The invention is in the field of sensing the presence and quantity of chemicals in an ambient using a solid state quadrupole mass spectrometer device; and in particular to the fabrication of the high aspect ratio rod configuration assemblies that are a building block in the fabrication of the solid state quadrupole mass spectrometer device.
Quadrupole mass spectrometer apparatus, for use in the sensing of the presence and quantity of chemicals in a gaseous ambient, would include as a main element, a quadrupole mass filter structural assembly capable of atomic selection based on atomic particle mass, together with means for introducing ionized ambient gas into the quadrupole mass filter, means for detecting specific ions in the ionized gas and means for detecting quantity and quality attributes of those selected ions.
In operation; to the quadrupole mass spectrometer device, there is supplied to individual diagonally positioned pairs of rod shaped conductor members, combined, direct current (DC) levels and phased radio frequency (RF) signals; such that, for a fixed value of RF and DC voltages, input ion energy, conductor dimensions and frequency: there is produced a hyperbolic field. The hyperbolic field affects the ability of certain ions, having a specific ratio of charge to mass, that in turn is identifiable with certain chemicals, to be diverted for processing in a detection capability.
The technology of quadrupole mass spectrometry is being extensively studied in the art. Examples of publications are Peter H. Dawson, Quadruple Mass Spectroscopy and its Applications, (Elsevier, N.Y. (1976), pp 9-11), and R. A. Syms et al, in IEEE Transactions on Electron Devices 45, 2304(1998).
In the translation of the quadrupole mass spectrometry technology into useful devices and apparatus there will be encountered interrelated dimensions within an operating background pressure that in turn is in an assembly of rod shaped members in a spatial volume wherein fields can provide conditions for chemical separation. To the quadrupole mass spectrometer device, there is supplied to individual diagonally positioned pairs of the rod members, combined, direct current (DC) levels and phased radiofrequency (RF) signals; such that, for a fixed value of RF and DC voltages, input ion energy, conductor dimensions and frequency: there is produced a hyperbolic field in the spatial volume. The hyperbolic field affects the ability of certain ions, arriving through the ion path opening, that have a specific ratio of charge to mass, that in turn is identifiable with certain chemicals, to traverse the spatial volume and be processed in a detection capability beyond the ion path exit.
The quadrupole mass spectrometer device is sensitive to dimensions and operating pressure. The work of Boomselleck and Ferran, reported in Am. Soc. For Mass. Spec. 12,633 (2001) advances highly useful factors including that maximum operating pressure is inversely proportional to the length dimension of the mass filter, and, that sensitivity is influenced by the “r” and “L” dimensions of the mass filter. The dimensions “r”, “L”, and “D” are labelled in
As the art has developed, a promising design for the mass filter has evolved; wherein between upper and lower plane surfaces there is an enclosed spatial volume within which there is located a configuration of four parallel, equidistant as around a bolt circle, rod shaped conductor members, each of which extends between the upper and lower plane surfaces. The promising mass filter design further provides an ion path opening and exit, positioned, centered into and centered exiting from the upper and lower planes within the spatial volume containing the rod shaped conductor member configuration. The rod configuration is a building block in the fabrication of the mass filter. This building block, in turn, permits the fabrication capabilities of the semiconductor industry in producing large area arrays.
At this point in the art however there is a significant technical hurdle to be overcome because the length dimension of the mass filter will have to be very long in relation to the horizontal dimensions in other words the mass filter will have to have a large relative length to horizontal aspect ratio.
In this invention the technology is provided for rod shaped conductor member fabrication in situ, in position, in the mass filter spatial configuration by growth through vertically repeated conduit mold formations, filling the conduit increments with to be rod material, and coalescing the growth increments as the rod length is achieved.
This invention is directed to the in situ fabrication of rod shaped elements that are to be an integral part of the hyperbolic field apparatus of the mass filter and which will be located within the mass filter. The mass filter and it's operation is described in connection with
Referring to
The four, rod shaped conductor members, 6,7,8 & 9, in each mass filter device, surround a spatial volume 10 in the material of the wafer. The wafer material, within what is to be the spatial volume 10 will be later removed by etching. An ion path passes through the top one of the parallel wafer surfaces 2,3, extends through the enclosed spatial volume 10 and continues out the bottom one, 3, of the parallel wafer surfaces, 2 & 3.
There is delivered to pairs of diagonally positioned individual rod members (6,9 & 7,8); with dimensional relations “r”, “D” and “L” combined, direct current (DC) levels and phased radio frequency (RF) signals; whereby, a hyperbolic cylindrical field is produced in the spatial volume 10. The connections are shown in
The ionized ambient gas; in which the ions are at fixed energy that must be controlled by applied potentials, is focused into the ion path at the opening 11 in the top one of the parallel wafer surfaces through the hyperbolic field in the spatial volume and out the ion path exit 12 in the bottom one of the parallel surfaces. The ions in the ionized ambient gas that have a specific ratio of charge to ion mass are selected in passing through the field in the spatial volume and exit in the ion path into the subsequent stage. The actual dimensions involved are quite small and the vertical distance between the surfaces is much greater than the horizontal distances between rods. Those dimensions in turn affect many parameters of the mass filter. Assuming, as an example, a mass filter that is built in silicon and occupies about a cubic centimeter in volume. The length of the rods 6-9 will affect the traverse rate of the ions and hence the quantity of ions that are selected in the filter. The work of Ferran and Boomselleck, titled “Effects of quadrupole analysers for RGA”, published in JVST A—Vacuum, Surfaces, and Films, page 1258 (2001) provides a good perspective in selection. The length of the rods 6-9 labelled distance “L” in
The work of Peterman et al, titled “Building thick photoresist structures from the bottom up” published by J. Microtech. Microeng. 13, 380(2003), demonstrates forming high aspect ratio structures from single layers and the ability to add an additional layer.
This invention provides the ability to form structures from many layers sufficient to meet the complex future dimensional requirements.
Referring to
There are four layers of light responsive materials labelled layers A-D. Each layer is the outermost layer for a vertical section.
In connection with
The procedure is based on thick photoresist technology. Some examples described in the art are NANO S U 8-2000, NANO PMMA, of Micro Tm Chem Newton, Mass. and BPR 100 Photoresist. Electronic Materials, Marlborough, Mass.
A pedestal as indicated at level A of
The cavity wafer that encloses the quadrupole devices is prepared, (Step 21) The cavity openings are laser machined through the 500 micrometer thick wafer. The cavity openings become accessible at Mask 7. Spin coat the wafer with 100 micrometer thick layer of BPR resist (Step 23a) using Mask 8 to pattern the openings for electroplating the rods. (Step 23b), electroplate the next 100 micrometer length of rod through the thickness of the resist. Repeat Steps 23a and 23b four more times to produce the 500 micrometer tall rods (Steps 23c through 23j). Dissolve the BPR resist. Spin a 20 micrometer thick layer of SU-8 on the laser machined cavity wafer (Step 24) and attach to the wafer with the electroplated rods. The cavity is then filled with PMMA and planarized in (Step 25). A thick layer of SU-8 is spun onto the planarized surface and patterned with (Mask 9) to produce the access holes. Finally a metal film is deposited over the SU-8 surface to make a ground plane for the device. The carrier wafer is then removed and the PMMA dissolved out of the structure using acetone. The mask set can make an array of 8×8 of the basic device layout.
What has been described is the technology of the building of rods for quadrupole mass filter devices where the length is extended by incremental layers.
This invention was made with government support under contract #W31P4Q-04-C-R311 awarded by the U.S. Army. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
6239429 | Blessing et al. | May 2001 | B1 |
7208729 | Syms | Apr 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070200061 A1 | Aug 2007 | US |