Radiopaque and septum-based indicators for a multi-lumen implantable port

Information

  • Patent Grant
  • 10792485
  • Patent Number
    10,792,485
  • Date Filed
    Monday, September 24, 2018
    5 years ago
  • Date Issued
    Tuesday, October 6, 2020
    3 years ago
Abstract
A method for power injection of fluids through an access port includes implanting the access port in a patient, palpating the access port, imaging the access port, and introducing contrast media into the patient through the access port at a rate in a range from about two milliliters per second to about five milliliters per second. The access port may include a housing, a first septum, a second septum, and a radiographic indicator. The first septum and the second septum may respectively cover a first reservoir and a second reservoir of the access port. The first septum may include a first sub-pattern of protrusions and the second septum may include a second sub-pattern of protrusions. The radiographic indicator may include a first portion including information pertaining to the first sub-pattern, and a second portion including information pertaining to the second sub-pattern. The imaging identifies the radiographic indicator.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to an implantable multi-lumen access port including indicators for ascertaining characteristics of the port. In one example embodiment, the access port comprises a housing that defines a first reservoir and a second reservoir. A first septum and second septum are respectively coupled with the housing to provide selective access to the first and second reservoirs.


Each septum includes a plurality of protrusions defined about a periphery thereof that are palpable after implantation of the port in a patient to determine a relative position of the first septum with respect to the second septum.


A radiographically observable indicator is also included on a base of the housing, so as to provide information relating to a characteristic of the dual-lumen port, such as suitability for power injection of fluids. The indicator in one embodiment includes a substantially rigid radiopaque component. In another embodiment, the indicator is defined as a recess in a port including a radiopaque material, such as titanium, for example.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify embodiments of the disclosure, a more particular description will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a perspective view of an example embodiment of an implantable port including a first septum and a second septum;



FIG. 2 is a schematic illustration of an embodiment of an implantable port including palpation features arranged in one example septum identification pattern;



FIG. 3 is a schematic illustration of an embodiment of an implantable port including palpation features arranged in another septum identification pattern;



FIG. 4 is a perspective view of another embodiment of an implantable port that includes a first septum and a second septum, and further includes a ridge between the first and second septa;



FIG. 5 is a top view of an implantable port that includes a first septum and a second septum, a ridge between the first and second septa, and a housing contour configured according to one embodiment;



FIG. 6 is a schematic illustration of an implantable port including palpation features arranged according to one embodiment;



FIG. 7 is a schematic illustration of an implantable port including palpation features arranged according to one embodiment;



FIG. 8 is a schematic illustration of an implantable port including palpation features arranged according to one embodiment;



FIG. 9 is a schematic illustration of an implantable port including palpation features arranged according to one embodiment;



FIG. 10 is a top view of an implantable port that includes a first septum and a second septum, a housing contour, and a plurality of protrusions disposed in proximate relation to the first and second septa, according to one embodiment;



FIG. 11 is a bottom view of the implantable port of FIG. 1, depicting features of a radiopaque indicator according to one example embodiment;



FIG. 12A is an exploded view of the implantable port of FIG. 1;



FIG. 12B is an assembled bottom perspective view of the implantable port of FIG. 1;



FIG. 13 is a bottom perspective view of an implantable port including a radiopaque indicator according to one embodiment;



FIG. 14 is a schematic illustration an image of the implantable port of FIG. 13 that can be obtained by imaging techniques;



FIG. 15 is a schematic illustration, such as that of FIG. 14, of another embodiment of an implantable port;



FIG. 16 is a bottom view of another embodiment of an implantable port;



FIG. 17 is a bottom view of another embodiment of an implantable port;



FIG. 18 is a bottom view of another embodiment of an implantable port;



FIG. 19 is a top view of a radiographic indicator configured in accordance with one embodiment;



FIG. 20 is a top view of a radiographic indicator configured in accordance with one embodiment;



FIG. 21 is a top view of a radiographic indicator configured in accordance with one embodiment;



FIG. 22 is a top view of a radiographic indicator configured in accordance with yet another embodiment;



FIG. 23 is a bottom perspective view of an implantable port including an indicator according to one embodiment; and



FIGS. 24A and 24B are cross sectional views of an edge of an indicator, such as the indicator shown in FIG. 12A.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale.



FIGS. 1-22 depict various features of embodiments of the present invention, which are generally directed to ports, also referred to herein as access ports, for implantation into the body of a patient. In some situations, it can be desirable to facilitate access to the vasculature of a patient for purposes of blood withdrawal and/or infusions, such as when the patient is ill and may repeatedly undergo such procedures. In some instances, a catheter is situated within a blood vessel of the patient and a port is placed in fluid communication with the catheter. Accordingly, infusions and blood withdrawals may be made via the port, rather than directly through the wall of a blood vessel. In some situations, it can be advantageous to implant the port within the patient.


Reference is first made to FIG. 1, wherein an implantable port 10 is disclosed as configured in accordance with one example embodiment. As shown, the port 10 includes a housing 20 that defines a first reservoir 31 and a second reservoir 32. A stem 35, which extends from the housing 20, is configured for coupling with a dual lumen catheter 36. The stem 35 defines a first fluid passageway 41 configured to couple with a first lumen 37 of the catheter and a second fluid passageway 42 configured to couple with a second lumen 38 of the catheter. The first and second fluid passageways 41, 42 are in fluid communication with the first and second reservoir 31, 32, respectively.


In the present embodiments, the port 10 includes a first septum 51 and a second septum 52. The first septum 51 is coupled with the housing 20 and is configured to provide selective communication with the first reservoir 31. For example, the first septum 51 includes an elastomeric material capable of being punctured by a needle, for example, a Huber needle, and substantially resealing upon removal of the needle. Similarly, the second septum 52 provides selective communication with the second reservoir 32.


According to the present embodiment, the first septum 51 defines a plurality of palpation features, such as protrusions 71A, 71B, 71C. Similarly, the second septum 52 defines a plurality of protrusions 72A, 72B, 72C. In the illustrated embodiment, the protrusions 71A, 71B, 71C define end points, or vertices, of a triangle, for example, an equilateral triangle, and are spaced at approximately regular intervals around the periphery of the first septum 51. Similarly, the protrusions 72A, 72B, 72C define end points, or vertices, of a triangle, for example, an equilateral triangle, and are spaced at approximately regular intervals around the periphery of the second septum 52. The protrusions 71A, 71B, 71C and 72A, 72B, 72C extend outward from the septum surface such that the protrusions define a portion of top profile of the port 10 from the perspective of the port as shown in FIG. 1.


The port 10 is configured to be implanted subcutaneously within a patient. Accordingly, when the catheter 36 is coupled with the stem 35 and inserted in a blood vessel of the patient, fluid communication can be established with the blood vessel via one of the first and second reservoirs 31, 32, such as by an infusion needle inserted through a corresponding one of the septa 51, 52.


As seen in FIG. 1, each protrusion 71A, 71B, 71C and 72A, 72B, 72C is shaped to define a substantially hemispherical shape to provide a smooth surface and to avoid irritating body tissue proximate the port implanted location. In other embodiments, though, the shape, size, number, and placement of the palpation features can be modified from what is explicitly shown and described herein in order to suit a particular need. For instance, the protrusions can define a geometric or oval shape in one example. In one embodiment, the protrusions extend a distance of about 0.1 inch above the surface of the corresponding septum 51, 52, though other size dimensions are of course possible. The protrusions 71A, 71B, 71C and 72A, 72B, 72C are integrally formed with the corresponding septum 51 or 52, in one embodiment.


The palpation features, i.e., protrusions 71A, 71B, 71C and 72A, 72B, 72C, of the first and second septa 51, 52 can permit a clinician to properly identify the number of septa 51, 52 included in the port 10, as well as the location and orientation of the desired septa, both generally and with respect to one another, in preparation for a given procedure (e.g., insertion of an infusion needle into a particular septum). For example, in many embodiments, when the port 10 is implanted subcutaneously in a patient, the clinician cannot visually distinguish the location of the first septum 51 from that of the second septum 52, especially for ports made from radio-translucent materials, which are not sufficiently imaged radiographically. The clinician can instead feel or palpate the protrusions 71A, 71B, 71C and 72A, 72B, 72C through the skin to determine the general orientation of the port 10, the location the septa 51, 52, and/or to distinguish the location of one septum from that of the other. In one embodiment, the palpation protrusions further indicate suitability of the port for high fluid flow rate and/or high fluid pressure flow therethrough, such as power injection. These and other characteristics of the port can be indicated by the e protrusions described herein.


In many instances, a clinician has a need to properly identify the desired septum 51, 52. For example, in some instances, it can be undesirable for the clinician to mistakenly puncture the same septum twice when the clinician's intent is to use each septum separately. It can also be undesirable for the clinician to mistakenly fail to puncture either septum and miss the port entirely. Accordingly, the protrusions 71A, 71B, 71C and 72A, 72B, 72C are arranged in present embodiments in an identification pattern to reduce the likelihood of clinician confusion and/or error when identifying the location and/or orientation of the septa 51, 52.



FIG. 2 is a schematic illustration of an embodiment of the port 10 having protrusions 71A, 71B, 71C and 72A, 72B, 72C arranged in a first septum identification pattern 100. In the illustrated embodiment, the identification pattern 100 includes a plurality of sub-patterns 105A, 105B, 105C. Each sub-pattern 105A, 105B, 105C substantially defines a triangular shape. Each set of protrusions 71A, 71B, 71C and 72A, 72B, 72C separately defines one of the sub-patterns 105A, 105B, respectively, and the protrusions 71A of the first septum 51 and the protrusions 72B, 72C of the second septum 52 cooperate to define a third sub-pattern 105C.



FIG. 3 is a schematic illustration of an embodiment of the port 10 having protrusions 71A, 71B, 71C and 72A, 72B, 72C arranged in a second septum identification pattern 110. In detail, the protrusions 71A, 71B, 71C define an equilateral triangle sub-pattern 115A bisected by a long axis 90 of the port 10 (see also FIG. 1). Similarly, the protrusions 72A, 72B, 72C define an equilateral triangle sub-pattern 115B oppositely positioned with respect to the triangle defined by the protrusions 71A, 71B, 71C and which is also bisected by the port long axis 90.


A perimeter or outline of the pattern 110 defines a pattern that can readily assist a clinician to determine a characteristic of the septa 51, 52 with respect to the one another. In particular, the pattern can assist a clinician in distinguishing the relative locations of the septa 51, 52. For example, the opposing edges, defined by the protrusions 71A, 71B and 72B, 72C, respectively, of the pattern 110 can help a clinician to determine that more of the surface areas of the septa are between the opposing edges of the pattern than outside of the opposing edges. In addition, the pattern 110 does not include any sub-patterns that are confusingly similar to the triangular sub-patterns 115A, 115B. In another implementation, the pattern 110 can assist a clinician in determining a general orientation of the port 10 as implanted within the patient.



FIG. 4 depicts another embodiment wherein palpation features are included on an implantable port. In particular, a port 210 includes a housing 20 that defines a ridge 220 between the septa 51, 52. As before, the first septum 51 defines a plurality of palpation features including protrusions 71A, 71B, 71C, while the second septum 52 defines a plurality of palpation features including protrusions 72A, 72B, 72C. The protrusions 71A, 71B, 71C and 72A, 72B, 72C are arranged as opposing equilateral triangles in mirror-image to one another, similar to the pattern 110 shown in FIG. 3. The ridge 220 can further aid in distinguishing the locations of the septa 51, 52.



FIG. 5 depicts another embodiment wherein palpation features are included on an implantable port. In particular, a port 310 includes a housing 20 that defines a ridge 325 between the septa 51, 52. As before, the first septum 51 defines a plurality of palpation features including protrusions 71, while the second septum 52 defines a plurality of palpation features including protrusions 72. The protrusions 71 and 72 are arranged as opposing equilateral triangles, similar to the pattern 110 shown in FIG. 3. The ridge 325 can further aid in distinguishing the locations of the septa 51, 52. Note that the housing defines a relatively more contoured outline than in the embodiments shown in FIGS. 1 and 4.



FIGS. 6-9 depict further examples of palpation feature configurations for the implantable port, according to example embodiments. FIG. 6 shows two oppositely positioned protrusions 171A, 171B included on the periphery of the septum 51, and two similarly positioned protrusions 172A, 172B included on the periphery of the septum 52. The protrusions 171A, 171B and 172A, 172B are positioned at about 0 and 180 degree “compass” positions on their respective septa 51, 52, though it is appreciated that the respective positions of the protrusions can be modified from what is shown here.



FIG. 7 shows four equally spaced protrusions 271A, 271B, 271C, 271D included on the periphery of the septum 51, and four equally spaced protrusions 272A, 272B, 272C, 272D included on the periphery of the septum 52. The protrusions 271A, 271B, 271C, 271D and 272A, 272B, 272C, 272D are positioned at about 0, 90, 180, and 270 degree compass positions on their respective septa 51, 52, though it is appreciated that the respective positions of the protrusions can be modified from what is shown here.



FIG. 8 shows four equally spaced protrusions 371A, 371B, 371C, 371D included on the periphery of the septum 51, and two equally spaced protrusions 372A, 372B included on the periphery of the septum 52. The protrusions 371A, 371B, 371C, 371D are positioned at about 0, 90, 180, and 270 degree compass positions on the septum 51, while the protrusions 372A, 372B are positioned at about 90 and 180 degree compass positions on the septum 52, though it is appreciated that the respective positions of the protrusions can be modified from what is shown here.



FIG. 9 shows three equally spaced protrusions 471A, 471B, 471C included on the periphery of the septum 51, and three equally spaced protrusions 472A, 472B, 472C included on the periphery of the septum 52. The protrusions 471A, 471B, 471C and 472A, 472B, 472C are positioned to define vertices of imaginary equilateral triangles on their respective septa 51, 52 such that the bases of each triangle face one another to define a septum identification pattern 480.



FIG. 10 depicts yet another embodiment wherein palpation features are included on an implantable port. In particular, a port 510 includes a housing 20 defining two apertures into which the septa 51, 52 are inserted, as before. A plurality of protrusions 571 are included on and defined by the port housing 20 proximately adjacent the periphery of the septa 51, 52. The protrusions 71 and 72 define vertices of opposing equilateral triangles, similar to the pattern 110 shown in FIG. 3. Thus it is noted that the palpation features can be included on either areas of the port in addition to the septa. Note further that the housing defines a relatively more contoured outline than in the embodiments shown in FIGS. 1 and 4, thus illustrating that the shape of the housing 20 can vary from what is described herein.


As the embodiments above make clear, the number, size, position, and shape of the palpation features can be modified while residing within the scope of embodiments of the present invention. In addition to the above embodiments, it is appreciated, for example, that the protrusions can define sub-patterns other than equilateral triangles, including acute triangles, obtuse triangles, etc. Additionally, one or more, two or more, three or more, four or more, five or more, etc. protrusions could be used, and need not be arranged about the periphery of the septa. In various embodiments, the port comprises two or more septa with protrusions extending therefrom. The protrusions can define a variety of different shapes, and may be sized differently. Thus, the foregoing examples are merely illustrative in nature.


Reference is now generally made to FIGS. 11-22 in describing various details regarding further embodiments of the present invention. As has been described, in many implementations, it can be desirable to determine information regarding an access port subsequent to implantation in the body of a patient. For example, in some embodiments, it can be desirable to determine whether the port has flipped within the body such that the septa thereof undesirably face away from the skin at the implantation site.


Additionally, it can be desirable to determine the number of septa included in an implanted port, and/or the relative orientation of the septa. For example, it is generally desirable to determine whether a port provides fluid access to multiple lumens of a catheter operably connected thereto, and if so, to determine the relative orientations of septa associated with the lumens.


In further instances, it can be desirable to determine a functional characteristic of the implanted port. For example, some embodiments of the port are configured to withstand relatively high pressure and flow rates typically associated with power injection of fluids through the port during relatively demanding procedures (e.g., computed tomography, or “CT,” scans), in which contrast media is rapidly infused through the port and connected catheter and into a vascular system. “Power injection” is defined herein to include fluid infusion under relatively high flow rates and/or relatively high pressures. For instance, in one embodiment power injection includes fluid infusion by a power injection machine producing fluid pressures of up to about 325 psi, resulting in fluid pressures in the port 10 between about 50 and about 90 psi and fluid flow through the port at a rate between about two and about five milliliters per second.


During power injection, a needle can be inserted in a septum of the port and connected to a power injection machine, which can introduce contrast media through the port at a relatively high flow rate detailed above. Certain ports may not be able to withstand pressures corresponding to high flow rates during power injection. Accordingly, it is often necessary to determine whether an implanted port is compatible for power injection.


With reference to FIG. 11, in one embodiment, the port 10 includes an indicator 1100 that includes radiopaque material. The indicator 1100 can define a variety of shapes, figures, symbols, or other indicia to convey information regarding a characteristic of the port 10. In some embodiments, the indicator 1100 is mounted, painted, screened on, or otherwise affixed to a bottom surface 20A primarily defined by a base 25 of the port housing 20, as shown in the FIG. 11. As depicted in FIG. 11, the bottom surface 20A of the port housing 20 is defined primarily by the base 25, and partially defined by a cap 27 that is mated with the base during port manufacture to define the complete housing. FIG. 11 further shows that the indicator 1100 is centered with respect to a raised portion 25A of the base 25, though in other embodiments, placement of the indicator can vary from this configuration. Indeed, in other embodiments the indicator can be provided on another surface of the housing. In still other embodiments, at least a portion of the indicator can be incorporated within the housing.


In the illustrated embodiment, the indicator 1100 is an insertable piece produced from a radiopaque substance, such as any one or more of suitable metals/metal alloys. In one embodiment, the indicator 1100 is formed from a metallic material including titanium, such as titanium 64, though many other metals and other radiopaque materials could also be employed, including stainless steel, ceramic, ceramic slurry including ceramic powder intermixed with an epoxy or resin, paintable or injectable substances (including tungsten-filled solution), and silk-screened products, for instance. In one embodiment, the substance from which the indicator piece is formed is biocompatible so as to prevent associated complications after implantation into the patient, is self-oxidizing, and is non-ferromagnetic so as to prevent imaging problems when MRI procedures are employed. In one implementation, for instance, the indicator piece 1100 including titanium is between approximately 0.010 and about 0.020 inch thick, about 0.8 inch long, and about 0.4 inch wide. Of course, other dimensions are possible. In one embodiment, the insertable piece that defines the indicator 1100 is rigid before attachment to the port housing 20. In another embodiment, the indicator can be initially pliable, then solidify to rigidity either before or after attachment to the port housing.


In the illustrated embodiment, the indicator 1100 includes a first portion 1111 and a second portion 1112. The indicator first and second portions 1111, 1112 indicate in the present embodiment that the port 10 is a dual lumen port configured for use with a dual lumen catheter. Because the indicator 1100 is radiopaque, the two portions 1111, 1112 will be visible through imaging techniques, such as radiographic (x-ray) imaging. Thus, a clinician viewing a radiographic image taken of the region of the patient in which the port 10 is implanted can see the x-ray shadow of the indicator 1100 on the image and understand that the port, by its inclusion of the two portions 1111 and 1112, includes two septa 51, 52.


In greater detail, the indicator portions 1111 and 1112 define equilateral triangles positioned side-by-side. Indicia 1114 are included on the indicator first and second portions 1111, 1112 to convey additional information regarding the port 10. In the illustrated embodiment, the indicia 1114 include alphanumeric characters, such as “C” and “T,” defined within the triangular portions, which indicate that the port 10 is suitable for use with power injection. The indicia 1114 included in the indicator are reversed, or backwards, when reviewed from below as in FIG. 11 such that the indicia will appear non-reversed when radiographically imaged from a vantage point above the port 10. Both the first and second portions 1111, 1112 of the indicator 1100 include a plurality of holes 1116 defined therein so as to reduce heat sinking when the indicator is heat bonded to the port base 25, as explained further below.


The exploded view of the port 10 in FIG. 12A shows that the indicator 1100 is sized to fit within a cavity 1120 defined on the port bottom surface 20A, more specifically the raised portion 25A of the port base 25. In one embodiment, the port base and cap 25, 27 are composed of an engineering plastic polymer material including Polyoxymethylene (“POM”), also known as an acetyl resin, and the cavity 1120 is defined as part of the molding process that defines the port base 25. In another embodiment, the cavity 1120 is defined by machining or other suitable process after the port base 25 has been produced. The indicator 1100 in one embodiment is attached to the port base in the cavity 1120 by heat bonding during the same ultrasonic welding process that joins the port base 25 to the port cap 27. The holes 1116 (FIG. 11) are included in the indicator 1114 to prevent excessive heat sinking during the ultrasonic welding process, thus ensuring an adequate attachment of the indicator to the port base 25.


In another embodiment, the indicator can be press-fit into the cavity 1120. In yet another embodiment, a combination of press-fitting and ultrasonic welding can be employed to attach the indicator 1100. Of course, other suitable attachment methods can also be pursued, including insert molding the indicator into the port base, and other materials may be used to form the port base and cap. FIG. 12B shows the port 10 and indicator 1100 after attachment of the indicator on the bottom surface 20A is complete.


The indicator described herein can indicate various characteristics of the multi-lumen port, including suitability of the port for power injectability (described above), the number or reservoirs included in the port, and the orientation and position of the septa of the port.



FIG. 13 shows the indicator 1100 of the port 10 according to another embodiment, wherein each of the indicator first and second portions 1111, 1112 includes a substantially circular outline 1165, 1166. The first and second portions 1111, 1112 further include rounded inward extensions 1171A, 1171B, 1171C, 1172A, 1172B, 1172C, which are intended to convey that protrusions, such as the protrusions 71A, 71B, 71C and 72A, 72B, 72C are provided on the septa 51, 52, as seen in FIG. 1. In one embodiment, the circular outlines 1165, 1166 and the inward extensions 1171A, 1171B, 1171C, 1172A, 1172B, 1172C correspond to a normal projection of the outer perimeter of the septa 51, 52 onto the port bottom surface 20A. The first and second portions 1111, 1112 further include indicia, such as the flipped or reversed letters “C” and “T,” as shown.



FIG. 14 illustrates an image 2160 of the port 10 that can be obtained by imaging techniques, such as radiographic imaging, ultrasound imaging, or other suitable techniques. As shown, the image 2160 includes information conveyed by the various indicator components described above, which can be readily perceived by a clinician observing the image. For example, the indicia letters “C” and “T” indicate to the clinician that the port 10 is power-injection compatible. Further, the non-reversed orientation of the imaged letters indicates that the port 10 is properly positioned, i.e., not flipped within the patient. The images of circular outlines 1165, 1166 and of the inward extensions 1171A, 1171B, 1171C, 1172A, 1172B, 1172C can indicate that the port 10 includes two septa 51, 52, and further helps in determining the orientation of the septa.



FIG. 15 illustrates an image 2260 that can be obtained from another embodiment of the port 10, wherein an indicator 2200 is shown, including first portion 2211, second portion 2212, and indicia 2214A indicating the entity producing the port, and 2214B indicating by the letters “CT” that the port is power injectable.



FIG. 16 depicts another embodiment of an indicator 2300, including a first portion 2311 and a second portion 2312. In contrast to previous embodiments, the first and second portions 2311, 2312 are separate from one another.



FIG. 17 depicts another embodiment of an indicator 2400, including a first portion 2411 and a second portion 2412. The indicator 2400 is sized in the present embodiment such that the first and second portions 2411, 2412 define a plurality of end points 2418, such as triangular vertices, which extend past the bottom periphery of the base 25 and are received into corresponding recesses 2420 defined in the portion of the bottom surface 20A defined by the cap 27. Such a configuration enables the indicator 2400, as a rigid piece, to be placed by itself within the mold used to form the port base 25 before molding occurs, thus allowing the port base to be molded about the indicator. Note that, though it is shown as exposed on the port bottom surface in the present embodiments, the indicator can be integrated into the port such that it is not seen upon visual inspection.



FIG. 18 depicts another embodiment of an indicator 2500 on the port bottom surface 20A. As shown, the indicator includes a lightning bolt, which can indicate, among other things, that the port 10 includes two septa, each of which is compatible for power injection. As the port 10 is often included in a kit, the kit can include instructions for use relative to the port as well as a guide for interpreting the indicator(s) of the port.



FIG. 19 depicts an example of an indicator 2600 for use with a port according to one embodiment, including a triangular first portion 2611 and an overlapping triangular second portion 2612. Alphanumeric indicia 2614A are included with each portion 2611, 2612 to indicate power injection compatibility, as are inward extension indicia 2614B corresponding to protrusions included on the septa of the port.



FIG. 20 depicts another example of an indicator 2700 for use with a port according to one embodiment, including a triangular first portion 2711 and an overlapping triangular second portion 2712. Alphanumeric indicia 2714A are included with each portion 2711, 2712 to indicate power injection compatibility, as are inward extension indicia 2714B corresponding to protrusions included on the septa of the port.



FIG. 21 depicts another example of an indicator 2800 for use with a port according to one embodiment, including a triangular first portion 2811 and an overlapping triangular second portion 2812. Alphanumeric indicia 2814A are included with each portion 2811, 2812 to indicate power injection compatibility, as are inward extension indicia 2814B corresponding to protrusions included on the septa of the port.



FIG. 22 depicts another example of an indicator 2900 for use with a port according to one embodiment, including a triangular first portion 2911 and an overlapping triangular second portion 2912. Alphanumeric indicia 2914A are included with the indicator 2900 to indicate power injection compatibility. Inward extension indicia 2914B are included with the first and second portions 2911, 2912 corresponding to protrusions included on the septa of the port. A plurality of end point extensions 2918 extend from the end points of the indicator portions 2911, 2912, to enable the indicator 2900, as a rigid piece, to be placed by itself within the mold used to form the port base before molding occurs, thus allowing the port base to be molded about the indicator.



FIG. 23 depicts yet another embodiment of an indicator for the port 10, wherein an indicator is formed as recess 2920 on the bottom surface 20A of the port housing 20. The recess 2920 in FIG. 23 includes a groove defining a double triangle shape, and a recessed “C” and “T” serving as alphanumeric indicia, though in other embodiments one of a variety of other configurations can be defined in the port. The port housing 20 in this embodiment includes a radiopaque material, such as titanium. Other metallic substances, alloys, or materials can also be employed. The recess 2920 is defined on the port housing bottom surface 20A by any suitable process, including etching, machining, molding, etc. The depth of the recess 2920 depends on the overall size and thickness of the housing 20. In one embodiment, the recess 2920 can be filled with a filler material, such as silicone, to provide a smooth port bottom surface 20A. Note that the recess can be defined in reverse relief to what is shown in FIG. 23, in one embodiment. Note also that in one embodiment, the recess 2920 can be filled with a material that is more or less radiopaque than the material that forms the port housing 20 to provide a contrasting radiographic image. In one embodiment, the filler material can include a ceramic slurry, as already mentioned.


Because of its formation from a sufficiently thick radiopaque material, the port housing 20 itself is generally radiopaque except for relatively thinned areas of the housing. Definition of the recess 2920 therefore provides a relative difference in the thickness of the port 10 when viewed from above in a radiographic image. In other words, the portions of the recess 2920 provide a relatively thinner obstacle for x-rays to pass through than relatively thicker areas of the port, resulting in less radiopacity for the recess. Thus, the image formed by the recess 2920 will appear relatively lighter on a radiographic image of the port 10, enabling a clinician to perceive the shape, symbols, indicia, or other elements of the indicator defined by the recess and readily determine an aspect of the port, its reservoirs, and/or its septa. It is therefore appreciated that an indicator as described and contemplated herein, can serve to provide either a greater or lesser radiopacity relative to other portions of the implantable port.



FIGS. 24A and 24B show examples of cross sectional views of an edge of an indicator, such as the indicator 1100 shown in FIG. 12A, for example. According to example embodiments, the indicator 1100 can be die stamped or chemically etched, e.g., one or two-sided etching, from a metal sheet. In either case, depressions or protrusions, such as the protrusions 1100A shown in FIGS. 24A and 24B, can be formed as a result. When the indicator 1100 is later attached to the bottom surface of a port via ultrasonic bonding or heat staking, the protrusions 1100A can interact with the reflowed material immediately adjacent thereto, thus anchoring the indicator to the port housing when the reflowed material has solidified.


Embodiments of the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the present disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A method for power injection of fluids through an access port, comprising: implanting the access port in a patient, the access port comprising: a housing defining a first reservoir and a second reservoir;a first septum covering the first reservoir, the first septum including a first sub-pattern of protrusions;a second septum covering the second reservoir, the second septum including a second sub-pattern of protrusions; anda radiographic indicator including a first portion and a second portion, the first portion including information pertaining to the first sub-pattern of protrusions, the second portion including information pertaining to the second sub-pattern of protrusions;palpating the access port to locate the first sub-pattern of protrusions and the second sub-pattern of protrusions;imaging the access port to identify the radiographic indicator;inserting a needle connected to a power injection machine through the first septum to establish fluid communication between a lumen of the needle and the first reservoir; andintroducing contrast media into the patient through the access port at a rate in a range from about two milliliters per second to about five milliliters per second.
  • 2. The method according to claim 1, wherein the radiographic indicator indicates an orientation of the access port in the patient, and wherein the imaging step includes identifying the orientation of the access port.
  • 3. The method according to claim 1, wherein the imaging step includes identifying the access port as a dual lumen port connected to a dual lumen catheter.
  • 4. The method according to claim 1, wherein the radiographic indicator includes a recess defined in the housing, the recess being radiographically visible relative to other portions of the housing.
  • 5. The method according to claim 1, wherein the palpating step includes determining an orientation of the access port with respect to locations of the first septum and the second septum.
  • 6. The method according to claim 1, wherein a combination of the first sub-pattern of protrusions and the second sub-pattern of protrusions defines a third sub-pattern of protrusions, and wherein the palpating step includes identifying the access port as suitable for power injection of fluids via the third sub-pattern of protrusions.
  • 7. The method according to claim 1, wherein the first sub-pattern of protrusions identifies a triangular shape, and wherein the inserting step includes identifying a central region of the first septum by locating a center of the triangular shape.
  • 8. The method according to claim 1, wherein the radiographic indicator includes a letter “C” and a letter “T,” and wherein the imaging step includes identifying the access port as suitable for power injection of fluids via a combination of the letters “C” and “T.”
  • 9. The method according to claim 8, wherein the letters “C” and “T” are positioned on the access port such that when viewed on a radiographic image, the letters are in a non-reversed configuration, wherein the imaging step further comprises identifying whether the first septum and the second septum are facing outward with respect to the patient by verifying that the letters “C” and “T” are in the non-reversed configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 15/442,371, filed Feb. 24, 2017, now U.S. Pat. No. 10,086,186, which is a division of U.S. patent application Ser. No. 12/267,160, filed Nov. 7, 2008, now U.S. Pat. No. 9,579,496, which claims the benefit of U.S. Provisional Patent Application Nos. 60/986,246, filed Nov. 7, 2007, and titled “Septum Identifying Orientation in a Multi-Lumen Port;” 60/986,247, filed Nov. 7, 2007, and titled “Radiopaque Indicators for Implantable Ports;” and 61/110,507, filed Oct. 31, 2008, and titled “Radiopaque and Radiographically Discernible Indicators for an Implantable Port,” each of which is incorporated by reference in its entirety into this application.

US Referenced Citations (886)
Number Name Date Kind
445896 Kinsman Feb 1891 A
546440 Tufts Sep 1895 A
574387 Buckler Jan 1897 A
611357 Dembinski Sep 1898 A
966696 Merrill Aug 1910 A
D44302 Director Jul 1913 S
1713267 Crowley May 1929 A
D130852 Rothschild Dec 1941 S
2433480 Rendich Dec 1947 A
2891689 Gould Jun 1959 A
3159175 Macmillan Dec 1964 A
3211431 Meysembourg et al. Oct 1965 A
3293663 Cronin Dec 1966 A
3341417 Sinaiko Sep 1967 A
3477438 Allen et al. Nov 1969 A
3518428 Ring Jun 1970 A
3525357 Koreski Aug 1970 A
3529633 Vaillancourt Sep 1970 A
3540670 Rissberger Nov 1970 A
3643358 Morderosian Feb 1972 A
3669323 Harker et al. Jun 1972 A
3674183 Venable et al. Jul 1972 A
3811466 Ohringer May 1974 A
3829904 Ling et al. Aug 1974 A
3831549 Parsons Aug 1974 A
3831583 Edmunds, Jr. et al. Aug 1974 A
3840009 Michaels et al. Oct 1974 A
3853127 Spademan Dec 1974 A
3891997 Herbert Jul 1975 A
3915162 Miller Oct 1975 A
3919724 Sanders et al. Nov 1975 A
3922726 Trentani et al. Dec 1975 A
3951147 Tucker et al. Apr 1976 A
3955594 Snow May 1976 A
3971376 Wichterle Jul 1976 A
4013064 Patel et al. Mar 1977 A
4027391 Samis Jun 1977 A
4035653 Karasko Jul 1977 A
4121108 Manor Oct 1978 A
4123806 Amstutz et al. Nov 1978 A
4143853 Abramson Mar 1979 A
4168586 Samis Sep 1979 A
4181132 Parks Jan 1980 A
4190040 Schulte Feb 1980 A
4190057 Hill et al. Feb 1980 A
4194122 Mitchell et al. Mar 1980 A
4196731 Laurin et al. Apr 1980 A
4202349 Jones May 1980 A
4222374 Sampson et al. Sep 1980 A
4233964 Jefferts et al. Nov 1980 A
4274006 Caine Jun 1981 A
4286597 Gajewski et al. Sep 1981 A
D263335 Bujan Mar 1982 S
4349498 Ellis et al. Sep 1982 A
4361153 Slocum et al. Nov 1982 A
4405305 Stephen et al. Sep 1983 A
4406567 Samis Sep 1983 A
4425119 Berglund Jan 1984 A
4445896 Gianturco May 1984 A
4447237 Frisch et al. May 1984 A
4450592 Niederer et al. May 1984 A
4450985 Beard May 1984 A
4456011 Warnecke Jun 1984 A
4469483 Becker et al. Sep 1984 A
4479798 Parks Oct 1984 A
4494545 Slocum et al. Jan 1985 A
4506676 Duska Mar 1985 A
4529635 Sheldon Jul 1985 A
4543088 Bootman et al. Sep 1985 A
4549879 Groshong et al. Oct 1985 A
4559043 Whitehouse et al. Dec 1985 A
4559046 Groshong et al. Dec 1985 A
4560375 Schulte et al. Dec 1985 A
4569675 Prosl et al. Feb 1986 A
4571749 Fischell Feb 1986 A
4576595 Aas et al. Mar 1986 A
4610665 Matsumoto et al. Sep 1986 A
4612877 Hayes et al. Sep 1986 A
4626244 Reinicke Dec 1986 A
4627844 Schmitt Dec 1986 A
4634427 Hannula et al. Jan 1987 A
4636194 Schulte et al. Jan 1987 A
4636213 Pakiam Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4653508 Cosman Mar 1987 A
4655765 Swift Apr 1987 A
4657024 Coneys Apr 1987 A
4662652 Hargis May 1987 A
4668221 Luther May 1987 A
4671796 Groshong et al. Jun 1987 A
4673394 Fenton, Jr. et al. Jun 1987 A
4681560 Schulte et al. Jul 1987 A
4684365 Reinicke Aug 1987 A
4685447 Iversen et al. Aug 1987 A
4685905 Jeanneret nee Aab Aug 1987 A
4692146 Hilger Sep 1987 A
4695273 Brown Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4701166 Groshong et al. Oct 1987 A
4704103 Stober et al. Nov 1987 A
4707389 Ward Nov 1987 A
4710167 Lazorthes Dec 1987 A
4710174 Moden et al. Dec 1987 A
4718894 Lazorthes Jan 1988 A
4723947 Konopka Feb 1988 A
4728894 Yoda et al. Mar 1988 A
4743231 Kay et al. May 1988 A
4753640 Nichols et al. Jun 1988 A
4755173 Konopka et al. Jul 1988 A
4760837 Petit Aug 1988 A
4762517 McIntyre et al. Aug 1988 A
4767410 Moden et al. Aug 1988 A
4772270 Wiita et al. Sep 1988 A
4772276 Wiita et al. Sep 1988 A
4773552 Boege et al. Sep 1988 A
4778452 Moden et al. Oct 1988 A
4781680 Redmond et al. Nov 1988 A
4781685 Lehmann et al. Nov 1988 A
4781695 Dalton Nov 1988 A
4784646 Feingold Nov 1988 A
4793635 Lovison Dec 1988 A
4802885 Weeks et al. Feb 1989 A
4804054 Howson et al. Feb 1989 A
4820273 Reinicke Apr 1989 A
4822341 Colone Apr 1989 A
4840615 Hancock et al. Jun 1989 A
4848346 Crawford Jul 1989 A
4857053 Dalton Aug 1989 A
4861341 Woodburn Aug 1989 A
4863470 Carter Sep 1989 A
4886501 Johnston et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4892518 Cupp et al. Jan 1990 A
4895561 Mahurkar Jan 1990 A
4897081 Poirier et al. Jan 1990 A
4904241 Bark Feb 1990 A
4905709 Bieganski et al. Mar 1990 A
4908029 Bark et al. Mar 1990 A
4909250 Smith Mar 1990 A
4915690 Cone et al. Apr 1990 A
4928298 Tanaka May 1990 A
4929236 Sampson May 1990 A
4955861 Enegren et al. Sep 1990 A
4961267 Herzog Oct 1990 A
4963133 Whipple Oct 1990 A
4966583 Debbas Oct 1990 A
4973319 Melsky Nov 1990 A
4983162 Metais et al. Jan 1991 A
5002735 Alberhasky et al. Mar 1991 A
5006115 McDonald Apr 1991 A
5009391 Steigerwald Apr 1991 A
5009644 McDonald Apr 1991 A
5013298 Moden et al. May 1991 A
5041098 Loiterman et al. Aug 1991 A
5044955 Jagmin Sep 1991 A
5045060 Melsky et al. Sep 1991 A
5045064 Idriss Sep 1991 A
5053013 Ensminger et al. Oct 1991 A
5059186 Yamamoto et al. Oct 1991 A
5069206 Crosbie Dec 1991 A
5084015 Moriuchi Jan 1992 A
5085216 Henley, Jr. et al. Feb 1992 A
5090066 Schoepe et al. Feb 1992 A
5092849 Sampson Mar 1992 A
5108317 Beinhaur et al. Apr 1992 A
5108375 Harrison et al. Apr 1992 A
5108377 Cone et al. Apr 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5112303 Pudenz et al. May 1992 A
5129891 Young Jul 1992 A
5137529 Watson et al. Aug 1992 A
5147483 Melsky et al. Sep 1992 A
5152753 Laguette et al. Oct 1992 A
5156600 Young Oct 1992 A
5158547 Doan et al. Oct 1992 A
5167629 Vertenstein et al. Dec 1992 A
5167633 Mann et al. Dec 1992 A
5167638 Felix et al. Dec 1992 A
5169393 Moorehead et al. Dec 1992 A
5171228 McDonald Dec 1992 A
5176653 Metals Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5178612 Fenton, Jr. Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5185003 Brethauer Feb 1993 A
5189690 Samuel Feb 1993 A
5193106 DeSena Mar 1993 A
5195122 Fabian Mar 1993 A
5195123 Clement Mar 1993 A
5201715 Masters Apr 1993 A
5201722 Moorehead et al. Apr 1993 A
5203771 Melker et al. Apr 1993 A
5203777 Lee Apr 1993 A
5205834 Moorehead et al. Apr 1993 A
5207644 Strecker May 1993 A
5213574 Tucker May 1993 A
5215537 Lynn et al. Jun 1993 A
5222499 Allen et al. Jun 1993 A
5222982 Ommaya Jun 1993 A
D337637 Tucker Jul 1993 S
5224938 Fenton, Jr. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5246462 Bekki et al. Sep 1993 A
5249598 Schmidt Oct 1993 A
5263930 Ensminger Nov 1993 A
D342134 Mongeon Dec 1993 S
5281199 Ensminger et al. Jan 1994 A
5281205 McPherson Jan 1994 A
5290263 Wigness et al. Mar 1994 A
5295658 Atkinson et al. Mar 1994 A
5299253 Wessels Mar 1994 A
5300048 Drewes, Jr. et al. Apr 1994 A
5309863 Leeb, Jr. May 1994 A
5312337 Flaherty et al. May 1994 A
5318545 Tucker Jun 1994 A
5320100 Herweck et al. Jun 1994 A
5328480 Melker et al. Jul 1994 A
5332398 Miller et al. Jul 1994 A
5336194 Polaschegg et al. Aug 1994 A
5338398 Szwejkowski et al. Aug 1994 A
5350360 Ensminger et al. Sep 1994 A
5352204 Ensminger Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5383223 Inokuchi Jan 1995 A
5383233 Russell Jan 1995 A
5383585 Weiss Jan 1995 A
5383858 Reilly et al. Jan 1995 A
D355240 Gladfelter et al. Feb 1995 S
5387192 Glantz et al. Feb 1995 A
5394457 Leibinger et al. Feb 1995 A
5395324 Hinrichs et al. Mar 1995 A
5396925 Poll Mar 1995 A
5397329 Allen Mar 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5405402 Dye et al. Apr 1995 A
5417565 Long May 1995 A
5417656 Ensminger et al. May 1995 A
5421814 Geary Jun 1995 A
5423334 Jordan Jun 1995 A
5425762 Muller Jun 1995 A
5453097 Paradis Sep 1995 A
5456698 Byland et al. Oct 1995 A
5476451 Ensminger et al. Dec 1995 A
5476460 Montalvo Dec 1995 A
5476880 Cooke et al. Dec 1995 A
5484402 Saravia et al. Jan 1996 A
5503630 Ensminger et al. Apr 1996 A
5507813 Dowd et al. Apr 1996 A
5509805 Jagmin Apr 1996 A
5513637 Twiss et al. May 1996 A
5514103 Srisathapat et al. May 1996 A
5520632 Leveen et al. May 1996 A
5520643 Ensminger et al. May 1996 A
5527277 Ensminger et al. Jun 1996 A
5527278 Ensminger et al. Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5531684 Ensminger et al. Jul 1996 A
5542923 Ensminger et al. Aug 1996 A
5545143 Fischell Aug 1996 A
5554117 Ensminger et al. Sep 1996 A
5556381 Ensminger et al. Sep 1996 A
5558641 Glantz et al. Sep 1996 A
5558829 Petrick Sep 1996 A
5562617 Finch, Jr. et al. Oct 1996 A
5562618 Cai et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5593028 Haber et al. Jan 1997 A
5593434 Williams Jan 1997 A
5607393 Ensminger et al. Mar 1997 A
5607407 Tolkoff et al. Mar 1997 A
5613945 Cai et al. Mar 1997 A
5620419 Lui et al. Apr 1997 A
5632729 Cai et al. May 1997 A
5637102 Tolkoff et al. Jun 1997 A
5638832 Singer et al. Jun 1997 A
5647855 Trooskin Jul 1997 A
RE35601 Eckenhoff Sep 1997 E
5662600 Watson et al. Sep 1997 A
5662612 Niehoff Sep 1997 A
5662616 Bousquet Sep 1997 A
5676146 Scarborough Oct 1997 A
5695490 Flaherty et al. Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702363 Flaherty Dec 1997 A
5704915 Melsky et al. Jan 1998 A
5707357 Mikhail et al. Jan 1998 A
5709668 Wacks Jan 1998 A
5713844 Peyman Feb 1998 A
5713858 Heruth et al. Feb 1998 A
5713859 Finch, Jr. et al. Feb 1998 A
5718382 Jaeger Feb 1998 A
5718682 Tucker Feb 1998 A
5725507 Petrick Mar 1998 A
5733336 Neuenfeldt et al. Mar 1998 A
5733400 Gore et al. Mar 1998 A
5741228 Lambrecht et al. Apr 1998 A
5743873 Cai et al. Apr 1998 A
5743891 Tolkoff et al. Apr 1998 A
5746460 Marohl et al. May 1998 A
5755780 Finch, Jr. et al. May 1998 A
5758667 Slettenmark Jun 1998 A
5769823 Otto Jun 1998 A
5773552 Hutchings et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5792104 Speckman et al. Aug 1998 A
5792116 Berg et al. Aug 1998 A
5792123 Ensminger Aug 1998 A
5797886 Roth et al. Aug 1998 A
5810789 Powers et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830172 Leveen et al. Nov 1998 A
5833654 Powers et al. Nov 1998 A
5835563 Navab et al. Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5840063 Flaherty Nov 1998 A
5843069 Butler et al. Dec 1998 A
5848989 Villani Dec 1998 A
5851221 Rieder et al. Dec 1998 A
5853394 Tolkoff et al. Dec 1998 A
5868702 Stevens et al. Feb 1999 A
5879322 Lattin et al. Mar 1999 A
5882341 Bousquet Mar 1999 A
5882353 VanBeek et al. Mar 1999 A
5895424 Steele, Sr. et al. Apr 1999 A
5897528 Schultz Apr 1999 A
5899856 Schoendorfer et al. May 1999 A
5904934 Maruyama et al. May 1999 A
5906592 Kriesel et al. May 1999 A
5906596 Tallarida May 1999 A
5908413 Lange et al. Jun 1999 A
5908414 Otto et al. Jun 1999 A
5911706 Estabrook et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5919160 Sanfilippo, II Jul 1999 A
5925017 Kriesel et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5927345 Samson Jul 1999 A
5928197 Niehoff Jul 1999 A
5928744 Heilmann et al. Jul 1999 A
5931829 Burbank et al. Aug 1999 A
5941856 Kovacs et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5944688 Lois Aug 1999 A
5944698 Fischer et al. Aug 1999 A
5944712 Frassica et al. Aug 1999 A
D413672 Fogarty Sep 1999 S
5947953 Ash et al. Sep 1999 A
5951512 Dalton Sep 1999 A
5951522 Rosato et al. Sep 1999 A
5951929 Wilson Sep 1999 A
5954687 Baudino Sep 1999 A
5954691 Prosl Sep 1999 A
5957890 Mann et al. Sep 1999 A
5961497 Larkin Oct 1999 A
5968011 Larsen et al. Oct 1999 A
5970162 Kawashima Oct 1999 A
5989216 Johnson et al. Nov 1999 A
5989239 Finch et al. Nov 1999 A
5989641 Oulie Nov 1999 A
5997524 Burbank et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6013051 Nelson Jan 2000 A
6013058 Prosl et al. Jan 2000 A
6017331 Watts et al. Jan 2000 A
6022335 Ramadan Feb 2000 A
6033389 Cornish Mar 2000 A
6039712 Fogarty et al. Mar 2000 A
6056717 Finch et al. May 2000 A
6077756 Lin et al. Jun 2000 A
6086555 Eliasen et al. Jul 2000 A
6090066 Schnell Jul 2000 A
6099508 Bousquet Aug 2000 A
6102884 Squitieri Aug 2000 A
6113572 Galley et al. Sep 2000 A
6120492 Finch et al. Sep 2000 A
6132415 Finch et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6161033 Kuhn Dec 2000 A
6171198 Lizama Troncoso et al. Jan 2001 B1
6171298 Matsuura et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6190352 Haarala et al. Feb 2001 B1
6193684 Burbank et al. Feb 2001 B1
6198807 DeSena Mar 2001 B1
6200338 Solomon et al. Mar 2001 B1
6203570 Baeke Mar 2001 B1
6210366 Sanfilippo, II Apr 2001 B1
6213973 Eliasen et al. Apr 2001 B1
6228088 Miller et al. May 2001 B1
6251059 Apple et al. Jun 2001 B1
D445175 Bertheas Jul 2001 S
6261259 Bell Jul 2001 B1
6269148 Jessop et al. Jul 2001 B1
6272370 Gillies et al. Aug 2001 B1
6287293 Jones et al. Sep 2001 B1
6290677 Arai et al. Sep 2001 B1
6305413 Fischer et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450115 Bertheas Nov 2001 S
6315762 Recinella et al. Nov 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6351513 Bani-Hashemi et al. Feb 2002 B1
6355021 Nielsen et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6398764 Finch, Jr. et al. Jun 2002 B1
6419680 Cosman et al. Jul 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6459772 Wiedenhoefer et al. Oct 2002 B1
6471674 Emig et al. Oct 2002 B1
6473638 Ferek-Petric Oct 2002 B2
6475516 DiCosmo et al. Nov 2002 B2
6478783 Moorehead Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6494867 Elver et al. Dec 2002 B1
6497062 Koopman et al. Dec 2002 B1
6500155 Sasso Dec 2002 B2
6503228 Li et al. Jan 2003 B1
6527754 Tallarida et al. Mar 2003 B1
6537255 Raines Mar 2003 B1
RE38074 Recinella et al. Apr 2003 E
6562023 Marrs et al. May 2003 B1
6572583 Olsen et al. Jun 2003 B1
6582418 Verbeek et al. Jun 2003 B1
6592571 Verbeek et al. Jul 2003 B1
6610031 Chin Aug 2003 B1
6613002 Clark et al. Sep 2003 B1
6613662 Wark et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
D480942 Ishida et al. Oct 2003 S
6629950 Levin Oct 2003 B1
6632217 Harper et al. Oct 2003 B2
6652486 Bialecki et al. Nov 2003 B2
6652503 Bradley Nov 2003 B1
6663646 Shah Dec 2003 B1
6676633 Smith et al. Jan 2004 B2
6697664 Kienzle, III et al. Feb 2004 B2
6699219 Emig et al. Mar 2004 B2
6705316 Blythe et al. Mar 2004 B2
6719721 Okazaki et al. Apr 2004 B1
6719739 Verbeek et al. Apr 2004 B2
6726063 Stull et al. Apr 2004 B2
6726678 Nelson et al. Apr 2004 B1
6738531 Funahashi May 2004 B1
6755842 Kanner et al. Jun 2004 B2
6758841 Haarala et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6784783 Scoggin et al. Aug 2004 B2
6808738 DiTizio et al. Oct 2004 B2
D498894 Gould Nov 2004 S
6826257 Sayre et al. Nov 2004 B2
6827709 Fujii Dec 2004 B2
6852106 Watson et al. Feb 2005 B2
6856055 Michaels et al. Feb 2005 B2
6878136 Fleury et al. Apr 2005 B2
6878137 Benchetrit Apr 2005 B2
6929631 Brugger et al. Aug 2005 B1
6949084 Marggi et al. Sep 2005 B2
6953453 Recinella et al. Oct 2005 B2
6962577 Tallarida et al. Nov 2005 B2
6962580 Adams et al. Nov 2005 B2
6994315 Ryan et al. Feb 2006 B2
6997914 Smith et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7008412 Maginot Mar 2006 B2
7016456 Basu et al. Mar 2006 B2
7018361 Gillespie, Jr. et al. Mar 2006 B2
D518573 French Apr 2006 S
7033335 Haarala et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7044942 Jolly et al. May 2006 B2
7056316 Burbank et al. Jun 2006 B1
7070591 Adams et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7074232 Kanner et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083593 Stultz Aug 2006 B2
7108686 Burke et al. Sep 2006 B2
7123690 Brown et al. Oct 2006 B1
7124570 Blatter et al. Oct 2006 B2
7127040 Sayre et al. Oct 2006 B2
7131962 Estabrook et al. Nov 2006 B1
7140769 Kay Nov 2006 B2
7186236 Gibson et al. Mar 2007 B2
7191011 Cantlon Mar 2007 B2
7198631 Kanner et al. Apr 2007 B2
7214207 Lynch et al. May 2007 B2
7214215 Heinzerling et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7232429 Moreci Jun 2007 B2
7235067 Morris et al. Jun 2007 B2
D546440 Burnside Jul 2007 S
7242982 Singhal et al. Jul 2007 B2
7248668 Galkin Jul 2007 B2
7252469 Zaluzec et al. Aug 2007 B2
7252649 Sherry Aug 2007 B2
7261705 Edoga et al. Aug 2007 B2
D550355 Racz et al. Sep 2007 S
D554253 Komerup Oct 2007 S
7275682 Excoffier et al. Oct 2007 B2
7276075 Callas et al. Oct 2007 B1
D556153 Burnside Nov 2007 S
7306579 Fujii Dec 2007 B2
7311702 Tallarida et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7318818 Yashiro et al. Jan 2008 B2
7322953 Redinger Jan 2008 B2
D562442 Blateri Feb 2008 S
D562443 Zinn et al. Feb 2008 S
7331130 Schweikert Feb 2008 B2
7331948 Skarda Feb 2008 B2
7333013 Berger Feb 2008 B2
D564449 Dewberry Mar 2008 S
7347838 Kulli Mar 2008 B2
7347843 Adams et al. Mar 2008 B2
7351233 Parks Apr 2008 B2
7377915 Rasmussen et al. May 2008 B2
D574950 Zawacki et al. Aug 2008 S
7413564 Morris et al. Aug 2008 B2
D578203 Bizup Oct 2008 S
7445614 Bunodiere et al. Nov 2008 B2
D582032 Bizup et al. Dec 2008 S
7465847 Fabian Dec 2008 B2
7485148 Wozencroft et al. Feb 2009 B2
7497850 Halili Mar 2009 B2
D590499 Chesnin Apr 2009 S
7552853 Mas et al. Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
D595892 Smith et al. Jul 2009 S
7563025 Kay Jul 2009 B2
7618411 Appling Nov 2009 B2
7628776 Gibson et al. Dec 2009 B2
7658196 Ferreri et al. Feb 2010 B2
D612479 Zawacki et al. Mar 2010 S
D613394 Linden Apr 2010 S
7713251 Tallarida et al. May 2010 B2
7722580 Dicarlo et al. May 2010 B2
D619242 Zinn et al. Jul 2010 S
7766880 Spinoza Aug 2010 B1
7785302 Powers Aug 2010 B2
7803143 Tallarida et al. Sep 2010 B2
7806888 Frassica Oct 2010 B2
7811266 Eliasen Oct 2010 B2
D629503 Caffey et al. Dec 2010 S
7846139 Zinn et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
D634840 Lombardi, III et al. Mar 2011 S
7909804 Stats Mar 2011 B2
7931619 Diamond et al. Apr 2011 B2
7947022 Amin et al. May 2011 B2
7959615 Stats et al. Jun 2011 B2
7972314 Bizup et al. Jul 2011 B2
8007474 Uth et al. Aug 2011 B2
8021324 Bizup et al. Sep 2011 B2
8025639 Powers et al. Sep 2011 B2
8029482 Maniar et al. Oct 2011 B2
D650475 Smith et al. Dec 2011 S
8075536 Gray et al. Dec 2011 B2
8092435 Beling et al. Jan 2012 B2
8147455 Butts et al. Apr 2012 B2
8172894 Schmid et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8177762 Beasley et al. May 2012 B2
8182453 Eliasen May 2012 B2
8197454 Mann et al. Jun 2012 B2
8202259 Evans et al. Jun 2012 B2
8257325 Schweikert et al. Sep 2012 B2
D676955 Orome Feb 2013 S
8366687 Girard et al. Feb 2013 B2
8377034 Tallarida et al. Feb 2013 B2
8382723 Powers et al. Feb 2013 B2
8382724 Maniar et al. Feb 2013 B2
8409153 Tallarida et al. Apr 2013 B2
8475417 Powers et al. Jul 2013 B2
8545460 Beasley et al. Oct 2013 B2
8585660 Murphy Nov 2013 B2
8585663 Powers et al. Nov 2013 B2
8603052 Powers et al. Dec 2013 B2
8608712 Bizup et al. Dec 2013 B2
8608713 Beasley et al. Dec 2013 B2
8641676 Butts et al. Feb 2014 B2
8641688 Powers et al. Feb 2014 B2
8805478 Powers et al. Aug 2014 B2
8852160 Schweikert et al. Oct 2014 B2
8932271 Hamatake et al. Jan 2015 B2
8939947 Maniar et al. Jan 2015 B2
8998860 Sheetz et al. Apr 2015 B2
9079004 Wiley et al. Jul 2015 B2
9248268 Wiley et al. Feb 2016 B2
9265912 Draper et al. Feb 2016 B2
9295733 Trieu Mar 2016 B2
9421352 Butts et al. Aug 2016 B2
9474888 Wiley et al. Oct 2016 B2
9579496 Evans et al. Feb 2017 B2
9603992 Powers Mar 2017 B2
9603993 Powers Mar 2017 B2
9642986 Beasley May 2017 B2
9682186 Powers et al. Jun 2017 B2
9717895 Wiley et al. Aug 2017 B2
9937337 Powers et al. Apr 2018 B2
10016585 Powers et al. Jul 2018 B2
10052470 Powers et al. Aug 2018 B2
10052471 Hamatake et al. Aug 2018 B2
10086186 Evans et al. Oct 2018 B2
10092725 Beasley Oct 2018 B2
10155101 Wiley et al. Dec 2018 B2
10183157 Powers et al. Jan 2019 B2
10238850 Maniar et al. Mar 2019 B2
10265512 Wiley et al. Apr 2019 B2
10307581 Hibdon et al. Jun 2019 B2
10556090 Beasley Feb 2020 B2
10625065 Powers et al. Apr 2020 B2
10661068 Powers et al. May 2020 B2
10675401 Powers et al. Jun 2020 B2
20010016699 Burbank et al. Aug 2001 A1
20010016717 Haarala et al. Aug 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010053889 Marggi et al. Dec 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020013557 Sherry Jan 2002 A1
20020052576 Massengale May 2002 A1
20020055715 Young et al. May 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020121530 Socier Sep 2002 A1
20020138068 Watson et al. Sep 2002 A1
20020169418 Menzi et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020173772 Olsen Nov 2002 A1
20020183846 Kuslich et al. Dec 2002 A1
20020188282 Greenberg Dec 2002 A1
20030028173 Forsberg Feb 2003 A1
20030032918 Quinn Feb 2003 A1
20030093029 McGuckin et al. May 2003 A1
20030109856 Sherry Jun 2003 A1
20030130627 Smith et al. Jul 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030141477 Miller Jul 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030191452 Meglin et al. Oct 2003 A1
20030208184 Burke et al. Nov 2003 A1
20030216694 Tollini Nov 2003 A1
20030217659 Yamamoto et al. Nov 2003 A1
20040002693 Bright et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040020462 Sauler et al. Feb 2004 A1
20040020492 Dubrul et al. Feb 2004 A1
20040024361 Fago et al. Feb 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040054352 Adams et al. Mar 2004 A1
20040056266 Suh et al. Mar 2004 A1
20040064110 Forsell Apr 2004 A1
20040073196 Adams et al. Apr 2004 A1
20040078000 Borchard et al. Apr 2004 A1
20040086568 Ditizio et al. May 2004 A1
20040087877 Besz et al. May 2004 A1
20040087885 Kawano et al. May 2004 A1
20040106878 Skujins et al. Jun 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040116901 Appling Jun 2004 A1
20040133173 Edoga et al. Jul 2004 A1
20040156472 Galkin Aug 2004 A1
20040157952 Soffiati et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167543 Mazzocchi et al. Aug 2004 A1
20040176743 Morris et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040199129 DiMatteo Oct 2004 A1
20040199220 Cantlon Oct 2004 A1
20040204692 Eliasen Oct 2004 A1
20040204759 Blom et al. Oct 2004 A1
20040225254 Tanaka et al. Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20050010176 Dikeman et al. Jan 2005 A1
20050010286 Vijay Jan 2005 A1
20050027234 Waggoner et al. Feb 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050038390 Fago et al. Feb 2005 A1
20050044759 Schweikert Mar 2005 A1
20050049553 Triplett et al. Mar 2005 A1
20050070875 Kulessa Mar 2005 A1
20050075614 Bunodiere et al. Apr 2005 A1
20050080401 Peavey Apr 2005 A1
20050085778 Parks Apr 2005 A1
20050086071 Fox et al. Apr 2005 A1
20050113806 De Carvalho et al. May 2005 A1
20050124980 Sanders Jun 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050148866 Gunderson Jul 2005 A1
20050148869 Masuda Jul 2005 A1
20050148956 Conlon et al. Jul 2005 A1
20050148957 Girard et al. Jul 2005 A1
20050152841 Sayre et al. Jul 2005 A1
20050171502 Daly et al. Aug 2005 A1
20050182857 Kong Aug 2005 A1
20050209573 Brugger et al. Sep 2005 A1
20050215874 Wang et al. Sep 2005 A1
20050241203 Lizotte et al. Nov 2005 A1
20050256451 Adams et al. Nov 2005 A1
20050256500 Fujii Nov 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20060009788 Freeman et al. Jan 2006 A1
20060017341 Hahn et al. Jan 2006 A1
20060020256 Bell et al. Jan 2006 A1
20060084929 Eliasen Apr 2006 A1
20060089619 Ginggen Apr 2006 A1
20060100592 Eliasen May 2006 A1
20060116648 Hamatake Jun 2006 A1
20060149189 Diamond et al. Jul 2006 A1
20060171980 Helmus et al. Aug 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060178647 Stats Aug 2006 A1
20060178648 Barron et al. Aug 2006 A1
20060184141 Smith et al. Aug 2006 A1
20060184142 Schon et al. Aug 2006 A1
20060217359 Wentworth et al. Sep 2006 A1
20060217659 Patton Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060224128 Lurvey et al. Oct 2006 A1
20060224129 Beasley et al. Oct 2006 A1
20060224235 Rucker Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060247584 Sheetz et al. Nov 2006 A1
20060253076 Butts et al. Nov 2006 A1
20060264897 Lobl et al. Nov 2006 A1
20060264898 Beasley et al. Nov 2006 A1
20060271012 Canaud et al. Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070004981 Boese et al. Jan 2007 A1
20070007839 Lin Jan 2007 A1
20070010881 Soye et al. Jan 2007 A1
20070016162 Burbank et al. Jan 2007 A1
20070049806 Adams et al. Mar 2007 A1
20070049876 Patton Mar 2007 A1
20070055290 Lober Mar 2007 A1
20070073250 Schneiter Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070078416 Eliasen Apr 2007 A1
20070078432 Halseth et al. Apr 2007 A1
20070083111 Hossack et al. Apr 2007 A1
20070083156 Muto et al. Apr 2007 A1
20070100302 Dicarlo et al. May 2007 A1
20070112332 Harding et al. May 2007 A1
20070120683 Flippen et al. May 2007 A1
20070123831 Haindl et al. May 2007 A1
20070135775 Edoga et al. Jun 2007 A1
20070149920 Michels et al. Jun 2007 A1
20070149921 Michels et al. Jun 2007 A1
20070149947 Byrum Jun 2007 A1
20070161958 Glenn Jul 2007 A1
20070179456 Glenn Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070191773 Wojcik Aug 2007 A1
20070207335 Karandikar et al. Sep 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070219510 Zinn et al. Sep 2007 A1
20070233017 Zinn et al. Oct 2007 A1
20070233018 Bizup et al. Oct 2007 A1
20070233042 Moehle et al. Oct 2007 A1
20070255226 Tennican et al. Nov 2007 A1
20070255234 Haase et al. Nov 2007 A1
20070270691 Bailey et al. Nov 2007 A1
20070270770 Bizup Nov 2007 A1
20070276344 Bizup et al. Nov 2007 A1
20070276355 Nielsen et al. Nov 2007 A1
20070282308 Bell Dec 2007 A1
20070293800 McMaken et al. Dec 2007 A1
20070299408 Alferness et al. Dec 2007 A1
20080004642 Birk et al. Jan 2008 A1
20080008654 Clarke et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021392 Lurvey et al. Jan 2008 A1
20080039820 Sommers et al. Feb 2008 A1
20080048855 Berger Feb 2008 A1
20080051731 Schweikert et al. Feb 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114308 di Palma et al. May 2008 A1
20080133265 Silkaitis et al. Jun 2008 A1
20080137923 Spahn Jun 2008 A1
20080138387 Machiraju Jun 2008 A1
20080208236 Hobbs et al. Aug 2008 A1
20080281279 Hoendervoogt et al. Nov 2008 A1
20080319398 Bizup Dec 2008 A1
20080319399 Schweikert et al. Dec 2008 A1
20080319405 Bizup Dec 2008 A1
20090024024 Zinn Jan 2009 A1
20090024098 Bizup et al. Jan 2009 A1
20090035582 Nakatani et al. Feb 2009 A1
20090118612 Grunwald et al. May 2009 A1
20090118683 Hanson et al. May 2009 A1
20090156928 Evans et al. Jun 2009 A1
20090204072 Amin et al. Aug 2009 A1
20090204074 Powers et al. Aug 2009 A1
20090216216 Powers et al. Aug 2009 A1
20090221976 Linden Sep 2009 A1
20090227862 Smith et al. Sep 2009 A1
20090227951 Powers et al. Sep 2009 A1
20090227964 DiCarlo et al. Sep 2009 A1
20090264901 Franklin et al. Oct 2009 A1
20090264990 Bruszewski et al. Oct 2009 A1
20090315684 Sacco et al. Dec 2009 A1
20090322541 Jones et al. Dec 2009 A1
20100010339 Smith et al. Jan 2010 A1
20100042073 Oster et al. Feb 2010 A1
20100063451 Gray et al. Mar 2010 A1
20100069743 Sheetz et al. Mar 2010 A1
20100106094 Fisher et al. Apr 2010 A1
20100121283 Hamatake et al. May 2010 A1
20100211026 Mr. Sheetz et al. Aug 2010 A2
20100268165 Maniar et al. Oct 2010 A1
20100268174 Steinke et al. Oct 2010 A1
20100319700 Ng et al. Dec 2010 A1
20110021922 Berard-Anderson et al. Jan 2011 A1
20110054312 Bell et al. Mar 2011 A1
20110092921 Beling et al. Apr 2011 A1
20110098662 Zinn Apr 2011 A1
20110098663 Zinn Apr 2011 A1
20110118677 Wiley et al. May 2011 A1
20110160673 Magalich et al. Jun 2011 A1
20110183712 Eckstein et al. Jul 2011 A1
20110213700 Sant'Anselmo Sep 2011 A1
20110257609 Bizup et al. Oct 2011 A1
20110264058 Linden et al. Oct 2011 A1
20110271856 Fisher et al. Nov 2011 A1
20110275930 Jho et al. Nov 2011 A1
20110276015 Powers et al. Nov 2011 A1
20110288502 Hibdon et al. Nov 2011 A1
20110288503 Magalich et al. Nov 2011 A1
20110311337 Amin et al. Dec 2011 A1
20120018073 Maniar et al. Jan 2012 A1
20120059250 Gray et al. Mar 2012 A1
20120065622 Cornish et al. Mar 2012 A1
20120078201 Mikami Mar 2012 A1
20120078202 Beling et al. Mar 2012 A1
20120191071 Butts et al. Jul 2012 A1
20120226244 Beasley et al. Sep 2012 A1
20120259296 Sheetz et al. Oct 2012 A1
20120283560 Schweikert et al. Nov 2012 A1
20120302969 Wiley et al. Nov 2012 A1
20130165773 Powers et al. Jun 2013 A1
20130172733 Maniar et al. Jul 2013 A1
20130218103 Tallarida et al. Aug 2013 A1
20130225990 Powers et al. Aug 2013 A1
20130225991 Powers Aug 2013 A1
20130245574 Powers et al. Sep 2013 A1
20130338494 Wiley et al. Dec 2013 A1
20140058275 Gregorich et al. Feb 2014 A1
20140081219 Powers et al. Mar 2014 A1
20140100534 Beasley et al. Apr 2014 A1
20140107619 Butts et al. Apr 2014 A1
20140330118 Powers et al. Nov 2014 A1
20140350396 Powers et al. Nov 2014 A1
20150008891 Li et al. Jan 2015 A1
20150025478 Hibdon et al. Jan 2015 A1
20150088091 Beasley et al. Mar 2015 A1
20150112284 Hamatake et al. Apr 2015 A1
20150290445 Powers et al. Oct 2015 A1
20150290446 Wiley et al. Oct 2015 A1
20170028185 Wiley et al. Feb 2017 A1
20170157383 Evans et al. Jun 2017 A1
20170232232 Beasley Aug 2017 A1
20170246441 Powers et al. Aug 2017 A1
20170319842 Wiley et al. Nov 2017 A1
20180161565 Maniar et al. Jun 2018 A1
20180311488 Powers et al. Nov 2018 A1
20180353743 Hamatake et al. Dec 2018 A1
20190038871 Beasley Feb 2019 A1
20190111242 Wiley et al. Apr 2019 A1
20190111243 Powers et al. Apr 2019 A1
20190134373 Barron et al. May 2019 A1
20190151641 Powers et al. May 2019 A1
20190217073 Maniar et al. Jul 2019 A1
20190252603 Wiley et al. Aug 2019 A1
20190275311 Hibdon et al. Sep 2019 A1
20200086105 Powers et al. Mar 2020 A1
20200171278 Beasley Jun 2020 A1
Foreign Referenced Citations (177)
Number Date Country
2008299945 Mar 2009 AU
2663853 Apr 2008 CA
2692142 Dec 2008 CA
2693972 Jan 2009 CA
2757836 May 2017 CA
102421469 Apr 2012 CN
102612343 Jul 2012 CN
3618390 Nov 1987 DE
3720414 Dec 1987 DE
42 25 524 Feb 1994 DE
29512576 Oct 1995 DE
10346470 May 2005 DE
10 2009 018837 Nov 2010 DE
0128525 Dec 1984 EP
0134745 Mar 1985 EP
0343910 Nov 1989 EP
0366814 May 1990 EP
0239244 Sep 1991 EP
0534782 Mar 1993 EP
0537892 Apr 1993 EP
0619101 Oct 1994 EP
1238682 Sep 2002 EP
1486229 Dec 2004 EP
1635899 Mar 2006 EP
1858565 Nov 2007 EP
1874393 Jan 2008 EP
1896117 Mar 2008 EP
1998842 Dec 2008 EP
2004272 Dec 2008 EP
2018209 Jan 2009 EP
2081634 Jul 2009 EP
2164559 Mar 2010 EP
2167182 Mar 2010 EP
2180915 May 2010 EP
2190517 Jun 2010 EP
2320974 May 2011 EP
2324879 May 2011 EP
2365838 Sep 2011 EP
2571563 Mar 2013 EP
2601999 Jun 2013 EP
2324879 Jan 2014 EP
2324878 Aug 2014 EP
2308547 Sep 2014 EP
2324880 Dec 2014 EP
1 965 854 Sep 2015 EP
2939703 Mar 2017 EP
2416828 Feb 2018 EP
1509165 Jan 1968 FR
2508008 Dec 1982 FR
2809315 Nov 2001 FR
178998 May 1922 GB
749942 Jun 1956 GB
966137 Aug 1964 GB
1559140 Jan 1980 GB
2102398 Feb 1983 GB
2191701 Dec 1987 GB
2350352 Nov 2000 GB
62155857 Jul 1987 JP
62281966 Dec 1987 JP
64-011562 Jan 1989 JP
H05-200107 Aug 1993 JP
6296633 Oct 1994 JP
2000-79168 Mar 2000 JP
2000-079168 Mar 2000 JP
2002500076 Jan 2002 JP
2002-83281 Mar 2002 JP
2002-209910 Jul 2002 JP
2002-531149 Sep 2002 JP
2003-510136 Mar 2003 JP
2004-350937 Dec 2004 JP
2006-500087 Jan 2006 JP
2007-203070 Aug 2007 JP
2007-275548 Oct 2007 JP
2007-533368 Nov 2007 JP
3142990 Jul 2008 JP
2008-539025 Nov 2008 JP
2009-077965 Apr 2009 JP
2009-142520 Jul 2009 JP
2009-540932 Nov 2009 JP
2012-523284 Oct 2012 JP
2012-236040 Dec 2012 JP
2013-510652 Mar 2013 JP
2013-526376 Jun 2013 JP
6018822 Nov 2016 JP
8600213 Jan 1986 WO
1986000213 Jan 1986 WO
1989011309 Nov 1989 WO
9001958 Mar 1990 WO
1990001958 Mar 1990 WO
9206732 Apr 1992 WO
1993000945 Jan 1993 WO
9305730 Apr 1993 WO
1993005730 Apr 1993 WO
1993008986 May 1993 WO
9405351 Mar 1994 WO
9516480 Jun 1995 WO
1995015194 Jun 1995 WO
96-35477 Nov 1996 WO
9701370 Jan 1997 WO
1997001370 Jan 1997 WO
1997006845 Feb 1997 WO
9711726 Apr 1997 WO
9723255 Jul 1997 WO
9726931 Jul 1997 WO
1998017337 Apr 1998 WO
9818506 May 1998 WO
1998031417 Jul 1998 WO
9910250 Mar 1999 WO
1999034859 Jul 1999 WO
9938553 Aug 1999 WO
9942166 Aug 1999 WO
0012171 Mar 2000 WO
0016844 Mar 2000 WO
0020050 Apr 2000 WO
0033901 Jun 2000 WO
2000033901 Jun 2000 WO
0123023 Apr 2001 WO
2001023023 Apr 2001 WO
0160444 Aug 2001 WO
0170304 Sep 2001 WO
2001095813 Dec 2001 WO
0247549 Jun 2002 WO
2002047549 Jun 2002 WO
03030962 Apr 2003 WO
03084832 Oct 2003 WO
03090509 Nov 2003 WO
2004004800 Jan 2004 WO
2004012787 Feb 2004 WO
2004028611 Apr 2004 WO
2004071555 Aug 2004 WO
2004091434 Oct 2004 WO
2005037055 Apr 2005 WO
2005068009 Jul 2005 WO
2005072627 Aug 2005 WO
2005089833 Sep 2005 WO
2006078915 Jul 2006 WO
2006096686 Sep 2006 WO
2006116438 Nov 2006 WO
2006116613 Nov 2006 WO
2006130133 Dec 2006 WO
2006134100 Dec 2006 WO
2007041471 Apr 2007 WO
2007079024 Jul 2007 WO
2007092210 Aug 2007 WO
2007094898 Aug 2007 WO
2007098771 Sep 2007 WO
2007109164 Sep 2007 WO
2007126645 Nov 2007 WO
2007136538 Nov 2007 WO
2007149546 Dec 2007 WO
2008008126 Jan 2008 WO
2008024440 Feb 2008 WO
2008019236 Feb 2008 WO
2008048461 Apr 2008 WO
2008048361 Apr 2008 WO
2008062173 May 2008 WO
2008063226 May 2008 WO
2008147760 Dec 2008 WO
2008157763 Dec 2008 WO
2009002839 Dec 2008 WO
2009012385 Jan 2009 WO
2009012395 Jan 2009 WO
2009035582 Mar 2009 WO
2009046439 Apr 2009 WO
2009046725 Apr 2009 WO
2009108669 Sep 2009 WO
2010030351 Mar 2010 WO
2010062633 Jun 2010 WO
2010118144 Oct 2010 WO
2011046604 Apr 2011 WO
2011053499 May 2011 WO
2011056619 May 2011 WO
2011062750 May 2011 WO
2011133950 Oct 2011 WO
2011146649 Nov 2011 WO
2013165935 Nov 2013 WO
2014031763 Feb 2014 WO
Non-Patent Literature Citations (629)
Entry
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Final Office Action dated Jan. 29, 2011.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Non-Final Office Action dated Aug. 15, 2012.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Non-Final Office Action dated Aug. 26, 2014.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Notice of Allowance dated Jan. 21, 2015.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Aug. 5, 2011.
U.S. Appl. No. 13/110,734, filed May 18, 2011 Non-Final Office Action dated Jul. 7, 2014.
U.S. Appl. No. 13/113,834, filed May 23, 2011 Final Office Action dated Nov. 23, 2012.
U.S. Appl. No. 13/113,834, filed May 23, 2011 Non-Final Office Action dated Jul. 17, 2012.
U.S. Appl. No. 13/159,230, filed Jun. 13, 2011 Notice of Allowance dated Aug. 1, 2012.
U.S. Appl. No. 13/250,909, filed Sep. 30, 2011 Notice of Allowance dated Aug. 6, 2012.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Advisory Action dated May 29, 2011.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Final Office Action dated Mar. 7, 2013.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Non-Final Office Action dated Sep. 19, 2012.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Notice of Allowance dated Sep. 16, 2013.
U.S. Appl. No. 13/471,219, filed May 14, 2012 Non-Final Office Action dated Jul. 10, 2013.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Advisory Action dated May 7, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Final Office Action dated Mar. 3, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Non-Final Office Action dated Aug. 21, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Non-Final Office Action dated Oct. 22, 2013.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Notice of Allowance dated Dec. 12, 2014.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Final Office Action dated Jul. 16, 2013.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Final Office Action dated Jul. 6, 2015.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Non-Final Office Action dated Feb. 27, 2013.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Non-Final Office Action dated Jan. 7, 2015.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Notice of Allowance dated Sep. 16, 2015.
U.S. Appl. No. 13/776,451, filed Feb. 25, 2013 Non-Final Office Action dated Jul. 24, 2013.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Final Office Action dated Jun. 30, 2014.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Non-Final Office Action dated Feb. 27, 2014.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Non-Final Office Action dated Nov. 15, 2013.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Notice of Allowance dated Sep. 23, 2014.
U.S. Appl. No. 13/801,893, filed Mar. 13, 2013 Notice of Allowance dated Sep. 24, 2015.
U.S. Appl. No. 13/853,942, filed Mar. 29, 2013 Non-Final Office Action dated Jul. 26, 2013.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Feb. 20, 2015.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Jan. 10, 2017.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Oct. 18, 2016.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Dec. 3, 2013.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Jun. 16, 2016.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Sep. 15, 2014.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Final Office Action dated Feb. 20, 2015.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Final Office Action dated Jan. 9, 2017.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Dec. 3, 2013.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Jun. 15, 2016.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Oct. 18, 2016.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Sep. 12, 2014.
U.S. Appl. No. 13/972,538, filed Aug. 21, 2013 Non-Final Office Action dated Feb. 3, 2016.
U.S. Appl. No. 14/083,250, filed Nov. 18, 2013 Non-Final Office Action dated Dec. 12, 2016.
U.S. Appl. No. 14/083250, filed Nov. 18, 2013 Non-Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Final Office Action dated Jun. 15, 2018.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Final Office Action dated Jun. 21, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Final Office Action dated May 31, 2017.
PCT/US2008/010520 filed Sep. 8, 2008 Written Opinion dated Feb. 24, 2009.
PCT/US2008/067679 filed Jun. 20, 2008 Search Report dated Sep. 30, 2008.
PCT/US2008/067679 filed Jun. 20, 2008 Written Opinion dated Sep. 30, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Search Report dated Dec. 1, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Search Report dated Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/078976 filed Apr. 2, 2009 Search Report and Written Opinion dated Apr. 3, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 International Search Report dated May 19, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 Written Opinion dated May 19, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 International Preliminary Report on Patentability dated May 5, 2011.
PCT/US2009/062854 filed Oct. 30, 2009 International Search Report dated Dec. 23, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Search Report dated Dec. 23, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Written Opinion dated Dec. 23, 2009.
PCT/US2010/030256 filed Apr. 7, 2010 Search Report dated Jun. 4, 2010.
PCT/US2010/030256 filed Apr. 7, 2010 Written Opinion dated Jun. 4, 2010.
PCT/US2010/054994 filed Nov. 1, 2010 Search Report dated Jan. 10, 2011.
PCT/US2010/054994 filed Nov. 1, 2010 Written Opinion dated Jan. 10, 2011.
PCT/US2011/037038 filed May 18, 2011 International Preliminary Report on Patentability dated Nov. 20, 2012.
PCT/US2011/037038 filed May 18, 2011 International Search Report and Written Opinion dated Aug. 30, 2011.
PCT/US2011/037038 filed May 18, 2011 Written Opinion and Search Report dated Aug. 30, 2011.
PCT/US2013/031035 filed Mar. 13, 2013 International Search Report and Written Opinion dated Jun. 3, 2013.
PCT/US2013/056019 filed Aug. 21, 2013 International Search Report and Written Opinion dated Feb. 28, 2014.
PCT/US99/28695 filed Dec. 3, 1999 International Preliminary Examination Report dated Apr. 21, 2001.
PCT/US99/28695 filed Dec. 3, 1999 Search Report dated Apr. 11, 2000.
PFM Medical, Xcela™ Power Injectable Port Directions for Use, 15 pages, © 2008.
Picture of HMP Vortex MP Vascular Access Port from Exhibit A11, Jun. 24, 2016.
Port-A-Cath Implantable Vascular Access Systems, brochure, (1996).
Port-A-Cath® P.A.S. PORT® Systems by Deltec, Product Specifications, 1999.
PORT-A-CATH® “Implantable Epidural, Aterial and Peritonial Access Systems” Internet Product Listing. <<http://web.archive.org/web/20001119035900/www.deltec.com/cPacspl.htm.>> last accessed Jun. 4, 2012.
PORT-A-CATH® “Many PORT-A-CATH® System Choices” Product Brochure. © 1996 SIMS Deltec, Inc.
PORT-A-CATH® & PORT-A-CATH® II Dual-lumen Implantable Venous Access Systems Product Specifications, 2005.
PORT-A-CATH® II Implantable Access Systems Information Sheet, Sep. 2006.
Proper Care of the Vortex, Nov. 30, 2000.
Rappolt, Richard T., et al. “Radiopaque Codification and X-ray Identification of Ingested Drugs.” Ingestive Radiology, May-Jun. 1966.
Request for Inter partes Reexamination of U.S. Pat. No. 7,785,302, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Pat. No. 7,947,022, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Pat. No. 7,959,615, filed Aug. 20, 2012.
RU 2014140544 filed Mar. 13, 2016 Office Action dated Jul. 20, 2017.
Salis et al., “Maximal flow rates possible during power injection through currently available PICCs: An in-vitro study,” J Vasc Interv Radiol 2004; 15:275-281.
Sandstede, Joem, “Pediatric CT,” available online at www.multislice-ct.com, MultiSLICE-CT.com, version 02, May 2, 2003.
Sanelli, et al., “Safety and Feasibility of Using a Central Venous Catheter for Rapid Contrast Injection Rates.” American Journal of Radiology, vol. 183, pp. 1829-1834, Dec. 2004.
Shah, Tilak M., “Radiopaque Polymer Formulations for Medical Devices.” Medical Device and Diagnostic Industry, Mar. 2000.
Smith Medical, PORT-A-CATH® “Single-lumen Implantable Vascular Access Systems” Product Specifications, 2004.
Smith, Lisa Hartkoph, “Implanted Ports, Computed Tomography, Power Injectors, and Catheter Rupture.” Clinical Journal of Oncology Nursing, vol. 12 , No. 5. Oct. 2008.
Smiths Medical, “Smiths Medical Launches Implantable Ports for Easy Viewing Under CT Scans” Press Release, Jan. 5, 2011.
Soloman, et al., “CIN Strategies: Anticipate, Manage, Prevent.” Supplement to Imaging Economics, May 2007.
Statement of Prof. Dr. med. Karl R. Aigner, Oct. 11, 2011.
“Japanese Journal of Cancer and Chemotherapy”, 26, (13), 2055-2060, issued on Nov. 16, 1999.(Ref D18 of Request for Trial for Invalidation dated May 22, 2017).
“Rad Fan”, 1, (3), 40-43, issued on Jul. 25, 2003 (Ref D17 of Request for Trial for Invalidation dated May 22, 2017).
“Safety Considerations in the Power Injection of Contrast Medium via a Totally Implantable Central Venous Access System” IVR Interventional Radiology, 20, (1) 27-30, issued on Jan. 1, 2005. (Ref D09 of Request for Trial for Invalidation dated May 22, 2017).
Allergan, Inc. LAP-BAND® System Fact Sheet. © 2007.
Angiodynamics's Answer to Supplemental Complaint, Counterclaims Against Bard Peripheral Vascular, and Cross Claims/Third Party Complaint Against C.R. Bard. Public Version, dated Aug. 18, 2017.
AngioDynamics, Smart Port Guidelines for Health Care Providers, 2010.
Appendix B of Invalidity Contention Charts dated Nov. 28, 2017.
AU 2013235532 filed Aug. 6, 2014 Office Action dated Sep. 6, 2017.
B. Braun, Access Port Systems, Celsite® Product Information, 19 pages, Nov. 2005.
B. Braun, Easypump Product Page, accessed May 11, 2011.
B. Braun, Port Catheter Systems Product Page, accessed May 11, 2011.
Bard Access Systems Mar. 21, 1995 Product Release to Market form for “M.R.I. Port with 8 Fr. ChronoFlexÒ Catheter”, “M.R.I. Port with 8Fr. ChronoFlex Catheter with Intro-Eze™”, “M.R.I. Port with 8. Fr ChronoFlex Catheter and Peel Apart”, “M.R.I. Port with 8Fr. ChronoFlex Catheter Demo Kit”. Drawings included.
Bard Access Systems, BardPort and X-Port Implanted Ports Brochure, © 2007.
Bard Access Systems, BardPort, SlimPort and X-Port Instructions for Use, May 2003.
Bard Access Systems, BardPort, SlimPort, X-Port Instructions for Use, 24 pages, Oct. 2012.
Bard Access Systems, BardPort™ Implanted Ports Patient Information, Feb. 1993.
Bard Access Systems, Devices for Small Patients, 4 pages, Jul. 1992.
Bard Access Systems, Family of PICCs, 1 page, Mar. 10, 2006.
Bard Access Systems, M.R.I. Dual Port with Septum-Finder Ridge IFU, 2 pages, © 1993.
Bard Access Systems, Ports Brochure, © 2003.
Bard Access Systems, PowerPort and PowerLoc CT Guide, 11 pages, Dec. 2009.
Bard Access Systems, PowerPort and PowerLoc Product Brochure, 6 pages, © 2007.
Bard Access Systems, PowerPort CT Guide, 16 pages, Mar. 2007.
Bard Access Systems, PowerPort Guidelines for CT Technologists, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Guidelines for CT Technologists, 1 page, Jul. 2006.
Bard Access Systems, PowerPort Guidelines for Nurses, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Guidelines for Physicians, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Implanted Port with Open-Ended Catheter Instructions for Use, 8 pages, Dec. 2006.
Bard Access Systems, PowerPort Information for the Patient, 5 pages, © 2006.
Bard Access Systems, PowerPort Prescription Pad, 1 page, © 2007.
Bard Access Systems, PowerPort Product Brochure, 8 pages, © 2009.
Bard Access Systems, PowerPort™ Implantable Port Product Information, © 2007.
Bard Access Systems, Titanium Dome Implantable Port, http://www.bardacess.com, last accessed Jan. 10, 2012.
Bard Access Systems, When in Doubt, SCOUT!, 1 page, © 2007.
Bard Healthcare Leaflet (2001).
BardPort, SlimPort, X-Port Instructions for Use, 2012.
Baxter Guidelines on Port Maintainence (Jun. 2003).
Baxter Healthport® Focus (Oct. 1999).
Baxter Healthport® Venous Systems (Oct. 2002).
Baxter Patient Information, Healthport® System (May 1999).
Baxter Therapy Systems, Baxter Healthport® Jan. 1999.
Beathard et al. “Initial clinical results with the LifeSite Hemodialysis Access System” Kidney International, vol. 58, pp. 2221-2227, (2000).
Biffi, R. et al. “Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients.” Annals of Oncology 15:296-300, 2004.
Biffi, R., et al. “Best Choice of Central Venous Insertion Site for the Prevention of Catheter-Related Complications in Adult Patients Who Need Cancer Therapy: A Randomized Trial.” Annals of Oncology, Jan. 29, 2009.
Biffi, Roberto, et al. “A Randomized, Prospective Trial of Central Venous Ports Connected to Standard Open-Ended or Groshong Catheters in Adult Oncology Patients.” American Cancer Society, vol. 92, No. 5, pp. 1204-1212, Sep. 1, 2001.
BioEnteric,s Corporation, LAP-BAND® “Adjustable Gastric Banding System” Product Brochure Rev. G, Nov. 2000.
Biolink: Products—Dialock System (2002).
Biotronik, Stratos Cardiac Resynchronization Therapy Pacemakers Technical Manual, 179 pages, © 2008.
Boston Scientific, Xcela™ Power Injectable PICC Directions for Use, 12 pages, © 2007.
Braun Product Catalog (Aug. 2005).
Fallscheer, et al., “Injury to the Upper Extremity Cuased by Extravasation of Contrast Medium: A True Emergency.” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 41, pp. 26-32, 2007.
Fresenius Brochure on Intraport 1, Intraport II, and Bioport (Nov. 1998).
Gebauer, B. et al., “Contrast Media Power Injection Using Central Venous Port Catheters—Results of an In-Vitro Study,” Experimental Radiology 2005: 177: 1417-1423.
Gebauer, B. et al., “Contrast Media Power Injection Using Central Venous Port Catheters—Results of an In-Vitro Study,” Experimental Radiology 2005: 177: 1417-1423.—Translation.
Herts, B. R., “Power Injection of Contrast Media Using Central Venous Catheters: Feasibility, Safety, and Efficacy” AJR 2001;176:447-453, Feb. 2001.
HMO 2002 Product Catalog, 2002.
Hou, Shaw-Min et al. “Comparisons of Outcomes and Survivals for Two Central Venous Access Port Systems.” Journal of Surgical Oncology, 91:61-66, 2005.
Inamed Health, BioEnterics® LAP-BAND® “Adjustable Gastric Banding System” Product Brochure, Dec. 2003.
Johnson, Kathleen A., “Power Injectable Portal Systems.” Journal of Radiology Nursing, vol. 28, Issue 1, Mar. 2009.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated Aug. 20, 2013.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated Jan. 22, 2013.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated May 17, 2011.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Apr. 4, 2012.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Jun. 7, 2011.
JP 2012-156976 filed Jul. 12, 2012 Notice of Reasons for Refusal dated Apr. 8, 2014.
JP 2012-156976 filed Jul. 12, 2012 Notice of Reasons for Refusal dated Aug. 27, 2013.
JP 2012-156976 filed Jul. 12, 2012 Office Action dated Jun. 28, 2016.
JP 2012-156976 filed Jul. 12, 2012 Submission of Documents by Third Party dated May 14, 2013.
JP 2012-156976 filed Mar. 6, 2006, Office Action dated Mar. 29, 2016.
JP 2012-156976 filed Mar. 6, 2006, Third Party Submission dated Jul. 29, 2015.
JP 2012-504826 filed Oct. 6, 2011 First Office Action dated Mar. 4, 2014.
JP 2012-504826 filed Oct. 6, 2011 Second Office Action dated Nov. 17, 2014.
JP 2013-209156 filed Oct. 4, 2013 Non-Final Office Action dated Oct. 7, 2014.
JP 2013-511339 filed Nov. 16, 2012 First Office Action dated Feb. 19, 2015.
JP 2013-511339 filed Nov. 16, 2012 Office Action and Pre-Appeal Report dated Apr. 12, 2016.
JP 2013-511339 filed Nov. 16, 2012 Office Action dated Dec. 16, 2016.
JP 2013-511339 filed Nov. 16, 2012 Second Office Action dated Oct. 16, 2015.
JP 2015-501762 filed Sep. 16, 2014 First Office Action dated Oct. 5, 2016.
JP 2015-501762 filed Sep. 16, 2014 Office Action dated Feb. 1, 2017.
JP 2015-501762 filed Sep. 16, 2014 Office Action dated Jan. 16, 2018.
JP 2015-528624 filed Feb. 20, 2015 Office Action dated Apr. 25, 2018.
JP 2015-528624 filed Feb. 20, 2015 Office Action dated May 31, 2017.
JP 2016-026954 filed Feb. 16, 2016 Office Action dated Aug. 16, 2017.
JP 2016-026954 filed Feb. 16, 2016 Office Action dated Dec. 15, 2016.
JP 6018822 filed Jul. 12, 2012 Request for Trial for Invalidation dated May 22, 2017.
JP2012-156976 filed Jul. 12, 2012 Amendment filed on Jul. 13, 2016 (Ref D06 of Request for Trial for Invalidation dated May 22, 2017).
JP2012-156976 filed Jul. 12, 2012 Amendment filed on Mar. 3, 2016 (Ref D04 of Request for Trial for Invalidation dated May 22, 2017).
JP2012-156976 filed Jul. 12, 2012 Amendment filed on Oct. 28, 2013 (Ref D03 of Request for Trial for Invalidation dated May 22, 2017).
JP2012-156976 filed Jul. 12, 2012 Office Action dated Aug. 20, 2013 (Ref D07 of Request for Trial for Invalidation dated May 22, 2017).
JP2012-156976 filed Jul. 12, 2012 Remarks filed on Mar. 3, 2016 (Ref D05 of Request for Trial for Invalidation dated May 22, 2017).
Kaste et al., “Safe use of power injectors with central and peripheral venous access devices for pediatric CT,” Pediatr Radiol (1996) 26: 499-501.
KR 10-2011-7026328 filed Nov. 4, 2011 Notice of Last Preliminary Rejection dated Dec. 28, 2016.
KR 10-2011-7026328 filed Nov. 4, 2011 Notice of Preliminary Rejection dated Jun. 20, 2016.
KR 10-2017-7014546 filed May 29, 2017 Office Action dated Aug. 23, 2017.
KR 10-2017-7014546 filed May 29, 2017 Office Action dated Feb. 27, 2018.
L-CATH® FOR PORTS, Luther Medical Products, Inc., Tustin, California, 2 pages, 1994.
LaMaitre Vascular “Port Implantations: using the OptiLock Implantable Port,” product information, available at http://www.lemaitre. com/specs.pop.asp, last accessed Apr. 2003, 14 pages.
LAP-BAND AP™ “System with Adjustable Gastric Banding system with OMNIFORM™ Design,” Product Brochure, Jul. 2007, 16 pages.
LAP-BAND® System Access Port Fill Guide I, “9.75/10.0 cm LAP-BAND System vs. 11 cm LAP-BAND System: For Product Manufactured Prior to Jul. 2001” BioEnterics Corporation. Rev. B. Aug. 15, 2001.
Buerger et al “Implantation of a new device for haemodialysis” Nephrol. Dial. Transplant 15: 722-724 (2000).
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 15-218-JFB-SRF, Angiodynamics's Answer to Supplemental Complaint, Counterclaims Against Bard Peripheral Vascular, and Crossclaims/Third Party Complaint Against C.R. Bard public version dated Aug. 25, 2017. [Redacted].
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 15-218-SLR-SRF, Angiodynamics, Inc.'s Initial Invalidity Contentions dated Jun. 24, 2016.
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 15-218-SLR-SRF, Defendant and Counterclaim-Plaintiff Angiodynamics's Identification of Invalidity References dated Mar. 15, 2017.
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 15-218-SLR-SRF, Expert Report of Timothy Clark, MD, MD, FSIR Regarding Infringement of the Patents-In-Suit dated Nov. 30, 2017. [Redacted].
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 1:15-cv-00218-JFB-SRF, Opening Expert Report of Robert L. Vogelzang, M.D. Regarding Invalidity of U.S. Pat. Nos. 8,475,417, 8,545,460 & 8,805,478 dated Sep. 1, 2017. [Redacted].
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Medical Components, Inc., C.A. No. 2:17-cv-00754-TS, Defendant's Initial Noninfringement, Unenforceability, and Invalidity Contentions dated Nov. 28, 2017.
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Medical Components, Inc., C.A. No. 2:17-cv-00754-TS, Defendant's Second Amended Answer to Plaintiffs' First Amended Complaint and Second Amended Counterclaims dated Nov. 7, 2017.
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Medical Components, Inc., C.A. No. 2:17-cv-00754-TS, Plaintiffs' Motion to Dismiss Medcomp's Inequitable Conduct Counterclaims and to Strike Medcomp's Inequitable Conduct Affirmative Defenses dated Oct. 16, 2017.
C. R. Bard, Inc. v Innovative Medical Devices, LLC; Medical Components, Inc. “Petition for Inter Partes Review of U.S. Pat. No. 8,852,160” dated Jul. 31, 2015.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A1 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A10 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A11 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A12 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A13 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A14 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A15 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A16 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A17 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A18 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A19 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A20 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A21 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A22 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A23 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A24 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A25 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A26 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A27 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A28 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A29 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A30 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A31 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A32 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A33 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A34 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A35 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A36 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A37 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A38 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A39 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A40 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A41 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A42 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A43 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A44 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A45 dated Jun. 24, 2016.
Leslie et al., “A New Simple Power Injector,” Am J Roentgenol 128: 381-384, Mar. 1977.
Levin et al. “Initial results of a new access device for hemodialysis” Kidney International, vol. 54, pp. 1739-1745, (1998).
Levin et al. “New Access Device for Hemodialysis”, ASAIO Journal (1998).
LifeSite: Instructions for Implantation & Use for the LifeSite Hemodialysis Access System, 2000.
MedComp “PortCT Technology”, display at SIR Conference (Mar. 2006), Toronto, Canada.
Medcomp Dialysis and Vascular Access Products (MEDCOMP) Jun. 30, 2009, Accessed Jun. 29, 2013 http://www.medcompnet.com/products/flipbook/pdf/PN2114G_Medcomp_Catalog.pdf.
Medtronic IsoMed Technical Manual, Model 8472, (2008).
Medtronic IsoMed® Constant-Flow Infusion System: Clinical Reference Guide for Hepatic Arterial Infusion Therapy, Revised Sep. 2000.
MX/a/2011/004499 filed Apr. 28, 2011 First Office Action dated Jul. 25, 2013.
MX/a/2011/004499 filed Apr. 28, 2011 Forth Office Action dated Aug. 3, 2015.
MX/a/2011/004499 filed Apr. 28, 2011 Second Office Action dated May 25, 2014, translation dated Jul. 28, 2014.
MX/a/2011/004499 filed Apr. 28, 2011 Third Office Action dated Jan. 21, 2015.
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated Apr. 24, 2018.
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated Jan. 18, 2017.
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated May 19, 2016.
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated Oct. 2, 2017.
MX/a/2014/011280 filed Mar. 13, 2013, First Office Action dated May 29, 2015.
MX/a/2014/011280 filed Mar. 13, 2013, Second Office Action dated Oct. 27, 2015.
Navilyst Medical, Implantable Ports with PASV® Valve Technology, Product Overview,<<http://www.navilystmedical.com/Products/index.cfm/9>> last accessed Jun. 4, 2012.
Nebraska Medical Center, Ethanol Lock Technique for Prevention and Treatment of Central Line-Associated Bloodstream Infections, Jul. 2009.
Norfolk Medical Design Dossier/Technical File Vortex, Dec. 1997.
Nucleus Cochlear Implant Systems; User Manual for the ESPrit and ESPrit 22 speech processor and accessories, Issue 3, Apr. 2000.
Nucleus Cochlear Implant Systems; User Manual for the SPrint speech processor and accessories, Issue 4, Apr. 2002.
Oct. 22, 2009 Declaration of Kelly Christian, Director of Product Development at BARD Access Systems, Inc, in support of and depicting a product on the market by Quinton Company approximately ten years prior to Oct. 22, 2009, 1 page.
PCT/US 09/62854 filed Oct. 30, 2009 Written Opinion dated Dec. 23, 2009.
PCT/US06/49007 filed Dec. 21, 2006 Search Report and Written Opinion dated Oct. 1, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 International Preliminary Report on Patentability dated Sep. 12, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 Search Report dated Jul. 5, 2006.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Apr. 9, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Jul. 5, 2006.
PCT/US2006/015695 filed Apr. 25, 2006 Partial Search Report dated Sep. 29, 2006.
PCT/US2006/015695 filed Apr. 25, 2006 Search Report dated Jan. 11, 2007.
PCT/US2006/015695 filed Apr. 25, 2006 Written Opinion dated Jan. 11, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 International Preliminary Report on Patentability dated Oct. 30, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Search Report dated Sep. 20, 2006.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Oct. 27, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Sep. 20, 2006.
PCT/US2006/049007 filed Dec. 21, 2006 International Preliminary Report on Patentability dated Jul. 1, 2008.
PCT/US2006/049007 filed Dec. 21, 2006 Written Opinion dated Oct. 1, 2007.
PCT/US2007/006776 filed Mar. 19, 2007 International Preliminary Report on Patentability dated Jan. 2, 2009.
PCT/US2007/006776 filed Mar. 19, 2007 International Search Report dated Dec. 18, 2007.
PCT/US2007/006776 filed Mar. 19, 2007 Written opinion, dated Dec. 18, 2007.
PCT/US2007/011015 dated May 7, 2007 Written Opinion dated Jun. 10, 2008.
PCT/US2007/011015 filed May 7, 2007 International Preliminary Report on Patentability dated Sep. 23, 2008.
PCT/US2007/011015 filed May 7, 2007 Search Report dated Jun. 10, 2008.
PCT/US2007/011456 filed May 11, 2007 Search Report dated Aug. 28,2008.
PCT/US2007/011456 filed May 11, 2007 Written Opinion dated Aug. 28, 2008.
PCT/US2008/010520 dated Sep. 8, 2008 Search Report dated Feb. 24, 2009.
STD Manufacturing, Brochure with a Hickman port, 1 page, date unknown.
Steinbach, Barbara G. , Hardt, N. Sisson, Abbitt, Patricia L., Lanier, Linda, Caffee, H. Hollis, “Breast Implants, Common Complications, and Concurrent Breast Disease.” RadioGraphics, vol. 13, No. 1, pp. 95-118, 1993.
Sullivan et al. “Radiopaque Markers on Mammary Implants.” American Journal of Roentgenology 153(2):428, Aug. 1989.
Summers, “A New and Growing family of artificial implanted fluid-control devices” vol. XVI Trans. Amer. Soc. Artif. Int. Organs, 1970.
Takeuchi, Syuhei et al., “Safety Considerations in the Power Injection of Contrast Medium via a Totally Implantable Central Venous Access System,” Japan Journal of Interventional Radiology vol. 20, No. 1, pp. 27-30, Jan. 2005.
Tilford, C. R., “Pressure and Vacuum Measurements”—Ch 2 of Physical Methods of Chemistry pp. 101-173, 1992.
Toray “P-U Celsite Port” brochure—Sep. 1999.
U.S. Department of Health and Human Services, FDA, “Labeling: Regulatory Requirements for Medical Devices” Aug. 1989.
U.S. Food and Drug Administration, “Guidance for Institutional Review Boards and Clinical Investigators 1998 Update: Medical Devices.” Version Sep. 10, 2008.
U.S. Appl. No. 60/658,518, filed Mar. 4, 2005, publicly accessible Oct. 5, 2006.
Urquiola, Javier, et al., “Using Lead Foil as a Radiopaque Marker for Computerized Tomography Imaging When Implant Treatment Planning.” The Journal of Prosthetic Dentistry, 1997.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Aug. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Advisory Action dated Jan. 23, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated Feb. 13, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated May 20, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-final Office Action dated Mar. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Feb. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Jul. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Sep. 30, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Non-Final Office Action dated May 12, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Dec. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Jun. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Mar. 30, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated May 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Nov. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Oct. 31, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Advisory Action dated Dec. 1, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Notice of Allowance dated Jan. 6, 2012.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Aug. 3, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 19,2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 22, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Feb. 13, 2008.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Jan. 21, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Mar. 16, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Sep. 18, 2008.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Non-Final Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Notice of Allowance dated Jun. 24, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Final Office Action dated Jan. 27, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Supplemental Non-final Office Action dated Oct. 2, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Aug. 13, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Oct. 20, 2011.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 26, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 7, 2011.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Jan. 16, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Notice of Allowance dated Apr. 29, 2013.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 14, 2010.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 23, 2009.
JP 2018-077325 filed Apr. 13, 2018 Office Action dated Mar. 22, 2019.
JP 2018-077325 filed Apr. 13, 2018 Office Action dated Sep. 5, 2019.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Non-Final Office Action dated Sep. 4, 2019.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Notice of Allowance dated Feb. 13, 2020.
U.S. Appl. No. 15/594,288, filed May 12, 2017 Non-Final Office Action dated Aug. 21, 2019.
U.S. Appl. No. 15/594,288, filed May 12, 2017 Notice of Allowance dated Mar. 10, 2020.
U.S. Appl. No. 16/105,725, filed Aug. 20, 2018 Non-Final Office Action dated Sep. 18, 2019.
U.S. Appl. No. 16/105,725, filed Aug. 20, 2018 Notice of Allowance dated Dec. 26, 2019.
U.S. Appl. No. 16/105,774, filed Aug. 20, 2018 Non-Final Office Action dated Oct. 7, 2019.
U.S. Appl. No. 16/153,488, filed Oct. 5, 2018 Notice of Allowance dated Sep. 18, 2019.
U.S. Appl. No. 16/691,340, filed Nov. 21, 2019 Non-Final Office Action dated Jan. 8, 2020.
U.S. Appl. No. 16/691,340, filed Nov. 21, 2019 Notice of Allowance dated Feb. 12, 2020.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A46 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A47 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A48 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A49 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A5 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A50 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A51 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A6 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A7 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A8 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A9 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B1 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B10 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B11 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B12 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B13 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B14 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B15 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B16 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B17 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B18 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B19 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B20 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B21 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B22 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B23 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B24 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B25 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B26 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B27 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B28 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B29 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B30 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B31 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B32 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B33 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B5 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B6 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B7 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B8 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B9 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit Cl dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C5 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C6 dated Jun. 24, 2016.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Office Action In and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 7, 2012.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,947,022, dated Mar. 29, 2016.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Office Action In and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 7, 2012.
U.S. Appl. No. 95/002,092, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,092, filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,959,615, dated Mar. 24, 2016.
U.S. Appl. No. 95/002,092, filed Aug. 20, 2012 Office Action In and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 13, 2012.
Vergara, et al., “Adverse Reactions to Contrast Medica in CT: Effects of Temperature and Ionic Property.” Radiology, vol. 199, No. 2, May 1996.
Virot et al. “Long-term use of hemodialysis rooms LifeSite” Nephrologie vol. 24, No. 8, pp. 443-449 (2003).
Vogelzang, Robert L., “Power Injection Through Central Venous Catheters: Physiological and Hemodynamic Considerations.” The McGaw Medical Center of Northwestern University, Feinberg School of Medicine. Jun. 23, 2004.
Wells, S. “Venous Access in Oncology and Haematology Patients: Part One.” Nursing Standard, vol. 22, No. 52, pp. 39-46, Sep. 3 2008.
Wikipedia, “Port Catheter”, Dec. 15, 2011.
Williamson, et al., “Assessing the Adequacy of Peripherally Inserted Central Catheters for Power Injection of Intravenous Contrast Agents for CT.” Journal of Computer Assisted Tomography, vol. 6, No. 6, pp. 932-937, 2001.
C.R. Bard, Inc. “Hickman Subcutaneous Ports & Hickman /Broviac Catheters Brochure” Brochure, 1992.
CA 2757836 filed Oct. 5, 2011 Examiner's Report dated May 18, 2016.
Canaud et al. “Dialock: a new vascular access device for extracorporeal renal replacement therapy. Preliminary clinical results” Nephrol. Dial. Transplant 14: 692-698 (1999).
Canaud et al. “Dialock: Pilot Trial of a New Vascular Port Access Device for Hemodialysis” Seminars in Dialysis, vol. 12, No. 5, pp. 382-388 (Sep. 1999).
Canaud et al. “Dialock: Results of french multicentar trial” Nephrology, vol. 22, No. 8, pp. 391-397, (2001).
Cardiovascular and Interventional Radiology, Review Article, “Central Venous Access Catheters: Radiological Management of Complications,” by U.K. Teichgraber, B. Gebauer, T. Benter, H.J. Wagner, published online Jul. 31, 2003.
Carlson et al., “Safety Considerations in the Power Injection of Contrast Media Via Central Venous Catheters during Computed Tomographic Examinations,” Investigative Radiology, (May 1992) 27: 337-340.
Carlson, J. E. et. al., “Safety Considerations in the Power Injection of Contrast Media Via Central Venous Catheters during Computed Tomographic Examinations” Investigative Radiology, vol. 27, p. 337-340, May 1992.
Center for Devices and Radiological Health, Guidance on 510(k) Submissions for Implanted Infusion Ports, Oct. 1990.
Clinical Plastic Products, “Oncology Jet Port Plus Catheter Systems” Instructions for Use, Oct. 12, 2011.
CN 200980153471.3 filed Jun. 30, 2011 Fifth Office Action dated Jun. 2, 2015.
CN 200980153471.3 filed Jun. 30, 2011 First Office Action dated Dec. 25, 2012.
CN 200980153471.3 filed Jun. 30, 2011 Fourth Office Action dated Nov. 15, 2014.
CN 200980153471.3 filed Jun. 30, 2011 Notice of Grant dated Nov. 5, 2015.
CN 200980153471.3 filed Jun. 30, 2011 Second Office Action dated Sep. 18, 2013.
CN 200980153471.3 filed Jun. 30, 2011 Third Office Action dated May 28, 2014.
CN 201080020088.3 filed Nov. 7, 2011 First Office Action dated Mar. 4, 2013.
CN 201080020088.3 filed Nov. 7, 2011 Second Office Action dated Nov. 21, 2013.
CN 201080051911.7 filed May 16, 2012 First Office Action dated Dec. 27, 2013.
CN 201080051911.7 filed May 16, 2012 Second Office Action dated Jul. 16, 2014.
CN 201080051911.7 filed May 16, 2012 Third Office Action dated Jan. 30, 2015.
CN 201380016157.7 filed Sep. 23, 2014 First office action dated May 16, 2016.
CN 201380016157.7 filed Sep. 23, 2014 Office Action dated Feb. 4, 2017.
CN 201380016157.7 filed Sep. 23, 2014 Office Action dated Jun. 1, 2017.
CN 201410216386.X filed May 21, 2014 First Office Action dated Nov. 2, 2015.
CN 201410216386.X filed May 21, 2014 Office Action dated Jun. 24, 2016.
CN 201410216386.X filed May 21, 2014 Office Action dated Nov. 29, 2016.
CN 201410216386.X filed May 21, 2014 Search Report dated Nov. 2, 2015.
CN 201510645219.1 filed Nov. 1, 2015 Office Action dated Nov. 16, 2017.
CN 201610037718.7 filed Jan. 20, 2016 Office Action dated Jul. 2, 2018.
CO 14.235.202 filed Oct. 23, 2014 Office Action dated Apr. 25, 2017.
CO 14.235.202 filed Oct. 23, 2014 Office Action dated Nov. 3, 2016.
CO 14.235.202 filed Oct. 23, 2014 Office Action dated Oct. 3, 2017.
Cook Vital-Port® Product Catalog (2000).
Costa, Nancy, “More Than Skin Deep: An Overview of Iodinated Contrast Media . . . ” Journal for the Association for Vascular Access, vol. 8, No. 4, 2003.
Costa, Nancy, “Understanding Contrast Media.” Journal of Infusion Nursing, vol. 27, No. 5, Sep./Oct. 2004.
Council Directive 93/42/EEC of Jun. 14, 1993 concerning medical devices (Jun. 14, 1993).
Coyle, Douglas et al, Power Injection of Contrast Media via Peripherally Inserted Central Catheters for CT, J Vasc Interv Radiol, pp. 809-814, vol. 15, 2004.
Declaration by Hank LaForce U.S. Pat. No. 7,785,302 (Ref D13 of Request for Trial for Invalidation dated May 22, 2017).
Defendant's Amended Answer to Plaintiffs' First Amended Complaint and Amended Counterclaims dated Sep. 17, 2017.
Deltec Port Systems (Feb. and Apr. 1996).
Department of Health and Human Services, C-Port 510(k) FDA Clearance, Jun. 5, 2003.
Department of Health and Human Services, PowerPort 510(k) FDA Clearance, Jan. 25, 2007.
Desmeules et al. “Venous Access for Chronic Hemodialysis: ‘Undesirable Yet Unavoidable’”, Artificial Organs 28(7):611-616 (2004).
Documents attached to P-U CELSITE PORT (new model first edition to sixth edition) (Ref D10 of Request for Trial for Invalidation dated May 22, 2017).
ECRI Institute, Healthcare Product Comparison System, Dec. 2007.
EP 06 751 411.7 filed Apr. 25, 2006 Office Action dated Sep. 2, 2008.
EP 06737222.7 filed Aug. 17, 2007 Office Action dated Jul. 27, 2016.
EP 06737222.7 filed Aug. 17, 2007 Office Action dated Mar. 9, 2017.
EP 06751411 filed Apr. 25, 2006 Decision of the Technical Board of Appeal dated Jul. 24, 2013.
EP 06751411 filed Apr. 25, 2006 Decision Revoking the European Patent dated Aug. 1, 2012.
EP 06751411 filed Apr. 25, 2006 Office Action dated Aug. 10, 2009.
EP 06751411 filed Apr. 25, 2006 Opposition by Aesculap AG dated Oct. 6, 2011.
EP 06751411 filed Apr. 25, 2006 Opposition by Fresenius Kabi Deutschland GmbH dated Oct. 11, 2011.
EP 06751411 filed Apr. 25, 2006 Opposition by pfm medical ag dated Oct. 18, 2011.
EP 06751664.1 filed Apr. 27, 2006 First Examination Report dated Jul. 11, 2013.
EP 06751664.1 filed Apr. 27, 2006 Second Examination Report dated Dec. 17, 2014.
EP 06845998 filed Dec. 21, 2006 Office Action dated Mar. 10, 2011.
EP 06845998 filed Dec. 21, 2006 Supplementary Search Report dated Jul. 22, 2010.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated Feb. 6, 2014.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated May 13, 2013.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated Nov. 7, 2012.
EP 06845998.1 filed Dec. 21, 2006 Summons for Oral Proceedings dated Sep. 30, 2014.
EP 09824195.3 filed Apr. 13, 2011 Extended European Search Report dated Apr. 28, 2017.
EP 10 831 973.2 filed May 30, 2012 Extended European Search Report dated Jul. 4, 2014.
EP 10 831 973.2 filed May 30, 2012 Intent to Grant dated Feb. 12, 2018.
EP 10 831 973.2 filed May 30, 2012 Office Action dated Aug. 18, 2017.
EP 10183380.4 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183382.0 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183382.0 filed Apr. 25, 2006 Intent to Grant dated Mar. 7, 2014.
EP 10183394.5 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183394.5 filed Apr. 25, 2006 interlocutory decision dated Feb. 14, 2017.
EP 10183394.5 filed Apr. 25, 2006 Opponents Arguments in Support of the Appeal dated Jun. 30, 2017.
EP 10183394.5 filed Apr. 25, 2006 Opposition by Smiths Medical ASD, Inc. dated Apr. 25, 2014.
EP 10183394.5 filed Apr. 25, 2006 Opposition by Smiths Medical ASD, Inc. dated Dec. 2, 2015.
EP 10183394.5 filed Apr. 25, 2006 Opposition Grounds of Appeal dated May 17, 2017.
EP 10183394.5 filed Apr. 25, 2006 Response to Grounds of Appeal dated Nov. 3, 2017.
EP 10183398.6 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10762377.9 filed Oct. 5, 2011 European Search Report dated Aug. 3, 2012.
EP 10762377.9 filed Oct. 5, 2011 Office Action dated Jul. 17, 2013.
EP 11784194.0 filed Nov. 29, 2012 Examination report dated Jul. 5, 2016.
EP 11784194.0 filed Nov. 29, 2012 extended European search report dated Feb. 21, 2014.
EP 13158343.7 filed Mar. 8, 2013 Examination Report dated Feb. 4, 2014.
EP 13158343.7 filed Mar. 8, 2013 Extended European Search Report dated May 14, 2013.
EP 13158343.7 filed Mar. 8, 2013 Summons to Attend Oral Proceedings dated Oct. 20, 2014.
EP 13764254.2 filed Sep. 10, 2014 Extended European Search Report dated Feb. 19, 2016.
EP 13764254.2 filed Sep. 10, 2014 Partial European Search Report dated Oct. 14, 2015.
EP 13830592.5 filed Feb. 24, 2015 Extended European Search Report dated Mar. 21, 2016.
EP 14198524.2 filed Dec. 17, 2014 Extended European Search Report dated Sep. 14, 2015.
EP 15180174 filed Aug. 7, 2015 European Search Report dated Jan. 4, 2016.
EP 15180174 filed Aug. 7, 2015 Office Action dated Jan. 13, 2017.
EP 16 193 913.7 filed Oct. 14, 2016 Extended European Search Report dated Apr. 13, 2017.
EP 16 193 913.7 filed Oct. 14, 2016 Office Action dated Feb. 13, 2018.
EP 18155508.7 filed Oct. 5, 2011 Partial European Search Report dated Nov. 6, 2018.
EP 99 964 086.5 filed Dec. 3, 1999 Office Action dated Dec. 15, 2005.
EP 99 964 086.5 filed Dec. 3, 1999 Office Action dated Mar. 1, 2005.
EP 99 964 086.5 filed Dec. 3, 1999 Office Action dated Mar. 30, 2005.
Ethanol Lock Technique for Prevention and Treatment of Central line-Associated Bloodstream Infections (Nebraska) Aug. 13, 2011, Accessed: Jun. 29, 2013 http://www.nebraskamed.com/app_files/pdf/careers/education-programs/asp/tnmc_etohlock_final.pdf.
Extravasation of Radiologic Contrast, PA-PSRS Patient Safety Advisory, vol. 1 No. 3, Sep. 2004.
Extreme Access™ Bard Access Systems, Inc. Product Brochure, 2003.
CA 2,864,047 filed Aug. 6, 2014 Office Action dated Apr. 23, 2019.
CN 201610037718.7 filed Jan. 20, 2016 Office Action dated Mar. 1, 2019.
EP 09824195.3 filed Apr. 13, 2011 Office Action dated Apr. 10, 2019.
EP 13764254.2 filed Sep. 10, 2014 Office Action dated Mar. 25, 2019.
U.S. Appl. No. 14/508,227, filed Oct. 7, 2014 Notice of Allowance dated Feb. 4, 2019.
U.S. Appl. No. 15/290,621, filed Oct. 11, 2016 Notice of Allowance dated Dec. 13, 2018.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Mar. 8, 2011.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jul. 1, 2009.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jun. 6, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action dated Dec. 3, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action dated Jun. 12, 2009.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action dated Mar. 29, 2010.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Nov. 8, 2012.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Oct. 13, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Jun. 18, 2012.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Feb. 11, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Apr. 15, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Sep. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Final Office Action dated Mar. 9, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Dec. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Jul. 23, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Oct. 5, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Notice of Allowance dated Mar. 28, 2011.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Final Office Action dated Oct. 19, 2009.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Non-final Office Action dated Apr. 27, 2009.
U.S. Appl. No. 12/175,182, filed Jul. 17, 2008 Non-final Office Action dated Sep. 3, 2009.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Examiner's Answer dated Dec. 5, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Final Office Action dated Jun. 1, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Non-Final Office Action dated Nov. 1, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Advisory Action dated May 17, 2013.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Feb. 14, 2013.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Nov. 29, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 26, 2012.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Notice of Allowance dated Apr. 7, 2014.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Advisory Action dated Feb. 18, 2011.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Final Office Action dated Dec. 7, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 29, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 30, 2009.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Notice of Allowance dated Mar. 7, 2011.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Mar. 22, 2013.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 14, 2009.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Notice of Allowance dated Apr. 1, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Aug. 2, 2012.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Advisory Action dated Sep. 15, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Jun. 21, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Dec. 21, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Non-Final Office Action dated Feb. 17, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Notice of Allowance dated Jun. 9, 2011.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Advisory Action dated Apr. 10, 2013.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Non-Final Office Action dated Feb. 26, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Non-Final Office Action dated Nov. 22, 2016.
U.S. Appl. No. 14/141,263, filed Dec. 26, 2013 Notice of Allowance dated Apr. 20, 2016.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Decision on Appeal dated Feb. 23, 2018.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Examiner's Answer dated Jul. 29, 2016.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Final Office Action dated Jun. 25, 2015.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Non-Final Office Action dated Feb. 12, 2015.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Notice of Allowance dated Mar. 26, 2018.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Final Office Action dated May 19, 2017.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Final Office Action dated Nov. 27, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Jul. 6, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Mar. 18, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Oct. 14, 2016.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Notice of Allowance dated Nov. 24, 2017.
U.S. Appl. No. 14/508,227, filed Oct. 7, 2014 Non-Final Office Action dated Jun. 15, 2018.
U.S. Appl. No. 14/508,227, filed Oct. 7, 2014 Restriction Requirement dated Apr. 20, 2018.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Advisory Action dated Aug. 18, 2017.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Final Office Action dated May 4, 2017.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Non-Final Office Action dated Nov. 3, 2016.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Non-Final Office Action dated Sep. 28, 2017.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Notice of Allowance dated Apr. 6, 2018.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Advisory Action dated Aug. 23, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Final Office Action dated Jun. 8, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Final Office Action dated May 16, 2017.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Non-Final Office Action dated Feb. 3, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Non-Final Office Action dated May 14, 2018.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Non-Final Office Action dated Nov. 7, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Notice of Allowance dated Nov. 6, 2018.
U.S. Appl. No. 14/748,917, filed Jun. 24, 2015 Notice of Allowance dated May 9, 2018.
U.S. Appl. No. 14/750,174, filed Jun. 25, 2015 Non-Final Office Action dated Nov. 1, 2016.
U.S. Appl. No. 14/750,174, filed Jun. 25, 2015 Notice of Allowance dated Mar. 10, 2017.
U.S. Appl. No. 15/043,450, filed Feb. 12, 2016 Final Office Action dated Mar. 29, 2018.
U.S. Appl. No. 15/043,450, filed Feb. 12, 2016 Non-Final Office Action dated Nov. 30, 2017.
U.S. Appl. No. 15/290,621, filed Oct. 11, 2016 Non-Final Office Action dated May 16, 2018.
U.S. Appl. No. 15/442,371, filed Feb. 24, 2017 Non-Final Office Action dated Mar. 20, 2018.
U.S. Appl. No. 15/585,030, filed May 2, 2017 Notice of Allowance dated May 29, 2018.
U.S. Appl. No. 15/660,513, filed Jul. 26, 2017 Restriction Requirement dated Mar. 15, 2018.
U.S. Appl. No. 15/881,616, filed Jan. 26, 2018 Final Office Action dated Aug. 6, 2018.
U.S. Appl. No. 15/881,616, filed Jan. 26, 2018 Non-Final Office Action dated Mar. 28, 2018.
U.S. Appl. No. 16/029,103, filed Jul. 6, 2018 Notice of Allowance dated Sep. 4, 2018.
U.S. Appl. No. 29/239,163, filed Sep. 27, 2005 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Non-Final Office Action dated Apr. 6, 2007.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Notice of Allowability dated Jul. 30, 2007.
U.S. Appl. No. 29/284,454, filed Sep. 7, 2007 titled Implantable Port Device, listing John A. Zawacki and Annmarie Boswell as inventors, in which a Continued Prosecution Application was filed on Jan. 30, 2008.
U.S. Appl. No. 29/284,456, filed Sep. 7, 2007, titled Implantable Port Device, listing John A. Zawacki and Annemarie Boswell as inventors.
U.S. Appl. No. 29/382,235, filed Dec. 30, 2010 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 29/382,246, filed Dec. 30, 2010 Notice of Allowance dated Oct. 3, 2012.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,785,302, dated Mar. 11, 2016.
JP 2018-077325 filed Apr. 13, 2018 Pre-Appeal Examination Report dated Mar. 6, 2020.
U.S. Appl. No. 15/594,288, filed May 12, 2017 Corrected Notice of Allowance dated May 6, 2020.
U.S. Appl. No. 16/105,774, filed Aug. 20, 2018 Final Office Action dated Apr. 17, 2020.
U.S. Appl. No. 16/105,774, filed Aug. 20, 2018 Notice of Allowance dated Jun. 12, 2020.
U.S. Appl. No. 16/252,005, filed Jan. 18, 2019 Non-Final Office Action dated May 22, 2020.
Related Publications (1)
Number Date Country
20190060628 A1 Feb 2019 US
Provisional Applications (3)
Number Date Country
61110507 Oct 2008 US
60986246 Nov 2007 US
60986247 Nov 2007 US
Divisions (2)
Number Date Country
Parent 15442371 Feb 2017 US
Child 16139852 US
Parent 12267160 Nov 2008 US
Child 15442371 US