Claims
- 1. An acrylate, or methacrylate, or allylic, terminated polymer (oligomer) which is copolymerizable with styrene, methyl methacrylate or N-vinyl pyrrolidone, said polymer comprising the reaction product of a) at least one polyol, b) at least one di or polyisocyanate, and c) at least one hydroxy alkyl acrylate, or methacrylate, or allylic, wherein either i) a and b are reacted to form an isocyanate terminated oligomer or polymer and said isocyanate terminated oligomer or polymer is reacted with c to form an acrylate, or methacrylate, or allylic, terminated oligomer or polymer or ii) b is reacted with c to form an isocyanate functionalized acrylate, or methacrylate, or allylic, which is then reacted with a to form an acrylate, or methacrylate, or allylic, terminated oligomer or polymer, where said at least one polyol comprises at least 10 weight percent repeating units of the formula
- 2. A polymer according to claim 1, wherein said polyol is a copolymer of at least an oxetane with a pendant fluorinated alkyl according to the formula
- 3. A polymer or oligomer according to claim 2, wherein said polyol includes repeating units resulting from the ring opening polymerization of tetrahydrofuran and derivatives thereof.
- 4. A polymer or oligomer according to claim 2, wherein said polyol has a degree of polymerization from about 3 to about 150.
- 5. A polymer or oligomer according to claim 2, wherein said polyol comprises a diol and is reacted with at least two moles of a diisocyante to form a polyol with two terminal isocyanate groups.
- 6. A polymer or oligomer according to claim 2, wherein said polyol has a degree of polymerization from about 3 to about 50.
- 7. A polymer or oligomer according to claim 2, wherein said polyol has a degree of polymerization from about 3 to about 30.
- 8. A process for forming a partially fluorinated acrylate, or methacrylate, or allylic, terminated oligomer comprising reacting a partially fluorinated polyoxetane containing polyol, optionally including non-oxetane repeating units either a) sequentially with a di or polyisocyanate forming an isocyanate terminated oligomer or polymer and then reacting that isocyanate terminated oligomer or polymer with a hydroxyl containing acrylate, or methacrylate, or allylic, and forming an acrylate, or methacrylate, or allylic, terminated polyoxetane oligomer or polymer or b) in a single step with an isocyanate functionalized acrylate, or methacrylate, or allylic, forming an acrylate, or methacrylate, or allylic, terminated polyoxetane oligomer or polymer.
- 9. A process according to claim 8 wherein the polyoxetane containing polyol comprises repeating units of the formula
- 10. A process according to claim 8, wherein said polyoxetane containing polyol is a difunctional polyol and is reacted with at least two moles of a diisocyanate forming said isocyanate terminated polyoxetane oligomer or polymer which is then reacted with said hydroxy containing alkyl acrylate, or methacrylate, or allylic.
- 11. An acrylate, or methacrylate, or allylic, terminated polymer which is copolymerizable with styrene, methyl methacrylate or N-vinyl pyrrolidone, said polymer comprising the reaction product of a) at least one polyol, b) at least one di or polyepoxy compound, and c) at least one hydroxy alkyl acrylate, or methacrylate, or allylic, wherein either i) a and b are reacted to form an epoxy terminated oligomer or polymer and said epoxy terminated oligomer or polymer is reacted with c to form an acrylate, or methacrylate, or allylic, terminated oligomer or polymer or ii) b is reacted with c to form an epoxy functionalized acrylate, or methacrylate, or allylic, which is then reacted with a to form a acrylate, or methacrylate, or allylic, terminated oligomer or polymer, where said at least one polyol comprises at least 10 weight percent repeating units of the formula
- 12. A process for forming a partially fluorinated acrylate, or methacrylate, or allylic, terminated oligomer comprising reacting a partially fluorinated polyoxetane containing polyol, optionally including non-oxetane repeating units either a) sequentially with a di or polyepoxy compound forming an epoxy terminated oligomer or polymer and then reacting that epoxy terminated oligomer or polymer with a hydroxyl containing acrylate, or methacrylate, or allylic, forming an acrylate, or methacrylate, or allylic, terminated polyoxetain oligomer or polymer or b) in a single step with an epoxy functionalized acrylate, or methacrylate, or allylic, forming an acrylate, or methacrylate, or allylic, terminated polyoxetane oligomer or polymer.
- 13. A process according to claim 12, wherein the polyoxetane containing polyol comprises repeating units of the formula
- 14. A coating composition comprising;
a) an acrylate, or methacrylate, or allylic, terminated oligomer or polymer with at least 10 weight percent of repeating units having the formula 9where each n is the same or different and independently, is an integer between 1 and 5, R is hydrogen or an alkyl of 1 to 6 carbon atoms, and each Rf is the same or different and individually on each repeat unit is a linear or branched fluorinated alkyl of 1 to 20 carbon atoms, a minimum of 75 percent of the non-carbon atoms of the alkyl being fluorine atoms and optionally the remaining non-carbon atoms being H, I, Cl, or Br; or each Rf is the same or different and individually is an oxaperfluorinated polyether having from 4 to 60 carbon atoms b) at least one monomer copolymerizable with said acrylate, or methacrylate, or allylic, terminated oligomer, and c) optionally a free radical initiator which is activated by ultraviolet radiation, and d) optionally a polyfunctional acrylate, or methacrylate, or allylic, monomer, or oligomer.
- 15. A coating composition according to claim 14, wherein said acrylate, or methacrylate, or allylic, terminated oligomer or polymer is derived from a polyoxetane polyol, optionally including non-oxetane repeating units, having a degree of polymerization from about 3 to about 150 coupled to the acrylate, or methacrylate, or allylic, terminal groups via reactions using a diepoxy or diisocyanate compound.
- 16. A coating composition according to claim 15, wherein said repeating units of the formula
- 17. A coating composition according to claim 14, wherein Rf is a linear or branched fluorinated alkyl of from about 1 to about 15 carbon atoms.
- 18. A coating composition according to claim 14, which has been cured by electron beam irradiation.
- 19. A coating composition according to claim 14, wherein said acrylate, or methacrylate, or allylic, terminated oligomer or polymer is derived from a copolymer of said oxetane of the formula
CROSS REFERENCE
[0001] This is a U.S. patent application of U.S. provisional application No. 60/141,532, filed Jun. 28, 1 999 for a Radiation Curable Coating Containing Polyfluorooxetane, which is hereby fully incorporated by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60141532 |
Jun 1999 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09397715 |
Sep 1999 |
US |
Child |
10316440 |
Dec 2002 |
US |