The present invention relates generally to memory devices, and more particularly to the writing (programming) of magneto-resistive random access memory (MRAM) devices.
Semiconductor storage devices are used in integrated circuits for electronic applications, including radios, televisions, cell phones, and personal computing devices. Commonly known storage devices include charge-storing devices such as dynamic random access memories (DRAMs) and flash memories.
A more recent development in storage devices involves spin electronics, which combine semiconductor technology and magnetic materials. The spin polarization of electrons, rather than the charge of the electrons, is used to indicate the state of “1” or “0.” One such spin electronic device is a spin torque transfer (STT) magnetic tunneling junction (MTJ) device 10, as shown in
MTJ device 10 includes free layer 12, tunnel layer 14, and pinned layer 16. The magnetization direction of free layer 12 can be reversed by applying a current through tunnel layer 14, which causes the injected polarized electrons within free layer 12 to exert spin torques on the magnetization of free layer 12. Pinned layer 16 has a fixed magnetization direction. When current I1 flows in the direction from free layer 12 to pinned layer 16, electrons flow in a reverse direction, that is, from pinned layer 16 to free layer 12. The electrons are polarized to the same magnetization direction of pinned layer 16 after passing pinned layer 16, flowing through tunnel layer 14, and then into and accumulating in free layer 12. Eventually, the magnetization of free layer 12 is parallel to that of pinned layer 16, and MTJ device 10 will be at a low resistance state. The electron injection caused by current I1 is referred to as a major injection.
When current I2 flowing from pinned layer 16 to free layer 12 is applied, electrons flow in the direction from free layer 12 to pinned layer 16. The electrons having the same polarization as the magnetization direction of pinned layer 16 are able to flow through tunnel layer 14 and into pinned layer 16. Conversely, electrons with a polarization differing from the magnetization of pinned layer 16 will be reflected (blocked) by pinned layer 16, and will accumulate in free layer 12. Eventually, magnetization of free layer 12 becomes anti-parallel to that of pinned layer 16, and MTJ device 10 will be at a high-resistance state. The respective electron injection caused by current I2 is referred to as a minor injection.
To eliminate the parasitic loading of MRAM cells, when MRAM cells are integrated in MRAM arrays, word line selectors are used to electrically isolate unselected MRAM cells, on which no operations are to be performed, from source lines. For example,
In accordance with one aspect of the present invention, a method of operating magneto-resistive random access memory (MRAM) cells includes providing an MRAM cell, which includes a magnetic tunneling junction (MTJ) device and a word line selector having a source-drain path serially coupled to the MTJ device. A negative bias voltage is connected to a body of the word line selector to increase a drive current of the word line selector.
In accordance with another aspect of the present invention, a method of operating MRAM cells includes providing an MRAM cell, which includes an MTJ device and a word line selector having a source-drain path serially coupled to the MTJ device. The method further includes connecting a negative bias voltage to a body of the word line selector; turning on the word line selector; and applying a writing current flowing through the source-drain path of the word line selector during a period the negative bias voltage is applied.
In accordance with yet another aspect of the present invention, an integrated circuit includes an MRAM cell including an MTJ device and a word line selector having a source-drain path serially coupled to the MTJ device. A power source is coupled to, and configured to provide a negative bias voltage to, a body of the word line selector.
In accordance with yet another aspect of the present invention, an integrated circuit includes an MRAM cell including an MTJ device and a word line selector having a source-drain path serially coupled to the MTJ device. The word line selector has a threshold voltage less than about 0.2V.
The advantageous features of the present invention include increased driving ability in word line selectors without requiring an increase in the size of the word line selectors.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the present invention are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Novel magneto-resistive random access memory (MRAM) circuits are presented. The variations and the operation of the embodiments are discussed. Throughout the various views and illustrative embodiments of the present invention, like reference numbers are used to designate like elements.
Each of MRAM cells 30 is coupled between one of bit-lines BL and one of source lines SL. Each of MRAM cells 30 includes magnetic tunnel junction (MTJ) 32 and word line selector (also known as word line driver) 40, which may be an N-type metal-oxide-semiconductor (MOS) device (transistor). Word line selectors 40 have their source-drain paths serially connected to the respective MTJ devices 32 in the same MRAM cells, and hence they may isolate MTJ devices 32 from, or connect MTJ devices 32 to, the respective source lines SL when turned off. When writing or reading operations are performed to one of the MRAM cells 30, the respective word line selector 40 is turned on so that the writing or reading current I can flow through MRAM cell 30. Although
It is realized that besides MRAM array 100, on chip 50 there are other integrated circuits such as logic circuits (for example, control circuits of MRAM array 100), which includes logic NMOS devices and logic PMOS devices. An exemplary logic NMOS device 140 is shown in
In alternative embodiments, as shown in
In an embodiment, the negative substrate bias voltage Vsb is applied only when write operations are performed to MRAM cells 30. When no write operation is performed to any of the MRAM cells 30, for example, either read operations are performed, or no operation is performed, bodies 42 of word line selectors 40 may be connected to other voltages, for example, electrical ground. In the embodiments as shown in
To further increase the drive currents of word line selectors 40, the threshold voltage of word line selector 40 may be reduced. As is known in the art, the drive current of a MOS transistor is related to (Vgs−Vt), wherein Vgs is the gate-to-source voltage and Vt is the threshold voltage. Particularly, when operated in a saturation region, the drive current of the MOS transistor is proportional to the square of (Vgs−Vt). Accordingly, the reduction in threshold voltage Vt of word line selectors 40 results in an increase in its drive current. In an embodiment, threshold voltage Vt of word line selectors 40 is lower than about 0.2V, or even lower than about 0.1V.
Referring to
The embodiments of the present invention have several advantageous features. By biasing the bodies of word line selectors with negative voltages and/or reducing the doping concentration in the bodies of word line selectors 40, the drive currents of word line selectors 40 may be increased without requiring an increase in chip area usage. Accordingly, high-density MRAM arrays with improved reliability and improved writing speed may be formed.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/170,074 filed on Apr. 16, 2009, entitled “Raising Programming Current of Magnetic Tunnel Junctions by Applying P-Sub Bias and Adjusting Threshold Voltage,” which application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61170074 | Apr 2009 | US |