The disclosure pertains to devices for trapping charge particles in mass spectrometers.
Mass spectrometry comprises a broad range of instruments and methodologies used to elucidate the structural and chemical properties of molecules, to identify the atoms and molecules that compose samples of physical and biological matter, and to quantify the atoms and molecules identified in such samples. Mass spectrometers can detect minute quantities of pure substances (on the order of or less than 10−15 g) and, as a consequence, can identify compounds at very low concentrations (on the order of or less than one part in 1012) in chemically complex mixtures. The power of this analytical technique is evidenced by the fact that mass spectrometry has become a necessary adjunct to research in every division of natural and biological science and provides valuable information to a wide range of technologically based professions (e.g., medicine, law enforcement, process control engineering, chemical manufacturing, pharmacy, biotechnology, food processing and testing, and environmental engineering). In these applications, mass spectrometry is used to identify structures of biomolecules (such as carbohydrates, nucleic acids and steroids); to sequence biopolymers (such as proteins and oligosaccharides); to diagnose disease; to determine how drugs are used by the body; to perform forensic analyses (e.g., determine the presence and quantities of drugs of abuse); to assay environmental samples for pollutants; to determine the age and origins of geochemical and archaeological specimens; to identify and quantify components of complex organic mixtures; and to perform elemental analyses of inorganic materials (e.g., minerals, metal alloys, and semiconductors).
A mass spectrometer typically comprises an ion source, a mass analyzer, a detector, and a data handling system. The ion source's task is to convert atoms and molecules into gas-phase ions so they can be transported through the instrument under the action of electric and magnetic forces. Ions are transferred from the ion source into the mass analyzer where they are dispersed according to their mass-to-charge (m/z) ratios or a related mechanical property, such as velocity, momentum, or energy. At present, the most widely used types of mass analyzers are magnetic sectors, quadrupole mass filters, quadrupole ion-traps, time-of-flight tubes, and Fourier transform ion cyclotron resonance (FT ICR) cells. After the mass analyzer separates the ions, they interact with the detector to generate current or voltage signals, either of which has a magnitude proportional to the number of ions that produced it. These electrical signals, whatever their form, can be continuously processed, stored, and displayed on a monitor over the course of an analysis by a computerized data system; at the end of the analysis, they can be printed out on paper as a graph of signal intensity versus in/z, i.e. as a mass spectrum. In principle, the pattern of ion-signals that appears in the mass spectrum of a pure molecular substance constitutes a unique fingerprint from which the molecule's mass and various features of its structure can be deduced.
Mass spectrometry can be performed on a molecular sample in multiple, tandem stages to probe incisively into the complexities of molecular structure and to markedly increase specificity and sensitivity in analyses of complex mixtures of molecules. If the sample is a pure compound, a product-ion tandem analysis (
A tandem mass spectrometric unit, commonly designated as MS/MS or MS2, comprises two transmission mass analyzers (e.g., magnetic sectors, quadrupole mass filters, time-of-flight tubes, or a hybrid combination of such analyzers) arranged to perform spatially separated mass analyses in sequence (
A gaseous molecular ion can be decomposed into fragments if its internal energy can be raised sufficiently during an interaction with a physical or chemical agent. The physicochemical processes most commonly used in MS/MS to fragment precursor ions are photon-induced dissociation (PID), low-energy collision-induced dissociation (CID), high-energy CID, electron impact excitation of ions from organic (EIEIO), electron transfer dissociation (ETD), electron capture dissociation (ECD), and electron detachment dissociation (EDD). In current practice, PID, low-energy CID, and high-energy CID are used universally to analyze all types of molecules whereas ETD, ECD, and EDD are used almost exclusively in the analysis of peptides and proteins. ECD, EDD, and ETD exhibit little selectivity for particular amino acids (proline and amino acids associated with disulphide bonds are exceptions); in addition, all three preserve labile post-translational modifications (PTMs), e.g., phosphorylation, o-glycosylation, and n-glycosylation. Consequently, these three dissociation processes are particularly suitable for analyzing peptides having as many as 20-25 amino acids and for determining the sites and nature of PTMs.
Each disassociation process induces fragmentation by forcing transitions in the precursor ions from bonding energy states to antibonding energy states. In PID, infrared photons induce nonpredetermined bonds to break by exciting various rotational and vibrational states, and ultraviolet photons of a specific wavelength induce predetermined bonds to break by exciting particular electronic states. PID requires an arrangement by which the precursor ions can be irradiated with an intense beam of photons; using a laser as the light source and an arrangement of common optical components, PID can (with little difficulty) be made to take place in any type of transmission dissociation cell or 3D analyzer. In CID, gas-phase collisions between precursors and inert atoms (like helium) or molecules (like nitrogen) induce nonpredetermined bonds to break by exiting various rotational, vibrational and electronic states. Low-energy CID and high-energy CID alike require that the precursor ions be intimately confined with the collision gas at a relatively high pressure. In current practice, low-energy CID is carried out most efficiently in 2D RF-multipole (e.g., quadrupole, hexapole, or octapole) ion-guides or 3D RF-trapping analyzers (e.g. quadrupole ion-traps or FT ICR cells), and high-energy CID is carried out in electric and magnetic field-free transmission cells designed to differentially maintain the collision gas at a relatively high pressure.
In ETD, exothermic single-electron-transfers from anions (which function both as bases and one-electron reducing agents) to multiply protonated peptidic precursors induce cleavage almost exclusively of the peptides' N—Ca (amine) backbone-bonds by exciting electronic states associated with the latter. ETD requires that the cationic precursors be intimately confined in space and time with anionic reagent molecules; this condition can be achieved in the 2D RF field of a linear multipole ion guide by applying a secondary RF-voltage to the multipole's end lenses. In ECD, exothermic single-electron-captures of free, low-energy (on the order of 1 eV for “normal” ECD and 20 eV for “hot” ECD) electrons by multiply protonated (cationic) peptidic precursors induce the peptides' N—Ca backbone-bonds to break by almost exclusively exciting electronic states associated with the latter. In EDD (the negative-ion counterpart to ECD), single-electron-captures of free, moderately low-energy (on the order of 20 eV) electrons (which in each anion results in the creation of a positive-radical or hole that exothermically recombines with one of the anion's negative charges) induce the peptides' inter-residue bonds to break by almost exclusively exciting electronic states associated with the latter. ECD and EDD require that the precursor ions be forced to mingle with a dense population of low-energy electrons. Since the reagent electrons and the multiply protonated precursor ions have opposite polarities and masses that differ by more than six orders of magnitude, the conditions for simultaneously confining them in the same volume of space cannot be satisfied in a purely electrostatic cell, and can only be minimally satisfied in an RF cell. To date, the only instrument in which it has been possible to achieve this condition to any practical degree has been the FT ICR mass spectrometer.
Since its advent in 1998, electron capture dissociation (ECD) has come to be regarded as a potentially powerful tool for elucidating protein structure. Numerous efforts to optimize ECD for protein analysis have been reported over the past decade. Less publicized has been a small number of recent attempts to overcome the limitation of ECD's original implementation, namely, the necessity for practical purposes of having to perform it on FT ICR instruments. Several researchers have independently succeeded in observing ECD in a linear ion trap, a three dimensional (3D) ion trap, and a digital 3D ion trap. (Baba et al., Anal. Chem. 2004, 76: 4263; Satake et al., Anal. Chem. 2007, 79: 8755; Silivra et al., J. Am. Soc. Mass Spectrom. 2005, 16: 22; Ding et al., Anal. Chem. 2006, 78: 1995.) In the first two of these demonstrations, magnetic fields were used for electron confinement, and in the last one, a digitally generated, rectangular-trapping, electric-field waveform was used for this purpose. In all three approaches, it was necessary to use a moderating gas (He) either to convert some of the electrons' translational energy into rotational energy about the magnetic field lines, to compensate for the unavoidable transfer of energy from the RF field to the electrons, or both. In the two 3D ion-trap demonstrations, ECD occurred in the analyzer itself, whereas in the linear ion-trap demonstration, it took place in a custom-designed cell. By virtue of being analyzer-independent, the linear multipole would seem to be a more promising platform than the 3D ion trap.
In any of the configurations described above, ions are vulnerable to losses in a mass spectrometer as they are transported from the ion source to the mass analyzer or between two mass analyzers. Electrostatic lenses, radio-frequency (RF) multipoles, and combinations of both are typically used to avoid or mitigate such losses. Unfortunately, the devices are complex, expensive, and frequently can be configured for only a limited range of applications. For example, conventional devices typically cannot be conveniently reconfigured to use a different dissociation process. In addition, in RF-field based devices, beam energy control is difficult because of beam interaction with the RF field. Beam losses are also high due to the dependence of beam propagation on the phase of the applied RF field. Thus, improved devices are needed to transport, trap, and dissociate electrically charged, gas-phase molecules (ions).
An exemplary mass spectrometry apparatus in accordance with the present invention comprises, from a first end to a second end along an axis, a first conductive aperture coupled to receive a first electrical potential, a first magnetostatic lens, and a second conductive aperture coupled to receive a second electrical potential, wherein the first and second conductive apertures and the magnetostatic lens define a charged particle interaction cavity that extends along the axis. According to some exemplary configurations, the first magnetostatic lens comprises, from the first end to the second end along the axis, a first pole piece, a magnet, and a second pole piece, wherein the first pole piece and the second pole piece are magnetically coupled to the magnet. In additional configurations, the first conductive aperture and the second conductive aperture are defined by the first pole piece and the second pole piece, respectively. In some configurations, the first magnet is a permanent magnet or an electromagnet. In other configurations, the first and second conductive apertures are circular. In additional configurations, the first and second conductive apertures are non-circular. In other embodiments, the axis includes a straight line portion and/or a curved portion. In still further configurations, a second magnetostatic lens is situated adjacent the second conductive aperture and a third conductive aperture is configured to receive a third electrostatic potential.
In other embodiments, mass spectrometry apparatus of the present invention comprises a plurality of magnetostatic lenses situated along an axis and a plurality of electrostatic lenses interleaved with the magnetostatic lenses. The plurality of magnetostatic lenses and the plurality of electrostatic lenses define an interaction cavity situated along the axis in which charged particles are in at least at some regions of the interaction cavity simultaneously responsive to both a magnetic flux produced by at least one of the magnetostatic lenses and an electric field produced by at least one of the electrostatic lenses. In other configurations, the plurality of magnetostatic lens further comprises respective magnets and pole pieces, and the electrostatic lenses are defined at least in part by the magnets or the pole pieces of the plurality of magnetostatic lenses.
In yet a further aspect of the present invention, exemplary electrostatic/magnetostatic charged particle guides are provided which comprise a first magnetostatic lens including a first pole piece, a first insulator, a first magnet, a second insulator, and a second pole piece, wherein the first magnetostatic lens defines a first lens aperture situated on the axis and wherein the first and second insulators are configured to electrically insulate the first magnet from the first and second pole pieces. A first electrical connector is coupled to the first pole piece. In other configurations, charged particle guides include a second magnetostatic lens situated adjacent the first magnetostatic lens and that includes a third insulator, a third pole piece, a second magnet, a fourth insulator, and a fourth pole piece. The third insulator is configured to electrically insulate the second magnet from the third pole piece, and the fourth insulator is configured to electrically insulate the fourth pole piece from the second magnet. In some configurations, the first magnet and the second magnet are magnetic rings. In further configurations, the second pole piece and the third pole piece are formed as a common pole piece situated between and magnetically coupled to the first magnet and the second magnet.
Still further the present invention provides an exemplary apparatus that comprises a plurality of magnetostatic lenses periodically situated along an axis and one or more conductive aperture plates situated on the axis and associated with the plurality of magnetostatic lenses, wherein the conductive aperture plates are electrically isolated from each other. As used herein, the term “conductive aperture plate” refers to both the aforementioned pole pieces and to components comprising a non-magnetic, conducting material but otherwise similar to the pole pieces. A plurality of electrical connectors is provided that are independently electrically coupled to respective conductive aperture plates. Thus, the term “conductive apertures” include apertures that are defined by at least portions of magnets of the plurality of magnetostatic lenses, pole pieces, or non-conductive plates having at least partial conductive coatings. In further configurations, the conductive apertures are defined by an electrically conductive coating on an insulating substrate.
In another of its aspects, the present invention provides an apparatus that comprises a plurality of magnetostatic lenses having alternate polarities as situated along an axis and a plurality of conductive aperture plates situated along the axis and interleaved with the magnetostatic lenses, wherein each of the conductive aperture plates is configured to be coupled to a respective voltage. In additional configurations, each of the plurality of the conductive aperture plates is formed of a ferromagnetic material and is magnetically coupled to a respective magnet.
Exemplary methods of the present invention include providing a charged particle beam to at least one magnetostatic lens interleaved with at least one electrostatic lens, wherein the magnetostatic lens is configured to produce a static magnetic field that directs the charged particle beam along an axis. At least first and second electrical potentials configured to trap, accelerate, decelerate, or focus the charged particle beam with the electrostatic lens are selected and applied. In other configurations, the static magnetic field is selected to focus the charged particle beam along the axis or to direct the charged particle beam along a sinusoidal path along the axis. In further configurations, the first and second electrical potentials are selected to substantially trap at least a portion of the charged particle beam. In other representative configurations, the charged particle beam is provided to a plurality of magnetostatic lenses interleaved with at least one electrostatic lens or a plurality of electrostatic lenses.
These and other features and aspects of the disclosed technology are set forth below with reference to the accompanying drawings.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.”
The systems, apparatus, and methods described herein should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and non-obvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed systems, methods, and apparatus are not limited to any specific aspect or feature or combinations thereof, nor do the disclosed systems, methods, and apparatus require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other systems, methods, and apparatus. Additionally, the description sometimes uses terms like “produce” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms will vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
Theories of operation, scientific principles, or other theoretical descriptions presented herein in reference to the apparatus or methods of this disclosure have been provided for the purposes of better understanding and are not intended to be limiting in scope. The apparatus and methods in the appended claims are not limited to those apparatus and methods which function in the manner described by such theories of operation.
Magnetostatic lenses can have high transmission efficiencies and are routinely employed in (for example) electron microscopes, linear accelerators, and traveling wave tubes, but have not been adapted for mass spectrometry, largely because they have and continue to be viewed as unsuitable for this application. Surprisingly, as disclosed herein, contrary to this conventional wisdom, the present inventors have discovered and demonstrated that permanent magnet based systems (and other systems using static magnetic fields) provide numerous unexpected advantages. For example, conventional electrostatic and RF-driven devices for transporting, trapping, and dissociating ions in mass spectrometers must generally be precisely configured based on the type of mass analyzer used. Thus, while conventional devices limit the types of analyses that can be performed, often requiring substantial instrumental reconfigurations to change the nature of an analysis, the disclosed devices can be simply reconfigured or, in some cases, be preconfigured to accommodate a variety of analyses.
In contrast to conventional devices, ion beams with kinetic energies up to 5 keV or larger are focused along a magnetic lens axis and can be transported with low loss. Because electrostatic and magnetostatic fields have no phases, particle beams entering such fields suffer almost no losses. Thus, the disclosed devices permit higher transmission efficiencies and lower detection limits than conventional devices.
In the exemplary configurations disclosed herein, magnetostatic devices include permanent magnets (e.g., magnets 208, 250, 610-616, 750 of
Disclosed herein are representative components of mass spectrometers that are configured to transport, trap, and/or fragment ions based on a series of superimposed electrostatic lenses (e.g., lenses 312-316, 410-415 of
In convenient configurations, the disclosed cells (e.g., cells 600, 700 of
In other configurations, the disclosed devices can be configured to transport, trap, or transport and trap molecular ions in conjunction with fragmentation in tandem mass spectrometers, regardless of type. For photon-assisted dissociation (PID), this can be accomplished by providing one or more apertures to introduce a dissociating light beam, typically a laser beam, to a common location with at least a portion of an ion beam. The apertures can be provided as one or more bores in one or more of the conductive aperture plates and/or soft iron pole pieces. Alternatively, such apertures can be provided in magnets, or other components. Lenses, prisms, and mirrors, or combinations thereof can be arranged to deliver the light beam to the common location. The disclosed devices can be adapted for low- or high-energy collision-induced dissociation (CID) by providing a conduit for introduction of a neutral gas. Such a conduit can be provided by drilling a hole or holes through one or more of soft iron spacers, directing a gas line or gas lines of any sort into either or both ends of the cavity, or by any combination thereof.
Electron-transfer dissociation (ETD) or other charge-transfer-induced dissociation processes can be implemented by providing for anions or cations to be introduced into the cavity by, for example, situating a chemical ionization source or other type of ion source at either end or both ends of a device. Electron-capture dissociation (ECD), electron-detachment dissociation (EDD), electron impact excitation of ions from organic (EIEIO), or other electron-induced processes can be implemented by providing for electrons to be introduced by one or more electron sources situated at either end or both ends of a device cavity.
In this description, devices that provide combinations of electric fields and magnetic fields that are configured to trap or transport charged particles such as ions, electrons, or other charged particles, or charged-particle beams are referred to, for convenience, as “ion guide” apparatus. In some configurations, such ion guides can include features for production of charged particles by one or more dissociation techniques, or can include one or more assemblies configured to produce dissociation. Representative configurations that are substantially cylindrical are described, but the ion guide can have square, ovoid, or other cross-sections and circular cross-sections are selected for convenient illustration. For simplicity, the disclosed exemplary configurations are based on ring-shaped permanent magnets, but other shapes can be used. In other exemplary configurations, electromagnets could be used.
Referring to
In the configuration shown in
The periodic focusing arrangements of
For most MSn experiments, electric field strengths less than about 5,000 V/cm (the highest likely to be used) and magnetic flux densities on the order of 5 T do not affect either photons or electrically neutral gases. Thus, for PID and CID experiments, photons or neutral gases can be readily introduced into cells that use such field strengths to trap and transport charged particles.
In the following, two representative configurations of such structures are described. In these configurations, components are situated along linear axes 306, 408 and magnets 308, 310, 402-406 are oriented so as to provide axial focusing,
With reference to
In the configuration of
With reference to
In addition the present invention provides configurations of ion guides/cells with differing locations of the source of electrons. Such configurations can increase the population of low-energy electrons sufficiently to raise the reaction efficiencies of ECD, EDD, or any other electron capture process by one or more orders of magnitude and, thereby, enable users to conduct more comprehensive proteomics experiments.
In this regard, the present invention provides devices that locate the source of electrons, (
A similar exemplary configuration, is also provided utilizing an internal filament 893, but using two (non-magnetic) conductive aperture plates 864, 865, which may be comprise titanium for instance, in place of the central pole piece 814, to provide conductive apertures,
The term “source of electrons” can include any embodiment of an individual electron-source, e.g. thermal source 845 (
In addition, in accordance with the present invention, the source of reagent electrons may be located at a position or positions along the side (as opposed to at an end or at both ends) of the hybrid electrostatic/magnetostatic cell to provide greater flexibility in the design and construction of an ECD/EDD cell and, further, to allow an electron monochromator to be used as the source of electrons in order to increase the selectivity of ECD, EDD, or any other electron capture process. Precise control over electron energy used in an ECD experiment makes it possible to exercise a degree of selectivity over how some polypeptides fragment. In those cases where this applies, this phenomenon can be exploited to increase sensitivity. An electron monochromator is any device that can select nearly monoenergetic electrons from the population emitted by a hot metal filament and tune the energy of the selected electrons so that it matches the resonant electron capture energy of any negative ion of interest with an accuracy of better than 0.1 eV.
In this regard, the present invention provides devices that locate the electron sources 943 alongside the hybrid electrostatic/magnetostatic cell or trap 900 (
Locating intense sources 943 of low-energy electrons on the periphery of an electrostatic/magnetostatic cell 900 will provide greater flexibility in the design and construction of an ECD/EDD cell and, further, will allow an electron monochromator to be used as the source of electrons in order to increase the selectivity of ECD, EDD, or any other electron capture process. This capability, which is impossible to implement in RF-based and digital-based cells, will in turn make it possible to obtain much more information from studies of the energetics and kinetics of electron capture reactions as well as from tandem mass spectrometric analyses of proteins and peptides.
Referring to
In one example in which a commercial quadrupole-mass-filter/octapole-CID-cell/quadrupole-mass-filter (QqQ) mass spectrometer (Finnigan TSQ700: Thermo Fisher Scientific, Inc., Waltham, Mass. USA) was modified by replacing the RF octapole CID cell with the ion-guide apparatus 504 configured as the ECD/CID-cell 400 in
The cell magnets 402-406 were the afore-mentioned N42SH-grade Nd—Fe—B ring-magnets (SuperMagnetMan, Birmingham, Ala. USA), the insulators 432-440 comprised 0.010″ thick poly(tetrafluoroethylene), and the pole pieces 410-415 comprised soft iron. Each of the pole pieces 410-415 and the magnet's aluminum housing 420 were connected to an independently adjustable ±100-V channel of a 7-channel power supply V1-6, VH (which could be floated up to 8 kV) so that the pole pieces 410-415 could function as electrostatic lenses as well as a pole pieces for the magnetostatic lenses 460-464. A ring-shaped, floating filament 443 of tungsten-rhenium wire of 0.07″ (1.78 mm) diameter, located concentric with the cell's axis 408 at the ion-entrance, served as the source of electrons. Two titanium lenses disposed between the filament 443 and ion guide cell 400 were used to guide electrons into the cell 400.
The peptide solutions were separately electrosprayed at a flow rate of 0.2 μL/min, and doubly protonated substance P, doubly protonated gramicidin S, doubly protonated neurotensin, and triply protonated neurotensin were respectively selected as precursors. By adjusting the potentials V1-6 on the cell's electrostatic lenses 410-415, settings were easily found that allowed the electrons emitted from the ring-filament 443 to merge in sufficient numbers with the ion beam to produce ECD spectra of doubly protonated Substance P that appear in all respects (except, obviously, in resolution) the same as those produced on FT ICR instruments,
The segmented design of the ECD cell 400 provides additional opportunities for controlling electron-ion interactions and dissociation of precursor ions. For instance, by appropriately setting the potentials V1-6 on the electrostatic lenses 410-415, the electron capture events can be forced to take place in the early entry side segments of the cell 400, and decomposition of the radical precursor ions can be observed as a function of time after electron capture. To demonstrate this possibility, the total flight time of [M+2H]+• radical ions through the cell 400 was decreased (by changing the cell potential from −80 V to −300 V) from ˜25 μs to ˜12 μs to produce spectra within which the relative strengths of the fragment signals are markedly different (
In addition, analytical quality ECD product-ion spectra of doubly protonated gramicidin S (
Product-ion mass spectra of doubly protonated cyclic peptides are considerably more complex than those of linear peptides. The initial ring-opening, which statistically can occur anywhere in the backbone of the peptide, creates a mixture of linear peptides any one of which can dissociate further to produce a secondary family of fragments. The ECD product-ion spectra of cyclic peptides are no exception to this tendency. An ECD product-ion spectrum of the repetitive cyclic peptide gramicidin S recorded during this experiment (
ECD of triply protonated neurotensin in the RFF electrostatic/magnetostatic cell 400 produced a product-ion spectrum of both singly and doubly charged fragment ions (FIG. 8A—left) that is qualitatively identical to that produced in an FT ICR cell (
ECD in an FT ICR cell is generally not commensurate with the time scale of liquid chromatography. By contrast, ECD in the RFF electrostatic/magnetostatic cell 400 of the present invention takes place in-flight through the device on a microsecond time scale (the time range for a singly protonated peptide of mass 1000 Da to travel through the 70-mm ECD cell 400). It should eventually be possible, therefore, to carry out ECD in the RFF cell in time with the elution of peptides off an HPLC column.
In order to perform ECD efficiently, the precursor ions must be forced to mingle with a dense population of low-energy electrons. Since the reagent electrons and the multiply protonated precursor ions have opposite polarities and masses that differ by more than six orders of magnitude, the conditions for simultaneously confining them in the same volume of space cannot be satisfied in a purely electrostatic cell, and can only be minimally satisfied in a cell in which an RF field is present. As the number of charged particles of a given polarity increases in an RF device, space-charge forces (i.e., repulsions between particles of the same polarity) result in lost particles (2D RF ion-traps) or degradation in analyzer-performance (3D ion-traps and FT ICR cells). In principle, a segmented-electrostatic-focusing/strong-periodic-magneto static-focusing device, e.g. cell 400, has a substantially greater charged-particle capacity than any RF-based device. Magnetic fluxes on the order of 1 T are more than strong enough to confine high volume-densities of ions and electrons with kinetic energies typically involved in electron capture reactions. This capability should make it possible to perform experiments in the RFF electrostatic/magnetostatic cell that would be at best difficult and at worst impossible in an FT ICR cell.
An example of this was demonstrated using neurotensin as the sample. A regular mass spectrum of the electrosprayed neurotensin sample was recorded (
In an RFF electrostatic/magnetostatic cell, such as cell 400, the reagent electrons cannot acquire kinetic energy from the magnetic field; however, their average energy can be controlled by the potentials V1-6 applied to the electrostatic lenses 410-415. By abandoning RF-fields altogether in favor of segmented-electrostatic focusing in conjunction with strong-magnetostatic focusing, it should be possible to conduct ECD experiments on less costly instruments in which the average kinetic energies of the ions and electrons can be controlled with minimal loss of ions or electrons in the absence of an energy-moderating bath gas. This, in turn, could make it possible to increase the product-ion yields and, thus, the information to be gained from ECD reactions to levels that are much higher than possible in any RF-based cell. The strong magnetostatic focusing provided by the cell's traveling wave tube configuration together with the capability for moving and trapping ions provided by the cell's electrostatic segments 410-415 could enable regular collision induced dissociation over a much broader range of collision energies than those typically possible in ion trap or quadrupole instruments. Moreover, the cell's design and compact construction allow it to be incorporated into virtually any type of tandem mass spectrometer, e.g., triple quadrupole, hybrid quadrupole ion trap, hybrid quadrupole time-of-flight, or even FT-ICR.
The segmentation of the RFF electrostatic/magnetostatic cell 400 makes it possible to study the energetics and kinetics of ECD reactions as well as to exploit them in MS/MS analyses. For instance, decompositions of the radical precursor ions can be observed as a function of time by limiting electron capture events to the first entry-side lens 460 of the cell 400 and adjusting the potentials on the subsequent lenses 461-464 to regulate the flight times of the product ions. This was easily demonstrated by producing an ECD product-ion spectrum of doubly protonated substance P ion at the front end of cell 400 and setting the potentials of the rest cell's electrostatic elements 410-415 for ion transport. This experimental capability could be used, for example, to investigate mechanisms like the recently proposed sequential formation of diagnostic c-type ions.
In Example 1, it was noticed that ECD was occurring in the lens segment 460 closest to the filament 443. As a result of this observation, the size of the original cell 400 was reduced to two segments (i.e. two magnets) only, resulting in the cell 300 of
The two-segment cell 300 was tested in the CID mode by using Ar as the collision gas, setting the cell's potential so that the ion energy (laboratory frame of reference) was 200 eV, and recording a CID product-ion spectrum of doubly protonated Glu-fibrinopeptide,
After having demonstrated that the two-segment cell 300 could be operated in both ECD and CID modes independently, simultaneous ECD and CID was attempted in the cell 300 on doubly protonated substance P. This was done by first recording a CID product-ion spectrum of the peptide,
In the CID product-ion spectrum of substance P,
If the filament were left on to produce electrons for ECD and the gas valve left open to provide collision gas for CID, any combination of ECD, CID, or ECD/CID experiments could be interchangeably carried out in the cell hybrid electrostatic/magnetostatic cell 300. Reducing the filament's potential would stop the ECD process and, increasing the cell's potential (i.e., making it less negative) would stop the CID process. Since voltages can easily be switched in nanoseconds, changing from one dissociation mode to another can easily be done on a time-scale commensurate with the ions' flight times through the mass spectrometer (i.e. microseconds). Rapidly switching the ECD mode off and on while recording a product ion spectrum could, for example, be used to confirm the presence of golden complementary pair or triplets. Use of a fast, automated, alternating dissociation mode with the hybrid electrostatic/magnetostatic cell of the present invention also might, when used in conjunction with Walsh-Hadamard transforms, be a means for increasing signal-to-noise ratio or for decreasing the duty cycle in time-of-flight measurements of product ions.
By this experiment, a-, b-, and c-type ion signals have been recorded in a single product-ion mass spectrum by simultaneously performing ECD and CID in a hybrid electrostatic/magnetostatic cell 300 of the present invention. Use of this technique in MS/MS analyses of peptides could significantly increase the number of peptides (and ergo proteins) that can be accurately matched to sequence entries in genomic and proteomic data-bases and even sequenced de novo.
The ion guides disclosed herein can be adapted to accommodate one or many dissociation processes. The interleaved, periodic focusing of a hybrid electrostatic/magnetostatic structure permits PID, low- and high-energy CID, ETD, ECD, EDD, and EIEIO either individually or in sequential combinations. Any one of several possible embodiments of the disclosed dissociation cells can be inserted between two analyzers of any transmission/transmission or transmission/trapping tandem mass spectrometer. Furthermore, if a mass spectrometer comprises two or more tandem units, any one of several possible embodiments of the disclosed device can be incorporated in each unit.
As shown above, the disclosed hybrid electrostatic/magnetostatic ion guides 300, 400 are segmented so that precursors, reagent ions, and electrons can be segregated, trapped, and combined. For example, in an ECD or EDD experiment, limiting electron capture events to the first one or two entry-side segments of the cell, e.g. at electrostatic lenses 414, 410, and appropriately adjusting the potentials on the subsequent lenses, e.g., lenses 412-415, would make it possible to observe decompositions of the radical precursor ions as a function of time. If the magnets in an electrostatic/magnetostatic hybrid cell's magnetic lens-elements were situated to provide radial focusing, ions would propagate through the cell along sinusoidal paths and the added path length created by this extra motion might be used to engineer more compact spectrometers, more selective spectrometers, or both. Ion-mobility spectrometers incorporate funnel and hourglass ion-guides to collect and concentrate ions both before entering and after exiting the ion-mobility tube; engineering these auxiliary components as electrostatic/magnetostatic structures could result in higher transmission efficiencies and, thereby, lower detection limits.
In some configurations, hybrid cells 300, 400 as disclosed herein are configured to perform high energy CID. In such procedures, electrical potentials applied to pole pieces 312-316, 410-415 or to conductive aperture plates are selected to accelerate precursors to kinetic energies greater than, for example, about 1 keV. In other configurations, charged particles associated with different arrival times can be trapped in respective sections of a hybrid cell 300, 400, and released for subsequent analysis based on time varying potentials applied to the pole pieces 312-316, 410-415.
In typical configurations, ion guides comprise at least one magnetic lens that includes a magnet and a pair of ferromagnetic pole pieces. In configurations that include two or more such magnetic lenses, each magnetic lens can include two pole pieces, but in some configurations, magnetic lenses share a pole piece that is situated between magnets of adjacent lenses. In other configurations, separate pole pieces can be provided.
With reference to
It will be apparent that the disclosed exemplary configurations are representative only, and the disclosure is not to be limited to the particular exemplary configurations used for illustration. For example, magnets can be segmented into one or more pieces and/or can be polarized in any technically possible manner to conveniently provide suitable magnetic field polarities, and electromagnets can be used instead of permanent magnets, or combinations of electromagnets and permanent magnets can be used. Magnets can be made from electrically non-conductive materials such as ceramics. Using such magnets, insulators configured to electrically isolate magnets from pole pieces or conductive aperture plates are unnecessary. In other examples, magnets can be covered or partially covered by one or more electrically insulating layers such as an epoxy layer. In some embodiments, a separate housing is provided to secure the magnets and pole pieces, but in other examples, some or all magnets and/or pole pieces can be secured with an adhesive, and a housing can be omitted. In the examples described above, two or more magnets and associated pole pieces are provided. In other examples, a single magnet and two associated pole pieces configured to bc maintained at different electrical potentials can bc provided. In view of these and other variations, we claim all that is encompassed by the appended claims.
This application claims the benefit of priority of U.S. Provisional Application Nos. 61/057,770 filed on May 30, 2008 and 61/120,365, filed on Dec. 5, 2008, the entire contents of which application(s) are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/55082 | 8/26/2009 | WO | 00 | 6/17/2011 |
Number | Date | Country | |
---|---|---|---|
61057770 | May 2008 | US | |
61120365 | Dec 2008 | US |