This application claims the benefit of CN 201020022124.7, filed on 2010 Jan. 15, CN 201020108147.X, filed on 2010 Feb. 2, CN 201020125898.2, filed on 2010 Mar. 5, and CN 201010166104.1, filed on 2010 Apr. 30, the disclosures of which are incorporated herein by reference in their entirety.
This disclosure relates to a power tool, and more particularly, to an electric hammer which drives nails or other fasteners to enter into an object by a force provided by a striking device.
Electric hammers are electric tools which gradually strike fasteners such as nails into an object through the reciprocating movements of a striking device. The nails are required to be clamped by a clamping device while being stricken. The existing clamping device includes any one or any combination of jaws, springs, or chucks, which are provided to a housing of a power tool In order to strike fasteners such as nails into an object completely, the clamping device can move via a biasing device between a first position where the nail is clamped and a second position where the nail is released. However, existing clamping device have the disadvantages of insecure clamping, relatively complicated mechanism, huge volume and incompactness, etc.
To overcome the existing disadvantages of currently known mechanisms, the present disclosure provides a quick-clamping mechanism for an electric hammer which has a good clamping effect and a compact structure. To this end, a quick-clamping mechanism comprises a clamping assembly, wherein the clamping assembly comprises at least two clamping claws which can be closed and opened and are pivotally connected to a pivot shaft.
In described embodiments, the quick-clamping mechanism may comprise a torsion spring for closing the two clamping claws, wherein two ends of the torsion spring are inserted into the two clamping claws, respectively; the two clamping claws may be provided with a magnetic element for closing the two clamping claws, respectively; the quick-clamping mechanism may also comprise a biasing assembly which acts on the clamping assembly so that the clamping assembly is biased towards a closed position of the two clamping claws; the biasing assembly may comprise a housing and a resilient element received within the housing; the resilient element may be a spring; the biasing assembly may also comprise a sliding sleeve mounted within the housing, wherein the sliding sleeve is slidable along the axial direction of the housing and can be restored to its initial position through the resilient element; and the biasing assembly may also comprise a bushing mounted within the sliding sleeve and connected to the sliding sleeve by using a mold insert.
As will become more apparent, with the above technical solutions, the following beneficial advantages can be obtained:
The two clamping claws are pivotally connected to the pivot shaft, and the fasteners such as nails and the like can be clamped or released by the two clamping claws pivoting relative to the pivot shaft, so that it has a simple structure which is easy to implement and the two clamping claws can be automatically closed, after the nail is loaded, by providing a torsion spring or a magnet on the two clamping claws, so that it can be operated expediently and clamped securely.
Exemplary embodiments of subject clamping mechanism for use with an electric hammer will now be described with reference to the accompanying drawings.
As shown in
A V-shaped groove 14 for clamping the nail is provided in the middle of the engaging surfaces of the A, B clamping claws 5, 4 while being closed. A bevel 13 is provided on the top of the engaging surface of each clamping claw, and a V-shaped notch is formed by the bevels 13 on the top of the engaging surfaces of the clamping claws to allow the nail to be loaded. The right end of each of the clamping claw is provided a tapered guiding hole for the head of the nail, so that a circular hole is formed at the right end of the clamping claws by two tapered guiding holes. The circular hole has a diameter slightly larger than the diameter of the striking rod 9 for facilitating the striking rod 9 to press and then open the A, B clamping claws 5, 4 so as to strike the nail 2 wholly into the workpiece 1. Further, the A, B clamping claws 5, 4 are also provided on the right side thereof with a stepped face 15. The bushing 8 extends into the A, B clamping claws 5, 4 and abut at its left end against the stepped face 15, so that the bushing 8 serves to stop and align the A, B clamping claws 5, 4. The right end of the A, B clamping claws 5, 4 is spaced with a gap from the left end of the sliding sleeve 10, wherein the gap is used for passing the head of the nail therethrough while loading the nail. The bushing 8 is formed with a C-shaped sleeve at the gap which is a truncated section of an arc at the top to facilitate the head of the nail to be loaded.
The bushing 8 and the sliding sleeve 10 according to the present invention may be made in one piece, but preferably are connected to each other by using a mold insert. The bushing 8 is made of a hard material such as steel, while the sliding sleeve 10 is made of a soft material such as plastic. The bushing 8 can not only strengthen the sliding sleeve 10 locally but also enhance the wear resistance by reducing any abrasion caused by the striking rod 9.
A second embodiment of the quick-clamping mechanism is shown in
The A, B clamping claws may also obtain an automatic closure by using a magnet and a torsion spring simultaneously.
The working principle of the quick-clamping mechanism for an electric hammer of the first and second embodiment is now explained in detail.
The sequence of loading the nail is explained with reference to
In the following embodiments, the same reference numerals refer to the same or corresponding positions or members.
As shown in
As shown in
The torsion spring 60 is secured at its one end by the sheath 70 so that it can not move relative to the sliding sleeve 10, and the sheath 70 is unable to rotate circumferentially relative to the sliding sleeve 10. The sheath 70 and the sliding sleeve 10 are positioned with respect to each other by milling the curved surfaces to flat surface or by an engagement between a projection and a recess, for axially positioning other units except for the sliding sleeve 10 and supporting the first spring 50 for pushing the bushing 30.
The ferrule 40 is a part connecting the sheath 70 and the turning sleeve 20. The ferrule 40 and the turning sleeve 20 are engaged with each other by means of a projection and a recess so that they can not rotate with respect to each other and the rotary force of the turning sleeve 20 is indirectly transferred into the torsion force of the torsion spring 60. Once the turning sleeve 20 is released, it can be restored automatically by the torsion spring 60.
In conjunction with
Referring to
Each of the clamping elements 80, 80′ of the third embodiment is further provided with a clamping element cap on one end that abuts against the eccentric curved surfaces 210, 210′. The second springs 90, 90′ are covered on the clamping elements 80, 80′; both ends of the second springs 90, 90′ are limited by stepped surfaces of the caps of the clamping elements 80, 80′ and the outside surface of the sliding sleeve 10, respectively, so that the clamping elements 80, 80′ automatically slide to the position where the eccentric curved surfaces 210, 210′ has a maximum diameter.
In order to limit the circumferential rotation of the turning sleeve 20, a locating pin 140 is provided in the third embodiment. The locating pin 140 is pressed with interference into the sliding sleeve 10 and can slide within a circumferential hole 230 provided on the turning sleeve 20 and within an axial hole 330 formed on the bushing 3.
Herein below is the procedure of clamping and striking the nail by use of the quick-clamping mechanism of the third embodiment.
In the initial state, the sliding sleeve 10 extends out of the housing 12 to the longest extent under the action of the third spring 120. Under the action of the second springs 90 and 90′, one end of each of the clamping elements 80, 80′ abuts against the eccentric curved surface 210 and 210′, and each of the clamping elements 80, 80′ extends into the sliding sleeve 10 to the shortest extent. In this case, the projection 220 of the turning sleeve 20 is engaged in the annular slot 320 of the bushing 30, so that the bushing 30 compresses the first spring 50.
During the procedure of clamping the nail, the turning sleeve 20 is rotated while the nail is placed in position. At this time, the clamping elements 80, 80′ slide towards the nail. When the turning sleeve 20 rotates to a certain angle, that is, to a position where the quick-clamping mechanism can clamp the nail with a maximum diameter, the projection 220 of the turning sleeve 20 faces the entrance of the inclined slot 310 of the bushing 30. Since the first spring 50 is initially in a compressed state, the bushing 30 is ejected by the first spring 50 under the action of the first spring 50. If the nail 2 has not been clamped yet, the turning sleeve 20 can be rotated continually, at this time, the projection 220 of the turning sleeve 20 slides downwards along the inclined slot 310 of the bushing 30 until the nail 2 is clamped firmly. There exists an angle between the inclined slot 310 of the bushing 30 and the axis of the bushing, so that the turning sleeve 20 can be self-locked and can not rotate relatively after the operator stops rotating the turning sleeve 20. As a result, a secure clamping is achieved.
During the procedure of striking a nail, in phase 1, the nail 2 is clamped firmly and then is slowly stricken into the workpiece by the striking rod 9, so that the workpiece gradually contacts the bushing 30, then the workpiece pushes the bushing 30 to retract into the quick-clamping mechanism. Once the bushing 30 is retracted fully, the projection 220 of the turning sleeve 20 slides out of the inclined slot 310 of the bushing and engages in the annular slot 320 of the bushing 30. In this case, there is no circumferential limit for the turning sleeve 20. As a result, the turning sleeve 20 rotates and restores to its initial state under the action force of the torsion spring 60. Accordingly, the clamping elements 80, 80′ slide from the clamped position to the released position.
In phase 2, when the nail is stricken continually, the workpiece pushes the whole quick-clamping mechanism to move rightwards, and then the third spring 120 is compressed until the striking rod 9 extends out to the same plane as the workpiece.
After the procedure of striking the nail is finished, the hammer is lifted. At this time, the quick-clamping mechanism is restored under the action force of the third spring 120 and waits for the next working cycle.
As shown in
As shown in
At least two clamping elements, and in this embodiment, three clamping elements 2′, are evenly arranged along the circumference of 360°. The clamping elements 2′ are accommodated in the outer sleeve 4′ and arranged at an inclination angle α relative to the direction of the axis of the outer sleeve 4′. The clamping elements 2 are driven by the outer sleeve 4′ indirectly, and can move between a released position C′ and a clamping position D′ along the direction of the inclination angle α when the outer sleeve 4 moves between the first position A′ and the second position B′. The tilted direction of the clamping elements 2′ is configured so that the front ends 21′ of the clamping elements 2′ tend to be in close proximity to the axis, and the rear ends 22′ of the clamping elements tends to depart away from the axis.
The inner sleeve 1′ is mounted in the outer sleeve 4′ and driven by the outer sleeve 4′ with a linkage structure, so that the inner sleeve 1 can rotate at an angle when the outer sleeve 4′ moves between the first position A′ and the second position B′. The linkage structure is such that the outer sleeve 4′ is opened with an inclined slot 7′ in which a pin 3′ may slide and the inner sleeve 1′ is provided with a pin hole 8′ in which the pin 3′ may be interferentially pressed to fixedly connect with the inner sleeve 1′. When the outer sleeve 4′ moves axially, the pin 3′ slides in the inclined slot 7′ to make the inner sleeve 1′ rotate, that is to say, the axial movement of the outer sleeve 4′ may be converted to the rotation movement of the inner sleeve 1′ by the cooperation of the pin 3′ and the inclined slot 7′. Those skilled in the art may easily conceive that the configurations of the inclined slot 7′ and the pins 3′ are not limited to the above preferred embodiment to convert the axial movement of the outer sleeve 4′ into the rotation movement of the inner sleeve 1′, namely, the object can be achieved by arranging the inclined slot 7′ in the inner sleeve 1′ and arranging the pins 3′ in the outer sleeve 4′.
The inner sleeve 1′ is threadly connected with the clamping elements 2′, wherein the inner surface of the inner sleeve 1′ is provided with threads and the outer surfaces of the clamping elements 2′ are provided with threads which may be properly screwed up with the inner surface of the inner sleeve 1′. The clamping elements 2′ can axially move upon the rotation of the inner sleeve 1′, and can radially move relative to the center of the sleeve simultaneously due to the inclination angle α of the clamping elements 2′ with respect to the axial direction of the sleeve, so as to move to the released position C′ and the clamping position D′, wherein the inner surfaces of the clamping elements 2′ are used to clamp the nails.
The retaining bracket 5′ is annular and includes an inner hole 15′ through which the striking element 12′ of the electric hammer for striking the nail can pass. The retaining bracket 5′ is also provided with fixing holes 6″ through which the clamping elements 2′ can pass and slide, and the sectional shapes of the fixing holes 6″ and the clamping elements 2′ may ensure that the clamping elements 2′ cannot rotate so as to obtain a reliable clamping.
Shown in
At least two clamping elements, and in this embodiment, three clamping elements 2′, are evenly arranged along the circumference of 360°. The clamping elements 2′ are accommodated within the outer sleeve 4′ and arranged at an inclination angle α relative to the direction of the axis of the outer sleeve 4′. The outer sleeve 4′ or the clamping elements 2′ can be provided with projections 13′ vertical to the axis of the outer sleeve 4′, and the other one of the outer sleeve 4′ and the clamping elements 2′ can be provided with corresponding holes 14′ for passing the projections 13′ there through. The clamping elements 2 are driven by the outer sleeve 4′ directly, and can move between a released position C′ and a clamping position D′ along the direction of the inclination angle α when the outer sleeve 4′ moves between the first position A′ and the second position B′. The tilted direction of the clamping elements 2′ is configured so that the front ends 21′ of the clamping elements 2′ tend to be in close proximity to the axis, and the rear ends 22′ of the clamping elements tend to depart away from the axis.
The retaining bracket 5′ is annular and has an inner hole 15′ through which the striking element 12′ of the electric hammer for striking nails can pass. The retaining bracket 5′ is also provided with fixing holes 6″ through which the clamping elements 2′ can pass and slide, and the sectional shapes of the fixing holes 6″ and the clamping elements 2′ may ensure that the clamping elements 2′ cannot rotate so as to obtain the reliable clamping.
The working process of the quick-clamping mechanism for the electric hammer of the fifth embodiment will now be explained.
Clamping the nails: an external force may be exerted to the outer sleeve 4′ to enable the quick-clamping mechanism to retract back along the axial direction, and the inner sleeve 1′ is rotated under the joint action of the inclined slot 7′ and the pins 3′ so that the clamping elements 2′ retract back in the quick-clamping mechanism, and the front ends 21′ of the clamping elements are opened for loading the nail 2; the outer sleeve 4′ may be released to make it eject axially under the action of the biasing means, so that the clamping elements 2′ become tight forward and the front ends 21′ of the clamping elements may clamp the nail (seen in combination with
Striking the nails: when the nail 2 partially enters into the workpiece 1, the workpiece 1 gradually pushes the outer sleeve 4′ to retract back in the quick-clamping mechanism, and then the inner sleeve 1′ is rotated correspondingly so that the clamping elements 2′ are retracted in the quick-clamping mechanism to slowly release the nail 2 (seen in combination with
Finishing a circle: the clamping elements 2′ gradually release the nail 2 during the striking process, until the nail 2 is fully stricken into the workpiece 1 (seen in combination with
As shown in
As shown in
Referring to
Referring to
The number of the clamping member need not be limited to two, and may be increased correspondingly for clamping more firmly.
Next, the work principle of the quick-clamping device for the electric hammer of the sixth embodiment will be explained.
When clamping the nail, the outer sleeve 700 is pushed by overcoming the biasing elastic member 1100. Once the left side of the first slotted hole 500 of the outer sleeve 700 abuts against the slide arm 1500 of the one clamping member 200′, the outer sleeve 700 is further pushed so that the two clamping members 200, 200′ reach the released position. In this case, the magnetic units of the magnetic members 300 with the same magnetic pole arranged on the two clamping members 200, 200′ respectively are opposed, thus the two clamping members 200, 200′ are moved to space a maximal distance by overcoming the action of respective elastic biasing members 400, 1300 respectively under the action of same magnetic poles repulsing. At this moment, the nail 2 may be put into place, the load exerted to the outer sleeve 700 is removed, thus the biasing member 1100 starts to restore. Under the action of the biasing member 1100, the outer sleeve 700 is ready to restore, and the right side of the first slotted hole 500 of the outer sleeve 700 abuts against the slide arm 1500 of the one clamping member 200′ so that the magnetic units of the magnetic portions 300 with different poles on the two clamping members 200, 200′ are opposed, thus the two clamping members 200, 200′ attract mutually so as to clamp the nail under the action of different magnetic poles attracting mutually.
In operation, the front end of the outer sleeve 700 comes into contact with the work piece so that the supporting member 900 retracts inwards until the two clamping members 200, 200′ are in the released position. In this case, the two clamping members 200, 200′ are separated by the maximum distance, and both the nail 2 and the striking rod 9 can pass through the inner sleeve 800. After the operation is finished, the quick-clamping device 1000 may restore to its initial state since the load exerted to the outer sleeve 700 has been removed.
The seventh embodiment differs from the sixth embodiment in that the two clamping members 200, 200′ are provided with respective magnetic members 3100, 3100′. The magnetic polarity of the one magnetic member 3100 at the end towards the axle centre of the inner sleeve 800 is constant, while the other magnetic member 3100′ is connected with a gear that is engaged with a rack 3200. The rack 3200 is provided with a plurality of cantilever arms 3500 that are connected to the outer sleeve 700, thus the rack 3200 can be moved between a first position and a second position in the axial direction of the inner sleeve 800 via the cantilever arms 3500 through the outer sleeve 700 moving with respect to the inner sleeve 800. Then, the gear is rotated and brings the poles of one magnetic member 3100′ to be reversed in their magnetic polarity. As a result, it may be reversed to the released position in which the same magnetic poles of the magnetic members 3100, 3100′ on the two clamping members 200, 200′ are opposed from the clamped position in which the different magnetic poles of the magnetic members 3100, 3100′ on the two clamping members 2, 2′ are opposed.
The front surface 7100 of the outer sleeve protrudes beyond the front surface 8100 of the inner sleeve 800, thus the surface of the work piece may first come into contact with the front surface 7100 of the outer sleeve 700 in the process of striking the nail. As compared between
The clamping members 200, 200′ may be radially movably mounted to the inner sleeve 800 relative to the inner sleeve 800. The clamping members 200, 200′ are provided with a biasing device for biasing the clamping members towards the axle centre of the inner sleeve 800 respectively. In the present embodiment, the biasing device acting on one clamping member 200′ is an additional magnetic member 3300, while the biasing device acting the other clamping member 200 is a spring 1400. The pole direction of the additional magnetic member 3300 is constant, thus when the magnetic poles of the magnetic member 3100′ on one clamping member 200′ are reversed, the additional magnetic member 3300 may attract or repulse the magnetic member 3100′.
In other embodiments, the magnetic members and the clamping members may be formed integrally. Additionally, in order to clamp or release the nail by reversing the poles, it is not limited to arrange a magnetic member on the clamping member, and it may also use a magnetic inductive conductive coil for the same purpose.
Number | Date | Country | Kind |
---|---|---|---|
2010 2 0022124 U | Jan 2010 | CN | national |
2010 2 0108147 U | Feb 2010 | CN | national |
2010 2 0125898 U | Mar 2010 | CN | national |
2010 1 0166104 | Apr 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
1425359 | Barry | Aug 1922 | A |
2670215 | Fishwick | Feb 1954 | A |
2938266 | Klein, Jr. | May 1960 | A |
3200863 | Feldpausch | Aug 1965 | A |
4003417 | Cornwell | Jan 1977 | A |
5897045 | Olvera et al. | Apr 1999 | A |
7234376 | Bader | Jun 2007 | B2 |
7399101 | Clausen et al. | Jul 2008 | B2 |
20080054043 | Beales | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1207017 | May 2002 | EP |
08108325 | Apr 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20110174859 A1 | Jul 2011 | US |