The invention relates generally to purification of feed gas used for the manufacture of ammonia, and more particularly to improvements in processing of feed gas from which hydrogen rich ammonia synthesis gas and waste gas are derived. The invention specifically concerns treatment of the waste gas to derive useful gas streams, one of which is hydrogen/nitrogen rich, another is nitrogen rich, and another is methane rich. In the prior purifier process, synthesis gas is separated from the waste gas, which contains excess nitrogen from the feed gas, a small amount of hydrogen, all of the incoming methane and about 600 of the incoming argon. Such waste gas is typically utilized as fuel in a primary reformer.
Improvements in treatment of the waste gas are needed for enhanced overall process efficiency.
It is a major object of the invention to provide improvements in treatment of such waste gas, as will be seen. Basically, the improved process of the invention derives three product streams from the waste gas, one of which is hydrogen/nitrogen rich, another is basically nitrogen rich, and another which is methane rich, with a higher heating value than in processes employed so far, more suitable for use as a fuel, with less nitrogen going up the stack and eventually full recovery of hydrogen. The overall process includes the steps:
In that overall process, the second, third, fourth and fifth streams are typically delivered as product streams; and the second plus third product streams of synthesis gas may be advantageously delivered to an ammonia synthesis process.
Another object is to provide the split into a third, fourth and fifth streams, through cryogenic separation in such manner that
Accordingly, the prior “Purifier” process is modified and improved through these measures, in that
These and other objects and advantages of the invention, as well as the details of an illustrative embodiment, will be more fully understood from the following specification and drawings, in which:
In
In a preferred and improved prior Purifier process as represented in
Referring in detail to process 111 in
Waste gas is taken from the bottom of the existing column 116 and is passed via line 122 to the existing Joule Thompson valve 123. A typical pressure drop through the JT valve is 300 to 350 psi.
Cooled waste gas then passes via line 125 to provide refrigeration for the existing condenser 119. It passes through line 126 and coil 126a in the existing coldbox 115 for delivery via line 131 to coil 114a in an additional coldbox 115a and exits via line 131b as feed to an additional second column 130. Column 130 is provided with a top mounted refluxed condenser 135.
Methane rich gas leaves the bottom of column 130 via line 133 to flow to coil 145a in the additional coldbox 115a to deliver at line 134. If needed, the pressure of the methane rich gas is boosted in a single stage blower C1 and methane rich gas is delivered at 114.
Overhead gas is taken via line 132 to a third additional column 140. The separation in column 130 is such that all of the incoming hydrogen via line 131b but none of the incoming methane via line 131b goes overhead via line 132.
The additional third column 140 is provided with a top mounted refluxed condenser 145. Nitrogen rich gas leaves the bottom of column 140 via line 143 to flow to coil 113a in the additional coldbox 115a, and to deliver at line 113. Nitrogen rich gas (typically 97+% nitrogen, with the remainder being Argon) may be rejected to the atmosphere.
Overhead gas from the additional column 140 is taken via line 142 to coil 140a in the additional coldbox 115a to deliver at line 146. The separation in column 140 is such that all of the incoming hydrogen via line 132 goes overhead at column 140. Hydrogen/nitrogen delivered at line 146 is recompressed in compressor C2 and combined with the synthesis gas at line 112c, and is delivered at line 112.
Refrigeration for the refluxed condensers 135 and 145 is provided by a refrigeration compressor C3. The discharge of compressor C3 delivers via line 151 to coil 150a in the additional cold box 115a. The cold refrigerant leaves via line 152 and is expanded via valve 153 to line 154. Refrigerant to refluxed condenser 135 is delivered via line 155; refrigerant to refluxed condenser 145 is delivered via line 156. Refrigerant returns from the refluxed condenser 135 via line 157 and from refluxed condenser 145 via line 158. The combined refrigerant returns via line 159 into coil 150b in the additional coldbox 115a, and leaves via line 160 to the suction of the refrigerant compressor C3.
Following data are representative for
For a completely new (grass roots) design the coldboxes 115 and 115a of
Referring in detail to process 211 in
Waste gas is taken from the bottom of the column 116 and is passed via line 122 to the Joule Thompson valve 123. A typical pressure drop through the JT valve is 300 to 350 psi.
Cooled waste gas then passes via line 125 to provide refrigeration for the condenser 119. It passes through line 126 and coil 126a in the coldbox 180 for delivery via line 131 as feed to a second column 130. Column 130 is provided with a top mounted refluxed condenser 135.
Methane rich gas leaves the bottom of column 130 via line 133 to flow to coil 114a in coldbox 180 to deliver at line 134. If needed, the pressure of the methane rich gas is boosted in a single stage blower C1 and methane rich gas is delivered at 114.
Overhead gas is taken via line 132 to a third column 140. The separation in column 130 is such that all of the incoming hydrogen via line 131 but none of the incoming methane via line 131 goes overhead via line 132.
Third column 140 is provided with a top mounted refluxed condenser 145. Nitrogen rich gas leaves the bottom of column 140 via line 143 to flow to coil 113a in coldbox 180, and to delivery at line 113. Nitrogen rich gas (typically 97% nitrogen, with the remainder being Argon) may be rejected to the atmosphere.
Overhead gas from column 140 is taken via line 142 to coil 140a in coldbox 115 to deliver at line 146. The separation in column 1450 is such that all of the incoming hydrogen via line 132 goes overhead at column 140. Hydrogen/nitrogen delivered at line 146 is recompressed in compressor C2 and combined with the synthesis gas at line 112c, and is delivered at line 112.
Refrigeration for the refluxed condensers 135 and 145 is provided by a refrigeration compressor C3. The discharge of compressor C3 delivers via line 151 to coil 150a in coldbox 180. The cold refrigerant leaves via line 152 and is expanded via valve 153 to line 154. Refrigerant to refluxed condenser 135 is delivered via line 155; refrigerant to refluxed condenser 145 is delivered via line 156. Refrigerant returns from the refluxed condenser 135 via line 157 and from refluxed condenser 145 via line 158. The combined refrigerant returns via line 159 into coil 150b in coldbox 180, and leaves via line 160 to the suction of the refrigerant compressor C3.
The following data are representative for
The presentation of the coldboxes 115, 115a and 180 in
The parameters, upstream of the coldbox as presented, are to be adjusted as to maintain the feed gas to the coldbox per
This application is a continuation-in-part of pending U.S. application Ser. No. 12/586,350, filed Sep. 22, 2009, which is a regular application converted from Provisional application Ser. No. 61/192,556, filed Sep. 22, 2008.
Number | Date | Country | |
---|---|---|---|
61192556 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12586350 | Sep 2009 | US |
Child | 12657015 | US |