The present invention relates generally to a system and method for forming padded bags of the type typically used to package bulky articles such as pieces of furniture, and more specifically to such a system wherein bags of differing specifications, including windowed bags, may be formed on an in-line basis from a single production machine.
Bulky articles such as pieces of furniture are typically assembled at a manufacturing facility according to custom instructions based upon a customer or retailer order. Because of a wide variety of styles, constructions, fabrics, and the like within a single manufacturer's catalog, because such items are comparatively expensive, and because of traditional production practices, it is common for a furniture manufacturing facility to produce pieces of furniture of differing lengths on a piece-by-piece basis, rather than manufacturing a run of a single style all at the same time.
Because these articles often utilize valuable materials and skilled handiwork, and because they must be shipped great distances and protected during shipment, it is common to place each article in a plastic bag together with some sort of padding element. The automation of this process has resulted in the common use of a bag formed substantially as follows. A layer of foam or other suitable padding element is sandwiched between two layers of plastic film and sealed along its longitudinal edges. The sandwich is then folded along a central longitudinal line to form an envelope, and the envelope is made into a bag of an appropriate length by end-seal-cutting at longitudinally spaced locations corresponding to the desired length. The bag may then be placed over the bulky article so that the padding element surrounds the bulky article.
It is typical for these bags to be manufactured by a bag manufacturer in a series of standard sizes and provided to the furniture manufacturer on rolls or in packages of bags, sized based upon the largest item in the furniture manufacturer's catalog.
Those who are skilled in the art of furniture packaging will recognize that the padding element, which is generally opaque (as opposed to the generally transparent film), serves to obstruct easy vision of the article contained within the bag. As the bulky article may be held in a warehouse prior to delivery, a warehouse worker seeking to identify the article, which is generally a custom item specific to a particular customer's order, must generally rely on markings on the bag or open each bag to identify the desired article.
However, it has also been recognized that the type of damage against which the padding element protects is generally only realized at the ends of each piece, such as on the arms of a sofa. Therefore, one practice is to dispose the padding element only at the ends of the bag, leaving a “window” for the easy identification of the contents of the bag. This allows the bag manufacturer to realize a materials costs savings while providing for easier warehousing processes, but doing so introduces special difficulties into the manufacturing process. U.S. Pat. No. 6,428,459, the disclosure of which is incorporated herein by reference, identifies a method of forming a windowed bag for a bulky article which overcomes many of the special difficulties associated therewith.
A manufacturer offering numerous sizes of furniture, all custom-produced on a piece-by-piece basis at a single manufacturing point, must decide how many bags of each size to keep in stock, and this decision may hinge upon the suitability of a particular standard-size bag for use with a particular size of a piece of furniture. The risk associated with using a bag that fits the item improperly is that the item will incur damage during shipment, which results in a loss to the manufacturer and irritation and delay on the part of the customer. However, given a wide variety of sizes and the unpredictable nature of the business of custom furniture manufacturing, it is often economically infeasible to carry a supply of pre-made bags of every size needed, particularly if the bags vary both in their length and in the arrangement of the padding element. Most manufacturers keep only one to three sizes of bags in stock, each sized for the largest sofa, love seat, and chair, for instance, in the manufacturer's catalog. This practice is wasteful of bagging materials when these bags are used on smaller items.
It would therefore be helpful if a manufacturer could produce bags of custom sizes on a per-piece basis, such that a custom bag of exactly the right length and exactly the right padding element arrangement is produced only when needed.
A further problem associated with the formation of bags is in the length of the production line needed to form a single windowed bag. A typical arrangement for forming windowed bags includes two rolls of plastic film and a roll of padding element, which are rolled out into a sandwich, center-folded, and seal-cut along the ends to a desired length. If a windowed bag is to be formed, however, the padding element must be cut and the feeding of the padding element roll stopped briefly in relation to the feeding of the film rolls to form the region in which no padding element is present. It can be rather easily appreciated that this cut must be made before the sandwich is folded, and indeed just as the sandwich is formed; otherwise, access to the padding element is not available.
However, in a typical bag forming apparatus, the distance along the production line required for forming the sandwich, folding the sandwich, and sealing the end is longer than a typical bag, and may in some cases be longer than the total length of two, three, or more bags. This does not present a problem when bags of the same size are formed all at the same time, but if only a single bag of a custom size and arrangement is needed, then a substantial amount of waste is generated as the rolls must be advanced far enough to allow that custom bag to reach the end of the production line.
A further problem associated with the formation of windowed bags is the tendency of the padding element to shrink away from the heat sealing mechanism and to become disconnected within the film-pad sandwich. The ends are typically seal-cut using a hot wire sealing arrangement that is applied with a temperature sufficient to capture the end of the padding element within the seal by melting it into the thermoplastic. However, because the padding element is largely free to “float” within the sandwich, if a hot wire is applied to the seal-cut location, the unmelted portion of the padding element tends not to remain integral with the melted portion of the padding element, and this separation allows the unmelted portion to float freely. This is undesirable because the padding element needs to remain at the ends of the bag. This problem could be solved by attaching the padding element along its face to the film layers, but this would reduce the effectiveness of the padding element to prevent damage to the bulky article, and in certain applications (such as shrink-wrapping applications) may cause the padding element to become rumpled.
What is needed, then, is a bag forming apparatus and method that overcomes the noted disadvantages of conventional systems to allow single window bags of custom sizes and configurations to be produced in a desired order on a single machine, in such a manner that the padding elements are captured at their ends in the end-seals.
In accordance with the above-identified needs, the present invention principally includes a method of forming a series of bags having varying desired characteristics and dimensions for containing a like number of bulky articles, each of which bulky articles requires a bag having one of the varied characteristics and dimensions, using a pair of thermoplastic film rolls and a padding element roll.
The method includes a series of steps substantially as described hereinbelow. The film rolls and the padding element roll are driveable to advance out layers of film and padding, and depending upon the desired bag characteristics and dimensions, the film rolls and padding element roll may be selectively advanced (or not advanced) in a coordinated but not continuous fashion in order to arrange a linear, longitudinally traveling queue of layers of film and padding element.
In coordination with the step of advancing or not advancing the padding element roll, the padding element may be cut across its transverse extent using a knife or other conventional means, such that as the padding element is cut and the film rolls are advanced while the padding element roll is not advanced, a region is formed in the queue whereat no padding element is present between the film layers. This permits the formation of what will be, in the context of a finished bag, a window within the bag. This transverse cut is made at one of at least two cut points, the other of which will be discussed below.
Once the window has been formed within the queue, no further padding element-only cuts need be made, so the film layers and the padding element layer are then formed into a sandwich including the layers of film disposed about the padding element. At this point the longitudinal edges of the sandwich may be sealed so as to contain the padding element within the sandwich. The sandwich is then be folded longitudinally about a centerline thereof to form an envelope.
As the queue continues to be advanced, the point at which one bag is to end and another is to begin reaches a second cut point, at which point a transverse seal-cut is formed across the envelope to complete the formation of the first bag with a sealed end, at least partially to sever the first bag from the queue, and to seal the leading edge of the next bag in the line. This step is accomplished according to the desired bag characteristics and dimensions.
Overarching all of the foregoing steps is a further step wherein the longitudinal motion of the queue is controlled by selectively advancing or stopping the queue to facilitate the steps of cutting the padding element or selectively forming one of the transverse seal-cuts, according to a position of the queue with respect to one of the cut points. Those skilled within the art will recognize that the queue is not advanced unless an order for a bag has been placed with the control mechanism, such that bags in various stages of completion may be held within the queue and finished only when they have been forced forward in the queue, by bags ordered after that bag, to and through the final cut point.
The method of the present invention may further include, as part of the step of forming transverse seal-cuts, the step of interposing the envelope between a sealer bar and a compliant anvil, the sealer bar having an initial temperature below the softening point of the plastic and comprising a sealing surface and an optional ridge projecting therefrom for increasing clamping pressure along a cut line. The sealing surface itself is smaller, widthwise, than the sealer bar, so that on either side of the sealing surface there are regions where pressure may be applied without applying heat. A selected clamping pressure, sufficient to compress the padding element to a near-solid state in order to facilitate capture and heat transfer, is applied in order to clamp the layers of the film envelope between the sealer bar and the anvil. Rather than applying the clamping pressure to the sealer bar, the clamping pressure may be applied to the anvil. The sealing surface is then heated to a selected sealing temperature, such that the layer of padding element is captured in the layers of thermoplastic film in the region of the sealing surface and, because of the effect of additional pressure in the area of the ridge if it is present, the envelope is at least partially severed in the region of the ridge to define the end of a first bag and the leading edge of the next bag. In the regions of the sealer bar outside the sealing surface, the padding element is held in place so that it cannot shrink away from the seal. The sealing surface and plastic are then cooled (or allowed to cool) to a temperature below the softening point of the plastic and the clamping pressure is removed. Alternatively to the use of a severing ridge, a seal band with no ridge and a cutting apparatus such as a knife could be used to separate one bag from another.
In a further feature of the present invention, a nonstick layer may be interposed between the sealer bar and the envelope. If a perforated cut is preferred, a plurality of heat conducting members may be interposed between the sealer bar and the envelope to form retention regions connecting the two bags, such that the seal-cut is a perforation. These heat conducting members may be spring wires, spring bands, or any other material suitable for drawing, in a localized fashion, sufficient heat away from the ridge such that the heat remaining in the area is insufficient to sever the bag. The dimensions of these areas will necessarily depend upon the characteristics of the materials being sealed and will preferably be chosen to allow the bags to be disconnected from each other fairly easily. These conducting members should be electrically isolated from the sealer bar so as to prevent a short circuit from developing.
The resulting bags have the desired characteristics (including window size and location) and dimensions (principally the length thereof).
The present invention also includes an apparatus or system for accomplishing the above-described method, including a pair of thermoplastic film rolls each feeding a layer of a thermoplastic film; a padding element roll selectively driveable to feed a layer of a padding element interbetween the layers of thermoplastic film to form a sandwich; a knife for cutting the padding element to form a window in one of the bags; means for folding the sandwich to form an envelope; a seal-cutter for forming a seal-cut whereby a trailing end of a first bag and a leading end of a second bag are sealed and at least partially cut; and a microprocessor control for controlling operation of the knife, operation of the seal-cutter, and coordinated movement of a queue comprising the layers of film and the layer of padding element, according to the varying desired characteristics and dimensions of the bags.
The system may further include means for longitudinally sealing the sandwich along edges thereof. The seal-cutter may include a compliant anvil and a sealer bar optionally having a central ridge or a heat-resistant non-conducting wire for increasing clamping pressure along a cut line, the sealer bar being selectively heatable to a desired temperature and the sealer bar and the anvil cooperating to apply pressure to the envelope. The seal-cutter may be configured to produce a fully severing cut or a perforated cut, or to perform a cutting operation separately from the sealing operation.
Additionally, a method of forming seal-cuts substantially as described above as part of the method of forming a series of bags forms an independent part of the present invention.
Further features, embodiments, and advantages of the present invention will become apparent from the following detailed description with reference to the drawings, wherein:
The present invention includes a method and a system for forming a series of bags having varying desired characteristics and dimensions for containing a like number of bulky articles each requiring one of the bags of varied characteristics and dimensions. Generally, the bags are to be constructed in three layers: two layers of thermoplastic film and a layer of a padding element. The film may be made of any suitable thermoplastic of any desired thickness, and the padding element may be a thermoplastic foam, a polyester pad, a synthetic fabric, or any other suitable material capable of being heat-sealed into a captured relationship with the thermoplastic film. By way of example, the present invention has been shown to be useful with a polyethylene film of 1 mil to 5 mil thickness and either a polyethylene foam of 3/32″ thickness or a polyester pad of 3.5-oz. weight (thickness of approximately 0.020″). However, those skilled in the art will recognize that a wide variety of materials are susceptible of use within the method and system of the present invention, and that adjustments in the sealing temperature, the sealing pressure, and the size of the sealing region may be required to produce a suitable bag, based upon the particular materials selected.
The present invention is useful to make, among other bags, a bag of the general type and specifications described in U.S. Pat. No. 6,428,459, as depicted in the drawings thereof, but having certain preferred characteristics not identified therein but described hereinbelow.
Referring now to
Also visible in
Referring now to
The system 10 is further provided with a knife 50 which is positioned, at a position just before the layers 41, 43, 45 are collated, to cut across the transverse extent of the padding element layer 43 (i.e., substantially perpendicularly to the feed direction defined by arrows A). Those skilled in the art to which the present invention relates will recognize that as a practical matter if the interior layer 43 is to be cut, it must be cut before the layers 41, 43, 45 are collated. The knife 50 may take any suitable form, such as a rotary cutter running along the transverse extent of the padding element layer 43, a guillotine-type cutter actuable to sever the padding element layer 43, or a similar device, and in a preferred embodiment the knife 50 is a rotary cutter.
The function of the device 10 at the knife 50 represents a critical step in the production of bags, because the knife 50 is used in order to form a window in the bag 24 by causing sections of the padding element layer 43 to be laid out discretely in the queue 100. A window is defined as a region of the bag 24 in which no padding element 43 exists, because the thermoplastic film layers 41, 45 are generally substantially transparent, while the padding element layer 43 is generally opaque. As the queue 100 is laid out, the padding element layer 43, which is continuous as it is fed from the padding element roll 42, must be cut at the point in the queue representing the leading edge of a window within a bag, and the film layers 41, 45 must be advanced while the padding element roll 42 and its associated layer 43 are held still. When the queue 100 has been advanced to the point representing the end of the window, the padding element roll 42 may be restarted, and the padding element layer 43 is again fed at the same rate as the film layers 41, 45. The knife 50 represents one of two critical cut points, at which it may be necessary to stop all motion of the queue 100 to facilitate a cut; this process will be described in greater detail below.
At the point in the queue 100 just after the knife 50, the layers 41, 43, 45 are collated and formed into a sandwich 60 that in a preferred embodiment includes at any given point along the longitudinal extent of the queue 100 two or three layers, depending upon whether or not the given point is within or without a window. At this point, because access to the interior layer is no longer required, in a preferred embodiment the longitudinal edges of the sandwich 60 are sealed shut by a means 52, 52 for longitudinally sealing that may be a heated-air sealer, a hot wire or roller, or any similar device designed to apply heat to the edge of the film layers 41, 45, sealing them to each other in a substantially continuous fashion along the edge. As can be seen in
Once the queue 100 has been laid out into a sandwich 60 including discrete and longitudinally intermittent sections of the padding element layer 43 interbetween two continuous layers of thermoplastic film 41, 45, the sandwich 60 must be folded to form an envelope 70 from which the bags 24 will be finally forged. In a preferred embodiment, this step of folding is accomplished by drawing the bag queue 100 under and around an A-frame 14 and feeding the bag queue 100 through the drive rolls 72. The geometry of the A-frame 14 is designed so as to allow the two longitudinal edges of the queue 100 to be drawn together such as that the layers 41, 43, 45 are folded along their longitudinal centerline 101 at a slot 73 between the two rolls of the drive apparatus 72. The queue 100 is fed through the slot 73 and advanced in a sidelong fashion toward the seal-cutter apparatus 20.
The queue 100 is directed toward the seal-cutter apparatus 20, which forms the aforementioned second cut point 54. Whereas the first cut point 50 is arranged to cut only the interior layer of padding element 43, the second cut point 54 is arranged to seal and cut across the entire transverse extent of the envelope 70. As the seal-cut is accomplished, the trailing end of a leading bag 24 and the leading end of a trailing bag 24 are formed simultaneously by fusing the padding element layer 43 and the film layers 41, 45 together in a permanent relation, and the two bags are at least partially severed from each other. The structure and operation of cut point 54, including particularly that of the seal-cutting apparatus 20, will be described in greater detail below.
A further member of the bag-forming apparatus 10 is a control pad 30 that contains a user input and display and a microprocessor control 32. The microprocessor control 32 is designed and arranged to control a number of operations associated with the bag-forming apparatus 10 and, more importantly, to coordinate those operations over time and distance to form bags of varying characteristics and dimensions.
As can be seen in
Referring now to
Line A as indicated by sections A1, A2, A3, etc. indicates the intended size of a series of bags 24 lined up within the queue 100. Line B, as indicated by sections B1, B2, B3, etc., indicates the length and placement of sections of the padding element layer 43 within the queue 100. The space between sections B1, B2, B3, etc., will become windows 26 in the bags 24. Line C is a solid line representing the continuous nature of the film layers 41, 45.
As can be seen in
Because the distance from the cut point 50 to the seal-cut point 54 is larger than the length of a bag 24, principally because the folding process requires a significant distance, a number of bags are held within the queue 100. As the queue advances, if the designated location for forming a seal-cut reaches the seal-cut point 54, then the queue must be stopped, again under the control of microprocessor control 32, to facilitate the seal-cut to complete the processing of one bag 24 and to seal the leading edge 25 of the next bag 24 in the queue.
The microprocessor control 32 is primarily responsible for receiving bag orders and coordinating the operation of the apparatus 10 according to the following parameters:
Those who are skilled in the art will appreciate that the decisions to stop or start the queue 100, to advance or not to advance the padding element layer 43, to actuate the knife 50, or to actuate the seal-cutter 20 may be made at any given time depending upon whether a decision point (primarily, an end of a bag 24 or an end of a window 26) has reached an action point (primarily, a cut point 50, 54) within the queue 100. The positioning of the decision points with regard to the action points is largely a question of a selected bag length and a selected bag characteristic (such as having a window or not having a window, or having a window that extends to the end of the bag).
Therefore, in a preferred embodiment of the present invention, a series of bags 24 is formed by selectively advancing the film rolls 40,44 and selectively advancing or not advancing the padding element roll 42 in order to arrange a linear, longitudinally traveling queue 100 of layers of film 41,45 and padding element 43 according to the desired bag characteristics and dimensions; selectively cutting the padding element 43 at a first cut point 50 to form, in combination with the step of selectively not advancing the padding element roll 42, a window 26 for one of the bags 24; forming a sandwich 60 comprising the layers of film 41,45 disposed about the padding element 43; forming an envelope 70 wherein the sandwich 60 is folded longitudinally about a centerline 101 thereof; selectively forming transverse seal-cuts 53 across the envelope 70 at a second cut point 54 to form the bag 24 according to the desired bag characteristics; and selectively advancing or stopping the queue 100 to facilitate the step of cutting the padding element 43 or the step of selectively forming one of the transverse seal-cuts 53, according to a position of the queue 100 with respect to one of the cut points 50,54.
Referring now to
As can be seen in the figures, the profile of the seal bar 80 is substantially wider than the width of the tip 82. This provides a region of compression on either side of the tip 82 across which no heat is being applied. This is of particular importance to one aspect of a preferred embodiment of the present invention, namely, that the padding element layer 43 is compressed and held fast without heat so that the heat of the tip 82 during seal-cutting does not cause the foam to pull away from the sealing region. This process will be described in greater detail below.
The tip 82 of the seal bar 80 is provided with a central ridge 81 for increasing the clamping pressure along a cut line between the bags 24. As will be described in greater detail below, the central ridge 81 serves to increase, in a localized fashion, the application of pressure to the envelope 70. The increased pressure in the region of the central ridge 81 will, in combination with the heat to be applied, be sufficient to cut the bags 24 apart, and that increased pressure forms the difference between the cutting action of the seal-cut apparatus in the central ridge region and the sealing action of the same apparatus in the regions of the tip 82 outside the central ridge region.
Because a preferred seal bar 80 is electrically and thermally conductive, an insulating member 83 made of any suitable material is provided between the tip 82 and the remainder of the seal bar 80, so that the tip 82 is electrically and thermally isolated from the remainder of the seal bar 80. An anvil 84 is mounted in opposing relationship to the seal bar 80 and in a preferred embodiment is designed to be driven against the seal bar 80 to apply a selected pressure to the envelope 70 during the course of making the seal-cut. The anvil 84 may be driven in a variety of ways, such as by using a set of pistons 86 or by expanding a flexible but sturdy tube 88 such as a fire hose to apply the desired pressure, or a combination of the two. The anvil is preferably made of steel, aluminum, or some other substantially inflexible material and is in a preferred embodiment provided with a nonstick, compressible, compliant, non-conductive surface 85 which will contact the envelope 70. The surface 85 is in a preferred embodiment formed of silicon rubber.
Those skilled in the art will recognize that it is equally possible to drive the seal bar 80 to induce the pressure at the seal-cut point 54, without departing from the scope of the invention.
In order to prevent the seal bar 80 and more specifically the tip 82 from sticking to the envelope 70 during the course of making the seal-cut, a nonstick member 90 is interposed between the tip 82 and the envelope 70. The nonstick member 90 is capable of transmitting heat therethrough and is in a preferred embodiment a sheet of glass cloth 91 which has been coated on both sides 92,93 with Teflon® or a similar nonstick material to facilitate the release of the tip 82 from the envelope 70 at the conclusion of the operation.
An optional set of heat-conducting members 94 may be interposed between the tip 82 and the nonstick member 90 in order to produce a perforated cut in a manner that will be described in greater detail below. Also, one or two stripper plates 96 are actuable to strip the envelope 70 (now bags 24) from the nonstick member 90 if required, as discussed below.
Referring now to
In
As shown in
Referring now to
In various preferred embodiments, the heat-conducting members 98 are spring wires or spring bands. The particular material from which the heat-conducting members 98 are fabricated and the characteristics of those heat-conducting members will be selected primarily based upon the composition of the film layers 41,45 and the padding element layer 43. A thin or a thick heat-conducting member 98, corresponding to the horizontal width of the regions 99 in which film layers 41,45 and the padding element layer 43 remain unsevered, will be chosen depending upon the ease with which the two bags 24 may be separated by tearing through those unsevered regions 99. For instance, if the padding element is a polyethylene foam, then a wider heat-conducting member 98 might be used since a foam padding element would be easier to tear than, for example, a polyester padding element.
The heat-conducting elements 98 are electrically and thermally isolated from each other and from the remainder of the apparatus 10, preferably by embedding the ends thereof into blocks 104 of Formica or another suitable insulator, so as not to develop an electrical short circuit. This arrangement is preferred because the heat-conducting elements 98 will directly contact the electrically energized, heated tip 82.
Referring now to
Referring now to
In addition to the information provided above, those skilled in the art will recognize as a practical consideration that the heating element 82 expands when heated. Sufficient pressure should be applied to the anvil 84 and/or the seal bar 80 in order to prevent the heating element 82 from warping, because even a slight incomplete contact between the heating element 82 and the envelope, opposed by the anvil, prevents the full solid-state compression of the padding element, which in turn inhibits heat transfer and prevents an effective seal.
In view of the aforesaid written description of the present invention, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended nor is to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
This application is a Division of U.S. application Ser. No. 10/923,308, filed on Aug. 20, 2004, now U.S. Pat. No. 7,115,086, issued on Oct. 3, 2006.
Number | Name | Date | Kind |
---|---|---|---|
1770865 | Royal | Jul 1930 | A |
1814967 | Royal | Jul 1931 | A |
1989794 | Duvall | Feb 1935 | A |
2121259 | Scott | Jun 1938 | A |
2265075 | Knuetter | Dec 1941 | A |
2474770 | Young et al. | Jun 1949 | A |
2805973 | Klasing et al. | Sep 1957 | A |
2897109 | Voigtman | Jul 1959 | A |
3044429 | Levi | Jul 1962 | A |
3044517 | Levi | Jul 1962 | A |
3111154 | Levi | Nov 1963 | A |
3248040 | Friedman | Apr 1966 | A |
3409494 | Korzinek | Nov 1968 | A |
3509049 | Gerard | Apr 1970 | A |
3576059 | Pearson | Apr 1971 | A |
3669252 | Evans | Jun 1972 | A |
3734394 | Dooley | May 1973 | A |
3744360 | Currie et al. | Jul 1973 | A |
3750872 | Bobb | Aug 1973 | A |
3827341 | Stage | Aug 1974 | A |
3891138 | Glas | Jun 1975 | A |
3938661 | Carmody | Feb 1976 | A |
3948436 | Bambara | Apr 1976 | A |
3986661 | Dreher | Oct 1976 | A |
4011798 | Bambara et al. | Mar 1977 | A |
4385427 | Fraiser | May 1983 | A |
4507163 | Menard | Mar 1985 | A |
4878765 | Watkins et al. | Nov 1989 | A |
4878974 | Kagawa | Nov 1989 | A |
4937131 | Baldacci et al. | Jun 1990 | A |
4987997 | Raszewski et al. | Jan 1991 | A |
5057169 | Adelman | Oct 1991 | A |
5143133 | Speckman | Sep 1992 | A |
5188581 | Baldacci | Feb 1993 | A |
5407078 | Strauser | Apr 1995 | A |
5465842 | Utley | Nov 1995 | A |
5474185 | Franke | Dec 1995 | A |
5701999 | Phillips, II et al. | Dec 1997 | A |
5881883 | Siegelman | Mar 1999 | A |
5882776 | Bambara et al. | Mar 1999 | A |
6189692 | Campbell, Jr. | Feb 2001 | B1 |
6234944 | Anderson et al. | May 2001 | B1 |
6293897 | Anderson et al. | Sep 2001 | B1 |
6428459 | Campbell, Jr. | Aug 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
Parent | 10923308 | Aug 2004 | US |
Child | 11298328 | US |