Pulmonary dosing system and method

Information

  • Patent Grant
  • 6705316
  • Patent Number
    6,705,316
  • Date Filed
    Monday, March 11, 2002
    22 years ago
  • Date Issued
    Tuesday, March 16, 2004
    20 years ago
Abstract
A pulmonary dosing system and method for supplying to a patient a predetermined amount of respirable therapeutically active material is disclosed. The system comprises a patient interface to introduce the material into the patient's lungs and an apparatus for providing pulsed amounts of the material to a plenum chamber. The plenum chamber has a diffuser baffle which increases the efficiency of the dosing system by preventing axial flow of the active material thereby utilizing the available volume of the chamber for holding the aerosolized drug prior to inhalation.
Description




TECHNICAL FIELD




The present invention relates to an improvement in pulmonary dosing systems of the type taught in U.S. Pat. No. 6,269,810, wherein a diffuser baffle is provided in the plenum of the pulmonary dosing system to improve dosing efficiency.




The invention relates to a pulmonary dosing system and method for supplying to a patient a predetermined amount of respirable therapeutically active material in an aerosolized form, and more particularly to such a system and method which is compact, self-contained, and capable of supplying any respirable therapeutically active material, including toxic drugs such as chemotherapy drugs, wherein a diffuser baffle is utilized in the plenum of the system to improve dosing efficiency.




BACKGROUND ART




The pulmonary dosing system described in commonly assigned U.S. Pat. No. 6,269,810 to Brooker et al. is able to contain the therapeutically active material or drug to the extent that it can safely administer toxic drugs such as chemotherapy drugs. The respirable therapeutically active material is aerosolized, typically by being entrained in pulses of air synchronized with the patient's exhalations. Except for the inhalation tube, the exhalation tube and the patient interface connected thereto, the remainder of the inhalation and exhalation portions of the system including the delivery apparatus for the therapeutically active material may be located in a sealed containment case. The containment case may be subjected to a mild vacuum from a vacuum source including a filter to further assure containment of the therapeutically active material, if necessary. Alternatively, the system may be provided with an active flow system for ensuring flow through the system. The system may be provided with a control unit containing a compressor and valve to provide pulsed air, a vacuum pump to provide the mild vacuum within the containment case, and a computer with inputs from various sensor devices together with a number of interfaces with the operator and with the patient.




One of the more advantageous features of the Brooker et al. drug delivery or pulmonary dosing system is its efficiency in delivering drugs. This may be particularly important with respect to the time spent by the patient and the support staff for each treatment and also with respect to reducing the expense of extremely costly drugs. The efficiency refers not only to the efficiency of delivering drug to the patient (not lost in the delivery system), but also to the efficiency of getting the delivered drug to penetrate deep into the lung of the patient to provide the needed therapy. The present invention may reduce the amount of aerosolized drug that may be deposited in the mouth, the upper airway, or the nasal cavity.




One of the novel features which adds to this efficiency is the combination of the nebulizer (or other aerosol-producing device), the plenum with a diffuser baffle, an air supply and the control system, which are combined to provide a metered dose of drug and air to the patient at the designated time for inhalation. In one efficient operation, the aerosol-producing device is controlled to deliver a selected volume of drug aerosol to the plenum prior to the inhalation phase of the patient. As described herein, this can be performed by sensing the exhalation phase of the patient and then providing a pulse of air to the nebulizer which results in a metered volume of aerosolized drug in the plenum. Sensing the exhalation phase of the patient may include automatic sensing or manual sensing, as by the patient or operator.




The diffuser baffle prevents axial flow of the aerosolized dose from the inlet to the outlet of the plenum, thereby more efficiently utilizing the available volume in the plenum such that the aerosolized dose is retained in the plenum and the inhalation tube until the inhalation phase is initiated. The disruption of axial flow of the aerosolized dose provided by the diffuser baffle reduces or eliminates the loss of drug into the exhale tube. The loss of drug associated with the flow of the aerosolized dose into the exhale tube prior to the start of the inhalation phase is referred to as “blow-by.” This phenomenon causes inefficient operation of the pulmonary dosing system as well as loss of expensive drug. The inability to control “blow-by” interferes with the delivery of an accurate and predictable delivered dose. The diffuser baffle in the plenum improves the reproducibility with which an accurate dose can be delivered by increasing the retention of the aerosolized dose in the chamber and minimizing or eliminating “blow-by” of the drug.




DISCLOSURE OF THE INVENTION




The present invention is directed to an improved system for pulmonary dosing and, in particular, to an improved plenum useful in a pulmonary dosing system similar to that disclosed in U.S. Pat. No. 6,269,810 to Brooker et al., the contents of which are incorporated herein by reference. The plenum chamber of the present invention comprises an inlet for receiving aerosolized doses from an aerosolizer source and an outlet for connection to a patient interface, wherein the inlet and outlet are oriented along a common axis in the plenum chamber, and a diffuser baffle is positioned on that axis and interposed between the inlet and outlet. The diffuser baffle interrupts the direct flow of the aerosolized dose along the axial path between the plenum chamber inlet and outlet thereby preventing direct flow of the aerosolized dose through the chamber and possible loss of drug into the exhale tube. The aerosolized dose is diverted by the diffuser baffle thereby efficiently utilizing the available volume of the plenum chamber. The dose is held in the chamber and the inhale tube until the patient inhales.




Many pharmaceutical agents such as chemotherapy drugs are both toxic and expensive. This means that it is very important to use these drugs efficiently and safely. It has been found that the plenum shown in the Brooker patent produces an axialized flow of the medicament. The annular volumes within the chamber tend to be somewhat stagnant and aerosolized pulses can move directly through the chamber. When this occurs the dose is not used efficiently. It has been found advantageous to disrupt this flow, however, it has also been found that vortical flow that maximizes exposure of the medicament to the surface of the plenum is not desirable as the medicament may adhere to the surface of the plenum and not be inhaled by the patient.




In accordance with certain embodiments of the invention, there is provided a pulmonary dosing system and method for supplying to a patient a predetermined amount of respirable therapeutically active material. The system may comprise a patient interface to introduce the material into the patient's lungs. This interface may constitute a mouth piece, a mask and mouth tube combination, an endotracheal tube, a nasal tube, or the like. The patient interface is connected to a flexible inhalation tube and a flexible exhalation tube. The exhalation tube is connected to a filter, the outlet of which is connected to atmosphere. The inhalation tube is connected to an apparatus for providing pulsed amounts of the material entrained in filtered atmospheric air. The apparatus may comprise a nebulizer having an inlet for pulsed air, a plenum chamber with a diffuser baffle and a connection, provided with a filter, to atmospheric air.




A control system may be provided to operate the pulmonary dosing system in accordance with operator inputs selecting the number of patient breaths between pulses, the pulse length, and the number of pulses required to provide the prescribed amount of material to be dispensed to the patient. The exhaust filter and the apparatus for providing pulsed amounts of the therapeutically active material may be enclosed in a containment case. The dosing system is capable of supplying at least one non-toxic drug, or at least one toxic drug to the patient.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a simplified representation of the pulmonary dosing system of the present invention;





FIG. 2

is a plan view illustrating the inhalation and exhalation elements of the system of the present invention;





FIG. 3

is a fragmentary elevational view showing the nebulizer and the plenum chamber of the present invention;





FIG. 4

is a plan view illustrating most of the inhalation and exhalation elements located in a containment case;





FIG. 5

is a fragmentary plan view illustrating the vacuum components of the present invention located within the containment case;





FIG. 6

is a side elevational view of the control assembly of the present invention;





FIG. 7

is a plan view of the control assembly with its outer casing removed, together with the upper layer of the components;





FIG. 8

is a side elevational view of the control assembly with the outer casing and the compressor removed;





FIG. 9

is a plan view of the control assembly with the outer casing thereof removed, and





FIG. 10

is a perspective view of a plenum chamber useful in accordance with the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Throughout this specification the word “drug” is used. This word should be interpreted to include any appropriate respirable, therapeutically active material or diagnostic agent, such as technetium-99m-labeled dimethylenetriamine pentaacetic acid (Tc 99 DTPA).




For purposes of an exemplary showing, the invention will be described in an embodiment for dispensing chemotherapy drugs. While the invention is particularly useful with toxic drugs, it is by no means intended to be so limited. Again, the invention is capable of dispensing any appropriate respirable therapeutically active material or diagnostic agent.




The drug dispensed can be a solid, a liquid or a gas aerosolized from a suspension, solution or emulsion. For example, a dry powder inhaler could be used as the apparatus for providing a pulse of respirable therapeutically active material (i.e. the powder). A solid drug could be dissolved or suspended in a liquid carrier and aerosolized. A gaseous drug can also be delivered. A liquid drug can be comminuted or aerosolized in any conventional manner, for example, using pneumatic, electrostatic or ultrasonic devices, as are well known in the art.




In the Figures, like parts have been given like index numerals. Reference is first made to

FIG. 1

which illustrates the overall structure of the pulmonary dosing system of the present invention. The system includes a patient mouthpiece


1


to assist in containment of the aerosolized drug. The mouthpiece


1


may have, associated therewith, a mask


2


, serving as an additional drug containment device. The mask is provided with a filter


2




a


through which air would pass should the patient cough. The filter


2




a


would trap aerosolized drug. The outlet of the filter


2




a


may lead directly to the ambient air, or it may be connected to the exhaust portion of the pulmonary dosing system.




The mouthpiece


1


is attached to a Y-adapter


3


, having divergent legs


3




a


and


3




b


. An inhalation tube


4


is provided with an end


4




a


connected to the Y-adapter leg


3




a


. Similarly, an exhalation tube


5


has an end


5




a


connected to a check valve


6


. The check valve


6


, in turn, is connected to the leg


3




b


of Y-adapter


3


. The purpose of the check valve is to assure that the patient will receive, via mouthpiece


1


, only air and aerosolized drug from inhalation tube


4


. It will be understood by one skilled in the art that the mouthpiece


1


could be replaced by an endotracheal tube (not shown), as is well known in the art.




When a mask is used, it will be provided with an inhalation tube and an exhalation tube joined to the mask. This may be accomplished, for example, by a mouthpiece in a manner similar to that illustrated in FIG.


2


. The mask will surround the nose and mouth area of the user's face. Alternatively, a mouthpiece and nose clip combination can be used. The nose clip prevents exhalation of drug through the patient's nose.




End


4




b


of inhalation tube


4


and end


5




b


of exhalation tube


5


are connected to adapters which pass in sealed fashion through ports in one end of a containment case


7


, having a body


7




a


and a lid


7




b


(see FIG.


4


). The lengths of inhalation tube


4


and exhalation tube


5


should be such as to allow a patient to sit or lie comfortably in close proximity to containment case


7


.




Containment case


7


has therein a filter and an exhaust port connected to exhalation line


5


. Containment box


7


also has an ambient air inlet port and filter in conjunction with a nebulizer and a plenum chamber to provide the inhalation line


4


and mouthpiece


5


with ambient air containing an aerosolized drug. All of these elements will be described in detail hereinafter.




Finally, the pulmonary dosing system of the present invention is provided with a control unit


8


connectable by power cord


9


to a source of electricity of standard hospital voltage (i.e. 115 volts, 15 amps and 60 cycles). The control unit


8


is connected to the containment case


7


by a sensor output cable


10


, a pulsed air line


11


and a vacuum line


12


, to be described in detail hereinafter.




Reference is now made to

FIG. 2

which illustrates the inhalation and exhalation elements located within containment case


7


. An inspired air filter


13


has an inlet


13




a


connected to a fitting


13




b


which passes through the containment case


7


in sealed fashion and forms an inlet port for ambient air (see also FIG.


4


). The filter


13


is a standard HME filter capable of removing viruses, bacteria, etc. It will be remembered that the pulmonary dosing system of the present invention does not include a respirator or the like, and is intended for use with patients who can breathe normally.




Filter


13


has an outlet


13




c


adapted to receive a connector


14


. The connector


14


leads to an elbow connector


15


which, in turn, leads to a check valve indicated by arrow


16


. Check valve


16


is connected to the center port


17




a


of a T-connector


17


. Another port


17




b


of T-connector


17


is connected by fitting


18


to the outlet


19




a


of an apparatus for providing a pulse of respirable drug, in this example a nebulizer


19


. The third port


17




c


of T-fitting


17


is connected to a plenum chamber


20


. The end


4




b


of inhalation tube


4


is connected by appropriate fitting means to the other end of plenum chamber


20


, through an opening in the side wall of the containment case


7


in sealed fashion. The plenum chamber


20


will generally be oriented horizontally.




As shown in

FIG. 10

, in accordance with a specific embodiment of the present invention, plenum chamber


20


includes an inlet


82


for receiving aerosolized doses of drug from nebulizer


19


through port


17




c


of T-connector


17


, an outlet


83


for connection to end


4




b


of inhalation tube


4


, wherein the inlet


82


and outlet


83


are positioned along a common axis in plenum chamber


20


, and a diffuser baffle


84


positioned along that axis and interposed between the inlet


82


and outlet


83


.




In accordance with the embodiment shown in

FIG. 10

, the diffuser baffle


84


comprises a conical central portion


85


and a plurality of spokes


86


extending radially outward to wall


87


of the plenum


20


forming a plurality of passageways


88


. The apex of the conical central portion


85


is positioned toward the inlet


82


such that the flow of gas constituting the aerosolized dose impacts the cone and is diverted from the axial path between inlet


82


and outlet


83


to flow through passageways


88


thereby slowing flow of the aerosolized dose and utilizing more of the available volume in plenum chamber


20


. Thus the presence of the diffuser baffle


84


prevents the loss of expensive drug frequently associated with direct axial flow through the plenum chamber


20


. Furthermore, the diffuser baffle


84


increases the effective useful capacity of the plenum chamber


20


by utilizing the available volume in the chamber to hold the aerosolized dose until the start of the inhalation cycle. The diffuser baffle


84


disrupts the axial flow of the aerosolized dose and utilizes the available volume in the plenum chamber


20


without resorting to vortical flow patterns which can cause undesirable drug loss caused by deposition on the chamber walls. The plenum chamber


20


may include additional diffuser baffles


84


to further disrupt the axial flow of the aerosolized dose and increase the effective utilization of the volume of the plenum chamber.




In this particular embodiment, the plenum chamber


20


comprises a first portion


90


adjacent the inlet


82


and a second portion


91


adjacent the outlet


83


. First portion


90


and second portion


91


are integrally connected via an annular flange


92


. Diffuser baffle


84


is interposed between the first portion


90


and the second portion


91


with the plurality of spokes


86


extending radially to engage the annular flange


92


.




Although the diffuser baffle


84


is described as being conical in accordance with one embodiment of the present invention, it should be apparent to those skilled in the art that other geometric configurations will also be useful. By way of example, other designs for the diffuser baffle include cylinders, plates, circular discs, spheres, perforated plates, and the like. The specific design of the diffuser baffle is not particularly critical providing the baffle disrupts at least a portion of the axial flow of the aerosolized dose thereby utilizing more of the available volume of the plenum chamber and holding the dose in the chamber and the inhale tube until the patient inhales. The diffuser baffle may simply comprise at least one impact portion which diverts flow of the aerosolized active material and at least one non-impact portion through which the aerosolized active material flows after contacting the impact portion and being diverted from the axial path between the inlet and outlet of the plenum. Of course, the design of the impact and non-impact portions of the baffle can be optimized for a particular chamber and aerosolized dose to maximize the efficiency of the dosing process.




As illustrated in

FIG. 10

, the inlet


82


and outlet


83


of plenum chamber


20


, although not limited to any configuration, are typically cylindrical. In accordance with certain embodiments of the present invention, the impact portion of the diffuser baffle includes at least one cross section perpendicular to the common axis of the inlet and outlet of the plenum which is greater than or equal to the cross sectional area of the inlet. This ensures that a significant portion of the aerosolized dose entering the plenum chamber through the inlet comes into contact with a solid impact portion of the diffuser baffle and is diverted from following the axial path to the outlet of the plenum. In this regard, the cross sectional area for the impact portion corresponds to the area of the solid regions of the baffle for a particular cross section, while the cross sectional area of the inlet corresponds to the area of the open regions of the inlet through which the aerosolized dose flows.




Reference is now made to

FIG. 3

wherein the nebulizer


19


, the T-fitting


17


and the plenum chamber


20


are more clearly shown. The nebulizer


19


has a cylindrical body


19




b


from which the outlet


19




a


extends. At its upper end, the nebulizer body


19




b


has top


19




c


which is fixedly sealed in place by an appropriate adhesive such as a silicone sealant. Top


19




c


has a central bore


19




d


into which one end


21




a


of an extension set


21


is fixed and sealed with an appropriate adhesive. The other end of extension set


21


is provided with a valve port


21




b


for the receipt of drug from a syringe pump, a hand syringe, or the like. Thus, the extension set


21


is the means by which medicine is introduced into nebulizer


19


. Other means may be used, if desired.




The nebulizer bottom


19




e


slopes downwardly and inwardly to an integral, tube-like inlet


19




f


. The conical bottom


19




e


and tube-like inlet


19




f


are surrounded by a cylindrical skirt


19




g


comprising an integral, one-piece part of the nebulizer body


19




b


. One end of a tube


19




h


is attached to an elbow connector


22


by a tubing clamp


23


. The elbow connector


22


, in turn, is connected to nebulizer inlet


19




f


, again by a tubing clamp


24


. The free end of tube


19




h


is attached through the end of containment case


7


to the pulsed air line


11


(see FIG.


4


).




As previously stated above with respect to

FIG. 2

, the outlet


19




a


of nebulizer


19


is attached to port


17




b


of T-fitting


17


by connector


18


(see FIG.


4


). Port


17




c


of T-connector


17


is attached to one end of plenum chamber


20


. The end


4




b


of inhalation tube


4


is attached to the other end of plenum chamber


20


via an appropriate fitting. The drugs or diagnostic agents can also be introduced into the nebulizer by use of a syringe, cannula, or direct attachment of the drug container to the nebulizer.




The nebulizer


19


is made of materials which conform to biocompatibility standards ISO 10993. If chemotherapy drugs are used, the nebulizer


19


should be able to withstand exposure to such drugs. The nebulizer


19


is preferably capable of atomizing such drugs to a particle size distribution of 1 to 5 microns, with an output volume of 0.1 to 1.0 milliliter per minute.




In the embodiment being described, fitting


21




b


at the free end of extension set


21


may be connected to a syringe pump (not shown). The syringe pump, in conjunction with the extension set


21


, provides a closed, needleless delivery system by which the chemotherapy drugs can be transferred easily and safely into nebulizer


19


. This closed system should be able to withstand 54 plus 10% psi back pressure during operation. The air pulses to the nebulizer from the pulsed air system are at 54 psi and the additional 10% back pressure constitutes a safety margin.




As indicated above, in the embodiment described, delivering a toxic drug, the patient interface for the drug nebulizer should be either an endotracheal tube or a mouthpiece, preferably with a nose clip.




Depending on the nature of the drug being dispensed (i.e. toxic, non-toxic, etc.) the patient interface may comprise a plain mask, a plain mouthpiece, a mouthpiece and nose clip combination, a mask and mouth tube combination, an endotracheal tube, a nasal tube, a tent or a small room.




As is clearly shown in

FIG. 2

, the end


5




b


of exhalation tube


5


is connected to a fitting which passes through the end of containment case


7


in a sealed fashion and is joined to the inlet of a filter


25


by a connector


26


. The filter


25


is similar to filter


13


, constituting a standard HME filter. The outlet of filter


25


is connected to a non-collapsible flexible tube


27


. Tube


27


terminates in an adapter


28


which passes in sealed fashion through a side wall of the containment case


7


, providing an outlet for the filtered exhaled air.




Mounted on filter


25


there is a sensor switch


29


. Sensor switch


29


is connected by a tube


30


to a lateral outlet


26




a


of fitting


26


. In similar fashion, the sensor switch


29


is connected by a tube


31


to a lateral outlet


14




a


of connector


14


attached to filter


13


. Tube


31


will contain air at ambient pressure. Tube


30


will contain air at a slightly higher pressure during exhalation by the patient. Sensor switch


29


has an output


29




a


(see

FIG. 4

) which becomes part of the sensor output cable


10


of FIG.


1


. Sensor switch


29


will send a signal to control unit


8


during some portion of each exhalation by the patient. The sensor signal could be sent to the control unit


8


at the initiation of each exhalation. The purpose of this will be apparent hereinafter. The signals from sensor switch


29


also assure that the patient is breathing properly.




In the embodiment described, flexible inhalation tube


4


and flexible exhalation tube


5


, as well as Y-adapter


3


and mouth piece


1


should not leak to atmosphere outside containment case


7


. With other types of drugs this requirement would be less stringent.




Air pulses from pulsed air line


11


actuate the nebulizer. It will be noted however, that the pulses do not enter the plenum chamber


20


. The pulses are electronically controlled by control unit


8


. The pulsed air is preferably clean and of the same components and percentages as atmospheric air. Of course, other mixtures of gases may be used for certain patients or drugs. For example, it may be desirable to have higher or lower percentages of oxygen or carbon dioxide than are present in atmospheric air.




In the exemplary embodiment described, the air flow required for nebulization ranges from 3.5 to 12.0 liters per minute. The maximum required pressure is about 60 psi. Air pressure will be regulated over the range of from about 20 psi to about 60 psi. The air pressure will be set upon assembly of the pulmonary dosing system. These parameters may vary depending on the circumstances and the drug being dispensed.




For some therapies it is useful that the drug aerosol reaches the deep lung. The entire volume of each breath is called the “inspired volume”. This inspired volume can be a normal breath, referred to as “tidal volume”, or could be a deep breath of much greater volume, referred to as a “vital capacity” breath. With cooperation from the patient (in drawing a deep breath), the device enables this deep penetration by providing that the metered volume of drug aerosol from the plenum forms the first part of each inhaled breath and is followed by a volume of air which makes up the latter part of each inhaled breath (the remainder of the vital capacity). It has been determined that this air portion in the latter part of each breath tends to help push the initial drug portion down into the deep lung. If the drug made up most of the entire breath, then the latter part of each breath would not be delivered to the deep lung and may not be available for maximum benefit.




In accordance with a particular aspect of the present invention, the plenum is provided during the exhalation phase with a drug aerosol volume of about 500 cc which is equal to about ¼ to ⅛ of the amount of air a patient inhales during a typical deep breath. This volume is then inhaled in the first part of a breath followed by the air component in the latter part of the breath. The tidal volume and vital capacity may be determined by known pulmonary function tests. The control system is then programmed to deliver the selected amount of drug aerosol to the plenum based on the pulmonary function of the animal or human. Alternatively, the amount of aerosol to be inhaled may be determined by administering Tc 99 DTPA using the device.




The air supply from line


11


and line


19




h


to nebulizer


19


will be pulsed in a cycle synchronous with the patient's exhaled breath. Sensing of the patient's breathing cycle can be determined automatically or manually by a human operator. In accordance with the automatic sensing operation, sensor switch


29


(a pressure switch) will sense some part of the exhalation process. The signal from sensor switch


29


will cause a solenoid valve (to be described hereinafter) on the compressed air supply to open to nebulizer


19


for a preset pulse width. In the example described above, this sequence will occur at each exhalation.




In some instances it is desirable to provide the drug in a more relaxed manner, providing for one or more exhalations between pulses to the nebulizer. The number of exhalations between air pulses will depend upon the patient, the patient's breathing capacity, and the like. As an example, for a given patient, the control unit may be set for three or more exhalations between air pulses. Under this circumstance, the patient's first breath after a pulse would constitute mostly drug. The patient's second breath would also be mostly air and some residual drug. The third breath would be substantially air. Upon the initiation of the third exhalation, an air pulse would occur. Such a cycle is continuously repeated while the drug is being delivered and this is continued for a set number of breaths.




The total number of breaths required to deliver the drug can be calculated. The total dose of drug can be delivered as determined by a set number of breaths based on the calculated drug dose per breath. The control unit


8


(see

FIG. 1

) is provided with a liquid crystal display


32


, visible to the patient, that will count down the number of breaths required to consume the drug dose. Control unit


8


is also provided with a reset button in case the drug is not completely consumed in the allocated number of breaths. Similarly, the control unit is provided with a remote on-off switch


33


enabling the patient or an operator to stop and restart a cycle should the patient feel either distressed or the need for a few more breaths before the next pulse.




The effective drug dosage for particular patient may vary. A method for using the inventive device for determination of an effective drug dosage is described in U.S. Pat. No. 6,269,810.




The results of the described test method are then used to calculate the number of dosing breaths needed, and optionally the corrections to the inhalation device to deliver the predetermined dose to the patient in the subsequent administration step. Corrections to the device, if used, typically include resetting the aerosol generation time, the delay time between activation of the nebulizer and aerosolization, pressure used to drive the nebulizer, amount of drug placed in the device, adjustment of the device to obtain a different particle size, and so on. The patient breathes from the inhalation device used for the tests, or a substantially similar device, for the calculated number of dosage breaths.




Based on the information obtained during the test phase, one can determine the amount of drug to be aerosolized, inhalation device settings needed to obtain the required amount of aerosolized drug to be administered to the patient and the required number of dosage breaths needed to administer the predetermined dose of drug to the patient.




It will be understood by one skilled in the art that the pulse sequence can be manipulated in any number of ways to change the rate of drug delivery over time. For example, the drug quantity can be ramped up or ramped down over time, or otherwise set at whatever quantity versus time is desired.




The amount/timing of drug delivery could also be altered based on feedback data from the patient. Spirometry data (such as tidal volume, vital capacity, inhalation rate, etc.) or physiological data in the exhaled breath (such as residual drug content, blood gases, mass balance) could be monitored to calculate and adjust new delivery profiles. Biosensors (such as EKG, glucose and pulse sensors) could be used to measure body functions or responses to the drug to provide feedback that is used to customize the delivery profile and optimize mass transfer of drug.




It is also to be understood that the amount/timing of drug delivery does not have to be accomplished automatically in the present invention. The drug can be dosed manually, for example by a nurse activating a trigger mechanism, based on the breathing cycle of the patient.




As indicated above, chemotherapy drugs may have certain serious toxic effects. It is therefore imperative that such a drug be contained. Containment of any fugitive aerosolized drug must be assured. This is accomplished, in part, by the provision of containment case


7


and by maintaining a negative pressure (vacuum) within the containment case. The lid


7




a


of containment case


7


, when closed, makes a seal with the containment case body


7




b


. Alternatively, an active flow system may be utilized to ensure proper flow of the aerosolized dose through the device. Other factors involved in containing the aerosolized drug include using a pulsed aerosolization system instead of a continuous one and maintaining a closed breathing circuit. These requirements are not as important when delivering a drug without the associated toxic effects.




Reference is now made both to

FIGS. 4 and 5

. A filter


34


, similar to filters


13


and


25


, is located within containment case


7


. The filter


34


has an inlet


34




a


open to the interior of containment case


7


. Filter


34


has an outlet


34




b


provided with an appropriate adapter to enable it to be connected to vacuum line


12


, in a sealed fashion through the end wall of containment case


7


. Vacuum line


12


is connected to a vacuum pump within control unit


8


, as will be explained hereinafter.




Filter


34


has mounted thereon a vacuum sensor switch. The sensor switch


35


is connected by a tube


36


to a lateral outlet


15




a


of elbow connector


15


. Sensor switch


35


senses the presence of a vacuum within containment case


7


and has an output


35




a


connected to the sensor output cable


10


(see

FIG. 1

) to control unit


8


. Should there be a loss of vacuum, control unit


8


will turn off the air pulse compressor to the nebulizer.




Filter


13


,


25


and


35


are all described as constituting standard HME filters. In fact, these filters could be any devices for removing toxic materials. Absorbers (such as activated charcoal) or physical separators (such as electrostatic precipitators) could be used.




The interior of containment case


7


should be easy to clean. All interior surfaces should be smooth and without crevices. After each use, the entire contents of containment case


7


(except vacuum filter


34


and vacuum sensor


35


), together with inhalation tube


4


, exhalation tube


5


, Y-fitting


3


, mouth piece


1


and mask


2


may be disposed of.

FIG. 4

illustrates the arrangement of the various elements within the containment case


7


. In

FIG. 5

, everything has been removed from the containment case


7


except for the vacuum filter and vacuum sensor which are partially obscured in FIG.


4


.




Reference is now made to FIGS.


1


and


6


-


9


in which the control unit


8


is illustrated. Control unit


8


has a housing generally indicated at


38


. As is best shown in

FIGS. 8 and 9

, the housing comprises a bottom panel


39


with upturned front and rear end panels


40


and


41


, respectively. Bottom panel


39


has, along each of its longitudinal edges, an upstanding flange. These flanges are shown at


42


and


43


. Flange


42


is provided near its ends with threaded perforations


42




a


and


42




b


. Longitudinal flange


43


will be provided with similar threaded perforations (not shown). Front panel


40


has along its upper edge an integral in-turned tab


40




a


. The tab


40




a


has a threaded perforation


40




b


formed therethrough (see FIGS.


7


and


9


). In a similar fashion, the rear panel


41


is provided with an in-turned tab


41




a


, centered with respect to its upper edge. The tab


41




a


has a threaded perforation


41




b


extending therethrough. The housing


38


is completed by a U-shaped outer casing generally indicated at


44


and comprising the top


44




a


and sides


44




b


and


44




c


of control unit


8


. As is shown in

FIGS. 1 and 6

, the side


44




b


of control unit


8


is attached to the longitudinal flange


42


by means of screws


45


threadably engaged in flange perforations


42




a


and


42




b


(see FIG.


8


). It is within the scope of the invention to provide side


44




b


with a plurality of louvers to allow for cooling of the contents of housing


38


. Side wall


44




c


may be identical to side wall


44




b


and may be attached to longitudinal flange


43


(see

FIG. 7

) in an identical manner. The top


44




a


is attached to in-turned flanges


40




a


and


41




a


of the front and rear panels, respectively by means of additional screws


45


, as shown in

FIGS. 1 and 6

. The bottom panel is provided with depressions


39




a


serving as feet for the control unit


8


, and allowing air circulation around the control unit.




Reference is made to

FIGS. 7 and 8

which illustrate a vacuum pump


47


. Vacuum pump


47


has an outlet


47




a


to which an elbow hose barb


48


is connected. Hose


49


is connected to elbow


48


and extends to the forward panel


40


of control unit


8


, where it is attached to a vacuum connector


50


which extends through front panel


40


. Vacuum connector


50


is adapted to receive the free end of vacuum hose


12


. As is shown in

FIG. 7

, immediately behind vacuum pump


47


there is a solid state relay


51


which turns the vacuum pump


47


on and off in a response to a signal from the computer (to be described hereinafter).




Centered on the back panel


41


, near its bottom edge, there is a connector


52


for power cord


9


. Elements


53


and


54


, adjacent rear wall


41


constitute 12 V and 5 V DC power supplies.




To supply the pulsed air for nebulizer


19


, control unit


8


contains a compressor. While the compressor has been removed from

FIG. 8

so that other elements could be seen, it is shown in

FIGS. 7 and 9

at


55


. The compressor


55


has an outlet


56


which is connected by means of an elbow fitting


57


to a tube


58


. As is shown in

FIG. 7

, tube


58


is connected to a pressure regulator


59


. Regulator


59


, in turn, is connected by a tube


60


to the inlet of a pulse generating electric air valve


61


. The outlet of the pulse generating electric air valve is provided with an elbow


62


, connected to a tube


63


. Tube


63


is connected to one port of a T-fitting


64


. Another port of T-fitting


64


is connected by tube


65


to a fitting


66


which extends through front panel


40


of control unit


8


. Pulsed air line


11


attaches to fitting


66


(see FIG.


1


). The intermediate port of T-fitting


64


is connected by a tube


67


to a pressure sensing safety switch


68


. Safety switch


68


assures proper pressure from compressor


55


. It will also cause the compressor to be shut down should there be a gross hose or fitting leak.




Turning to

FIGS. 8 and 9

, the front and rear ends


40


and


41


, support an L-shaped shelf


69


. Mounted on shelf


69


there is an


8


-position single channel I/O board


70


. The board


70


serves as an interface between the computer (to be described) and various sensors of the pulmonary dosing system. Attached to the I/O board


70


, there are a number of DC input modules


71


-


74


. There are also DC output modules


75




a


and


75




b


, together with an AC output module


76


.




Just below shelf


69


there is a module generally indicated at


77


which comprises an embedded computer, a keypad and LCD interface board, and a signal conditioning interface.




Turning to

FIG. 1

, the forward face of control unit


8


has the liquid crystal display


32


, mentioned above. In addition, there is a keypad


78


providing an interface between the operator and the computer. The overall control unit has a main on/off switch


79


and the vacuum connection


50


, the pulsed air connection


66


, the remote switch connection


80


to receive the connector end of manual switch


33


by which the patient or operator can introduce a pause in the dosing cycle. Finally, the control unit has a connector


10




a


for sensor cable


10


which contains the outputs of exhalation sensor switch


29


(see

FIG. 2

) and vacuum sensor switch


35


.




The use of compressor


55


to provide the pulsed air for nebulizer


19


is preferred, because it renders the overall pulmonary dosing system a self-contained system. There is no need to provide an air tank, or to rely on air supplied by a hospital, a clinic or the like, although these may be used.




From the above description it will be noted that the control


8


has three operator or patient interfaces, each passing information in only one direction. The liquid crystal display


32


constitutes a user interface and will allow the control system to communicate with the operator and the patient, prompting the operator for inputs and conveying information to the patient or the operator during operation of the pulmonary dosing system. Keypad


78


is an operator interface and allows the operator to enter numeric data into the system. Furthermore, the keypad will enable the operator to enter system commands (such as START, PAUSE/STOP, and RESET) by means of dedicated keys on the keypad. Keypad


78


will also have an enter key enabling the operator to instruct the control unit


8


to accept data entered by means of the keypad.




Remote switch


33


is used to indicate when to start or pause the operation of the pulmonary dosing system. Control unit


8


is provided with a built-in beeper or alarm which is sounded every time the remote switch is actuated. The remote switch may be actuated by either a qualified operator or the patient. A trained operator should be present at all times during operation of the pulmonary dosing system. It is not to be operated in an unattended mode. Since, in the embodiment described, the drugs being delivered by the pulmonary dosing system are highly toxic, both the system and its software are designed and constructed to minimize the safety hazard posed by the drugs. It will be assumed that the pulmonary dosing system will be powered down any time drugs are loaded into the nebulizer


19


, or the lid


7




a


of containment box


7


is open. In the embodiment described, the patient and the pulmonary delivery system must be enclosed in a negative pressure tent with a HEPA filter as a secondary system to contain aerosolized drug in the event that the patient coughs or removes the mouthpiece prior to exhaling. The operator should not press on/off switch


79


or remote switch


33


unless the patient has the mouthpiece in place in his mouth.




It will be understood that with respect to hardware interfaces, the system will have a dedicated interface to keypad


78


, a dedicated interface to liquid crystal display


32


, a dedicated interface to the beeper or alarm, and a discrete input/output interface to the rest of the control unit elements. This interface is used by the computer to actuate the mechanical components of the pulmonary delivery system.




The software for controller


77


will perform the following functions: it will allow the operator to set up the system for a particular patient and the hardware being used; it will notify the operator when any of the exception modes (pause, reset, or set up mode) are detected; it will operate the system in a consistent manner; and it will notify the operator when any of the alarm conditions (loss of breath, loss of vacuum, loss air pressure, no breath, long breath, vacuum sensor switch closed, and pressure sensor switch closed) is detected. It will allow the operator to set the time of nebulizer air pulse width, based upon the drug being delivered. It will allow the operator to set the amount of exhales between air pulses based upon the patient to whom the drug is being delivered. When the air compressor has been turned off, the software will see that the vacuum pump will be left on, to assure complete evacuation of any aerosolized drug. When a loss of vacuum is detected, the software will cause the air compressor


55


to be shut down while the vacuum pump continues to run until power is turned off. The software enables the operator to enter the dose either in terms of milliliters or number of breaths. The software will calculate the number of breaths required to empty the nebulizer


19


. The software will also cause the beeper or alarm to sound if sensor


29


does not detect any breaths for 10 seconds. This will assure that the patient is breathing properly and that the patient is exhaling into the mouthpiece. The beeper or alarm will sound if there is a loss of air pressure as detected by pressure sensor switch


68


, or if there is a loss of vacuum as sensed by vacuum sensor switch


35


. The software also provides a number of other checks, as will be apparent hereinafter. For example, the pulmonary delivery system will not be allowed to start a cycle if the remote switch


33


is not plugged into connector


80


.




Again, it is to be emphasized that in addition to the automatic dosing described herein, the present invention also encompasses manual dosing of the drug, for example by a nurse, technician or the patient activating a trigger mechanism, based on the breathing cycle of the patient.




The software operating requirements for the pulmonary delivery system may be subdivided into a number of categories.




The pulmonary dosing system having been described in detail, it will be evident that a pulmonary dosing system capable of safely administering chemotherapy drugs (as well as other drugs) is provided. The pulmonary dosing system is totally self-contained, requiring only connection to a source of electrical current. Certain parameters can be input by a skilled operator, so that the system can be tailored to a particular patient and the particular drug being administered.




Modifications may be made in the invention without departing from the spirit of it. For example, the present invention may be used in veterinary applications. Under these circumstances the patient interface or mask and the dosage delivery software would be customized.




The inlet and exhalation tubes to the mask could be concentric (coaxial). The compressor and vacuum elements could be merged into one pump and a closed system could be provided in this manner. The compressor side provides the pulsed drug to the patient. The vacuum side retrieves the drug and air from the container (as currently shown) and provides it to the compressor side. Of course, the drug is filtered out of the air as it is retrieved and recycled back to the compressor.




The containment case


7


and the control unit


8


could be joined together in one unit. However, seals would still have to be maintained to keep them chemically separate to prevent the drug and gases from getting to the control side of the package. This might be part of an effort to reduce the size of the overall package. With respect to the plenum, more than one drug could be introduced therein at the same time. The plenum could have an adjustable volume (using a bellows or piston, for example) to allow optimized delivery for different patients and different therapies.




Finally, there are a variety of known electronic solutions for controlling a system like the drug delivery device of the present invention. It could easily be controlled by a microprocessor. Other possible features of a controller for the present invention could include:




Sharing data with other devices (such as other diagnostic devices or patient databases) so that information may come from other sources than the front panel entry;




Having lockouts or other security features to control access;




Containing a modem for remote monitoring or reporting;




Being programmable to make it drug specific so that only one drug can be used (identified by bar coding or ion sensing, for example) or patient specific so that positive patient identification is required; and




Being programmed to make the modifications based on feedback from sensors, as discussed above.




EXAMPLES




The following examples are offered by way of illustration, not by way of limitation.




A side-by-side aerosol test was performed to evaluate the benefit of the diffuser (i.e., invention) relative to the pulmonary drug delivery device. Two test specimens were utilized—Plenum #1 and Plenum #2. They were identical in materials, volume, and geometry except that Plenum #2 included a diffuser in accordance with the present invention enclosed within the plenum #2's interior. The test was conducted under identical conditions using the same formulation and concentration of drug product. The two test specimens shared the same aerosol generator as well. Dose uniformity (Table 1) and particle size (Table 2) distribution were measured.




The data in Table 1 indicate that a 23.7% increase in drug dose (mg) resulted by using the plenum with the diffuser (Plenum #2). Furthermore, dose uniformity for the diffuser test specimen (Plenum #2) was more consistent with less variation as compared to the prior art plenum without a diffuser. The data in Table 2 indicate that the diffuser in the plenum provides the aforementioned benefits in dosage level and uniformity without significantly affecting the aerosol's particle size.














TABLE 1













Dose Uniformity (mg)















RUN 1 (n = 12)




RUN 2 (n = 10)




Grand


















Test Specimen




MEAN




SD




RSD




MEAN




SD




RSD




Mean









Plenum 1 (w/o




0.169




0.016




9.368




0.177




0.009




5.354




0.173






diffuser)






Comparative






Plenum 2




0.212




0.010




4.627




0.216




0.007




3.020




0.214






(w/diffuser)

























TABLE 2













Particle Size Distribution*
















Test Specimen




MMAD (μm)




GSD

















Plenum 1 (w/o diffuser)




1.4




2.4






Comparative






Plenum 2 (w/diffuser)




1.6




2.6











*Anderson Cascade Impactor at 28.3 L/min










Test Parameters (Tables 1 and 2 above)










Sampling flow rate = 28.3 L/min










Aerosol time = 3 sec










Sampling Time = 4 sec










MMAD = Mass Median Aerodynamic Diameter










GSD = Geometrical Standard Deviation










SD = Standard Deviation










RSD = Relative Standard Deviation










= SD/Mean × 100












Claims
  • 1. A pulmonary dosing system for supplying a predetermined amount of a therapeutically active material to a patient, said system comprising:an apparatus for providing an aerosolized amount of a therapeutically active material said apparatus having an outlet for conveying said aerosolized amount of active material; and a plenum chamber having an inlet for receiving said aerosolized amount of active material and an outlet for connection to a mouthpiece for delivering said aerosolized amount of active material to a patient, wherein said inlet and said outlet of said plenum chamber and said outlet of said apparatus are oriented along a common axis, and at least one diffuser baffle interposed between said inlet and said outlet of said plenum chamber wherein said diffuser baffle disrupts flow of said aerosolized amount of active material along said common axis in said plenum chamber thereby causing said aerosolized amount of active material to be retained in said chamber until inhaled by the patient.
  • 2. The pulmonary dosing system of claim 1 wherein said aerosolized amount of a therapeutically active material is aerosolized from a solution, suspension or emulsion of said active material.
  • 3. The pulmonary dosing system of claim 2 wherein said apparatus generates a pulsed amount of said active material in aerosolized form.
  • 4. The pulmonary dosing system of claim 3 wherein said pulsed amount of active material is aerosolized in atmospheric air.
  • 5. The pulmonary dosing system of claim 1 wherein said diffuser baffle comprises at least one impact portion which diverts flow of said aerosolized active material and at least one non-impact portion through which said aerosolized active material flows after impacting said impact portion.
  • 6. The pulmonary dosing system of claim 5 wherein said inlet is cylindrical and said impact portion of said diffuser baffle includes at least one cross section perpendicular to said common axis having an area approximately equal to or greater than the cross sectional area of said inlet.
  • 7. The pulmonary dosing system of claim 5 wherein said impact portion of said diffuser baffle comprises a conical portion having an apex proximal said inlet.
  • 8. The pulmonary dosing system of claim 7 wherein said diffuser baffle further comprises a plurality of spokes extending radially from said conical portion.
  • 9. The pulmonary dosing system of claim 1 wherein said plenum chamber comprises a first section including said inlet and a second section including said outlet wherein said diffuser baffle is disposed between said first and second sections of said plenum chamber.
  • 10. The pulmonary dosing system of claim 1 wherein said therapeutic active material comprises a chemotherapy drug.
  • 11. A pulmonary dosing system for supplying to a patient a predetermined amount of respirable therapeutically active material, said system comprising a patient interface connected to an inhalation tube and an exhalation tube, a check valve provided in association with said exhalation tube to prevent inhalation therethrough, a first filter having an inlet and an outlet, said exhalation tube being connected to said inlet of said first filter, said outlet of said first filter being in fluid communication with atmosphere, a second filter having an inlet and an outlet, with the second filter inlet in fluid communication with atmosphere and said second filter outlet having a second check valve to prevent said therapeutically active material from escaping to atmosphere, said second filter outlet being connected to said inhalation tube, an apparatus for providing pulsed amounts of said therapeutically active material aerosolized in filtered atmospheric air, a plenum chamber connected to said apparatus, said plenum chamber comprising an inlet for receiving said pulsed amounts of therapeutically active material aerosolized in filtered air and an outlet for connection to said inhalation tube wherein said inlet and said outlet of said plenum chamber are located on a common axis and said plenum chamber comprises at least one diffuser baffle positioned on said axis whereby said diffuser baffle reduces axial flow of said aerosolized active material from said inlet to said outlet of the plenum chamber, and a control unit for pulsing air to entrain said therapeutically active material in a cycle synchronous with a patient's exhalations for inhalation in conjunction with the patient's natural breathing.
  • 12. The pulmonary dosing system claimed in claim 11 wherein said active material comprises a chemotherapy drug.
  • 13. The pulmonary dosing system claimed in claim 11 wherein said apparatus for providing pulsed amounts of said therapeutically active material comprises a nebulizer having a first inlet connected to a source of pulsed air from said control unit, said nebulizer having a second inlet for receipt of a predetermined amount of said therapeutically active material, said nebulizer having an outlet, a T-fitting having first and second concentric ports and a third intermediate port, said nebulizer outlet being connected to said first T-fitting port, said plenum chamber inlet being connected to said T-fitting second port, said plenum chamber outlet being connected to said inhalation tube, said second filter being connected to said intermediate port of said T-fitting to supply air to said plenum chamber.
  • 14. The pulmonary dosing system of claim 11 wherein said aerosolized amount of a therapeutically active material is aerosolized from a solution, suspension or emulsion of said active material.
  • 15. The pulmonary dosing system of claim 11 wherein said diffuser baffle comprises at least one impact portion which diverts flow of said aerosolized active material and at least one non-impact portion through which said aerosolized active material flows after impacting said impact portion.
  • 16. The pulmonary dosing system of claim 15 wherein said inlet is cylindrical and said impact portion of said diffuser baffle includes at least one cross section perpendicular to said common axis having an area approximately equal to or greater than the cross sectional area of said plenum chamber inlet.
  • 17. The pulmonary dosing system of claim 15 wherein said impact portion of said diffuser baffle comprises a conical portion having an apex proximal said inlet.
  • 18. The pulmonary dosing system of claim 17 wherein said diffuser baffle further comprises a plurality of spokes extending radially from said conical portion.
  • 19. The pulmonary dosing system of claim 11 wherein said plenum chamber comprises a first section including said inlet and a second section including said outlet wherein said diffuser baffle is disposed between said first and second sections of said plenum chamber.
  • 20. The pulmonary dosing system claimed in claim 17 wherein said therapeutically active material comprises a chemotherapy drug.
  • 21. A pulmonary dosing system for delivering a drug to the lungs of a patient wherein the patient is breathing without mechanical assistance and has an established breathing cycle comprising an inhalation phase during which an inspired volume of gas is inhaled and an exhalation phase during which gas is exhaled, said system comprising:a) a plenum for holding aerosolized drug for inhalation as the first part of the inspired volume of gas for the inhalation phase, said plenum comprising: an inlet for receiving an aerosolized drug, an outlet for connection to a patient interface, and at least one diffuser baffle, wherein said at least one diffuser baffle is interposed between said inlet and said outlet to divert at least a portion of said aerosolized drug as said aerosolized drug flows from said inlet to said outlet, b) an aerosol-producing device for delivering aerosolized drug to the plenum, c) a controller for signaling the aerosol-producing device to deliver a selected volume of drug aerosol to the plenum prior to the inhalation phase of the patient, d) a source of air for delivering a volume of air which makes up the latter part of the inspired volume of gas for the inhalation phase, said air being drawn into the plenum through a filter with an inlet connected to ambient air and an outlet having a check valve through which said air is introduced into said plenum, and e) a patient interface for delivering the selected volume of drug aerosol from the plenum and the volume of air to the patient whereby the selected volume of drug aerosol that makes up the first part of the inspired volume of gas and the volume of air makes up the latter part of the inspired volume of gas for the inhalation of the patient directly following said pulse to help push the selected volume of drug aerosol making up the first part, into the lung in conjunction with the patient's natural breathing.
  • 22. The pulmonary dosing system claimed in claim 21 wherein said inlet and said outlet of said plenum are oriented along a common axis.
  • 23. The pulmonary dosing system claimed in claim 21 wherein said aerosol-producing device comprises a nebulizer.
  • 24. The pulmonary dosing system claimed in claim 21 wherein said aerosolized drug is aerosolized from a solution, suspension or emulsion of said active material drug.
  • 25. The pulmonary dosing system of claim 21 wherein said diffuser baffle comprises at least one impact portion which diverts flow of said aerosolized active material and at least one non-impact portion through which said aerosolized active material flows after impacting said impact portion.
  • 26. The pulmonary dosing system of claim 25 wherein said inlet is cylindrical and said impact portion of said diffuser baffle includes at least one cross section perpendicular to said common axis having an area approximately equal to or greater than the cross sectional area of said inlet.
  • 27. The pulmonary dosing system of claim 25 wherein said impact portion of said diffuser baffle comprises a conical portion having an apex proximal said inlet.
  • 28. A method for delivering a drug to the lungs of a patient wherein the patient has an established breathing cycle comprising an inhalation phase during which an inspired volume of gas is inhaled and an exhalation phase during which gas is exhaled, comprising the steps of aerosolizing the drug to produce a selected volume of drug aerosol, and delivering the selected volume of drug aerosol to a plenum during the patient exhalation phase, said plenum comprising an inlet for receiving said drug aerosol, an outlet for connection to a patient interface, and a diffuser baffle interposed between said inlet and outlet wherein said inlet and outlet are positioned on a common axis and said diffuser baffle disrupts flow of said drug aerosol along said axis through said plenum.
  • 29. The method of claim 28 comprising the additional steps of delivering the selected volume of drug aerosol from the plenum to the patient as the first part of the inspired volume of gas on the inhalation phase; and delivering a volume of air which makes up the latter part of the inspired volume of gas on the inhalation phase to help push the selected volume of drug aerosol, making up the first part, into the lung in conjunction with the patient's natural breathing.
  • 30. The method for delivering a drug as claimed in claim 28 wherein said diffuser baffle comprises at least one impact portion which diverts flow of said aerosolized active material and at least one non-impact portion through which said aerosolized active material flows after impacting said impact portion.
  • 31. The pulmonary dosing system of claim 30 wherein said inlet is cylindrical and said impact portion of said diffuser baffle includes at least one cross section perpendicular to said common axis having an area approximately equal to or greater than the cross sectional area of said inlet.
  • 32. The pulmonary dosing system of claim 30 wherein said impact portion of said diffuser baffle comprises a conical portion having an apex proximal said inlet.
  • 33. The method for delivering a drug as claimed in claim 28 wherein said drug is aerosolized using a nebulizer.
  • 34. The method for delivering a drug as claimed in claim 28 wherein said drug comprises a chemotherapy drug.
  • 35. A plenum for use in a pulmonary dosing system comprising: a first section including an inlet, a second section including an outlet and a diffuser, the first section and the second section being assembled to form a chamber in which the inlet and the outlet are oriented along a common axis, and at least one baffle interposed between the first section and the second section on the common axis so as to direct the flow of a gas as it passes from the inlet to the outlet.
US Referenced Citations (104)
Number Name Date Kind
1150238 Bray Aug 1915 A
1263079 Leon Apr 1918 A
1836505 Pritchard Dec 1931 A
2562930 Mapes Aug 1951 A
2625156 Gauchard Jan 1953 A
2678044 Szekely et al. May 1954 A
2785679 Wullschleger Mar 1957 A
2826454 Counda Mar 1958 A
3051397 Hanson Aug 1962 A
3062456 Thompson et al. Nov 1962 A
3236458 Ramis Feb 1966 A
3301255 Thompson Jan 1967 A
3302374 Szckely Feb 1967 A
3522806 Szekely Aug 1970 A
3529941 Tobiassen et al. Sep 1970 A
3838686 Szekely Oct 1974 A
3945378 Paluch Mar 1976 A
4026285 Jackson May 1977 A
4106503 Rosenthal et al. Aug 1978 A
4344574 Meddings et al. Aug 1982 A
4402315 Tsuda et al. Sep 1983 A
4429835 Brugger et al. Feb 1984 A
4534343 Nowacki et al. Aug 1985 A
4566452 Farr Jan 1986 A
4660547 Kremer, Jr. Apr 1987 A
4677975 Edgar et al. Jul 1987 A
4690332 Hughes Sep 1987 A
4790305 Zoltan et al. Dec 1988 A
4805609 Roberts et al. Feb 1989 A
4819629 Jonson Apr 1989 A
4823784 Bordoni et al. Apr 1989 A
4869103 Jerman Sep 1989 A
4911157 Miller Mar 1990 A
4926852 Zoltan et al. May 1990 A
4940051 Lankinen Jul 1990 A
4953545 McCarty Sep 1990 A
4972830 Wong et al. Nov 1990 A
5012803 Foley et al. May 1991 A
5036840 Wallace Aug 1991 A
5040527 Larson et al. Aug 1991 A
5042467 Foley Aug 1991 A
5054478 Grychowski et al. Oct 1991 A
5062419 Rider Nov 1991 A
5063922 Hakkinen Nov 1991 A
5080093 Raabe et al. Jan 1992 A
5113855 Newhouse May 1992 A
5165391 Chiesi et al. Nov 1992 A
5178138 Walstrom et al. Jan 1993 A
5186166 Riggs et al. Feb 1993 A
5241954 Glenn Sep 1993 A
5297543 Larson et al. Mar 1994 A
5309900 Knoch et al. May 1994 A
5312331 Knoepfler May 1994 A
5322057 Raabe et al. Jun 1994 A
5458135 Patton et al. Oct 1995 A
5458136 Jaser et al. Oct 1995 A
5476093 Lankinen Dec 1995 A
5503139 McMahon et al. Apr 1996 A
5617844 King Apr 1997 A
5630409 Bono et al. May 1997 A
5645049 Foley et al. Jul 1997 A
5676130 Gupte et al. Oct 1997 A
5711292 Hammarlund Jan 1998 A
5724959 McAughey et al. Mar 1998 A
5727542 King Mar 1998 A
5738087 King Apr 1998 A
5752502 King May 1998 A
5775320 Patton et al. Jul 1998 A
5813397 Goodman et al. Sep 1998 A
5816240 Komesaroff Oct 1998 A
5826570 Goodman et al. Oct 1998 A
5848588 Foley et al. Dec 1998 A
5875774 Clementi et al. Mar 1999 A
5884620 Gonda et al. Mar 1999 A
5934272 Lloyd et al. Aug 1999 A
5934273 Andersson et al. Aug 1999 A
5941240 Gonda et al. Aug 1999 A
5957124 Lloyd et al. Sep 1999 A
6012450 Rubsamen Jan 2000 A
6039042 Sladek Mar 2000 A
6041777 Faithfull et al. Mar 2000 A
6070573 Howe et al. Jun 2000 A
6076519 Johnson Jun 2000 A
6085742 Wachter et al. Jul 2000 A
6098620 Lloyd et al. Aug 2000 A
6103270 Johnson et al. Aug 2000 A
6109261 Clarke et al. Aug 2000 A
6116237 Schultz et al. Sep 2000 A
6131567 Gonda et al. Oct 2000 A
6138668 Patton et al. Oct 2000 A
6167880 Gonda et al. Jan 2001 B1
6250298 Gonda et al. Jun 2001 B1
6250300 Andersson et al. Jun 2001 B1
6257233 Burr et al. Jul 2001 B1
6260549 Sosiak Jul 2001 B1
6263872 Schuster et al. Jul 2001 B1
6269810 Brooker et al. Aug 2001 B1
6273088 Hillsman Aug 2001 B1
6286506 MacAndrew et al. Sep 2001 B1
6289892 Faithfull et al. Sep 2001 B1
6293279 Schmidt et al. Sep 2001 B1
6308703 Alving et al. Oct 2001 B1
6308705 Rupprecht et al. Oct 2001 B1
6314956 Stamler et al. Nov 2001 B1
Non-Patent Literature Citations (2)
Entry
Feddah, M.R. et al., In-Virtro Characterisation of Metered Dose Inhaler Versus Dry Powder Inhaler Glucocorticoid Products: Influenced of Inspiratory Flow Rates, J. Pharm. Pharmaceut. Sci. 3(3):317-324 (Oct. 2000).
Elliott, R., Parenteral absorption of Insulin from the lug in diabetic children, Aust. Pediatr. J. 23, 293-297 (1997).