The present invention relates generally to medical imaging. More particularly, the present invention relates to a method for Optical Coherence Tomography (OCT) or low coherence interferometry (LCI) imaging based tumor detection and interventional guidance.
Approximately 1,665,540 new cancer cases and 585,720 cancer deaths occur annually in the United States. Surgery is the primary method of treatment for most isolated solid cancers and often plays a role the prolongation of survival. Previous studies have shown that there is a critical need to cut out more tumor during cancer surgery, especially at the infiltrative tumor boundaries. This clinical need can be applied to multiple cancer types such as head and neck cancer, brain cancer, breast cancer, oral cancer, soft tissue sarcomas and gastrointestinal cancer to name a few. For the following, we will use brain cancer as an example but it is understood that the present invention is not limited to brain cancer.
Imaging technologies have played an increasingly significant role in helping achieve optimal tumor tissue removal. However, there are several shortcomings with existing imaging technologies in the operating room. For example, surgical navigations based on pre-operative MRI is the current standard of care for brain cancer, but causes large positional errors from the patient's motions e.g. breathing and heartbeat. Intra-operative MRI provides better resolution and accuracy, but does not provide real-time continuous guidance; it is also time consuming and often costs millions of dollars per unit, which only few hospitals can afford. Ultrasound is portable and low-cost, but its use in the operating room is limited for certain cancer applications due to insufficient tissue contrast and resolution. Finally, fluorescence imaging often involves the use of an oral or intravenous contrast agent, and the heterogeneous uptake.
Optical Coherence Tomography (OCT) or low coherence interferometry (LCI) imaging have significant advantages over the aforementioned medical imaging technologies in detecting tumor during the surgery. OCT and/or LCI are non-invasive, high-resolution optical imaging technologies capable of real-time imaging of tissue microanatomy with a few millimeter imaging depth. OCT and/or LCI function as a form of “optical biopsy”, capable of assessing tissue microanatomy and function with a resolution approaching that of standard histology but without the need for tissue removal. In addition, optical properties derived from OCT or LCI images can be used to quantitatively analyze tissues and provide real-time and direct visual guidance for tumor resection. As a result, there is a need in the art for a method of OCT/LCI imaging for tumor detection and interventional guidance.
The foregoing needs are met, to a great extent, by the present invention which provides a method for real-time characterization of spatially resolved tissue optical properties for one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) imaging over a given tissue derived from OCT or LCI imaging data. The method also includes generating a quantitative, color-coded, and high-resolution optical property map. Additionally, the method includes establishing a diagnostic threshold for optical properties used for differentiating tumor from non-tumor with high sensitivity and specificity.
In accordance with an aspect of the present invention, the method includes programming the steps of the method on non-transitory computer readable medium/media. This method includes a programming method to acquire, process, display and stores optical properties of tissues in real-time and in high-resolution. This method includes mechanisms to analyze the depth-dependent imaging data using exponential and Frequency-domain fitting methods for ultrafast and reliable characterization of optical properties with high computational efficiency and accuracy. This method includes mitigating the influence of the depth-dependent effects of the beam profile by creating phantoms with known optical properties and by calibrating the OCT or LCI imaging data with the phantom imaging data. This method includes algorithms optimized for tissue characterization including speckle, motion and blood artifact identification and minimization, and tissue surface identification from the blood pool. This method includes the systematic and quantitative analysis of cancer tissues in real-time using the imaging data obtained. The method includes using optical property values (such as optical attenuation, backscattering, scattering and absorption to name a few, and the combination of any of these parameters) to determine areas of tumor versus areas of non-tumor. This method includes providing direct visual cues using the color-coded map for the surgeon to differentiate tumor from non-tumor tissue for the imaged tissues (for 1D, 2D and 3D scanning) and combining the OCT or LCI image with the overlaid optical property map and/or Doppler information to identify critical structures such as blood vessels, avoiding potential injury during surgical interventions. This method includes varying the imaging beam spot size to control transverse resolution and the imaging/display speed.
In accordance with another aspect of the present invention, the present invention is also directed to a system and method integrated with the optical imaging device for tracking the position and orientation of the imaging device, imaging beam and the imaging area on the target in real-time (as identified in a resultant map) and with an aiming beam for visualization of the region of interest on the target and for interventional guidance. The method includes the use of caps/spacers to maintain the working distance of the compact imaging probe and to provide additional tissue resection capabilities to remove the exact region of interest which was imaged. This facilitates the removal of cancerous tissues during interventional guidance; in addition, the removed tissue can be submitted for histological processing, thereby providing accurate imaging-histological correlations for basic science/clinical research purposes. This method includes the implementation of graphics processing unit (GPU)-based or field-programmable gate array (FPGA)-based parallel processing algorithms for optimal computational efficiency and real-time acquisition, processing and displays of tissue optical properties, structures and blood flow.
The accompanying drawings provide visual representations, which will be used to more fully describe the representative embodiments disclosed herein and can be used by those skilled in the art to better understand them and their inherent advantages. In these drawings, like reference numerals identify corresponding elements and:
are the zeroth and first harmonic components, respectively.
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the inventions are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
The present invention is directed to a method for and a non-transitory computer readable medium programmed to enable real-time characterization of spatially resolved tissue optical properties with excellent spatial resolution over a given tissue volume. The overall schematics of the present invention has been summarized in
Preliminary human ex vivo studies: one application of the concepts disclosed herein is to use OCT or LCI imaging and any derived optical properties to detect cancerous versus non-cancerous tissues. To determine whether OCT and LCI can be used to detect cancerous tissues, extensive study on ex vivo tissues were performed for freshly resected human tissues resected from cancer patients in the operating room. In this study, we collected human tissues from brain cancer patients for demonstration purposes (although the same methods can be applied for many other cancer types such as breast cancer, oral cancer, gastrointestinal cancer and skin cancer to name a few). These human tissue specimens were imaged using a homebuilt optical imaging system (generally consistent with the OCT and/or LCI system illustrated in
Additionally, optical properties were computed for both tumor and non-tumor specimens. To accomplish this, specific algorithms were developed to analyze, average and fit the optical imaging data.
Once the optical imaging system has captured the imaging data and the associated optical property values of the tissue specimens are analyzed, these specimens are submitted to histological processing and validation.
In the training dataset, the histological slides of each tissue specimen were reviewed by a pathologist, who classifies a tissue specimen as either cancer or non-cancer. Based on these results, a diagnostic optical threshold was established to distinguish tumor versus non-tumor; for example, tissues with optical properties above the threshold value are classified as non-cancer, and tissues with optical properties below the threshold value are classified as cancer.
In the validation dataset, both the imaging user and the pathologist were blinded to the patient's clinical diagnosis (e.g. control patients with normal histology, or cancer patients).
After determining the optimal diagnostic threshold, a color-coded optical property map is constructed and displayed over the 1D, 2D or 3D optical imaging data to differentiate cancer from non-cancer for the given tissue specimens. The color-coded map can provide direct visual cues for the surgeon to differentiate tumor from non-tumor tissue for the imaged tissue. In addition, the user can toggle different modes of imaging data (e.g. structural imaging data, optical property map and Doppler information, or any combination of these data) on and off for the desired image display configurations.
In addition, the present invention also includes the development of graphics processing unit (GPU)-based and/or field-programmable gate array (FPGA)-based parallel processing algorithms which enabled efficient and real-time image acquisition, processing, display and storage of the optical imaging data as well as any associated optical properties. These software algorithms can be further configured based on any desired parameters including but not limited to imaging speed, desired display and computation format, and storage specification.
An embodiment according to the present invention also includes a non-transitory computer readable medium programmed to receive 1D, 2D or 3D OCT and/or LCI imaging data. Along with the optical imaging data, a quantitative, color-coded, and high-resolution optical property map is generated. The non-transitory computer readable medium is programmed to establish a threshold for optical properties and used for differentiating tumor from non-tumor with high sensitivity and specificity.
In addition, the invention can include a single non-transitory computer readable medium or two or more non-transitory computer readable media working together in parallel to process the 1D, 2D or 3D optical imaging data. This setup allows for quick extraction of optical properties over a given tissue's region of interest. The non-transitory computer readable medium can reside on the OCT and/or LCI imaging system or a separate computing device, server, or other computer networked either over hard wire or wirelessly to the optical imaging system for tracking regions of interest in real-time (as identified by the color-coded optical property map) with an aiming beam for interventional guidance. These tracking methods include but are not limited to the use of existing commercial tracking systems (e.g. infrared tracking or electromagnetic tracking of specific markers), or the integration of the optical imaging system to the surgical microscope (both conventional and stereoscopic). These tracking systems will be integrated with an OCT or LCI imaging system for tracking regions of interest in real-time and by overlaying multiple video/image feeds for optimal display of information. Examples of aiming beams include but are not limited to the use of laser sources, LED lights and other methods to visualize the OCT scanning region/field of view.
Finally, while the present invention is discussed with respect to the example of detection and interventional support for brain tumors, the same methodology can be used for tumor detection or interventional guidance in other organs or systems for both research and clinical use (including breast cancer, oral cancer, head and neck cancer and skin cancer to name a few).
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 61/970,104 filed Mar. 25, 2014, which is incorporated by reference herein, in its entirety.
This invention was made with government support under R01EB007636, R01CA120480, and R01NS070024 awarded by the National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/022432 | 3/25/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61970104 | Mar 2014 | US |