Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process which etches one material faster than another helping e.g. a pattern transfer process proceed. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits and processes, etch processes have been developed with a selectivity towards a variety of materials.
A wet HF etch preferentially removes silicon oxide over other dielectrics and semiconductors. However, wet processes are unable to penetrate some constrained trenches and sometimes deform the remaining material. Dry etches produced in local plasmas (plasmas within the substrate processing region) can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, local plasmas can damage the substrate through the production of electric arcs as they discharge.
A Siconi™ etch is a remote plasma assisted dry etch process which involves the simultaneous exposure of a substrate to H2, NF3 and NH3 plasma by-products. Remote plasma excitation of the hydrogen and fluorine species allows plasma-damage-free substrate processing. The Siconi™ etch is largely conformal and selective towards silicon oxide layers but does not readily etch silicon regardless of whether the silicon is amorphous, crystalline or polycrystalline. Silicon nitride is typically etched at a rate between silicon and silicon oxide, but the selectivity of silicon oxide over silicon nitride is typically not as pronounced as the selectivity of silicon oxide over silicon. The selectivity provides advantages for applications such as shallow trench isolation (STI) and inter-layer dielectric (ILD) recess formation. The Siconi™ process produces solid by-products which grow on the surface of the substrate as substrate material is removed. The solid by-products are subsequently removed via sublimation when the temperature of the substrate is raised. As a consequence of the production of solid by-products, Siconi™ etch process can deform delicate remaining structures as well.
Methods are needed to selectively remove silicon oxide while not forming solid by-products on the surface since their formation may disturb delicate structures on a patterned substrate.
A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
Embodiments of the invention include methods of etching patterned substrates in a substrate processing region of a substrate processing chamber. The patterned substrates have an exposed silicon oxide region. The methods include flowing a fluorine-containing precursor into a remote plasma region fluidly coupled to the substrate processing region while forming a remote plasma in the remote plasma region to produce plasma effluents. The methods further include flowing a nitrogen-and-hydrogen-containing precursor into the substrate processing region without first passing the nitrogen-and-hydrogen-containing precursor through the remote plasma region. The methods further include etching the exposed silicon oxide region with the combination of the plasma effluents and the nitrogen-and-hydrogen-containing precursor in the substrate processing region.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed embodiments. The features and advantages of the disclosed embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the disclosed embodiments may be realized by reference to the remaining portions of the specification and the drawings.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
Selective remote gas phase etch processes have used a hydrogen source of ammonia (NH3) and a fluorine source of nitrogen trifluoride (NF3) which together flow through a remote plasma system (RPS) and into a reaction region. The flow rates of ammonia and nitrogen trifluoride are typically chosen such that the atomic flow rate of hydrogen is roughly twice that of fluorine in order to efficiently utilize the constituents of the two process gases. The presence of hydrogen and fluorine allows the formation of solid byproducts of (NH4)2SiF6 at relatively low substrate temperatures. The solid byproducts are removed by raising the temperature of the substrate above the sublimation temperature. Remote gas phase etch processes remove oxide films much more rapidly than, e.g. silicon. However, the selectivity of traditional selective remote gas phase etch processes compared to silicon nitride may be poor. The inventors have discovered that the selectivity of silicon oxide over silicon nitride can be enhanced by exciting a fluorine-containing precursor in a remote plasma and combining the plasma effluents with ammonia which has not passed through a remote plasma system.
In order to better understand and appreciate the invention, reference is now made to
The patterned substrate is selectively etched (operation 135) such that the silicon oxide is removed at a significantly higher rate than the silicon nitride. The reactive chemical species are removed from the substrate processing region and then the substrate is removed from the processing region (operation 145). Using the gas phase dry etch processes described herein, the inventors have established that etch selectivities of over 100:1 and up to 150:1 (SiO etch rate:SiN etch rate) are possible. Achievable selectivities using the methods described herein are at least four times greater than prior art methods. The silicon oxide etch rate exceeds the silicon nitride etch rate by a multiplicative factor of about 40 or more, about 50 or more, about 75 or more, or about 100 or more, in embodiments of the invention.
The gas phase dry etches described herein have also been discovered to increase etch selectivity of silicon oxide relative to silicon (including polysilicon). Using the gas phase dry etch processes described herein, the inventors have established that etch selectivities of over 100:1 and up to 500:1 (SiO etch rate:Si etch rate) are possible. Achievable selectivities using the methods described herein are at least five times greater than prior art methods. The silicon oxide etch rate exceeds the silicon etch rate by a multiplicative factor of about 100 or more, about 150 or more, about 200 or more, or about 300 or more, in embodiments of the invention.
Gas phase etches involving only fluorine (either remote or local) do not possess the selectivity needed to remove the silicon oxide while leaving other portions of the patterned substrate (e.g. made of silicon or silicon nitride) nearly undisturbed. The gas phase etches described herein have an added benefit, in that they do not produce solid residue. Elimination of solid residue avoids disturbing delicate features which may be supported by sacrificial silicon oxide. Elimination of solid residue also simplifies the process flows and decreases processing costs by removing the sublimation step. The fluorine-containing precursor is devoid of hydrogen in embodiments of the invention. The plasma effluents may also be devoid of hydrogen when no hydrogen precursors are included in the remote plasma region. This ensures minimal production of solid by-products on the patterned substrate.
Without wishing to bind the coverage of the claims to theoretical mechanisms which may or may not be entirely correct, some discussion of possible mechanisms may prove beneficial. Radical-fluorine precursors are produced by delivering a fluorine-containing precursor into the remote plasma region. Applicants suppose that a concentration of fluorine ions and atoms is produced and delivered into the substrate processing region. Ammonia (NH3) may react with the fluorine to produce less reactive species such as HF2− which still readily remove silicon oxide but do not readily remove silicon and silicon nitride from the patterned substrate surface. The selectivity combined with the lack of solid byproducts, make these etch processes well suited for removing molds and other silicon oxide support structures from delicate non-silicon oxide materials while inducing little deformation in the remaining delicate structures.
Generally speaking, a nitrogen-and-hydrogen-containing precursor may be used in place of the ammonia. The nitrogen-and-hydrogen-containing precursor may consist only of nitrogen and hydrogen, e.g. ammonia (NH3) used in the above example. The nitrogen-and-hydrogen-containing precursor may be hydrazine (N2H4) in disclosed embodiments.
The pressure in the substrate processing region may be above or about 0.1 Torr and less than or about 50 Torr, in disclosed embodiments, during the etching operation. The pressure within the substrate processing region may also be below or about 40 Torr and above or about 5 Torr or 10 Torr in disclosed embodiments. Any of the upper limits can be combined with any of these lower limits to form additional embodiments of the invention. The temperature of the patterned substrate may be about 10° C. or more and about 250° C. or less, in disclosed embodiments, during the etching operation. The temperature of the patterned substrate may be about 100° C. or more and about 140° C. or less during the etching operation in embodiments of the invention.
In addition to the fluorine-containing precursor, an oxygen-containing precursor may be delivered to the remote plasma region during the etching operation. The inventors have found that adding the oxygen-containing precursor broadens the process window while maintaining the selectivity benefits outlined above. The pressure is the process parameter which can vary more widely through the addition of the oxygen-containing precursor. A broader pressure range is possible (while maintaining uniform selective etch process) when an oxygen-containing precursor is added to the remote plasma region during the etching operation. The oxygen-containing precursor may be molecular oxygen (O2), nitrous oxide (N2O) or nitrogen dioxide (NO2), for example, though other oxygen-containing precursors may be used.
Additional silicon oxide selective etch process parameters are disclosed in the course of describing an exemplary processing chamber and system.
Exemplary Processing System
Processing chambers that may implement embodiments of the present invention may be included within processing platforms such as the CENTURA® and PRODUCER® systems, available from Applied Materials, Inc. of Santa Clara, Calif. Examples of substrate processing chambers that can be used with exemplary methods of the invention may include those shown and described in co-assigned U.S. Provisional Patent App. No. 60/803,499 to Lubomirsky et al, filed May 30, 2006, and titled “PROCESS CHAMBER FOR DIELECTRIC GAPFILL,” the entire contents of which is herein incorporated by reference for all purposes. Additional exemplary systems may include those shown and described in U.S. Pat. Nos. 6,387,207 and 6,830,624, which are also incorporated herein by reference for all purposes.
Showerhead 1053 is positioned between chamber plasma region 1020 and substrate processing region 1070 and allows plasma effluents (excited derivatives of precursors or other gases) created within RPS 1010 and/or chamber plasma region 1020 to pass through a plurality of through-holes 1056 that traverse the thickness of the plate. The showerhead 1053 also has one or more hollow volumes 1051 which can be filled with a precursor in the form of a vapor or gas (such as a silicon-containing precursor) and pass through small holes 1055 into substrate processing region 1070 but not directly into chamber plasma region 1020. Showerhead 1053 is thicker than the length of the smallest diameter 1050 of the through-holes 1056 in this disclosed embodiment. In order to maintain a significant concentration of excited species penetrating from chamber plasma region 1020 to substrate processing region 1070, the length 1026 of the smallest diameter 1050 of the through-holes may be restricted by forming larger diameter portions of through-holes 1056 part way through the showerhead 1053. The length of the smallest diameter 1050 of the through-holes 1056 may be the same order of magnitude as the smallest diameter of the through-holes 1056 or less in disclosed embodiments.
In the embodiment shown, showerhead 1053 may distribute (via through-holes 1056) process gases which contain oxygen, hydrogen and/or nitrogen and/or plasma effluents of such process gases upon excitation by a plasma in chamber plasma region 1020. In embodiments, the process gas introduced into the RPS 1010 and/or chamber plasma region 1020 through first channel 1012 may contain fluorine (e.g. CF4, NF3 or XeF2). The process gas may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as a radical-fluorine precursor referring to the atomic constituent of the process gas introduced.
In embodiments, the number of through-holes 1056 may be between about 60 and about 2000. Through-holes 1056 may have a variety of shapes but are most easily made round. The smallest diameter 1050 of through-holes 1056 may be between about 0.5 mm and about 20 mm or between about 1 mm and about 6 mm in disclosed embodiments. There is also latitude in choosing the cross-sectional shape of through-holes, which may be made conical, cylindrical or a combination of the two shapes. The number of small holes 1055 used to introduce a gas into substrate processing region 1070 may be between about 100 and about 5000 or between about 500 and about 2000 in different embodiments. The diameter of the small holes 1055 may be between about 0.1 mm and about 2 mm.
An exemplary patterned substrate may be supported by a pedestal (not shown) within substrate processing region 1070 when fluorine-containing plasma effluents arriving through through-holes 1056 in showerhead 1053 combine with ammonia arriving through the small holes 1055 originating from hollow volumes 1051. Though substrate processing region 1070 may be equipped to support a plasma for other processes such as curing, no plasma is present during the etching of patterned substrate, in embodiments of the invention.
A plasma may be ignited either in chamber plasma region 1020 above showerhead 1053 or substrate processing region 1070 below showerhead 1053. A plasma is present in chamber plasma region 1020 to produce the radical-fluorine precursors from an inflow of the fluorine-containing precursor. An AC voltage typically in the radio frequency (RF) range is applied between the conductive top portion 1021 of the processing chamber and showerhead 1053 to ignite a plasma in chamber plasma region 1020 during deposition. An RF power supply generates a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.
The top plasma may be left at low or no power when the bottom plasma in the substrate processing region 1070 is turned on to either cure a film or clean the interior surfaces bordering substrate processing region 1070. A plasma in substrate processing region 1070 is ignited by applying an AC voltage between showerhead 1053 and the pedestal or bottom of the chamber. A cleaning gas may be introduced into substrate processing region 1070 while the plasma is present.
The pedestal may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration allows the substrate temperature to be cooled or heated to maintain relatively low temperatures (from room temperature through about 120° C.). The heat exchange fluid may comprise ethylene glycol and water. The wafer support platter of the pedestal (preferably aluminum, ceramic, or a combination thereof) may also be resistively heated in order to achieve relatively high temperatures (from about 120° C. through about 1100° C.) using an embedded single-loop embedded heater element configured to make two full turns in the form of parallel concentric circles. An outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element passes through the stem of the pedestal.
The substrate processing system is controlled by a system controller. In an exemplary embodiment, the system controller includes a hard disk drive, a floppy disk drive and a processor. The processor contains a single-board computer (SBC), analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of CVD system conform to the Versa Modular European (VME) standard which defines board, card cage, and connector dimensions and types. The VME standard also defines the bus structure as having a 16-bit data bus and a 24-bit address bus.
The system controller controls all of the activities of the etching chamber. The system controller executes system control software, which is a computer program stored in a computer-readable medium. Preferably, the medium is a hard disk drive, but the medium may also be other kinds of memory. The computer program includes sets of instructions that dictate the timing, mixture of gases, chamber pressure, chamber temperature, RF power levels, susceptor position, and other parameters of a particular process. Other computer programs stored on other memory devices including, for example, a floppy disk or other another appropriate drive, may also be used to instruct the system controller.
A process for depositing a film stack on a substrate or a process for cleaning a chamber can be implemented using a computer program product that is executed by the system controller. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Microsoft Windows® library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller is via a flat-panel touch-sensitive monitor. In the preferred embodiment two monitors are used, one mounted in the clean room wall for the operators and the other behind the wall for the service technicians. The two monitors may simultaneously display the same information, in which case only one accepts input at a time. To select a particular screen or function, the operator touches a designated area of the touch-sensitive monitor. The touched area changes its highlighted color, or a new menu or screen is displayed, confirming communication between the operator and the touch-sensitive monitor. Other devices, such as a keyboard, mouse, or other pointing or communication device, may be used instead of or in addition to the touch-sensitive monitor to allow the user to communicate with the system controller.
The chamber plasma region or a region in an RPS may be referred to as a remote plasma region. In embodiments, the radical precursor (e.g. a radical-fluorine precursor) is created in the remote plasma region and travels into the substrate processing region to combine with the ammonia. In embodiments, the ammonia is excited only by the radical-fluorine precursor. Plasma power may essentially be applied only to the remote plasma region, in embodiments, to ensure that the radical-fluorine precursor provides the dominant excitation to the ammonia.
In embodiments employing a chamber plasma region, the excited plasma effluents are generated in a section of the substrate processing region partitioned from a deposition region. The deposition region, also known herein as the substrate processing region, is where the plasma effluents mix and react with the ammonia to etch the patterned substrate (e.g., a semiconductor wafer). The excited plasma effluents may also be accompanied by inert gases (in the exemplary case, argon). The ammonia does not pass through a plasma before entering the substrate plasma region, in embodiments. The substrate processing region may be described herein as “plasma-free” during the etch of the patterned substrate. “Plasma-free” does not necessarily mean the region is devoid of plasma. Ionized species and free electrons created within the plasma region do travel through pores (apertures) in the partition (showerhead) but the ammonia is not substantially excited by the plasma power applied to the plasma region. The borders of the plasma in the chamber plasma region are hard to define and may encroach upon the substrate processing region through the apertures in the showerhead. In the case of an inductively-coupled plasma, a small amount of ionization may be effected within the substrate processing region directly. Furthermore, a low intensity plasma may be created in the substrate processing region without eliminating desirable features of the forming film. All causes for a plasma having much lower intensity ion density than the chamber plasma region (or a remote plasma region, for that matter) during the creation of the excited plasma effluents do not deviate from the scope of “plasma-free” as used herein.
Nitrogen trifluoride (or another fluorine-containing precursor) may be flowed into chamber plasma region 1020 at rates between about 25 sccm and about 200 sccm, between about 50 sccm and about 150 sccm or between about 75 sccm and about 125 sccm in disclosed embodiments. Ammonia may be flowed into substrate processing region 1070 at rates between about 25 sccm and about 200 sccm, between about 50 sccm and about 150 sccm or between about 75 sccm and about 125 sccm in disclosed embodiments. The optional oxygen-containing precursor may be flowed into chamber plasma region 1020 at rates between about 15 sccm and about 200 sccm, between about 25 sccm and about 150 sccm or between about 50 sccm and about 125 sccm in embodiments of the invention.
Combined flow rates of ammonia and fluorine-containing precursor into the chamber may account for 0.05% to about 20% by volume of the overall gas mixture; the remainder being carrier gases. The fluorine-containing precursor is flowed into the remote plasma region but the plasma effluents has the same volumetric flow ratio, in embodiments. In the case of the fluorine-containing precursor, a purge or carrier gas may be first initiated into the remote plasma region before those of the fluorine-containing gas to stabilize the pressure within the remote plasma region.
Plasma power can be a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma is provided by RF power delivered to lid 1021 relative to showerhead 1053. The RF power may be between about 10 watts and about 2000 watts, between about 100 watts and about 2000 watts, between about 200 watts and about 1500 watts or between about 500 watts and about 1000 watts in different embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz or microwave frequencies greater than or about 1 GHz in different embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.
Substrate processing region 1070 can be maintained at a variety of pressures during the flow of ammonia, any carrier gases and plasma effluents into substrate processing region 1070. The pressure may be maintained between about 500 mTorr and about 30 Torr, between about 1 Torr and about 20 Torr or between about 5 Torr and about 15 Torr in disclosed embodiments.
In one or more embodiments, the substrate processing chamber 1001 can be integrated into a variety of multi-processing platforms, including the Producer™ GT, Centura™ AP and Endura™ platforms available from Applied Materials, Inc. located in Santa Clara, Calif. Such a processing platform is capable of performing several processing operations without breaking vacuum. Processing chambers that may implement embodiments of the present invention may include dielectric etch chambers or a variety of chemical vapor deposition chambers, among other types of chambers.
Embodiments of the deposition systems may be incorporated into larger fabrication systems for producing integrated circuit chips.
The substrate processing chambers 1108a-f may include one or more system components for depositing, annealing, curing and/or etching a flowable dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber (e.g., 1108c-d and 1108e-f) may be used to deposit dielectric material on the substrate, and the third pair of processing chambers (e.g., 1108a-b) may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers (e.g., 1108a-f) may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out on chamber(s) separated from the fabrication system shown in different embodiments.
System controller 1157 is used to control motors, valves, flow controllers, power supplies and other functions required to carry out process recipes described herein. A gas handling system 1155 may also be controlled by system controller 1157 to introduce gases to one or all of the substrate processing chambers 1108a-f. System controller 1157 may rely on feedback from optical sensors to determine and adjust the position of movable mechanical assemblies in gas handling system 1155 and/or in substrate processing chambers 1108a-f. Mechanical assemblies may include the robot, throttle valves and susceptors which are moved by motors under the control of system controller 1157.
In an exemplary embodiment, system controller 1157 includes a hard disk drive (memory), USB ports, a floppy disk drive and a processor. System controller 1157 includes analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of multi-chamber processing system 1101 which contains processing chamber 1001 are controlled by system controller 1157. The system controller executes system control software in the form of a computer program stored on computer-readable medium such as a hard disk, a floppy disk or a flash memory thumb drive. Other types of memory can also be used. The computer program includes sets of instructions that dictate the timing, mixture of gases, chamber pressure, chamber temperature, RF power levels, susceptor position, and other parameters of a particular process.
A process for etching, depositing or otherwise processing a film on a substrate or a process for cleaning chamber can be implemented using a computer program product that is executed by the controller. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Microsoft Windows® library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller may be via a touch-sensitive monitor and may also include a mouse and keyboard. In one embodiment two monitors are used, one mounted in the clean room wall for the operators and the other behind the wall for the service technicians. The two monitors may simultaneously display the same information, in which case only one is configured to accept input at a time. To select a particular screen or function, the operator touches a designated area on the display screen with a finger or the mouse. The touched area changes its highlighted color, or a new menu or screen is displayed, confirming the operator's selection.
As used herein “substrate” may be a support substrate with or without layers formed thereon. The patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. Exposed “silicon oxide” of the patterned substrate is predominantly SiO2 but may include concentrations of other elemental constituents such as nitrogen, hydrogen, carbon and the like. In some embodiments, silicon oxide films etched using the methods disclosed herein consist essentially of silicon and oxygen. The term “precursor” is used to refer to any process gas which takes part in a reaction to either remove material from or deposit material onto a surface. “Plasma effluents” describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states. A “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface. A “radical-fluorine precursor” is a radical precursor which contains fluorine but may contain other elemental constituents. A “radical-oxygen precursor” is a radical precursor which contains oxygen but may contain other elemental constituents. The phrase “inert gas” refers to any gas which does not form chemical bonds when etching or being incorporated into a film. Exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.
The terms “gap” and “trench” are used throughout with no implication that the etched geometry has a large horizontal aspect ratio. Viewed from above the surface, trenches may appear circular, oval, polygonal, rectangular, or a variety of other shapes. A trench may be in the shape of a moat around an island of material (e.g. a substantially cylindrical TiN pillar). The term “via” is used to refer to a low aspect ratio trench (as viewed from above) which may or may not be filled with metal to form a vertical electrical connection. As used herein, a conformal etch process refers to a generally uniform removal of material on a surface in the same shape as the surface, i.e., the surface of the etched layer and the pre-etch surface are generally parallel. A person having ordinary skill in the art will recognize that the etched interface likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application is a continuation of and claims benefit to U.S. patent application Ser. No. 13/834,611, filed Mar. 15, 2013, which claims benefit to U.S. Prov. Pat. App. No. 61/702,493 filed Sep. 18, 2012, and titled “RADICAL-COMPONENT OXIDE ETCH,” both of which are hereby incorporated herein in their entirety by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3451840 | Hough | Jun 1969 | A |
3537474 | Rohrer | Nov 1970 | A |
3937857 | Brummett et al. | Feb 1976 | A |
3969077 | Hill | Jul 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory, Jr. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4361418 | Tscheppe | Nov 1982 | A |
4361441 | Tylko | Nov 1982 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4374698 | Sanders et al. | Feb 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4625678 | Shioya et al. | Dec 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4715937 | Moslehi et al. | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4786360 | Cote et al. | Nov 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4820377 | Davis et al. | Apr 1989 | A |
4828649 | Davis | May 1989 | A |
4838990 | Jucha et al. | Jun 1989 | A |
4851370 | Doklan et al. | Jul 1989 | A |
4857140 | Loewenstein | Aug 1989 | A |
4865685 | Palmour | Sep 1989 | A |
4868071 | Walsh et al. | Sep 1989 | A |
4872947 | Wang et al. | Oct 1989 | A |
4878994 | Jucha et al. | Nov 1989 | A |
4886570 | Davis et al. | Dec 1989 | A |
4892753 | Wang et al. | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4904341 | Blaugher et al. | Feb 1990 | A |
4904621 | Loewenstein | Feb 1990 | A |
4913929 | Moslehi et al. | Apr 1990 | A |
4946903 | Gardella et al. | Aug 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4991542 | Kohmura et al. | Feb 1991 | A |
4992136 | Tachi et al. | Feb 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5006192 | Deguchi | Apr 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5028565 | Chang et al. | Jul 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5083030 | Stavov | Jan 1992 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5180435 | Markunas et al. | Jan 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188706 | Hori et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5203911 | Sricharoenchaikit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248371 | Maher et al. | Sep 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5266157 | Kadomura | Nov 1993 | A |
5269881 | Sekiya | Dec 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5279669 | Lee | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5292370 | Tsai et al. | Mar 1994 | A |
5300463 | Cathey et al. | Apr 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328558 | Kawamura | Jul 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okano et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413670 | Langan et al. | May 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5464499 | Moslehi | Nov 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478403 | Shinagawa et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5518962 | Murao | May 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5536360 | Nguyen et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5567243 | Foster et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5578161 | Auda | Nov 1996 | A |
5580421 | Hiatt et al. | Dec 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5614055 | Fairbairn et al. | Mar 1997 | A |
5616518 | Foo et al. | Apr 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5628829 | Foster et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5661093 | Ravi et al. | Aug 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5676758 | Hasegawa et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5685946 | Fathauer et al. | Nov 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5747373 | Yu | May 1998 | A |
5753886 | Iwamura et al. | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756400 | Ye et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5772770 | Suda et al. | Jun 1998 | A |
5781693 | Ballance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5814365 | Mahawill | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Schacham-Diamand et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5843847 | Pu et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5865896 | Nowak | Feb 1999 | A |
5866483 | Shiau et al. | Feb 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5883012 | Chiou et al. | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki et al. | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5918116 | Chittipeddi | Jun 1999 | A |
5920792 | Lin | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944049 | Beyer et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5948702 | Rotondaro | Sep 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5951896 | Mahawill | Sep 1999 | A |
5953591 | Ishihara et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6007635 | Mahawill | Dec 1999 | A |
6007785 | Liou | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6072147 | Koshiishi | Jun 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6074512 | Collins et al. | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6090212 | Mahawili | Jul 2000 | A |
6093457 | Okumura | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6120640 | Shih et al. | Sep 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6161576 | Maher et al. | Dec 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174450 | Patrick et al. | Jan 2001 | B1 |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6176667 | Fairbairn | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6184121 | Buchwalter et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6210486 | Mizukami et al. | Apr 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6220201 | Nowak | Apr 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6237527 | Kellerman et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6244211 | Nishikawa et al. | Jun 2001 | B1 |
6245396 | Nogami | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6277733 | Smith | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281072 | Li et al. | Aug 2001 | B1 |
6281135 | Han et al. | Aug 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6303044 | Koemtzopoulos et al. | Oct 2001 | B1 |
6303418 | Cha et al. | Oct 2001 | B1 |
6306772 | Lin | Oct 2001 | B1 |
6312554 | Ye | Nov 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6321587 | Laush | Nov 2001 | B1 |
6322716 | Qiao et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
RE37546 | Mahawill | Feb 2002 | E |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6348407 | Gupta et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6350697 | Richardson | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6352081 | Lu et al. | Mar 2002 | B1 |
6355573 | Okumura | Mar 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6376386 | Oshima | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6391753 | Yu | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6415736 | Hao et al. | Jul 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6418874 | Cox et al. | Jul 2002 | B1 |
6423284 | Arno | Jul 2002 | B1 |
6427623 | Ko | Aug 2002 | B2 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6436193 | Kasai et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6458718 | Todd | Oct 2002 | B1 |
6461974 | Ni et al. | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6465051 | Sahin et al. | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6509623 | Zhao | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6518548 | Sugaya et al. | Feb 2003 | B2 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6558564 | Loewenhardt | May 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6585851 | Ohmi et al. | Jul 2003 | B1 |
6586163 | Okabe et al. | Jul 2003 | B1 |
6596599 | Guo | Jul 2003 | B1 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6635578 | Xu et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6663715 | Yuda et al. | Dec 2003 | B1 |
6677242 | Liu et al. | Jan 2004 | B1 |
6679981 | Pan et al. | Jan 2004 | B1 |
6688375 | Turner | Feb 2004 | B1 |
6713356 | Skotnicki et al. | Mar 2004 | B1 |
6713835 | Horak et al. | Mar 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6740977 | Ahn et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6756235 | Liu et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6767834 | Chung et al. | Jul 2004 | B2 |
6770166 | Fischer | Aug 2004 | B1 |
6772827 | Keller et al. | Aug 2004 | B2 |
6792889 | Nakano et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800336 | Fornsel et al. | Oct 2004 | B1 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6852550 | Tuttle et al. | Feb 2005 | B2 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6861097 | Goosey et al. | Mar 2005 | B1 |
6861332 | Park et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6875280 | Ikeda et al. | Apr 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6886491 | Kim et al. | May 2005 | B2 |
6892669 | Xu et al. | May 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6897532 | Schwarz et al. | May 2005 | B1 |
6900596 | Yang et al. | May 2005 | B2 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6930047 | Yamazaki | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6946033 | Tsuel et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6995073 | Liou | Feb 2006 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7018941 | Cui et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7071532 | Geffken et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7145725 | Hasel et al. | Dec 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7244474 | Hanawa et al. | Jul 2007 | B2 |
7252716 | Kim et al. | Aug 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7291360 | Hanawa et al. | Nov 2007 | B2 |
7316761 | Doan et al. | Jan 2008 | B2 |
7329608 | Babayan et al. | Feb 2008 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7344912 | Okoronyanwu | Mar 2008 | B1 |
7358192 | Merry et al. | Apr 2008 | B2 |
7364956 | Saito | Apr 2008 | B2 |
7365016 | Ouellet et al. | Apr 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7416989 | Liu et al. | Aug 2008 | B1 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7468319 | Lee | Dec 2008 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Chung et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7500445 | Zhao et al. | Mar 2009 | B2 |
7553756 | Hayashi et al. | Jun 2009 | B2 |
7575007 | Tang et al. | Aug 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7604708 | Wood et al. | Oct 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7682518 | Chandrachood et al. | Mar 2010 | B2 |
7695590 | Hanawa et al. | Apr 2010 | B2 |
7708859 | Huang et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7723221 | Hayashi | May 2010 | B2 |
7749326 | Kim et al. | Jul 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7806078 | Yoshida | Oct 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7837828 | Ikeda et al. | Nov 2010 | B2 |
7845309 | Condrashoff et al. | Dec 2010 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7932181 | Singh et al. | Apr 2011 | B2 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7976631 | Burrows | Jul 2011 | B2 |
7981806 | Jung | Jul 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8048811 | Feustel et al. | Nov 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8076198 | Lee et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8114245 | Ohmi et al. | Feb 2012 | B2 |
8119530 | Hori et al. | Feb 2012 | B2 |
8133349 | Panagopoulos | Mar 2012 | B1 |
8183134 | Wu | May 2012 | B2 |
8187486 | Liu et al. | May 2012 | B1 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8272346 | Bettencourt et al. | Sep 2012 | B2 |
8298627 | Minami et al. | Oct 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8312839 | Baek | Nov 2012 | B2 |
8313610 | Dhindsa | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8357435 | Lubomirsky | Jan 2013 | B2 |
8368308 | Banna et al. | Feb 2013 | B2 |
8427067 | Espiau et al. | Apr 2013 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8475674 | Thadani et al. | Jul 2013 | B2 |
8480850 | Tyler et al. | Jul 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8501629 | Tang et al. | Aug 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8512509 | Bera et al. | Aug 2013 | B2 |
8540844 | Hudson et al. | Sep 2013 | B2 |
8551891 | Liang | Oct 2013 | B2 |
8573152 | de la Llera | Nov 2013 | B2 |
8622021 | Taylor et al. | Jan 2014 | B2 |
8623148 | Mitchell et al. | Jan 2014 | B2 |
8623471 | Tyler et al. | Jan 2014 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
8652298 | Dhindsa et al. | Feb 2014 | B2 |
8679982 | Wang et al. | Mar 2014 | B2 |
8679983 | Wang et al. | Mar 2014 | B2 |
8702902 | Blom et al. | Apr 2014 | B2 |
8741778 | Yang et al. | Jun 2014 | B2 |
8747680 | Deshpande | Jun 2014 | B1 |
8765574 | Zhang et al. | Jul 2014 | B2 |
8771536 | Zhang et al. | Jul 2014 | B2 |
8771539 | Zhang et al. | Jul 2014 | B2 |
8772888 | Jung et al. | Jul 2014 | B2 |
8778079 | Begarney et al. | Jul 2014 | B2 |
8801952 | Wang et al. | Aug 2014 | B1 |
8808563 | Wang et al. | Aug 2014 | B2 |
8846163 | Kao et al. | Sep 2014 | B2 |
8869742 | Dhindsa | Oct 2014 | B2 |
8895449 | Zhu et al. | Nov 2014 | B1 |
8900364 | Wright | Dec 2014 | B2 |
8921234 | Liu et al. | Dec 2014 | B2 |
8927390 | Sapre et al. | Jan 2015 | B2 |
8951429 | Liu et al. | Feb 2015 | B1 |
8956980 | Chen et al. | Feb 2015 | B1 |
8969212 | Ren et al. | Mar 2015 | B2 |
8980005 | Carlson et al. | Mar 2015 | B2 |
8980758 | Ling et al. | Mar 2015 | B1 |
8980763 | Wang et al. | Mar 2015 | B2 |
8992723 | Sorensen et al. | Mar 2015 | B2 |
8999656 | JirstrÖM et al. | Apr 2015 | B2 |
8999839 | Su et al. | Apr 2015 | B2 |
8999856 | Zhang | Apr 2015 | B2 |
9012302 | Sapre et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9023732 | Wang et al. | May 2015 | B2 |
9023734 | Chen et al. | May 2015 | B2 |
9034770 | Park et al. | May 2015 | B2 |
9040422 | Wang et al. | May 2015 | B2 |
9064815 | Zhang et al. | Jun 2015 | B2 |
9064816 | Kim et al. | Jun 2015 | B2 |
9072158 | Ikeda et al. | Jun 2015 | B2 |
9093371 | Wang et al. | Jul 2015 | B2 |
9093390 | Wang et al. | Jul 2015 | B2 |
9111877 | Chen et al. | Aug 2015 | B2 |
9111907 | Kamineni | Aug 2015 | B2 |
9114438 | Hoinkis et al. | Aug 2015 | B2 |
9117855 | Cho et al. | Aug 2015 | B2 |
9132436 | Liang et al. | Sep 2015 | B2 |
9136273 | Purayath et al. | Sep 2015 | B1 |
9144147 | Yang et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9159606 | Purayath et al. | Oct 2015 | B1 |
9165786 | Purayath et al. | Oct 2015 | B1 |
9184055 | Wang et al. | Nov 2015 | B2 |
9190293 | Wang et al. | Nov 2015 | B2 |
9190302 | Ni | Nov 2015 | B2 |
9209012 | Chen et al. | Dec 2015 | B2 |
9236265 | Korolik et al. | Jan 2016 | B2 |
9236266 | Zhang et al. | Jan 2016 | B2 |
9245762 | Zhang et al. | Jan 2016 | B2 |
9263278 | Purayath et al. | Feb 2016 | B2 |
9269590 | Luere et al. | Feb 2016 | B2 |
9275834 | Park et al. | Mar 2016 | B1 |
9287095 | Nguyen et al. | Mar 2016 | B2 |
9287134 | Wang et al. | Mar 2016 | B2 |
9293568 | Ko | Mar 2016 | B2 |
9299537 | Kobayashi et al. | Mar 2016 | B2 |
9299538 | Kobayashi et al. | Mar 2016 | B2 |
9299575 | Park et al. | Mar 2016 | B2 |
9299582 | Ingle et al. | Mar 2016 | B2 |
9299583 | Wang et al. | Mar 2016 | B1 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010028093 | Yamazaki et al. | Oct 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010036706 | Kitamura | Nov 2001 | A1 |
20010037856 | Park | Nov 2001 | A1 |
20010037941 | Thompson | Nov 2001 | A1 |
20010041444 | Shields et al. | Nov 2001 | A1 |
20010047760 | Moslehi | Dec 2001 | A1 |
20010053585 | Kikuchi et al. | Dec 2001 | A1 |
20010053610 | Athavale | Dec 2001 | A1 |
20010054381 | Umotoy et al. | Dec 2001 | A1 |
20010055842 | Uh et al. | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020028582 | Nallan et al. | Mar 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020040764 | Kwan et al. | Apr 2002 | A1 |
20020040766 | Takahashi et al. | Apr 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020070414 | Drescher et al. | Jun 2002 | A1 |
20020074573 | Takeuchi et al. | Jun 2002 | A1 |
20020090781 | Skotnicki et al. | Jul 2002 | A1 |
20020090835 | Chakravarti et al. | Jul 2002 | A1 |
20020094378 | O'Donnell et al. | Jul 2002 | A1 |
20020096493 | Hattori | Jul 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020106845 | Chao et al. | Aug 2002 | A1 |
20020112819 | Kamarehi et al. | Aug 2002 | A1 |
20020124867 | Kim et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020129902 | Babayan et al. | Sep 2002 | A1 |
20020153808 | Skotnicki et al. | Oct 2002 | A1 |
20020164885 | Lill et al. | Nov 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20030003757 | Naltan et al. | Jan 2003 | A1 |
20030007910 | Lazarovich et al. | Jan 2003 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029567 | Dhindsa et al. | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030121609 | Ohmi et al. | Jul 2003 | A1 |
20030124465 | Lee et al. | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030127740 | Hsu et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030140844 | Maa et al. | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030152691 | Baude | Aug 2003 | A1 |
20030159307 | Sago et al. | Aug 2003 | A1 |
20030170945 | Igeta et al. | Sep 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030173675 | Watanabe et al. | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030200929 | Otsuki | Oct 2003 | A1 |
20030205329 | Gujer et al. | Nov 2003 | A1 |
20030215963 | AmRhein et al. | Nov 2003 | A1 |
20030216044 | Lin et al. | Nov 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040020801 | Zhao et al. | Feb 2004 | A1 |
20040026371 | Nguyen et al. | Feb 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040033684 | Li | Feb 2004 | A1 |
20040050328 | Kumagai et al. | Mar 2004 | A1 |
20040058293 | Nguyen et al. | Mar 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040076529 | Gnauck et al. | Apr 2004 | A1 |
20040087139 | Yeh et al. | May 2004 | A1 |
20040092063 | Okumura | May 2004 | A1 |
20040099378 | Kim et al. | May 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040108068 | Senzaki et al. | Jun 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040129671 | Ji et al. | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040144490 | Zhao et al. | Jul 2004 | A1 |
20040147126 | Yamashita et al. | Jul 2004 | A1 |
20140147126 | Yamashita et al. | Jul 2004 | A1 |
20040149394 | Doan et al. | Aug 2004 | A1 |
20040152342 | Li | Aug 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040157444 | Chiu | Aug 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040200499 | Harvey | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219737 | Quon | Nov 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040263827 | Xu | Dec 2004 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009340 | Saijo et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050073051 | Yamamoto et al. | Apr 2005 | A1 |
20050079706 | Kumar et al. | Apr 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050105991 | Hofmeister et al. | May 2005 | A1 |
20050112876 | Wu | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050164479 | Perng et al. | Jul 2005 | A1 |
20050167394 | Liu et al. | Aug 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050196967 | Savas et al. | Sep 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050205862 | Koemtzopoulos et al. | Sep 2005 | A1 |
20050208215 | Eguchi et al. | Sep 2005 | A1 |
20050214477 | Hanawa et al. | Sep 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050239282 | Chen et al. | Oct 2005 | A1 |
20050251990 | Choi et al. | Nov 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050269030 | Kent et al. | Dec 2005 | A1 |
20050279454 | Snijders | Dec 2005 | A1 |
20050287755 | Bachmann | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060005856 | Sun et al. | Jan 2006 | A1 |
20060006057 | Laermer | Jan 2006 | A1 |
20060011298 | Lim et al. | Jan 2006 | A1 |
20060011299 | Condrashoff et al. | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060021574 | Armour et al. | Feb 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060040055 | Nguyen et al. | Feb 2006 | A1 |
20060043066 | Kamp | Mar 2006 | A1 |
20060046412 | Nguyen et al. | Mar 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060046470 | Becknell | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060054184 | Mozetic et al. | Mar 2006 | A1 |
20060060942 | Minixhofer et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060097397 | Russell | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060102587 | Kimura | May 2006 | A1 |
20060118178 | Desbiolles et al. | Jun 2006 | A1 |
20060121724 | Yue et al. | Jun 2006 | A1 |
20060124242 | Kanarik et al. | Jun 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060157449 | Takahashi et al. | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060169327 | Shajii et al. | Aug 2006 | A1 |
20060178008 | Yeh et al. | Aug 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060191479 | Mizukami et al. | Aug 2006 | A1 |
20060191637 | Zajac et al. | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060207595 | Ohmi et al. | Sep 2006 | A1 |
20060210723 | Ishizaka | Sep 2006 | A1 |
20060216878 | Lee | Sep 2006 | A1 |
20060222481 | Foree | Oct 2006 | A1 |
20060226121 | Aoi | Oct 2006 | A1 |
20060228889 | Edelberg et al. | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060244107 | Sugihara | Nov 2006 | A1 |
20060246217 | Weidman et al. | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060252265 | Jin et al. | Nov 2006 | A1 |
20060254716 | Mosden et al. | Nov 2006 | A1 |
20060260750 | Rueger | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20060266288 | Choi | Nov 2006 | A1 |
20070025907 | Rezeq | Feb 2007 | A1 |
20070048977 | Lee et al. | Mar 2007 | A1 |
20070056925 | Liu et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070090325 | Hwang et al. | Apr 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070119370 | Ma et al. | May 2007 | A1 |
20070119371 | Ma et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070131274 | Stollwerck et al. | Jun 2007 | A1 |
20070154838 | Lee | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070175861 | Hwang et al. | Aug 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070193515 | Jeon et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070207275 | Nowak et al. | Sep 2007 | A1 |
20070212288 | Holst | Sep 2007 | A1 |
20070227554 | Satoh et al. | Oct 2007 | A1 |
20070231109 | Pak et al. | Oct 2007 | A1 |
20070235134 | Iimuro | Oct 2007 | A1 |
20070238199 | Yamashita | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070243685 | Jiang et al. | Oct 2007 | A1 |
20070259467 | Tweet et al. | Nov 2007 | A1 |
20070264820 | Liu | Nov 2007 | A1 |
20070266946 | Choi | Nov 2007 | A1 |
20070277734 | Lubomirsky et al. | Dec 2007 | A1 |
20070281106 | Lubomirksy et al. | Dec 2007 | A1 |
20070287292 | Li et al. | Dec 2007 | A1 |
20080020570 | Naik | Jan 2008 | A1 |
20080044990 | Lee | Feb 2008 | A1 |
20080063810 | Park et al. | Mar 2008 | A1 |
20080075668 | Goldstein | Mar 2008 | A1 |
20080081483 | Wu | Apr 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099147 | Myo et al. | May 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080099876 | Seto | May 2008 | A1 |
20080102570 | Fischer et al. | May 2008 | A1 |
20080102640 | Hassan et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080121970 | Aritome | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080142483 | Hua et al. | Jun 2008 | A1 |
20080153306 | Cho et al. | Jun 2008 | A1 |
20080156771 | Jeon et al. | Jul 2008 | A1 |
20080157225 | Datta et al. | Jul 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080171407 | Nakabayashi et al. | Jul 2008 | A1 |
20080173906 | Zhu | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182383 | Lee et al. | Jul 2008 | A1 |
20080202892 | Smith et al. | Aug 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080236751 | Aramaki et al. | Oct 2008 | A1 |
20080254635 | Benzel et al. | Oct 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20080293248 | Park et al. | Nov 2008 | A1 |
20090001480 | Cheng | Jan 2009 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090017227 | Fu et al. | Jan 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090072401 | Arnold et al. | Mar 2009 | A1 |
20090081878 | Dhindsa | Mar 2009 | A1 |
20090084317 | Wu et al. | Apr 2009 | A1 |
20090087960 | Cho et al. | Apr 2009 | A1 |
20090087979 | Raghuram | Apr 2009 | A1 |
20090095621 | Kao et al. | Apr 2009 | A1 |
20090098706 | Kim et al. | Apr 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090111280 | Kao et al. | Apr 2009 | A1 |
20090120464 | Rasheed et al. | May 2009 | A1 |
20090170221 | Jacques et al. | Jul 2009 | A1 |
20090170331 | Cheng et al. | Jul 2009 | A1 |
20090179300 | Arai | Jul 2009 | A1 |
20090189246 | Wu et al. | Jul 2009 | A1 |
20090194810 | Kiyotoshi et al. | Aug 2009 | A1 |
20090197418 | Sago et al. | Aug 2009 | A1 |
20090202721 | Nogami et al. | Aug 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090258162 | Furuta et al. | Oct 2009 | A1 |
20090269934 | Kao et al. | Oct 2009 | A1 |
20090275146 | Takano et al. | Nov 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090277587 | Lubomirsky et al. | Nov 2009 | A1 |
20090277874 | Rui et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090294898 | Feustel et al. | Dec 2009 | A1 |
20100003824 | Kadkhodayan et al. | Jan 2010 | A1 |
20100022030 | Ditizio | Jan 2010 | A1 |
20100047080 | Bruce | Feb 2010 | A1 |
20100048027 | Cheng et al. | Feb 2010 | A1 |
20100055408 | Lee et al. | Mar 2010 | A1 |
20100055917 | Kim | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100062603 | Ganguly et al. | Mar 2010 | A1 |
20100075503 | Bencher | Mar 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100093168 | Naik | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100101727 | Ji | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100130001 | Noguchi | May 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100164422 | Shu et al. | Jul 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100178748 | Subramanian | Jul 2010 | A1 |
20100178755 | Lee et al. | Jul 2010 | A1 |
20100180819 | Hatanaka et al. | Jul 2010 | A1 |
20100183825 | Becker et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Kim et al. | Jul 2010 | A1 |
20100187694 | Yu et al. | Jul 2010 | A1 |
20100190352 | Jaiswal | Jul 2010 | A1 |
20100197143 | Nishimura | Aug 2010 | A1 |
20100203739 | Becker et al. | Aug 2010 | A1 |
20100207205 | Grebs et al. | Aug 2010 | A1 |
20100240205 | Son | Sep 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100330814 | Yokota et al. | Dec 2010 | A1 |
20110005607 | Desbiolles et al. | Jan 2011 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110011338 | Chuc et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110039407 | Nishizuka | Feb 2011 | A1 |
20110045676 | Park | Feb 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110061812 | Ganguly et al. | Mar 2011 | A1 |
20110065276 | Ganguly et al. | Mar 2011 | A1 |
20110081782 | Liang et al. | Apr 2011 | A1 |
20110100489 | Orito | May 2011 | A1 |
20110111596 | Kanakasabapathy | May 2011 | A1 |
20110114601 | Lubomirsky et al. | May 2011 | A1 |
20110115378 | Lubomirsky et al. | May 2011 | A1 |
20110124144 | Schlemm et al. | May 2011 | A1 |
20110127156 | Foad et al. | Jun 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110151678 | Ashtiani et al. | Jun 2011 | A1 |
20110155181 | Inatomi | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110180847 | Ikeda et al. | Jul 2011 | A1 |
20110195575 | Wang | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110232737 | Ruletzki et al. | Sep 2011 | A1 |
20110266252 | Thadani | Nov 2011 | A1 |
20110266682 | Edelstein et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20110298061 | Siddiqui et al. | Dec 2011 | A1 |
20120003782 | Byun et al. | Jan 2012 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120025289 | Liang et al. | Feb 2012 | A1 |
20120031559 | Dhindsa et al. | Feb 2012 | A1 |
20120034786 | Dhindsa et al. | Feb 2012 | A1 |
20120052683 | Kim et al. | Mar 2012 | A1 |
20120068242 | Shin et al. | Mar 2012 | A1 |
20120103518 | Kakimoto | May 2012 | A1 |
20120104564 | Won et al. | May 2012 | A1 |
20120129354 | Luong | May 2012 | A1 |
20120135576 | Lee et al. | May 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120164839 | Nishimura | Jun 2012 | A1 |
20120180954 | Yang et al. | Jul 2012 | A1 |
20120181599 | Lung | Jul 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120202408 | Shajii et al. | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120223048 | Paranjpe et al. | Sep 2012 | A1 |
20120225557 | Serry et al. | Sep 2012 | A1 |
20120228642 | Aube et al. | Sep 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120247390 | Sawada et al. | Oct 2012 | A1 |
20120247670 | Dobashi et al. | Oct 2012 | A1 |
20120247671 | Sugawara | Oct 2012 | A1 |
20120267346 | Kao et al. | Oct 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20130005103 | Liu et al. | Jan 2013 | A1 |
20130005140 | Jeng et al. | Jan 2013 | A1 |
20130012032 | Liu et al. | Jan 2013 | A1 |
20130032574 | Liu et al. | Feb 2013 | A1 |
20130034666 | Liang et al. | Feb 2013 | A1 |
20130034968 | Zhang et al. | Feb 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130065398 | Ohsawa et al. | Mar 2013 | A1 |
20130082197 | Yang et al. | Apr 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130098868 | Nishimura et al. | Apr 2013 | A1 |
20130119016 | Kagoshima | May 2013 | A1 |
20130119457 | Lue et al. | May 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130130507 | Wang et al. | May 2013 | A1 |
20130187220 | Surthi | Jul 2013 | A1 |
20130193108 | Zheng | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224960 | Payyapilly et al. | Aug 2013 | A1 |
20130260533 | Sapre et al. | Oct 2013 | A1 |
20130260564 | Sapre et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
20130298942 | Ren et al. | Nov 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20130337655 | Lee et al. | Dec 2013 | A1 |
20140004708 | Thedjoisworo | Jan 2014 | A1 |
20140020708 | Kim et al. | Jan 2014 | A1 |
20140021673 | Chen et al. | Jan 2014 | A1 |
20140057447 | Yang et al. | Feb 2014 | A1 |
20140065842 | Anthis et al. | Mar 2014 | A1 |
20140080308 | Chen et al. | Mar 2014 | A1 |
20140080309 | Park | Mar 2014 | A1 |
20140080310 | Chen et al. | Mar 2014 | A1 |
20140083362 | Lubomirsky et al. | Mar 2014 | A1 |
20140087488 | Nam et al. | Mar 2014 | A1 |
20140097270 | Liang et al. | Apr 2014 | A1 |
20140099794 | Ingle et al. | Apr 2014 | A1 |
20140134847 | Seya | May 2014 | A1 |
20140141621 | Ren et al. | May 2014 | A1 |
20140166617 | Chen | Jun 2014 | A1 |
20140166618 | Tadigadapa et al. | Jun 2014 | A1 |
20140190410 | Kim | Jul 2014 | A1 |
20140199851 | Nemani et al. | Jul 2014 | A1 |
20140225504 | Kaneko et al. | Aug 2014 | A1 |
20140227881 | Lubomirsky et al. | Aug 2014 | A1 |
20140234466 | Gao et al. | Aug 2014 | A1 |
20140248780 | Ingle et al. | Sep 2014 | A1 |
20140256131 | Wang et al. | Sep 2014 | A1 |
20140262031 | Belostotskiy et al. | Sep 2014 | A1 |
20140262038 | Wang et al. | Sep 2014 | A1 |
20140263272 | Duan et al. | Sep 2014 | A1 |
20140264533 | Simsek-Ege | Sep 2014 | A1 |
20140271097 | Wang et al. | Sep 2014 | A1 |
20140273373 | Makala et al. | Sep 2014 | A1 |
20140273406 | Wang et al. | Sep 2014 | A1 |
20140273451 | Wang et al. | Sep 2014 | A1 |
20140273462 | Simsek-Ege et al. | Sep 2014 | A1 |
20140273489 | Wang et al. | Sep 2014 | A1 |
20140273491 | Zhang et al. | Sep 2014 | A1 |
20140273492 | Anthis et al. | Sep 2014 | A1 |
20140273496 | Kao | Sep 2014 | A1 |
20140288528 | Py et al. | Sep 2014 | A1 |
20140302678 | Paterson et al. | Oct 2014 | A1 |
20140302680 | Singh | Oct 2014 | A1 |
20140308758 | Nemani et al. | Oct 2014 | A1 |
20140308816 | Wang et al. | Oct 2014 | A1 |
20140311581 | Belostotskiy et al. | Oct 2014 | A1 |
20140342532 | Zhu | Nov 2014 | A1 |
20140342569 | Zhu et al. | Nov 2014 | A1 |
20140349477 | Chandrashekar et al. | Nov 2014 | A1 |
20150011096 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014152 | Hoinkis et al. | Jan 2015 | A1 |
20150031211 | Sapre et al. | Jan 2015 | A1 |
20150037980 | Rha | Feb 2015 | A1 |
20150060265 | Cho et al. | Mar 2015 | A1 |
20150076110 | Wu et al. | Mar 2015 | A1 |
20150079797 | Chen et al. | Mar 2015 | A1 |
20150118858 | Takaba | Apr 2015 | A1 |
20150126035 | Diao et al. | May 2015 | A1 |
20150126039 | Korolik et al. | May 2015 | A1 |
20150126040 | Korolik et al. | May 2015 | A1 |
20150129541 | Wang et al. | May 2015 | A1 |
20150129545 | Ingle et al. | May 2015 | A1 |
20150129546 | Ingle et al. | May 2015 | A1 |
20150132953 | Nowling | May 2015 | A1 |
20150132968 | Ren et al. | May 2015 | A1 |
20150155177 | Zhang et al. | Jun 2015 | A1 |
20150170879 | Nguyen et al. | Jun 2015 | A1 |
20150170920 | Purayath et al. | Jun 2015 | A1 |
20150170924 | Nguyen et al. | Jun 2015 | A1 |
20150170926 | Michalak | Jun 2015 | A1 |
20150170935 | Wang et al. | Jun 2015 | A1 |
20150170943 | Nguyen et al. | Jun 2015 | A1 |
20150171008 | Luo | Jun 2015 | A1 |
20150179464 | Wang et al. | Jun 2015 | A1 |
20150206764 | Wang et al. | Jul 2015 | A1 |
20150214066 | Luere et al. | Jul 2015 | A1 |
20150214067 | Zhang et al. | Jul 2015 | A1 |
20150214092 | Purayath et al. | Jul 2015 | A1 |
20150214337 | Ko et al. | Jul 2015 | A1 |
20150221541 | Nemani et al. | Aug 2015 | A1 |
20150235809 | Ito et al. | Aug 2015 | A1 |
20150235863 | Chen | Aug 2015 | A1 |
20150235865 | Wang et al. | Aug 2015 | A1 |
20150235867 | Nishizuka | Aug 2015 | A1 |
20150247231 | Nguyen et al. | Sep 2015 | A1 |
20150249018 | Park et al. | Sep 2015 | A1 |
20150270140 | Gupta et al. | Sep 2015 | A1 |
20150275361 | Lubomirsky et al. | Oct 2015 | A1 |
20150275375 | Kim et al. | Oct 2015 | A1 |
20150294980 | Lee et al. | Oct 2015 | A1 |
20150332930 | Wang et al. | Nov 2015 | A1 |
20150340225 | Kim et al. | Nov 2015 | A1 |
20150357201 | Chen et al. | Dec 2015 | A1 |
20150357205 | Wang et al. | Dec 2015 | A1 |
20150371861 | Li et al. | Dec 2015 | A1 |
20150371864 | Hsu et al. | Dec 2015 | A1 |
20150371865 | Chen et al. | Dec 2015 | A1 |
20150371866 | Chen et al. | Dec 2015 | A1 |
20160005572 | Liang et al. | Jan 2016 | A1 |
20160005833 | Collins et al. | Jan 2016 | A1 |
20160027654 | Kim et al. | Jan 2016 | A1 |
20160027673 | Wang et al. | Jan 2016 | A1 |
20160035586 | Purayath et al. | Feb 2016 | A1 |
20160035614 | Purayath et al. | Feb 2016 | A1 |
20160056167 | Wang et al. | Feb 2016 | A1 |
20160064233 | Wang et al. | Mar 2016 | A1 |
20160079072 | Wang et al. | Mar 2016 | A1 |
20160086807 | Park et al. | Mar 2016 | A1 |
20160086808 | Zhang et al. | Mar 2016 | A1 |
20160086815 | Pandit et al. | Mar 2016 | A1 |
20160086816 | Wang et al. | Mar 2016 | A1 |
20160093505 | Chen et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
104641445 | May 2015 | CN |
H08-264510 | Oct 1996 | JP |
10-2003-0054726 | Jul 2003 | KR |
10-2011-0086540 | Jul 2011 | KR |
10-2015-0056641 | May 2015 | KR |
201419402 | May 2014 | TW |
2014046845 | Mar 2014 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT/US2013/056636, mailed on Dec. 27, 2013, 8 pages. |
Manual No. TQMA72E1. “Bayard-Alpert Pirani Gauge FRG-730: Short Operating Instructions” Mar. 2012. Agilent Technologies, Lexington, MA 02421, USA. pp. 1-45. |
Number | Date | Country | |
---|---|---|---|
20150235863 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61702493 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13834611 | Mar 2013 | US |
Child | 14703333 | US |