The present invention generally relates to a radiation protector for mobile devices and the like. More specifically, the invention relates to a radiation protector that may be customized to the wavelength of an electronic device emitting potentially harmful radiation to provide maximum protection.
Cell phones and other mobile devices are extremely prevalent nowadays, being used not only for communications but also for entertainment purposes. However, the effect of mobile phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in mobile phone usage throughout the world (as of November 2011, there were more than 5.981 billion subscriptions worldwide). Mobile phones use electromagnetic radiation in the microwave range. Other digital wireless systems, such as data communication networks, produce similar radiation.
The World Health Organization (WHO) has classified mobile phone radiation on the International Agency for Cancer Research (IARC) scale into Group 2B—possibly carcinogenic. That means that there could be some risk of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted. Some national radiation advisory authorities have recommended measures to minimize exposure to their citizens as a precautionary approach.
In February 2009, the telecom company Bouygues Telecom was ordered to take down a mobile phone mast due to uncertainty about its effect on health. Residents in the commune Charbonnières in the Rhône department had sued the company claiming adverse health effects from the radiation emitted by the 19 meter tall antenna. The milestone ruling by the Versailles Court of Appeal reversed the burden of proof which is usual in such cases by emphasizing the extreme divergence between different countries in assessing safe limits for such radiation. The court stated, considering that, while the reality of the risk remains hypothetical, it becomes clear from reading the contributions and scientific publications produced in debate and the divergent legislative positions taken in various countries, that uncertainty over the harmlessness of exposure to the waves emitted by relay antennas persists and can be considered serious and reasonable.
In October 2012 Italian high court (Corte suprema di cassazione) granted an Italian businessman, Innocente Marcoloni a pension for occupational disease, as they found a causal link with his benign brain tumor to mobile phones and cordless phones, that the businessman had used for six hours a day during twelve years. As it takes time to develop cancer, the court disregarded short-term studies. The Court also disregarded studies that were even partially funded by the mobile phone industry such as the INTERPHONE.
To counter the effects of this harmful radiation, metallic shields have been developed. Unfortunately, these metallic shields alone are insufficient to absorb the harmful radiation emitted by these electronic devices to the point where it would not harm the body. Therefore, there is still a need for a shield that can absorb the harmful radiation emitted by these mobile devices to allow users to use these devices without harm.
According to a preferred embodiment, a radiation protector, said radiation having a wavelength, comprises a carbon layer comprising a carbon weave, and having an outer edge; and a metal layer comprising a metal fabric weave, and having an outer edge; wherein the outer edge of the metal layer is recessed from the outer edge of the metal layer by a width w, wherein w is a fraction of a the wavelength of the radiation.
According to another preferred embodiment, a garment for radiation protection comprises an inner layer of garment fabric; and a carbon fabric layer; a metal fabric layer; an electro-magnetic absorbent layer; and an outer layer of garment fabric.
According to another preferred embodiment, a radiation protector, said radiation having a wavelength, comprises a carbon layer comprising a carbon weaving mesh, and having an outer edge, or border, and a metal layer comprising a metal fabric weave; wherein the metal layer is recessed from the carbon layer by a width w, where w is a fraction, for example, ½ to ⅛, of the wavelength of the radiation.
The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features.
Broadly, embodiments of the present invention generally provide a radiation protector for mobile devices and the like. With reference to
The fabric 100 may comprise a carbon layer or weave 10 and a metal layer 20. In one embodiment, by way of example and not by way of limitation, the metal layer 20 may comprise an aluminum weave.
The carbon layer 10 may absorb the microwave energy and convert the energy into heat. The metal layer 20 may conduct and dissipate the heat from the carbon layer 10. The metal layer 20 may preferably be located on the outside surface of the carbon layer 10 so that the heat may be transferred from the fabric through convection. In one embodiment, the carbon layer 10 may include an additional optional inner layer of foam 30 that may provide a thermal insulation for the user from the heat generated in the carbon layer 20.
In one embodiment, the metal layer 20 may comprise a weave of a metal material, such as aluminum or copper, and a garment material such as cotton. In one embodiment, by way of example and not by way of limitation, the metal layer 20 may comprise 90% cotton and a 10% metal weave.
The actual thickness measurements and densities of the layers need not be fixed and may comprise different measurements and densities according to applications in different embodiments. However, by way of example and not by limitation, in one embodiment, the metal layer 20 may comprise a metal fabric weave may be 0.445 mm thick and have a density of metal of 0.115 gm/m2.
By way of example and not by way of limitation, according to one embodiment, the carbon layer 10 may comprise a weave of a carbon fiber and garment material. By way of example, and not by way of limitation, the carbon layer may be 0.66 mm thick and have a carbon density of 0.349 gm/m2.
In one embodiment, for maximum effectiveness in radiation protection, the outer edge 22 of the metal layer 20 may be recessed from the outer edge 12 of the carbon layer 10. In
The relationship between the wavelength, the speed of light and the frequency follows the well-known formula:
Wavelength λ(m)=speed/frequency=c(ms−1)/v(Hz)
λ(m)=300,000,000/v(Hz) or approximately:
λ(m)=300/v(MHz)
So for a mid-range of about 1000 MHz (1 GHz) a typical mobile phone wavelength is about:
λ=300/1000=0.3m=30cm.
In one embodiment, width w may be configured to be one eighth (⅛) the wavelength of the particular mobile device, or by way of example and not by way of limitation, 3.75 cm for a mobile phone using a 30 cm signal wavelength.
In another embodiment w may be configured to be one fourth (¼) the wavelength of the particular mobile device, or by way of example and not by way of limitation, 7.5 cm for a mobile phone using a 30 cm signal wavelength.
In other embodiments, there may be other effective fractions of the mobile device's wavelength by which w may be configured for maximum radiation protection. In other words:
w=λ/x
where x represents a selected denominator of a fraction of the wavelength to determine width w.
In one embodiment, the carbon layer 10 may be in the form of a mesh to increase the cavity volume, and therefore decrease the photon density energy from the electronic device based on the following equation:
Number of modes per unit wavelength/cavity volume=(−1/L3)(dN/dλ)=8π/λ4
Where L is the diameter of the cavity, d is the differential of the wavelength. In one embodiment, the mesh is woven in different coordinate-systems to increase effectiveness in blocking the radiation from all directions. This may also aid in transparency for the user to view and use phone operations within the protective covering.
The fabric 100 may be used anywhere a user desires to gain protection from radio wave radiation. By way of example, and not by way of limitation, the fabric 100 may be used to make garment pockets, cell phone holders (as described below), clothing lining (such as the hood described below), and the like. The specific examples described herein are meant to illustrate mere examples, and are not described in the limiting sense.
With reference to
With reference
With reference back to
With reference to
With reference to
With reference to
With reference to
A pocket 702 of conventional fabric may be attached to the side of the hood, positioned to place the cell phone, or a hands-free device, over the ear for hands-free use. The pocket 702 may be adjustable to accommodate people of different sizes. Alternatively, multiple pockets 702 may be provided to allow the user to select which pocket to use two most closely bring the hands-free device to the user's ear.
In one embodiment, the hood garment 700 may comprise a carbon fabric layer 706 and a metal (e.g., silver, copper, or aluminum) layer 708, and a conventional fabric (such as silk) could be added to avoid allergic reactions, discomfort, and the like, if any. The carbon layer 706 may absorb the microwave energy and convert the energy into heat. The metal layer 708 may conduct and reflect the microwave radiation and heat generated by a mobile phone during the time it is on or in use. The metal layer 708 may be located on the outside surface of the conventional fabric or carbon layer so that the radiation and heat may be transferred from the fabric through convection. The hood garment 700 may include an inner and outer layer of fabric for comfort and style.
In one embodiment, the metal layer 708 may be a knitting of a metal (silver, copper, aluminum) material and garment material, such as cotton having surface resistivity of approximately 3 ohms to approximately 200 ohms. The metal layer 708 may comprise approximately 70 percent to approximately 90% garment material, such as cotton, rayon, and the like, and approximately 7% to approximately 20% of the metal. In one embodiment, it may comprise approximately 84 percent of the garment material, and approximately 16% of the metal. The metal fabric 708 may be 0.225 mm to 0.700 mm thick, and may be 0.445 mm thick and have a weight of approximately 100 gm/m2 to approximately 200 gm/m2. In one embodiment, the metal fabric may have a weight of approximately 134 gm/m2. The yarn count of the metal fabric may be approximately 64/30 dtex to approximately 22/106 dtex with a jersey knit, or weave. In one embodiment, the metal fabric may have a yarn count of approximately 44/12 dtex.
The carbon fabric may be a weave of approximately 1×1 to approximately 4×4 twill, and preferably approximately 2×2 twill, with approximately 2000 thread to approximately 6000 thread carbon fiber and fabric material, but preferably 4000 thread. The carbon fiber fabric and garment material may be approximately 30 percent to approximately 70 percent carbon, and preferably 65 percent carbon, with approximately 1 inch to approximately 10 inches of overlap, and preferably approximately 3 inches to approximately 6 inches of overlap as shown in the figures.
The carbon layer 708 on the hood and any garment may be approximately 0.4 mm to approximately 2 mm thick. In one embodiment the carbon layer 708 is approximately 0.66 mm thick. The carbon layer 708 may have a density of approximately 100 g/m2 to approximately 500 g/m2. In one embodiment, the carbon layer is approximately 349 gm/m2. The fabric may also be used as carrying bag linings.
In embodiments using three side pockets 702, each side of the hood may have three pockets aligned vertically. Each pocket 702 may be 1.5 inch wide and 1 inch high. The total area covered by the pockets maybe 2.5 inches wide and 5 inches high.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
This Application is a non-provisional of Provisional Application Ser. No. 61/585,600, entitled “Hood and Garment That Protects Against Cellular Phone and Microwave Energy”, filed Jan. 11, 2012, and is a non-provisional of Provisional Application Ser. No. 61/560,490, entitled “Fabric That Protects Against Cellular Phone Energy”, filed Nov. 16, 2011, and claims priority from those Applications and incorporates them by reference.
Number | Date | Country | |
---|---|---|---|
61585600 | Jan 2012 | US | |
61560490 | Nov 2011 | US |