The present invention is directed to a venous catheter and the method of using the venous catheter, generally, and, more specifically, to a venous catheter assembly with a catheter configured for receipt of an integrated needle and guidewire for rapid insertion and the method of using the integrated catheter.
Venous catheters, including central, peripheral, and so-called “midline” or extended-dwell peripheral venous catheters, are used in the medical environment to provide intravenous vascular access. Vascular access by venous catheters provides an expedient and highly effective means for drug administration, other fluid administration, chemotherapy, blood sampling, blood pressure monitoring, and parenteral nutrition, for example. These procedures often require that the catheter be left indwelling in the patient for an extended period of time. In a hospital setting, venous catheters are widely used in emergency departments, intensive care units, and operating rooms. In such settings, it is imperative that the venous catheters be very quickly and correctly positioned intravenously within the patient to obtain vascular access particularly in critical situations requiring rapid administration of medicines.
Highly effective and commonly used venous catheters are triple lumen catheters which are intravenously positioned within any venous structure, including the internal/external jugular, subclavian, or, femoral vein. Triple lumen catheters commonly include a central lumen which extends from the proximal end adjacent the user to the distal end which is positioned within the venous system. Two additional lumens may extend from the proximal end and terminate at a location adjacent to, but proximally removed from, the distal end of the catheter and terminate in open side ports. U.S. Pat. No. 7,311,697 B2 is an exemplary triple lumen catheter.
A widely accepted and commonly used percutaneous entry technique used to obtain access to the venous system of a patient requiring a venous catheter is a landmark guided technique known as the Seldinger technique. The Seldinger technique involves multiple steps which must be employed in medical conditions necessitating expedient placement of a line, such as in an emergency setting. In the Seldinger technique, the, physician makes an oblique entry with a hollow needle through the patient's skin, at a peripheral location using landmark guidance, and into a vein. The commonly used Seldinger technique is most often employed in combination with imaging guidance (e.g., ultrasound). Landmark guidance techniques involve visually or palpably locating anatomical landmarks for locating the targeted vein. For example, for subclavian vein entry, the landmark guided technique includes locating the junction of the middle and proximal third of the clavicle and inserting the needle at that location.
A blunt guidewire is then passed through the central lumen of the needle, and then the needle is withdrawn and removed leaving the guidewire within the vein. Next, a dilating device s passed over the guidewire to slightly enlarge the tract originally produced by the needle and, if warranted, multiple dilators having varying gauge, may be utilized, in a process called serial dilation. The dilator is then removed, leaving the guidewire within the vein. The catheter is then passed along the length and over the guidewire until positioned within the vein. Alternatively, use of a peel-away sheath may be used for placement of a catheter. The sheath may be utilized in conjunction with a dilator (also known as an introducer in this setting) for over-the-wire placement into the desired vessel. Once the sheath is within the vessel, the inner dilator (introducer) and wire are removed, allowing for placement of the catheter through the sheath's lumen. The sheath is then removed in a peel-away fashion, leaving only the catheter behind in the vessel. Blood may then be withdrawn from a catheter port to confirm the catheter placement within the vein. The guidewire is then removed from the vein.
With regard to initial percutaneous placement of the catheter, it is important to quickly position the venous catheter within the appropriate vein. This is imperative not only for the comfort of the patient, but also to achieve successful medical outcomes. Risks associated with incorrect catheter placement and multiple attempts at placement of the catheter include an increased risk of catheter related blood-stream infections from loss of sterility. In extreme instances, improper catheter placement may be injurious to adjacent structures such as the carotid artery, with serious consequences such as hemorrhage, stroke, or pseudo aneurysm formation. It is, thus, recognized that catheter placement may be assisted by utilizing real-time: ultrasound imaging techniques in order to minimize such complications. Additionally, high quality, portable ultrasound units have become more regularly available to physicians, thereby further facilitating the use of ultrasound assisted venous catheter placement. An exemplary method employing ultrasound guided central venous catheter placement is U.S. Publication. No. WO 2014006403 A1. More recently, vascular access devices have expanded to include midline catheters, or extended dwell peripheral intravenous lines. Midline catheters are longer and more durable than traditional peripheral intravenous catheters. Different than central catheters, midline catheters do not terminate in the vena cava or right atrium. However, they are typically placed in the larger veins of the upper extremity such as the radial, cephalic, median, brachial or basilicvein. Owing to their durability and location, midline catheters can remain in place longer than the traditional 2-3 days for a peripheral intravenous catheter without the same risks of infiltration and infection. Additionally, because of their size and insertion location, midline catheters are inserted using a combination needle puncture and over-the-wire access and insertion procedure. Although this differs somewhat from the Seldinger technique used for central catheters, it lends itself to benefit from the design and procedure described herein.
The present invention overcomes shortcomings of the prior art by providing a catheter assembly having a catheter configured for receipt of a needle and guidewire along an outer side surface for rapid insertion of the catheter assembly. Preferably, the venous placement of the catheter is facilitated with ultrasound guided techniques. The integrated catheter, that is, a catheter configured for receipt of a needle and guidewire which, according to one aspect, may be pre-assembled, includes at least a lumen for receipt of a transversely inserted needle which extends axially along the length of a distal portion of the lumen. The lumen extends from the proximal to the distal end of the catheter. Preferably one or more additional lumens, or “non-needle” lumens, are provided and extend from the catheter proximal end and terminate at side ports adjacent the catheter distal end. An additional side port, positioned proximal to the one or more non-needle side ports, is also provided on the catheter body and provides a port for receipt of the needle from an outer side surface of the catheter body, substantially in a transverse direction. The needle receiving side port defines the terminal end of a transverse channel which provides an open channel from the needle receiving side port to the needle lumen. According to another aspect of the present invention, the catheter may, therefore, be pre-assembled so as to include the needle and guidewire wherein the needle and the guidewire extend adjacent to and exterior of a proximal side portion of the catheter.
The method of using the catheter assembly according to the present invention includes the steps of pre-assembling the needle and guidewire within the catheter's needle side port to form an integrated catheter assembly; inserting the needle into the patient's venous system, preferably using ultrasound guidance; introducing the guidewire distally along the length of the needle and into the vessel; removing the needle; advancing the catheter distally along the length of the guidewire until positioned within the venous system; removing the guidewire; and confirming proper placement of the catheter. It is also within the scope of the presently described method to advance or remove the needle and guidewire together in the same method step as opposed to independently removing each. Accordingly, the present invention obviates several method steps of the prior Seldinger technique. Specifically, the catheter assembly according to preferred embodiments, utilizes ultrasound guidance to prevent inaccurate catheter placement. Medical complications are minimized and proper positioning of the catheter is expeditiously accomplished for rapid medical administration. Moreover, the integrated catheter assembly obviates the need for the additional steps of dilating the incision with a dilator(s) in that the catheter of the present invention is self-dilating. According to one aspect of the invention, use of stylets in multi-lumen catheters are selectively used to enhance the rigidity of the assembly and its ability to self-dilate. The integrated catheter of the present invention provides a pre-assembled guidewire within the needle thereby eliminating the need to thread the guidewire though the needle once vascular access is obtained and threading the catheter over the guidewire.
Numerous benefits are achieved by the integrated catheter assembly according to the present invention including a novel catheter for transversely receiving a needle and guidewire which may be pre-assembled in an integrated catheter assembly. One significant benefit is a marked decrease in the time required to percutaneously position the catheter within in a vessel lumen to achieve endovascular access with the catheter due to the elimination of conventional method steps involving the exchange of individual components according to the Seldinger technique. This allows for rapid insertion of the catheter and, hence, rapid administration of medicines or other substances. The pre-assembled integrated catheter assembly obviates the need to provide the discrete units of: catheter, needle, guidewire and a dilator. This eliminates the step of inserting the needle, threading the guidewire within the needle, and positioning the catheter along the guidewire. There is also a decreased risk of the loss of venous access which may occur with prior art methods of exchanging multiple components. The integrated catheter assembly of the present invention also obturates the catheter lumens and prevents complications of air embolism and limits blood loss. The additional needle side port of the catheter, once vacated by the needle and guidewire, beneficially provides an additional port for more rapid administration of greater amounts of medicines or other fluids and provides an additional administration port should the distal port become occluded. The integrated catheter assembly also does not require a separate dilator as the configuration of the various components presents a self-dilating integrated catheter assembly. By decreasing the number of method steps necessary for effective catheter insertion and by eliminating multiple assembly component exchanges over the guidewire, the catheter assembly and method according to the present invention beneficially reduces the risk of catheter related infection; thereby resulting in improved medical outcomes. These and other objectives are met by the present invention.
The present invention will now be described in detail hereinafter by reference to the accompanying drawings. The invention is not intended to be limited to the embodiments described; rather, this detailed description is provided to enable any person skilled in the art to make and practice the invention.
The venous catheter assembly 10, as shown in
The venous catheter assembly 10 includes, generally, a novel catheter 12, a needle 14, and a guidewire 15. The catheter assembly 10 illustrated includes three lumens 16, 18, and 20, shown in
The lumen 20 extends the length of the catheter and is configured to receive the needle 14. The one or more additional lumens, 16 and 18 as shown, are referred to as “non-needle lumens”. The non-needle lumens 16 and 18 each terminate at a respective side port 22, 23, defined by the catheter outer wall. According to the present invention, a needle side port 25 is also provided as will be described in greater detail below. The side ports 22, 23 of the non-needle lumens 16, 18 establishes intravenous communication of the catheter lumens 16, 18. As such, medicine and/or fluids may be introduced into the catheter, pass through the lumens, and exit the side ports to the vessel in which the catheter has been placed.
Preferably, side ports 22, 23 and 25 are longitudinally separated along the length of the catheter 12. As shown, the needle port 25 is positioned proximal to the non-needle ports 22, 23. This is exemplary, and it is within the scope of the present invention for the needle port to be distally positioned relative to one or more of the other side ports. The distance between the ports 22, 23, 25 is selected in proportion to the catheter's French size so as to axially separate distribution ports wherein multiple fluids may be substantially simultaneously administered through the various lumens. Additionally, the side ports are preferably oriented in a spiral or helical configuration along the catheter body to further separate distribution ports and to sustain the structural integrity of the catheter, particularly during insertion thereof. This configuration also is preferable to avoid multiple ports from becoming simultaneously occluded such as contact with a vessel wall or other intravascular structure. It is envisioned, however, that the various ports may be positioned along that same general side of the catheter and linearly as well.
The venous catheter assembly 10 of the illustrated embodiment is a triple lumen catheter. It is within the scope of the present invention, however, to provide a single lumen 20 and one or more additional non-needle lumens. As shown in
A stylet 35 in the form of flexible or semi-rigid material, as shown, is provided within one or both non-needle lumens 16, 18 according to an alternative aspect of the present invention. The stylet 35 may likewise be positioned with the needle-receiving lumen 20. Such materials that may be utilized for the stylet include, but are not limited to, solid, hollow, or wire-like plastic or other polymeric material or metal or other alloy (for example, in a tubular configuration). As shown in
The catheter body 12 defines a novel side port 25 which, as shown, is positioned along the length of the catheter at a position proximal to the non-needle lumen side ports 22, 23. A transverse channel 36 extends from the side port 25 to the lumen 20 to provide open communication there between. As shown in
The catheter assembly 10 may be advantageously provided to include the catheter 12 with a pre-assembled needle 14 and guidewire 15 inserted within the side port 25. As such, the needle 14 extends within a distal portion of the lumen 20 and out the distal tip 38 of the catheter 12. Accordingly, a proximal portion of the needle 14 is contiguous with an outer proximal portion of the catheter, transverse to the lumen axis, while a distal portion of the needle 14 extends co-axially within the lumen 20.
As shown in
As shown in
The catheter 12 is a disposable, single use device that is made of a biocompatible material. The stylet, needle, and guidewire may be made of known materials, such as steel, nitinol, or a composition including one or both of these. As set forth above, the stylet 35 may be formed of a plastic or other polymeric or metallic material. The guidewire 15, according to one aspect, is formed of a flexible material to accommodate anatomical complications such as complex and tortuous vasculature. Commonly used materials are a polymeric coated or metallic wire.
As shown in
Alternative embodiments of the present invention include use of specialized antithrombogenic or antibacterial surface coatings, or composites including these, for various components of the catheter assembly. The number of lumens may vary, based upon the intended clinical use. The novel method and catheter assembly according to the present invention may be employed for other vascular access devices and procedures, including, but not limited to, temporary dialysis catheters, peripherally inserted catheters, venous and arterial sheaths, and other vascular access lines or midline catheters. Moreover, the size of various components may be varied for diverse reasons, including, the age of patient, access site, and/or anatomy. A plurality of sizes and lengths may, therefore, be provided. The catheter may be formed of materials having varying stiffness. Conventional catheters are made of a 49 durometer material on the Shore D scale, although other materials or compositions having varying stiffness may be selected, depending upon the clinical need. As described herein, the catheter assembly according to the present invention preferably is positioned utilizing ultrasound guidance. Other guidance techniques, such as fluoroscopy and computed tomography may also be employed. Other guidance techniques, such as palpation, direct visualization, or anatomical landmarks, may also be used to position the catheter assembly according to the present invention.
While exemplary embodiments have been shown and described above for the purpose of disclosure, modifications to the disclosed embodiments may occur to those skilled in the art. The disclosure, therefore, is not limited to the above precise embodiments and that changes may be made without departing from its spirit and scope.
This application is a continuation of and claims priority to U.S. application Ser. No. 15/008,628 filed Jan. 28, 2016 which claims priority to U.S. Provisional Patent Application Ser. No. 62/109,403 filed Jan. 29, 2015, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1013691 | Shields | Jan 1912 | A |
3225762 | Guttman | Dec 1965 | A |
3382872 | Rubin | May 1968 | A |
3570485 | Reilly | Mar 1971 | A |
3890976 | Bazell et al. | Jun 1975 | A |
4205675 | Vaillancourt | Jun 1980 | A |
4292970 | Hession, Jr. | Oct 1981 | A |
4468224 | Enzmann | Aug 1984 | A |
4525157 | Vaillancourt | Jun 1985 | A |
4581019 | Curelaru et al. | Apr 1986 | A |
4594073 | Stine | Jun 1986 | A |
4702735 | Luther et al. | Oct 1987 | A |
4743265 | Whitehouse et al. | May 1988 | A |
4766908 | Clement | Aug 1988 | A |
4863432 | Kvalo | Sep 1989 | A |
4950252 | Luther et al. | Aug 1990 | A |
4994040 | Cameron et al. | Feb 1991 | A |
5017259 | Kohsai | May 1991 | A |
5040548 | Yock | Aug 1991 | A |
5057073 | Martin | Oct 1991 | A |
5112312 | Luther | May 1992 | A |
5115816 | Lee | May 1992 | A |
5120317 | Luther | Jun 1992 | A |
5158544 | Weinstein | Oct 1992 | A |
5188593 | Martin | Feb 1993 | A |
5195962 | Martin et al. | Mar 1993 | A |
5207650 | Martin | May 1993 | A |
5267958 | Buchbinder et al. | Dec 1993 | A |
5295970 | Clinton | Mar 1994 | A |
5306247 | Pfenninger | Apr 1994 | A |
5322512 | Mohiuddin | Jun 1994 | A |
5328472 | Steinke et al. | Jul 1994 | A |
5350358 | Martin | Sep 1994 | A |
5358495 | Lynn | Oct 1994 | A |
5368567 | Lee | Nov 1994 | A |
5378230 | Mahurkar | Jan 1995 | A |
5380290 | Makower | Jan 1995 | A |
5389087 | Miraki | Feb 1995 | A |
5439449 | Mapes et al. | Aug 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5460185 | Johnson et al. | Oct 1995 | A |
5489271 | Andersen | Feb 1996 | A |
5573520 | Schwartz | Nov 1996 | A |
5683370 | Luther et al. | Nov 1997 | A |
5718678 | Fleming, III | Feb 1998 | A |
5772636 | Brimhall et al. | Jun 1998 | A |
5885251 | Luther | Mar 1999 | A |
5919164 | Andersen | Jul 1999 | A |
5921971 | Agro et al. | Jul 1999 | A |
5947940 | Beisel | Sep 1999 | A |
5957893 | Luther et al. | Sep 1999 | A |
5971957 | Luther et al. | Oct 1999 | A |
6159198 | Gardeski et al. | Dec 2000 | A |
6206849 | Martin et al. | Mar 2001 | B1 |
6228062 | Howell et al. | May 2001 | B1 |
6475187 | Gerberding | Nov 2002 | B1 |
6606515 | Windheuser et al. | Aug 2003 | B1 |
6626869 | Bint | Sep 2003 | B1 |
6716228 | Tal | Apr 2004 | B2 |
6726659 | Stocking et al. | Apr 2004 | B1 |
6819951 | Patel et al. | Nov 2004 | B2 |
6821287 | Jang | Nov 2004 | B1 |
6926692 | Katoh et al. | Aug 2005 | B2 |
6962575 | Tal | Nov 2005 | B2 |
6991625 | Gately et al. | Jan 2006 | B1 |
6994693 | Tal | Feb 2006 | B2 |
6999809 | Currier et al. | Feb 2006 | B2 |
7025746 | Tal | Apr 2006 | B2 |
7029467 | Currier | Apr 2006 | B2 |
7037293 | Carrillo et al. | May 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7141050 | Deal et al. | Nov 2006 | B2 |
7144386 | Korkor et al. | Dec 2006 | B2 |
7311697 | Osborne | Dec 2007 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7377910 | Katoh | May 2008 | B2 |
7390323 | Jang | Jun 2008 | B2 |
D600793 | Bierman et al. | Sep 2009 | S |
D601242 | Bierman et al. | Sep 2009 | S |
D601243 | Bierman et al. | Sep 2009 | S |
7594911 | Powers et al. | Sep 2009 | B2 |
7691093 | Brimhall | Apr 2010 | B2 |
7722567 | Tal | May 2010 | B2 |
D617893 | Bierman et al. | Jun 2010 | S |
D624643 | Bierman et al. | Sep 2010 | S |
7819889 | Healy | Oct 2010 | B2 |
7857788 | Racz | Dec 2010 | B2 |
D630729 | Bierman et al. | Jan 2011 | S |
7909797 | Kennedy, II et al. | Mar 2011 | B2 |
7909811 | Agro et al. | Mar 2011 | B2 |
7922696 | Tal et al. | Apr 2011 | B2 |
7938820 | Webster | May 2011 | B2 |
7967834 | Tal et al. | Jun 2011 | B2 |
7976511 | Fojtik | Jul 2011 | B2 |
7985204 | Katoh et al. | Jul 2011 | B2 |
8073517 | Burchman | Dec 2011 | B1 |
8105286 | Anderson et al. | Jan 2012 | B2 |
8192402 | Anderson et al. | Jun 2012 | B2 |
8202251 | Bierman et al. | Jun 2012 | B2 |
8206356 | Katoh et al. | Jun 2012 | B2 |
8361011 | Mendels | Jan 2013 | B2 |
8372107 | Tupper | Feb 2013 | B2 |
8377006 | Tal et al. | Feb 2013 | B2 |
8454577 | Joergensen et al. | Jun 2013 | B2 |
8585858 | Kronfeld et al. | Nov 2013 | B2 |
8657790 | Tal et al. | Feb 2014 | B2 |
8672888 | Tal | Mar 2014 | B2 |
8696645 | Tal et al. | Apr 2014 | B2 |
8784362 | Boutilette et al. | Jul 2014 | B2 |
8827958 | Bierman et al. | Sep 2014 | B2 |
8876704 | Golden et al. | Nov 2014 | B2 |
8882713 | Call | Nov 2014 | B1 |
8900192 | Anderson et al. | Dec 2014 | B2 |
8900207 | Uretsky | Dec 2014 | B2 |
8915884 | Tal et al. | Dec 2014 | B2 |
8956327 | Bierman et al. | Feb 2015 | B2 |
9023093 | Pal | May 2015 | B2 |
9067023 | Bertocci | Jun 2015 | B2 |
9126012 | McKinnon et al. | Sep 2015 | B2 |
9138252 | Bierman et al. | Sep 2015 | B2 |
9180275 | Helm | Nov 2015 | B2 |
9265920 | Rundquist et al. | Feb 2016 | B2 |
9272121 | Piccagli | Mar 2016 | B2 |
9445734 | Grunwald | Sep 2016 | B2 |
9522254 | Belson | Dec 2016 | B2 |
9554785 | Walters et al. | Jan 2017 | B2 |
9566087 | Bierman et al. | Feb 2017 | B2 |
9675784 | Belson | Jun 2017 | B2 |
9713695 | Bunch et al. | Jul 2017 | B2 |
9764117 | Bierman et al. | Sep 2017 | B2 |
9770573 | Golden et al. | Sep 2017 | B2 |
9814861 | Boutillette et al. | Nov 2017 | B2 |
9820845 | von Lehe et al. | Nov 2017 | B2 |
9861383 | Clark | Jan 2018 | B2 |
9872971 | Blanchard | Jan 2018 | B2 |
9884169 | Bierman et al. | Feb 2018 | B2 |
9889275 | Voss et al. | Feb 2018 | B2 |
9913585 | McCaffrey et al. | Mar 2018 | B2 |
9913962 | Tal et al. | Mar 2018 | B2 |
9981113 | Bierman | May 2018 | B2 |
10010312 | Tegels | Jul 2018 | B2 |
10065020 | Gaur | Sep 2018 | B2 |
10086170 | Chhikara et al. | Oct 2018 | B2 |
10098724 | Adams et al. | Oct 2018 | B2 |
10111683 | Tsamir et al. | Oct 2018 | B2 |
10118020 | Avneri et al. | Nov 2018 | B2 |
10130269 | McCaffrey et al. | Nov 2018 | B2 |
10220184 | Clark | Mar 2019 | B2 |
10220191 | Belson et al. | Mar 2019 | B2 |
10265508 | Baid | Apr 2019 | B2 |
10271873 | Steingisser et al. | Apr 2019 | B2 |
10376675 | Mitchell et al. | Aug 2019 | B2 |
10675440 | Abitabilo et al. | Jun 2020 | B2 |
10806901 | Burkholz et al. | Oct 2020 | B2 |
10926060 | Stern et al. | Feb 2021 | B2 |
11260206 | Stone et al. | Mar 2022 | B2 |
11759607 | Biancarelli | Sep 2023 | B1 |
20020040231 | Wysoki | Apr 2002 | A1 |
20020198492 | Miller et al. | Dec 2002 | A1 |
20030036712 | Heh et al. | Feb 2003 | A1 |
20030060863 | Dobak | Mar 2003 | A1 |
20030088212 | Tal | May 2003 | A1 |
20030100849 | Jang | May 2003 | A1 |
20030153874 | Tal | Aug 2003 | A1 |
20030158514 | Tal | Aug 2003 | A1 |
20040015138 | Currier et al. | Jan 2004 | A1 |
20040064086 | Gottlieb et al. | Apr 2004 | A1 |
20040116864 | Boudreaux | Jun 2004 | A1 |
20040116901 | Appling | Jun 2004 | A1 |
20040167478 | Mooney et al. | Aug 2004 | A1 |
20040193093 | Desmond | Sep 2004 | A1 |
20040230178 | Wu | Nov 2004 | A1 |
20050004554 | Osborne | Jan 2005 | A1 |
20050120523 | Schweikert | Jun 2005 | A1 |
20050131343 | Abrams et al. | Jun 2005 | A1 |
20050215956 | Nerney | Sep 2005 | A1 |
20050245882 | Elkins | Nov 2005 | A1 |
20050283221 | Mann et al. | Dec 2005 | A1 |
20060009740 | Higgins et al. | Jan 2006 | A1 |
20060116629 | Tal et al. | Jun 2006 | A1 |
20060129100 | Tal | Jun 2006 | A1 |
20060129130 | Tal et al. | Jun 2006 | A1 |
20070276288 | Khaw | Nov 2007 | A1 |
20080045894 | Perchik et al. | Feb 2008 | A1 |
20080125744 | Treacy | May 2008 | A1 |
20080125748 | Patel | May 2008 | A1 |
20080132850 | Fumiyama et al. | Jun 2008 | A1 |
20080262430 | Anderson et al. | Oct 2008 | A1 |
20080262431 | Anderson et al. | Oct 2008 | A1 |
20080294111 | Tal et al. | Nov 2008 | A1 |
20080312578 | Defonzo | Dec 2008 | A1 |
20080319387 | Amisar et al. | Dec 2008 | A1 |
20090187147 | Kurth et al. | Jul 2009 | A1 |
20090221961 | Tal et al. | Sep 2009 | A1 |
20090270889 | Tal et al. | Oct 2009 | A1 |
20090292272 | McKinnon | Nov 2009 | A1 |
20100030154 | Duffy | Feb 2010 | A1 |
20100256487 | Hawkins et al. | Oct 2010 | A1 |
20100298839 | Castro | Nov 2010 | A1 |
20100305474 | DeMars et al. | Dec 2010 | A1 |
20110004162 | Tal | Jan 2011 | A1 |
20110009827 | Bierman et al. | Jan 2011 | A1 |
20110021994 | Anderson et al. | Jan 2011 | A1 |
20110066142 | Tal et al. | Mar 2011 | A1 |
20110071502 | Asai | Mar 2011 | A1 |
20110144620 | Tal | Jun 2011 | A1 |
20110152836 | Riopelle et al. | Jun 2011 | A1 |
20110202006 | Bierman et al. | Aug 2011 | A1 |
20110251559 | Tal et al. | Oct 2011 | A1 |
20110270192 | Anderson et al. | Nov 2011 | A1 |
20120041371 | Tal et al. | Feb 2012 | A1 |
20120065590 | Bierman et al. | Mar 2012 | A1 |
20120078231 | Hoshinouchi | Mar 2012 | A1 |
20120130411 | Tal et al. | May 2012 | A1 |
20120130415 | Tal et al. | May 2012 | A1 |
20120157854 | Kurrus | Jun 2012 | A1 |
20120215171 | Christiansen | Aug 2012 | A1 |
20120220942 | Hall et al. | Aug 2012 | A1 |
20120226239 | Green | Sep 2012 | A1 |
20120283640 | Anderson et al. | Nov 2012 | A1 |
20120316500 | Bierman et al. | Dec 2012 | A1 |
20130053763 | Makino et al. | Feb 2013 | A1 |
20130053826 | Shevgoor | Feb 2013 | A1 |
20130123704 | Bierman et al. | May 2013 | A1 |
20130158338 | Kelly | Jun 2013 | A1 |
20130188291 | Vardiman | Jul 2013 | A1 |
20130237931 | Tal et al. | Sep 2013 | A1 |
20130306079 | Tracy | Nov 2013 | A1 |
20140025036 | Bierman et al. | Jan 2014 | A1 |
20140081210 | Bierman et al. | Mar 2014 | A1 |
20140094774 | Blanchard | Apr 2014 | A1 |
20140100552 | Gallacher et al. | Apr 2014 | A1 |
20140207052 | Tal et al. | Jul 2014 | A1 |
20140207069 | Bierman et al. | Jul 2014 | A1 |
20140214005 | Belson | Jul 2014 | A1 |
20140257111 | Yamashita et al. | Sep 2014 | A1 |
20140276432 | Bierman et al. | Sep 2014 | A1 |
20140276599 | Cully | Sep 2014 | A1 |
20150011834 | Ayala | Jan 2015 | A1 |
20150080939 | Adams et al. | Mar 2015 | A1 |
20150094653 | Pacheco et al. | Apr 2015 | A1 |
20150112307 | Margolis | Apr 2015 | A1 |
20150112310 | Call et al. | Apr 2015 | A1 |
20150126930 | Bierman et al. | May 2015 | A1 |
20150148595 | Bagwell | May 2015 | A1 |
20150190168 | Bierman et al. | Jul 2015 | A1 |
20150196210 | McCaffrey et al. | Jul 2015 | A1 |
20150224287 | Bian et al. | Aug 2015 | A1 |
20150231364 | Blanchard et al. | Aug 2015 | A1 |
20150283357 | Lampropoulos et al. | Oct 2015 | A1 |
20150297868 | Tal et al. | Oct 2015 | A1 |
20150320969 | Haslinger et al. | Nov 2015 | A1 |
20150320977 | Vitullo et al. | Nov 2015 | A1 |
20150351793 | Bierman et al. | Dec 2015 | A1 |
20150359549 | Lenker et al. | Dec 2015 | A1 |
20150359998 | Carmel et al. | Dec 2015 | A1 |
20160082223 | Barnell | Mar 2016 | A1 |
20160114124 | Tal | Apr 2016 | A1 |
20160158523 | Helm | Jun 2016 | A1 |
20160220786 | Mitchell et al. | Aug 2016 | A1 |
20160242661 | Fischell | Aug 2016 | A1 |
20160256101 | Aharoni | Sep 2016 | A1 |
20160325073 | Davies et al. | Nov 2016 | A1 |
20160338728 | Tal | Nov 2016 | A1 |
20160346503 | Jackson et al. | Dec 2016 | A1 |
20170035990 | Swift | Feb 2017 | A1 |
20170072165 | Lim et al. | Mar 2017 | A1 |
20170120000 | Osypka et al. | May 2017 | A1 |
20170120014 | Harding et al. | May 2017 | A1 |
20170120034 | Kaczorowski | May 2017 | A1 |
20170128700 | Roche Rebollo | May 2017 | A1 |
20170156987 | Babbs et al. | Jun 2017 | A1 |
20170172653 | Urbanski | Jun 2017 | A1 |
20170239443 | Abitabilo et al. | Aug 2017 | A1 |
20170259043 | Chan et al. | Sep 2017 | A1 |
20170273713 | Shah et al. | Sep 2017 | A1 |
20170296792 | Ornelas Vargas et al. | Oct 2017 | A1 |
20170326339 | Bailey et al. | Nov 2017 | A1 |
20170361070 | Hivert | Dec 2017 | A1 |
20170368255 | Provost et al. | Dec 2017 | A1 |
20180001062 | O'Carrol et al. | Jan 2018 | A1 |
20180021545 | Mitchell et al. | Jan 2018 | A1 |
20180116690 | Sarabia et al. | May 2018 | A1 |
20180117284 | Appling et al. | May 2018 | A1 |
20180133438 | Hulvershorn et al. | May 2018 | A1 |
20180154062 | DeFonzo et al. | Jun 2018 | A1 |
20180154112 | Chan et al. | Jun 2018 | A1 |
20180214674 | Ebnet et al. | Aug 2018 | A1 |
20180296799 | Horst et al. | Oct 2018 | A1 |
20180296804 | Bierman | Oct 2018 | A1 |
20180310955 | Lindekugel et al. | Nov 2018 | A1 |
20190015646 | Matlock et al. | Jan 2019 | A1 |
20190021640 | Burkholz et al. | Jan 2019 | A1 |
20190060616 | Solomon | Feb 2019 | A1 |
20190076167 | Fantuzzi et al. | Mar 2019 | A1 |
20190134349 | Cohn et al. | May 2019 | A1 |
20190192824 | Cordeiro et al. | Jun 2019 | A1 |
20190201665 | Turpin | Jul 2019 | A1 |
20190209812 | Burkholz et al. | Jul 2019 | A1 |
20190255294 | Mitchell et al. | Aug 2019 | A1 |
20190255298 | Mitchell et al. | Aug 2019 | A1 |
20190275303 | Tran et al. | Sep 2019 | A1 |
20190276268 | Akingba | Sep 2019 | A1 |
20190321590 | Burkholz et al. | Oct 2019 | A1 |
20200001051 | Huang et al. | Jan 2020 | A1 |
20200016374 | Burkholz et al. | Jan 2020 | A1 |
20200046948 | Burkholz et al. | Feb 2020 | A1 |
20200100716 | Devgon et al. | Apr 2020 | A1 |
20200129732 | Vogt et al. | Apr 2020 | A1 |
20200147349 | Holt | May 2020 | A1 |
20200197682 | Franklin et al. | Jun 2020 | A1 |
20200197684 | Wax | Jun 2020 | A1 |
20200237278 | Asbaghi | Jul 2020 | A1 |
20200359995 | Walsh et al. | Nov 2020 | A1 |
20210030944 | Cushen et al. | Feb 2021 | A1 |
20210069471 | Howell | Mar 2021 | A1 |
20210085927 | Howell | Mar 2021 | A1 |
20210100985 | Akcay et al. | Apr 2021 | A1 |
20210113809 | Howell | Apr 2021 | A1 |
20210113810 | Howell | Apr 2021 | A1 |
20210113816 | DiCianni | Apr 2021 | A1 |
20210121661 | Howell | Apr 2021 | A1 |
20210121667 | Howell | Apr 2021 | A1 |
20210228842 | Scherich et al. | Jul 2021 | A1 |
20210228843 | Howell et al. | Jul 2021 | A1 |
20210244920 | Kujawa et al. | Aug 2021 | A1 |
20210290898 | Burkholz | Sep 2021 | A1 |
20210290901 | Burkholz et al. | Sep 2021 | A1 |
20210290913 | Horst et al. | Sep 2021 | A1 |
20210322729 | Howell | Oct 2021 | A1 |
20210330941 | Howell et al. | Oct 2021 | A1 |
20210330942 | Howell | Oct 2021 | A1 |
20210361915 | Howell et al. | Nov 2021 | A1 |
20210402149 | Howell | Dec 2021 | A1 |
20210402153 | Howell et al. | Dec 2021 | A1 |
20220001138 | Howell | Jan 2022 | A1 |
20220032013 | Howell et al. | Feb 2022 | A1 |
20220032014 | Howell et al. | Feb 2022 | A1 |
20220062528 | Thornley et al. | Mar 2022 | A1 |
20220126064 | Tobin et al. | Apr 2022 | A1 |
20220193376 | Spataro et al. | Jun 2022 | A1 |
20220193377 | Haymond et al. | Jun 2022 | A1 |
20220193378 | Spataro et al. | Jun 2022 | A1 |
20220323723 | Spataro et al. | Oct 2022 | A1 |
20220331563 | Papadia | Oct 2022 | A1 |
20230042898 | Howell et al. | Feb 2023 | A1 |
20230096377 | West et al. | Mar 2023 | A1 |
20230096740 | Bechstein et al. | Mar 2023 | A1 |
20230099654 | Blanchard et al. | Mar 2023 | A1 |
20230100482 | Howell | Mar 2023 | A1 |
20230101455 | Howell et al. | Mar 2023 | A1 |
20230102231 | Bechstein et al. | Mar 2023 | A1 |
20230233814 | Howell et al. | Jul 2023 | A1 |
20240009427 | Howell et al. | Jan 2024 | A1 |
20240050706 | Howell et al. | Feb 2024 | A1 |
20240198058 | Howell et al. | Jun 2024 | A1 |
Number | Date | Country |
---|---|---|
202012006191 | Jul 2012 | DE |
0653220 | May 1995 | EP |
0730880 | Sep 1996 | EP |
2061385 | May 2009 | EP |
1458437 | Mar 2010 | EP |
2248549 | Nov 2010 | EP |
2319576 | May 2011 | EP |
2366422 | Sep 2011 | EP |
2486880 | Aug 2012 | EP |
2486881 | Aug 2012 | EP |
2486951 | Aug 2012 | EP |
2512576 | Oct 2012 | EP |
2152348 | Feb 2015 | EP |
3473291 | Apr 2019 | EP |
3093038 | May 2019 | EP |
2260897 | Sep 2019 | EP |
3693051 | Aug 2020 | EP |
1273547 | May 1972 | GB |
2004248987 | Sep 2004 | JP |
2008054859 | Mar 2008 | JP |
9421315 | Sep 1994 | WO |
9532009 | Nov 1995 | WO |
9844979 | Oct 1998 | WO |
9853871 | Dec 1998 | WO |
9912600 | Mar 1999 | WO |
9926681 | Jun 1999 | WO |
0006221 | Feb 2000 | WO |
0054830 | Sep 2000 | WO |
2003008020 | Jan 2003 | WO |
2003057272 | Jul 2003 | WO |
03068073 | Aug 2003 | WO |
2003066125 | Aug 2003 | WO |
2005096778 | Oct 2005 | WO |
2006055288 | May 2006 | WO |
2006055780 | May 2006 | WO |
2007046850 | Apr 2007 | WO |
2008033983 | Mar 2008 | WO |
2008092029 | Jul 2008 | WO |
2008131300 | Oct 2008 | WO |
2008131289 | Oct 2008 | WO |
2009114833 | Sep 2009 | WO |
2009114837 | Sep 2009 | WO |
2010048449 | Apr 2010 | WO |
2010056906 | May 2010 | WO |
2010083467 | Jul 2010 | WO |
2010132608 | Nov 2010 | WO |
2011081859 | Jul 2011 | WO |
2011097639 | Aug 2011 | WO |
2011109792 | Sep 2011 | WO |
2011146764 | Nov 2011 | WO |
2012068162 | May 2012 | WO |
2012068166 | May 2012 | WO |
2012135761 | Oct 2012 | WO |
2012154277 | Nov 2012 | WO |
2012162677 | Nov 2012 | WO |
2013026045 | Feb 2013 | WO |
2013138519 | Sep 2013 | WO |
2014006403 | Jan 2014 | WO |
2014100392 | Jun 2014 | WO |
2014113257 | Jul 2014 | WO |
2014152005 | Sep 2014 | WO |
2014197614 | Dec 2014 | WO |
2015057766 | Apr 2015 | WO |
2015077560 | May 2015 | WO |
2015168655 | Nov 2015 | WO |
2016110824 | Jul 2016 | WO |
2016123278 | Aug 2016 | WO |
2016139590 | Sep 2016 | WO |
2016139597 | Sep 2016 | WO |
2016178974 | Nov 2016 | WO |
2016176065 | Nov 2016 | WO |
2016187063 | Nov 2016 | WO |
2018089275 | May 2018 | WO |
2018089285 | May 2018 | WO |
2018089385 | May 2018 | WO |
2018191547 | Oct 2018 | WO |
2018213148 | Nov 2018 | WO |
2018218236 | Nov 2018 | WO |
2019050576 | Mar 2019 | WO |
2019146026 | Aug 2019 | WO |
2019199734 | Oct 2019 | WO |
2020014149 | Jan 2020 | WO |
2020069395 | Apr 2020 | WO |
2020109448 | Jun 2020 | WO |
2020113123 | Jun 2020 | WO |
2021050302 | Mar 2021 | WO |
2021062023 | Apr 2021 | WO |
2021077103 | Apr 2021 | WO |
2021081205 | Apr 2021 | WO |
2021086793 | May 2021 | WO |
2021236950 | Nov 2021 | WO |
2022031618 | Feb 2022 | WO |
2022094141 | May 2022 | WO |
2022133297 | Jun 2022 | WO |
2022-140406 | Jun 2022 | WO |
2022140429 | Jun 2022 | WO |
2022217098 | Oct 2022 | WO |
2023014994 | Feb 2023 | WO |
2023049498 | Mar 2023 | WO |
2023049505 | Mar 2023 | WO |
2023049511 | Mar 2023 | WO |
2023049519 | Mar 2023 | WO |
2023049522 | Mar 2023 | WO |
2023146792 | Aug 2023 | WO |
Entry |
---|
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Final Office Action dated May 30, 2018. |
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Jan. 25, 2019. |
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Nov. 2, 2017. |
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Notice of Allowance dated May 15, 2019. |
PCT/US2020/048583 filed Aug. 28, 2020 International Search Report and Written Opinion dated Nov. 13, 2020. |
PCT/US2020/052536 filed Sep. 24, 2020 International Search Report and Written Opinion dated Dec. 4, 2020. |
PCT/US2020/056364 filed Oct. 19, 2020 International Search Report and Written Opinion dated Jan. 19, 2021. |
PCT/US2020/056864 filed Oct. 22, 2020 International Search Report and Written Opinion dated Jan. 14, 2021. |
PCT/US2020/057202 filed Oct. 23, 2020 International Search Report and Written Opinion dated Jan. 21, 2021. |
PCT/US2020/057397 filed Oct. 26, 2020 International Search Report and Written Opinion dated Mar. 10, 2021. |
PCT/US2021/014700 filed Jan. 22, 2021 International Search Report and Written Opinion dated Jun. 29, 2021. |
PCT/US2021/028018 filed Apr. 19, 2021 International Search Report and Written Opinion dated Sep. 13, 2021. |
PCT/US2021/028683 filed Apr. 22, 2021 International Search Report and Written Opinion dated Sep. 16, 2021. |
PCT/US2021/029183 filed Apr. 26, 2021 International Search Report and Written Opinion dated Sep. 24, 2021. |
PCT/US2021/033443 filed May 20, 2021 International Search Report and Written Opinion dated Sep. 23, 2021. |
PCT/US2021/028018 filed Apr. 19, 2021 International Preliminary Report on Patentability dated Jun. 3, 2022. |
PCT/US2021/064174 filed Dec. 17, 2021 International Search Report and Written Opinion dated May 18, 2022. |
PCT/US2021/064642 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 11, 2022. |
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Non-Final Office Action dated May 11, 2022. |
U.S. Appl. No. 17/006,553, filed Aug. 28, 2020 Non-Final Office Action dated Mar. 16, 2022. |
U.S. Appl. No. 17/077,728, filed Oct. 22, 2020 Non-Final Office Action dated Feb. 9, 2022. |
PCT/US2022/039614 filed Aug. 5, 2022 International Search Report and Written Opinion dated Dec. 22, 2022. |
PCT/US2022/044848 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 3, 2023. |
PCT/US2022/044918 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 21, 2023. |
PCT/US2022/044923 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 15, 2023. |
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Restriction Requirement dated Feb. 1, 2023. |
U.S. Appl. No. 17/326,017, filed May 20, 2021 Non-Final Office Action dated Jan. 26, 2023. |
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Mar. 2, 2023. |
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Aug. 9, 2023. |
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Non-Final Office Action dated Jul. 27, 2023. |
U.S. Appl. No. 17/326,017, filed May 20, 2021 Notice of Allowance dated Jul. 3, 2023. |
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Restriction Requirement dated Jul. 20, 2023. |
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Final Office Action dated Jul. 27, 2023. |
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Non-Final Office Action dated Jul. 17, 2023. |
PCT/US2022/024085 filed Apr. 8, 2022 International Search Report and Wirtten Opinion dated Sep. 12, 2022. |
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Notice of Allowance dated Sep. 16, 2022. |
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Non-Final Office Action dated Oct. 25, 2022. |
PCT/US2021/039084 filed Jun. 25, 2021 International Search Report and Written Opinion dated Jan. 10, 2022. |
PCT/US2021/044029 filed Jul. 30, 2021 International Search Report and Written Opinion dated Dec. 9, 2021. |
PCT/US2021/044223 filed Aug. 2, 2021 International Search Report and Written Opinion dated Dec. 21, 2021. |
PCT/US2021/048275 filed Aug. 30, 2021 International Search Report and Written Opinion dated Jan. 4, 2022. |
PCT/US2021/057135 filed Oct. 28, 2021 International Search Report and Written Opinion dated Mar. 11, 2022. |
PCT/US2021/064671 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 27, 2022. |
PCT/US2022/044879 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023. |
PCT/US2022/044901 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023. |
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Notice of Allowance dated Oct. 27, 2023. |
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Final Office Action dated Dec. 6, 2023. |
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Non-Final Office Action dated Oct. 4, 2023. |
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Non-Final Office Action dated Oct. 13, 2023. |
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Dec. 1, 2023. |
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Final Office Action dated Nov. 21, 2023. |
U.S. Appl. No. 17/513,789, filed Oct. 28, 2021 Restriction Requirement dated Oct. 3, 2023. |
U.S. Appl. No. 17/557,924, filed Dec. 21, 2021 Non-Final Office Action dated Nov. 3, 2023. |
PCT/US2021/057135 filed Oct. 28, 2021 International Preliminary Report on Patentability dated May 2, 2023. |
PCT/US2023/011173 filed Jan. 19, 2023 International Search Report and Written Opinion dated May 22, 2023. |
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Apr. 24, 2023. |
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Non-Final Office Action dated Jun. 8, 2023. |
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Restriction Requirement dated Jun. 7, 2023. |
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Restriction Requirement dated Mar. 30, 2023. |
U.S. Appl. No. 17/234,611, filed Apr. 19, 2021 Non-Final Office Action dated Apr. 23, 2024. |
U.S. Appl. No. 17/234,611, filed Apr. 19, 2021 Restriction Requirement dated Jan. 18, 2024. |
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Advisory Action dated Feb. 22, 2024. |
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Final Office Action dated Mar. 13, 2024. |
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Non-Final Office Action dated Feb. 14, 2024. |
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Advisory Action dated Feb. 14, 2024. |
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Non-Final Office Action dated Apr. 23, 2024. |
U.S. Appl. No. 17/513,789, filed Oct. 28, 2021 Non-Final Office Action dated Jan. 9, 2024. |
U.S. Appl. No. 17/554,978, filed Dec. 17, 2021 Non-Final Office Action dated Apr. 19, 2024. |
U.S. Appl. No. 17/557,924, filed Dec. 21, 2021 Final Office Action dated Feb. 29, 2024. |
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Non-Final Office Action dated Jun. 4, 2024. |
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Notice of Allowance dated Jul. 17, 2024. |
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Final Office Action dated May 6, 2024. |
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Jul. 5, 2024. |
U.S. Appl. No. 17/513,789, filed Oct. 28, 2021 Final Office Action dated Jul. 9, 2024. |
Number | Date | Country | |
---|---|---|---|
20190255294 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62109403 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15008628 | Jan 2016 | US |
Child | 16398020 | US |