precursors. As such, they may comprise an alkyne or azide or protecting group.


Examples

A general reaction scheme for forming monomeric compounds of the present invention is shown below. Other synthesis methods may be used.




embedded image


A general reaction scheme for forming compounds of the present invention is shown below. Other synthesis methods may be used.




embedded image


embedded image


embedded image


Experimental Data
a. Chemical Synthesis
i. General Reaction Procedures
1. General Procedure for the Formation of Amide:



embedded image


A mixture of 1 (1.0 equv.), various acid (1.0 equv.), EDC HCl (1.0 equiv.), and HOBt (1.0 equiv.) in DMF (4.0 mL) was stirred at room temperature overnight, concentrated in vacuo. The residue was purified on flash column chromatography (silical gel, 20-80% EtOAc/hexanes) to give the desired product.


2. General Procedure for the Removal of Tert-Butyl Group from Esters:




embedded image


A mixture of compound 2 in TFA/DCM/TIPS(1:1:0.01) was stirred at room temperature for 1-2 hrs, concentrated in vacuo. The residue was purified by either HPLC.


3. General Procedure for the N-Alkylation:



embedded image


A mixture of amine (1.0 equiv.), bromide (1.1 equiv.), and triethylamine (3.0 equiv.) in DMF (8.0 mL) was stirred at room temperature for 3 days, and then concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 5-50% EtOAc/hexanes) to give the desired product.


4. General Procedure for “Click Chemistry”:



embedded image


To a solution of 2 (1.0 equiv.), 5-fluoropent-1-yne (1.0 equiv.), and aqueous CuSO4 solution (0.1 M, 1.0 equiv.) in THF (2.0 mL) was added sodium ascorbate (2.1 equiv.). The resulting mixture was stirred at room temperature for 1 hr, and then concentrated in vacuo. The residue was diluted with water, extracted with DCM (2×10 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The residue was either purified by HPLC or used directly in the next step without any further purification.


5. General Procedure for Removal of Benzyl Group:



embedded image


A mixture of a benzylated compound and Pd/C (10%, catalytic amount) in MeOH (15 mL) was stirred at room temperature under H2 atmosphere (1 atm) for 2-4 hrs. The mixture was then filtered through a short Celite pad, washed with MeOH. The filtrate was concentrated in vacuo. The residue was either purified by HPLC or used directly in the next step without any further purification.


6. General Procedure for Urea Formation:



embedded image


(9S,13S)-Tri-tert-butyl-10-methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate: To a cooled (−78° C.) stirring solution of (S)-glutamic acid di-tert-butyl ester HCl salt (1 mmol, 1 eq) and triphosgene (0.5 mmol, 0.5 eq) in dry DCM (5 ml), Et3N (1.4 mL, 10 eq) was added. The reaction mixture was stirred at −78° C. for 1 h then at 0° C. for 1 h. A solution of CBZ-lysine-N-methyl tert-butyl ester (1 mmol, 1 eq) in DCM (3 ml) was added to the above isocyanate solution and continued the stirring 0° C. to RT for 16 h. The volatiles were removed and the residue was purified on flash column chromatography (silical gel, 20-80% EtOAc/hexanes) to give the desired product.


7. General Click Labeling for Dimers (e.g., Compound 297):



embedded image


Preparation of Dimer Precursor (e.g., P238)



embedded image


Synthesized Compounds



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on a 10 mg scale. Product was purified on a Biotage purification system eluting out in 2050 EtOAc:Hexanes mixture in a gradient elution to give the title compound (11 mg, 48%). MS: m/z=611 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-fluoronicotinamido)pentyl)ureido)pentanedioic Acid (P002)



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 11 mg scale. After HPLC purification, P002 (5 mg, 63%) was obtained. MS: m/z=443 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-(6-chloronicotinamido)-1-oxohexan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on an 18 mg scale. Product was purified on a Biotage purification system eluting out in 20-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (11 mg, 48%). MS: m/z=627 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-chloronicotinamido)pentyl)ureido)pentanedioic Acid (P003)



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 11 mg scale. After HPLC purification, P003 (3.9 mg, 49%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.67-8.70 (m 1H), 8.07-8.10 (m, 1H), 7.42-7.48 (m, 1H), 4.16-4.23 (m, 2H), 3.26-3.33 (m, 2H), 2.27-2.34 (m, 2H), 1.99-2.09 (m, 1H), 1.73-1.84 (m, 2H), 1.50-1.65 (m, 3H), 1.35-1.44 (m, 2H). MS: m/z=459 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-(2-fluoroisonicotinamido)-1-oxohexan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on a 17 mg scale. Product was purified on a Biotage purification system eluting out in 20-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (21 mg, 100%). MS: m/z=611 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-fluoroisonicotinamido)pentyl)ureido)pentanedioic Acid (P004)



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 11 mg scale. After HPLC purification, P004 (3.9 mg, 49%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.21-8.24 (m 1H), 7.53-7.56 (m, !H), 7.31-7.33 (m, 1H), 4.16-4.23 (m, 2H), 3.30 (t, J=6.8 Hz, 2H), 2.27-2.34 (m, 2H), 1.99-2.07 (m, 1H), 1.73-1.84 (m, 2H), 1.51-1.65 (m, 3H), 1.35-1.44 (m, 2H). MS: m/z=443 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-6-(2-azidoacetamido)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on a 126 mg scale. Product was purified on a Biotage purification system eluting out in 0-20% EtOAc:Hexanes mixture in a gradient elution to give the title compound (98 mg, 67%). MS: m/z=571 (M+H+).


(S)-2-(3-((S)-5-(2-Azidoacetamido)-1-carboxypentyl)ureido)pentanedioic Acid (P005 Precursor)



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 68 mg scale. After HPLC purification, P005 Precursor (45 mg, 95%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.21-4.32 (m, 2H), 3.84 (s, 2H), 3.21 (t, J=8.0 Hz, 2H), 2.34-2.43 (m, 2H), 2.06-2.17 (m, 1H), 1.77-1.93 (m, 2H), 1.34-1.69 (m, 5H). MS: m/z=403 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)ureido)pentanedioic Acid (P005)



embedded image


General experimental procedure for click chemistry of (S)-2-(3-((S)-5-(2-Azidoacetamido)-1-carboxypentyl)ureido)-pentanedioic acid and 5-fluoropent-1-yne was followed. Reaction was performed on a 4 mg scale. After HPLC purification, P005 (3 mg, 60%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.78 (s, 1H), 5.08 (s, 2H), 4.56 (dt, J=47.6, 5.6 Hz, 2H), 4.22-4.32 (m, 2H), 3.16-3.26 (m, 2H), 2.82 (t, J=8.0 Hz, 2H), 2.36-2.44 (m, 2H), 1.96-2.18 (m, 3H), 1.76-1.93 (m, 1H), 1.39-1.68 (m, 6H). MS: m/z=489 (M+H+).


(S)-Dimethyl 5-(3-(3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)ureido)isophthalate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 500 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (564 mg, 55%). 1H NMR (CDCl3, 400 MHz) δ 8.27 (t, J=1.6 Hz, 1H), 8.13 (d, J=1.6 Hz, 1H), 7.59 (br s, 1H), 6.88 (d, J=8.4 Hz, 2H), 6.61 (d, J=8.4 Hz, 2H), 5.48-5.56 (m, 1H), 4.69-4.85 (m, 1H), 3.87 (s, 6H), 3.72 (s, 3H), 3.02 (d, J=6.0 Hz, 2H). MS: m/z=431 (M+H+).


(S)-5-(3-(1-Carboxy-2-(4-(2-fluoroethoxy)phenyl)ethyl)ureido)isophthalic Acid (P006)



embedded image


A mixture of (S)-Dimethyl 5-(3-(3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)ureido)isophthalate (33 mg, 0.08 mmol), 1-bromo-2-fluoroethane (excess), and Cs2CO3 (33 mg, 0.1 mmol) in acetone (10 m) was heated at 75° C. for 4 hrs, cooled and concentrated in vacuo. The residue was used directly in the next step without any further purification. It was mixed with THF/120 (10.0/1.0 mL) containing LiOH (3 equiv.). The resulting mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated in vacuo. The residue was acidified with HCl, and then purified by HPLC to give the desired product (4.5 mg, 13%). 1H NMR (CD3OD, 400 MHz) δ 8.15 (s, 3H), 8.07 (d, J=8.8 Hz, 2H), 6.79 (d, J=8.4 Hz, 2H), 4.65 (t, J=4.0 Hz, 1H), 4.49-4.51 (m, 2H), 4.11 (t, J=4.0 Hz, 1H), 4.04 (t, J=4.0 Hz, 1H), 2.91-2.99 (m, 1H), 3.01-3.09 (m, 1H). MS: m/z=435 (M+H+).


(S)-Dimethyl 5-(3-(6-(((benzyloxy)carbonyl)amino)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)isophthalate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 500 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (150 mg, 11%). 1H NMR (CDCl3, 400 MHz) δ 8.10-8.25 (m, 2H), 7.71 (s, 1H), 7.22-7.38 (m 5H), 5.07 (s, 2H), 4.41 (m, 1H), 3.83 (s, 6H), 3.12-3.28 (m, 2H), 1.49-1.92 (m, 6H), 1.42 (s, 9H). MS: m/z=572 (M+H+).


(S)-Dimethyl 5-(3-(6-(2-azidoacetamido)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)isophthalate



embedded image


A mixture of (S)-Dimethyl 5-(3-(6-(((benzyloxy)carbonyl)-amino)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)isophthalate (200 mg, 0.35 mmol) and Pd/C (10%, catalytic amount) in MeOH (10 mL) was stirred under H2 (1.0 atm) for 4 hrs. The resulting mixture was passed through a short Celite pad. The filtrate was concentrated in vacuo. The residue was used directly in the next step without any further purification. It was then coupled with 2-azidoacetic acid using the general experimental procedure for the formation of amide. The crude product was purified on flash column chromatography (silica gel, 0-5% MeOH/DCM) to give the desired product (96 mg, 54%). 1H NMR (CDCl3, 400 MHz) δ 8.29 (s, 1H), 8.22 (s, 2H), 7.31 (brs, 1H), 6.48-6.55 (br s, 1H), 4.37-4.43 (m, 1H), 4.01 (s, 2H), 3.90 (s, 6H), 3.28-3.34 (m, 2H), 1.49-1.89 (m, 6H), 1.46 (s, 9H). MS: m/z=521 (M+H+).


(S)-5-(3-(1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-ureido)isophthalic Acid (P007)



embedded image


General experimental procedure for click chemistry of (S)-Dimethyl 5-(3-(6-(2-azidoacetamido)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)isophthalate and 5-fluoropent-1-yne was followed. Reaction was performed on 20 mg scale. The crude product from click chemistry was hydrolyzed first under TFA/DCM/TIPS condition, and then under basic condition. After HPLC purification, P007 (8 mg, 40%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.32 (s, 1H), 8.27 (s, 1H), 8.23 (s, 1H), 7.75 (s, 1H), 5.06 (s, 2H), 4.50 (t, J=60 Hz, 1H), 4.35-4.42 (m, 2H), 3.19-3.24 (m, 2H), 2.80 (t, J=7.6 Hz, 2H), 1.49-2.11 (m, 6H). MS: m/z=523 (M+H+).


(S)-tert-Butyl 6-(((benzyloxy)carbonyl)amino)-2-((2-(tert-butoxy)-2-oxoethyl)amino)hexanoate



embedded image


General experimental procedure for N-alkylation was followed. Reaction was performed on a 500 mg scale. Product was purified on a Biotage purification system eluting out in 10-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (482 mg, 80%). %). 1H NMR (CDCl3, 400 MHz) δ 7.25-7.32 (m, 5H), 5.10 (s, 2H), 4.85 (br s, 1H), 3.31 (s, 2H), 3.16-3.22 (m, 3H), 1.59-1.79 (m, 2H), 1.29-1.58 (m, 22H). MS: m/z=451 (M+H+).


Benzyl 2-(2-(tert-butoxy)-2-oxoethyl)hydrazinecarboxylate



embedded image


General experimental procedure for N-alkylation was followed. Reaction was performed on a 1000 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (920 mg, 54%). 1H NMR (CDCl3, 400 MHz) δ 7.31-7.42 (m, 5H), 6.79 (brs, 1H), 5.15 (s, 2H), 3.58 (s, 2H), 1.47 (s, 9H). MS: m/z=281 (M+H+).


Di-tert-butyl 2,2′-(2-((benzyloxy)carbonyl)hydrazine-1,1-diyl)diacetate



embedded image


General experimental procedure for N-alkylation was followed. Reaction was performed on a 1.13 g scale. Product was purified on a Biotage purification system eluting out in 0-15% EtOAc:Hexanes mixture in a gradient elution to give the title compound (1.05 g, 66%). %). 1H NMR (CDCl3, 400 MHz) δ 7.26-7.42 (m, 5H), 3.67 (s, 4H), 1.43 (s, 18H). MS: m/z=395 (M+H+).


Benzyl 2-(2-(tert-butoxy)-2-oxoethyl)-2-(3-(tert-butoxy)-3-oxopropyl)-hydrazinecarboxylate



embedded image


General experimental procedure for N-alkylation was followed. Reaction was performed on a 250 mg scale. Product was purified on a Biotage purification system eluting out in 5-30% EtOAc:Hexanes mixture in a gradient elution to give the title compound (270 mg, 78%). 1H NMR (CDCl3, 400 MHz) δ 7.25-7.42 (m, 5H), 6.95 (br s, 1H), 5.10 (s, 2H), 3.58 (s, 2H), 3.15 (t, J=7.2 Hz, 2H), 2.35-2.52 (m, 2H). MS: m/z=409 (M+H+).


(S)-tert-Butyl 6-(((benzyloxy)carbonyl)amino)-2-((2-ethoxy-2-oxoethyl)amino)hexanoate



embedded image


General experimental procedure for N-alkylation was followed. Reaction was performed on a 1000 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (929 mg, 82%). 1H NMR (CDCl3, 400 MHz) δ 7.25-7.39 (m, 5H), 5.09 (s, 2H), 4.87 (br s, 1H), 4.18 (q, J=7.2 Hz, 2H), 3.36 (m, 2H), 3.09-3.25 (m, 3H), 1.36-1.72 (m, 15H), 1.27 (t, J=7.2 Hz, 3H). MS: m/z=423 (M+H+).


Di-tert-butyl 2,2′-(hydrazine-1,1-diyl)diacetate



embedded image


A solution of di-tert-butyl 2,2′-(2-((benzyloxy)carbonyl)hydrazine-1,1-diyl)diacetate (1.05 g, 2.7 mmol) and Pd/C (10%, catalytic amount) in MeOH (20 mL) was stirred under H2 atmosphere (1 atm) for 2 hrs. It was filtered through a short Celite pad, washed with MeOH. The filtrate was concentrated in vacuo. The residue was used directly in the next step without any further purification. MS: m/z=261 (M+H+).


tert-Butyl 3-(1-(2-(tert-butoxy)-2-oxoethyl)hydrazinyl)propanoate



embedded image


A solution of benzyl 2-(2-(tert-butoxy)-2-oxoethyl)-2-(3-(tert-butoxy)-3-oxopropyl)hydrazinecarboxylate (0.27 g, 0.67 mmol) and Pd/C (10%, catalytic amount) in MeOH (20 mL) was stirred under H2 atmosphere (1 atm) for 2 hrs. It was filtered through a short Celite pad, washed with MeOH. The filtrate was concentrated in vacuo. The residue was used directly in the next step without any further purification. MS: m/z=275 (M+H+).


(S)-3-(((Benzyloxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanoic Acid



embedded image


To a solution of (S)-3-amino-4-(tert-butoxy)-4-oxobutanoic acid (1.0 g, 5.3 mmol) and NaHCO3 (1.33 g, 15.8 mmol) in dioxane/H2O (1:1, 20 mL) was added a solution of benzyl chloroformate (0.9 g, 5.3 mmol) during 2 hrs. The resulting mixture was stirred at room temperature overnight, diluted with EtOAc (20 mL). The layers were separated. The aq. layer was washed with EtOAc (2×20 mL), and then it was acidified with 6N HCl to pH 2. It was then extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated. It was used directly in the next step without any further purification.


(9S,13S)-tri-tert-Butyl 10-(2-(tert-butoxy)-2-oxoethyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 475 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (373 mg, 47%). 1H NMR (CDCl3, 400 MHz) δ 7.27-7.38 (m, 5H), 5.84 (d, J=7.2 Hz, 1H), 5.08 (s, 2H), 5.04 (br s, 1H), 4.64 (br s, 1H), 4.32 (q, J=5.2 Hz, 1H), 3.97 (d, J=17.6 Hz, 1H), 3.78 (d, J=17.6 Hz, 1H), 3.18 (d, J=6.0 Hz, 2H), 2.19-2.41 (m, 2H), 2.03-2.14 (m, 1H), 1.81-1.95 (m, 2H), 1.32-1.72 (m, 40H). MS: m/z=736 (M+H+).


(9S,13S)-10-(Carboxymethyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P008



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 65 mg scale. After HPLC purification, P008 (4 mg, 8%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.14-7.28 (m, 5H), 4.96 (s, 2H), 4.50-4.62 (m, 1H), 4.21 (dd, J=9.2, 4.4 Hz, 1H), 4.06 (d, J=18 Hz, 1H), 3.87 (d, J=18 Hz, 1H), 3.01 (t, J=6.4 Hz, 2H), 2.32 (t, J=7.2 Hz, 2H), 2.01-2.12 (m, 1H), 1.78-1.93 (m, 2H), 1.58-1.72 (m, 1H), 1.19-1.52 (m, 4H). MS: m/z=512 (M+H+).


(S)-2-(3-(Carboxymethyl)-3-phenethylureido)pentanedioic Acid: P010



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. Reaction was performed on a 100 mg scale of tert-butyl 2-(phenethylamino)acetate. Isolated 14.1 mg (9.4%) of P010 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.23-7.29 (m, 4H), 7.15-7.22 (1H, m), 4.29 (dd, J=9.6, 4.8 Hz, 1H), 3.89 (d, J=18.4 Hz, 1H), 3.77 (d, J=18.4 Hz, 1H), 3.46-3.59 (m, 2H), 2.82-2.94 (m, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.10-2.20 (m, 1H), 1.88-1.98 (m, 1H); MS: m/z=353 (M+H+).


(S)-2-(1-(Carboxymethyl)-2-(2-phenylacetyl)hydrazinecarboxamido)pentanedioic Acid: P011



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. Reaction was performed on a 120 mg scale of tert-butyl 2-(2-(2-phenylacetyl)hydrazinyl)acetate. Isolated 10.0 mg (5.8%) of P011 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.23-7.31 (m, 4H), 7.20-7.22 (m, 1H), 4.28 (dd, J=9.2, 4.4 Hz, 1H), 3.60 (s, 2H), 2.32 (bt, J=7.4 Hz, 2H), 2.08-2.18 (m, 1H), 1.82-1.92 (m, 1H); MS: m/z=382 (M+H+).


(9S,13S)-9-tert-Butyl 13,15-dimethyl 10-(2-ethoxy-2-oxoethyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 280 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (367 mg, 54%). 1H NMR (CDCl3, 400 MHz) δ 7.20-7.31 (m, 5H), 5.93 (d, J=6.4 Hz, 1H), 5.05 (br s, 1H), 5.03 (s, 2H), 4.35-4.59 (m, 2H), 4.15 (q, J=13.6, 7.2 Hz, 2H), 4.01 (d, J=18.0 Hz, 1H), 3.85 (d, J=17.6 Hz, 1H), 3.66 (s, 3H), 3.61 (s, 3H), 3.05-3.36 (m, 2H), 2.06-2.18 (m, 1H), 1.74-2.04 (m, 2H), 1.38-1.71 (m, 4H), 1.40 (s, 9H), 1.22 (t, J=7.2 Hz, 3H). MS: m/z=624 (M+H+).


(S)-2-(3-((S)-6-(((Benzyloxy)carbonyl)amino)-1-(hydroxyamino)-1-oxohexan-2-yl)-3-(carboxymethyl)ureido)pentanedioic Acid: P012



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 367 mg scale. The free acid was then coupled with hydroxylamine, followed by hydrolysis with aqueous NaOH solution. After acidify with HCl, the crude product was purified by HPLC, P012 (8 mg, 28%) was obtained. 1H NMR (CDCl3, 400 MHz) δ 7.21-7.38 (m, 5H), 5.05 (br s, 1H), 5.03 (s, 2H), 4.62-4.70 (m, 1H), 4.42 (d, J=18 Hz, 1H), 4.11-4.23 (m, 3H), 3.59-3.74 (m, 3H), 3.08-3.21 (m, 2H), 2.38-2.52 (m, 2H), 1.68-1.96 (m, 2H), 1.19-1.67 (m, 5H). MS: m/z=527 (M+H+).


Di-tert-butyl 2,2′-(2-((3-(benzylthio)-1-methoxy-1-oxopropan-2-yl)carbamoyl)hydrazine-1,1-diyl)diacetate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 352 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (422 mg, 47%). 1H NMR (CDCl3, 400 MHz) δ 7.19-7.35 (m, 5H), 6.60 (br s, 1H), 4.65-4.71 (m, 1H), 3.74 (s, 2H), 3.72 (s, 3H), 3.54-3.66 (m, 4H), 2.74-2.93 (m 2H), 1.44 (s, 9H). MS: m/z=512 (M+H+).


2,2′-(2-((2-(Benzylthio)-1-carboxyethyl)carbamoyl)hydrazine-1,1-diyl)diacetic Acid: P013



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 211 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P013 (8 mg, 28%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.18-7.35 (m, 5H), 4.52 (dd, J=7.2, 4.8 Hz, 1H), 3.79 (s, 6H), 2.79-2.96 (m, 2H). MS: m/z=386 (M+H+).


Methyl 3-(benzylthio)-2-(2-(2-(tert-butoxy)-2-oxoethyl)-2-(3-(tert-butoxy)-3-oxopropyl)hydrazinecarboxamido)propanoate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 175 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (260 mg, 74%). 1H NMR (CDCl3, 400 MHz) δ 7.16-7.32 (m, 5H), 4.61-4.67 (m, 1H), 3.93 (d, J=17.6 Hz, 1H), 3.83 (d, J=17.6 Hz, 1H), 3.69 (br s, 5H), 3.51-3.57 (m, 2H), 2.88 (dd, J=13.6, 5.2 Hz, 1H), 2.80 (dd, J=13.6, 6.0 Hz, 1H), 2.53 (t, J=6.0 Hz, 2H), 1.43 (s, 9H), 1.41 (s, 9H). MS: m/z=526 (M+H+).


3-(Benzylthio)-2-(2-(2-carboxyethyl)-2-(carboxymethyl)-hydrazinecarboxamido)propanoic Acid: P017



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 260 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P017 (5 mg, 3%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.17-7.34 (m, 5H), 4.43-4.49 (m, 1H), 4.03-4.11 (m, 2H), 3.56-3.76 (m, 4H), 2.60-2.92 (m, 4H). MS: m/z=400 (M+H+).


(S)-Di-tert-butyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 500 mg scale. Product was purified on a Biotage purification system eluting out in 20-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (190 mg, 23%). MS: m/z=653 (M+H+).


(S)-Di-tert-butyl 2-((S)-3-(((benzyloxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 1.09 g scale. Product was purified on a Biotage purification system eluting out in 10-60% EtOAc:Hexanes mixture in a gradient elution to give the title compound (1.5 g, 79%). MS: m/z=565 (M+H+).


(S)-Di-tert-butyl 2-((S)-2-amino-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


A solution of (S)-di-tert-butyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate (0.19 g, 0.285 mmol) in 20% solution of piperidine in DMF (10 mL) was stirred at room temperature for 1 hr, and then concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 10-50% EtOAc/hexanes) to give the desired product (0.078 g, 64%). 1H NMR (CDCl3, 400 MHz) δ 7.88 (d, J=8.4 Hz, 1H), 4.39-4.48 (m, 1H), 3.64 (q, J=8.0, 3.6 Hz, 1H), 2.78 (dd, J=16.8, 4.0 Hz, 1H), 2.56 (dd, J=16.8, 8.0 Hz, 1H), 2.19-2.35 (m, 2H), 2.07-2.17 (m, 1H), 1.81-1.93 (m, 1H), 1.45 (s, 9H), 1.43 (s, 9H), 1.42 (s, 9H). MS: m/z=431 (M+H+).


(S)-Di-tert-butyl 2-((S)-3-amino-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


A solution of (S)-di-tert-butyl 2-((R)-3-(((benzyloxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate (0.16 g, 0.285 mmol) in 20% solution of piperidine in DMF (10 mL) was stirred at room temperature for 1 hr, and then concentrated in vacuo. The residue was used directly in the next step without any further purification. MS: m/z=431 (M+H+).


(S)-Di-tert-butyl 2-((S)-2-(2-azidoacetamido)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 78 mg scale. Product was purified on a Biotage purification system eluting out in 30-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (94 mg, 100%). 1H NMR (CDCl3, 400 MHz) δ 7.47 (d, J=8.4 Hz, 1H), 7.13 (d, J=7.6 Hz, 1H), 4.71-4.81 (m, 1H), 4.35-4.42 (m, 1H), 3.99 (s, 2H), 2.88 (dd, J=17.2, 4.0 Hz, 1H), 2.55 (dd, J=17.2, 6.4 Hz, 1H), 2.14-2.32 (m, 2H), 2.03-2.13 (m, 1H), 1.81-1.91 (m, 1H), 1.41 (s, 9H), 1.40 (s, 9H), 1.39 (s, 9H). MS: m/z=514 (M+H+).


(S)-Di-tert-butyl 2-((S)-3-(2-azidoacetamido)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 123 mg scale. Product was purified on a Biotage purification system eluting out in 30-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (114 mg, 78%). 1H NMR (CDCl3, 400 MHz) δ 7.43 (d, J=7.6 Hz, 1H), 6.22 (d, J=7.6 Hz, 1H), 4.65-4.73 (m, 1H), 4.49-4.54 (m, 1H), 3.97 (s, 2H), 2.90 (dd, J=16.0, 4.4 Hz, 1H), 2.71 (dd, J=16.0, 4.4 Hz, 1H), 2.16-2.46 (m, 2H), 2.04-2.15 (m, 1H), 1.78-1.91 (m, 1H), 1.45 (s, 9H), 1.44 (s, 9H), 1.42 (s, 9H). MS: m/z=514 (M+H+).


(S)-di-tert-butyl 2-((S)-3-(4-azidobutanamido)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 123 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (210 mg, 95%). 1H NMR (CDCl3, 400 MHz) δ 7.43 (d, J=7.6 Hz, 1H), 6.22 (d, J=7.6 Hz, 1H), 4.63-4.72 (m, 1H), 4.50-4.55 (m, 1H), 2.90 (dd, J=16.0, 4.4 Hz, 1H), 2.71 (dd, J=16.0, 4.4 Hz, 1H), 2.16-2.46 (m, 4H), 2.04-2.15 (m, 2H), 1.62-1.81 (m, 4H), 1.45 (s, 9H), 1.44 (s, 9H), 1.42 (s, 9H). MS: m/z=542 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-4-oxo-2-(2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)acetamido)butanamido)pentanedioate



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 60 mg scale. The crude product was examined with LC-MS, which shows a single peak with desired product mass. MS: m/z=630 (M+H+).


(S)-2-((S)-3-Carboxy-3-(2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)acetamido)-propanamido)pentanedioic Acid: P014



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 74 mg scale. After HPLC purification, P014 (28 mg, 52%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.75 (d, J=7.6 Hz, 1H), 8.32 (d, J=7.6 Hz, 1H), 7.70 (d, J=8.0 Hz, 2H), 7.25 (d, J=8.0 Hz, 2H), 5.27 (s, 2H), 4.79-4.82 (m, 1H), 4.41-4.49 (m, 1H), 2.72-2.92 (m, 2H), 2.42 (t, J=8.0 Hz, 2H), 2.37 (s, 3H), 2.16-2.26 (m, 1H), 1.91-2.03 (m, 1H). MS: m/z=462 (M+H+).


(S)-2-((S)-3-(((Benzyloxy)carbonyl)amino)-3-carboxypropanamido)pentanedioic Acid: P015



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 17 mg scale. After HPLC purification, P015 (10 mg, 84%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.20-7.35 (m, 5H), 5.08 (s, 2H), 4.53 (t, J=7.4 Hz, 1H), 4.39-4.45 (m, 1H), 2.78 (d, J=6.4 Hz, 2H), 2.36 (t, J=8.0 Hz, 2H), 2.09-2.21 (m, 1H), 1.82-1.95 (m, 1H). MS: m/z=397 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-4-oxo-3-(2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)acetamido)butanamido)pentanedioate



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 6 mg scale. The crude product was diluted with water, extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 20-60% EtOAc/hexanes) to give the desired product. 1H NMR (CDCl3, 400 MHz) δ 7.95 (s, 1H), 7.70 (d, J=8.2 Hz, 2H), 7.20 (d, J=8.2 Hz, 2H), 6.34 (d, J=8.0 Hz, 1H), 5.12 (s, 2H), 4.65-4.73 (m, 1H), 3.97-4.45 (m, 1H), 2.86 (dd, J=16.0, 4.4 Hz, 1H), 2.73 (dd, J=16.0, 4.6 Hz, 1H), 2.35 (s, 3H), 2.17-2.34 (m, 2H), 2.03-2.15 (m, 1H), 1.80-1.92 (m, 1H), 1.45 (s, 9H), 1.42 (s, 9H), 1.41 (s, 9H). MS: m/z=630 (M+H+).


(S)-2-((S)-3-Carboxy-3-(2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)acetamido)-propanamido)pentanedioic Acid: P016



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 7 mg scale. After HPLC purification, P016 (3 mg, 51%) was obtained. 1H NMR (CDCl3, 400 MHz) δ 8.19 (s, 1H), 7.60 (d, J=8.0 Hz, 2H), 7.15 (d, J=8.0 Hz, 2H), 5.17 (s, 2H), 4.67-4.72 (m, 1H), 4.33-4.38 (m, 1H), 2.79 (d, J=6.0 Hz, 2H), 2.32 (t, J=7.6 Hz, 2H), 2.27 (s, 3H), 2.03-2.15 (m, 1H), 1.82-1.95 (m, 1H). MS: m/z=462 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)butanamido)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 12 mg scale. The crude product was diluted with water, extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 20-60% EtOAc/hexanes) to give the desired product (9.4 mg, 64%). MS: m/z=600 (M+H+).


(9S,13S)-Tri-tert-butyl 10-methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 169 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (53 mg, 15%). 1H NMR (CDCl3, 400 MHz) δ 7.25-7.35 (m 5H), 5.04 (s, 2H), 4.8-4.91 (m, 1H), 4.26-4.38 (m, 1H), 3.08-3.22 (m, 2H), 2.78 (s, 3H), 2.19-2.42 (m, 4H), 1.44-2.12 (m, 4H), 1.45 (s, 9H), 1.42 (s, 9H), 1.41 (s, 9H), 1.22-1.36 (m, 2H). MS: m/z=636 (M+H+).


(9S,13S)-10-Methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P018



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 164 mg scale. After HPLC purification, P018 (7.1 mg, 6%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.21-7.31 (m, 5H), 5.04 (s, 2H), 4.68-4.76 (m, 1H), 4.22-4.32 (m, 1H), 3.09 (t, J=7.2 Hz, 2H), 2.83 (s, 3H), 2.44 (t, J=7.2 Hz, 2H), 2.12-2.22 (m, 1H), 1.86-2.25 (m, 2H), 1.66-1.82 (m, 1H), 1.42-1.56 (m, 2H), 1.25-1.38 (m, 2H). MS: m/z=468 (M+H+).


(9S,13S)-Tri-tert-butyl 12-methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 228 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (205 mg, 38%). 1H NMR (CDCl3, 400 MHz) δ 7.22-7.38 (m 5H), 5.04 (s, 2H), 4.28-4.42 (m, 2H), 3.15-3.22 (m, 2H), 2.78 (s, 3H), 2.19-2.42 (m, 4H), 1.44-2.12 (m, 4H), 1.45 (s, 9H), 1.42 (s, 9H), 1.41 (s, 9H), 1.22-1.36 (m, 2H). MS: m/z=636 (M+H+).


(9S,13S)-12-Methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P019



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 164 mg scale. After HPLC purification, P019 (7.1 mg, 6%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.19-7.25 (m, 5H), 4.96 (s, 2H), 4.72-4.85 (m, 1H), 4.15-4.21 (m, 1H), 3.03 (t, J=7.2 Hz, 2H), 2.75 (s, 3H), 2.12-2.25 (m, 3H), 1.62-1.95 (m, 3H), 1.28-1.51 (m, 4H). MS: m/z=468 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 120 mg scale. The crude product was diluted with water, extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 30-80% EtOAc/hexanes) to give the desired product (9.3 mg, 6%). 1H NMR (CDCl3, 400 MHz) δ 7.51 (s, 1H), 5.18 (s, 2H), 4.61-4.72 (m, 1H), 4.38-4.55 (m, 3H), 2.82-2.89 (m, 2H), 2.67-2.78 (m, 2H), 2.01-2.43 (m, 4H), 1.56-1.78 (m, 2H), 1.45 (s, 9H), 1.42 (s, 9H), 1.41 (s, 9H). MS: m/z=600 (M+H+).


(S)-2-((S)-3-Carboxy-3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-propanamido)pentanedioic Acid: P020



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 6 mg scale. After HPLC purification, P020 (1.2 mg, 27%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.88 (s, 1H), 5.18 (s, 2H), 4.58-4.68 (m, 1H), 4.38-4.46 (m, 3H), 2.78-2.85 (m, 4H), 2.39 (t, J=7.6 Hz, 2H), 1.91-2.32 (m, 4H). MS: m/z=432 (M+H+).


(S)-2-(2-(Benzyloxycarbonyl)-1-(carboxymethyl)hydrazinecarboxamido) pentanedioic Acid: P021



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. Reaction was performed on a 117 mg scale of benzyl 2-(2-tert-butoxy-2-oxoethyl)hydrazinecarboxylate. Isolated 23.5 mg (14.2%) of P021 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.26-7.40 (m, 5H), 5.17 (s, 2H), 4.31 (dd, J=9.0, 4.4 Hz, 1H), 3.96 (s, 2H), 2.36 (bt, J=7.4 Hz, 2H), 2.14-2.24 (m, 1H), 1.88-1.98 (m, 1H); MS: m/z=398 (M+H+).


(S)-di-tert-butyl 2-(3-(2-(tert-butoxy)-2-oxoethyl)ureido)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 97 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (125 mg, 90%). 1H NMR (CDCl3, 400 MHz) δ 4.29-4.39 (m, 1H), 3.79-3.94 (m, 2H), 2.21-2.38 (m, 2H), 2.01-2.11 (m, 1H), 1.81-1.91 (m, 1H), 1.45 (s, 9H), 1.42 (s, 9H), 1.41 (s, 9H). MS: m/z=417 (M+H+).


(S)-2-(3-(Carboxymethyl)ureido)pentanedioic Acid: P022



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 9.3 mg scale. After HPLC purification, P022 (5.0 mg, 90%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.20-4.33 (m, 1H), 3.70-3.84 (m, 2H), 2.28-2.35 (m, 2H), 2.01-2.12 (m, 1H), 1.78-1.86 (m, 1H). MS: m/z=249 (M+H+).


(S)-2-((S)-3-(4-Azidobutanamido)-3-carboxypropanamido)pentanedioic Acid: P023



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 5.5 mg scale. After HPLC purification, P023 (3.0 mg, 79%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.65 (t, J=6.0 Hz, 1H), 4.30-4.39 (m, 1H), 3.26 (t, J=6.8 Hz, 2H), 2.72 (d, J=6.0 Hz, 2H), 2.22-2.35 (m, 4H), 2.02-2.16 (m, 1H), 1.75-1.89 (m, 3H). MS: m/z=374 (M+H+).


(S)-2-(3-((S)-1,5-Di-tert-butoxy-1,5-dioxopentan-2-yl)-1-methylureido)propanoic Acid



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 160 mg scale. Product was purified on a Biotage purification system eluting out in 30-100% EtOAc:Hexanes mixture in a gradient elution to give the title compound (149 mg, 69%). MS: m/z=389 (M+H+).


(S)-2-(3-((S)-1-carboxyethyl)-3-methylureido)pentanedioic Acid: P024



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 149 mg scale. After HPLC purification, P024 (100 mg, 94%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.75-4.82 (m, 1H), 3.99-4.18 (m, 1H), 2.94 (s, 3H), 2.30-2.55 (m, 4H), 1.43 (d, J=7.2 Hz, 3H). MS: m/z=277 (M+H+).


(S)-Dimethyl 2-(3-((S)-1-methoxy-1-oxopropan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 160 mg scale. Product was purified on a Biotage purification system eluting out in 30-100% EtOAc:Hexanes mixture in a gradient elution to give the title compound (16 mg, 8%). MS: m/z=375 (M+H+).


(S)-2-(3-((S)-1-Carboxyethyl)ureido)pentanedioic Acid: P025



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 16 mg scale. After HPLC purification, P025 (3.0 mg, 26%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.20-4.32 (m, 2H), 2.35-2.41 (m, 2H), 2.05-2.16 (m, 1H), 1.80-1.91 (m, 1H), 1.35 (d, J=7.2 Hz, 3H). MS: m/z=263 (M+H+).


(S)-Di-tert-butyl 2-(3-(3-ethoxy-3-oxopropyl)ureido)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 160 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (139 mg, 61%). MS: m/z=403 (M+H+).


(S)-2-(3-(2-Carboxyethyl)ureido)pentanedioic Acid: P026



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 139 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P026 (3.4 mg, 4%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.09-4.15 (m, 1H), 3.62-3.75 (m, 2H), 2.58-2.64 (m, 2H), 2.31-2.48 (m 2H), 2.02-2.12 (m, 1H), 1.85-1.99 (m, 1H). MS: m/z=263 (M+H+).


(S)-Di-tert-butyl 2-(((2-(tert-butoxy)-2-oxoethoxy)carbonyl)amino)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 200 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give the title compound (92 mg, 36%). MS: m/z=286 (M+H+).


(S)-2-(((Carboxymethoxy)carbonyl)amino)pentanedioic Acid: P027



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 92 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P027 (3.5 mg, 6%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.44-4.62 (m, 2H), 4.16-4.22 (m, 1H), 2.45 (t, J=6.8 Hz, 2H), 2.11-21 (m, 1H), 1.86-1.95 (m, 1H). MS: m/z=250 (M+H+).


Dimethyl 2,2′-((2-(tert-butoxy)-2-oxoethyl)azanediyl)diacetate



embedded image


A mixture of tert-butyl 2-bromoacetate (0.55 g, 2.82 mmol), dimethyl 2,2′-azanediylacetate hydrochloride (0.557, 2.82 mmol), and DIPEA (1.47 mL, 8.5 mmol) in DMF (3.0 mL) was stirred at room temperature overnight and then concentrated in vacuo. The residue was purified on flask column chromatography (silica gel, 5-30% EtOAc/hexanes) to give the desired product (0.58 g, 75%). MS: m/z=276 (M+H+).


2-(Bis(2-methoxy-2-oxoethyl)amino)acetic Acid



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 580 mg scale. After the removal of solvents, the desired product (460 mg, 99%) was obtained. MS: m/z=220 (M+H+).


(S)-Dimethyl 2,2′-((2-((3-(benzylthio)-1-methoxy-1-oxopropan-2-yl)amino)-2-oxoethyl)azanediyl)diacetate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on 460 mg scale. Product was purified on a Biotage purification system eluting out in 5-40% EtOAc:Hexanes mixture in a gradient elution to give the title compound (430 mg, 48%). MS: m/z=427 (M+H+).


(S)-2,2′-((2-((2-(Benzylthio)-1-carboxyethyl)amino)-2-oxoethyl)azanediyl)diacetic Acid: P028



embedded image


A mixture of (S)-Dimethyl 2,2′-((2-((3-(benzylthio)-1-methoxy-1-oxopropan-2-yl)amino)-2-oxoethyl)azanediyl)diacetate (460 mg, 0.58 mmol) and aqueous NaOH (1.0 M, 2.04 mL, 2.04 mmol) in THF/NaOH (1:1, 4 mL) was stirred at room temperature for 3 hrs, coated in vacuo. The residue was acidified with 1N aqueous HCl solution and purified by HPLC to give the desired product (125 mg, 56%). 1H NMR (DMSO-d6, 400 MHz) δ 8.35 (d, J=8.4 Hz, 1H), 7.18-7.31 (m, 5H), 4.41-4.51 (m, 1H), 3.72 (s, 2H), 3.51 (s, 4H), 3.41 (s, 2H), 2.74-2.82 (m, 1H), 2.62-2.71 (m, 1H). MS: m/z=385 (M+H+).


(S)-Di-tert-butyl 2-(5-ethoxy-5-oxopentanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 200 mg scale. Product was purified on a Biotage purification system eluting out in 5-60% EtOAc:Hexanes mixture in a gradient elution to give the title compound (139 mg, 51%). MS: m/z=402 (M+H+).


(S)-2-(4-Carboxybutanamido)pentanedioic Acid: P030



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 99 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P030 (5.7 mg, 9%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.37-4.42 (m, 1H), 2.25-2.41 (m 6H), 2.10-2.20 (m, 1H), 1.82-1.95 (m, 3H). MS: m/z=262 (M+H+).


(S)-Di-tert-butyl 2-(5-ethoxy-N-methyl-5-oxopentanamido)pentanedioate



embedded image


To a solution NaH (12 mg, 0.299 mmol) in DMF (2.0 mL) was added (S)-di-tert-butyl 2-(5-ethoxy-5-oxopentanamido)pentanedioate (120 mg, 0.299 mmol). The resulting mixture was stirred at room temperature for 20 min, and than Mel (excess) was added. The reaction mixture was stirred at room temperature overnight, concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 0-50% EtOac/hexanes) to give the desired product (104 mg, 84%). MS: m/z=416 (M+H+).


(S)-2-(4-Carboxy-N-methylbutanamido)pentanedioic Acid: P029



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 104 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P029 (1.2 mg, 2%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.99-5.09 (m, 1H), 2.96 (s, 3H), 2.47 (t, J=7.2 Hz, 2H), 2.15-2.41 (m 6H), 2.95-2.10 (m, 1H), 1.82-1.95 (m, 1H). MS: m/z=262 (M+H+).


(S)-2-((S)-2-(4-Azidobutanamido)propanamido)pentanedioic Acid: P031



embedded image


General experimental procedure for amidation and methyl ester deprotection reaction was followed. Reaction was performed on a 10 mg scale of (S)-2-((S)-2-aminopropanamido)pentanedioic acid. Isolated 2.0 mg (15.0%) of P031 as a white gum. 1H NMR (CDCl3, 400 MHz) δ 4.39-4.46 (m, 1H), 4.34 (dd, J=14.4, 7.2 Hz, 1H), 3.32 (t, J=6.8 Hz, 2H), 2.40 (t, J=7.6 Hz, 2H), 2.31 (dt, J=7.6, 2.8 Hz, 2H), 2.13-2.23 (m, 1H), 1.81-1.97 (m, 3H), 1.33 (d, J=7.2 Hz, 3H). MS: m/z=330 (M+H+).


(S)-Tert-butyl-6-(((benzyloxy)carbonyl)amino)-2-(methylamino)hexanoate



embedded image


To a 50 mL round bottomed flask equipped with a magnetic stir bar containing DMF (2 ml) was placed lysine CBZ compound (1 equiv). To this reaction mixture added DIPEA (2.5 eq) and Mel (1.5 equiv) and stir at room temp overnight. After reaction was complete, DMF was removed in vacuo. The residue was used directly for urea reaction. MS: m/z=351 (M+H+).


(S)-Di-tert-butyl 2 (3-((S)-6-amino-1-(tert-butoxy)-1-oxohexane-2-yl)-3-methylureido)pentanedioate



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 125 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=502 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-3-methylureido)pentanedioic Acid: P032



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 20 mg scale. Product was purified by HPLC purification system (0.05% TFA in water-acetonitrile, 20-65%) afforded the title compound (4.5 mg, 22%). 1H NMR (CD3OD, 400 MHz) δ 8.21 (br, 1H), 5.09 (d, J=1.6 Hz, 2H), 4.53-4.50 (t, J=6.0 Hz, 1H), 4.41-4.38 (t, J=6.0 Hz, 1H), 4.30-4.27 (dd, J=9.6, 4.8 Hz, 2H), 3.26-3.19 (m, 2H), 2.84 (s, 3H), 2.82 (t, J=7.2 Hz, 2H), 2.22-2.14 (m, 1H), 2.10-1.88 (m, 4H), 1.82-1.72 (m, 1H), 1.62-1.46 (m, 2H), 1.39-1.26 (m, 2H). MS: m/z=503 (M+H+).


(9S,13S)-3,11-Dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P033



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 10 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P033 (5.2 mg, 72%) was obtained. 1H NMR (CD3OD, 400 MHz): δ 7.23-7.35 (m, 5H), 5.04 (s, 2H), 4.29 (dd, J=8.8, 5.2 Hz, 1H), 4.23 (dd, J=8.0, 4.8 Hz, 1H), 3.10 (d, J=6.8 Hz, 1H), 2.31-2.46 (m, 2H), 2.07-2.17 (m, 1H), 1.76-1.91 (m, 2H, m), 1.59-1.69 (m, 1H), 1.35-1.55 (m, 4H). MS: m/z=454 (M+H+).


(S)-2-(3-((S)-5-(2-Azidoacetamido)-1-carboxypentyl)-3-methylureido)pentanedioic Acid: P034



embedded image


General experimental procedures for amide formation of amide and removal of tert-butyl group were followed. Reaction was performed on a 50 mg scale. Product was purified on a Biotage purification system as well as on HPLC purification system afforded the title compound P034 (20 mg, 42%). 1H NMR (CD3OD, 400 MHz) δ 4.30-4.27 (dd, J=9.6, 4.4 Hz, 1H), 3.84 (s, 2H), 3.23-3.18 (td, J=6.8, 2.0 Hz, 1H), 2.84 (s, 3H), 2.45 (t, J=7.2 Hz, 2H), 2.22-2.14 (m, 1H), 2.03-1.89, 1.82-1.72 (m, 1H), 1.61-1.44 (m, 2H), 1.40-1.26 9 m, 2H). MS: m/z=417 (M+H+).


(9S,13S)-10-Ethyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P035



embedded image


General experimental procedure for N-ethylation of lysine followed by urea formation with glutamic acid and tet-butyl removal were used to prepare the title compound. Reaction was performed on a 50 mg scale. Product was purified on HPLC purification system afforded the title compound P035 (24 mg, 65%). 1H NMR (CD3OD, 400 MHz): δ 7.32-7.25 (m, 5H), 5.03 (s, 2H), 4.66-4.63 (dd, J=10.4, 4.8 Hz, 2H), 4.18 (t, J=4.8 Hz, 1H), 3.65-3.56 (m, 1H), 3.18-3.02 (m, 3H), 2.44-2.28 (m, 4H), 1.94-1.82 (m, 2H), 1.54-1.45 (m, 2H), 1.38-1.22 (m, 2H), 1.14 (t, J=7.2 Hz, 3H). MS: m/z=482 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)acetamido)-pentyl)3-methylureido)pentanedioic Acid: P036



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 15 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound P036 (13 mg, 78%). 1H NMR (CD3OD, 400 MHz): δ 8.20 (br, 1H), 8.08 (s, 1H), 7.67-7.63 (m, 1H), 6.92-6.88 (m, 2H), 5.08 (d, J=1.6 Hz, 2H), 4.23-4.19 (dd, J=9.6, 4.4 Hz, 2H), 3.73 (s, 3H), 3.19-3.14 (m, 2H), 2.76 (s, 3H), 2.38 (t, J=8.0 Hz, 2H), 2.16-2.06 (m, 1H), 1.96-1.62 (m, 2H), 1.76-1.62 (m, 1H), 1.56-1.40 (m, 2H), 1.34-1.98 (m, 2H). MS: m/z=549 (M+H+).


(S)-Di-tert-butyl 2-((4-(ethoxycarbonyl)oxazol-2-yl)amino)pentanedioate



embedded image


The mixture was microwaved at 120° C. for 1.5 hrs, cooled and concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 0-50% EtOAc/hexanes) to give the desired product with a small amount of impurities. It was used directly in the next step without any further purification. MS: m/z=399 (M+H+).


(S)-2-((4-Carboxyoxazol-2-yl)amino)pentanedioic Acid: P037



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 260 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P037 (5 mg, 3%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.91 (s, 1H), 4.32-4.41 (m, 1H), 2.41-2.55 (m, 2H), 2.21-2.38 (m, 1H), 1.99-2.09 (m, 1H). MS: m/z=400 (M+H+).


O-Benzyl-N-(3-phenylpropyl)hydroxylamine



embedded image


A mixture of 3-phenylpropyl bromide (500 mg, 2.51 mm01), O-benzylhydroxylamine hydrochloride (802 mg, 5.02 mmol), and DIPEA (1.34 mL, 7.53 mmol) in DMF (5.0 mL) was stirred at room temperature overnight and then heated at 80° C. for 24 hrs, concentrated in vacuo. The residue was purified don flash column chromatography (silica gel, 0-20% EtOAc/hexanes) to give the desired product (193 mg, 32%). MS: m/z=242 (M+H+).


(S)-Dibenzyl 2-(3-(benzyloxy)-3-(3-phenylpropyl)ureido)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on a 193 mg scale. Product was purified on a Biotage purification system eluting out in 5-40% EtOAc:Hexanes mixture in a gradient elution to give the title compound (170 mg, 73%). MS: m/z=595 (M+H+).


(S)-2-(3-Hydroxy-3-(3-phenylpropyl)ureido)pentanedioic Acid: P038



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 170 mg scale. After HPLC purification, P038 (25 mg, 27%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.09-7.25 (m, 5H), 4.28-4.35 (m, 1H), 3.47 (t, J=7.2 Hz, 2H), 2.62 (t, J=7.2 Hz, 2H), 2.36-2.45 (m, 2H), 2.14-2.24 (m, 1H), 1.84-1.20 (m, 3H). MS: m/z=325 (M+H+).


(10S,14S)-2,2-Dimethyl-4,12-dioxo-3-oxa-5,11,13-triazahexadecane-10,14,16-tricarboxylic Acid: P039



embedded image


To a solution of (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido)pentanedioic acid (3.3 mg, 0.010 mmol) in 1N NaOH solution (1.0 mL) was added di-tert-butyl dicarbonate (23 mg, 0.10 mmol) in dioxane (1.0 mL). The mixture was stirred at room temperature for 2 hours and acidified with acetic acid to pH ˜5. HPLC purification was performed to give 2.3 mg (53%) of P039 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.29 (dd, J=8.8, 5.2 Hz, 1H), 4.23 (dd, J=8.0, 4.8 Hz, 1H), 3.01 (d, J=6.8 Hz, 1H), 2.32-2.46 (m, 2H), 2.08-2.18 (m, 1H), 1.76-1.92 (m, 2H), 1.58-1.68 (m, 1H), 1.35-1.52 (m, 13H). MS: m/z=420 (M+H+).


(S)-2-(2-(N-(4-(tert-Butoxycarbonylamino)butyl)acetamido)acetamido)pentanedioic Acid: P040



embedded image


General experimental procedure for amidation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 15 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 10.3 mg (91%) of P040 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.41-4.49 (m, 1H), 4.08 and 3.99 (d, J=16.0 Hz, two rotamers, total 2H), 3.33-3.41 (m, 2H), 2.99-3.07 (m, 2H), 2.36-2.44 (m, 2H), 2.13-2.25 (m, 1H), 2.14 and 2.04 (two s, two rotamers, total 2H), 1.88-1.99 (m, 1H), 1.37-1.54 (m, 13H). MS: m/z=418 (M+H+).


(10S,14S)-2,2-Dimethyl-4,12-dioxo-3-oxa-5,11,13-triazahexadecane-10,14,16-tricarboxylic Acid: P041



embedded image


General experimental procedure hydrogenolysis was followed. Reaction was performed on a 20 mg scale of (9S,13S)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic acid. Isolated 6.0 mg (43%) of P041 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.10-4.18 (m, 2H), 2.82-2.94 (m, 2H), 2.36 (t, J=8.0 Hz, 2H), 2.04-2.12 (m, 1H), 1.80-1.94 (m, 2H), 1.58-1.72 (m, 3H), 1.38-1.52 (m, 2H). MS: m/z=320 (M+H+).


(S)-2-(2-(1-(4-(tert-Butoxycarbonylamino)butyl)-3-hydroxyureido)acetamido) pentanedioic Acid: P042



embedded image


General experimental procedure for urea formation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 20 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 2.2 mg (14%) of P042 as a white solid. 1H NMR (CD3OD, 400 MHz): δ 4.45 (dd, J=9.2, 4.8 Hz, 1H), 4.00, 3.95, 3.94, 3.89 (ABq, J=16.8 Hz, 2H), 3.22-3.26 (m, 2H), 3.03 (t, J=6.8 Hz, 2H), 2.40 (t, J=7.4 Hz, 2H), 2.16-2.26 (m, 1H), 1.90-2.00 (m, 1H), 1.50-1.60 (m, 2H), 1.38-1.48 (m, 11H). MS: m/z=435 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-2((2-nitro-1H-imidazo-1-yl)-methyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)ureido)pentanedioic Acid: P043



embedded image


General procedure for “click chemistry was followed. Reaction was performed on a 15 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (1 mg, 7%). 1H NMR (CD3OD, 400 MHz) δ 8.30 (br, 1H), 7.54 (d, J=1.2 Hz, 1H), 7.13 (d, J=1.2 Hz, 1H), 5.76 (s, 2H), 5.12 (s, 2H), 4.31-4.27 (m, 2H), 3.23-3.21 (m, 2H), 2.42-2.37 (m, 2H), 2.17-2.04 (m, 1H), 1.90-1.79 (m, 2H), 1.66-1.39 (m, 5H). MS: m/z=554 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-2((2-nitro-1H-imidazo-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-3-methylureido)pentanedioic Acid: P044



embedded image


General procedure for “click chemistry was followed. Reaction was performed on a 15 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (2 mg, 13%). 1H NMR (CD3OD, 400 MHz) δ 8.24 (br, 1H), 8.08 (s, 1H), 7.55 (d, J=1.2 Hz, 1H), 7.13 (d, J=1.2 Hz, 1H), 5.76 (s, 2H), 5.12 (s, 2H), 4.30-4.27 (dd, J=9.6, 4.8 Hz, 2H), 3.23-3.19 (m, 2H), 2.83 (s, 3H), 2.45 (t, J=7.7 Hz, 2H), 2.22-2.14 (m, 1H), 2.04-1.88 (m, 2H), 1.82-1.70 (m, 5H), 1.62-1.24 (m, 4H). MS: m/z=568 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-butanamido)pentyl)ureido)pentanedioic Acid: P045



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 28 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (7.0 mg, 29%). 1H NMR (CD3OD, 400 MHz) δ 7.79 (s, 1H), 4.51 ((td, J=6.0, 1.6 Hz, 1H), 4.41-4.37 (m, 3H), 4.30-4.23 (m, 2H), 3.22-3.08 (m, 2H), 2.80 (t, J=7.2 Hz, 2H), 2.41-2.38 (m, 2H), 2.20-1.96 (m, 7H), 1.92-1.76 (m, 2H), 1.70-1.38 (m, 5H). MS: m/z=517 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-butanamido)pentyl)-3-methylureido)pentanedioic Acid: P046



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 28 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (5.0 mg, 20%). 1H NMR (CD3OD, 400 MHz) δ 7.80 (s, 1H), 4.51 ((td, J=6.0, 1.6 Hz, 1H), 4.41-4.37 (m, 2H), 4.29-4.26 (m, 1H), 3.22-3.10 (m, 1H), 2.84 (s, 3H), 2.80 (t, J=7.6 Hz, 1H), 2.45 (t, J=7.6 Hz, 1H), 2.22-1.90 (m, 5H), 1.82-1.72 (m, 1H), 1.58-1.26 (m, 2H). MS: m/z=531 (M+H+).


(S)-2-(2-(1-(4-(tert-Butoxycarbonylamino)butyl)ureido)acetamido)pentanedioic Acid: P047



embedded image


General experimental procedure for urea formation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 30 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 11.3 mg (50%) of P047 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.45 (dd, J=9.2, 5.2 Hz, 1H), 4.02, 3.97, 3.96, 3.91 (ABq, J=16.8 Hz, 2H), 3.24-3.28 (m, 2H), 3.04 (t, J=6.8 Hz, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.16-2.26 (m, 1H), 1.92-2.02 (m, 1H), 1.52-1.62 (m, 2H), 1.38-1.48 (m, 11H). MS: m/z=419 (M+H+).


(S)-2-(2-(1-(4-(tert-Butoxycarbonylamino)butyl)-3-carbamoylureido)acetamido) pentanedioic Acid: P048



embedded image


General experimental procedure for urea formation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 30 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 5.6 mg (25%) of P048 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.46 (dd, J=9.0, 4.8 Hz, 1H), 4.09, 4.05, 4.03, 3.98 (ABq, J=17.0 Hz, 2H), 3.36 (t, J=6.8 Hz, 2H), 3.04 (t, J=6.8 Hz, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.16-2.24 (m, 1H), 1.92-2.00 (m, 1H), 1.52-1.60 (m, 2H), 1.38-1.48 (m, 11H). MS: m/z=419 (M+H+).


(S)-2-(2-((4-(tert-Butoxycarbonylamino)butyl)(carboxymethyl)amino)acetamido) pentanedioic Acid: P049



embedded image


General experimental procedure for alkylation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 25 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 6.9 mg (35%) of P049 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.49 (dd, J=9.2, 5.2 Hz, 1H), 4.12 (s, 2H), 4.09 (s, 2H), 3.26-3.32 (m, 2H), 3.05 (t, J=6.8 Hz, 2H), 2.41 (t, J=7.6 Hz, 2H), 2.18-2.28 (m, 1H), 1.90-2.02 (m, 1H), 1.68-1.76 (m, 2H), 1.45-1.55 (m, 2H), 1.42 (s, 9H). MS: m/z=434 (M+H+).


(S)-2-(4-(4-(tert-Butoxycarbonylamino)butyl)-2,6-dioxopiperazin-1-yl)pentanedioic Acid: P050



embedded image


General experimental procedure for alkylation and hydrogenolysis de-benzylation was followed. Reaction was performed on a 25 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 2.3 mg (12%) of P050 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 5.22 (1H, dd, J=9.6, 4.4 Hz), 3.54 (4H, bs), 3.03 (2H, t, J=6.8 Hz), 2.59 (2H, t, J=6.8 Hz), 2.38-2.48 (1H, m), 2.28-2.34 (2H, m), 2.14-2.22 (2H, m), 1.44-1.56 (4H, m), 1.41 (9H, s). MS: m/z=416 (M+H+).


(S)-2-(2-(4-(tert-Butoxycarbonylamino)butylamino)acetamido)pentanedioic Acid: P051



embedded image


General experimental procedure for hydrogenolysis de-benzylation was followed. Reaction was performed on a 15 mg scale of (S)-dibenzyl 2-(2-(4-(tert-butoxycarbonylamino)butylamino)acetamido)pentanedioate. Isolated 6.6 mg (65%) of P051 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 4.51 (dd, J=9.2, 5.2 Hz, 1H), 3.82 (s, 2H), 3.00-3.08 (m, 4H), 2.40 (t, J=7.6 Hz, 2H), 2.16-2.26 (m, 1H), 1.88-1.98 (m, 1H), 1.64-1.72 (m, 2H), 1.46-1.56 (m, 2H), 1.42 (s, 9H). MS: m/z=376 (M+H+).


N-phenethylethanesulfonamide



embedded image


To a solution of phenylethylamine (500 mg, 4.13 mmol) and triethylamine (0.863 mL, 6.19 mmol) in DCM (10 mL) was added a solution of ethanesulfonyl chloride (531 mg, 4.13 mmol) in DCM (2.0 mL). The resulting mixture was stirred at room temperature overnight, concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 0-20% EtOAc/hexanes) to give the desire product (840 mg, 95%). MS: m/z=214 (M+H+).


tert-Butyl 2-(N-phenethylethylsulfonamido)acetate



embedded image


To a solution N-phenethylethanesulfonamide (840 mg, 3.94 mmol) in DMF (5.0 mL) was added NaH (173 mg, 4.33 mmol). The resulting mixture was stirred at room temperature for 20 min, and then a solution of tert-butyl 2-bromoacetate (768 mg, 3.94 mmol) in DMF (1.0 mL) was added. The reaction mixture was stirred at room temperature overnight, concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 0-50% EtOAc/hexanes) to give the desired product (775 mg, 60%). MS: m/z=328 (M+H+).


2-(N-phenethylethylsulfonamido)acetic Acid



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 775 mg scale. After stirring at room temperature for 2 hrs, it was concentrated in vacuo. The residue was used directly in the next step without any further purification. MS: m/z=272 (M+H+).


Di-tert-butyl 2-(2-(N-phenethylethylsulfonamido)acetamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 642 mg scale. Product was purified on a Biotage purification system eluting out in 5-40% EtOAc:Hexanes mixture in a gradient elution to give the title compound (1000 mg, 82%). MS: m/z=513 (M+H+).


2-(2-(N-Phenethylethylsulfonamido)acetamido)pentanedioic Acid: P052



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 65 mg scale. After HPLC purification, P052 (35 mg, 65%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.18-7.25 (m 5H), 4.41-4.49 (m, 1H), 3.99 (s, 2H), 3.48-3.53 (m, 2H), 3.07 (q, J=14.8, 6.8 Hz, 2H), 2.89 (t, J=8.0 Hz, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.15-2.25 (m, 1H), 1.89-2.01 (m, 1H), 1.26 (t, J=7.6 Hz, 3H). MS: m/z=401 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-3-methylureido)pentanedioic Acid: P053



embedded image


General experimental procedure for “click chemistry was followed. Reaction was performed on a 65 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile to afford the tile compound. (12 mg, 20%). 1H NMR (CD3OD, 400 MHz) δ 8.42 (s, 1H), 8.01-7.93-(m, 4H), 4.56 (t, J=5.6 Hz, 2H), 4.44 ((t, J=5.6 Hz, 1H), 4.30-4.27 (dd, J=9.6, 4.8 Hz, 1H), 3.44-3.36 (m, 2H), 2.90 (t, J=7.2 Hz, 2H), 2.84 (s, 3H), 2.44 (t, J=7.2 Hz, 2H), 2.22-1.94 (m, 5H), 1.88-1.58 and 1.50-1.32 (m, 2H each). MS: m/z=565 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-butanamido)-pentyl)ureido)pentanedioic Acid: P054



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 65 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile to afford the title compound (17 mg, 30%). 1H NMR (CD3OD, 400 MHz) δ 8.42 (d, J=0.8 Hz, 1H), 8.01 (dd, J=8.8, 2.0 Hz, 2H), 7.96 (dd, J=8.8, 2.0 Hz, 2H), 4.59 ((t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.31-4.27 (m, 2H), 3.44-3.38 (m, 2H), 2.92 (t, J=7.6 Hz, 2H), 2.42-2.38 (m, 2H), 2.18-2.07 (m, 3H), 1.94-1.82 (m, 2H), 1.76-1.62 (m, 3H), 1.56-1.48 (m, 2H). MS: m/z=551 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P055



embedded image


To a microwave tube was added a solution of (9S,13S)-tri-tert-butyl 3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (107 mg, 0.172 mmol) in dry DCM (1.0 mL) followed by malonyl dichloride (17 μL, 0.175 mmol). The mixture was microwave heated at 80° C. for 20 minutes. The crude mixture was purified by flush chromatography (EtOAc/hexane, 0 to 50%) to give the (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate 30 mg (65%). 5.0 mg of above intermediate was deprotected with general condition to give 1.3 mg (34%) of P055 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.23-7.35 (m, 5H), 5.33 (dd, J=10.0, 4.4 Hz, 1H), 5.27 (dd, J=10.0, 5.0 Hz, 1H), 5.03 (s, 2H), 3.07 (t, J=6.8 Hz, 2H), 2.40-2.50 (m, 1H), 2.36 (t, J=6.8 Hz, 2H), 2.20-2.28 (m, 1H), 2.08-2.18 (m, 1H), 1.98-2.08 (m, 1H), 1.40-1.58 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=522 (M+H+).


(S)-Di-tert-Butyl 2-(2 ((benzyloxy)carbonyl)hydrazinecarboxamido)pentanedioate



embedded image


General experimental procedure for the formation of urea was followed. Reaction was performed on 1000 mg scale. Product was purified on a Biotage purification system eluting out in 5-40% EtOAc:Hexanes mixture in a gradient elution to give the title compound (1000 mg, 66%). MS: m/z=452 (M+H+).


(S)-2-(2-((Benzyloxy)carbonyl)hydrazinecarboxamido)pentanedioic Acid: P056



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 10 mg scale. After HPLC purification, P056 (5.8 mg, 77%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.23-7.41 (5H), 5.13 (s, 2H), 4.29-4.37 (m, 1H), 2.31-2.42 (m 2H), 2.08-2.22 (m, 1H), 1.84-1.95 (m, 1H). MS: m/z=340 (M+H+).


(S)-2-(3-((S)-5-(4-Azidobenzamido)-1-carboxypentyl)-2,4,6-trioxotetrahydro pyrimidin-1(2H)-yl)pentanedioic Acid: P057



embedded image


General experimental procedure for amidation and deprotection was followed. Reaction was performed on a 9.9 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. Isolated 4.3 mg (56%) of P057 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.73 (m, 2H), 7.03 (m, 2H), 5.25 (dd, J=10.0, 4.4 Hz, 1H), 5.21 (dd, J=9.6, 4.8 Hz, 1H), 5.03 (s, 2H), 3.23 (m, 2H), 2.30-2.40 (m, 1H), 2.28 (t, J=7.0 Hz, 2H), 2.04-2.20 (m, 2H), 1.92-2.02 (m, 1H), 1.44-1.52 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=533 (M+H+).


(S)-2-(3-((S)-5-(4-Azidobenzamido)-1-carboxypentyl)ureido)pentanedioic Acid: P058



embedded image


General experimental procedures for amide formation and the removal of tert-butyl ester group were used to obtain the compound. Reaction was performed on a 100 mg scale. Product was purified on a Biotage and HPLC purification system to afford the title compound (13 mg, 35%, in two steps), 1H NMR (CD3OD, 400 MHz) δ 7.76-7.74 (dd, J=6.4, 1.2 Hz, 2H), 7.06-7.04 (dd, J=6.4, 1.2 Hz, 2H), 4.21-4.16 (m, 2H), 3.30-3.22 (m, 2H), 2.33-2.28 (m, 2H), 2.10-2.00 (m, 1H), 1.82-1.72 (m, 2H), 1.66-1.50 (m, 3H), 1.42-1.35 (m, 2H). MS: m/z=465 (M+H+).


(S)-2-(3-((S)-5-(4-Azidobenzamido)-1-carboxypentyl)-3-methylureido)pentanedioic Acid: P059



embedded image


General experimental procedures for amide formation and removal of tert-butyl ester group were followed. Reaction was performed on a 100 mg scale. Product was purified on a Biotage and HPLC purification system to afford the title compound (11 mg, 28%), 1H NMR (CD3OD, 400 MHz) δ 7.76-7.74 (dd, J=6.4, 1.2 Hz, 2H), 7.05-7.03 (dd, J=6.4, 1.2 Hz, 2H), 4.21-4.18 (dd, J=9.6, 4.4 Hz, 2H), 3.34-3.26 (m, 4H), 2.76 (s, 3H), 2.36 (t, J=7.2 Hz, 4H), 2.16-2.06 (m, 2H), 1.96-1.66 (m, 5H), 1.64-1.44 (m, 7H). MS: m/z=479 (M+H+).


(S)-2-(Hydrazinecarboxamido)pentanedioic Acid: P061



embedded image


First, general experimental procedure for the removal of benzyl group was followed. Reaction was performed on an 81 mg scale. Second, the general experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 10 mg scale. After HPLC purification of fully deprotected product, P061 (1.1 mg, 17%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.31-4.39 (m, 1H), 2.39 (t, J=8.0 Hz, 2H), 2.14-2.23 (m, 1H), 1.86-1.99 (m, 1H). MS: m/z=206 (M+H+).


(S)-2-(3-((S)-2-(4-(4-Azidobutaneamido)phenyl)-1-carboxyethyl)-ureido)-pentanedioic Acid: P062



embedded image


General experimental procedures for amide formation and removal of ester groups (tert-butyl and methyl) were followed. Reaction was performed on a 40 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (13 mg, 42%). 1H NMR (CD3OD, 400 MHz) δ 7.37-7.35 (dd, J=6.4, 1.6 Hz, 2H), 7.09-7.07 (dd, J=6.4, 1.6 Hz, 2H), 4.44-4.41 (m, 1H), 4.20-4.16 (m, 1H), 3.28 (t, J=6.4 Hz, 2H), 3.03-2.98 (m, 1H), 2.91-2.82 (m, 1H), 2.36 (t, J=6.4 Hz, 2H), 2.31-2.22 (m, 2H), 2.07-1.98 (m, 1H), 1.88-1.72 (m, 3H). MS: m/z=465 (M+H+).


(S)-2-(3-((S)-2-(4-(4-Azidobutaneamido)phenyl)-1-carboxyethyl)-3-methylureido)-pentanedioic Acid: P063



embedded image


General experimental procedures for amide formation of and removal of ester groups (tert-butyl and methyl) were followed. Reaction was performed on a 40 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (11 mg, 35%). 1H NMR (CD3OD, 400 MHz) δ 7.40-7.37 (m, 2H), 7.02-6.99 (m, 2H), 4.48-4.33 (dd, J=11.2, 4.0 Hz, 1H), 4.28-4.19 (m, 1H), 3.31-3.26 (m, 3H), 3.15-3.10 (m, 1H), 3.05-3.0 (m, 1H), 2.94, 2.89 (s, 3H each), 2.38-2.32 (m, 2H), 2.30-2.08 (m, 1H), 2.02-1.82 (m, 3H), 1.66-1.50 (m, 2H). MS: m/z=478 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P064



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 2.0 mg scale of (S)-2-(3-((S)-5-(4-azidobenzamido)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. Isolated 1.0 mg (43%) of P064 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.43 (s, 1H), 7.99 (d, J=8.8 Hz, 2H), 7.94 (d, J=8.8 Hz, 2H), 5.27-5.36 (m, 2H), 4.57 (t, J=5.8 Hz, 2H), 4.45 (d, J=5.8 Hz, 2H), 3.38 (m, 2H), 2.91 (t, J=7.6 Hz, 2H), 2.40-2.48 (m, 1H), 2.36 (t, J=6.8 Hz, 2H), 2.04-2.26 (m, 3H), 1.58-1.68 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=619 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)ethyl)ureido)pentanedioic Acid: P065



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 4 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (3 mg, 64%). 1H NMR (CD3OD, 400 MHz) δ 7.79 (s, 1H), 7.43-7.41 (dd, J=7.6, 0.8 Hz, 2H), 7.14 (t, J=7.6 Hz, 2H), 4.51-4.43 (m, 4H), 4.38 (t, J=7.6 Hz, 2H), 3.28 (t, J=6.0 Hz, 1H), 4.28-4.24 (m, 1H), 3.17-3.05 (m, 1H), 2.98-2.91 (m, 1H), 2.78 (t, J=7.2 Hz, 2H), 2.40-2.22 (m, 7H), 2.14-1.94 (m, 3H), 1.87-1.78 (m, 1H). MS: m/z=551 (M+H+).


(S)-Di-tert-butyl 2-(2-(4-(1,3-dioxoisoindolin-2-yl)butyl)hydrazinecarboxamido)-pentanedioate



embedded image


A mixture of (S)-di-tert-butyl 2-(hydrazinecarboxamido)pentanedioate (50 mg, 0.16 mmol), 2-(4-bromobutyl)isoindoline-1,3-dione (44 mg, 0.16 mmol), and DIPEA (0.082 mL, 0.472 mmol) in DMF (2.0 mL) was stirred at room temperature overnight, concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 40-80% EtOAc/hexanes) to give the desired product (35 mg, 43%). MS: m/z=519 (M+H+).


(S)-2-(2-Acetyl-2-(4-(1,3-dioxoisoindolin-2-yl)butyl)hydrazinecarboxamido)-pentanedioic Acid: P066



embedded image


First, a solution (S)-di-tert-butyl 2-(2-(4-(1,3-dioxoisoindolin-2-yl)butyl)hydrazinecarboxamido)-pentanedioate (35 mg, 0.067 mmol), acetyl chloride (5.3 mg, 0.067 mmol), and triethylamine (0.024 mL, 0.169 mmol) in DCM (2.0 mL) was stirred at room temperature overnight, and then concentrated in vacuo. The residue was used directly in the next step without any further purification. General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 38 mg scale. After HPLC purification, P066 (20 mg, 66%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.74-7.86 (m, 4H), 4.23-4.33 (m, 1H), 3.83-3.99 (m, 1H), 3.68 (t, J=7.6 Hz, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.12-2.24 (m, 2H), 2.12 (s, 3H), 1.86-1.95 (m, 1H), 1.52-1.74 (m, 4H). MS: m/z=449 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(6-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)hexamido)phenyl)ethyl)ureido)pentanedioic Acid: P067



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 53 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (16 mg, 33%). 1H NMR (CD3OD, 400 MHz) δ 7.70 (s, 1H), 7.38-7.35 (m, 2H), 7.08-7.05 (m, 2H), 4.48-4.28 (m, 6H), 3.00-2.90 (m, 2H), 2.70 (t, J=7.2 Hz, 2H), 2.25 (t, J=7.2 Hz, 2H), 2.06-1.50 (m, 9H), 1.32-1.20 (m, 2H). MS: m/z=579 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(6-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)hexamido)phenyl)ethyl-3-methylureido)pentanedioic Acid: P068



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 53 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (5 mg, 10%). 1H NMR (CD3OD, 400 MHz) δ 7.76 (s, 1H), 7.46-7.43 (m, 2H), 7.10-7.06 (td, J=8.4, 1.6 Hz, 2H), 4.56-4.27 (m, 6H), 4.14 (t, J=7.2 Hz, 1H), 3.23-3.09 (m, 2H), 3.02, 2.97 (s, 3H), 2.78 (t, J=8.0 Hz, 2H), 2.30 (t, J=8.0 Hz, 2H), 2.28-2.17 (m, 1H), 2.10-1.82 (m, 10H), 1.37-1.30 (m, 2H). MS: m/z=593 (M+H+).




embedded image


A mixture of (S)-tert-butyl 2-amino-6-(((benzyloxy)carbonyl)amino)hexanoate HCl salt (1.5 g, 4 mmol), 4-methoxybenzaldehyde (571 mg, 4.2 mmol), and sodium bicarbonate (636 mg, 6 mmol) in 5 mL of MeOH was stirred at rt for 18 h. I was filtered and the solid was washed withy MeOH (2 mL). The filtrate was added 3 mL of ether and let sit for 2 h. The mixture was filtered again and the filtrate was concentrated to afford (E)-tert-butyl 6-(((benzyloxy)carbonyl)amino)-2-((4-methoxybenzylidene)amino)hexanoate as a clear oil. MS(ESI): m/z=455 (M+H+).




embedded image


To above compound in DCM (5.0 mL) at −15° C. was added a mCPBA (1.27 g, 5.7 mmol) suspension in DCM (10 mL). The mixture was stirred at rt for 15 h and diluted with EtOAc (60 mL). It was washed with NaHCO3 (3×50 mL) and brine (50 mL), and dried over MgSO4 and concentrated to afford tert-butyl 6-(((benzyloxy)carbonyl)amino)-2-(3-(4-methoxyphenyl)-1,2-oxaziridin-2-yl)hexanoate as a clear oil. To this oil in MeOH (10 mL) was added hydroxylamine HCl (635 mg, 9.2 mmol). The mixture was stirred at rt for 24 h. Solvent was removed and the residue was taken up to EtOAc (80 mL) and washed with water (2×50 mL) and NaHCO3 (2×50 mL), and brine (50 mL). Solvent was removed and the residue was purified by chromatography to afford tert-butyl 6-(((benzyloxy)carbonyl)amino)-2-(hydroxyamino)hexanoate as a thick oil (1.25 g, 87%). MS: m/z=353 (M+H+).




embedded image


The above compound (352 mg, 1 mmol) was reacted with isocyanate using the standard condition for urea formation. The crude product was purified by chromatography (hexane/EtOAc) to afford (9S,13S)-tri-tert-butyl 10-hydroxy-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate as a white wax (350 mg, 55%). MS: m/z=638 (M+H+).


(13S)-10-Hydroxy-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P069



embedded image


General procedure for the removal of tert-butyl group from esters was followed. The crude product was purified by RP-HPLC (MeCN/TFA) to afford (13S)-10-Hydroxy-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic acid, P069, as a fluffy solid (10 mg, 70%). 1H NMR (CD3CN, 400 MHz) δ 7.40-7.30 (m, 5H), 6.67 (d, J=8.4 Hz, 1H), 5.73 (m, 1H), 5.05 (m, 2H), 4.70 (t, J=7.6 Hz, 1H), 4.31 (m, 1H), 3.21-3.03 (m, 2H), 2.42-2.38 (m, 2H), 2.19-2.09 (m, 1H), 1.88-1.81 (m, 2H), 1.55-1.30 (m, 4H). MS: m/z=470 (M+H+).


(13S)-3-Oxo-1-phenyl-11-thioxo-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P070



embedded image


General experimental procedures for urea formation and tert-butyl deprotection were followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P070 was obtained. 1H NMR (CD3CN, 400 MHz) δ 7.84 (d, J=8.0 Hz, 1H), 7.40-7.30 (m, 5H), 5.95 (dd, J=10.8, 4.4 Hz, 1H), 5.75 (m, 1H), 5.10-5.01 (m, 2H), 4.99-4.94 (m, 1H), 3.21-3.02 (m, 2H), 2.44-2.39 (m, 2H), 2.29-2.21 (m, 1H), 2.11-1.98 (m, 1H), 1.59-1.36 (m, 5H). MS: m/z=470 (M+H+).


(13S)-10-Hydroxy-3-oxo-1-phenyl-11-thioxo-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P071



embedded image


General experimental procedures for urea formation and tert-butyl deprotection were followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P071 was obtained as a white fluffy solid. MS: m/z=486 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-2,4,5-trioxoimidazolidin-1-yl)pentanedioic Acid: P072



embedded image


To a solution of (9S,13S)-tri-tert-butyl 3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (200 mg, 0.322 mmol) in dry DCM (2.0 mL) was added oxalyl chloride (0.32 mL, 0.64 mmol, 2.0 M solution in DCM). The mixture was heated at 50° C. for 2 hours. The crude mixture was purified by flush chromatography (EtOAc/hexane, 0 to 40%) to give the intermediate which was deprotected with general condition to give 8.5 mg (5.2%) of P072 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.23-7.36 (m, 5H), 5.03 (s, 2H), 4.88 (m, 1H), 4.78 (bt, J=7.4 Hz, 1H), 3.09 (bt, J=6.6 Hz, 2H), 2.30-2.50 (m, 4H), 2.14-2.22 (m, 2H), 1.34-1.58 (m, 4H). MS: m/z=508 (M+H+).


(S)-2-(3-((S)-5-(5-Azidopentanamido)-1-carboxypentyl)-2,4,6-trioxotetrahydro pyrimidin-1(2H)-yl)pentanedioic Acid: P073



embedded image


General experimental procedures for amidation and tert-butyl deprotection were followed. Reaction was performed on a 19.7 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. Isolated 10.0 mg (55%) of P073 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 5.35 (dd, J=10.0, 4.4 Hz, 1H), 5.27 (dd, J=9.6, 4.8 Hz, 1H), 3.25 (m, 2H), 3.08-3.18 (m, 2H), 2.40-2.50 (m, 1H), 2.38 (t, J=7.6 Hz, 2H), 2.10-2.28 (m, 4H), 1.96-2.04 (m, 1H), 1.40-1.64 (m, 6H), 1.28-1.38 (m, 2H). MS: m/z=513 (M+H+).


(S)-2-(3-((S)-5-(2-Azidoacetamido)-1-carboxypentyl)-2,4,6-trioxotetrahydro pyrimidin-1(2H)-yl)pentanedioic Acid: P074 Precursor



embedded image


General experimental procedures for amidation and tert-butyl deprotection were followed. Reaction was performed on a 19.7 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. Isolated 7.3 mg (44%) of P074 precursor as a white solid. 1H NMR (CD3OD, 400 MHz) δ 5.35 (dd, J=10.0, 4.4 Hz, 1H), 5.27 (dd, J=9.8, 5.0 Hz, 1H), 4.90 (s, 2H), 3.18 (t, J=7.0 Hz, 2H), 2.40-2.50 (m, 1H), 2.38 (t, J=6.8 Hz, 2H), 2.20-2.30 (m, 1H), 2.10-2.18 (m, 1H), 1.98-2.06 (m, 1H), 1.42-1.58 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=471 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P074



embedded image


General experimental procedures for amidation and tert-butyl deprotection were followed. Reaction was performed on a 2.6 mg scale of (S)-2-(3-((S)-5-(2-azidoacetamido)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. Isolated 1.1 mg (35%) of P074 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.76 (s, 1H), 5.35 (dd, J=10.0, 4.4 Hz, 1H), 5.26 (dd, J=9.6, 5.2 Hz, 1H), 5.06 (s, 2H), 4.52 (t, J=5.8 Hz, 2H), 4.40 (t, J=5.8 Hz, 2H), 3.20 (t, J=6.8 Hz, 2H), 2.82 (t, J=7.8 Hz, 2H), 2.42-2.50 (m, 1H), 2.37 (t, J=6.8 Hz, 2H), 2.20-2.30 (m, 1H), 1.98-2.18 (m, 4H), 1.44-1.60 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=557 (M+H+).


(S)-2-((S)-2-Carboxypyrrolidine-1-carboxamido)pentanedioic Acid: P075



embedded image


General procedures for urea formation and base hydrolysis of methyl ester were followed to prepare the proline-glutamic acid urea derivative. The reaction was performed on a 211 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (218 mg, 86%). 1H NMR (CD3OD, 400 MHz) δ 4.12-4.02 (m, 1H), 3.97-3.93 (dd, J=8.8, 6.0 Hz, 1H), 3.40-3.35 (m, 1H), 3.25-3.1.8 (m, 1H), 2.34-1.92 (m, 8H). MS: m/z=289 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentanamido)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P076



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 2.0 mg scale of (S)-2-(3-((S)-5-(5-azidopentanamido)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P076 (1.0 mg, 43%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.76 (s, 1H), 5.34 (dd, J=10.0, 4.5 Hz, 1H), 5.25 (dd, J=9.4, 5.1 Hz, 1H), 4.50 (t, J=5.9 Hz, 1H), 4.34-4.40 (m, 3H), 3.08-3.16 (m, 2H), 2.77-2.82 (m, 2H), 2.34-2.50 (m, 3H), 2.10-2.29 (m, 4H), 1.95-2.08 (m, 3H), 1.83-1.91 (m, 2H), 1.40-1.60 (m, 4H), 1.26-1.38 (m, 2H). MS: m/z=599 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5,5-dimethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P077



embedded image


General experimental procedure for alkylation reaction was followed. Reaction was performed on a 30 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. After HPLC purification, P077 (8.5 mg, 36%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.26-7.34 (m, 4H), 5.31 (dd, J=9.6, 4.9 Hz, 1H), 5.24 (dd, J=9.8, 5.1 Hz, 1H), 5.02 (s, 2H), 3.03-3.11 (m, 2H), 2.45 (ddd, J=14.1, 6.5, 4.9 Hz, 1H), 2.22-2.36 (m, 3H), 2.10-2.20 (m, 1H), 1.98-2.09 (m, 1H), 1.45-1.56 (m, 8H), 1.26-1.39 (m, 2H). MS: m/z=550 (M+H+).


(2S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5-ethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P078



embedded image


General experimental procedure for alkylation reaction was followed. Reaction was performed on a 27 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. After HPLC purification, P078 (8.5 mg, 23%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.24-7.37 (m, 4H), 5.22-5.42 (m, 2H), 5.02 (s, 2H), 3.04-3.12 (m, 2H), 2.42-2.52 (m, 1H), 2.10-2.37 (m, 6H), 1.97-2.07 (m, 1H), 1.40-1.58 (m, 2H), 1.24-1.38 (m, 3H), 0.96 (td, J=7.4, 4.3 Hz, 3H). MS: m/z=550 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P079



embedded image


General experimental procedure for alkylation reaction was followed. Reaction was performed on a 27 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. After HPLC purification, P079 (8.5 mg, 42%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.26-7.34 (m, 4H), 5.31-5.45 (m, 2H), 4.95-5.09 (m, 2H), 3.03-3.12 (m, 2H), 2.47-2.56 (m, 1H), 2.12-2.37 (m, 4H), 1.96-2.10 (m, 5H), 1.41-1.60 (m, 2H), 1.23-1.37 (m, 2H), 0.86 (q, J=7.6 Hz, 6H). MS: m/z=578(M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-hexamido)pentyl)-3-methylureido)pentanedioic Acid: P080



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 13 mg scale. Product was purified by HPLC purification system (0.05% TFA in water-acetonitrile, 20-65%) afforded the title compound (11.5 mg, 77%). 1H NMR (CD3OD, 400 MHz) δ 7.78 (s, 1H), 4.84 (m, 1H), 4.50 (t, J=6.0 Hz, 1H), 4.40-4.34 (m, 2H), 4.30-4.26 (dd, J=9.6, 4.4 Hz, 1H), 3.18-3.08 (m, 2H), 2.84 (s, 3H), 2.80 (t, J=7.6 Hz, 1H), 2.44 (t, J=7.2 Hz, 1H), 2.20-2.12 (m, 2H), 2.15 (t, J=7.2 Hz, 1H), 2.18-1.70 (m, 7H), 1.66-1.28 (m, 8H). MS: m/z=559 (M+H+).


2-((2S)-2-Carboxy-4-(5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentanamido)pyrrolidine-1-carboxamido)pentanedioic Acid: P081



embedded image


General experimental procedures for urea, amidation, click chemistry, and tert-butyl deprotection were followed. After HPLC purification, P081 was obtained as a white fluffy solid. 1H NMR (CD3OD, 400 MHz) δ 8.96 (s, 1H), 5.89 (t, J=6.0 Hz, 1H), 5.79-5.73 (m, 3H), 5.68 (t, J=6.8 Hz, 2H), 5.59 (dd, J=10.4, 6.6 Hz, 1H), 5.00 (dd, J=9.6, 6.4 Hz, 1H), 4.67-4.58 (m, 2H), 4.52 (dd, J=10, 6.4 Hz, 1H), 3.77 (m, 2H), 3.66-3.60 (m, 1H), 3.51-3.39 (m, 5H), 3.20 (m, 2H), 2.88 (m, 2H). MS: m/z=515 (M+H+).


(S)-dibenzyl 2-(3-((S)-1-(tert-butoxy)-1-oxopropan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for urea coupling was followed. Reaction was performed on a 0.2 g scale. Isolated 0.4 g (73%) of the desired product as a white solid. MS m/z=499.1 (M+H+).


(S)-2-(3-((S)-1,5-bis(benzyloxy)-1,5-dioxopentan-2-yl)ureido)propanoic Acid



embedded image


General experimental procedure for N-Boc deprotection was followed. Reaction was performed on a 0.4 g scale. Isolated 0.4 g (93%) of the desired product as a white solid. MS m/z=443.1 (M+H+).


(S)-dibenzyl 2-(3-((S)-1-((2-fluoroethyl)amino)-1-oxopropan-2-yl)ureido)pentanedioate



embedded image


General experimental procedure for amide coupling was followed. Reaction was performed on a 0.4 g scale. Isolated 0.2 g (42%) of the desired product as a white solid. MS m/z=488.1 (M+H+).


(S)-2-(3-((S)-1-((2-Fluoroethyl)amino)-1-oxopropan-2-yl)ureido)pentanedioic Acid: P082



embedded image


General experimental procedure for benzyl deprotection was followed. Reaction was performed on a 0.05 g scale. After HPLC purification, P082 (10 mg, 31%) was obtained as a white solid. H NMR (CD3OD, 400 MHz) 4.43 (td, J=47.6, 5.2 Hz, 2H), 4.32-4.26 (m, 1H), 3.46 (td, J=26.8, 4.8 Hz, 2H), 3.40-3.36 (m, 2H), 2.42-2.34 (m, 4H), 2.17-2.05 (m, 1H), 1.95-1.84 (m, 1H), MS: m/z=308.1 (M+H+).


(9S,13S)-4-Methyl-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P083



embedded image


General experimental procedure for alkylation and deprotection reaction was followed. Reaction was performed on a 75 mg scale of (9S,13S)-tri-tert-butyl 3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate. P083 (7.4 mg, 13%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.27-7.34 (m, 5H), 5.08 (s, 2H), 4.21-4.31 (m, 2H), 3.25-3.32 (m, 2H), 2.89 (d, J=10.2 Hz, 3H), 2.39 (ddd, J=8.7, 6.9, 3.5 Hz, 2H), 2.07-2.16 (m, 1H), 1.74-1.92 (m, 2H), 1.49-1.71 (m, 3H), 1.26-1.43 (m, 2H). MS: m/z=468 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-2,4,6-trioxo-1,3,5-triazinan-1-yl)pentanedioic Acid: P084



embedded image


To a solution of (9S,13S)-tri-tert-butyl 3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (140 mg, 0.225 mmol) in dry DCM (3.0 mL) was added N-(chlorocarbonyl) isocyanate (22 μL, 0.273 mmol) and pyridine (50 μL, 618 mmol). The mixture was stirred at room temperature for 1 hour and diluted with DCM. The mixture was washed with water, ammonium chloride solution, and brine. The DCM was removed and the residue was purified by flush chromatography (EtOAc/hexane, 0 to 40%) to give (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxo-1,3,5-triazinan-1-yl)pentanedioate 119 mg (76%) as colorless gum. 10.0 mg of above intermediate was deprotected with general condition to give P084 (5.6 mg, 63%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.25-7.34 (m, 5H), 5.15-5.28 (m, 2H), 5.03 (s, 2H), 3.04-3.14 (m, 2H), 2.27-2.49 (m, 4H), 2.01-2.18 (m, 2H), 1.30-1.58 (m, 4H). MS: m/z=523 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5-methyl-2,4,6-trioxo-1,3,5-triazinan-1-yl)pentanedioic Acid: P085



embedded image


To a solution of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxo-1,3,5-triazinan-1-yl)pentanedioate (23.4 mg, 0.0334 mmol) in acetonitrile/methanol (1.0 mL, v1:1) was added diazomethane in ether (100 μL, 2.0 M). The mixture was stirred at room temperature for 10 minutes and concentrated. The residue was deprotected with general condition to give P085 (8.4 mg, 46%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.26-7.34 (m, 5H), 5.20-5.33 (m, 2H), 5.02 (s, 2H), 3.05-3.27 (m, 2H), 2.27-2.49 (m, 4H), 2.01-2.20 (m, 2H), 1.29-1.58 (m, 4H). MS: m/z=537 (M+H+).


2-((S)-4-(4-(4-Azidobenzamido)butyl)-3-methyl-2,5-dioxoimidazolidin-1-yl)-pentanedioic Acid: P086



embedded image


The cyclized product was obtained during the acid hydrolysis of tert-butyl group of methylated azido-amide P059. Product was purified with HPLC. 1H NMR (CD3OD, 400 MHz) δ 7.83-7.80 (m, 2H), 7.13-7.10 (m, 2H), 4.67-4.63 (m, 1H), 4.08 (t, J=4.4 Hz, 1H), 3.42-3.12 (m, 1H), 2.91 (s, 3H), 2.46-2.28 (m, 4H), 1.98-1.91 (m, 2H), 1.68-1.58 (m, 2H), 1.42-1.36 (m, 2H). MS: m/z=460 (M+H+).


(S)-Di-tert-butyl 2-((5-(ethoxycarbonyl)-4-methylthiazol-2-yl)amino)pentanedioate



embedded image


A mixture of ethyl 2-bromo-4-methylthiazole-5-carboxylate (100 mg, 0.4 mmol), (S)-di-tert-butyl 2-aminopentanedioate hydrochloride (118 mg, 0.4 mmol), and DIPEA (0.139 mL, 0.8 mmol) in THF (2.0 mL) was microwaved at 120° C. for 15 min, cooled and concentrated in vacuo. The residue was used directly in the next step without any further purification.


(S)-2-((5-Carboxy-4-methylthiazol-2-yl)amino)pentanedioic Acid: P087



embedded image


General procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on 80 mg scale. The reaction mixture was then under basic hydrolysis to give crude tri acid. After HPLC purification, P087 (3.5 mg, 7%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.40-4.51 (m, 1H), 2.49 (s, 3H), 2.46 (t, J=7.6 Hz, 2H), 2.22-2.38 (m, 1H), 2.01-2.20 (m, 1H). MS: m/z=289 (M+H+).


(2S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5-nitroso-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P088



embedded image


To a solution of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (15 mg, 0.022 mmol) in THF (0.5 mL) was added 1 M solution of sulfuric acid (0.5 mL) followed by solid sodium nitrite (3.0 mg, 0.043 mmol). The mixture was stirred at room temperature for 10 minutes and concentrated. The residue was deprotected with general condition to give P088 (1.5 mg, 13%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.24-7.34 (m, 5H), 5.29-5.46 (m, 2H), 5.01 (s, 2H), 3.05-3.12 (m, 2H), 2.45-2.54 (m, 1H), 2.15-2.41 (m, 4H), 1.98-2.11 (m, 1H), 1.39-1.57 (m, 2H), 1.36 (m, 2H). MS: m/z=551 (M+H+).


(2S)-2-(3-((S)-1-Carboxy-5-((((4-nitrobenzyl)oxy)carbonyl)amino)pentyl)-5-nitro-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P089



embedded image


To a solution of (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (15 mg, 0.022 mmol) in chloroform (0.5 mL) was added HNO3 (conc.) (0.1 mL) followed by TFA (0.5 mL). The mixture was stirred at room temperature for 1 hour and concentrated. The residue was purified by HPLC to give P089 (1.4 mg, 12%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.21 (m, 2H), 7.51-7.66 (m, 2H), 5.34-5.48 (m, 2H), 5.08-5.22 (m, 2H), 3.04-3.27 (m, 2H), 2.39-2.50 (m, 1H), 2.24-2.37 (m, 3H), 2.11 (m, 2H), 1.41-1.58 (m, 2H), 1.24-1.40 (m, 2H). MS: m/z=612 (M+H+).


(S)-Dibenzyl 2-(2-((benzyloxy)amino)acetamido)pentanedioate



embedded image


First, general experimental procedure for the formation of amide was followed. Reaction was performed on a 525 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give a bromide (269 mg, 57%). MS: m/z=449 (M+H+). Second, The bromide was treated with benzylhydroxylamine hydrochloride in the present of DIPEA which gives the title compound (86 mg, 29%). MS: m/z=491 (M+H+).


(S)-Dibenzyl 2-(2-(4-(4-azidophenyl)-N-(benzyloxy)butanamido)acetamido)-pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 43 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give a bromide (38 mg, 64%). MS: m/z=678 (M+H+).


(S)-2-(2-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-N-hydroxybutanamido)acetamido)pentanedioic Acid: P090



embedded image


First, general experimental procedure for click chemistry was followed. Reaction was performed on a 38 mg scale. The crude product was used directly in the next step without any further purification. Second, general experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 43 mg scale. After HPLC purification, P090 (10 mg, 37%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.21 (s, 1H), 7.64 (d, J=8.4 Hz, 2H), 7.34 (d, J=8.4 Hz, 2H), 4.46 (dt, J=47.2, 6.0 Hz, 2H), 4.32-4.43 (m, 1H), 4.24 (s, 2H), 2.81 (t, J=3.6 Hz, 2H), 2.67 (t, J=8.4 Hz, 2H), 2.51 (t, J=7.2 Hz, 2H), 2.31 (t, J=8.0 Hz, 2H), 1.78-2.16 (m 6H). MS: m/z=494 (M+H+).


(2S)-2-(5-Amino-3-((S)-5-(benzyloxycarbonylamino)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P091



embedded image


To a solution of (2S)-2-(3-((S)-5-(benzyloxycarbonylamino)-1-carboxypentyl)-5-nitroso-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid (1.5 mg, 0.0027 mmol) in acetonitrile/water/TFA (10 mL, 50:50:0.05) was added sodium hydrogen sulfite (10 mg, 0.057 mmol). The mixture was stirred at room temperature for 30 minutes and concentrated and purified by HPLC to give P091 (1.0 mg, 68%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.15-7.27 (m, 5H), 5.15-5.37 (m, 2H), 4.94 (s, 2H), 2.84-3.06 (m, 2H), 2.28-2.49 (m, 1H), 1.96-2.45 (m, 5H), 1.31-1.52 (m, 2H), 1.11-1.30 (m, 2H). MS: m/z=537 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P092



embedded image


Compound P092 was synthesized using the same procedures for the preparation of P069. After HPLC purification, P092 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.26 (s, 1H), 8.00-7.97 (m, 2H), 7.92-7.90 (m, 2H), 4.74-4.70 (m, 1H), 4.60 (t, J=6.0 Hz, 1H), 4.48 (t, J=5.6 Hz, 1H), 4.36-4.32 (m, 1H), 3.50-3.30 (m, 2H), 2.90 (m, 2H), 2.42 (m, 2H), 2.22-2.05 (m, 4H), 1.95-1.88 (m, 2H), 1.69-1.61 (m, 2H), 1.52-1.42 (m, 2H). MS: m/z=567 (M+H+).


(S)-Dibenzyl 2-(2-(5-azido-N-(benzyloxy)pentanamido)acetamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 43 mg scale. Product was purified on a Biotage purification system eluting out in 5-50% EtOAc:Hexanes mixture in a gradient elution to give a bromide (37 mg, 69%). MS: m/z=616 (M+H+).


(S)-2-(2-(5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)-N-hydroxypentanamido)-acetamido)pentanedioic Acid: P093



embedded image


First, general experimental procedure for click chemistry was followed. Reaction was performed on a 37 mg scale. The crude product was used directly in the next step without any further purification. Second, general experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 43 mg scale. After HPLC purification, P093 (15 mg, 60%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.80 (s, 1H), 4.44-4.53 (m, 2H), 4.35-4.42 (m, 3H), 4.31 (s, 2H), 2.80 (t, J=4.4 Hz, 2H), 2.54-2.62 (m, 2H), 2.38 (t, J=8.0 Hz, 2H), 2.12-2.23 (m, 1H), 1.86-2.09 (m, 4H), 1.56-1.65 (m, 2H). MS: m/z=432 (M+H+).


General experimental procedure for amidation and deprotection was followed. Reaction was performed on a 26 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. Isolated 1.4 mg (5.2%) of P094 precursor as a white solid. MS: m/z=575 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanamido)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P094



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 1.4 mg scale of (S)-2-(3-((S)-5-(4-(4-azidophenyl)butanamido)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P094 (0.8 mg, 50%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.73 (d, J 8.6 Hz, 2H), 7.41 (d, J=8.6 Hz, 2H), 5.24-5.40 (m, 2H), 4.55-4.61 (m, 1H), 4.42-4.50 (m, 1H), 3.12-3.15 (m, 2H), 2.88-2.93 (m, 2H), 2.69-2.73 (m, 2H), 2.43-2.50 (m, 1H), 2.36-2.42 (m, 2H), 2.03-2.25 (m, 7H), 1.92-1.97 (m, 2H), 1.44-1.62 (m, 2H), 1.28-1.38 (m, 2H). MS: m/z=661 (M+H+).


(S)-2-(3-Benzyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P095



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. 1H NMR (CD3OD, 400 MHz) δ: 7.35-7.26 (m 5H), 5.37 (m, 1H), 5.08-4.98 (m, 4H), 2.56-2.20 (m, 4H); MS: m/z=370.8 (M+Na+)


(S,E)-2-(3-Benzyl-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-1-hydroxyethylidene)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P096



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. 1H NMR (CD3OD, 400 MHz) δ: 7.71 (s, 1H), 7.36-7.24 (m 5H), 5.51 (m, 1H), 5.20-5.00 (m, 3H), 4.52-4.38 (m, 2H), 2.84-2.81 (m, 2H), 2.56-2.36 (m, 5H), 2.15-1.98 (m, 2H); MS: m/z=517.7 (M+H+)




embedded image


To (S)-di-tert-butyl 2-aminopentanedioate HCl (148 mg, 0.5 mmol) in dry DCM (5.0 mL) was added TEA (252 mg, 2.5 mmol). The mixture was cooled to 0° C. and added malonyl dichloride (35 mg, 0.25 mmol) dropwise. The mixture was stirred at rt for 1 h and diluted with ETOAc. It was washed with water (3×50 mL) and concentrated. The crude product was purified by silica chromatography to afford (2S,2′S)-tetra-tert-butyl 2,2′-(malonylbis(azanediyl))dipentanedioate as a clear oil (140 mg, 47%). MS: m/z=587 (M+H+).


2,2′-(Malonylbis(azanediyl))dipentanedioic Acid: P097



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P097 (10 mg, 61%) was obtained as a white fluffy solid. 1H NMR (D2O, 400 MHz) δ 4.29 (dd, J=23, 13 Hz, 2H), 3.21 (s, 2H), 2.32 (t, J=7.6 Hz, 4H), 2.09-2.00 (m, 2H), 1.88-1.80 (m, 2H). MS: m/z=363 (M+H+).


(2′S)-2,2′-(Oxalylbis(azanediyl))dipentanedioic Acid: P098



embedded image


General experimental procedures for amide formation and the removal of tert-butyl group from esters was followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P098 (8.0 mg, 51%) was obtained as a white fluffy solid. 1H NMR (D2O, 400 MHz) δ 4.53-4.48 (m, 2H), 2.43 (t, J=7.2 Hz, 4H), 2.32-2.24 (m, 2H), 2.11-2.02 (m, 2H). MS: m/z=349 (M+H+).




embedded image


To (S)-di-tert-butyl 2-aminopentanedioate HCl (148 mg, 0.5 mmol) in 5 mL dry DCM was added TEA (252 mg, 2.5 mmol). The mixture was cooled to 0° C. and added sulfuryl dichloride (33 mg, 0.25 mmol) dropwise. The mixture was stirred at rt for 5 h and diluted with ETOAc. It was washed with water (3×50 mL) and concentrated. The crude product was purified by silica chromatography to afford (2S,2′S)-tetra-tert-butyl 2,2′-(sulfonylbis(azanediyl))dipentanedioate as a clear oil (86 mg, 29%). MS: m/z=581 (M+H+).


(2S)-2,2′-(Sulfonylbis(azanediyl))dipentanedioic Acid: P099



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P099 (10 mg, 55%) was obtained as a white fluffy solid. 1H NMR (D2O, 400 MHz) δ 4.01 (dd, J=8, 5.6 Hz, 2H), 2.50 (m, 4H), 2.13 (m, 2H), 1.95 (m, 2H). MS: m/z=357 (M+H+).


(S)-Di-tert-butyl 2-(2-(4-(4-azidophenyl)butanoyl)hydrazinecarboxamido)-pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 93 mg scale. Product was purified on a Biotage purification system eluting out in 50-80% EtOAc:Hexanes mixture in a gradient elution to give a bromide (89 mg, 60%). MS: m/z=505 (M+H+).


(S)-2-(2-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanoyl)-hydrazinecarboxamido)pentanedioic Acid: P100



embedded image


First, general experimental procedure for click chemistry was followed. Reaction was performed on an 89 mg scale. The crude product was used directly in the next step without any further purification. Second, general experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 100 mg scale. After HPLC purification, P100 (10 mg, 12%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.28 (s, 1H), 7.72 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 4.50 (dt, J=47.6, 6.0 Hz, 2H), 4.31-4.36 (m, 1H), 2.89 (t, J=8.0 Hz, 2H), 2.74 (t, J=8.0 Hz, 2H), 2.35-2.43 (m, 2H), 2.28 (t, J=7.2 Hz, 2H), 1.86-2.22 (m, 6H). MS: m/z=479 (M+H+).


(S,Z)-2-(3-Benzyl-5-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-1-hydroxybutylidene)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P101



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. 1H NMR (CD3OD, 400 MHz) δ 8.26 (s, 1H), 7.69 (m 2H), 7.42-7.20 (m, 7H), 5.48-5.42 (m, 1H), 5.08-5.03 (m, 2H), 4.56-4.44 (m, 2H), 3.20-3.08 (m, 2H), 2.92-2.79 (m, 4H), 2.56-2.30 (m, 4H), 2.15-1.98 (m, 4H). MS: m/z=622.1 (M+H+)


(S,Z)-2-(3-Benzyl-5-(5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-1-hydroxypentylidene)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P102



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. 1H NMR (CD3OD, 400 MHz), δ 7.81 (s, 1H), 7.32-7.26 (m, 5H), 5.48 (m, 1H), 5.08-5.03 (m, 2H), 4.49-4.37 (m, 4H), 3.17-3.10 (m, 2H), 2.79-2.75 (m, 2H), 2.56-2.30 (m, 4H), 2.10-1.92 (m, 4H), 1.68-1.65 (m, 2H). MS: m/z=559.7 (M+H+)


(S)-2-(3-((S)-5-(4-(4-Azidophenyl)butanamido)1-carboxypentyl)-3-methylureido)-pentanedioic Acid



embedded image


General experimental procedures for amide formation and removal of tert-butyl ester groups were followed. Reaction was performed on a 125 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (5 mg, 5%, in two steps). MS: m/z=478 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-butanamido)phenyl)-3-methylureido)pentanedioic Acid: P103



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 2 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (1.2 mg, 49%). 1H NMR (CD3OD, 400 MHz) δ 8.28 (s, 1H), 7.27-7.70 (dd, J=6.4, 2.0 Hz, 2H), 7.38 (d, J=6.4 Hz, 2H), 4.55 (t, J=6.0 Hz, 1H), 4.44 (t, J=6.0 Hz, 1H), 4.30-4.26 (dd, J=9.6, 4.8 Hz, 1H), 3.22-3.11 (m, 2H), 2.88 (t, J=7.6 Hz, 2H), 2.83 (m, 3H), 2.67 (t, J=7.2 Hz, 2H), 2.44 (t, J=7.2 Hz, 2H), 2.24-1.88 (m, 8H), 1.80-1.70 (m, 1H), 1.60-1.36 (m, 3H); MS: m/z=607 (M+H+).


(S)-2-(3-((S)-5-(Bis(4-nitrobenzyl)amino)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P104



embedded image


General experimental procedure for reductive amination and deprotection was followed. Reaction was performed on a 40 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. Isolated 9.0 mg (19%) of P104 as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.28-8.33 (m, 4H), 7.70-7.75 (m, 4H), 5.43 (dd, J=9.6, 4.9 Hz, 1H), 5.32 (dd, J=9.6, 4.9 Hz, 1H), 4.27-4.45 (m, 4H), 2.94 (t, J=7.6 Hz, 2H), 2.46-2.62 (m, 1H), 2.13-2.37 (m, 4H), 1.91-2.07 (m, 5H), 1.76-1.90 (m, 2H), 1.29-1.40 (m, 2H), 0.84 (dt, J=12.2, 7.4 Hz, 6H). MS: m/z=714 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-N-(4-nitrobenzyl)pentanamido)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P105



embedded image


General experimental procedure for chlick reaction was followed. Reaction was performed on a 5.0 mg scale of (S)-2-(3-((S)-5-(5-azido-N-(4-nitrobenzyl)pentanamido)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P105 (3.2 mg, 57%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.24 and 8.18 (d, J=8.6 Hz, two rotamers, total 2H), 7.77 and 7.81 (s, two rotamers, total 1H), 7.44 (d, J=8.6 Hz, 2H), 5.43 (dd, J=9.6, 4.9 Hz, 1H), 5.31-5.37 (m, 1H), 4.72-4.82 (m, 1H), 4.65-4.77 (m, 2H), 4.50-4.54 (m, 1H), 4.33-4.45 (m, 3H), 2.78-2.85 (m, 2H), 2.48-2.58 (m, 2H), 2.13-2.40 (m, 5H), 1.93-2.11 (m, 8H), 1.84-1.92 (m, 1H), 1.52-1.75 (m, 4H), 1.23-1.38 (m, 2H), 0.86 (q, J=7.4 Hz, 6H). MS: m/z=790 (M+H+).


(2S)-2-(8-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5,7,9-trioxo-6,8-diazaspiro[3.5]nonan-6-yl)pentanedioic Acid: P106



embedded image


To a solution of (9S,13S)-tri-tert-butyl 3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (30 mg, 0.048 mmol) in dry DCM (2.0 mL) was added cyclobutane-1,1-dicarbonyl dichloride (26 mg, 0.144 mmol). The mixture was heated at 70° C. for 1 hour. The mixture was deprotected with general condition to give P106 (10.0 mg, 28%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.26-7.40 (m, 5H), 5.34 (dd, J=9.8, 4.7 Hz, 1H), 5.22-5.30 (m, 1H), 5.04 (s, 2H), 3.09 (t, J=6.8 Hz, 2H), 2.50-2.71 (m, 4H), 2.25-2.49 (m, 4H), 2.01-2.24 (m, 4H), 1.39-1.63 (m, 2H), 1.33 (d, J=6.3 Hz, 2H). MS: m/z=562 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-nitrophenylsulfonamido)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P107



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (10 mg, 0.016 mmol) in DCM (1.0 mL) was added 4-nitrobenzenesulfonyl chloride (5.4 mg, 0.024 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P107 (4.7 mg, 46%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.39-8.42 (m, 2H), 8.04-8.08 (m, 2H), 5.43 (dd, J=9.2, 4.9 Hz, 1H), 5.28 (dd, J=9.8, 5.1 Hz, 1H), 2.90 (t, J=7.0 Hz, 2H), 2.49-2.58 (m, 1H), 2.18-2.38 (m, 3H), 1.92-2.14 (m, 6H), 1.38-1.56 (m, 2H), 1.22-1.37 (m, 2H), 0.81-0.92 (m, 6H). MS: m/z=629 (M+H+).


(S)-2-(3-((S)-5-(3-benzylureido)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P108



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (10 mg, 0.016 mmol) in DCM (1.0 mL) was added benzyl isocyanate (6.5 mg, 0.049 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P108 (5.4 mg, 57%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.19-7.32 (m, 5H), 5.42-5.51 (m, 1H), 5.35-5.47 (m, 2H), 4.29 (s, 2H), 3.05-3.17 (m, 2H), 2.48-2.58 (m, 1H), 2.14-2.36 (m, 4H), 1.99-2.12 (m, 5H), 1.42-1.59 (m, 2H), 1.26-1.41 (m, 2H), 0.88 (td, J=7.4, 4.3 Hz, 6H). MS: m/z=577 (M+H+).


2-(4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)pentanedioic Acid: P109



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 0.05 g scale. After HPLC purification, P109 (50 mg, 50%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 8.25 (s, 1H), 7.87 (d, J=9.6 Hz, 1H), 7.54 (d, J=8.8 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 7.02 (dd, J=8.4, 2.4 Hz, 1H), 6.25 (d, J=9.6 Hz, 1H), 5.53 (dd, J=10.0, 4.8 Hz, 1H), 5.29 (s, 2H), 2.67-2.58 (m, 1H), 2.49-2.39 (m, 1H), 2.23 (t, J=8.0 Hz, 2H). MS: m/z=374.1 (M+H+).


(S)-2-(3-((S)-1-carboxy-5-(4-nitrobenzylamino)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P110



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (10 mg, 0.016 mmol) in DCE (1.0 mL) was added 4-nitrobenzaldehyde (3.0 mg, 0.020 mmol), acetic acid (18 μL, 0.315 mmol), and sodium NaBH(OAc)3 (18 mg, 0.085 mmol). The mixture was stirred at room temperature for 2 hours and further deprotected with general condition to give P110 (6.4 mg, 67%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.31-8.34 (m, 2H), 7.71-7.75 (m, 2H), 5.34-5.48 (m, 2H), 4.34 (s, 2H), 3.08 (ddd, J=9.2, 7.0, 1.8 Hz, 2H), 2.49-2.59 (m, 1H), 2.21-2.37 (m, 4H), 1.96-2.11 (m, 5H), 1.68-1.90 (m, 2H), 1.36-1.51 (m, 2H), 0.88 (t, J=7.4 Hz, 6H). MS: m/z=579 (M+H+).


tert-Butyl 3-((benzyloxy)amino)propanoate



embedded image


A mixture of O-benzylhydroxylamine hydrochloride (500 mg, 3.13 mmol), tert-butyl acrylate (401 mg, 3.13 mmol), and DIPEA (0.546 mL, 3.13 mmol) in 1,4-dioxane (3.0 mL) was microwaved at 120° C. for 20 min, cooled and concentrated in vacuo. The residue was purified on flash column chromatography (silica gel, 0-40% EtOAc/hexanes) to give the title compound (53 mg, 6.7%). MS: m/z=252 (M+H+).


tert-Butyl 3-(4-(4-azidophenyl)-N-(benzyloxy)butanamido)propanoate: General experimental procedure for the formation of amide was followed. Reaction was performed on a 53 mg scale. Product was purified on a Biotage purification system eluting out in 0-35% EtOAc:Hexanes mixture in a gradient elution to give a bromide (80 mg, 87%). MS: m/z=439 (M+H+).


tert-Butyl 3-(N-(benzyloxy)-4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanamido)propanoate: General experimental procedure for click chemistry was followed. Reaction was performed on an 80 mg scale. The crude product was purified on flash column chromatography (silica gel, 30-80% EtOAc/hexanes) to give the desired compound (59 mg, 62%). MS: m/z=525 (M+H+).


3-(N-(Benzyloxy)-4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-butanamido)propanoic acid: General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 59 mg scale. The crude product was used directly in the next step without any further purification.


(S)-Dibenzyl 2-(3-(N-(benzyloxy)-4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanamido)propanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 53 mg scale. Product was purified on a Biotage purification system eluting out in 30-100% EtOAc:Hexanes mixture in a gradient elution to give a bromide (71 mg, 81%). MS: m/z=778 (M+H+).


(S)-2-(3-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-N-hydroxybutanamido)propanamido)pentanedioic acid: P111



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 71 mg scale. After HPLC purification, P111 (17 mg, 37%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.73 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.40-4.46 (m, 1H), 3.85-93 (m, 1H), 2.91 (t, J=8.0 Hz, 2H), 2.74 (t, J=8.0 Hz, 2H), 2.47-2.62 (4H), 2.40 (t, J=8.0 Hz, 2H), 2.03-2.23 (m, 3H), 1.88-1.99 (m, 3H). MS: m/z=508 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-methoxybenzylamino)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P112



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (12 mg, 0.020 mmol) in DCE (1.0 mL) was added 4-nitrobenzaldehyde (3.2 mg, 0.024 mmol), acetic acid (18 μL, 0.315 mmol), and sodium NaBH(OAc)3 (20 mg, 0.094 mmol). The mixture was stirred at room temperature for 2 hours and further deprotected with general condition to give P112 (9.5 mg, 86%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.28-7.33 (m, 2H), 6.89-6.93 (m, 2H), 5.26-5.39 (m, 2H), 4.03 (s, 2H), 3.73 (s, 3H), 2.91 (t, J=8.2 Hz, 2H), 2.40-2.51 (m, 1H), 2.12-2.29 (m, 4H), 1.90-2.02 (m, 5H), 1.58-1.82 (m, 2H), 1.23-1.43 (m, 2H), 0.80 (td, J=7.4, 1.6 Hz, 6H). MS: m/z=564 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-fluoronicotinamido)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P113



embedded image


General experimental procedure for amidation and deprotection was followed. Reaction was performed on a 12.0 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate. After HPLC purification, P113 (4.6 mg, 41%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.60-8.69 (m, 1H), 8.27-8.41 (m, 1H), 7.15 (m, 1H), 5.42 (m, 2H), 3.33-3.49 (m, 2H), 2.54 (m, 1H), 2.18-2.40 (m, 4H), 2.12 (m, 1H), 1.97-2.07 (m, 4H), 1.54-1.76 (m, 2H), 1.40 (m, 2H), 0.81-0.92 (m, 6H). MS: m/z=567 (M+H+).


(S)-2-(3-((S)-5-((E)-3-(4-Azidophenyl)allylamino)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P114 Precursor



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (12 mg, 0.020 mmol) in DCE (1.0 mL) was added 4-nitrobenzaldehyde (3.4 mg, 0.020 mmol), acetic acid (12 μL, 0.210 mmol), and sodium NaBH(OAc)3 (12.5 mg, 0.059 mmol). The mixture was stirred at room temperature for 2 hours and further deprotected with general condition to give P114 precursor (4.0 mg, 34%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.51 (d, J=8.2 Hz, 2H), 7.07 (d, J=8.6 Hz, 2H), 6.84 (d, J=16.0 Hz, 1H), 6.22 (dt, J=15.8, 7.3 Hz, 1H), 5.30-5.52 (m, 2H), 3.79 (d, J=7.4 Hz, 2H), 2.95-3.08 (m, 2H), 2.47-2.61 (m, 1H), 2.28-2.35 (m, 4H), 2.00-2.12 (m, 5H), 1.65-1.88 (m, 2H), 1.35-1.55 (m, 2H), 0.88 (td, J=7.3, 1.4 Hz, 6H). MS: m/z=601 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((E)-3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)allylamino)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P114



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 2.0 mg scale of (S)-2-(3-((S)-5-((E)-3-(4-azidophenyl)allylamino)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P114 (0.8 mg, 35%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.38 (s, 1H), 7.88 (d, J 8.6 Hz, 2H), 7.70 (d, J=8.6 Hz, 2H), 6.95 (d, J=16.0 Hz, 1H), 6.32-6.47 (m, 1H), 5.36-5.52 (m, 2H), 4.59 (t, J=5.9 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 3.85 (d, J=7.4 Hz, 2H), 3.06 (t, J=8.0 Hz, 2H), 2.87-2.96 (m, 2H), 2.46-2.62 (m, 1H), 1.97-2.40 (m, 11H), 1.64-1.91 (m, 2H), 1.35-1.54 (m, 2H), 0.89 (t, J=7.4 Hz, 6H). MS: m/z=687 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-3-(5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)pentanamido)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 41 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=704 (M+H+).


(S)-2-((S)-3-Carboxy-3-(5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)pentanamido)propanamido)pentanedioic Acid: P115



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 60 mg scale. After HPLC purification, P115 (23 mg, 49%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.73 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 4.75 (t, J=6.4 Hz, 1H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.41-4.46 (m, 1H), 2.91 (t, J=7.6 Hz, 2H), 2.79-2.83 (m, 2H), 2.74 (t, J=8.0 Hz, 2H), 2.38 (t, J=8.0 Hz, 2H), 2.30 (t, J=8.0 Hz, 2H), 1.85-2.24 (m, 6H). MS: m/z=536 (M+H+).


(10S,14S)-Tri-tert-butyl 3,8,12-trioxo-1-phenyl-2-oxa-4,9,13-triazahexadecane-10,14,16-tricarboxylate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 50 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=650 (M+H+).


(10S,14S)-3,8,12-Trioxo-1-phenyl-2-oxa-4,9,13-triazahexadecane-10,14,16-tricarboxylic Acid: P116



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 75 mg scale. After HPLC purification, P116 (30 mg, 54%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.22-7.29 (m, 5H), 5.07 (s, 2H), 4.74 (t, J=6.0 Hz, 1H), 4.39-4.45 (m, 1H), 3.15 (t, J=7.6 Hz, 2H), 2.81 (d, J=6.4 Hz, 2H), 2.38 (t, J=8.0 Hz, 2H), 2.27 (t, J=8.0 Hz, 2H), 2.11-2.23 (m, 1H), 1.82-1.95 (m, 1H), 1.75-1.82 (m, 2H). MS: m/z=482 (M+H+).


(2S)-2-((Z)-5-(4-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)4-carboxy-1-hydroxybutylidene)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P117



embedded image


General experimental procedures for amide formation and the removal of benzyl group were followed. Reaction was performed on a 15 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (1.5 mg, 7%). 1H NMR (CD3OD, 400 MHz) δ 7.78 (d, J=6.8 Hz, 2H), 7.69-7.66 (m, 2H), 7.37-7.28 (m, 4H), 5.37 (br, 1H), 4.37-4.22 (m, 2H), 2.50-2.0 (m, 3H). MS: m/z=610 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((4-nitrobenzyloxy)carbonylamino)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P118



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (20 mg, 0.032 mmol) in DCM (1.0 mL) was added 4-nitrobenzyl chloroformate (10.6 mg, 0.049 mmol) and triethylamine (15 μL, 0.108 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P118 (8.5 mg, 42%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.23 (d, J=9.0 Hz, 2H), 7.58 (d, J=8.6 Hz, 2H), 5.33-5.47 (m, 2H), 5.18 (s, 2H), 3.06-3.18 (m, 2H), 2.49-2.59 (m, 1H), 2.15-2.38 (m, 4H), 1.98-2.12 (m, 5H), 1.45-1.62 (m, 2H), 1.26-1.42 (m, 2H), 0.84-0.92 (m, 6H). MS: m/z=623 (M+H+).


(S)-Di-tert-butyl 2-((S)-3-(5-benzamidopentanamido)-4-(tert-butoxy)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 42 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=634 (M+H+).


(S)-2-((S)-3-(5-Benzamidopentanamido)-3-carboxypropanamido)pentanedioic Acid: P119



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 62 mg scale. After HPLC purification, P119 (20 mg, 44%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.78-7.83 (m, 2H), 7.41-7.55 (m, 3H), 4.74 (t, J=6.0 Hz, 1H), 3.39 (t, J=6.4 Hz, 2H), 2.81 (d, J=6.4 Hz, 2H), 2.39 (t, J=8.0 Hz, 2H), 2.31*t, J=7.2 Hz, 2H), 2.11-2.23 (m, 1H), 1.84-1.97 (m, 1H), 1.61-1.75 (4H). MS: m/z=466 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((4-nitrobenzyloxy)carbonylamino)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P120



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (23 mg, 0.041 mmol) in DCM (1.5 mL) was added 4-nitrobenzyl chloroformate (10.7 mg, 0.050 mmol) and triethylamine (18 μL, 0.130 mmol). The mixture was stirred at room temperature for 2 hour and further deprotected with general condition to give P120 (13.4 mg, 57%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.23 (d, J=9.0 Hz, 2H), 7.58 (d, J=8.6 Hz, 2H), 5.23-5.38 (m, 2H), 5.18 (s, 2H), 3.07-3.16 (m, 2H), 2.36-2.52 (m, 3H), 2.12-2.33 (m, 2H), 1.99-2.09 (m, 1H), 1.43-1.59 (m, 2H), 1.29-1.41 (m, 2H). MS: m/z=567 (M+H+).


5-Amino-5-oxo-2-(4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)pentanoic Acid: P121



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 0.032 g scale. After HPLC purification, P121 (0.05 g, 72%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 8.25 (s, 1H), 7.87 (d, J=9.2 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 7.02 (dd, J=8.8, 2.4 Hz, 1H), 6.25 (d, J=9.6 Hz, 1H), 5.49 (dd, J=10.4, 4.8 Hz, 1H), 5.28 (s, 2H), 2.69-2.60 (m, 1H), 2.50-2.41 (m, 1H), 2.23-2.12 (m, 2H). MS: m/z=373.1 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-3-(4-(4-methoxyphenyl)butanamido)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 47 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=607 (M+H+).


(S)-2-((S)-3-Carboxy-3-(4-(4-methoxyphenyl)butanamido)propanamido)-pentanedioic Acid: P122



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 68 mg scale. After HPLC purification, P122 (33 mg, 67%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.10 (d, J=8.8 Hz, 2H), 6.81 (d, J=8.8 Hz, 2H), 4.73 (t, J=6.8 Hz, 1H), 4.59-4.66 (m, 1H), 3.75 (s, 3H), 2.78-2.83 (m, 2H), 2.57 (t, J=8.0 Hz, 2H), 2.38 (t, J=8.0 Hz, 2H), 2.24 (t, J=7.6 Hz, 2H), 2.11-2.21 (m, 1H), 1.82-1.95 (m, 3H). MS: m/z=439 (M+H+).


(S)-Di-tert-butyl 2-((S)-4-(tert-butoxy)-3-(4-(4-nitrophenyl)butanamido)-4-oxobutanamido)pentanedioate



embedded image


General experimental procedure for the formation of amide was followed. Reaction was performed on a 47 mg scale. The crude product was used directly in the next step without any further purification. MS: m/z=622 (M+H+).


(S)-2-((S)-3-Carboxy-3-(4-(4-nitrophenyl)butanamido)propanamido)pentanedioic Acid: P123



embedded image


General experimental procedure for the removal of tert-butyl group from esters was followed. Reaction was performed on a 68 mg scale. After HPLC purification, P123 (25 mg, 50%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.15 (d, J=8.8 Hz, 2H), 7.46 (d, J=8.8 Hz, 2H), 4.74 (t, J=6.0 Hz, 1H), 3.39-4.46 (m, 1H), 2.74-2.84 (m, 4H), 2.38 (t, J=8.0 Hz, 2H), 2.29 (t, J=7.2 Hz, 2H), 2.11-2.22 (m, 1H), 1.85-2.03 (m, 3H). MS: m/z=454 (M+H+).


2-(4-(2-Amino-3-methoxy-3-oxopropyl)-1H-1,2,3-triazol-1-yl)pentanedioic Acid



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 0.05 g scale. The title compound (50 mg, 54%) was obtained as a white solid. MS: m/z=301.1 (M+H+).


2-(4-(2-(((Benzyloxy)carbonyl)amino)-3-methoxy-3-oxopropyl)-1H-1,2,3-triazol-1-yl)pentanedioic Acid: P124



embedded image


General experimental procedures for benzoylation were followed. Reaction was performed on a 0.054 g scale. After HPLC purification, P124 (70 mg, 77%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 7.84 (s, 1H), 7.32-7.25 (m, 5H), 5.44 (dd, J=9.2, 4.0 Hz, 1H), 5.04 (ABq, JAB=12.4 Hz, 2H), 4.48 (dd, J=8.8, 4.8 Hz, 1H), 3.33-3.30 (m, 1H), 3.14-3.08 (m, 1H), 2.61-2.52 (m, 1H), 2.39-2.32 (m, 1H), 2.18 (t, J=7.6, Hz, 2H). MS: m/z=435.1 (M+H+).


(S)-4-(Formyloxy)-4-(picolinamido)butanoic Acid: P125



embedded image


General experimental procedure for amide formation and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 8.65 (s, 1H), 8.06 (d, J=30 Hz, 1H), 8.01 (m 1H), 7.60 (m, 1H), 4.68-4.66 (m, 1H), 2.45-2.41 (m, 3H), 2.20-2.05 (m, 1H). MS: m/z=252.8 (M+H+)


(S,Z)-2-(5-((4-Aminophenyl)(hydroxy)methylene)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P127



embedded image


General experimental procedures for amide formation and hydrogenation method for debenzylation were followed. Reaction was performed on a 23 mg scale. Product was purified by HPLC purification system using 0.05% TFA in water and acetonitrile as a solvent yielded the title compound (1.5 mg, 8%). 1H NMR (400 CD3OD, 400 MHz) δ 7.51-7.49 (dd, J=6.8, 1.6 Hz, 1H), 7.39-7.37 (m, 1H), 6.52-6.46 (dd, J=6.8, 1.6 Hz, 1H), 6.44-6.41 (m, 1H), 5.30-5.26 (m, 1H), 2.41-2.25 (m, 4H). MS: m/z=378 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-nitrophenylsulfonamido)pentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P128



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (10.0 mg, 0.018 mmol) in DCM (1.0 mL) was added 4-nitrobenzenesulfonyl chloride (6.0 mg, 0.027 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 2 hour and further deprotected with general condition to give P128 (4.7 mg, 46%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.39-8.42 (m, 2H), 8.05-8.08 (m, 2H), 5.35 (dd, J=10.0, 4.5 Hz, 1H), 5.20 (dd, J=9.8, 5.1 Hz, 1H), 2.91 (t, J=6.8 Hz, 2H), 2.34-2.52 (m, 3H), 2.20-2.33 (m, 1H), 1.90-2.13 (m, 2H), 1.28-1.54 (m, 4H). MS: m/z=573 (M+H+).


(S)-2-(3-((S)-5-(3-Benzylureido)-1-carboxypentyl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P129



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (10.0 mg, 0.018 mmol) in DCM (1.0 mL) was added benzyl isocyanate (2.9 mg, 0.022 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 2 hour and further deprotected with general condition to give P129 (4.7 mg, 55%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.19-7.32 (m, 4H), 5.27-5.39 (m, 2H), 4.30 (s, 2H), 3.07-3.17 (m, 2H), 2.35-2.52 (m, 3H), 2.12-2.33 (m, 2H), 1.99-2.09 (m, 1H), 1.31-1.57 (m, 4H). MS: m/z=521 (M+H+).


(S)-2-(3-((S)-5-(3-(4-Azidophenyl)thioureido)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P130 precursor



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (24 mg, 0.039 mmol) in DCM (1.5 mL) was added 4-azidophenyl isothiocyanate (8.3 mg, 0.047 mmol) and triethylamine (20 μL, 0.144 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P130 precursor (13.5 mg, 56%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.31-7.36 (m, 2H), 7.04-7.08 (m, 2H), 5.36-5.47 (m, 2H), 3.44-3.64 (m, 2H), 2.50-2.59 (m, 1H), 2.18-2.39 (m, 4H), 2.00-2.13 (m, 5H), 1.58-1.73 (m, 2H), 1.29-1.45 (m, 2H), 0.89 (td, J 7.4, 3.5 Hz, 6H). MS: m/z=620 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)thioureido)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P130



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 5.7 mg scale of (S)-2-(3-((S)-5-(3-(4-azidophenyl)thioureido)-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P130 (3.7 mg, 57%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.32 (s, 1H), 7.78-7.82 (m, 2H), 7.58-7.62 (m, 2H), 5.38-5.48 (m, 2H), 4.58 (t, J=5.9 Hz, 1H), 4.46 (t, J=5.9 Hz, 1H), 3.47-3.67 (m, 2H), 2.89-2.94 (m, 2H), 2.50-2.59 (m, 1H), 2.31-2.37 (m, 2H), 2.21-2.30 (m, 2H), 2.00-2.19 (m, 7H), 1.60-1.76 (m, 2H), 1.29-1.47 (m, 2H), 0.90 (td, J=7.4, 2.0 Hz, 6H). MS: m/z=706 (M+H+).


(S)-2-(2-(5-Benzamido-N-hydroxypentanamido)acetamido)pentanedioic Acid: P131



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 75 mg scale. After HPLC purification, P131 (17 mg, 37%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.78-7.84 (m, 2H), 7.41-7.55 (m 3H), 4.44-4.52 (m, 1H), 4.33 (s, 2H), 3.37-3.45 (m, 2H), 2.56-2.66 (m, 2H), 2.40 (t, J=8.0 Hz, 2H), 2.13-2.25 (m, 1H), 1.89-2.01 (m, 1H), 1.64-1.78 (m, 4H). MS: m/z=424 (M+H+).


(S)-2-(2-(N-Hydroxy-4-(4-methoxyphenyl)butanamido)acetamido)pentanedioic Acid: P132



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 68 mg scale. After HPLC purification, P132 (33 mg, 80%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.11 (d, J=8.4 Hz, 2H), 6.82 (d, J=8.8 Hz, 2H), 4.45-4.53 (m, 1H), 4.32 (s, 2H), 3.75 (s, 3H), 2.60 (t, J=8.0 Hz, 2H), 2.51-2.58 (m, 2H), 2.40 (t, J=8.0 Hz, 2H), 2.14-2.25 (m, 1H), 1.84-2.01 (m, 3H). MS: m/z=397 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-fluoronicotinamide)pentyl)-3-methylureido)-pentanedioic Acid: P133



embedded image


General experimental procedures for amide formation and removal of tert-butyl group from esters were followed. Reaction was performed on a 70 mg scale. Product was purified on a Biotage and HPLC purification system afforded the title compound (10 mg, 16%). 1H NMR (CD3OD, 400 MHz) δ 8.65 (d, J=2.0 Hz, 1H), 8.36-8.31 (m, 1H), 8.16-8.14 (dd, J=8.8, 2.8 Hz, 1H), 4.31-4.28 (dd, J=9.6, 4.8 Hz, 1H), 3.42-3.37 (m, 1H), 2.85 (s, 3H), 2.46 (t, J=7.6 Hz, 2H), 2.23-2.15 (m, 1H), 2.04-1.95 (m, 1H), 1.86-1.58 (m, 4H), 1.46-1.38 (m, 2H). MS: m/z=457 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-(6-nitronicotinamide)-1-oxohexan-2-yl)-3-methylureido)-pentanedioate: P133 Precursor 1



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on a 100 mg scale. Product was purified on a HPLC purification system using water-acetonitrile with 0.05% TFA (30-90%) afforded the protected amide-ester (30 mg, 24%). 1H NMR (CD3OD, 400 MHz) δ 8.98-8.97 (dd, J=2.0, 0.4 Hz, 1H), 8.85 (br, 1H), 8.55-8.52 (dd, J=8.4, 2.4 Hz, 1H), 8.39-8.37 (dd, J=8.4, 2.4 Hz, 1H), 4.76-4.72 (m, 1H), 4.19-4.15 (d, J=9.6, 4.8 Hz, 1H), 3.45-3.41 (m, 2H), 2.97 (s, 3H), 2.36 (t, J=7.2 Hz, 1H), 2.11-2.04 (m, 1H), 1.98-1.60 (m, 5H), 1.44-1.22 (m, 11H). MS: m/z=652 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-(6-bromonicotinamide)-1-oxohexan-2-yl)-3-methylureido)-pentanedioate: P133 Precursor 2



embedded image


General experimental procedure for amide formation was followed. Reaction was performed on a 115 mg scale. Product was purified on a HPLC purification system using water-acetonitrile with 0.05% TFA (30-90%) afforded the protected amide-ester (50 mg, 24%). 1H NMR (CD3CN, 400 MHz) δ 8.73-8.72 (dd, J=2.4, 0.4 Hz, 1H), 8.01-7.98 (dd, J=8.4, 2.4 Hz, 1H), 7.63 (dd, J=8.4, 2.4 Hz, 1H), 7.25 (br s, 1H), 5.42 (d, J=8.0 Hz, 1H), 4.73-4.69 (dd, J=10.8, 5.2 Hz, 1H), 4.14-4.08 (m, 1H), 3.40-3.28 (m, 2H), 2.76 (s, 3H), 2.06-2.0 (m, 1H), 1.88-1.52 (m, 6H), 1.44-1.22 (m, 11H). MS: m/z=685 and 687 (M+H+ and M+2H+).


(S)-2-(2-(4-(4-Aminophenyl)-N-hydroxybutanamido)acetamido)pentanedioic Acid: P134



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 97 mg scale. After HPLC purification, P134 (10 mg, 18%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.39 (d, J=8.8 Hz, 2H), 7.26 (d, J=8.8 Hz, 2H), 4.45-4.53 (m, 1H), 4.33 (s, 2H), 2.73 (t, J=8.0 Hz, 2H), 2.58 (t, J=8.0 Hz, 2H), 2.40 (t, J=8.0 Hz, 2H), 2.13-2.26 (m, 1H), 1.87-2.03 (m, 3H). MS: m/z=382 (M+H+).


(R)-2-(3-((S)-3-(Benzylamino)-1-carboxy-3-oxopropyl)-3-hydroxyureido)pentanedioic Acid: P135



embedded image


General experimental procedures for amide formation and removal of tert-butyl group from esters were followed. 1H NMR (CD3OD, 400 MHz) δ 7.28-7.20 (m, 6H), 5.14 (m 1H), 4.45-4.30 (m, 4H), 3.71-3.65 (m, 1H), 3.06-3.02 (m, 1H), 2.67-2.62 (m, 1H), 2.37-2.33 (m, 2H), 2.30-2.20 (m, 1H), 2.00-1.90 (m, 1H). MS: m/z=411.9 (M+H+)


(S)-Di-tert-butyl 2-(((cyanoimino)(methylthio)methyl)amino)pentanedioate



embedded image


(S)-di-tert-butyl 2-aminopentanedioate hydrochloride (2 g, 6.76 mmol), dimethyl cyanocarbonimidodithioate (1.29 g, 8.82 mmol), and Triethylamine (1.885 ml, 13.52 mmol) were added in Acetonitrile (Volume: 22.54 ml). The reaction was heated for 1 hour at 90° C. The reaction was cooled to room temperature and purified by combiflash using 40% ethyl acetate in hexanes to afford (S)-di-tert-butyl 2-(((cyanoimino)(methylthio)methyl)amino)pentanedioate (1.2 g, 3.36 mmol, 49.6%) MS: m/z=358 (M+H+).


(9S,13S)-Tri-tert-butyl 11-(cyanoimino)-3-oxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate



embedded image


Silver nitrate (0.513 g, 3.02 mmol) was added to a solution containing, (S)-tert-butyl 2-amino-6-(((benzyloxy)carbonyl)amino)hexanoate hydrochloride (0.42 g, 1.126 mmol)(S)-di-tert-butyl 2-(((cyanoimino)(methylthio)methyl)amino)pentanedioate (0.36 g, 1.007 mmol), and Triethylamine (0.281 ml, 2.014 mmol) in DMF (Volume: 5 ml). Heated the reaction to 80° C. for 20 minutes in MW. Let the reaction cool to room temperature and filtered. Concentrated and purified by prep HPLC to afford (9S,13S,Z)-tri-tert-butyl 11-(cyanoimino)-3-oxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (0.4 g, 0.619 mmol, 61.5% yield) MS: m/z=646 (M+H+)


(9S,13S)-11-(Cyanoimino)-3-oxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P136



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 50 mg scale. After HPLC purification, P136 (9.0 mg, 24%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.29 (m, 5H), 5.04 (s, 2H), 4.46 (m, 2H), 3.11 (m, 2H), 2.45 (m, 2H), 2.15 (m, 1H), 1.95 (m, 2H), 1.78 (m, 1H), 1.48 (m, 4H). MS: m/z=478 (M+H+).


2-(4-(2-(4-(4-Azidophenyl)butanamido)-3-methoxy-3-oxopropyl)-1H-1,2,3-triazol-1-yl)pentanedioic Acid



embedded image


General experimental procedure for coupling reaction was followed. Reaction was performed on a 0.07 g scale. The title compound (30 mg, 26%) was obtained as a white solid. MS: m/z=488.1 (M+H+).


2-(4-(2-(4-(4-Azidophenyl)butanamido)-2-carboxyethyl)-1H-1,2,3-triazol-1-yl)pentanedioic Acid: P137 Precursor

General experimental procedure for hydrolysis was followed. Reaction was performed on a 0.03 g scale. After HPLC purification, P137 Precursor (10 mg, 34%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 7.78 (s, 1H), 7.11 (d, J=8.4 Hz, 2H), 6.86 (d J=8.4 Hz, 2H), 5.36 (dd, J=10.4, 5.2 Hz, 1H), 4.64 (dd, J=9.6, 4.8, Hz, 1H), 3.08-3.01 (m, 2H), 2.53-2.44 (m, 2H), 2.32-2.23 (m, 1H), 2.13-2.08 (m, 5H), 1.79-1.71 (m, 2H). MS: m/z=474.1 (M+H+).


(S)-2-(3-((S)-5-(Benzyloxycarbonylamino)-1-carboxypentyl)-5,5-diethyl-4,6-dioxo-2-thioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid P138



embedded image


To microwave tube was added a solution of (9S,13S)-tri-tert-butyl 3-oxo-1-phenyl-11-thioxo-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (110 mg, 0.173 mmol) in dry DCM (2.0 mL) followed by diethyl malonyl dichloride (40 mg, 0.272 mmol). The mixture was microwave heated at 80° C. for 30 minutes. The crude mixture was purified by flush chromatography (EtOAc/hexane, 0 to 30%) to give the (S)-di-tert-butyl 2-(3-((S)-6-(benzyloxycarbonylamino)-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-4,6-dioxo-2-thioxotetrahydropyrimidin-1(2H)-yl)pentanedioate 66 mg (50%). 22.0 mg of above intermediate was deprotected with general condition to give P138 (1.2 mg, 7%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.27-7.37 (m, 5H), 5.05 (s, 2H), 4.74-4.87 (m, 2H), 4.62 (dd, J=10.8, 4.9 Hz, 1H), 3.05-3.22 (m, 2H), 2.23-2.47 (m, 5H), 2.01-2.23 (m, 5H), 1.39-1.59 (m, 2H), 1.24-1.38 (m, 4H), 0.79-0.90 (m, 6H). MS: m/z=594 (M+H+).


(8S,12S)-9-Hydroxy-3,10-dioxo-1-phenyl-2-oxa-4,9,11-triazatetradecane-8,12,14-tricarboxylic Acid: P139



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 352 mg scale of (S)-tert-butyl 5-(benzyloxycarbonylamino)-2-(hydroxyamino)pentanoate. After HPLC purification, P139 (17.5 mg, 36% in two steps) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.27-7.37 (m, 5H), 5.00-5.12 (m, 2H), 4.71 (dd, J=11.0, 4.3 Hz, 1H), 4.40 (dd, J=9.0, 4.7 Hz, 1H), 3.10-3.22 (m, 2H), 2.41-2.51 (m, 2H), 2.19-2.29 (m, 1H), 1.92-2.04 (m, 2H), 1.78-1.89 (m, 1H), 1.47-1.74 (m, 2H). MS: m/z=456 (M+H+).


(9S,13S)-12-Hydroxy-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P140



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 352 mg scale of (S)-tert-butyl 5-(benzyloxycarbonylamino)-2-(hydroxyamino)pentanoate. After HPLC purification, P140 (17.5, 36%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.32-7.31 (m 5H), 5.03 (s, 2H), 4.78-4.72 (m, 1H), 4.34-4.32 (m, 1H), 3.09 (m, 2H), 2.50-2.42 (m, 2H), 2.22-2.18 (m, 1H), 2.10-2.00 (m, 1H), 1.90-1.80 (m, 1H), 1.75-1.70 (m, 1H), 1.60-1.40 (m, 4H). MS: m/z=470 (M+H+).


(S)-2-(2-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)-N-hydroxybutanamido)acetamido)pentanedioic Acid: P141



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 30 mg scale. After HPLC purification, P141 (5.0 mg, 25%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.44 (s, 1H), 7.91-8.07 (m, 4H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.34-4.37 (m, 1H), 4.31 (s, 2H), 3.45-3.55 (m, 2H), 2.56-2.66 (m, 2H), 2.40 (t, J=8.0 Hz, 2H), 2.13-2.25 (m, 1H), 1.89-2.01 (m, 1H), 1.64-1.78 (m, 6H). MS: m/z=537 (M+H+).


(S)-2-(2-(4-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-N-hydroxybutanamido)acetamido)pentanedioic Acid: P142



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 22 mg scale. After HPLC purification, P142 (6.2 mg, 44%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.81 (s, 1H), 5.10 (s, 2H), 4.47 (dt, J=47.6 6.0 Hz, 2H), 4.45-4.52 (m, 1H), 4.35 (br s, 2H), 2.83 (t, J=8.0 Hz, 2H), 2.60 (t, J=6.4 Hz, 2H), 2.40 (t, J=8.0 Hz, 2H), 1.79-2.32 (m, 6H). MS: m/z=475 (M+H+).


(9S,13S)-10-Methyl-3-oxo-1-phenyl-11-thioxo-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P143



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 37 mg scale. After HPLC purification, P143 (3.4 mg, 12%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.20-7.40 (m, 5H), 5.18-5.22 (m, 1H), 5.11-5.16 (m, 1H), 5.06 (s, 2H), 3.08-3.17 (m, 2H), 3.03 (s, 3H), 2.39-2.53 (m, 2H), 2.19-2.37 (m, 1H), 1.98-2.18 (m, 2H), 1.77-1.95 (m, 1H), 1.29-1.51 (m, 4H). MS: m/z=484 (M+H+).


(S)-2-(2-(3-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-N-hydroxypropanamido)acetamido)pentanedioic Acid: P144



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 120 mg scale. After HPLC purification, P144 (35 mg, 46%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.32 (s, 1H), 7.75 (d, J=8.4 Hz, 2H), 7.49 (d, J=8.4 Hz, 2H), 4.41-4.61 (m 3H), 4.36 (s, 2H), 2.98-3.12 (m, 2H), 2.85-2.96 (m, 4H), 2.38-2.43 (m, 2H), 1.89-2.25 (m, 4H). MS: m/z=480 (M+H+).


(S)-2-(2-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-N-hydroxy-butanamido)ethanethioamido)pentanedioic Acid: P145



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 200 mg scale of (S)-tert-butyl 5-(benzyloxycarbonylamino)-2-(hydroxyamino)pentanoate. After HPLC purification, P145 (17.5, 45%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.74-7.72 (dd, J=6.8, 2.0 Hz, 2H), 7.44 (d, J=8.4 Hz, 2H), 5.14-5.11 (dd, J=8.4, 5.2 Hz, 2H), 4.64 (s, 2H), 4.57 (t, J=6.0 Hz, 1H), 4.45 (t, J=6.0 Hz, 1H), 2.90 (t, J=6.8 Hz, 2H), 2.78 (t, J=7.6 Hz, 2H), 2.62 (t, J=6.8 Hz, 2H), 2.45-2.28 (m, 2H), 2.16-1.98 (m, 4H). MS: m/z=510 (M+H+).




embedded image


General experimental procedures for the removal of benzyl group and amide formation were followed. Reaction was performed on a 65 mg scale. After purification on column (silica gel) to give (S)-di-tert-butyl 2-(3-((S)-6-(4-azidobenzamido)-1-(tert-butoxy)-1-oxohexan-2-yl)-3-hydroxythioureido)pentanedioate (23 mg, 34% in two steps) as a yellow wax. MS: m/z=665 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-3-hydroxythioureido)pentanedioic Acid: P146



embedded image


General experimental procedure for click chemistry and tert-butyl deprotection was followed. Reaction was performed on a 9.0 mg scale. After HPLC purification, P146 was obtained. MS: m/z=583 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanamido)pentyl)-1-hydroxyureido)pentanedioic Acid: P147



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 352 mg scale of (S)-tert-butyl 5-(benzyloxycarbonylamino)-2-(hydroxyamino)pentanoate. P147 was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 9.30 (s, 1H), 7.72-7.70 (m, 2H), 7.39-7.37 (m, 2H), 4.74-4.72 (m, 1H), 4.59-4.56 (m, 1H), 4.44-4.42 (m, 1H), 4.37-4.36 (m, 1H), 3.16-3.14 (m, 2H), 2.89-2.87 (m, 2H), 2.70-2.68 (m, 2H), 2.50-2.39 (m, 2H), 2.30-1.90 (m, 9H), 1.80-1.72 (m, 1H), 1.58-1.40 (m, 2H). MS: 609 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-1-hydroxyureido)pentanedioic Acid: P148



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 352 mg scale of (S)-tert-butyl 5-(benzyloxycarbonylamino)-2-(hydroxyamino)pentanoate. P148 was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.79 (s, 1H), 5.01 (s, 2H), 4.80-4.78 (m, 2H), 4.53-4.51 (m, 1H), 4.41-4.35 (m, 2H), 3.23-3.22 (m, 2H), 2.83-2.80 (m, 2H), 2.45-2.40 (m, 2H), 2.30-2.20 (m, 1H), 2.10-1.90 (m, 4H), 1.80-1.70 (m, 1H), 1.60-1.42 (m, 4H). MS: 609 (M+H+).


(S)-2-(2-(3-(3,4-Dimethoxyphenethyl)-1-hydroxyureido)acetamido)pentanedioic Acid: 149



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 87 mg scale. After HPLC purification, P149 (33 mg, 62%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 6.87-6.92 (m, 1H), 6.86 (s, 1H), 6.74-6.81 (m, 1H), 4.47-4.52 (m 1H), 4.16 (d, J=2.8 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.38 (t, J=8.0 Hz, 2H), 2.76 (t, J=7.2 Hz, 2H), 2.35-2.44 (m, 2H), 2.14-2.25 (m, 1H), 1.98-2.01 (m, 1H). MS: m/z=428 (M+H+).


(S)-2-(3-((S)-5-Azido-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P150 Precursor



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioate (186 mg, 0.304 mmol) in methanol (3.0 mL) was 1H-imidazole-1-sulfonyl azide hydrochloride (150 mg, 0.715 mmol), potassium carbonate (150 mg, 1.09 mmol), and copper(II) sulfate pentahydrate (3.5 mg, 0.014 mmol). The mixture was stirred at room temperature for 4 hours and concentrated. The residue was partitioned between DCM and water and the DCM layer was further deprotected with general condition to give P150 precursor (73.8 mg, 52%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 5.37-5.49 (m, 2H), 3.28 (t, J=8.0 Hz, 2H), 2.49-2.60 (m, 1H), 2.31-2.36 (m, 2H), 2.01-2.29 (m, 7H), 1.51-1.72 (m, 2H), 1.30-1.46 (m, 2H), 0.90 (td, J=7.4, 3.5 Hz, 6H). MS: m/z=470 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P150



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 8.5 mg scale of ((S)-2-(3-((S)-5-azido-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P150 (7.1 mg, 71%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.80 (s, 1H), 5.33-5.47 (m, 2H), 4.52 (t, J=5.7 Hz, 1H), 4.35-4.42 (m, 3H), 2.79-2.84 (m, 2H), 2.49-2.59 (m, 1H), 2.17-2.40 (m, 4H), 1.87-2.13 (m, 9H), 1.21-1.40 (m, 2H), 0.81-0.89 (m, 6H). MS: m/z=556 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-((2-(2-(2,4-dinitrophenylamino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)pentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic Acid: P151



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 2.5 mg scale of ((S)-2-(3-((S)-5-azido-1-carboxypentyl)-5,5-diethyl-2,4,6-trioxotetrahydropyrimidin-1(2H)-yl)pentanedioic acid. After HPLC purification, P151 (7.1 mg, 53%) was obtained as a yellow solid. 1H NMR (CD3OD, 400 MHz) δ 9.03 (d, J=2.7 Hz, 1H), 8.27 (dd, J=9.4, 2.7 Hz, 1H), 7.93 (s, 1H), 7.21 (d, J=9.4 Hz, 1H), 5.31-5.44 (m, 2H), 4.60 (s, 2H), 4.39 (t, J=6.8 Hz, 2H), 3.77-3.82 (m, 2H), 3.64-3.72 (m, 6H), 2.43-2.62 (m, 1H), 2.15-2.39 (m, 4H), 1.89-2.05 (m, 6H), 1.20-1.38 (m, 2H), 0.79-0.88 (m, 6H). MS: m/z=779 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-1-hydroxyureido)pentanedioic Acid: P152



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. P152 was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.34 (s, 1H), 7.99-7.85 (m, 4H), 4.75-4.70 (m, 1H), 4.49-4.47 (m, 1H), 4.38-4.36 (m, 1H), 4.35-4.30 (m, 1H), 3.32-3.25 (m, 2H), 2.85-2.80 (m, 2H), 2.42-2.30 (m, 2H), 2.20-1.80 (m, 6H), 1.75-1.40 (m, 6H). MS: m/z=567 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)-2-cyanoguanidino)pentanedioic Acid: P153



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 100 mg scale. The crude product was examined with LC-MS, which shows a single peak with desired product mass. After HPLC purification, P153 (7.0 mg, 14%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.42 (s, 1H), 8.08 (s, 1H), 7.95 (m, 3H), 4.56 (m, 1H), 4.43 (m, 3H), 3.41 (m, 2H), 2.90 (m, 2H), 2.43 (m, 2H), 2.13 (m, 6H), 1.67 (m, 2H), 1.50 (m, 2H). MS: m/z=575 (M+H+).


(S)-2-(2-(4-(4-Fluorophenyl)-N-hydroxybutanamido)acetamido)pentanedioic Acid: P154



embedded image


General experimental procedure for the removal of benzyl group was followed. Reaction was performed on a 95 mg scale. After HPLC purification, P149 (29 mg, 52%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.19-7.25 (m, 2H), 6.95-7.01 (m, 2H), 4.43-4.52 (m, 1H), 4.32 (s, 2H), 2.65 (t, J=8.0 Hz, 2H), 2.56 (t, J=8.0 Hz, 2H), 2.40 (t, J=8.4 Hz, 2H), 2.17-2.12 (m, 1H), 1.89-2.08 (m, 3H). MS: m/z=385 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-fluorobenzamido)pentyl)-3-methylureido)pentanedioic Acid: P156



embedded image


General experimental procedure for amide formation and removal of tert-butyl ester group was followed. Reaction was performed on a 105 mg scale. Product was purified on a HPLC purification system using water-acetonitrile with 0.05% TFA (30-65%) afforded the title compound (12 mg, 13%, in two steps). 1H NMR (CD3OD, 400 MHz) δ 7.87-7.84 (m, 2H), 7.17 (t, J=8.8 Hz, 2H), 4.31-4.27 (dd, J=9.6, 4.8 Hz, 2H), 4.38-4.32 (m, 2H), 2.85 (s, 3H), 2.46 (t, J=7.6 Hz, 2H), 2.24-2.14 (m, 2H), 2.04-1.95 (m, 2H), 1.86-1.76 (m, 1H), 1.72-1.56 (m, 2H), 1.46-1.34 (m, 2H). MS: m/z=456 (M+H+).


(2S)-2-(3-((1S)-1-Carboxy-5-(4-(2-fluoropropanamido)benzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P157



embedded image


General experimental procedure for Staudinger reaction was followed. Reaction was performed on a 0.008 g scale. After HPLC purification, P157 (5.0 mg, 41%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.79 (dd, J=8.8, 2.0 Hz, 2H), 7.72 (d, J=8.8 Hz, 2H), 5.11 (qd, J=49.0, 6.4 Hz, 1H), 4.70 (dd, J=10.0, 5.2, Hz, 1H), 4.37 (dd, J=9.2, 4.8, Hz, 1H), 3.39-3.34 (m, 2H), 2.46-2.42 (m, 2H), 2.25-2.19 (m, 2H), 1.98-1.89 (m, 2H), 1.69-1.60 (m, 2H), 1.59 (dd, J=24.4, 6.8 Hz, 3H), 1.41-1.35 (m, 2H). MS: m/z 529.1 (M+H+).


(2S)-2-(3-((1S)-1-Carboxy-5-(4-(2-fluoropropanamido)benzamido)pentyl)-3-methylureido)pentanedioic Acid: P158



embedded image


General experimental procedure for Staudinger reaction was followed. Reaction was performed on a 0.007 g scale. After HPLC purification, P158 (4.0 mg, 36%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.79 (d, J=8.8 Hz, 2H), 7.71 (d, J=8.8 Hz, 2H), 5.11 (qd, J=48.8, 6.8 Hz, 1H), 4.28 (dd, J=9.2, 4.8, Hz, 1H), 3.39-3.34 (m, 2H), 2.81 (s, 3H), 2.44 (t, J=7.2 Hz, 2H), 2.22-2.13 (m, 2H), 2.03-1.94 (m, 2H), 1.87-1.77 (m, 1H), 1.69-1.60 (m, 2H), 1.59 (dd, J=24.0, 6.8 Hz, 3H), 1.41-1.35 (m, 2H). MS: m/z 527.1 (M+H+).


(S)-2-((S)-3-Carboxy-2-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)-N-methylpropanamido)pentanedioic Acid: P159



embedded image


General experimental procedures for amide formation, click chemistry, and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 8.45-8.43 (m, 1H), 8.06-7.93 (m, 4H), 5.52-5.42 (m, 1H), 5.04-4.96 (m, 1H), 4.59-4.46 (m, 2H), 3.20 (s, 3H), 3.13-2.62 (m, 5H), 2.42-2.25 (m, 3H), 2.20-2.05 (m, 2H). MS: m/z=507.8 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(2-fluoroethoxy)benzamido)pentyl)ureido)pentanedioic Acid: P160



embedded image


General experimental procedure for amide formation of and removal of tert-butyl ester group was followed. Reaction was performed on a 50 mg scale. After HPLC purification, P160 (16 mg, 32%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.79-7.77 (dd, J=6.8, 1.6 Hz, 2H), 7.01-6.99 (dd, J=6.8, 1.6 Hz, 2H), 4.79-4.77 (dd, J=5.2, 4.0 Hz, 1H), 4.67-4.65 (dd, J=5.2, 4.0 Hz, 1H), 4.32-4.21 (m, 4H), 3.38-3.33 (m, 2H), 2.48-2.38 (m, 2H), 2.19-2.08 (m, 1H), 1.93-1.82 (m, 2H), 1.74-1.58 (m, 3H), 1.52-1.46 (m, 2H). MS: m/z=486 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-fluoroethoxy)benzamido)pentyl)-3-methylureido)-pentanedioic Acid: P161



embedded image


General experimental procedure for amide formation and removal of tert-butyl ester group was followed. Reaction was performed on a 50 mg scale. Product was purified on a HPLC purification system using water-acetonitrile with 0.05% TFA (30-65%) afforded the amide-acid (16 mg, 32%). 1H NMR (CD3OD, 400 MHz) δ 7.80-7.77 (m, 2H), 7.01-6.99 (dd, J=6.8, 1.6 Hz, 1H), 4.79-4.77 (t, J=4.4 Hz, 1H), 4.67-4.65 (t, J=4.4 Hz, 1H), 4.31-4.22 (m, 4H), 3.41-3.32 (m, 2H), 2.85 (s, 3H), 2.48-2.44 (t, J=7.6 Hz, 2H), 2.22-2.15 (m, 1H), 2.05-1.95 (m, 2H), 1.86-1.58 (m, 3H), 1.44-1.32 (m, 2H). MS: m/z=500 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-fluorobenzamido)pentyl)-1-hydroxyureido)pentanedioic Acid: P162



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 7.88 (m, 2H), 7.18 (m 2H), 4.80-4.75 (m, 1H), 4.39-4.35 (m, 1H), 3.42-3.38 (m, 2H), 2.50-2.40 (m, 2H), 2.25 (m, 1H), 2.10-1.95 (m, 2H), 1.70-1.45 (m, 5H). MS: m/z=458.1 (M+H+)


(S)-2-((S)-3-Carboxy-2-(4-fluorobenzamido)-N-methylpropanamido)pentanedioic Acid: P163



embedded image


General experimental procedure for amide formation and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 7.91-7.81 (m, 2H), 7.20-7.13 (m, 2H), 5.47-5.38 (m, 1H), 5.00-5.98 (m, 1H), 3.17 (s, 3H), 2.99-2.70 (m, 2H), 2.40-2.30 (m, 3H), 2.18-2.03 (m, 1H). MS: m/z=398.2 (M+H+)


(S)-2-(3-((S)-1-Carboxy-5-(4-(6-fluoronicotinamido)benzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P164



embedded image


General experimental procedure for amide formation and tert-butyl deprotection was followed. Reaction was performed on a 0.015 g scale. After HPLC purification, P164 (6.3 mg, 48%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.78 (d, J=2.8, Hz, 1H), 8.48-8.43 (m, 4H), 7.20 (dd, J=8.4, 2.4 Hz, 2H), 4.71 (dd, J=8.0, 5.6, Hz, 1H), 4.37 (dd, J=8.8, 4.4 Hz, 1H), 3.46-3.34 (m, 2H), 2.46-2.42 (m, 1H), 2.26-2.18 (m, 1H), 2.01-1.90 (m, 2H), 1.71-1.54 (m, 4H), 1.47-1.41 (m, 2H). MS: m/z 578.1 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P166



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. After HPLC purification, P166 was obtained. 1H NMR (D2O, 400 MHz) δ 7.64 (s, 1H), 5.00 (s, 2H), 4.41 (t, J=6.0 Hz, 1H), 4.30 (t, J=6.0 Hz, 1H), 4.16 (dd, J=4.8 Hz, 1H), 3.08 (t, J=6.4 Hz, 2H), 2.67 (t, J=7.2 Hz, 2H), 2.35 (t, J=8.0 Hz, 2H), 2.11-2.02 (m, 1H), 1.95-1.80 (m, 3H), 1.77-1.67 (m, 2H), 1.44-1.35 (m, 2H), 1.31-1.16 (m, 2H). MS: m/z=505 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(2-fluoroethoxy)benzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P167



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. After HPLC purification, P167 was obtained. 1H NMR (CD3CN, 400 MHz) δ 7.57-7.54 (m, 2H), 6.92-6.89 (m, 2H), 4.72-4.50 (m, 3H), 4.24-4.22 (m, 1H), 4.17-4.11 (m, 2H), 3.24-3.20 (m, 2H), 2.32 (t, J=8.0 Hz, 2H), 2.08-2.00 (m, 1H), 1.88-1.73 (m, 3H), 1.54-1.42 (m, 2H), 1.40-1.20 (m, 2H). MS: m/z=502 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-ethynylbenzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P168



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. After HPLC purification, P168 was obtained. 1H NMR (CD3CN, 400 MHz) δ 7.89-7.86 (m, 2H), 7.68-7.65 (m, 2H), 4.81-4.77 (m, 1H), 4.40 (dd, J=9.2, 4.8 Hz, 1H), 3.69 (s, 1H), 3.56-3.49 (m, 1H), 3.43-3.36 (m, 1H), 2.51 (t, J=7.6 Hz, 2H), 2.30-2.21 (m, 1H), 2.02-1.95 (m, 3H), 1.80-1.61 (m, 2H), 1.60-1.42 (m, 2H). MS: m/z=464 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-fluorobenzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P169



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. After HPLC purification, P169 was obtained. 1H NMR (D2O, 400 MHz) δ 7.60-7.56 (m, 2H), 7.06-7.01 (m, 2H), 4.15 (dd, J=9.6, 5.2 Hz, 1H), 3.22 (t, J=6.8 Hz, 2H), 2.33 (m, 2H), 2.10-2.01 (m, 2H), 1.88-1.72 (m, 3H), 1.55-1.42 (m, 2H), 1.38-1.20 (m, 2H). MS: m/z=458 (M+H+).


(S)-2-((S)-3-Carboxy-2-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)propanamido)-N-methylpropanamido)pentanedioic Acid: P170



embedded image


General experimental procedure for amide formation and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 8.28 (s, 1H), 7.77-7.75 (m, 2H), 7.42-7.40 (m, 2H), 5.30-5.20 (m, 1H), 4.58-4.45 (m, 2H), 3.09-3.02 (m, 1H), 2.99 (s, 3H), 2.96-2.78 (m, 4H), 2.60-2.40 (m, 3H), 2.30 (m, 2H), 2.20-1.99 (m, 3H). MS: m/z=535.8 (M+H+)


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-fluorobenzamido)benzamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P171



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 0.02 g scale. After HPLC purification, P171 (12.0 mg, 68%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.99 (dd, J=8.8, 5.2, Hz, 2H), 7.81 (ABq, JAB=9.2 Hz, 4H), 7.23 (t, J=8.8 Hz, 2H), 4.71 (dd, J=8.0, 5.6, Hz, 1H), 4.37 (dd, J=9.2, 4.8 Hz, 1H), 3.46-3.34 (m, 2H), 2.46-2.42 (m, 1H), 2.26-2.18 (m, 1H), 2.01-1.90 (m, 2H), 1.71-1.54 (m, 4H), 1.47-1.41 (m, 2H). MS: m/z 577.1 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-((2-(2-(2,4-dinitrophenylamino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)pentyl)-3-methylureido)pentanedioic Acid: P172



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 5.5 mg scale of (S)-2-(3-((S)-5-azido-1-carboxypentyl)-3-methylureido)pentanedioic acid. After HPLC purification, P172 (3.3 mg, 32%) was isolated as a yellow solid. 1H NMR (CD3OD, 400 MHz) δ 9.03 (d, J=2.7 Hz, 1H), 8.26 (dd, J=9.6, 2.5 Hz, 1H), 7.97 (s, 1H), 7.21 (d, J=9.4 Hz, 1H), 4.62 (s, 2H), 4.40 (t, J=7.0 Hz, 2H), 4.29 (dd, J=9.8, 4.7 Hz, 1H), 3.75-3.83 (m, 2H), 3.64-3.73 (m, 6H), 2.83 (s, 3H), 2.46 (t, J=7.2 Hz, 2H), 2.13-2.24 (m, 1H), 1.76-2.05 (m, 5H), 1.24-1.39 (m, 2H). MS: m/z=669 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentyl)-3-methylureido)pentanedioic Acid: P173



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 5.5 mg scale of (S)-2-(3-((S)-5-azido-1-carboxypentyl)-3-methylureido)pentanedioic acid. After HPLC purification, P173 (5.0 mg, 71%) was isolated as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.85 (s, 1H), 4.50-4.55 (m, 1H), 4.36-4.43 (m, 3H), 4.29 (dd, J=9.4, 4.7 Hz, 1H), 2.81-2.85 (m, 5H), 2.44-2.49 (m, 2H), 2.15-2.25 (m, 1H), 1.79-2.10 (m, 6H), 1.79-1.86 (m, 1H), 1.25-1.38 (m, 2H). MS: m/z=446 (M+H+).


(S)-2-((S)-3-Carboxy-2-(2-(2-(4-fluorobenzamido)ethoxy)acetamido)-N-methylpropanamido)pentanedioic Acid: P174



embedded image


General experimental procedure for amide formation and tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 7.92-7.88 (m, 2H), 7.22-7.18 (m, 2H), 5.39-5.28 (m, 1H), 4.05-3.95 (m, 2H), 3.72-3.58 (m, 4H), 3.13 (s, 3H), 3.04-3.80 (m, 2H), 2.67-2.57 (m, 1H), 2.45-2.25 (m, 3H), 2.15-2.00 (m, 1H). MS: m/z=499.8 (M+H+)


(9S,13S)-10-Methyl-3,11-dioxo-1-phenyl-2,4,10,12-tetraazapentadecane-9,13,15-tricarboxylic Acid: P175



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-3-methylureido)pentanedioate (10.0 mg, 0.020 mmol) in DCM (1.0 mL) was added benzyl isocyanate (5.3 mg, 0.040 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P175 (4.8 mg, 52%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.19-7.32 (m, 5H), 4.85-4.89 (m, 1H), 4.27-4.33 (m, 3H), 3.08-3.21 (m, 2H), 2.85 (s, 3H), 2.41-2.50 (m, 2H), 2.14-2.24 (m, 1H), 1.90-2.05 (m, 2H), 1.71-1.85 (m, 1H), 1.41-1.59 (m, 2H), 1.26-1.40 (m, 2H). MS: m/z=467 (M+H+).


(9S,13S)-10-Methyl-1-(4-nitrophenyl)-3,11-dioxo-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P176



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-3-methylureido)pentanedioate (10.0 mg, 0.020 mmol) in DCM (1.0 mL) was added 4-nitrobenzyl chloroformate (6.5 mg, 0.030 mmol) and triethylamine (10 μL, 0.072 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P176 (3.6 mg, 35%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.23 (d, J=8.6 Hz, 2H), 7.58 (d, J=8.6 Hz, 2H), 5.19 (s, 2H), 4.85-4.89 (m, 1H), 4.31 (dd, J=9.4, 4.7 Hz, 1H), 3.10-3.18 (m, 2H), 2.85 (s, 3H), 2.46 (t, J=7.4 Hz, 2H), 2.15-2.24 (m, 1H), 1.91-2.05 (m, 2H), 1.72-1.83 (m, 1H), 1.45-1.61 (m, 2H), 1.27-1.42 (m, 2H). MS: m/z=513 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-methylphenylsulfonamido)pentyl)-3-methylureido)pentanedioic Acid: P177



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-3-methylureido)pentanedioate (15.0 mg, 0.030 mmol) in DCM (1.0 mL) was added 4-nitrobenzyl chloroformate (8.8 mg, 0.045 mmol) and triethylamine (15 μL, 0.108 mmol). The mixture was stirred at room temperature for 1 hour and further deprotected with general condition to give P177 (8.0 mg, 55%) as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.70-7.73 (m, 2H), 7.37 (m, 2H), 4.79 (dd, J=11.0, 4.7 Hz, 1H), 4.30 (dd, J=9.4, 4.7 Hz, 1H), 2.78-2.91 (m, 5H), 2.41-2.48 (m, 5H), 2.15-2.26 (m, 1H), 1.95-2.05 (m, 1H), 1.79-1.89 (m, 1H), 1.63-1.73 (m, 1H), 1.21-1.50 (m, 4H). MS: m/z=488 (M+H+).




embedded image


To sulfurisocyanatidic chloride (141 mg, 1 mmol) in dry DCM (3.0 mL) was added benzyl alcohol (113 mg, 1.05 mmol) dropwise at 0° C. The reaction was stirred at 0° C. for 1 h. This mixture was added dropwise to a mixture of (S)-di-tert-butyl 2-aminopentanedioate HCl (296 mg, 1 mmol) in dry DCM (5.0 mL) and TEA (303 mg, 3 mmol) at rt. The reaction was stirred for 30 min and quenched by adding EtOAc (50 mL). It was washed with 0.5 M HCl (2×50 mL) and water (50 mL) and dried over MgSO4. The crude product was purified by silica chromatography to afford (S)-di-tert-butyl 2-((N-((benzyloxy)carbonyl)sulfamoyl)amino)pentanedioate (305 mg, 64%) as a clear oil. MS: m/z=473 (M+H+).


(S)-2-((N-((Benzyloxy)carbonyl)sulfamoyl)amino)pentanedioic Acid: P178



embedded image


General experimental procedure for tert-butyl deprotection was followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P178 (13 mg, 60%) was obtained as a white fluffy solid. 1H NMR (CD3CN, 400 MHz) δ 8.88 (s, 1H), 7.42-7.36 (m, 5H), 6.34 (d, J=8.4 Hz, 1H), 5.15 (s, 2H), 4.12 (dt, J=8.8, 4.4 Hz, 1H), 2.44-2.40 (m, 2H), 2.14-2.06 (m, 1H), 1.89-1.80 (m, 1H). MS: m/z=361 (M+H+).


(S)-2-((N-((Benzyloxy)carbonyl)sulfamoyl)(hydroxy)amino)pentanedioic Acid: P179



embedded image


Similar experimental procedures to prepare P178 were used to synthesize P179. 1H NMR (CD3CN, 400 MHz δ 7.42-7.36 (m, 5H), 5.17 (s, 2H), 4.62 (dd, J=10.0, 4.4 Hz, 1H), 2.50-2.46 (m, 2H), 2.22-2.13 (m, 1H), 2.09-1.99 (m, 1H). MS: m/z=377 (M+H+).


(S)-2-((((Benzyloxy)carbonyl)oxy)(sulfamoyl)amino)pentanedioic Acid: P180



embedded image


Similar experimental procedures to prepare P178 were used to synthesize P180. 1H NMR (CD3OD, 400 MHz δ 7.42-7.31 (m, 5H), 5.15 (s, 2H), 5.04 (s, 1H), 4.58 (dd, J=9.6 Hz, 1H), 2.52-2.47 (m, 2H), 2.27-2.18 (m, 1H), 2.11-2.02 (m, 1H). MS: m/z=377 (M+H+).




embedded image


(S)-Di-tert-butyl 2-((N-((benzyloxy)carbonyl)sulfamoyl)amino)pentanedioate was hydrogenated in MeOH for 2 h at rt and 1 atm in the presence of Pd/C. The mixture was filtered and the filtrate was concentrated to afford (S)-di-tert-butyl 2-(sulfamoylamino)pentanedioate as white solid (100%). MS: m/z=339 (M+H+). It was used directly in the next step without any further purification. It was then reacted with 4-(4-azidophenyl)butanoic acid under standard amide coupling condition to afford (S)-di-tert-butyl 2-((N-(4-(4-azidophenyl)butanoyl)sulfamoyl)amino)pentanedioate as a yellow oil (45%). MS: m/z=526 (M+H+).


(S)-2-((N-(4-(4-Azidophenyl)butanoyl)sulfamoyl)amino)pentanedioic Acid: P181



embedded image


General experimental procedure for tert-butyl deprotection was followed. The reaction was carried out on a 30 mg scale. After HPLC purification, P181 (13 mg, 55%) was obtained as a white fluffy solid. 1H NMR (CD3CN, 400 MHz δ 7.26 (d, J=10 Hz, 2H), 6.77 (d, J=10 Hz, 2H), 6.29 (m, 2H), 4.09 (m, 1H), 2.43-2.38 (m, 2H), 2.22 (t, J=7.2 Hz, 2H), 2.11-2.04 (m, 2H), 1.82-1.77 (m, 2H), 1.46-1.42 (m, 2H). MS: m/z=414 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-fluoronicotinamido)pentyl)-3-hydroxyureido)pentanedioic Acid: P182



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. After HPLC purification, P182 was obtained. 1H NMR (D2O, 400 MHz δ 8.69 (m, 1H), 8.38 (m, 1H), 7.22 (m, 1H), 4.77 (m, 1H), 4.38 (dd, J=9.2, 4.4 Hz, 1H), 3.48-3.40 (m, 2H), 2.51 (t, J=7.2 Hz, 2H), 2.28-2.20 (m, 1H), 2.02-1.93 (m, 3H), 1.75-1.65 (m, 2H), 1.58-1.44 (m, 2H). MS: m/z=459 (M+H+).


(S)-2-((N-(5-Azidopentanoyl)sulfamoyl)amino)pentanedioic Acid: P183



embedded image


Similar procedures for the preparation of P181 were used to synthesize P183. After HPLC purification, P183 was obtained. 1H NMR (CD3CN, 400 MHz δ 9.26 (brs, 1H), 6.24 (d, J=8.4 Hz, 1H), 4.10 (m, 1H), 2.47-2.36 (m, 2H), 2.26 (t, J=7.2 Hz, 2H), 2.13-2.04 (m, 1H), 1.89-1.80 (m, 1H), 1.66-1.55 (m, 6H). MS: m/z=352 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-fluorobenzylamino)pentyl)-3-methylureido)pentanedioic Acid: P184



embedded image


To solution of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-tert-butoxy-1-oxohexan-2-yl)-3-methylureido)pentanedioate (15 mg, 0.030 mmol) in DCE (1.0 mL) was added 4-fluorobenzaldehyde (5.6 mg, 0.045 mmol), acetic acid (10 μL, 0.175 mmol), and sodium NaBH(OAc)3 (32 mg, 0.151 mmol). The mixture was stirred at room temperature for 18 hours and further deprotected with general condition to give P184 (4.8 mg, 86%) as a white solid. 1H NMR (CD3CN, 400 MHz): δ 8.11 (br. s., 1H), 7.69 (br. s., 1H), 7.48-7.54 (m, 2H), 7.13-7.19 (m, 2H), 5.80 (d, J=7.4 Hz, 1H), 4.89 (dd, J=10.2, 5.5 Hz, 2H), 4.07-4.21 (m, 4H), 2.92-3.06 (m, 2H), 2.77 (s, 3H), 2.41-2.46 (m, 2H), 2.03-2.19 (m, 1H), 1.92-2.01 (m, 1H), 1.75-1.87 (m, 2H), 1.62-1.74 (m, 2H), 1.34-1.49 (m, 1H), 1.13-1.31 (m, 1H). MS: 442 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3′,6′-diacetoxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthen]-6-ylcarboxamido)pentyl)ureido)pentanedioic Acid: P185



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. P185 (2.0 mg, 6%) was obtained as a white solid. MS: m/z=762 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(2-fluoropropanamido)benzamido)pentyl)-1-hydroxyureido)pentanedioic Acid: P186



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. P186 was obtained as a white solid. MS: 529 (M+H+).


(S)-Methyl 2-amino-3-(1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)propanoate



embedded image


General experimental procedure for click chemistry was followed. Reaction was performed on a 272 mg scale. He crude product was examined with LC-MS, which shows a single peak with desired product mass. MS: m/z=217 (M+H+).


(9S,13S)-Methyl 9-(tert-butoxycarbonyl)-13-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazatetradecan-14-oate



embedded image


Triphosgene (0.159 g, 0.536 mmol) was added to a solution of (S)-tert-butyl 2-amino-6-(((benzyloxy)carbonyl)amino)hexanoate hydrochloride (0.4 g, 1.073 mmol) and Triethylamine (1.495 ml, 10.73 mmol) in DCM (Volume: 3 ml) at 0° C. Let the reaction stir for 15 minutes. Added (S)-methyl 2-amino-3-(1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)propanoate (0.232 g, 1.073 mmol) in 1 mL DCM to the reaction mixture and stirred for 30 minutes. Let the reaction warm to room temperature. Diluted with ethyl acetate and washed with water. Separated layers, combined organics, dried with MgSO4, filtered and concentrated. Purified by prep HPLC to afford (9S,13S)-methyl 9-(tert-butoxycarbonyl)-13-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazatetradecan-14-oate (0.12 g, 19.33%). MS: m/z=579 (M+H+).


(9S,13S)-9-Carboxy-13-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazatetradecan-14-oic Acid: P187



embedded image


Hydrogen chloride (1 ml, 4.00 mmol) 4 M in dioxanes was added to (9S,13S)-methyl 9-(tert-butoxycarbonyl)-13-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazatetradecan-14-oate (0.05 g). Added Water (0.5 ml) to the reaction mixture and the solution became hot. Stirred for 1 hour. Purified by prep HPLC to afford P187 (7.0 mg, 16%). 1H NMR (CD3CN, 400 MHz) δ 7.73 (s, 1H), 7.36 (m, 5H), 5.84 (m, 2H), 5.73 (m, 1H), 5.04 (m, 4H), 4.84 (m, 1H), 4.74 (m, 1H), 4.67 (m, 1H), 4.61 (m, 1H), 4.56 (m, 1H), 4.17 (m, 1H), 3.21 (m, 2H), 3.15 (m, 2H), 1.77 (m, 1H), 1.62 (m, 1H), 1.47 (m, 2H), 1.35 (m, 2H). MS: m/z=509 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentyl)ureido)-pentanedioic Acid: P188



embedded image


General experimental procedure for tert-butyl deprotection was followed. Reaction was performed on a 0.015 g scale. After HPLC purification, P188 (12 mg, 42%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.78 (s, 1H), 4.52 (t, J=6.0 Hz, 1H), 4.40 (t, J=6.0 Hz, 1H), 4.37 (t, J=6.8 Hz, 1H), 4.30 (dd, J=8.8, 5.2 Hz, 1H), 4.27 (dd, J=8.4, 4.8 Hz, 1H), 2.81 (t, J=8.0 Hz, 1H), 2.43-2.38 (m, 2H), 2.18-2.01 (m, 2H), 2.08-1.97 (m, 2H), 1.96-1.82 (m, 4H), 1.72-1.63 (m, 2H), 1.44-1.37 (m, 2H). MS: m/z 432.1 (M+H+).


3-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)-2-(phosphonomethyl)propanoic Acid: P189



embedded image


Hydrobromic acid (1.314 μl, 0.024 mmol) and benzyl 3-(dimethoxyphosphoryl)-2-((4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)methyl)propanoate (0.01 g, 0.024 mmol) were stirred for 3 hours. Concentrated and purified by PREP HPLC to afford P189 (2.0 mg, 28%). MS: m/z=296 (M+H+).


2-((1H-1,2,3-Triazol-1-yl)methyl)-3-phosphonopropanoic Acid: P190



embedded image


Hydrobromic acid 48% (0.5 mL, 9.21 mmol) and benzyl 3-(dimethoxyphosphoryl)-2-((4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)methyl)propanoate (0.06 g, 0.141 mmol) were stirred for 2 hours. Concentrated and purified by PREP HPLC to afford P190 (5.0 mg, 2%). MS: m/z=236 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-butanamido)phenyl)-ethyl)-3-methylureido)pentanedioic Acid: P191



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 6 mg scale. After HPLC purification, P191 (2.4 mg, 49%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.80 (br s, 1H), 7.44-7.42 (m, 2H), 7.19-7.17 (m, 2H), 4.52-4.38 (m, 5H), 4.21 (br m, 1H), 3.28-3.24 (m, 2H), 3.16-2.98 (m, 1H), 2.84-2.76 (m, 5H), 2.42-2.22 (br m, 7H), 2.00-1.80 (br m, 3H). MS: m/z=565 (M+H+).


(9S,13S)-Methyl 9-(tert-butoxycarbonyl)-3,11-dioxo-1-phenyl-13-(prop-2-yn-1-yl)-2-oxa-4,10,12-triazatetradecan-14-oate



embedded image


General experimental procedure for urea formation was followed. Reaction was performed on a 0.2 g scale. The title compound (110 mg, 17%) was obtained as a white solid. MS: m/z=490.1 (M+H+).


(9S,13S)-9-Carboxy-13-((1-(carboxymethyl)-1H-1,2,3-triazol-4-yl)methyl)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazatetradecan-14-oic Acid: P192



embedded image


General experimental procedures for click chemistry and tert-butyl and Me deprotection were followed. Reaction was performed on a 0.011 g scale. After HPLC purification, P192 (60 mg, 51%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.84 (s, 1H), 7.34-7.29 (m, 5H), 5.23 (s, 2H), 5.05 (s, 2H), 4.61-4.58 (m, 1H), 4.24-4.20 (m, 1H), 3.17-3.09 (m, 2H), 1.84-1.80 (m, 1H), 1.67-1.63 (m, 1H), 1.53-1.51 (m, 2H), 1.43-1.39 (m, 2H). MS: m/z 521.1 (M+H+).


2-(((2-(2-(2-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P193



embedded image


General experimental procedures for click chemistry and tert-butyl and Me deprotection were followed. After HPLC purification, P193 was obtained. 1H NMR (CD3OD, 400 MHz) δ 9.04 (s, 1H), 5.88 (t, J=6.0 Hz, 1H), 5.83 (t, J=4.8 Hz, 2H), 5.76 (t, J=6.0 Hz, 1H), 5.34 (m, 2H), 5.18 (t, J=4.8 Hz, 2H), 4.95-4.87 (m, 9H), 4.60-4.58 (m, 4H), 4.12 (t, J=7.6 Hz, H), 3.73-3.62 (m, 2H), 3.42-3.10 (m, 4H). MS: m/z=514 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((2S,3R,4R,5R,6S)-6-((3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)propanamido)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamido)pentyl)ureido)pentanedioic Acid: P194



embedded image


General experimental procedure for Boc-deprotection was followed. MS: m/z=768.4 (M+H+)


(S)-2-(3-((S)-1-Carboxy-2-(4-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)phenyl)ethyl)ureido)pentanedioic Acid: P195



embedded image


General experimental procedure for deprotection of Me and t-Bu ester with HCl/dioxane reaction was followed. Reaction was performed on a 0.05 g scale. After HPLC purification, P195 (10 mg, 25%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 7.85 (s, 1H), 7.11 (dd, J=9.2, 8.0 Hz, 2H), 6.82 (dd, J=8.8, 1.6 Hz, 2H), 4.75 (t, J=5.2 Hz, 2H), 4.52-4.47 (m, 2H), 4.40-4.34 (m, 3H), 4.29-4.25 (m, 1H), 3.08-3.04 (m, 1H), 2.96-2.88 (m, 1H), 2.82 (t, J=7.6 Hz, 2H), 2.39-2.29 (m, 2H), 2.16-1.96 (m, 4H), 1.90-1.81 (m, 1H). MS: m/z=510 (M+H+).


3-(N-(2-Fluoroethyl)acetamido)-2-(phosphonomethyl)propanoic Acid: P196



embedded image


Hydrobromic acid 48% (0.013 ml, 0.231 mmol) and benzyl 3-(dimethoxyphosphoryl)-2-((N-(2-fluoroethyl)acetamido)methyl)propanoate (0.09 g, 0.231 mmol) were stirred for 1 hour. Concentrated and purified by PREP HPLC to afford P196 (3.0 mg, 5%). MS: m/z=272 (M+H+).


2-((Hydroxy(phenethylamino)phosphoryl)methyl)pentanedioic Acid: P197



embedded image


General experimental procedure for tert-butyl deprotection was followed. 1H NMR (CD3OD, 400 MHz) δ 7.32-7.13 (m, 5H), 3.50-3.45 (s, 1H), 3.42-3.40 (m, 1H), 2.85-2.75 (m, 2H), 2.61-2.52 (m, 1H), 2.22-2.18 (m, 2H), 2.02-1.65 (m, 4H). MS: m/z=330.1 (M+H+).


2,2′-[(3,4-Dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl)]dipentanedioic Acid: P198



embedded image


General experimental procedure for tert-butyl deprotection reaction was followed. After HPLC purification, P198 (3.1 mg, 16%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 4.73-4.82 (m, 2H), 2.21-2.42 (m, 4H), 2.02-2.20 (m, 4H). MS: m/z=373 (M+H+).


(S)-2-[(R)-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-carboxypropanamido]pentanedioic Acid: P199



embedded image


General procedures for amide formation and tert-butyl deprotection reaction were followed. After HPLC purification, P199 (9.1 mg, 27%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.78 (d, J=7.6 Hz, 2H), 7.67 (d, J=7.6 Hz, 2H), 7.36 (t, J=7.2 Hz, 2H), 7.31 (t, J=7.6 Hz, 2H), 4.57 (t, J=7.6 Hz, 2H), 4.42-4.51 (m, 2H), 4.32 (d, J=7.2 Hz, 2H), 4.24 (t, J=7.2 Hz, 1H), 2.82-2.91 (m, 1H), 2.68-2.78 (m, 1H), 2.40 (t, J=7.6 Hz, 2H), 2.12-2.24 (m, 1H), 1.87-2.20 (m, 1H). MS: m/z=485 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-6-(3-(4-azidophenyl)thioureido)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)pentanedioate



embedded image


General procedures for urea formation reaction were followed. The crude product was purified on column (silica gel, hexanes/EtoAc) to give the title compound as a yellow wax (40 mg, 60%). MS: m/z=664 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)thioureido)pentyl)-ureido)pentanedioic Acid: P200



embedded image


General procedures for click chemistry and tert-butyl deprotection reaction were followed. After HPLC purification, P200 (12 mg, 50%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.79-7.77 (m, 2H), 7.60-7.58 (m, 2H), 4.56 (t, J=5.6 Hz, 1H), 4.44 (t, J=5.8 Hz, 1H), 4.28 (m, 2H), 3.58 (s, 2H), 3.20 (m, 1H), 2.90 (m, 2H), 2.41-2.37 (m, 2H), 2.16-2.05 (m, 3H), 1.90-1.80 (m, 2H), 1.71-1.60 (m, 3H), 1.47 (m, 2H), 1.36-1.26 (m, 5H). MS: m/z=582 (M+H+).




embedded image


To (S)-tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate (100 mg, 0.5 mmol), (5-(benzyloxy)-2-((benzyloxy)carbonyl)-5-oxopentyl)phosphinic acid (180 mg, 0.46 mmol), and DMAP (11 mg, 0.09 mmol) in THF (5.0 mL) was added DCC (284 mg, 1.38 mmol). The mixture was stirred at rt for 15 h. It was concentrated and the residue was chromatographed (silica gel, hexane/EtOAc) to afford phosphinic acid as a clear wax (150 mg, 56%). MS: m/z=574 (M+H+).


Dibenzyl 2-(((((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methoxy)(hydroxy)phosphoryl)methyl)-pentanedioate



embedded image


To above phosphinic acid in a mixed solvent of dioxane (3.0 mL) and water (0.6 mL) was added NaIO4 (84 mg, 0.39 mmol). The mixture was stirred at rt for 5 h and then diluted with MeCN (3 mL) and filtered. The filtrate was concentrated and purified by HPLC to afford the title compound as a white fluffy solid (100 mg, 65%). MS: m/z=590 (M+H+).


2-(((((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methoxy)(hydroxy)phosphoryl)methyl)-pentanedioic Acid: P201



embedded image


General experimental procedure for the removal of benzyl group was followed. After HPLC purification, P201 (7.0 mg, 85%) was obtained. MS: m/z=410 (M+H+).


(2S)-2-(3-(1-Carboxy-2-(4-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)phenyl)ethyl)ureido)pentanedioic Acid: P202



embedded image


General experimental procedure for deprotection of Me and t-Bu ester with HCl/dioxane reaction was followed. Reaction was performed on a 0.09 g scale. After HPLC purification, P202 (10 mg, 25%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 7.84 (s, 1H), 7.11 (t, J=8.8 Hz, 2H), 6.82 (dd, J=8.8, 1.6 Hz, 2H), 4.74 (t, J=4.8 Hz, 2H), 4.52-4.48 (m, 2H), 4.40-4.34 (m, 3H), 4.30-4.25 (m, 1H), 3.08-3.01 (m, 1H), 2.96-2.88 (m, 1H), 2.82 (t, J=7.6 Hz, 2H), 2.39-2.29 (m, 2H), 2.12-1.96 (m, 3H), 1.90-1.81 (m, 1H). MS: m/z=510 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(2-(2-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)phenyl)ethyl)ureido)pentanedioic Acid: P203



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 50 mg scale. After HPLC purification, P203 (3.0, 8%) was obtained. MS: m/z=598 (M+H+).


(S)-2-(3-((S)-2-(Benzyloxy)-1-carboxyethyl)ureido)pentanedioic Acid: P204



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. Reaction was performed on a 570 mg scale of (S)-tert-butyl 2-amino-3-(benzyloxy)propanoate. After HPLC purification, P204 (1.8 mg, 43% in two steps) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.25-7.35 (m, 5H), 4.51-4.59 (m, 2H), 4.46 (t, J=3.5 Hz, 1H), 4.33 (dd, J=8.6, 5.1 Hz, 1H), 3.92 (dd, J=9.4, 3.5 Hz, 1H), 3.70 (dd, J=9.4, 3.5 Hz, 1H), 2.36-2.49 (m, 2H), 2.10-2.19 (m, 1H), 1.85-1.94 (m, 1H). MS: m/z=369 (M+H+).


2-((Hydroxy(((S)-1-(2-phenylacetyl)pyrrolidin-2-yl)methoxy)phosphoryl)methyl)pentanedioic Acid: P205



embedded image


Similar procedures for the preparation of P207 were used to synthesize P2O5. After HPLC purification, P2O5 was obtained. 1H NMR (CD3CN, 400 MHz) δ 7.33-7.23 (m, 5H), 4.30-4.4.05 (m, 2H), 3.70-3.37 (m, 5H), 2.61 (m, 1H), 2.32 (m, 2H), 2.00-1.56 (m, 6H), 1.35 (m, 2H). MS: m/z=569 (M+H+).


2-(((((S)-1-(3-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)propanoyl)pyrrolidin-2-yl)methoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P206



embedded image


Similar procedures for the preparation of P207 were used to synthesize P206. After HPLC purification, P206 was obtained. 1H NMR (CD3OD/CD3CN, 400 MHz) δ 8.01 (s, 1H), 7.69-7.67 (m, 2H), 7.43-7.40 (m, 2H), 4.90 (m, 1H), 4.59 (m, 1H), 4.47 (m, 1H), 4.09-4.03 (m, 2H), 3.67-3.58 (m, 3H), 3.08-2.85 (m, 5H), 2.55-2.70 (m, 2H), 2.34 (m, 2H), 2.16-2.11 (m, 4H), 1.63-1.52 (m, 5H). MS: m/z=569 (M+H+).




embedded image


Dibenzyl 2-((hydroxy((S)-pyrrolidin-2-ylmethoxy)phosphoryl)methyl)pentanedioate

General procedure for the removal tert-butyl group was followed. The crude product was used directly in the next step without any further purification. MS: m/z=490 (M+H+).


2-(((((S)-1-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanoyl)pyrrolidin-2-yl)methoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P207



embedded image


General procedures for click chemistry and debenzylation reaction were followed. After HPLC purification, P207 was obtained. 1H NMR (CD3OD/CD3CN, 400 MHz) δ 8.05 (s, 1H), 7.64 (m, 2H), 7.38 (m, 2H), 4.58-4.44 (m, 4H), 4.05 (m, 1H), 3.67-3.58 (m, 2H), 3.08-2.85 (m, 4H), 2.55-2.70 (m, 2H), 2.34 (m, 2H), 2.16-2.11 (m, 4H), 1.55-1.62 (m, 4H). MS: m/z=583 (M+H+).


(10R,14S)-3,8,12-Trioxo-1-phenyl-2-oxa-4,9,13-triazahexadecane-10,14,16-tricarboxylic Acid: P208



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P208 (2.2 mg, 19%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.21-7.39 m, 5H), 5.06 (s, 2H), 4.73 (t, J=7.6 Hz, 1H), 4.39-4.4.48 (m, 1H), 3.15 (t, J=7.2 Hz, 2H), 2.79-2.88 (m, 1H), 2.68-2.78 (m, 1H), 2.39 (t, J=7.6 Hz, 2H), 2.26 (t, J=7.2 Hz, 2H), 2.12-2.22 (m, 1H), 1.86-1.98 (m, 1H), 1.74-1.84 (m, 2H) MS: m/z=482 (M+H+).


(12R,16S)-3,10,14-Trioxo-1-phenyl-2-oxa-4,11,15-triazaoctadecane-12,16,18-tricarboxylic Acid: P209



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P209 (3.3 mg, 21%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.21-7.39 (m, 5H), 5.06 (s, 2H), 4.68-4.76 (m, 1H), 4.41-4.48 (m, 1H), 3.10 (t, J=7.2 Hz, 2H), 2.79-2.889 (m, 1H), 2.67-2.78 (m, 1H), 2.39 (t, J=7.6 Hz, 2H), 2.24 (t, J=7.6 Hz, 2H), 2.12-2.23 (m, 1H), 1.85-1.98 (m, 1H), 1.56-1.66 (m, 2H), 1.45-1.55 (m, 2H), 1.28-1.41 (m, 2H). MS: m/z=510 (M+H+).


(S)-2-((R)-3-Carboxy-3-(2-(4-fluorophenyl)acetamido)propanamido)pentanedioic Acid: P210



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P210 (8.1 mg, 42%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.28-7.32 (m, 2H), 7.02 (t, J=8.8 Hz, 2H), 4.69-4.74 (m, 1H), 4.39-4.48 (m, 1H), 2.72-2.89 (m, 2H), 2.38 (t, J=7.6 Hz, 2H), 2.11-2.23 (m, 1H), 1.85-1.98 (m, 1H). MS: m/z=399 (M+H+).


(S)-2-((R)-3-Carboxy-3-(4-(4-fluorophenyl)butanamido)propanamido)pentanedioic Acid: P211



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P211 (3.6 mg, 37%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.17-7.23 (m, 2H), 6.97 (t, J=8.8 Hz, 2H), 4.51-4.53 (m, 1H), 4.41-4.47 (m, 1H), 2.85 (dd, J=15.2, 5.2 Hz, 1H), 2.73 (dd, J=15.2, 7.6 Hz, 1H), 2.62 (t, J=8.0 Hz, 2H), 2.39 (t, J=8.0 Hz, 2H), 2.25 (t, J=7.2 Hz, 2H), 2.12-2.23 (m, 1H), 1.84-1.97 (m, 3H). MS: m/z=427 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)ureido)phenyl)ethyl)ureido)pentanedioic Acid: P212



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.5 mg scale of (S)-2-(3-((S)-2-(4-(3-(4-azidophenyl)thioureido)phenyl)-1-carboxyethyl)ureido)pentanedioic acid. After HPLC purification, P212 (1.2 mg, 14%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.73-7.77 (m, 2H), 7.62-7.66 (m, 2H), 7.35-7.39 (m, 2H), 7.15-7.20 (m, 2H), 4.44-4.59 (m, 3H), 4.29 (dd, J=8.6, 5.1 Hz, 1H), 3.08-3.17 (m, 1H), 2.89-3.02 (m, 3H), 2.34-2.44 (m, 2H), 1.99-2.18 (m, 3H), 1.82-1.92 (m, 1H). MS: m/z=600 (M+H+).


(S)-2-((R)-3-Carboxy-3-(6-fluoronicotinamido)propanamido)pentanedioic Acid: P213



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P213 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.33 (d, J=0.8 Hz, 1H), 7.67 (d, J=5.2 Hz, 1H), 7.44-7.46 (m, 1H), 4.89-4.99 (m, 1H), 4.41-4.49 (m, 1H), 2.99 (dd, J=15.2, 5.2 Hz, 1H), 2.85 (dd, J=15.2, 8.4 Hz, 1H), 2.39 (t, J=7.6 Hz, 2H), 2.13-2.24 (m, 1H), 1.87-1.99 (m, 1H). MS: m/z=386 (M+H+).


(S)-2-((R)-3-Carboxy-3-(3-phenethylureido)propanamido)pentanedioic Acid: P214



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P214 was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.15-7.31 (m, 5H), 4.59 (t, J=5.6 Hz, 1H), 4.41-4.49 (m, 1H), 3.31-3.39 (m, 2H), 2.71-2.83 (m, 4H), 2.39 (t, J=7.6 Hz, 2H), 2.11-2.23 (m, 1H), 1.85-1.99 (m, 1H). MS: m/z=410 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-benzamido)-phenyl)ethyl)ureido)pentanedioic Acid: P215



embedded image


General procedure for click chemistry and tert-butyl ester group deprotection was followed. Reaction was performed on a 50 mg scale. After HPLC purification, P215 (23 mg, 35% in two steps) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.47 (s, 1H), 8.13 (d, J=8.4 Hz, 2H), 8.01 (d, J=8.4 Hz, 2H), 7.63 (d, J=8.4 Hz, 2H), 7.26 (d, J=8.4 Hz, 2H), 4.60-4.54 (m, 2H), 4.47 (t, J=6.0 Hz, 1H), 4.31-4.28 (dd, J=8.4, 4.8 Hz, 1H), 3.17-3.12 (dd, J=14.0, 5.2 Hz, 1H), 3.05-2.99 (dd, J=14.0, 5.2 Hz, 1H), 2.94 (t, J=7.2 Hz, 2H), 2.41-2.37 (m, 2H), 2.20-2.07 (m, 3H), 1.91-1.84 (m, 1H). MS: m/z=585 (M+H+).


(S)-2-(3-((S)-2-(4-(4-Azidobenzamido)phenyl)-1-carboxyethyl)ureido)pentanedioic Acid: P215 Precursor



embedded image


General procedure for amide coupling was followed on ureaamine-tbutyl ester. Reaction was performed on a 100 mg scale. After HPLC purification, P215 Precursor (6.0 mg, 25%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.98-7.94 (m, 2H), 7.60-7.58 (m, 2H), 7.25-7.16 (m, 4H), 4.55 (t, J=5.2 Hz, 1H), 4.28 (dd, J=8.8, 5.2 Hz, 1H), 3.16-3.08 (m, 1H), 3.01 (dd, J=13.6, 6.2 Hz, 1H), 2.41-2.36 (m, 2H), 2.18-2.08 (m, 1H), 1.91-1.81 (m, 1H). MS: m/z=499 [M+H+].


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-ethoxy)-ethoxy)ethoxy)acetamido)phenyl)ethyl)ureido)pentanedioic Acid: P216



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 10 mg scale. After HPLC purification, P216 (4 mg, 35%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.74 (s, 1H), 7.49-7.47 (dd, J=8.4, 1.6 Hz, 2H), 7.19 (d, J=8.4 Hz, 2H), 4.55-4.46 (m, 4H), 4.37 (t, J=6.0 Hz, 1H), 4.30-4.27 (dd, J=8.8, 5.2 Hz, 1H), 4.11 (s, 2H), 3.81 (t, J=5.2 Hz, 2H), 3.73-3.72 (m, 2H), 3.69-3.61 (m, 7H), 3.15-3.10 (dd, J=14.0, 6.4 Hz, 1H), 3.02-2.96 (dd, J=14.0, 6.4 Hz, 1H), 2.76 (t, J=7.6 Hz, 2H), 2.42-2.37 (m, 2H), 1.98-1.82 (m, 4H). MS: m/z=655 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-acetamido)-phenyl)ethyl)ureido)pentanedioic Acid: P217



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 4.6 mg scale. After HPLC purification, P217 (3 mg, 55%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 10.22 (s, 1H), 7.85 (s, 1H), 7.49-7.47 (dd, J=8.4, 1.6 Hz, 2H), 7.20 (dd, J=8.4 Hz, 2H), 5.28 (s, 2H), 4.54-4.50 (m, 1H), 4.42 (t, J=6.0 Hz, 1H), 4.29-4.26 (dd, J=8.8, 5.2 Hz, 1H), 3.13-3.08 (dd, J=12.0, 6.8 Hz, 1H), 3.01-2.96 (dd, J=12.0, 6.8 Hz, 1H), 2.85 (t, J=7.2 Hz, 1H), 2.41-2.35 (m, 2H), 1.98-2.02 (m, 2H), 1.92-1.82 (m, 1H). MS: m/z=523 (M+H+).




embedded image


(S)-Di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-1-oxo-6-thioureidohexan-2-yl)ureido)pentanedioate

To a mixture of 1 (97 mg, 0.2 mmol) and di(1H-pyrrol-1-yl)methanethione (35 mg, 0.2 mmol) in THF (2.0 mL) was added DIPEA (26 mg, 0.2 mmol). The mixture was stirred at rt for 5 h and then quenched by adding ammonia solution (2 M in MeOH, 3.0 mL). The mixture was stirred for 15 h at rt and concentrated. The residue was purified chromatography (hexane/EtOAc) to afford (S)-di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-1-oxo-6-thioureidohexan-2-yl)ureido)pentanedioate as a yellow wax (75 mg, 68%). MS: m/z=547 (M+H+).


(S)-Di-tert-butyl 2-(3-((S)-6-((4-(4-azidophenyl)thiazol-2-yl)amino)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)pentanedioate



embedded image


A mixture of above compound and 1-(4-azidophenyl)-2-bromoethanone (33 mg, 0.13 mmol) in dry EtOH (2.0 mL) was stirred at rt for 15 h. Solvent was removed under reduced pressure and the residue was purified by chromatography (hexane/EtOAc) to afford (S)-di-tert-butyl 2-(3-((S)-6-((4-(4-azidophenyl)thiazol-2-yl)amino)-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)pentanedioate as a yellow solid (38 mg, 42%). MS: m/z=688 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)thiazol-2-yl)amino)pentyl)ureido)pentanedioic Acid: P218



embedded image


General experimental procedures for click chemistry and tert-butyl deprotection reaction were followed. After HPLC purification, P218 (14 mg, 60%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.37 (s, 1H), 8.00-7.98 (m, 2H), 7.85-7.83 (m, 2H), 6.96 (s, 1H), 4.58 (t, J=5.6 Hz, 1H), 4.47 (t, J=5.6 Hz, 1H), 4.33-4.28 (m, 2H), 3.38 (t, J=7.2 Hz, 2H), 2.92 (m, 2H), 2.44-2.39 (m, 2H), 2.19-2.04 (m, 3H), 1.96-1.84 (m, 2H), 1.77-1.63 (m, 3H), 1.58-1.50 (m, 2H). MS: m/z=606 (M+H+).


(S)-2-((R)-3-Carboxy-3-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanamido)-propanamido)pentanedioic Acid: P219



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P219 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.73 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 4.73-4.79 (m, 1H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.41-4.48 (m, 1H), 2.83-2.93 (m, 4H), 2.69-2.78 (m, 4H), 2.39 (t, J=7.6 Hz, 2H), 2.29 (t, J=7.6 Hz, 2H), 1.85-2.15 (m, 4H). MS: m/z=536 (M+H+).


(S)-2-((R)-3-Carboxy-3-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)-propanamido)-propanamido)pentanedioic Acid: P220



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P220 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.30 (s, 1H), 7.72 (d, J=8.4 Hz, 2H), 7.43 (d, J=8.4 Hz, 2H), 4.71-4.75 (m, 1H), 4.50 (dt, J=47.2, 6.0 Hz, 2H), 4.39-4.49 (m, 1H), 3.00 (t, J=8.0 Hz, 2H), 2.90 (t, J=8.0 Hz, 2H), 2.77-2.85 (m, 1H), 2.65-2.74 (m, 1H), 2.59 (t, J=8.0 Hz, 2H), 2.38 (t, J=7.6 Hz, 2H), 2.02-2.22 (m, 3H), 1.84-1.96 (m, 1H). MS: m/z=522 (M+H+).


(S)-2-((R)-3-Carboxy-3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)propanamido)-pentanedioic Acid: P221



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P221 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.45 (s, 1H), 8.05 (d, J=8.4 Hz, 2H), 7.97 (d, J=8.4 Hz, 2H), 4.93-5.01 (m, 1H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.42-4.51 (m, 1H), 2.84-3.05 (m, 4H), 2.40 (t, J=7.6 Hz, 2H), 2.05-2.25 (m, 3H), 1.88-1.98 (m, 1H). MS: m/z=494 (M+H+).


((S)-2-(3-((S)-2-(4-(4-((Benzyloxy)carbonyl)piperazine-1-carboxamido)phenyl)-1-carboxyethyl)ureido)pentanedioic Acid: P222



embedded image


General experimental procedure for urea formation and d tert-butyl deprotection was followed. Reaction was performed on a 15 mg scale of (S)-di-tert-butyl 2-(3-((S)-3-(4-(4-((benzyloxy)carbonyl)piperazine-1-carboxamido)phenyl)-1-(tert-butoxy)-1-oxopropan-2-yl)ureido)pentanedioate. After HPLC purification, P222 (4.2 mg, 36%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.15-7.30 (m, 7H), 7.02-7.07 (m, 2H), 5.05 (s, 2H), 4.42 (dd, J=6.7, 5.5 Hz, 1H), 4.18 (dd, J=8.8, 4.9 Hz, 1H), 3.37-3.51 (m, 8H), 2.96-3.04 (m, 1H), 2.83-2.90 (m, 1H), 2.22-2.35 (m, 2H), 1.97-2.06 (m, 1H), 1.71-1.81 (m, 1H). MS: m/z=600 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((Carbonylbis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P223



embedded image


General experimental procedure for urea formation and tert-butyl deprotection was followed. Reaction was performed on a 45 mg scale of (S)-di-tert-butyl 2-(3-((S)-3-(4-aminophenyl)-1-(tert-butoxy)-1-oxopropan-2-yl)ureido)pentanedioate. After HPLC purification, P223 (15 mg, 47%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.34 (d, J=8.2 Hz, 4H), 7.17 (d, J=8.2 Hz, 4H), 4.52 (t, J=6.1 Hz, 2H), 4.29 (dd, J=8.8, 4.9 Hz, 2H), 3.05-3.13 (m, 2H), 2.93-3.03 (m, 2H), 2.31-2.48 (m, 4H), 2.07-2.19 (m, 2H), 1.80-1.93 (m, 2H). MS: m/z=733 (M+H+).


(S)-2-(3-((S)-2-((4-((Benzyloxy)carbonyl)piperazine-1-carbonyl)oxy)-1-carboxyethyl)ureido)pentanedioic Acid: P224



embedded image


General experimental procedure for tert-butyl deprotection was followed. Reaction was performed on a 10 mg scale of 1-benzyl 4-((S)-3-(tert-butoxy)-2-(3-((S)-1,5-di-tert-butoxy-1,5-dioxopentan-2-yl)ureido)-3-oxopropyl) piperazine-1,4-dicarboxylate. After HPLC purification, P224 (4.8 mg, 63%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.30-7.38 (m, 5H), 5.09-5.16 (m, 2H), 4.61 (t, J=4.3 Hz, 1H), 4.30-4.43 (m, 3H), 3.47 (br. s., 8H), 2.34-2.48 (m, 2H), 2.10-2.19 (m, 1H), 1.84-1.94 (m, 1H). MS: m/z=525 (M+H+).


2-(((2-(1-(3-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)propanoyl)piperidin-4-yl)ethoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P225



embedded image


General experimental procedure for tert-butyl deprotection was followed. After HPLC purification, P225 was obtained. MS: m/z=596.9 (M+H+)


2-((((1-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanoyl)piperidin-4-yl)methoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P226



embedded image


Similar procedures for the preparation of P207 were used to synthesize P226. After HPLC purification, P226 was obtained. MS: m/z=597 (M+H+)


2-(((2-(1-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperidin-4-yl)ethoxy)(hydroxy)phosphoryl)methyl)pentanedioic Acid: P227



embedded image


General experimental procedure for tert-butyl deprotection was followed. After HPLC purification, P227 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.14 (s, 1H), 7.55 (m, 2H), 7.44 (m, 2H), 4.44-4.33 (m, 4H), 3.70 (m, 2H), 3.45 (m, 1H), 3.00 (m, 1H), 2.85-2.75 (m, 3H), 2.58-2.55 (m, 1H), 2.25-2.21 (m, 2H), 2.01-1.39 (m, 10H), 1.20-1.01 (m, 2H). MS: m/z=568.9 (M+H+)


(S)-2-((R)-3-Carboxy-3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)propanamido)-pentanedioic Acid: P228



embedded image


General experimental procedures for urea formation and tert-butyl deprotection reaction were followed. After HPLC purification, P228 (3.3 mg, 20%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.81 (s, 1H), 5.19 (s, 2H), 4.75-4.81 (m, 1H), 4.47 (dt, J=47.2, 6.0 Hz, 2H), 4.39-4.50 (m, 1H), 2.74-2.92 (m, 4H), 2.41 (t, J=7.6 Hz, 2H), 1.85-2.31 (m, 4H). MS: m/z=432 (M+H+).


(S)-2-((R)-3-(4-((Benzyloxy)carbonyl)piperazine-1-carboxamido)-3-carboxypropanamido)-pentanedioic Acid: P229



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P229 (2.3 mg, 13%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.32-7.41 (m, 5H), 5.13 (s, 2H), 4.58-4.63 (m, 1H), 4.38-4.40 (m, 1H), 3.34-3.58 (m, 8H), 2.81-2.88 (m, 1H), 2.69-2.79 (m, 1H), 2.39 (t, J=7.6 Hz, 2H), 2.12-2.23 (m, 1H), 1.82-1.97 (m, 1H). MS: m/z=432 (M+H+).


(2S)-2-(3-(1-Carboxy-2-(1-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanoyl)-piperidin-4-yl)ethyl)ureido)pentanedioic Acid: P230



embedded image


General experimental procedures for urea formation, amide formation, click chemistry, and tert-butyl deprotection reaction were followed. After HPLC purification, P230 was obtained. MS: m/z=619 (M+H+).


2-((S)-4-((1-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)butanoyl)piperidin-4-yl)methyl)-2,5-dioxoimidazolidin-1-yl)pentanedioic Acid: P231



embedded image


General procedures for the preparation of P230 were followed. After HPLC purification, P231 was obtained. MS: m/z=601 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-fluorophenyl)thiazol-2-ylamino)pentyl)ureido)pentanedioic Acid: P232



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. 1H NMR (CD3OD, 400 MHz) δ 7.75-7.73 (m, 2H), 7.20-7.18 (m, 2H), 6.93 (s, 1H), 4.31-4.28 (m, 2H), 3.44-3.41 (m, 2H), 2.46-2.39 (m, 2H), 2.22-2.13 (m, 1H), 1.93-1.71 (m, 5H), 1.54-1.47 (m, 2H). MS: m/z=497.2 (M+H+)


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-nitrophenyl)thiazol-2-ylamino)pentyl)ureido)pentanedioic Acid: P233



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. 1H NMR (CD3OD, 400 MHz) δ 8.61 (s, 1H), 8.24 (dd, J=8.0, 2.0 Hz, 1H), 8.13 (d, J=8.0 Hz, 1H), 7.68 (t, J=8.0 Hz, 1H), 7.18 (s, 1H), 4.33-4.29 (m, 2H), 3.45-3.41 (m, 2H), 2.42-2.39 (m, 2H), 2.43-2.39 (m, 1H), 1.93-1.55 (m, 5H), 1.52-1.47 (m, 2H). MS: m/z=524.9 (M+H+)


(S)-2-(3-((S)-5-(4-(Benzo[b]thiophen-2-yl)thiazol-2-ylamino)-1-carboxypentyl)ureido) pentanedioic Acid: P234



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. 1H NMR (CD3OD, 400 MHz), δ: 8.00-7.95 (m, 2H), 7.54-7.42 (m, 3H), 4.32-4.30 (m, 2H), 3.41-3.35 (m, 2H), 2.41-2.38 (m, 2H), 2.15-2.08 (m, 1H), 1.95-1.70 (m, 5H), 1.56-1.54 (m, 2H). MS: m/z=535.8 (M+H+)


(S)-2-(3-((S)-5-(4-(Benzo[d][1,3]dioxol-5-yl)thiazol-2-ylamino)-1-carboxypentyl)ureido)-pentanedioic Acid: P235



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. 1H NMR (CD3OD, 400 MHz), δ: 7.18 (m, 2H), 6.92 (d, J=9.2 Hz, 1H), 6.86 (s, 1H), 6.03 (s, 2H), 4.32-4.29 (m, 2H), 3.45-3.43 (m, 2H), 2.41-2.40 (m, 2H), 2.20-2.13 (m, 1H), 1.95-1.74 (m, 5H), 1.56-1.54 (m, 2H). MS: m/z=523.2 (M+H+)


(S)-2-(3-((S)-1-Carboxy-5-(4-(2-chloropyridin-4-yl)thiazol-2-ylamino)pentyl)ureido)-pentanedioic Acid: P236



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. 1H NMR (CD3OD, 400 MHz), δ: 8.34 (d, J=5.2 Hz, 1H), 7.84 (d, J=1.2 Hz, 1H), 7.74 (d, J=5.2 Hz, 1H), 7.35 (s, 1H), 4.35-4.33 (m, 2H), 3.41-3.40 (m, 2H), 2.44-2.42 (m, 2H), 2.20-2.15 (m, 1H), 1.95-1.82 (m, 2H), 1.80-1.72 (m, 3H), 1.60-1.55 (m, 2H). MS: m/z=514.1 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetyl)piperazine-1-carboxamido)phenyl)ethyl)ureido)pentanedioic Acid: P237



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.2 mg scale of (S)-2-(3-((S)-2-(4-(4-(2-azidoacetyl)piperazine-1-carboxamido)phenyl)-1-carboxyethyl)ureido)pentanedioic acid. After HPLC purification, P237 (5.0 mg, 60%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.77 (s, 1H), 7.27-7.31 (m, 2H), 7.14-7.18 (m, 2H), 5.49 (s, 2H), 4.50-4.56 (m, 2H), 4.43 (t, J=5.9 Hz, 1H), 4.28 (dd, J=8.6, 4.7 Hz, 1H), 3.64-3.71 (m, 6H), 3.56-3.63 (m, 2H), 3.07-3.14 (m, 1H), 2.97 (dd, J=13.7, 6.7 Hz, 1H), 2.83-2.88 (m, 2H), 2.32-2.44 (m, 2H), 2.00-2.17 (m, 3H), 1.81-1.91 (m, 1H). MS: m/z=635 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P238



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 16.0 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-(((5-azidoisophthaloyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))-dipentanedioic acid. After HPLC purification, P238 (8.7 mg, 49%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.52-8.67 (m, 4H), 7.68 (d, J=8.6 Hz, 4H), 7.26-7.30 (m, 4H), 4.47-4.62 (m, 4H), 4.30 (dd, J=8.6, 5.1 Hz, 2H), 3.12-3.19 (m, 2H), 2.94-3.08 (m, 4H), 2.33-2.46 (m, 4H), 2.09-2.22 (m, 4H), 1.82-1.92 (m, 2H). MS: m/z=964 (M+H+).


(9R,13S)-3,7,11-Trioxo-1-phenyl-2-oxa-4,8,12-triazapentadecane-9,13,15-tricarboxylic Acid: P239



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P239 (5.5 mg, 21%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.25-7.41 (m, 5H), 5.06 (s, 2H), 4.70-4.78 (m, 1H), 4.40-4.49 (m, 1H), 3.39 (t, J=6.8 Hz, 2H), 2.79-2.87 (m, 1H), 2.67-2.75 (m, 1H), 2.44 (t, J=7.2 Hz, 2H), 2.39 (t, J=8.0 Hz, 2H), 2.11-2.22 (m, 1H), 1.85-1.97 (m, 1H). MS: m/z=468 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-phenyl)-thiazol-2-yl)amino)phenyl)ethyl)ureido)pentanedioic Acid: P240



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 6 mg scale. After HPLC purification system P240 (3.8 mg, 55%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.34 (s, 1H), 8.11-8.09 (dd, J=6.8, 2.0 Hz, 2H), 7.89-7.87 (dd, J=6.8, 2.0 Hz, 2H), 7.64-7.62 (dd, J=6.8, 2.0 Hz, 2H), 7.22 (d, J=8.8 Hz, 1H), 7.18 (s, 2H), 4.60-4.46 (m, 3H), 4.31-4.28 (dd, J=8.8, 5.2 Hz, 1H), 3.16-3.09 (m, 1H), 3.04-3.00 (dd, J=14.4, 6.8 Hz, 1H), 2.93 (t, J=7.6 Hz, 1H), 2.41-2.37 (m, 2H), 2.20-2.08 (m, 2H), 1.92-1.82 (m, 1H). MS: m/z=640 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-fluorobenzamido)-phenyl)-phenyl)ethyl)-ureido)-pentanedioic Acid: P241



embedded image


General procedure for amide coupling and t-butyl group deprotection was followed. Reaction was performed on 45 mg scale. After HPLC purification, P241 (33 mg, 99%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.99-7.96 (m, 2H), 7.60-7.58 (m, 2H), 7.26-7.21 (m, 4H), 4.55 (t, J=4.0 Hz, 1H), 4.30-4.27 (dd, J=8.8, 4.8 Hz, 1H), 3.16-3.11 (m, 1H), 3.04-2.99 (dd, J=16.0, 8.0 Hz, 1H), 2.41-2.36 (m, 2H), 2.18-2.08 (m, 1H), 1.92-1.82 (m, 1H). MS: m/z=4.76 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((5-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-nitrophenyl)amino)pentyl)ureido)pentanedioic Acid: P242



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 100 mg scale. After HPLC purification, P242 (10 mg, 13%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.11 (s, 1H), 8.07 (m, 1H), 6.46 (m, 1H), 6.30 (m, 1H), 5.28 (s, 2H), 4.75 (m, 4H), 4.28 (m, 2H), 3.35 (m, 2H), 2.38 (m, 2H), 2.10 (m, 1H), 1.88 (m, 2H), 1.74 (m, 3H), 1.54 (m, 2H). MS: m/z=584 (M+H+).


(S)-2-((R)-3-Carboxy-3-(3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)propanamido)-propanamido)pentanedioic Acid: P243



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P243 (4.3 mg, 38%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.83 (s, 1H), 5.12 (s, 2H), 4.73-4.80 (m, 1H), 4.48 (dt, J=47.2, 6.0 Hz, 2H), 4.38-4.47 (m, 1H), 3.44-3.56 (m, 2H), 2.69-2.88 (m, 4H), 2.36-2.52 (m, 4H), 1.88-2.24 (m, 4H). MS: m/z=503 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thiazol-2-ylamino)pentyl)ureido)pentanedioic Acid: P244



embedded image


General procedure for click chemistry was followed. 1H NMR (CD3OD, 400 MHz) δ 8.06 (s, 1H), 7.88 (s, 1H), 7.46-7.44 (m, 3H), 6.99 (s, 1H), 5.34 (s, 2H), 4.56-4.30 (m, 3H), 3.45-3.41 (m, 2H), 3.21-3.20 (m, 1H), 2.88-2.85 (m, 2H), 2.40-2.39 (m, 2H), 2.18-2.08 (m, 1H), 1.98-1.65 (m, 5H), 1.60-1.55 (m, 2H). MS: m/z=663.1 (M+H+)


(S)-2-((R)-3-Carboxy-3-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)propanamido)-propanamido)pentanedioic Acid: P245



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P245 (7.2 mg, 21%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.44 (s, 1H), 8.03 (d, J=8.8 Hz, 2H), 7.96 (d, J=8.8 Hz, 2H). 4.72-4.81 (m, 1H), 4.52 (dt, J=47.2, 6.0 Hz, 2H), 4.38-4.42 (m, 1H), 3.58-72 (m, 2H), 2.81-2.98 (m, 2H), 2.68-2.79 (m, 1H), 2.54-2.63 (m, 2H), 2.39 (t, J=7.6 Hz, 2H), 2.03-2.21 (m, 3H), 1.85-1.95 (m, 1H). MS: m/z=565 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid: P246



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.8 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-((5-azidoisophthaloyl)bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P246 (5.0 mg, 58%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.76 (t, J=5.7 Hz, 1H), 8.43-8.52 (m, 3H), 8.33-8.41 (m, 1H), 4.60 (t, J=5.9 Hz, 1H), 4.48 (t, J=5.9 Hz, 1H), 4.30 (m, 4H), 3.42-3.49 (m, 4H), 2.92-2.98 (m, 2H), 2.34-2.47 (m, 4H), 2.05-2.22 (m, 4H), 1.82-1.96 (m, 4H), 1.63-1.78 (m, 6H), 1.45-1.61 (m, 4H). MS: m/z=896 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(6-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)pentyl)ureido)pentanedioic Acid: P247



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 25 mg scale. After HPLC purification, P247 (3.0 mg, 15%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.01 (s, 1H), 6.86 (m, 1H), 6.80 (s, 1H), 6.63 (m, 1H), 5.11 (s, 2H), 4.77 (m, 2H), 4.66 (m, 3H), 4.19 (m, 2H), 3.77 (m, 2H), 2.30 (m, 2H), 2.02 (m, 1H), 1.78 (m, 2H), 1.62 (m, 2H), 1.37 (m, 2H). MS: m/z=580 (M+H+)


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperazine-1-carboxamido)phenyl)ethyl)ureido)pentanedioic Acid: P248



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 25.0 mg scale of (S)-2-(3-((S)-2-(4-(4-(4-azidobenzoyl)piperazine-1-carboxamido)phenyl)-1-carboxyethyl)ureido)pentanedioic acid. After HPLC purification, P248 (19.0 mg, 67%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.44 (s, 1H), 7.97-8.01 (m, 2H), 7.67-7.70 (m, 2H), 7.27-7.30 (m, 2H), 7.14-7.17 (m, 2H), 4.46-4.60 (m, 3H), 4.28 (dd, J=8.6, 4.7 Hz, 1H), 3.83 (br. s., 2H), 3.66 (br. s., 3H), 3.57 (br. s., 3H), 3.04-3.14 (m, 1H), 2.91-3.00 (m, 3H), 2.32-2.43 (m, 2H), 2.03-2.20 (m, 3H), 1.78-1.95 (m, 1H). MS: m/z=697 (M+H+).


(S)-2-(3-((S)-5-(4-(4-Azidobenzoyl)piperazine-1-carboxamido)-1-carboxypentyl)-ureido)pentanedioic Acid: P249 Precursor



embedded image


General procedure for amide coupling and t-butyl group was followed. Reaction was performed on 88 mg scale. After HPLC purification, P-249 Precursor (39 mg, 46%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.49-7.47 (m, 2H), 7.18-7.15 (m, 2H), 4.31-4.24 (m, 2H), 3.80-3.55 (br m, 8H), 3.17 (t, J=6.8 Hz, 1H), 2.43-2.38 (m, 2H), 2.18-2.08 (m, 1H), 1.92-1.79 (m, 1H), 1.70-1.38 (m, 5H). MS: m/z=577 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)-piperazine-1-carboxamido)pentyl)ureido)pentanedioic Acid: P249



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 10 mg scale. After HPLC purification, P249 (9 mg, 78%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.43 (s, 1H), 7.98-7.96 (dd, J=6.4, 1.6 Hz, 2H), 7.67-7.65 (dd, J=6.4, 1.6 Hz, 2H), 4.58 (t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.31-4.25 (m, 2H), 3.84-3.52 (br m, 2H), 3.56-3.42 (br m, 6H), 3.17 (t, J=7.2 Hz, 2H), 2.92 ((t, J=7.2 Hz, 2H), 2.44-2.38 (m, 2H), 2.18-2.08 (m, 2H), 1.94-1.80 (m, 2H), 1.70-1.40 (m, 4H). MS: m/z=663 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(1-((4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)phenyl)carbamothioyl)piperidin-4-yl)ethyl)ureido)pentanedioic Acid: P250



embedded image


The compound P250 was synthesized using the same procedures for the preparation of P200. 1H NMR (CD3OD, 400 MHz) δ 8.31 (s, 1H), 7.77-7.74 (m, 2H), 7.49-7.46 (m, 2H), 4.86-4.75 (m, 2H), 4.58 (t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.42-4.29 (m, 2H), 3.13 (m, 2H), 2.91 (t, J=7.2 Hz, 2H), 2.41 (m, 2H), 2.20-2.05 (m, 3H), 1096-1.73 (m, 5H), 1.67-1.59 (m, 1H), 1.40-1.24 (m, 2H). MS: m/z=608 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((5-(2-(2-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)-2-nitrophenyl)amino)pentyl)ureido)pentanedioic Acid: P251



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 40 mg scale. After HPLC purification, P251 (9.0 mg, 28%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.06 (m, 1H), 7.80 (s, 1H), 6.30 (s, 1H), 6.23 (m, 1H), 4.53 (m, 2H), 4.46 (m, 1H), 4.34 (m, 1H), 4.29 (m, 2H), 4.18 (m, 2H), 3.86 (m, 2H), 3.79 (m, 2H), 3.63 (m, 4H), 3.33 (m, 2H), 2.74 (m, 2H), 2.39 (m, 2H), 2.13 (m, 1H), 2.12 (m, 2H), 1.99 (m, 2H), 1.85 (m, 3H), 1.54 (m, 2H). MS: m/z=700 (M+H+)


(2S,2′S)-2,2′-(((3R,3′R)-3,3′-((3,3′-((5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(propanoyl))bis(azanediyl))bis(3-carboxypropanoyl))bis(azanediyl))dipentanedioic Acid: P252



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 12.7 mg scale of (2S,2′S)-2,2′-(((3R,3′R)-3,3′-((3,3′-((5-azidoisophthaloyl)bis(azanediyl))bis(propanoyl))bis(azanediyl))bis(3-carboxypropanoyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P252 (9.6 mg, 69%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.46-8.50 (m, 3H), 8.37-8.41 (m, 1H), 4.82 (dd, J=7.8, 5.1 Hz, 2H), 4.59 (t, J=5.9 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 4.35 (dd, J=9.0, 5.1 Hz, 2H), 3.67-3.78 (m, 4H), 2.78-2.97 (m, 6H), 2.53-2.68 (m, 4H), 2.37 (t, J=7.6 Hz, 4H), 2.07-2.21 (m, 4H), 1.84-1.94 (m, 2H). MS: m/z=924 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(3-carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)phenyl)ethyl)ureido)pentanedioic Acid: P253



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 3.0 mg scale of (S)-2-(3-((S)-2-(4-(3-azido-5-carboxybenzamido)phenyl)-1-carboxyethyl)ureido)pentanedioic acid. After HPLC purification, P253 (2.5 mg, 71%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.63-8.68 (m, 3H), 8.55 (s, 1H), 7.67 (m, J=8.2 Hz, 2H), 7.27 (m, J=8.2 Hz, 2H), 4.55-4.62 (m, 2H), 4.48 (t, J=5.9 Hz, 1H), 4.30 (dd, J=8.6, 5.1 Hz, 1H), 3.11-3.20 (m, 1H), 2.93-3.07 (m, 3H), 2.33-2.46 (m, 2H), 2.04-2.22 (m, 3H), 1.83-1.94 (m, 1H). MS: m/z=629 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-(1-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-2-oxo-6,9,12,15-tetraoxa-3-azaoctadecanamido)phenyl)thiazol-2-ylamino)pentyl)ureido)-pentanedioic Acid: P254



embedded image


General experimental procedure for click reaction was followed. 1H NMR (CD3OD, 400 MHz), δ 7.58-7.54 (m, 2H), 7.29-7.22 (m, 3H), 6.77 (s, 1H), 4.91 (s, 2H), 4.36-4.22 (m, 2H), 3.70-3.68 (m, 2H), 3.52-3.36 (m, 14H), 3.33-3.15 (m, 4H), 2.59-2.51 (m, 4H), 2.29-2.27 (m, 2H), 1.85-1.52 (m, 8H), 1.28-1.24 (m, 2H). MS: m/z=910.2 (M+H+).


(S)-2-(3-((S)-2-Carboxy-1-(3-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)butanamido)-phenyl)propan-2-yl)ureido)pentanedioic Acid: P255



embedded image


General procedure for click chemistry was followed. Reaction was performed on 8.10 mg scale. After HPLC purification, P255 (6.5 mg, 68%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.79 (s, 1H), 7.59-7.56 (m, 1H), 7.18 (t, J=7.6 Hz, 2H), 6.90 (d, J=8.0 Hz, 1H), 4.52-4.44 (m, 3H), 4.39 (t, J=6.0 Hz, 1H), 4.35-4.32 (dd, J=8.0 and 4.0 Hz, 1H), 3.33 (d, J=13.2 Hz, 1H), 3.18 (d, J=13.2 Hz, 1H), 2.78 (t, J=8.0 Hz, 2H) 2.46-2.38 (m, 4H), 2.30-2.12 (m, 3H), 2.08-1.86 (m, 3H), 1.54 (s, 3H); MS: m/z=565 (M+H+), 587 (M+Na+).


(S)-2-(3-((S)-2-Carboxy-1-(3-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-phenyl)propan-2-yl)ureido)pentanedioic Acid: P256



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 10.5 mg scale. After HPLC purification P256 (10.5 mg, 84%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.84 (s, 1H), 7.56-7.54 (dd, J=8.0, 2.4 Hz, 1H), 7.19 (t, J=8.0 Hz, 2H), 6.93 (d, J=7.6 Hz, 1H), 5.28 (s, 2H), 4.52 (t, J=5.6 Hz, 1H), 4.41 (t, J=5.6 Hz, 1H), 4.35-4.32 (m, 2H), 3.84-3.74 (m, 2H), 3.33 (d, J=13.2 Hz, 1H), 3.20 (d, J=13.2 Hz, 1H), 2.84 (t, J=8.0 Hz, 2H) 2.44-2.39 (m, 2H), 2.21-2.00 (m, 3H), 1.94-1.84 (m, 1H), 1.53 (s, 3H); MS: m/z=537 (M+H+, 559 (M+Na+).


2-((S)-4-((1-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperidin-4-yl)methyl)-2,5-dioxoimidazolidin-1-yl)pentanedioic Acid: P257



embedded image


General experimental procedures for click chemistry and the deprotection of the tert-butyl group were followed. After HPLC purification, P257 was obtained. MS: m/z=559 (M+H+).


(S)-2-(3-((S)-5-(4-(1-(14-Amino-3,6,9,12-tetraoxatetradecyl)-1H-1,2,3-triazol-4-yl)benzamido)-1-carboxypentyl)ureido)pentanedioic Acid: P258



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 20 mg scale. After HPLC purification, P258 (3.0 mg, 19%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.38 (s, 1H), 7.80 (m, 4H) 4.56 (m, 2H), 4.20 (m, 2H), 3.86 (m, 2H), 3.50 (m, 13H), 3.32 (m, 2H), 2.99 (m, 2H), 2.31 (m, 2H), 2.04 (m, 1H), 1.80 (m, 2H), 1.60 (m, 3H), 1.40 (m, 2H), 0.01 (m, 1H). MS: m/z=710 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3-carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)ureido)pentanedioic Acid: P259



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 5.0 mg scale of (S)-2-(3-((S)-5-(3-azido-5-carboxybenzamido)-1-carboxypentyl)ureido)pentanedioic acid. After HPLC purification, P259 (2.0 mg, 34%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.84 (t, J=5.5 Hz, 1H), 8.60-8.62 (m, 1H), 8.49-8.57 (m, 3H), 4.59 (t, J=5.9 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 4.24-4.34 (m, 2H), 3.37-3.52 (m, 2H), 2.92-2.97 (m, 2H), 2.33-2.44 (m, 2H), 2.03-2.20 (m, 3H), 1.82-1.94 (m, 2H), 1.64-1.76 (m, 3H), 1.46-1.57 (m, 2H). MS: m/z=595 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3-(diethylcarbamoyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)ureido)pentanedioic Acid: P260



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.0 mg scale of (S)-2-(3-((S)-5-(3-azido-5-(diethylcarbamoyl)benzamido)-1-carboxypentyl)ureido)pentanedioic acid. After HPLC purification, P260 (4.3 mg, 53%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.50 (s, 1H), 8.42 (t, J=1.8 Hz, 1H), 8.07 (t, J=1.6 Hz, 1H), 7.92 (t, J=1.4 Hz, 1H), 4.59 (t, J=5.9 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 4.24-4.34 (m, 2H), 3.60 (q, J=7.0 Hz, 2H), 3.33-3.48 (m, 4H), 2.91-2.96 (m, 2H), 2.33-2.44 (m, 2H), 2.04-2.20 (m, 3H), 1.81-1.94 (m, 2H), 1.62-1.76 (m, 3H), 1.43-1.56 (m, 2H), 1.30 (t, J=7.0 Hz, 3H), 1.17 (t, J=7.0 Hz, 3H). MS: m/z=650 (M+H+).


(3S,7S,14S,23S,27S)-14-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-5,13,17,25-tetraoxo-4,6,12,18,24,26-hexaazanonacosane-1,3,7,23,27,29-hexacarboxylic Acid: P261



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 3.6 mg scale of (3S,7S,14S,23S,27S)-14-(2-azidoacetamido)-5,13,17,25-tetraoxo-4,6,12,18,24,26-hexaazanonacosane-1,3,7,23,27,29-hexacarboxylic acid. After HPLC purification, P261 (2.5 mg, 63%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.85 (s, 1H), 5.21 (d, J=2.3 Hz, 2H), 4.53 (t, J=5.9 Hz, 1H), 4.41 (t, J=5.9 Hz, 1H), 4.22-4.36 (m, 5H), 3.11-3.26 (m, 4H), 2.84 (t, J=7.6 Hz, 2H), 2.35-2.47 (m, 4H), 2.23-2.35 (m, 2H), 2.06-2.19 (m, 4H), 1.74-2.05 (m, 6H), 1.46-1.70 (m, 6H), 1.33-1.46 (m, 4H). MS: m/z=919 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperazine-1-carboxamido)pentyl)ureido)pentanedioic Acid: P262



embedded image


General procedure for “click chemistry was followed. Reaction was performed on a 5 mg scale. After HPLC purification, P262 (2.0 mg, 35%) was obtained; 1H NMR (CD3OD, 400 MHz) δ 8.58 (t, J=1.6 Hz, 1H), 8.16 (dt, J=19.2, 1.2 Hz, 2H), 4.58 (t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.32-4.22 (m, 2H), 3.84-3.74 (m, 2H), 3.58-3.40 (m, 6H), 3.17 (t, J=6.8 Hz, 2H), 2.93 (t, J=8.0 Hz, 2H) 2.44-2.37 (m, 2H), 2.20-2.06 (m, 4H), 1.94-1.78 (m, 2H), 1.70-1.38 (m, 8H); MS: m/z 707 (M+H+) and 729 (M+Na+).


(2S,2′S)-2,2′-(((((1S,1′S)-((4,4′-(5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)-isophthaloyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P263



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 22 mg scale. After HPLC purification, P263 (6.0 mg, 25%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.48 (s, 1H), 8.08 (d, J=1.2 Hz, 2H), 7.60 (t, J=1.2 Hz, 1H), 4.58 (t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.32-4.22 (m, 4H), 3.86-3.74 (m, 4H), 3.58-3.40 (m, 12H), 3.17 (t, J=7.2 Hz, 4H), 2.92 (t, J=7.2 Hz, 2H) 2.46-2.34 (m, 4H), 2.18-2.06 (m, 2H), 1.94-1.78 (m, 3H), 1.70-1.38 (m, 8H). MS: m/z=1120 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((4,4′-(5-Azidoisophthaloyl)bis(piperazine-1,1′-carbonyl))-bis(azanediyl))bis(1-carboxypentane-5,1-diyl))-bis(azanediyl))-bis(carbonyl))-bis(azanediyl))dipentanedioic Acid: P-263 Precursor



embedded image


General procedure for amide coupling and t-butyl ester deprotection was followed. Reaction was performed on 67 mg scale. After HPLC purification, P-263 Precursor (44 mg, 44%) was obtained; 1H NMR (CD3OD, 400 MHz): δ 7.27 (d, J=1.20 Hz, 1H), 7.26-7.24 (m, 2H), 4.32-4.24 (m, 4H), 3.70-3.60 (m, 4H), 3.55-3.25 (m, 14H), 3.17 (t, J=6.8 Hz, 4H), 2.46-2.34 (m, 4H), 2.18-2.08 (m, 2H), 1.93-1.79 (m, 4H), 1.72-1.38 (m, 10H). MS: m/z=1234 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(4-(3-(diethylcarbamoyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperazine-1-carboxamido)pentyl)ureido)pentanedioic Acid: P264



embedded image


General procedure for click chemistry was followed. Reaction was performed on 14 mg scale. After HPLC purification, P264 (3.0 mg, 19%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.49 (s, 1H), 8.05-8.01 (m, 2H), 7.54 (t, J=4.0 Hz, 1H), 4.58 (t, J=6.0 Hz, 1H), 4.46 (t, J=6.0 Hz, 1H), 4.31-4.24 (m, 2H), 3.84-3.74 (br, 2H), 3.62-3.40 (m, 9H), 3.30-3.38 (m, 4H), 3.17 (t, J=6.8 Hz, 2H), 2.92 (t, J=7.2 Hz, 2H), 2.44-2.36 (m, 2H), 2.20-2.06 (m, 2H), 1.94-1.78 (m, 1H), 1.70-1.38 (m, 5H), 1.28 and 1.17 (t each, J=8.0 Hz, 3H). MS: m/z=762 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((6-fluoro-3-nitropyridin-2-yl)amino)pentyl)ureido)pentanedioic Acid: P265



embedded image


General experimental procedure for N-alkylation and deprotection was followed. Reaction was performed on a 30.0 mg scale of (S)-di-tert-butyl 2-(3-((S)-6-amino-1-(tert-butoxy)-1-oxohexan-2-yl)ureido)pentanedioate. After HPLC purification, P265 (14.7 mg, 52%) was obtained as a yellow solid. 1H NMR (CD3OD, 400 MHz) δ 8.58 (dd, J=8.8, 7.2 Hz, 1H), 6.28 (dd, J=8.8, 3.3 Hz, 1H), 4.24-4.34 (m, 2H), 3.52-3.63 (m, 2H), 2.40 (ddd, J=8.6, 6.8, 3.7 Hz, 2H), 2.08-2.18 (m, 1H), 1.83-1.94 (m, 2H), 1.65-1.76 (m, 3H), 1.45-1.55 (m, 2H). MS: m/z=460 (M+H+).


(2S)-2-(3-((1S)-1-Carboxy-5-((5-(3-(3-(((S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)amino)-4-nitrophenoxy)-2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)propoxy)-2-nitrophenyl)amino)pentyl)ureido)pentanedioic Acid: P266



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 45 mg scale. After HPLC purification, P266 (6.0 mg, 12%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.05 (m, 3H), 6.32 (m, 2H), 6.24 (m, 2H), 5.42 (m, 1H), 4.70 (m, 4H), 4.46 (m, 1H), 4.31 (m, 4H), 3.33 (m, 4H), 2.81 (m, 2H), 2.36 (m, 4H), 2.15 (m, 4H), 1.88 (m, 4H), 1.72 (m, 6H), 1.52 (m, 5H). MS: m/z=1080 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(3-(((S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)carbamoyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)phenyl)ethyl)ureido)pentanedioic Acid: P267



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 0.06 g scale. After HPLC purification, P267 (10 mg, 22%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 8.56 (t, J=2.0 Hz, 1H), 8.51 (s, 1H), 8.51 (t, J=2.0 Hz, 1H), 8.47 (t, J=2.0 Hz, 1H), 7.66 (d, J=8.4 Hz, 2H), 7.27 (d, J=8.8 Hz, 2H), 4.60 (t, J=5.6 Hz, 1H), 4.56 (dd, J=6.8, 5.2 Hz, 1H), 4.48 (t, J=6.0 Hz, 1H), 4.29 (ddd, J=12.4, 8.4, 4.4 Hz, 2H), 3.48-3.44 (m, 3H), 3.18-3.12 (m, 1H), 3.03 (dd, J=7.6 Hz, 1H), 2.95 (t, J=7.6 Hz, 2H), 2.41-2.36 (m, 4H), 2.21-2.08 (m, 4H), 1.93-1.83 (m, 3H), 1.76-1.69 (m, 3H), 1.56-1.51 (m, 2H). MS: m/z=930.1 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-(3-(((S)-1,3-dicarboxypropyl)carbamoyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)pentyl)ureido)pentanedioic Acid: P268



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 0.06 g scale. After HPLC purification, P268 (10 mg, 23%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) 8.48 (d, J=1.2, 3H), 8.40 (t, J=1.6 Hz, 1H), 4.69 (dd, J=5.2, 9.6 Hz, 1H), 4.59 (t, J=5.6 Hz, 1H), 4.47 (t, J=5.6 Hz, 1H), 4.32-4.27 (m, 2H), 3.46-3.42 (m, 2H), 2.94 (t, J=7.6 Hz, 2H), 2.52 (t, J=7.6 Hz, 2H), 2.42-2.50 (m, 3H), 2.21-2.07 (m, 4H), 1.94-1.82 (m, 2H), 1.74-1.66 (m, 3H), 1.56-1.50 (m, 2H). MS: m/z=724.1 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((6-fluoro-5-nitropyridin-2-yl)amino)pentyl)ureido)pentanedioic Acid: P269



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 8.0 mg scale of (S)-di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-((6-fluoro-5-nitropyridin-2-yl)amino)-1-oxohexan-2-yl)ureido)pentanedioate. After HPLC purification, P269 (3.2 mg, 54%) was obtained as a yellow solid. 1H NMR (CD3OD, 400 MHz) δ 8.11-8.21 (m, 1H), 6.38 (d, J=8.6 Hz, 1H), 4.26-4.33 (m, 2H), 3.41 (br. s., 2H), 2.34-2.47 (m, 2H), 2.10-2.19 (m, 1H), 1.83-1.93 (m, 2H), 1.59-1.73 (m, 3H), 1.44-1.53 (m, 3H). MS: m/z=460 (M+H+).


(2S,2′S,2″S)-2,2′,2″-(((((1S,1′S,1″S)-((6,6′,6″-((Nitrilotris(ethane-2,1-diyl))tris(azanediyl))tris(3-nitropyridine-6,2-diyl))tris(azanediyl))tris(1-carboxypentane-5,1-diyl))tris(azanediyl))tris(carbonyl))tris(azanediyl))tripentanedioic Acid: P270



embedded image


General experimental procedure for N-alkylation and deprotection was followed. Reaction was performed on a 30.0 mg scale of (S)-di-tert-butyl 2-(3-((S)-1-(tert-butoxy)-6-((6-fluoro-3-nitropyridin-2-yl)amino)-1-oxohexan-2-yl)ureido)pentanedioate. After HPLC purification, P270 (13.5 mg, 58%) was obtained as a yellow solid. 1H NMR (CD3OD, 400 MHz) δ 8.01 (d, J=9.0 Hz, 3H), 5.89 (d, J=9.4 Hz, 3H), 4.22-4.33 (m, 6H), 3.85-4.01 (m, 6H), 3.72 (t, J=5.9 Hz, 6H), 3.47 (t, J=5.9 Hz, 6H), 2.35-2.47 (m, 6H), 2.09-2.19 (m, 3H), 1.81-1.95 (m, 6H), 1.59-1.73 (m, 9H), 1.42-1.52 (m, 6H). MS: m/z=1464 (M+H+).


(S)-2-(3-((S)-1-Carboxy-5-((6-((2-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethyl)amino)pyrimidin-4-yl)amino)pentyl)ureido)pentanedioic Acid: P271



embedded image


General experimental procedures for click chemistry and the deprotection of the tert-butyl group were followed. After HPLC purification, P271 was obtained. MS: m/z=612 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(1-(3-(4-((S)-2-carboxy-2-(3-((S)-1,3-dicarboxypropyl)-ureido)ethyl)piperidine-1-carbonyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperidin-4-yl)ethyl)ureido)pentanedioic Acid: P272



embedded image


General procedure for click chemistry was followed. Reaction was performed on 5.0 mg scale. After HPLC purification, P272 (4.0 mg, 60%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.49 (s, 1H), 8.15 (s, 2H), 7.50 (s, 1H), 4.54-4.51 (m, 4H), 4.48-4.15 (m, 6H), 3.76-3.68 (m, 2H), 3.22-3.10 (m, 2H), 2.96-2.88 (m, 2H), 2.46-2.38 (m, 4H), 2.20-1.60 (m, 15H), 1.46-1.00 (m, 3H). MS: m/z=948 (M+H+), 970 (M+H++Na).


(S)-2-(3-((S)-2-(1-(3-Azido-5-(4-((S)-2-carboxy-2-(3-((S)-1,3-dicarboxypropyl)-ureido)ethyl)piperidine-1-carbonyl)benzoyl)piperidin-4-yl)-1-carboxyethyl)-ureido)pentanedioic Acid: P272 Precursor



embedded image


General experimental procedure for amide formation and methyl ester deprotection using 2 M HCl at 40° C. for 4 h was followed. Reaction was performed on 80 mg scale. After HPLC purification, P272 Precursor (23 mg, 34%, in two steps) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.07 (s, 3H), 4.52-4.49 (m, 2H), 4.30-4.15 (m, 4H), 3.60-3.51 (m, 2H), 3.08-2.98 (m, 2H), 2.38-2.26 (m, 4H), 2.10-1.46 (m, 15H), 1.30-1.00 (m, 3H); MS: m/z=862 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((6,6′-((((2-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)ethyl)azanediyl)bis(ethane-2,1-diyl))bis(azanediyl))bis(3-nitropyridine-6,2-diyl))bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.6 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-((6,6′-((((2-(2-azidoacetamido)ethyl)azanediyl)bis(ethane-2,1-diyl))bis(azanediyl))bis(3-nitropyridine-6,2-diyl))bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P273 (2.5 mg, 30%) was obtained as a yellow solid. 1H NMR (DMSO-d6, 400 MHz) δ 7.80 (d, J 9.4 Hz, 2H), 5.81 (d, J=9.4 Hz, 2H), 5.06 (s, 2H), 4.51 (t, J=6.1 Hz, 1H), 4.39 (t, J=6.1 Hz, 1H), 3.98-4.10 (m, 4H), 3.32-3.45 (m, 8H), 3.22 (br. s., 2H), 2.65-2.75 (m, 6H), 2.16-2.33 (m, 4H), 1.85-2.01 (m, 4H), 1.56-1.74 (m, 4H), 1.42-1.56 (m, 6H), 1.22-1.32 (m, 4H). MS: m/z=1194 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((4,4′-(5-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)isophthaloyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P274



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 5.0 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-(((4,4′-(5-(2-azidoacetamido)isophthaloyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))-dipentanedioic acid. After HPLC purification, P274 (2.1 mg, 39%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.87 (s, 1H), 7.81 (d, J=1.2 Hz, 2H), 7.26-7.31 (m, 5H), 7.15 (d, J=8.6 Hz, 4H), 5.35 (s, 2H), 4.50-4.56 (m, 3H), 4.43 (t, J=5.9 Hz, 1H), 4.28 (dd, J=8.8, 4.9 Hz, 2H), 3.81 (br. s., 4H), 3.65 (br. s., 4H), 3.54 (br. s., 8H), 3.09 (dd, J=13.9, 6.8 Hz, 2H), 2.97 (dd, J=13.9, 6.8 Hz, 2H), 2.84-2.89 (m, 2H), 2.33-2.43 (m, 4H), 2.01-2.16 (m, 4H), 1.81-1.91 (m, 2H). MS: m/z=1245 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((4,4′-(5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P275



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 6.0 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-(((4,4′-(5-azidoisophthaloyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P275 (2.0 mg, 31%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.50 (s, 1H), 8.11 (d, J=1.2 Hz, 2H), 7.65 (t, J=1.4 Hz, 1H), 7.25-7.32 (m, 4H), 7.13-7.18 (m, 4H), 4.45-4.60 (m, 4H), 4.28 (dd, J=8.6, 5.1 Hz, 2H), 3.85 (br. s., 4H), 3.68 (br. s., 4H), 3.57 (br. s., 8H), 3.06-3.16 (m, 2H), 2.90-3.00 (m, 4H), 2.31-2.43 (m, 4H), 2.03-2.20 (m, 4H), 1.77-1.92 (m, 2H). MS: m/z=1188 (M+H+).


(3S,7S,23S,27S)-15-(2-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)-5,13,17,25-tetraoxo-4,6,12,18,24,26-hexaazanonacosane-1,3,7,23,27,29-hexacarboxylic Acid: P276



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P276 was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.83 (s, 1H), 5.09 (s, 2H), 4.50-4.61 (m, 1H), 4.47 (dt, J=47.2, 6.0 Hz, 2H), 4.21-4.56 (m, 3H), 3.06-3.28 (m, 4H), 2.84 (t, J=8.0 Hz, 2H), 2.32-2.56 (m, 8H), 1.98-2.22 (m, 4H), 1.28-1.96 (m, 12H). MS: m/z=919 (M+H+).


(2S)-2-(3-((1S)-1-Carboxy-5-((5-(3-(3-(((S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)amino)-4-nitrophenoxy)-2-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)propoxy)-2-nitrophenyl)amino)pentyl)ureido)pentanedioic Acid: P277



embedded image


General experimental procedure for the deprotection of the tert-butyl group was followed. Reaction was performed on a 30 mg scale. After HPLC purification, P277 (7 mgs, 30%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.05 (m, 2H), 7.99 (s, 1H), 6.28 (m, 4H), 4.83 (m, 5H), 4.72 (m, 2H), 4.66 (m, 1H), 4.29 (m, 8H), 3.33 (m, 4H), 2.38 (m, 4H), 2.11 (m, 2H), 1.88 (m, 4H), 1.71 (m, 5H), 1.53 (m, 4H). MS: m/z=1096 (M+H+).


(3S,7S,23S,27S)-15-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)-5,13,17,25-tetraoxo-4,6,12,18,24,26-hexaazanonacosane-1,3,7,23,27,29-hexacarboxylic Acid: P278



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P278 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.44 (s, 1H), 8.00 (d, J=8.8 Hz, 2H), 7.95 (d, J=8.8 Hz, 2H), 4.69-4.86 (m, 1H), 4.51 (dt, J=47.2, 6.0 Hz, 2H), 4.13-4.33 (m, 4H), 3.04-3.24 (m, 4H), 2.91 (t, J=7.6 Hz, 2H), 2.49-2.64 (m, 4H), 2.32-2.45 (m, 4H), 2.02-2.19 (m, 4H), 1.68-1.94 (m, 4H), 1.28-1.66 (m, 10H). MS: m/z=981 (M+H+).


(S)-2-(3-((S)-1-Carboxy-3-(4-(4-nitrophenyl)oxazol-2-yl)propyl)ureido)pentanedioic Acid: P279



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P279 was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.37 (s, 1H), 8.26 (d, J=8.8 Hz, 2H), 7.97 (d, J=8.8 Hz, 2H), 4.38-4.44 (m, 1H), 4.25-4.33 (m, 1H), 2.91-2.98 (m, 2H), 2.32-2.46 (m, 3H), 2.05-2.18 (m, 2H), 1.82-1.92 (m, 1H). MS: m/z=465 (M+H+).


(2S,2′S)-2,2′(((((1S,1′S)(((4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)-benzamido)-heptanedioyl)-bis(azanediyl))-bis(4,1-phenylene))-bis(1-carboxyethane-2,1-diyl))-bis(azanediyl))-bis(carbonyl))-bis(azanediyl))-dipentanedioic Acid: P280



embedded image


General procedure for click chemistry was followed. Reaction was performed on 5.0 mg scale. After HPLC purification, P280 (4.0 mg, 74%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.40 (s, 1H), 8.21 (br d, J=8.80 Hz, 1H), 7.92 (d, J=8.80 Hz, 2H), 7.80 (d, J=8.80 Hz, 2H), 7.37 (d, J=8.80 Hz, 4H), 7.01 (d, J=8.80 Hz, 4H), 4.57 (t, J=5.60 Hz, 2H), 4.46-4.43 (m, 4H), 4.28-4.22 (m, 3H), 3.72-3.68 (m, 6H), 3.05-2.99 (dd, J=13.6 and 5.2 Hz, 1H), 2.94-2.86 (m, 4H), 2.50-2.31 (m, 6H), 2.18-1.96 (m, 5H), 1.86-1.83 (m, 6H). MS: m/z=1078 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((4-(4-Azidobenzamido)-heptanedioyl)-bis(azanediyl))-bis(4,1-phenylene))-bis(1-carboxyethane-2,1-diyl))bis(azanediyl))-bis(carbonyl))-bis(azanediyl))dipentanedioic Acid: P280 Precursor



embedded image


General procedure for amide coupling and t-butyl ester deprotection was followed. Reaction was performed on 81 mg scale. After HPLC purification, P280 Precursor (30 mg, 48%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.04 (d, J=9.2 Hz, 1H), 7.74-7.71 (m, 2H), 7.31 (d, J=8.40 Hz, 4H), 7.03 (d, J=8.40 Hz, 4H), 6.97-6.93 (m, 2H), 4.41 (t, J=8.0 Hz, 2H), 4.13 (dd, J=8.4, 4.80 Hz, 4H), 4.15-4.05 (m, 1H), 2.92 (dd, J=13.6, 4.0 Hz, 2H), 2.86 (dd, J=13.6, 4.0 Hz, 2H), 2.41-2.21 (m, 8H), 2.08-1.70 (m, 8H). MS: m/z=862 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((4,4′-(4-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)heptanedioyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(1-carboxypentane-5,1diyl))-bis(azanediyl))-bis(carbonyl))-bis(azanediyl))-dipentanedioic Acid: P281



embedded image


General procedure for click chemistry was followed. Reaction was performed on 5.0 mg scale. After HPLC purification, P281 (3.5 mg, 65%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.43 (s, 1H), 8.04-7.95 (m, 4H), 4.56 (t, J=6.0 Hz, 1H), 4.45 (t, J=4.4 Hz, 1H), 4.45 (t, J=4.4 Hz, 1H), 4.30-4.23 (m, 4H), 4.18-4.10 (m, 1H), 3.62-3.22 (m, 16H), 3.15-3.10 m, 4H), 2.9 (t, J=8.0 Hz, 2H), 2.58-2.34 (m, 8H), 2.19-1.77 (m, 8H), 1.70-1.36 (m, 9H). MS: m/z=1233 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((4,4′-(4-(4-Azidobenzamido)heptanedioyl)bis(piperazine-1,1′-carbonyl))bis(azanediyl))bis(1-carboxypentane-5,1-diyl))-bis(azanediyl))-bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P281 Precursor



embedded image


General procedure for amide coupling and t-butyl ester deprotection was followed. Reaction was performed on 94 mg scale. After HPLC purification, P281 Precursor (28 mg, 39%, in two steps) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.89-7.86 (m, 2H), 7.17-7.14 (m, 2H), 4.32-4.24 (m, 4H), 4.18-4.10 (m, 1H), 3.60-3.48 (m, 8H), 3.44-3.36 (m, 4H), 3.28-3.12 (m, 6H), 3.58-3.36 (m, 7H), 2.18-1.78 (m, 9H), 1.70-1.38 (m, 9H). MS: m/z=1147 (M+H+).


(3S,7S,25S,29S)-16-(4-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)-5,13,19,27-tetraoxo-4,6,12,20,26,28-hexaazahentriacontane-1,3,7,25,29,31-hexacarboxylic Acid: P282



embedded image


General procedure for “click chemistry was followed. Reaction was performed on 8.4 mg scale. After HPLC purification, P282 (4.8 mg, 52%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.42 (s, 1H), 8.06-8.04 (m, 2H), 7.97-7.94 (m, 2H), 4.56 (t, J=6.0 Hz, 1H), 4.44 (t, J=6.0 Hz, 1H), 4.31-4.20 (m, 4H), 4.14-4.04 (m, 1H), 3.20-3.02 (m, 4H), 2.91 (t, J=7.2 Hz, 2H), 2.39-2.22 (m, 8H), 2.18-2.01 (m, 4H), 1.98-1.74 (m, 8H), 1.68-1.30 (m, 9H). MS: m/z=1010 (M+H+).


(3S,7S,25S,29S)-16-(4-Azidobenzamido)-5,13,19,27-tetraoxo-4,6,12,20,26,28-hexaazahentriacontane-1,3,7,25,29,31-hexacarboxylic Acid: P282 Precursor



embedded image


General procedure for amide coupling and removal of tert-butyl ester was followed. Reaction was performed on 76 mg scale. After HPLC purification, P282 Precursor (37 mg, 64%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.89-7.86 (m, 2H), 7.15-7.11 (m, 2H), 4.29-4.21 (m, 4H), 4.10-4.02 (m, 1H), 3.18-3.01 (m, 4H), 2.39-2.05 (m, 9H), 1.97-1.71 (m, 8H), 1.67-1.33 (m, 9H). MS: m/z=923 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((5-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)isophthaloyl)bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P283



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 7.0 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-((5-(2-azidoacetamido)isophthaloyl)bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P283 (3.3 mg, 43%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.15 (d, J 1.2 Hz, 2H), 7.96 (t, J=1.4 Hz, 1H), 7.90 (s, 1H), 5.36 (s, 2H), 4.55 (t, J=5.9 Hz, 1H), 4.43 (t, J=5.9 Hz, 1H), 4.25-4.32 (m, 4H), 3.33-3.42 (m, 4H), 2.87 (t, J=7.6 Hz, 2H), 2.30-2.50 (m, 4H), 2.00-2.20 (m, 4H), 1.78-1.94 (m, 4H), 1.59-1.75 (m, 6H), 1.44-1.55 (m, 4H). MS: m/z=953 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(1-(3-carboxy-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperidin-4-yl)ethyl)ureido)pentanedioic Acid: P284



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 10 mg scale. After HPLC purification, P284 (4.0 mg, 35%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.55-8.54 (m, 1H), 8.50 (br s, 1H), 8.12-8.11 (m, 1H), 8.07 (t, J=1.6 Hz, 1H), 4.66-4.60 (m, 2H), 4.57 (t, J=8.0 Hz, 1H), 4.45 (t, J=8.0 Hz, 1H), 4.40-4.24 (m, 2H), 3.74-3.64 (m, 1H), 2.91 (t, J=7.2 Hz, 2H) 2.42-2.38 (m, 2H), 2.18-2.06 (m, 2H), 2.00-1.55 (m, 3H), 1.40-1.10 (m, 1H). MS: m/z=621 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((4-(3-((4-((S)-2-Carboxy-2-(3-((S)-1,3-dicarboxypropyl)ureido)ethyl)phenyl)amino)-3-oxopropyl)-4-(5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)pentanamido)heptanedioyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P285



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 10.0 mg scale of (2S,2′S)-2,2′-(((((1S,1′S)-(((4-(5-azidopentanamido)-4-(3-((4-((S)-2-carboxy-2-(3-((S)-1,3-dicarboxypropyl)ureido)ethyl)phenyl)amino)-3-oxopropyl)heptanedioyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P285 (3.9 mg, 37%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 7.66 (s, 1H), 7.33-7.41 (m, 6H), 7.07 (d, J=8.6 Hz, 6H), 4.36-4.45 (m, 4H), 4.16-4.28 (m, 6H), 2.94-3.04 (m, 3H), 2.81-2.91 (m, 3H), 2.64-2.72 (m, 2H), 2.22-2.33 (m, 11H), 2.12 (t, J=7.4 Hz, 2H), 1.98-2.07 (m, 8H), 1.85-1.96 (m, 2H), 1.71-1.82 (m, 5H), 1.42-1.51 (m, 2H). MS: m/z=1464 (M+H+).


(S)-2-(3-((S)-1-Carboxy-2-(4-(4-(3-(((S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)carbamoyl)-5-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzoyl)piperazine-1-carboxamido)phenyl)ethyl)ureido)pentanedioic Acid: P286



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 0.03 g scale. After HPLC purification, P286 (6.0 mg, 18%) was obtained as a white solid. MS: m/z=1042 (M+H+).


(3S,7S,25S,29S)-16-(3-(((S)-5-Carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)amino)-3-oxopropyl)-16-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)benzamido)-5,13,19,27-tetraoxo-4,6,12,20,26,28-hexaazahentriacontane-1,3,7,25,29,31-hexacarboxylic Acid: P287



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 6.4 mg scale of (3S,7S,25S,29S)-16-(4-azidobenzamido)-16-(3-(((S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)ureido)pentyl)amino)-3-oxopropyl)-5,13,19,27-tetraoxo-4,6,12,20,26,28-hexaazahentriacontane-1,3,7,25,29,31-hexacarboxylic acid. After HPLC purification, P287 (4.2 mg, 62%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.45 (s, 1H), 8.11 (s, 1H), 8.01-8.07 (m, 2H), 7.93-7.99 (m, 2H), 4.59 (t, J=5.9 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 4.24-4.33 (m, 6H), 3.11-3.23 (m, 6H), 2.86-2.99 (m, 2H), 2.37-2.44 (m, 6H), 2.08-2.35 (m, 18H), 1.77-1.94 (m, 6H), 1.57-1.70 (m, 2H), 1.38-1.56 (m, 12H). MS: m/z=1382 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((5-(4-(13-Amino-2,5,8,11-tetraoxatridecyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))-bis(azanediyl))dipentanedioic Acid: P288



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P288 (8.0 mg, 45%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.66 (s, 1H), 8.45 (brs, 2H), 8.37 (s, 1H), 4.75 (s, 2H), 4.21-4.31 (M, 4H), 3.59-3.78 (m, 19H), 3.39-3.48 (m, 5H), 3.09-3.15 (m, 2H), 2.35-2.43 (m, 3H), 2.03-2.15 (m, 1H), 1.45-1.97 (m, 9H). MS: m/z=1109 (M+3Na+).


(2S,2′S)-2,2′-((6,6′-((5-Azidoisophthaloyl)bis(azanediyl))bis(hexanoyl))-bis(azanediyl))dipentanedioic Acid: P289



embedded image


General experimental procedures for amide formation and tert-butyl deprotection reaction were followed. After HPLC purification, P289 (10.0 mg, 35%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.96 (s, 1H), 7.55 (s, 2H), 4.30-4.38 (m, 2H), 3.30 (t, J=8.0 Hz, 4H), 2.28 (t, J=8.0 Hz, 4H), 2.19 (t, J=8.0 Hz, 4H), 2.02-2.15 (m, 2H), 1.78-1.89 (m, 2H), 1.50-1.67 (m, 8H), 1.28-1.41 (m, 4H). MS: m/z=692 (M+H+).


(2S,2′S)-2,2′-((((((5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(pentane-5,1-diyl))bis(azanediyl))bis(carbonyl))-bis(azanediyl))dipentanedioic Acid: P290



embedded image


General experimental procedure for click reaction was followed. Reaction was performed on a 6.0 mg scale of (2S,2′S)-2,2′-((((((5-azidoisophthaloyl)bis(azanediyl))bis(pentane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid. After HPLC purification, P290 (2.5 mg, 37%) was obtained as a white solid. 1H NMR (CD3OD, 400 MHz) δ 8.75 (t, J=5.5 Hz, 1H), 8.43-8.49 (m, 3H), 8.37 (t, J=1.4 Hz, 1H), 4.59 (t, J=5.7 Hz, 1H), 4.47 (t, J=5.9 Hz, 1H), 4.28 (dd, J=8.8, 4.9 Hz, 2H), 3.40-3.49 (m, 4H), 3.15 (t, J=6.8 Hz, 4H), 2.92-2.97 (m, 2H), 2.31-2.44 (m, 4H), 2.04-2.21 (m, 4H), 1.82-1.92 (m, 2H), 1.68 (quin, J=7.3 Hz, 4H), 1.40-1.59 (m, 8H). MS: m/z=808 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-((((4S)-4-(3-((4-((2S)-2-Carboxy-2-(3-(1,3-dicarboxypropyl)-ureido)ethyl)phenyl)amino)-3-oxopropyl)-4-(2-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)heptanedioyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P291



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 6 mg scale. After HPLC purification, P291 (2 mg, 38%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.98 (s, 1H), 7.70 (s, 1H), 7.63 (s, 1H), 7.44 (d, J=8.4 Hz, 6H), 7.15 (d, J=8.4 Hz, 6H), 5.01 (s, 2H), 4.50 (t, J=6.8 Hz, 4H), 4.38 (t, J=6.0 Hz, 1H), 4.28-4.24 (dd, J=8.4 and 4.4 Hz, 3H), 3.12-3.06 (dd, J=14.0 and 6.4 Hz, 3H), 2.96-2.93 (dd, J=14.0 and 6.4 Hz, 3H), 2.80 (t, J=6.4 Hz, 2H), 2.42-2.34 (m, 12H), 2.16-1.81 (m, 16H). MS: m/z=1422 (M+H+).


(2S)-2-(3-((1S)-1-Carboxy-2-(1-(7-(4-((S)-2-carboxy-2-(3-((S)-1,3-dicarboxypropyl)-ureido)-ethyl)-piperidin-1-yl)-4-(4-(4-(3-fluoropropyl)-1H-1,2,3-triazol-1-yl)-benzamido)7-oxoheptanoyl)-piperidin-4-yl)ethyl)ureido)pentanedioic Acid: P292



embedded image


General procedure for click chemistry was followed. Reaction was performed on a 3.3 mg scale. After HPLC purification, P292 (3.2 mg, 89%) was obtained. 1H NMR (CD3OD, 400 MHz MHz) δ 8.45 (s, 1H), 8.06-7.97 (m, 4H), 4.58 (t, J=5.6 Hz, 1H), 4.47-4.45 (m, 1H), 4.46 (t, J=5.6 Hz, 1H), 4.34-4.27 (m, 4H), 4.14 (m, 1H), 3.92 (br d, J=13 Hz, 2H), 3.36-3.34 (m, 1H), 3.26-3.21 (m, 1H), 3.06-2.99 (m, 2H), 2.92 (t, J=8.0 Hz, 2H), 2.62-2.38 (m, 9H), 2.19-2.03 (m, 4H), 2.00-1.51 (m, 16H), 1.22-0.85 (m, 4H). MS: m/z=1061 (M+H+).


(2R)-2-(3-((1S)-2-(1-(4-(4-Azidobenzamido)-7-(4-((R)-2-carboxy-2-(3-((S)-1,3-dicarboxypropyl)ureido)ethyl)piperidin-1-yl)-7-oxoheptanoyl)piperidin-4-yl)-1-carboxyethyl)ureido)pentanedioic Acid: P292 Precursor



embedded image


General experimental procedure for amide coupling and deprotection of methyl ester group using 2 M HCl at 40° C. for 4 h was followed. Reaction was performed on 120 mg scale. After HPLC purification, P292 Precursor (48 mg, 34%, in two steps) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.89-7.86 (m, 2H), 8.15 (d, J=8.0 Hz, 2H), 4.46 (t, J=11.0 Hz, 2H), 4.35-4.27 (m, 4H), 4.15-4.08 (m, 1H), 3.89 (br d, J=12.8 Hz, 2H), 3.03-2.94 (m, 2H), 2.62-2.34 (m, 10H), 2.18-2.09 (m, 2H), 1.96-1.47 (m, 16H), 1.40-1.91 (m, 4H). MS: m/z=975 (M+H+).


(2S,2′S)-2,2′-(((2S,2′S)-2,2′-((4,4′-((5-Nitroisophthaloyl)bis(azanediyl))bis(butanoyl))-bis(azanediyl))bis(3-carboxypropanoyl))bis(azanediyl))dipentanedioic Acid



embedded image


General experimental procedure for amide formation and tert-butyl deprotection reaction was followed. After HPLC purification, P293 (5.1 mg, 25%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.82 (s, 2H), 8.69 (s, 1H), 4.69-4.80 (m, 2H), 4.39-4.48 (m, 2H), 3.38-3.58 (m, 4H), 2.61-2.85 (m, 4H), 2.08-2.47 (m, 10H), 1.83-2.03 (m, 6H). MS: m/z=870 (M+H+).


(2S,2′S)-2,2′-(((((1S,1′S)-(((5-(4-(13-Amino-2,5,8,11-tetraoxatridecyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)bis(azanediyl))bis(4,1-phenylene))bis(1-carboxyethane-2,1-diyl))-bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic Acid: P294



embedded image


General experimental procedure for click chemistry and tert-butyl deprotection reaction was followed. After HPLC purification, P294 (3.2 mg, 18%) was obtained. MS: m/z=870 (M+H+).


(9S,13R)-3,11-Dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylic Acid: P295



embedded image


General experimental procedure for urea formation and tert-butyl deprotection reaction was followed. After HPLC purification, P295 (15 mg, 56%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 7.35-7.46 (m, 5H), 5.09 (s, 2H), 4.51-4.63 (m, 1H), 4.35-4.48 (m, 1H), 3.38 (t, J=7.6 Hz, 2H), 2.39 (t, J=7.6 Hz, 2H), 1.95-2.21 (m, 2H), 1.25-1.86 (m, 6H). MS: m/z=454 (M+H+).


(2S,2′S)-2,2′-(((3R,3′R)-3,3′-((6,6′-((5-nitroisophthaloyl)bis(azanediyl))bis(hexanoyl))-bis(azanediyl))bis(3-carboxypropanoyl))bis(azanediyl))dipentanedioic Acid: P296



embedded image


General experimental procedure for amide formation and tert-butyl deprotection reaction was followed. After HPLC purification, P296 (8.1 mg, 32%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.71 (s, 2H), 8.59 (s, 1H), 4.61-4.78 (m, 2H), 4.30-4.37 (m, 2H), 3.33 (t, J=6.8 Hz, 4H), 2.59-2.79 (m, 4H), 2.29 (t, J=7.6 Hz, 4H), 2.18 (t, J=7.6 Hz, 4H), 2.02-2.14 (m, 2H), 1.76-1.88 (m, 2H), 1.51-1.65 (m, 8H), 1.28-1.41 (m, 4H). MS: m/z=926 (M+H+).


(2R,2′R)-2,2′-(((((1S,1′S)-((5-(4-(3-Fluoropropyl)-1H-1,2,3-triazol-1-yl)isophthaloyl)-bis(azanediyl))bis(1-carboxypentane-5,1-diyl))bis(azanediyl))bis(carbonyl))-bis(azanediyl))dipentanedioic Acid: P297



embedded image


General experimental procedure for amide formation and tert-butyl deprotection reaction was followed. After HPLC purification, P297 (12 mg, 36%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.39 (s, 1H), 8.36 (d, J=1.6 Hz, 2H), 8.27 (t, J=1.6 Hz, 1H), 4.44 (dt, J=47.2, 6.0 Hz, 2H), 4.16-4.25 (m, 4H), 3.35 (t, J=6.8 Hz, 4H), 2.85 (t, J=7.2 Hz, 2H), 2.17-2.33 (m, 4H), 1.96-2.12 (m, 4H), 1.72-1.85 (m, 4H), 1.53-1.71 (m, 6H), 1.35-1.48 (m, 4H). MS: m/z=896 (M+H+).


(2S,2′S)-2,2′-(((3R,3′R)-3,3′-((4,4′-((5-Nitroisophthaloyl)bis(azanediyl))bis(butanoyl))-bis(azanediyl))bis(3-carboxypropanoyl))bis(azanediyl))dipentanedioic Acid: P298



embedded image


General experimental procedure for amide formation and tert-butyl deprotection reaction was followed. After HPLC purification, P298 (6.2 mg, 31%) was obtained. 1H NMR (CD3OD, 400 MHz) δ 8.73 (s, 2H), 8.59 (s, 1H), 4.61-4.69 (m, 2H), 4.31-4.39 (m, 2H), 3.37 (t, J=6.8 Hz, 4H), 2.61-2.81 (m, 4H), 2.23-2.34 (m, 8H), 2.01-2.12 (m, 2H), 1.76-1.92 (m, 6H). MS: m/z=926 (M+H+).


Enzymatic Assay for In Vitro Evaluation of PSMA Inhibitors

The inhibitory activity of all compounds was determined using a fluorescent assay of human PSMA activity. The enzyme used in the assay was purchased from R&D Systems and stored at −80° C. The PSMA activity was assayed in a two-step process. In the first step, aliquots of enzyme (0.2 μg/mL) were incubated for 1 h at 37° C. in 50 mM HEPES, 0.1 M NaCl, pH 7.5, in the presence of 20 μM NAAG and the given inhibitor, in a volume of 250 μL, to allow for the accumulation of glutamate produced in the PSMA reaction. In the second step, the amount of accumulated glutamate was measured using the OPA reaction, and the fluorescence was read with a SpectraMax fluorescent plate reader using excitation at 330 nm and emission at 450 nm. The final Ki values for each inhibitor were calculated from the respective IC50 values using the Cheng and Prusoff equation.


Preparation of Radio-F-18 labeled P005, P053, P092, and P188
1. Preparation of [F-18]Fluoride and Conversion to Anhydrous Form

Aqueous [F-18]fluoride ion produced in the cyclotron target, is passed through an anion exchange resin cartridge. The [0-18]H2O readily passes through the anion exchange resin while [F-18]fluoride is retained. The [F-18]fluoride is eluted from the column using a solution of potassium carbonate (3 mg) in water (0.4 mL) and is collected in a reaction vessel. Kryptofix® 222 (20 mg) dissolved in acetonitrile (1 mL) is added to the aqueous [F-18]fluoride in the reaction vessel. The Kryptofix sequesters the potassium ions preventing the formation of strong K+/F on-pairs. This increases the chemical reactivity of the [F-18]fluoride ions. The mixture is dried by heating between 68-95° C. under reduced pressure (250 mbar) and a stream of argon. This evaporation step removes the water and converts the [F-18] to an anhydrous complex, which is much more reactive than aqueous [F-18]fluoride.


2. Reaction of Anhydrous [F-18]Fluoride with Pentynyl Tosylate.


A solution of the tosylate precursor, (20 mg, 75 μmol) dissolved in THF or MeCN or DMF (0.5 mL) is added to the reaction vessel containing the anhydrous [F-18]Fluoride. The vessel is heated to approximately 110±5° C. for 3 minutes to induce displacement of the tosylate leaving group by [F-18]fluoride. The 18-F-fluoropentyne is distilled from the reaction vessel into the mixture containing the PSMA (azide) precursor.


3. Coupling of 18F-Fluoropentyne with PSMA Azide Precursor to Prepare [F-18]PSMA Tracer.


The 18F-pentyne is distilled at room temperature (bubbled) into a solution containing Azide-precursor (4 mg) dissolved in 250 μL of 0.1 M CuSO4, sodium ascorbate (40 mg), and EtOH (0.1 mL). The reaction is stirred at room temperature for 15-30 minutes. Prior to purification by HPLC, the reaction is diluted with water (up to 5 mL).


4. HPLC Purification of [F-18]PSMA Tracer.

The reaction mixture containing crude [F-18]PSMA tracer is transferred to the HPLC sample loop (5 mL) and purified via chromatographic separation using a semi-preparative HPLC column (Phenomenex Gemini, C18, 5μ, 10×250 mm) using appropriate mobile phase with flow rate of 5 mL/min. The column effluent is monitored using UV (220, 254 or 280 nm) and radiometric detectors connected in series. The purified [F-18]PSMA tracer is collected from the column at the retention time window determined for the reference standard which coincides with the time that the radiometric detectors begin showing the main peak.


5. Formulation of Purified [F-18]PSMA Tracer.

The purified [F-18]PSMA tracer fraction is evaporated at 40° C. to dryness and final dose is reformulated in a maximum of 10% EtOH:water.

















Synthesis time


SA


Tracer
in min
Mobile phase used
DCY
Ci/umol



















P05
69
MeCN/5 mmol
24%
2.938




phosphate buffer


P53
127
MeCN/30 mmol
5.5% 
4.92




phosphate buffer


P92
98
MeCN/30 mmol
18.6%
2.416




phosphate buffer


P188
120
EtOH/5 mmol
17%
1.005




phosphate buffer









The LC trace of F18-PSMA is analyzed using Gemini NX 5 u C18 110A, 150×4.6 mm analytical column using the following program.


Small Animal In Vivo PET Imaging

MicroPET/CT. Tumor-bearing mice (LNCaP, PSMA+, PC-3, PSMA−) were anesthetized with 2% isoflurane/98% oxygen and administered with ˜250 μCi/mouse of tracer in a total volume of 200 μl saline via bolus intravenous tail vein injection. An INVEON Multimodality scanner (SIEMENS) was used to perform the microPET/CT imaging. For dynamic scans, imaging was performed immediately following the tracer injection for two hours. Animals were kept warm and under anesthesia during this time period. For static scans, the animals first underwent a one hour conscious uptake, and was then anesthetized prior to and during imaging. Animals were scanned for 15-30 minutes and a static image was generated from each scan. All mice underwent a 10 minute micro-CT scan for anatomical registration. Uptake of the tracer was obtained by visually drawing regions of interest (ROIs) based on the fused PET/CT images and the corresponding activity values were determined using the INVEON Research Workplace software. All values are represented as % injected dose per gram tissue (% ID/g). In order to take into account mouse-to-mouse variation of background tracer uptake, tumor uptake values was also normalized to uptake values in the skeletal muscle, represented as tumor-over-muscle (T/M) ratios.


While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. A variety of modifications to the embodiments described will be apparent to those skilled in the art from the disclosure provided herein. Thus, the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. Various changes may be made without departing from the spirit and scope of the inventions as defined in the following claims.

Claims
  • 1. A method comprising: administering to a patient, a radio-labelled compound of Formula VII:
  • 2. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by S.
  • 3. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by O.
  • 4. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by NH.
  • 5. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by a heteroaryl.
  • 6. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by a cycloalkyl.
  • 7. The method of claim 1, wherein X23 is (CH2)1-10—NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by a heterocycloalkyl.
  • 8. The method of claim 1, wherein X1 is CH.
  • 9. The method of claim 1, wherein X1 is N.
  • 10. The method of claim 1, wherein X2 is CH.
  • 11. The method of claim 1, wherein X2 is N.
  • 12. A method of forming a compound comprising: reacting a compound of Formula VII with
  • 13. The method of claim 12, wherein X23 is (CH2)1-10 NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by O.
  • 14. The method of claim 12, wherein X23 is (CH2)1-10 NH2 and wherein at least one CH2 of (CH2)1-10 is replaced by NH.
  • 15. The method of claim 12, wherein X1 is CH.
  • 16. The method of claim 12, wherein X2 is CH.
RELATED APPLICATIONS

This Divisional application claims priority to U.S. application having Ser. No. 16/999,576, filed Aug. 21, 2020, which claims priority to US application having Ser. No. 15/975,296, filed May 9, 2018, now U.S. Pat. No. 10,894,807, granted Dec. 29, 2020, which claims priority to US application having Ser. No. 14/917,127 filed on Jun. 30, 2016, now U.S. Pat. No. 10,011,632, granted Jul. 3, 2018, which is a National Stage application of PCT/US2012/051674, filed Aug. 21, 2012, which claims priority to U.S. provisional patent application No. 61/525,877, filed on Aug. 22, 2011; and to U.S. provisional patent application No. 61/563,987, filed on Nov. 28, 2011; the entire contents of which is incorporated by reference herein.

Divisions (1)
Number Date Country
Parent 16999576 Aug 2020 US
Child 18809687 US