1. Field of the Invention
The present invention relates to a push handle switch lampholder, and more particularly to the push handle switch lampholder that pushes a lower conductive plate to move like a see-saw by pushing a push handle to move back and forth and determines whether or not to pass a current to an upper conductive plate, so as to control the ON or Off of a light emitting element. In the meantime, a set of hooks is provided for connecting a power cable for an electric connection without the need of tying an UL knot.
2. Description of the Related Art
With reference to
The switch 14 includes a push handle 141, a spring 142 and a metal plate 143, and the push handle 141 is contained in containing groove 130 for performing a pushing action reciprocally in the containing groove 130, and a middle section of the push handle 141 is hooked to an end of the spring 142. The metal plate 143 is substantially C-shaped, and an internal edge of the lower section is latched to the middle section of the push handle 141, and an internal edge of the upper section is hooked to the other end of the spring 142, so that when the push handle is pushed, the push handle is driven by an elastic force of the spring 142 to tilt towards one of the ends of the push handle 141, and the metal plate 143 is contacted with the conductive plates 132b on both sides respectively (as shown in
In
The connection between the push handle switch lampholder 1 and the power cable 15 relies on the negative electrode plate 131 and the lower conductive plate 132a to connect both bare ends of the power cable 15 only, so that when the power cable 15 is pulled accidentally or intentionally, the bare ends of the power cable 15 may be separated from the negative electrode plate 131 and/or the lower conductive plate 132a to result in a circuit disconnection. In the use of the conventional push handle switch lampholder 1, an UL knot 151 is tied at a position near the bare end of the power cable 15, and then both bare ends are plugged into two plug slots 133 respectively to achieve the effect of connecting the negative electrode plate 131 and the lower conductive plate 132a for an electric connection, and the UL knot 151 is intended for increasing the tensile resistance between the switch lampholder 1 and the power cable 15.
The conventional push handle switch lampholder 1 has the following drawbacks:
(1) Difficult Assembly: Since the lampholder 1 uses a number of conductive plates for conducting current to the light emitting element, therefore the overall assembling operation is complicated and tedious, and the position may be shift easily by an external force to affect the effect of the lampholder 1, so that the conventional lampholder 1 incurs a complicated assembling operation and the assembly may be loosened easily by external pushing or squeezing forces to affect the effect of use.
(2) Large Volume: Since the whole switch 14 must be accommodated into the containing groove 130, therefore the insulating base 13 is limited and its volume cannot be reduced effectively. As a result, the cost for the molding process of the insulating base 13 is high, and the large volume will also affect the storage and transportation costs.
(3) Unsmooth Pushing Operation: When a user pushes the push handle 141, a force greater than the elastic force of the spring must be applied to the push handle 141 before the metal plate 143 can be driven to contact with or separate from the positive electrode plates 132 on both sides. If the elastic force of the spring 142 is too large, then the user has to push the push handle 141 inconveniently. If the elastic force of the spring 142 is too small, then the push handle 141 will be too loose to cause a wrong movement. In addition, the spring 142 may become elastically fatigue after a long time of use, so as to affect the operation and effect of the lampholder 1.
(4) Short Service Life: Since the metal plate 143 and the conductive plates 132b on both sides are contacted to allow a current flow, and the contact position is a point or a line, the metal plate 143 produces a high temperature and becomes deteriorated or broken after a long time of use, so as to shorten the service life of the lampholder 1.
(5) Complicated Tie of UL Knot: The process of tying an UL knot 151 at a position proximate to a bare end of the power cable 15 is troublesome, not only increasing the manufacturing time and cost, but also increasing the storage and transportation costs since the UL knot 151 has a relatively large volume and it is difficult to reduce the total volume of the switch lampholder 1. Particularly, the UL knot increases the tensile resistance between the switch lampholder 1 and the power cable 15, but fails to assure a secured connection between the switch lampholder 1 and the power cable 15 when a strong force is applied.
In view of the aforementioned drawbacks of the conventional push handle switch lampholder, the inventor of the present invention based on years of experience in the related industry to conduct extensive researches and experiments, and finally invented the present invention to overcome the drawbacks of the prior art.
Therefore, it is a primary objective of the present invention to provide a push handle switch lampholder capable of simplifying components, reducing volume, controlling the ON and OFF of a light emitting element easily, facilitating the fixation of the power cable for an electric connection, lowering the manufacturing, storage and transportation costs, and improving the service life.
To achieve the aforementioned objective, the present invention provides a push handle switch lampholder comprising: a cylindrical shell, formed by a conductive plate into a substantially cylindrical shape, and having a threaded mouth, and a containing space separately formed at the top and the bottom of the interior of the cylindrical shell, for screwing and connecting a light emitting element, such that a first electrode of the light emitting element is attached to the cylindrical shell for an electric conduction; an insulating plate, installed at the bottom of the cylindrical shell, and having a connecting groove for passing and embedding an upper conductive plate, and the top of the insulating plate being exposed from the top end of the upper conductive plate and extended into the containing space of the cylindrical shell, and contacted with a second electrode of the light emitting element for an electric conduction, and the other end of the upper conductive plate being extended to the bottom of the insulating plate; an insulating base, installed at the bottom of the insulating plate, and having a containing grove concavely formed at the top of the insulating plate and transversally penetrating through the top of the insulating plate, a set of plug slots formed on an external surface opposite to the containing groove for plugging and connecting a power cable; and a set of hooks disposed proximate to the corresponding plug slots respectively for connecting the power cable; a push handle, installed in the containing groove, and capable of performing a reciprocating push movement along the containing groove, and having a protruding portion protruded from the push handle; and a lower conductive plate, being substantially in a curved shape matched with the top edge of the containing groove, for being movably fixed at a position of the containing groove corresponding to the protruding portion; thereby, in the process of performing the reciprocating push movement by the push handle, the protruding portion of the push handle abuts a position proximate to an end of the lower conductive plate, such that an end of the upper conductive plate is moved in a direction towards the upper conductive plate and contacted with the upper conductive plate to electrically connect and light up the light emitting element, and when the protruding portion abuts a position proximate to the other end of the lower conductive plate, an end of the lower conductive plate is moved in a direction away from the upper conductive plate and separated from the upper conductive plate to electrically disconnect and turns off the light emitting element.
In the push handle switch lampholder, the insulating base includes a positive electrode plate and a negative electrode plate embedded into both sides of the containing groove respectively, and an end of the positive electrode plate is exposed from the top of the insulating base and extended to a position of the top of the containing groove proximate to the lower conductive plate, and the other end of the positive electrode plate is extended downwardly inside the insulating base 33 and corresponding to one of the plug slots, and an end of the negative electrode plate is extended out from the top of the insulating base, and the other end of the negative electrode plate is extended downwardly inside the insulating base and corresponding to another plug slot, so that when the power cable is plugged into the corresponding plug slots, the power cable is connected with terminals of the positive electrode plate and the negative electrode plate for an electric connection.
The push handle switch lampholder further comprises a connecting element, and at least one hole formed at corresponding position of the cylindrical shell, the insulating plate and the insulating base for passing the connecting element to secure the cylindrical shell, the insulating plate and the insulating base.
In the push handle switch lampholder, the negative electrode plate is extended from a terminal at the top of the insulating base to a hole formed on the insulating base and proximate to the negative electrode plate, such that after the connecting element is passed through the hole, a terminal of the negative electrode plate is electrically coupled to the connecting element.
In the push handle switch lampholder, each hook includes a vertical column integrally formed with the insulating base, and the top edge of the vertical column is extended outwardly to form a hook portion, and the rear end is protruded downwardly to form an assisting hook end; and when the power cable is pushed across the assisting hook end to enter into the hook portion, the power cable and the hook portion are connected securely with each other.
The objectives, technical characteristics, measures, effects and advantages of the present invention will become apparent with the detailed description of preferred embodiment accompanied with the illustration of related drawings as follows.
With reference to
The insulating plate 32 is installed at the bottom of the cylindrical shell 31, and a connecting groove 320 is formed for passing and embedding an upper conductive plate 321, and the top end of the upper conductive plate 321 is exposed from the top of the insulating plate 32 and extended into the containing space of the cylindrical shell 31 and contacted with and electrically coupled to the second electrode of the light emitting element, and the other end of the upper conductive plate 321 is extended to the bottom of the insulating plate 32.
The insulating base 33 is installed at the bottom of the insulating plate 32, and includes a containing groove 330 concavely formed at the top and bottom of the insulating plate 32 penetrated through the insulating plate 32.
The push handle 34 is in a shape matched with the containing groove 330 to facilitate its installation in the containing groove 330, and a reciprocating push movement can be performed along the containing groove 330, and the push handle 34 includes a protruding portion 341 protruded from the push handle 34.
The lower conductive plate 35 is substantially in a curved shape matched with the top edge of the containing groove 330, so that the conductive plate 35 can be movably fixed at the top edge of the containing groove 330 and at a position proximate to the protruding portion 341.
The insulating base 33 includes a positive electrode plate 33a and a negative electrode plate 33b embedded into both sides of the containing groove 330 respectively, and an end of the positive electrode plate 33a is exposed from the top of the insulating base 33 and extended to the top of the containing groove 330 and at a position proximate to the lower conductive plate 35, and the other end of the positive electrode plate 33b is extended downwardly inside the insulating base 33. An end of the negative electrode plate 33b is extended out from the top of the insulating base 33, and the other end is also extended downwardly inside the insulating base 33. The insulating base 33 has a set of plug slots 331 formed at positions opposite to an external surface of the containing groove 3301 and an interior corresponding to terminals of the positive electrode plate 33a and the negative electrode plate 33b (as shown in
With reference to
In
After the push handle switch lampholder 3 of the present invention is assembled as shown in
In
In the push handle switch lampholder of the present invention, the lower conductive plate 35 is simply disposed at the top edge of the containing groove 330 without the need of being contained in the containing groove 330, so that the total volume of the insulating base 33 can be minimized for a light and compact design to lower the manufacturing cost of the molding process as well as the storage and transportation costs. In addition, the present invention adopts the lower conductive plate 35 and the upper conductive plate 321 attached with each other to produce a circuit conduction, so that current can be passed through easily without producing much heat or deteriorating and embrittling the lower conductive plate 35 to achieve the effect of improving the overall service life of the lampholder 3. Particularly, the present invention adopts the hooks 37 to connect the power cable 38 securely and prevent the power cable 38 from being separated from the switch lampholder 3 effectively.
In summation, the push handle of the present invention is pushed to move reciprocally, so as to drive the lower conductive plate to move like a see-saw, and determine whether or not to electrically conduct the upper conductive plate. Therefore, the invention can achieve the effects of simplifying components, reducing the volume, controlling the light emitting element emit light, lowering the storage and transportation costs, and improving the service life of the lampholder effectively. Meanwhile, the hooks are provided for securely connecting the power cable for an electric connection without the need of tying an UL knot to provide a quicker, more convenient and secured wire connection.
In summation of the description above, the present invention achieves the expected objectives and effects and complies with the patent application requirements, and thus is duly filed for patent application. While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/215,422, entitled “PUSH HANDLE SWITCH LAMPHOLDER” and filed on Aug. 23, 2011.
Number | Date | Country | |
---|---|---|---|
Parent | 13215422 | Aug 2011 | US |
Child | 13685780 | US |