Rapidly insertable central catheters including catheter assemblies and methods thereof

Information

  • Patent Grant
  • 11819638
  • Patent Number
    11,819,638
  • Date Filed
    Thursday, May 20, 2021
    2 years ago
  • Date Issued
    Tuesday, November 21, 2023
    5 months ago
Abstract
Rapidly insertable central catheters (“RICCs”) including catheter assemblies and methods thereof are disclosed. For example, a RICC assembly includes a RICC and an introducer. The RICC includes a catheter tube, a catheter hub, and one or more extension legs coupled in the foregoing order. The catheter tube includes a side aperture that opens into an introducing lumen that extends from at least the side aperture to a distal end of the RICC. The introducer includes a retractable-needle device, a syringe, and a coupling hub that couples the retractable-needle device and the syringe together proximal of the side aperture in a ready-to-deploy state of the RICC assembly. The retractable-needle device includes an introducer needle. A needle tip in a distal-end portion of a shaft of the introducer needle extends beyond the distal end of the RICC when the RICC assembly is in the ready-to-deploy state of the RICC assembly.
Description
BACKGROUND

A central venous catheter (“CVC”) is formed of a material having a relatively low durometer, which contributes to the CVC having a lack of column strength. Due to the lack of column strength, CVCs are commonly introduced into patients and advanced through their vasculatures by way of the Seldinger technique. The Seldinger technique utilizes a number of steps and medical devices (e.g., a needle, a scalpel, a guidewire, an introducer sheath, a dilator, a CVC, etc.). While the Seldinger technique is effective, the number of steps are time consuming, handling the number of medical devices is awkward, and both of the foregoing can lead to patient trauma. In addition, there is a relatively high potential for touch contamination due to the number of medical devices that need to be interchanged during the number of steps of the Seldinger technique. As such, there is a need to reduce the number of steps and medical devices involved in introducing a catheter such as a CVC into a patient and advancing the catheter through a vasculature thereof.


Disclosed herein are rapidly insertable central catheters (“RICCs”) including catheter assemblies and methods thereof that address the foregoing.


SUMMARY

Disclosed herein is a RICC assembly. The RICC assembly includes, in some embodiments, a RICC and an introducer. The RICC includes a catheter tube, a catheter hub coupled to a proximal-end portion of the catheter tube, and one or more extension legs, wherein each extension leg of the one-or-more extension legs is coupled to the catheter hub by a distal-end portion thereof. The catheter tube includes a first section, a second section, and a side aperture through a side of the catheter tube in a distal-end portion thereof but proximal of the first section of the catheter tube. The first section of the catheter tube is formed of a first material having a first durometer. The second section of the catheter tube is formed of a second material having a second durometer less than the first durometer. The side aperture opens into an introducing lumen of the catheter tube that extends from at least the side aperture to a distal end of the RICC. The introducer includes a retractable-needle device, a syringe, and a coupling hub coupling the retractable-needle device and the syringe together proximal of the side aperture in at least a ready-to-deploy state of the RICC assembly. The retractable-needle device includes an introducer needle. The introducer needle has a shaft and a needle tip in a distal-end portion of the shaft. The needle tip extends beyond the distal end of the RICC when the RICC assembly is in at least the ready-to-deploy state of the RICC assembly.


In some embodiments, the shaft of the introducer needle extends through a longitudinal through hole of the coupling hub, through the side aperture of the catheter tube, and along the introducing lumen of the catheter tube in at least the ready-to-deploy state of the RICC assembly.


In some embodiments, the coupling hub includes a sealed blood-flashback chamber. A cutout of the shaft of the introducer needle is disposed in the blood-flashback chamber. The cutout is configured to release blood into the blood-flashback chamber upon the needle tip accessing a blood-vessel lumen of a patient.


In some embodiments, the coupling hub includes a side arm extending from a side of the coupling hub. The syringe is fluidly coupled to the blood-flashback chamber by a side-arm lumen of the side arm for aspirating blood upon accessing the blood-vessel lumen.


In some embodiments, the introducer further includes a clip having a syringe-clipping portion and needle device-clipping portion. The syringe-clipping portion of the clip is configured to clip the syringe by a barrel of the syringe. The needle device-clipping portion of the clip is configured to clip the retractable-needle device by a body of the retractable-needle device while allowing the retractable-needle device to slide in the needle device-clipping portion of the clip.


In some embodiments, the syringe includes a plunger disposed in the barrel of the syringe. The plunger includes a plunger extension configured to allow a clinician to withdraw the plunger from the barrel by proximally pushing a tab of the plunger extension while handling the RICC assembly around the coupling hub.


In some embodiments, the coupling hub includes a tab configured to allow a clinician to single handedly advance the RICC over the needle tip with a single finger of a hand while holding a distal-end portion of the retractable-needle device between a thumb and another finger or fingers of the hand.


In some embodiments, the retractable-needle device further includes an access guidewire and an access-guidewire actuator. The access guidewire is disposed in a needle lumen of the introducer needle. The access-guidewire actuator is configured to advance a distal-end portion of the access guidewire beyond the needle tip. The access-guidewire actuator is also configured to withdraw the distal-end portion of the access guidewire into the distal-end portion of the shaft of the introducer needle proximal of the needle tip.


In some embodiments, the access-guidewire actuator includes a slider slidably disposed in a longitudinal slot of a housing of the retractable-needle device. The slider includes an extension coupled to a proximal-end portion of the access guidewire within a cavity of the retractable-needle device enclosed by the housing.


In some embodiments, a proximal-end portion of the introducer needle is disposed in a carriage of the retractable-needle device. When actuated, an introducer-needle actuator of the retractable-needle device is configured to release a compressed compression spring around the carriage and thrust both the carriage and the introducer needle proximally into the cavity of the retractable-needle device.


In some embodiments, the carriage is configured to engage the slider of the access-guidewire actuator when the carriage is thrust proximally into the cavity of the retractable-needle device. The access guidewire is withdrawn into the cavity of the retractable-needle device by the distal-end portion thereof together with the introducer needle when the introducer-needle actuator is actuated.


In some embodiments, the RICC further includes a sterile barrier over the catheter tube between the catheter hub and the side aperture of the catheter tube. The sterile barrier is configured to split apart when a sterile-barrier tab of a proximal-end portion of the sterile barrier is pulled away from the catheter tube by the sterile-barrier tab.


In some embodiments, the RICC includes a set of three lumens including a distal lumen, a medial lumen, and a proximal lumen formed of fluidly connected portions of three catheter-tube lumens, three hub lumens, and three extension-leg lumens. The introducing lumen of the catheter tube is coincident with a distal-end portion of the distal lumen.


In some embodiments, the distal lumen has a distal-lumen aperture in the distal end of the RICC. The medial lumen has a medial-lumen aperture in the side of the catheter tube proximal of the distal-lumen aperture. The proximal lumen has a proximal-lumen aperture in the side of the catheter tube proximal of the medial-lumen aperture. The side aperture of the catheter tube is between the distal-lumen aperture and the medial-lumen aperture, between the medial-lumen aperture and the proximal-lumen aperture, or proximal of the proximal-lumen aperture.


Also disclosed herein is a method for inserting a RICC into a blood-vessel lumen of a patient. The method includes, in some embodiments, a RICC assembly-obtaining step, a needle tract-establishing step, a RICC-advancing step, and an introducer needle-withdrawing step. The RICC assembly-obtaining step includes obtaining a RICC assembly. The RICC assembly includes the RICC and an introducer. The introducer includes a retractable-needle device and a syringe coupled together by a coupling hub. The retractable-needle device includes an introducer needle having a shaft extending through a longitudinal through hole of the coupling hub, through a side aperture in a distal-end portion of a catheter tube of the RICC, along an introducing lumen of the catheter tube, and beyond a distal end of the RICC in at least a ready-to-deploy state of the RICC assembly. The needle tract-establishing step includes establishing a needle tract from an area of skin to the blood-vessel lumen of the patient with a needle tip of the introducer needle while holding a distal-end portion of the retractable-needle device. The RICC-advancing step includes advancing a distal-end portion of the catheter tube into the blood-vessel lumen over the needle tip. The introducer needle-withdrawing step includes withdrawing the shaft of the introducer needle from the introducing lumen by way of the side aperture of the catheter tube.


In some embodiments, the needle tract-establishing step includes ensuring blood flashes back into a sealed blood-flashback chamber of the coupling hub. A cutout of the shaft of the introducer needle is disposed in the blood-flashback chamber for releasing blood into the blood-flashback chamber upon accessing the blood-vessel lumen of the patient.


In some embodiments, the method further includes a blood aspirating-step. The blood aspirating-step includes aspirating blood with the syringe after the needle tract-establishing step but before the introducer needle-withdrawing step. The syringe is fluidly coupled to the blood-flashback chamber by a side-arm lumen of a side arm of the coupling hub for the blood aspirating-step. The blood aspirating-step confirms the needle tip is disposed in the blood-vessel lumen of the patient.


In some embodiments, the RICC-advancing step includes advancing the catheter tube into the blood-vessel lumen with a single finger of a hand while holding a distal-end portion of the retractable-needle device between a thumb and another finger or fingers of the hand. The coupling hub includes a tab configured for advancing the catheter tube into the blood-vessel lumen with the single finger.


In some embodiments, the method further an access guidewire-advancing step. The access guidewire-advancing step includes advancing a distal-end portion of an access guidewire disposed in a needle lumen of the introducer needle into the blood-vessel lumen. The distal-end portion of the access guidewire is advanced by sliding a slider slidably disposed in a longitudinal slot of a housing of the retractable-needle device. The slider includes an extension coupled to a proximal-end portion of the access guidewire disposed in a cavity of the retractable-needle device enclosed by the housing. The access guidewire-advancing step is performed before the RICC-advancing step.


In some embodiments, the introducer needle-withdrawing step includes actuating an introducer-needle actuator of the retractable-needle device. A proximal-end portion of the introducer needle is disposed in a carriage of the retractable-needle device configured to thrust proximally into the cavity of the retractable-needle device when a compressed compression spring around the carriage is released by the introducer-needle actuator.


In some embodiments, the method further a maneuver guidewire-advancing step. The maneuver guidewire-advancing step includes advancing a maneuver guidewire into the blood-vessel lumen by way of a distal lumen having a distal-lumen aperture in the distal end of the RICC. The introducing lumen of the catheter tube is coincident with a distal-end portion of the distal lumen, which mandates performing the introducer needle-withdrawing step before the maneuver guidewire-advancing step.


In some embodiments, the method further includes a sterile barrier-removing step. The sterile barrier-removing step includes removing a sterile barrier disposed over the catheter tube between a catheter hub of the RICC and the side aperture of the catheter tube. The sterile barrier is removed by pulling a sterile-barrier tab of a proximal-end portion of the sterile barrier away from the catheter tube to split the sterile barrier apart.


In some embodiments, the catheter tube includes a first section formed of a first material having a first durometer and a second section proximal of the first section formed of a second material having a second durometer less than the first durometer. The first section of the catheter tube is configured with a column strength for advancing the catheter tube into the blood-vessel lumen.


These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.





DRAWINGS


FIG. 1 illustrates an oblique view of a RICC assembly including a RICC and an introducer in accordance with some embodiments.



FIG. 2 illustrates a top view of the RICC assembly in accordance with some embodiments.



FIG. 3 illustrates a side view of the RICC assembly in accordance with some embodiments.



FIG. 4 illustrates a longitudinal cross section of the RICC assembly in accordance with some embodiments.



FIG. 5 illustrates a distal-end portion of a catheter tube of the RICC in accordance with some embodiments.



FIG. 6 illustrates a first transverse cross section of the catheter tube in accordance with some embodiments.



FIG. 7 illustrates a second transverse cross section of the catheter tube in accordance with some embodiments.



FIG. 8 illustrates a third or fourth transverse cross section of the catheter tube in accordance with some embodiments.



FIG. 9 illustrates a sterile barrier over a maneuver guidewire of the RICC assembly in accordance with some embodiments.



FIG. 10 illustrates a sterile barrier over the catheter tube in accordance with some embodiments.



FIG. 11 illustrates a plunger extension of a syringe of the introducer in accordance with some embodiments.



FIG. 12 illustrates a clip of the introducer in accordance with some embodiments.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal-end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal-end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal-end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal-end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal-end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal-end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal-end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal-end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


As set forth above, there is a need to reduce the number of steps and medical devices involved in introducing a catheter such as a CVC into a patient and advancing the catheter through a vasculature thereof.


Disclosed herein are RICCs including catheter assemblies and methods thereof that address the foregoing. However, it should be understood the RICCs are but one type of catheter in which the concepts provided herein can be embodied or otherwise incorporated. Indeed, peripherally inserted central catheters (“PICCs”), dialysis catheters, or the like can also embody or otherwise incorporate the concepts provided herein for the RICCs, as well as catheter assemblies and methods thereof.


RICC Assemblies



FIGS. 1-3 illustrate various views of a RICC assembly 100 including a RICC 102 and an introducer 104 in accordance with some embodiments. FIG. 4 illustrates a longitudinal cross section of the RICC assembly 100 in accordance with some embodiments. FIG. 5 illustrates a distal-end portion of a catheter tube 106 of the RICC 102 in accordance with some embodiments. FIGS. 6-8 illustrate various transverse cross-sections of the catheter tube 106 in accordance with some embodiments. FIGS. 9-12 illustrate various other features of the RICC assembly 100 in accordance with some embodiments.


As shown, the RICC assembly 100 includes, in some embodiments, the RICC 102 and the introducer 104. The RICC 102 and the introducer 104 are described, in turn, in sections set forth below; however, some crossover between the sections for the RICC 102 and the introducer 104 exist in view of the interrelatedness of the RICC 102 and the introducer 104 in the RICC assembly 100.


The RICC 102 includes the catheter tube 106, a catheter hub 108, and one or more extension legs 110.


The catheter tube 106 includes two or more sections including a catheter tip 112 in a distal-end portion of the catheter tube 106, one or more catheter-tube lumens, and a side aperture 114 through a side of the catheter tube 106 in the distal-end portion of the catheter tube 106.


The two or more sections of the catheter tube 106 can be a main body of the catheter tube 106 and the catheter tip 112, which can be formed as a single extruded piece of a single material or a single coextruded piece of two similar materials. Alternatively, the main body of the catheter tube 106 and the catheter tip 112 can be formed as two different extruded pieces of two similar materials and subsequently coupled. However, FIG. 5 illustrates an embodiment of the catheter tube 106 in which the catheter tube 106 is formed as two different extruded pieces of two different materials and subsequently coupled. Indeed, the catheter tube 106 includes a first section 116 including the catheter tip 112, a second section 118 including the side aperture 114, and an optional transition section 120 therebetween depending upon the manner in which the first section 116 and the second section 118 of the catheter tube 106 are coupled. For example, the first and second sections 116 and 118 of the catheter tube 106 can be bonded by heat, solvent, or adhesive such that the first and second sections 116 and 118 abut each other, or the second section 118 can be inserted into the first section 116 and bonded thereto by heat, solvent, or adhesive, thereby forming the transition section 120. Advantageously, the latter coupling of inserting the second section 118 into the first section 116 facilitates incorporation of a smooth taper into the transition section 120, which taper is useful for dilation during methods of using the RICC assembly 100.


The first section 116 of the catheter tube 106 can be formed of a first material (e.g., a polymeric material such as polytetrafluoroethylene, polypropylene, or polyurethane) having a first durometer, while the second section 118 of the catheter tube 106 can be formed of a second material (e.g., a polymeric material such as polyvinyl chloride, polyethylene, polyurethane, or silicone) having a second durometer less than the first durometer. For example, each section of the first section 116 and the second section 118 of the catheter tube 106 can be made from a different polyurethane having a different durometer. Indeed, polyurethane is advantageous in that polyurethane sections of the catheter tube 106 can be relatively rigid at room-temperature but become more flexible in vivo at body temperature, which reduces irritation to vessel walls and phlebitis. Polyurethane is also advantageous in that can be less thrombogenic than some other polymers.


The catheter tube 106 having at least the first section 116 of the first polymeric material and the second section 118 of the second polymeric material has a column strength sufficient to prevent buckling of the catheter tube 106 when the catheter tube 106 is inserted into an insertion site and advanced through a vasculature of a patient. The column strength of the catheter tube 106 is notable in that it makes it possible to rapidly insert the catheter tube 106 into the insertion site and advance the catheter tube 106 through the vasculature of the patient without using the Seldinger technique.


It should be understood the first durometer and the second durometer can be on different scales (e.g., Type A or Type D), so the second durometer of the second polymeric material might not be numerically less than the first durometer of the first polymeric material. That said, the hardness of the second polymeric material can still be less than the hardness of the first polymeric material as the different scales—each of which ranges from 0 to 100—are designed for characterizing different materials in groups of the materials having a like hardness.


Notwithstanding the foregoing, the first section 116 and the second section 118 of the catheter tube 106 can be formed of a same polymeric material or different polymeric materials having substantially equal durometers provided a column strength of the catheter tube 106 is sufficient to prevent buckling of the catheter tube 106 when inserted into a needle tract to a blood-vessel lumen and advanced through a vasculature of a patient.


The one-or-more catheter-tube lumens can extend through an entirety of the catheter tube 106; however, only one catheter-tube lumen typically extends from a proximal end of the catheter tube 106 to a distal end of the catheter tube 106 in a multiluminal RICC (e.g., a diluminal RICC, a triluminal RICC, a tetraluminal RICC, a pentaluminal RICC, a hexaluminal RICC, etc.). Indeed, the catheter tip 112 typically includes a single lumen therethrough. Optionally, the single lumen through the catheter tip 112 can be referred to as a “tip lumen,” particularly in reference to the first section 116 of the catheter tube 106, which is formed separately from a remainder of the catheter tube 106 and coupled thereto.


Again, the side aperture 114 is through a side of the catheter tube 106 in the distal-end portion of the catheter tube 106; however, the side aperture 114 is proximal of the first section 116 of the catheter tube 106. The side aperture 114 opens into an introducing lumen 122 of the one-or-more catheter-tube lumens. The introducing lumen 122 extends from at least the side aperture 114 in the second section 118 of the catheter tube 106, through the first section 116 of the catheter tube 106 distal thereof, and to a distal end of the RICC 102 (e.g., the distal end of the catheter tube 106 or a distal end of the catheter tip 112). The introducing lumen 122 is coincident with a distal-end portion of the one catheter-tube lumen set forth above that typically extends from the proximal end of the catheter tube 106 to the distal end of the catheter tube 106, particularly the distal-end portion of the foregoing catheter-tube lumen distal of the side aperture 114.


The catheter hub 108 is coupled to a proximal-end portion of the catheter tube 106. The catheter hub 108 includes one or more catheter-hub lumens corresponding in number to the one-or-more catheter-tube lumens. The one-or-more catheter-hub lumens extend through an entirety of the catheter hub 108 from a proximal end of the catheter hub 108 to a distal end of the catheter hub 108.


Each extension leg of the one-or-more extension legs 110 is coupled to the catheter hub 108 by a distal-end portion thereof. The one-or-more extension legs 110 respectively include one or more extension-leg lumens, which, in turn, correspond in number to the one-or-more catheter-tube lumens. Each extension-leg lumen of the one-or-more extension-leg lumens extends through an entirety of the extension leg from a proximal end of the extension leg to a distal end of the extension leg.


Each extension leg of the one-or-more extension legs 110 typically includes a Luer connector coupled to the extension leg, through which Luer connector the extension leg and the extension-leg lumen thereof can be connected to another medical device.


While the RICC 102 can be a monoluminal or multiluminal RICC (e.g., a diluminal RICC, a triluminal RICC, a tetraluminal RICC, a pentaluminal RICC, a hexaluminal RICC, etc.), the RICC 102 shown in FIGS. 1-8 is triluminal including a set of three lumens. The set of three lumens includes, for example, a distal lumen 124, a medial lumen 126, and a proximal lumen 128 formed of fluidly connected portions of three catheter-tube lumens, three hub lumens, and three extension-leg lumens. Whether the RICC 102 is monoluminal or multiluminal, the RICC 102 includes at least the distal lumen 124. The distal lumen 124 includes at least the one catheter-tube lumen set forth above that typically extends from the proximal end of the catheter tube 106 to the distal end of the catheter tube 106 as a catheter tube-lumen portion of the distal lumen 124, as well as a fluidly connected hub- and extension leg-lumen portions of the distal lumen 124. In accordance with the foregoing catheter-tube lumen, the introducing lumen 122 of the catheter tube 106 is coincident with a distal-end portion of the distal lumen 124, particularly the distal-end portion of the distal lumen 124 distal of the side aperture 114.


Further with respect to the triluminal embodiment of the RICC 102, the distal lumen 124 has a distal-lumen aperture 130 in the distal end of the RICC 102 (e.g., the distal end of the catheter tube 106 or the distal end of the catheter tip 112). The medial lumen 126 has a medial-lumen aperture 132 in the side of the catheter tube 106 proximal of the distal-lumen aperture 130 and distal of the following proximal-lumen aperture such that the medial lumen 126 is between the distal-lumen aperture 130 and the proximal-lumen aperture. The proximal lumen 128 has a proximal-lumen aperture 134 in the side of the catheter tube 106 proximal of the medial-lumen aperture 132. The side aperture 114 of the catheter tube 106 can be between the distal-lumen aperture 130 and the medial-lumen aperture 132, between the medial-lumen aperture 132 and the proximal-lumen aperture 134, or proximal of the proximal-lumen aperture 134 as shown in FIG. 5 such that each lumen aperture of the distal-lumen aperture 130, the medial-lumen aperture 132, and the proximal-lumen aperture 134 is distal of the side aperture 114.


The RICC 102 can further include a maneuver guidewire 136. While not shown, the maneuver guidewire 136 can include an atraumatic tip (e.g., a coiled or partially coiled tip) and a length sufficient for advancing the maneuver guidewire 136 to the lower ⅓ of the superior vena cava (“SVC”) of the heart. The maneuver guidewire 136 can be captively disposed in the RICC 102 in at least a ready-to-deploy state of the RICC assembly 100. For example, the maneuver guidewire 136 can be disposed in the distal lumen 124 of the RICC 102 with a proximal-end portion or a medial portion of the maneuver guidewire 136 disposed in the extension leg-lumen portion of the distal lumen 124, the medial portion or a distal-end portion of the maneuver guidewire 136 disposed in the hub-lumen portion of the distal lumen 124, and the distal-end portion of the maneuver guidewire 136 disposed in the catheter tube-lumen portion of the distal lumen 124, which is formed of the one catheter-tube lumen set forth above that typically extends from the proximal end of the catheter tube 106 to the distal end of the catheter tube 106. However, the distal-end portion of the foregoing catheter-tube lumen distal of the side aperture 114 is coincident with the introducing lumen 122, which, as set forth below, is occupied by the introducer needle 146 in at least the ready-to-deploy state of the RICC assembly 100. Due to the presence of the introducer needle 146 in the introducing lumen 122, a distal end of the maneuver guidewire 136 is just short of the side aperture 114 in at least the ready-to-deploy state of the RICC assembly 100.


The maneuver guidewire 136 can include a stop 138 (e.g., a hub, a ball, a slug, etc.) about a proximal-end portion of the maneuver guidewire 136 forming a stop end (e.g., a hub end, a ball end, a slug end, etc.) of the maneuver guidewire 136. The stop end of the maneuver guidewire 136 is larger than a proximal-end opening of the distal lumen 124 or the extension leg-lumen portion thereof, thereby providing a distal limit for advancing the maneuver guidewire 136 into the RICC 102. In addition, the maneuver guidewire 136 can be disposed in a fixed-length sterile barrier 188 (e.g., a longitudinal bag) including a closed or sealed proximal end and an otherwise open distal end removably coupled (e.g., removably adhered) to a proximal end of the Luer connector of the extension leg for manual removal of both the sterile barrier and the maneuver guidewire 136 when needed. A combination of the fixed length of the sterile barrier, the closed or sealed proximal end of the sterile barrier, and the distal end of the sterile barrier coupled to the Luer connector provides a limited tract within which the maneuver guidewire 136 can proximally move, thereby providing a proximal limit for withdrawing the maneuver guidewire 136 from the RICC 102. The proximal limit keeps the atraumatic tip of the maneuver guidewire 136 in the distal lumen 124 where, in at least the embodiment of the atraumatic tip having the coiled or partially coiled tip, the atraumatic tip remains in a straightened or uncoiled state, as discussed, for example, in U.S. Pat. Pub. No. 2015/0038943 and U.S. Pat. Pub. No. 2016/0015943, each of which is incorporated by reference in its entirety into this application. This is advantageous for it can be particularly difficult to reinsert such a guidewire in a lumen of a medical device such as a catheter.


Optionally, the stop end of the maneuver guidewire 136 is coupled (e.g., adhered) to the proximal end of the sterile barrier to maintain the stop end of the maneuver guidewire 136 in the proximal end of the sterile barrier, thereby reducing a mismatch between a length of the proximal-end portion of the maneuver guidewire 136 extending beyond the proximal end of the RICC 102 (e.g., a proximal end of the Luer connector) and an unpleated length of the sterile barrier. Reducing the mismatch between the foregoing lengths reduces a likelihood of losing the stop end of the maneuver guidewire 136 in a medial portion of the sterile barrier, which could require time and effort to rematch that would be better spent focusing on the patient.


In addition to providing the proximal limit for withdrawing the maneuver guidewire from the RICC 102, the sterile barrier is configured to maintain sterility of the maneuver guidewire 136 both before use (e.g., shipping and handling, storage, etc.) of the RICC assembly 100 and during use of the RICC assembly 100. During use of the RICC assembly 100, the sterile barrier is configured to provide a no-touch advancing means for advancing the maneuver guidewire 136 into a blood-vessel lumen of a patient upon establishing a needle tract thereto. Likewise, the sterile barrier is configured to provide a no-touch withdrawing means for withdrawing the maneuver guidewire 136 from the blood-vessel lumen of the patient, for example, after the catheter tube 106 has been advanced over the maneuver guidewire 136.


While not shown, the RICC 102 can further include stiffening stylets such as a stylet in either lumen or both lumens of the medial lumen 126 and the proximal lumen 128 of the triluminal embodiment of the RICC 102 for stiffening the RICC 102, thereby providing additional column strength to prevent buckling of the catheter tube 106 when the catheter tube 106 is inserted into an insertion site and advanced through a vasculature of a patient.


The RICC 102 can further include a sterile barrier 190 (e.g., a bag, a casing, etc.) configured to maintain sterility of the catheter tube 106 between the catheter hub 108 and the side aperture 114 of the catheter tube 106 prior to insertion of the catheter tube 106 into a blood-vessel lumen of a patient. When present, the sterile barrier 190 is over the catheter tube 106 between the catheter hub 108 and the side aperture 114 of the catheter tube 106 in at least the ready-to-deploy state of the RICC assembly 100. The sterile barrier 190 is configured to split apart when a sterile-barrier tab 192 of a proximal-end portion of the sterile barrier 190 is pulled away from the catheter tube 106, thereby providing a no-touch mechanism for removing the sterile barrier 190 from the catheter tube 106.


The introducer 104 includes a safety-needle device such as a retractable-needle device 140, a syringe 142, and a coupling hub 144 configured to couple the retractable-needle device 140 and the syringe 142 together. Excepting, for example, a distal-end portion of the introducer needle 146 set forth below, the introducer 104 is proximal of the side aperture 114 of the catheter tube 106 in at least the ready-to-deploy state of the RICC assembly 100 as shown in FIG. 4.


The safety-needle device is configured for ensuring safety of a clinician from injury (e.g., inadvertent needle sticks), contamination, or both while using the RICC assembly 100. For example, the retractable-needle device 140 includes an introducer needle 146, an introducer-needle actuating mechanism configured to retract the introducer needle 146, an access guidewire 148, and an access-guidewire actuating mechanism configured to advance or withdraw the access guidewire 148. One example of an introducer-needle actuating mechanism that retracts the introducer needle 146 to prevent injury, and an access-guidewire actuating mechanism withdraws the access guidewire 148 to prevent contamination is the AccuCath Ace™ Intravascular Catheter System (Becton, Dickinson and Company (BD), Franklin Lakes, N.J.), aspects of which are disclosed in U.S. Pat. Nos. 8,728,035, 9,162,037, and 10,220,191, each of which is incorporated by reference in its entirety into this application. The safety-needle device can alternatively be based upon design principles of the PowerGlide® Midline Catheter products such as the PowerGlide PRO™ Midline Catheter (BD, Franklin Lakes, N.J.), aspects of which are disclosed in U.S. Pat. Nos. 8,721,546, 8,932,258, 8,986,227, 8,998,852, 9,757,540, 9,872,971, 9,950,139, 10,086,171, 10,384,039, and U.S. Pat. No. 10,426,931, each of which is incorporated by reference in its entirety into this application.


The introducer needle 146 has a shaft, a needle lumen along a length of the shaft, a cutout 149 in a side of the shaft that opens into the needle lumen, and a needle tip 150 (e.g., a beveled tip) in a distal-end portion of the shaft. In at least the ready-to-deploy state of the RICC assembly 100, a proximal-end portion of the shaft including the cutout 149 is disposed in the blood-flashback chamber 182 of the coupling hub 144 set forth below, whereas the distal-end portion of the shaft extends through the longitudinal through hole of the coupling hub 144 set forth below, through the side aperture 114 of the catheter tube 106, and along the introducing lumen 122 of the catheter tube 106 in the ready-to-deploy state of the RICC assembly 100. The needle tip 150 extends beyond the distal end of the RICC 102 when the RICC assembly 100 is in at least the ready-to-deploy state of the RICC assembly 100.


The introducer-needle actuating mechanism includes an introducer-needle actuator 152 and a carriage 154 disposed in a cavity 156 enclosed or otherwise defined by a body-forming housing 158 of the retractable-needle device 140. A proximal-end portion of the introducer needle 146 (e.g., the proximal-end portion of the shaft) is disposed in the carriage 154 as well. The carriage 154 can be spring loaded with a compressed compression spring 160 around the carriage 154, wherein the compression spring 160 is compressed between a proximal flange 162 of the carriage 154 and a distal-end piece of the retractable-needle device 140 (e.g., a distal wall of the housing 158) in at least the ready-to-deploy state of the RICC assembly 100. The introducer-needle actuator 152 can include a catch 164 configured to hold the spring-loaded carriage 154 by a complementary recess 166 in a coupling hub-connecting portion of the carriage 154 extending through a distal end of the retractable-needle device 140 or the housing 158 thereof. When the foregoing introducer-needle actuator 152 is toggled, for example, by a button 168 of the introducer-needle actuator 152, the introducer-needle actuator 152 dislodges the catch 164 from the recess 166 in the coupling hub-connecting portion of the carriage 154, thereby releasing the spring-loaded carriage 154 and the compression spring 160 therearound. Releasing the spring-loaded carriage 154 allows the compressed compression spring 160 to relax, which allows potential energy stored by the compressed compression spring 160 to be released. When relaxing, the compression spring 160 proximally extends and thrusts both the carriage 154 and the introducer needle 146 into the cavity 156 of the retractable-needle device 140.


The access guidewire 148 is captively disposed in a combination of the cavity 156 of the retractable-needle device 140 and the needle lumen of the introducer needle 146. In at least the ready-to-deploy state of the RICC assembly 100, a proximal-end portion of the access guidewire 148 is disposed in the cavity 156 and a distal-end portion of the access guidewire 148 is disposed in the needle lumen. Advantageously, a majority of the access guidewire 148 is contained within the retractable-needle device 140 during most if not all operating states of a number of operating states of the RICC assembly 100. Containing the access guidewire 148 within the retractable-needle device 140 also contains any blood or other bodily fluids within the retractable-needle device 140 that result from withdrawing the access guidewire 148 from a blood-vessel lumen of a patient. This minimizes or prevents a potential for contaminating an operating field or any clinicians operating within the operating field with the blood or other bodily fluids.


The access-guidewire actuating mechanism includes an access-guidewire actuator 170 coupled to the proximal-end portion of the access guidewire 148 disposed within the housing 158 of the retractable-needle device 140. For example, the access-guidewire actuator 170 includes a slider 172 slidably disposed in a closed-ended longitudinal slot of the housing 158 of the retractable-needle device 140, the closed ends of the longitudinal slot providing distal and proximal stops for advancing and withdrawing the access guidewire 148, respectively. While not shown, the slider 172 can include an extension extending into the cavity 156 of the retractable-needle device 140 where it is coupled to the proximal-end portion of the access guidewire 148. The foregoing access-guidewire actuator 170 is configured to advance the distal-end portion of the access guidewire 148 beyond the needle tip 150 when the access-guidewire actuator 170 is distally moved in accordance with the longitudinal slot. Likewise, the access-guidewire actuator 170 is configured to withdraw the access guidewire 148 into the retractable-needle device 140 such as the distal-end portion of the access guidewire 148 into the distal-end portion of the shaft or needle lumen proximal of the needle tip 150 when the access-guidewire actuator 170 is proximally moved in accordance with the longitudinal slot.


The access-guidewire actuator 170 can be actuated to withdraw the access guidewire 148 into the retractable-needle device 140 by manual actuation as set forth above or automatic actuation. With respect to automatic actuation, the carriage 154 of the introducer-needle actuating mechanism can be configured to engage the access-guidewire actuator 170 when the carriage 154 is thrust proximally into the cavity 156 of the retractable-needle device 140 by the compression spring 160 as the compression spring 160 relaxes. For example, a proximal end of the carriage 154 can be configured to engage a distal end of the slider 172 or the extension thereof when the carriage 154 is thrust proximally into the cavity 156 of the retractable-needle device 140 by the compression spring 160. The access guidewire 148 is withdrawn into the cavity 156 of the retractable-needle device 140 by the distal-end portion thereof together with the introducer needle 146 when the introducer-needle actuator 152 is automatically actuated.


The syringe 142 includes a barrel 174, a plunger 176 disposed in the barrel 174, and a syringe tip 178 extending from a distal end of the barrel 174, which is fluidly coupled to the side arm 180 of the coupling hub 144 set forth below at least when the RICC assembly 100 is in at least the ready-to-deploy thereof.


As shown, the plunger 176 can include a plunger extension 194 distally extending from a distal-end portion of the plunger along the barrel 174 of the syringe. The plunger extension 194 includes a tab 196 configured to allow a clinician to withdraw the plunger 176 from the barrel 174 of the syringe 142 by proximally pushing the tab 196 such as during the blood-aspirating step set forth below. Such a configuration for withdrawing the plunger 176 from the barrel 174 is advantageous when handling the RICC assembly 100 around the coupling hub 144, which is a preferred position for handling the RICC assembly 100 to minimize large movements in a distal-end portion of the RICC 102. Indeed, the more proximal the position in which the RICC assembly 100 is handled, the larger otherwise small, inadvertent movements of the hand will be in the distal-end portion of the RICC 102.


As set forth above, the coupling hub 144 is configured to couple the retractable-needle device 140 and the syringe 142 together such as in the ready-to-deploy state of the RICC assembly 100. The coupling hub 144 includes a carriage connector configured to connect to the coupling hub-connecting portion of the carriage 154, a side arm 180 extending from a side of the coupling hub 144, and a side-arm connector of the side arm 180 configured to connect to the syringe tip 178 of the syringe 142.


The coupling hub 144 is translucent and preferably colorless for observing blood flashback from a venipuncture with the introducer needle 146. Indeed, the coupling hub 144 includes a sealed blood-flashback chamber 182 proximal of a longitudinal through hole of the coupling hub 144 for observing blood flashback. As set forth above, the proximal-end portion of the shaft of the introducer needle 146 including the cutout 149 is disposed in the blood-flashback chamber 182, which cutout 149 is configured to release blood into the blood-flashback chamber 182 upon the needle tip 150 of the introducer needle 146 accessing a blood-vessel lumen of a patient. In addition, the side arm 180 of the coupling hub 144 includes a side-arm lumen that fluidly couples the syringe 142 to the blood-flashback chamber 182 in at least the ready-to-deploy state of the RICC assembly 100. Once blood flashback is observed in the blood-flashback chamber 182 from a venipuncture with the introducer needle 146, the syringe 142 can be used to aspirate additional blood for confirmation of access to the blood-vessel lumen. Seals (e.g., gaskets) at proximal- and distal-end portions of the blood-flash chamber, as well as a seal 184 (e.g., a gasket) about a proximal end of the shaft of the introducer needle 146 through which a bare, unwound portion of the access guidewire 148 passes, enable aspiration of the additional blood with the syringe 142.


The coupling hub 144 can also include a tab 186 in a distal-end portion of the coupling hub 144. The tab 186 is configured to allow a clinician to single handedly advance the RICC 102 over the needle tip 150 with a single finger of a hand while holding a distal-end portion of the retractable-needle device 140 between a thumb and another finger or fingers of the same hand. The tab 186 facilitates a no-touch mechanism for advancing the RICC 102, specifically the distal-end portion of the catheter tube 106, over the needle tip 150, the distal-end portion of the access guidewire 148, or a combination thereof and into a blood-vessel lumen of a patient.


The coupling hub 144 including the side arm 180 thereof can be rigid for holding the syringe 142 in place alongside the retractable-needle device 140 in the RICC assembly 100 in at least the ready-to-deploy state of the RICC assembly 100. That said, the side arm 180 of the foregoing can alternatively be flexible in some embodiments. In such embodiments, the RICC assembly 100 or the introducer 104 thereof includes a clip 198 having a syringe-clipping portion configured to clip the syringe 142 by the barrel 174 thereof and a needle device-clipping portion configured to clip the retractable-needle device 140 by the body-forming housing 158 thereof. The needle device-clipping portion of the clip 198 is configured to allow the retractable-needle device 140 to slide therein. In other words, the retractable-needle device 140 is slidably disposed in the needle device-clipping portion of the clip 198, which allows for the introducer needle-withdrawing step set forth below.



FIGS. 1-4 illustrate the RICC assembly 100 in at least the ready-to-deploy state thereof. When the RICC assembly 100 is in the ready-to-deploy state, little more than the needle tip 150 of the introducer needle 146 extends from the distal end of the RICC 102 for a venipuncture. Indeed, a distal-end portion (e.g., about 7 cm) of the shaft of the introducer needle 146 extends through the longitudinal through hole of the coupling hub 144, through the side aperture 114 of the catheter tube 106, along the introducing lumen 122 of the catheter tube 106, and through the distal end of the RICC 102 when the RICC assembly 100 is in at least the ready-to-deploy state thereof. However, in some embodiments, 1-3 cm or more of the distal-end portion of the shaft can extend from the distal end of the RICC 102 the venipuncture. In such embodiments, the first section 116 of the catheter tube 106 is shorter in length as opposed to the shaft being longer in length. Additional operating states of the number of operating states of the RICC assembly 100 can be discerned from functional aspect of the RICC assembly 100 set forth above or steps of the method for inserting the RICC 102 set forth below.


Methods


A method of the RICC assembly 100 includes a method for inserting the RICC 102 into a blood-vessel lumen of a patient. Such a method includes, in some embodiments, a RICC assembly-obtaining step, a needle tract-establishing step, a RICC-advancing step, and an introducer needle-withdrawing step.


The RICC assembly-obtaining step includes obtaining the RICC assembly 100. As set forth above, the RICC assembly 100 includes the RICC 102 and the introducer 104. The introducer 104 includes the retractable-needle device 140 and the syringe 142 coupled together by the coupling hub 144.


The method can further include a needle tip-ensuring step of ensuring the needle tip 150 of the introducer needle 146 extends from the distal end of the RICC 102 before the needle tract-establishing step. As set forth above, the retractable-needle device 140 includes the introducer needle 146 having the shaft extending through the longitudinal through hole of the coupling hub 144, through the side aperture 114 in the distal-end portion of the catheter tube 106 of the RICC 102, along the introducing lumen 122 of the catheter tube 106, and beyond the distal end of the RICC 102 in at least the ready-to-deploy state of the RICC assembly 100.


The needle tract-establishing step includes establishing a needle tract from an area of skin to the blood-vessel lumen of the patient with the needle tip 150 of the introducer needle 146 while holding the distal-end portion of the retractable-needle device 140. The needle tract-establishing step can also include ensuring blood flashes back into the sealed blood-flashback chamber 182 of the coupling hub 144. As set forth above, the cutout 149 of the shaft of the introducer needle 146 is disposed in the blood-flashback chamber 182 for releasing blood into the blood-flashback chamber 182 upon accessing the blood-vessel lumen of the patient.


The method can further include a blood aspirating-step. The blood aspirating-step includes aspirating blood with the syringe 142 after the needle tract-establishing step but before the introducer needle-withdrawing step. Again, the syringe 142 is fluidly coupled to the blood-flashback chamber 182 of the coupling hub 144 by the side-arm lumen of the side arm 180 for the blood aspirating-step. The blood aspirating-step confirms the needle tip 150 is disposed in the blood-vessel lumen of the patient.


The method can further include an access guidewire-advancing step. The access guidewire-advancing step includes advancing the distal-end portion of the access guidewire 148 from the needle lumen of the introducer needle 146 into the blood-vessel lumen, which facilitates first-stick success by making the access guidewire 148 immediately available before the blood-lumen vessel can be lost due to small inadvertent movements of the RICC assembly 100. The distal-end portion of the access guidewire 148 is advanced, in some embodiments, by distally sliding the slider 172 in the longitudinal slot of the housing 158 of the retractable-needle device 140. As set forth above, the slider 172 can include an extension coupled to the proximal-end portion of the access guidewire 148 disposed in the cavity 156 defined by the housing 158 of the retractable-needle device 140. The access guidewire-advancing step is performed before the first RICC-advancing step such that the distal-end portion of the catheter tube 106 can be advanced over the access guidewire 148 as well as the needle tip 150 of the introducer needle 146.


The first RICC-advancing step includes advancing the distal-end portion of the catheter tube 106 into the blood-vessel lumen over the needle tip 150, the access guidewire 148, or both. As set forth above, the catheter tube 106 includes the first section 116 formed of the first material having the first durometer and the second section 118 formed of the second material having the second durometer less than the first durometer. The first section 116 of the catheter tube 106 is configured with a column strength for advancing the catheter tube 106 into the blood-vessel lumen over the access guidewire 148 or the maneuver guidewire 136 set forth below provided in the maneuver guidewire-advancing step. For example, the first RICC-advancing step can include advancing the catheter tube 106 into the blood-vessel lumen with a single finger of a hand (e.g., with a flick-type motion of the finger) while holding the distal-end portion of the retractable-needle device 140 between a thumb and another finger or fingers of the same hand. The coupling hub 144 includes the tab 186 configured for advancing the catheter tube 106 into the blood-vessel lumen with the single finger. When the coupling is advanced by the single finger, the coupling hub 144, in turn, advances the catheter tube 106 into the blood-vessel lumen.


The introducer needle-withdrawing step includes withdrawing the shaft of the introducer needle 146 from the blood-vessel lumen of the patient, as well as the introducing lumen 122 of the RICC 102 by way of the side aperture 114 of the catheter tube 106. The introducer needle-withdrawing step includes actuating the introducer-needle actuator 152 (e.g., by the button 168) of the retractable-needle device 140. As set forth above, the proximal-end portion of the introducer needle 146 is disposed in the spring-loaded carriage 154 of the retractable-needle device 140, which is configured to thrust proximally into the cavity 156 of the retractable-needle device 140 when the compressed compression spring 160 around the carriage 154 is released by the introducer-needle actuator 152.


The method can further include an access guidewire-withdrawing step of withdrawing the access guidewire 148 from at least the blood-vessel lumen of the patient. The access guidewire-withdrawing step can be performed manually by manual actuation of the access-guidewire actuator 170. For example, the access guidewire 148 can be manually withdrawn from the blood-vessel lumen of the patient by proximally sliding the slider 172 in the longitudinal slot of the housing 158 of the retractable-needle device 140. Alternatively, the access guidewire-withdrawing step can be performed automatically by automatic actuation of the access-guidewire actuator 170. For example, the carriage 154 of the introducer-needle actuating mechanism can be configured to engage the access-guidewire actuator 170 (e.g., the slider 172 or the extension thereof) when the carriage 154 is thrust proximally into the cavity 156 of the retractable-needle device 140 by the compression spring 160. Thus, when the introducer-needle actuator 152 is actuated to release the spring-loaded carriage 154 in the introducer needle-withdrawing step, the access guidewire-withdrawing step is also performed.


Combined, the introducer needle-withdrawing step and the access guidewire-withdrawing step can be considered an introducer-removing step of completely removing the introducer 104 from the RICC 102. Depending upon a length of the access guidewire 148, however, the introducer-removing step can further include separating the introducer 104 from the RICC 102 a distance sufficient to completely withdraw the access guidewire 148 from the introducing lumen 122 of the RICC 102 by way of the side aperture 114 of the catheter tube 106. The introducer-removing step can be performed after the first RICC-advancing step such as after the distal-end portion of the catheter tube 106 is suitably placed within the blood-vessel lumen over both the needle tip 150 and the access guidewire 148.


The method can further a maneuver guidewire-advancing step. The maneuver guidewire-advancing step includes advancing the maneuver guidewire 136 into the blood-vessel lumen by way of, for example, the distal-lumen aperture 130 in the distal end of the RICC 102. As set forth above, the introducing lumen 122 of the catheter tube 106 is coincident with the distal-end portion of the distal lumen 124, particularly the distal-end portion of the distal lumen 124 distal of the side aperture 114. As such, the introducer-removing step of completely removing the introducer 104 from the RICC 102 is mandated before the maneuver guidewire-advancing step to ensure the distal lumen 124, or the introducing lumen 122 thereof, is free of both the introducer needle 146 and the access guidewire 148


The method can further include a second RICC-advancing step of advancing the distal-end portion of the catheter tube 106 farther into the blood-vessel lumen over the maneuver guidewire 136 such as to the SVC. The maneuver guidewire 136 provides the second section 118 of the catheter tube 106 sufficient column strength for the second RICC-advancing step.


The method can further include a sterile barrier-removing step when the sterile barrier is present over the catheter tube 106 between the catheter hub 108 of the RICC 102 and the side aperture 114 of the catheter tube 106. The sterile barrier-removing step includes removing the sterile barrier. The sterile barrier is removed by pulling the sterile-barrier tab of the proximal-end portion of the sterile barrier away from the catheter tube 106 to split the sterile barrier apart.


The method can further include a maneuver guidewire-withdrawing step of withdrawing the maneuver guidewire 136 from the blood-vessel lumen of the patient, as well as completely removing the maneuver guidewire 136 from the RICC 102.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. A rapidly insertable central catheter (“RICC”) assembly, comprising: a RICC including: a catheter tube including a side aperture through a side of the catheter tube in a distal-end portion of the catheter tube, the side aperture opening into an introducing lumen of the catheter tube that extends from at least the side aperture to a distal end of the RICC; anda catheter hub coupled to a proximal-end portion of the catheter tube; andone or more extension legs, each extension leg of the one or more extension legs coupled to the catheter hub by a distal-end portion of the catheter hub;an introducer including: a retractable-needle device including an introducer needle having a shaft and a needle tip in a distal-end portion of the shaft, a proximal-end portion of the shaft disposed in a carriage of the retractable-needle device; anda syringe; anda coupling hub coupling the retractable-needle device and the syringe together proximal of the side aperture with the shaft of the introducer needle extending from the carriage, through a sealed blood-flashback chamber of the coupling hub, and out a longitudinal through hole of the coupling hub distal of the blood-flashback chamber such that the needle tip extends beyond the distal end of the RICC when the RICC assembly is in at least a ready-to-deploy state of the RICC assembly.
  • 2. The RICC assembly of claim 1, wherein a cutout of the shaft of the introducer needle is disposed in the blood-flashback chamber, the cutout configured to release blood into the blood-flashback chamber upon the needle tip accessing a blood-vessel lumen of a patient.
  • 3. The RICC assembly of claim 1, wherein the coupling hub includes a side arm extending from a side of the coupling hub, the syringe fluidly coupled to the blood-flashback chamber by a side-arm lumen of the side arm for aspirating blood upon the needle tip accessing a blood-vessel lumen of a patient.
  • 4. The RICC assembly of claim 1, the introducer further including: a clip having a syringe-clipping portion and needle device-clipping portion, the syringe-clipping portion of the clip configured to clip the syringe by a barrel of the syringe and the needle device-clipping portion of the clip configured to clip the retractable-needle device by a body of the retractable-needle device while allowing the retractable-needle device to slide in the needle device-clipping portion of the clip.
  • 5. The RICC assembly of claim 4, wherein the syringe includes a plunger disposed in the barrel of the syringe, the plunger including a plunger extension configured to allow a clinician to withdraw the plunger from the barrel by proximally pushing a tab of the plunger extension while handling the RICC assembly around the coupling hub.
  • 6. The RICC assembly of claim 1, wherein the coupling hub includes a tab configured to allow a clinician to single handedly advance the RICC over the needle tip with a single finger of a hand while holding a distal-end portion of the retractable-needle device between a thumb and another finger or fingers of the hand.
  • 7. The RICC assembly of claim 1, the retractable-needle device further including: an access guidewire disposed in a needle lumen of the introducer needle; andan access-guidewire actuator configured to advance a distal-end portion of the access guidewire beyond the needle tip or withdraw the distal-end portion of the access guidewire into the distal-end portion of the shaft of the introducer needle proximal of the needle tip.
  • 8. The RICC assembly of claim 7, wherein the access-guidewire actuator includes a slider slidably disposed in a longitudinal slot of a housing of the retractable-needle device, the slider including an extension coupled to a proximal-end portion of the access guidewire within a cavity of the retractable-needle device enclosed by the housing.
  • 9. The RICC assembly of claim 8, wherein an introducer-needle actuator of the retractable-needle device is configured to release a compressed compression spring around the carriage when actuated and thrust both the carriage and the introducer needle proximally into the cavity of the retractable-needle device.
  • 10. The RICC assembly of claim 9, wherein the carriage is configured to engage the slider of the access-guidewire actuator when the carriage is thrust proximally into the cavity of the retractable-needle device, thereby withdrawing the access guidewire into the cavity of the retractable-needle device by the distal-end portion thereof together with the introducer needle when the introducer-needle actuator is actuated.
  • 11. The RICC assembly of claim 7, wherein a bare, unwound portion of the access guidewire passes through a seal about a proximal end of the shaft of the introducer needle, thereby enabling aspiration of blood with the syringe upon the needle tip accessing a blood-vessel lumen of a patient.
  • 12. The RICC assembly of claim 1, the RICC further including a sterile barrier over the catheter tube between the catheter hub and the side aperture of the catheter tube, the sterile barrier configured to split apart when a sterile-barrier tab of a proximal-end portion of the sterile barrier is pulled away from the catheter tube by the sterile-barrier tab.
  • 13. The RICC assembly of claim 1, wherein the RICC includes a set of three lumens including a distal lumen, a medial lumen, and a proximal lumen formed of fluidly connected portions of three catheter-tube lumens, three hub lumens, and three extension-leg lumens, the introducing lumen of the catheter tube coincident with a distal-end portion of the distal lumen, and wherein the distal lumen has a distal-lumen aperture in the distal end of the RICC, the medial lumen has a medial-lumen aperture in the side of the catheter tube proximal of the distal-lumen aperture, the proximal lumen has a proximal-lumen aperture in the side of the catheter tube proximal of the medial-lumen aperture, and the side aperture of the catheter tube is between the distal-lumen aperture and the medial-lumen aperture, between the medial-lumen aperture and the proximal-lumen aperture, or proximal of the proximal-lumen aperture.
  • 14. The RICC assembly of claim 1, wherein the blood-flashback chamber includes a seal in a proximal-end portion of the blood-flashback chamber and another seal in a distal-end portion of the blood-flashback chamber.
  • 15. A method for inserting a rapidly insertable central catheter (“RICC) into a blood-vessel lumen of a patient, comprising: obtaining a RICC assembly including the RICC and an introducer of a retractable-needle device and a syringe coupled together by a coupling hub, the retractable-needle device including an introducer needle having a shaft extending from a carriage of the retractable-needle device, through a sealed blood-flashback chamber of the coupling hub, and out a longitudinal through hole of the coupling hub distal of the blood-flashback chamber, through a side aperture in a distal-end portion of a catheter tube of the RICC, along an introducing lumen of the catheter tube, and beyond a distal end of the RICC in at least a ready-to-deploy state of the RICC assembly;establishing a needle tract from an area of skin to the blood-vessel lumen of the patient with a needle tip of the introducer needle while holding a distal-end portion of the retractable-needle device;advancing a distal-end portion of the catheter tube into the blood-vessel lumen over the needle tip; andwithdrawing the shaft of the introducer needle from the introducing lumen by way of the side aperture of the catheter tube.
  • 16. The method of claim 15, wherein establishing the needle tract includes ensuring blood flashes back into the blood-flashback chamber of the coupling hub, a cutout of the shaft of the introducer needle disposed in the blood-flashback chamber between seals at proximal- and distal-end portions of the blood-flashback chamber for releasing blood into the blood-flashback chamber upon establishing the needle tract.
  • 17. The method of claim 16, further comprising aspirating blood with the syringe before withdrawing the shaft of the introducer needle from the introducing lumen, thereby confirming the needle tip is disposed in the blood-vessel lumen of the patient, the syringe fluidly coupled to the blood-flashback chamber by a side-arm lumen of a side arm of the coupling hub for aspirating blood upon accessing the blood-vessel lumen of the patient.
  • 18. The method of claim 15, wherein advancing the distal-end portion of the catheter tube into the blood-vessel lumen includes advancing the catheter tube into the blood-vessel lumen with a single finger of a hand while holding a distal-end portion of the retractable-needle device between a thumb and another finger or fingers of the hand, the coupling hub including a tab configured for advancing the catheter tube into the blood-vessel lumen with the single finger.
  • 19. The method of claim 15, further comprising advancing a distal-end portion of an access guidewire disposed in a needle lumen of the introducer needle into the blood-vessel lumen before advancing the distal-end portion of the catheter tube into the blood-vessel lumen over the needle tip, the advancing step including sliding a slider slidably disposed in a longitudinal slot of a housing of the retractable-needle device, which slider includes an extension coupled to a proximal-end portion of the access guidewire disposed in a cavity of the retractable-needle device enclosed by the housing.
  • 20. The method of claim 19, wherein withdrawing the shaft of the introducer needle from the introducing lumen of the catheter tube includes actuating an introducer-needle actuator of the retractable-needle device, a proximal-end portion of the introducer needle disposed in the carriage of the retractable-needle device configured to thrust proximally into the cavity of the retractable-needle device when a compressed compression spring around the carriage is released by the introducer-needle actuator.
  • 21. The method of claim 15, further comprising advancing a maneuver guidewire into the blood-vessel lumen by way of a distal lumen having a distal-lumen aperture in the distal end of the RICC, the introducing lumen of the catheter tube coincident with a distal-end portion of the distal lumen, thereby mandating withdrawing the shaft of the introducer needle from the introducing lumen of the catheter tube before advancing the maneuver guidewire into the blood-vessel lumen.
  • 22. The method of claim 15, further comprising removing a sterile barrier disposed over the catheter tube between a catheter hub of the RICC and the side aperture of the catheter tube by pulling a sterile-barrier tab of a proximal-end portion of the sterile barrier away from the catheter tube to split the sterile barrier apart.
  • 23. A rapidly insertable central catheter (“RICC”) assembly, comprising: a RICC including a catheter tube having a side aperture through a side of the catheter tube in a distal-end portion thereof, the side aperture opening into an introducing lumen of the catheter tube that extends from at least the side aperture to a distal end of the RICC;an introducer including: a retractable-needle device including an introducer needle having a shaft, a cutout of the shaft, and a needle tip in a distal-end portion of the shaft, a proximal-end portion of the shaft disposed in a carriage of the retractable-needle device; anda syringe; anda coupling hub including: a side arm;a sealed blood-flashback chamber having a seal in a proximal-end portion of the blood-flashback chamber and another seal in a distal-end portion of the blood-flashback chamber; anda longitudinal through hole distal of the blood-flashback chamber, the coupling hub coupling the retractable-needle device and the syringe together proximal of the side aperture in at least a ready-to-deploy state of the RICC assembly, in which: the shaft of the introducer needle extends from the carriage, through the blood-flashback chamber of the coupling hub, out the longitudinal through hole of the coupling hub, and through the introducing lumen of the catheter tube such that the needle tip extends beyond the distal end of the RICC;the cutout of the shaft is disposed in the blood-flashback chamber for releasing blood into the blood-flashback chamber upon the needle tip accessing a blood-vessel lumen of a patient; andthe syringe is fluidly coupled to the blood-flashback chamber by a side-arm lumen of the side arm for aspirating blood through the blood-flashback chamber upon accessing the blood-vessel lumen.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 63/028,445, filed May 21, 2020, which is incorporated by reference in its entirety into this application.

US Referenced Citations (336)
Number Name Date Kind
1013691 Shields Jan 1912 A
3225762 Guttman Dec 1965 A
3382872 Rubin May 1968 A
3570485 Reilly Mar 1971 A
3890976 Bazell et al. Jun 1975 A
4205675 Vaillancourt Jun 1980 A
4292970 Hession, Jr. Oct 1981 A
4468224 Enzmann et al. Aug 1984 A
4525157 Vaillancourt Jun 1985 A
4581019 Curelaru et al. Apr 1986 A
4594073 Stine Jun 1986 A
4702735 Luther et al. Oct 1987 A
4743265 Whitehouse et al. May 1988 A
4766908 Clement Aug 1988 A
4863432 Kvalo Sep 1989 A
4950252 Luther et al. Aug 1990 A
4994040 Cameron et al. Feb 1991 A
5017259 Kohsai May 1991 A
5040548 Yock Aug 1991 A
5057073 Martin Oct 1991 A
5112312 Luther May 1992 A
5115816 Lee May 1992 A
5120317 Luther Jun 1992 A
5158544 Weinstein Oct 1992 A
5188593 Martin Feb 1993 A
5195962 Martin et al. Mar 1993 A
5207650 Martin May 1993 A
5267958 Buchbinder et al. Dec 1993 A
5295970 Clinton et al. Mar 1994 A
5306247 Pfenninger Apr 1994 A
5322512 Mohiuddin Jun 1994 A
5328472 Steinke et al. Jul 1994 A
5350358 Martin Sep 1994 A
5358495 Lynn Oct 1994 A
5368567 Lee Nov 1994 A
5378230 Mahurkar Jan 1995 A
5380290 Makower et al. Jan 1995 A
5389087 Miraki Feb 1995 A
5439449 Mapes et al. Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5460185 Johnson et al. Oct 1995 A
5489271 Andersen Feb 1996 A
5573520 Schwartz et al. Nov 1996 A
5683370 Luther et al. Nov 1997 A
5718678 Fleming, III Feb 1998 A
5772636 Brimhall et al. Jun 1998 A
5885251 Luther Mar 1999 A
5919164 Andersen Jul 1999 A
5921971 Agro et al. Jul 1999 A
5947940 Beisel Sep 1999 A
5957893 Luther et al. Sep 1999 A
5971957 Luther et al. Oct 1999 A
6159198 Gardeski et al. Dec 2000 A
6206849 Martin et al. Mar 2001 B1
6228062 Howell et al. May 2001 B1
6475187 Gerberding Nov 2002 B1
6606515 Windheuser et al. Aug 2003 B1
6626869 Bint Sep 2003 B1
6716228 Tal Apr 2004 B2
6726659 Stocking et al. Apr 2004 B1
6819951 Patel et al. Nov 2004 B2
6821287 Jang Nov 2004 B1
6926692 Katoh et al. Aug 2005 B2
6962575 Tal Nov 2005 B2
6991625 Gately et al. Jan 2006 B1
6994693 Tal Feb 2006 B2
6999809 Currier et al. Feb 2006 B2
7025746 Tal Apr 2006 B2
7029467 Currier et al. Apr 2006 B2
7037293 Carrillo et al. May 2006 B2
7074231 Jang Jul 2006 B2
7141050 Deal et al. Nov 2006 B2
7144386 Korkor et al. Dec 2006 B2
7311697 Osborne Dec 2007 B2
7364566 Elkins et al. Apr 2008 B2
7377910 Katoh et al. May 2008 B2
7390323 Jang Jun 2008 B2
D600793 Bierman et al. Sep 2009 S
D601242 Bierman et al. Sep 2009 S
D601243 Bierman et al. Sep 2009 S
7594911 Powers et al. Sep 2009 B2
7691093 Brimhall Apr 2010 B2
7722567 Tal May 2010 B2
D617893 Bierman et al. Jun 2010 S
D624643 Bierman et al. Sep 2010 S
7819889 Healy et al. Oct 2010 B2
7857788 Racz Dec 2010 B2
D630729 Bierman et al. Jan 2011 S
7909797 Kennedy, II et al. Mar 2011 B2
7909811 Agro et al. Mar 2011 B2
7922696 Tal et al. Apr 2011 B2
7938820 Webster et al. May 2011 B2
7967834 Tal et al. Jun 2011 B2
7976511 Fojtik Jul 2011 B2
7985204 Katoh et al. Jul 2011 B2
8073517 Burchman Dec 2011 B1
8105286 Anderson et al. Jan 2012 B2
8192402 Anderson et al. Jun 2012 B2
8202251 Bierman et al. Jun 2012 B2
8206356 Katoh et al. Jun 2012 B2
8361011 Mendels Jan 2013 B2
8372107 Tupper Feb 2013 B2
8377006 Tal et al. Feb 2013 B2
8454577 Joergensen et al. Jun 2013 B2
8585858 Kronfeld et al. Nov 2013 B2
8657790 Tal et al. Feb 2014 B2
8672888 Tal Mar 2014 B2
8696645 Tal et al. Apr 2014 B2
8784362 Boutilette et al. Jul 2014 B2
8827958 Bierman et al. Sep 2014 B2
8876704 Golden et al. Nov 2014 B2
8882713 Call et al. Nov 2014 B1
8900192 Anderson et al. Dec 2014 B2
8900207 Uretsky Dec 2014 B2
8915884 Tal et al. Dec 2014 B2
8956327 Bierman et al. Feb 2015 B2
9023093 Pal May 2015 B2
9126012 McKinnon et al. Sep 2015 B2
9138252 Bierman et al. Sep 2015 B2
9180275 Helm Nov 2015 B2
9265920 Rundquist et al. Feb 2016 B2
9272121 Piccagli Mar 2016 B2
9445734 Grunwald Sep 2016 B2
9522254 Belson Dec 2016 B2
9554785 Walters et al. Jan 2017 B2
9566087 Bierman et al. Feb 2017 B2
9675784 Belson Jun 2017 B2
9713695 Bunch et al. Jul 2017 B2
9764117 Bierman et al. Sep 2017 B2
9770573 Golden et al. Sep 2017 B2
9814861 Boutillette et al. Nov 2017 B2
9820845 von Lehe et al. Nov 2017 B2
9861383 Clark Jan 2018 B2
9872971 Blanchard Jan 2018 B2
9884169 Bierman et al. Feb 2018 B2
9889275 Voss et al. Feb 2018 B2
9913585 McCaffrey et al. Mar 2018 B2
9913962 Tal et al. Mar 2018 B2
9981113 Bierman May 2018 B2
10010312 Tegels Jul 2018 B2
10065020 Gaur Sep 2018 B2
10086170 Chhikara et al. Oct 2018 B2
10098724 Adams et al. Oct 2018 B2
10111683 Tsamir et al. Oct 2018 B2
10118020 Avneri et al. Nov 2018 B2
10130269 McCaffrey et al. Nov 2018 B2
10220184 Clark Mar 2019 B2
10220191 Belson et al. Mar 2019 B2
10265508 Baid Apr 2019 B2
10271873 Steingisser et al. Apr 2019 B2
10376675 Mitchell et al. Aug 2019 B2
10675440 Abitabilo et al. Jun 2020 B2
10806901 Burkholz et al. Oct 2020 B2
10926060 Stern et al. Feb 2021 B2
20020040231 Wysoki Apr 2002 A1
20020198492 Miller et al. Dec 2002 A1
20030036712 Heh et al. Feb 2003 A1
20030060863 Dobak Mar 2003 A1
20030088212 Tal May 2003 A1
20030100849 Jang May 2003 A1
20030153874 Tal Aug 2003 A1
20030158514 Tal Aug 2003 A1
20040015138 Currier et al. Jan 2004 A1
20040064086 Gottlieb et al. Apr 2004 A1
20040116864 Boudreaux Jun 2004 A1
20040116901 Appling Jun 2004 A1
20040167478 Mooney et al. Aug 2004 A1
20040193093 Desmond Sep 2004 A1
20040230178 Wu Nov 2004 A1
20050004554 Osborne Jan 2005 A1
20050120523 Schweikert Jun 2005 A1
20050131343 Abrams et al. Jun 2005 A1
20050215956 Nerney Sep 2005 A1
20050245882 Elkins et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060009740 Higgins et al. Jan 2006 A1
20060116629 Tal et al. Jun 2006 A1
20060129100 Tal Jun 2006 A1
20060129130 Tal et al. Jun 2006 A1
20070276288 Khaw Nov 2007 A1
20080045894 Perchik et al. Feb 2008 A1
20080125744 Treacy May 2008 A1
20080125748 Patel May 2008 A1
20080132850 Fumiyama et al. Jun 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080294111 Tal et al. Nov 2008 A1
20080312578 DeFonzo et al. Dec 2008 A1
20080319387 Amisar et al. Dec 2008 A1
20090187147 Kurth et al. Jul 2009 A1
20090221961 Tal et al. Sep 2009 A1
20090270889 Tal et al. Oct 2009 A1
20100030154 Duffy Feb 2010 A1
20100256487 Hawkins et al. Oct 2010 A1
20100298839 Castro Nov 2010 A1
20100305474 DeMars et al. Dec 2010 A1
20110004162 Tal Jan 2011 A1
20110009827 Bierman et al. Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110066142 Tal et al. Mar 2011 A1
20110071502 Asai Mar 2011 A1
20110144620 Tal Jun 2011 A1
20110152836 Riopelle et al. Jun 2011 A1
20110202006 Bierman et al. Aug 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110270192 Anderson et al. Nov 2011 A1
20120041371 Tal et al. Feb 2012 A1
20120065590 Bierman et al. Mar 2012 A1
20120078231 Hoshinouchi Mar 2012 A1
20120130411 Tal et al. May 2012 A1
20120130415 Tal et al. May 2012 A1
20120157854 Kumis et al. Jun 2012 A1
20120215171 Christiansen Aug 2012 A1
20120220942 Hall et al. Aug 2012 A1
20120283640 Anderson et al. Nov 2012 A1
20120316500 Bierman et al. Dec 2012 A1
20130053763 Makino et al. Feb 2013 A1
20130053826 Shevgoor Feb 2013 A1
20130123704 Bierman et al. May 2013 A1
20130158338 Kelly et al. Jun 2013 A1
20130188291 Vardiman Jul 2013 A1
20130237931 Tal et al. Sep 2013 A1
20130306079 Tracy Nov 2013 A1
20140025036 Bierman et al. Jan 2014 A1
20140081210 Bierman et al. Mar 2014 A1
20140100552 Gallacher et al. Apr 2014 A1
20140207052 Tal et al. Jul 2014 A1
20140207069 Bierman et al. Jul 2014 A1
20140214005 Belson Jul 2014 A1
20140257111 Yamashita et al. Sep 2014 A1
20140276432 Bierman et al. Sep 2014 A1
20140276599 Cully et al. Sep 2014 A1
20150080939 Adams et al. Mar 2015 A1
20150094653 Pacheco et al. Apr 2015 A1
20150112310 Call et al. Apr 2015 A1
20150126930 Bierman et al. May 2015 A1
20150148595 Bagwell et al. May 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150196210 McCaffrey et al. Jul 2015 A1
20150224287 Bian et al. Aug 2015 A1
20150283357 Lampropoulos et al. Oct 2015 A1
20150297868 Tal et al. Oct 2015 A1
20150320969 Haslinger et al. Nov 2015 A1
20150320977 Vitullo et al. Nov 2015 A1
20150351793 Bierman et al. Dec 2015 A1
20150359549 Lenker et al. Dec 2015 A1
20150359998 Carmel et al. Dec 2015 A1
20160082223 Barnell Mar 2016 A1
20160114124 Tal Apr 2016 A1
20160158523 Helm Jun 2016 A1
20160220786 Mitchell et al. Aug 2016 A1
20160325073 Davies et al. Nov 2016 A1
20160338728 Tal Nov 2016 A1
20160346503 Jackson et al. Dec 2016 A1
20170035990 Swift Feb 2017 A1
20170072165 Lim et al. Mar 2017 A1
20170120000 Osypka et al. May 2017 A1
20170120014 Harding et al. May 2017 A1
20170120034 Kaczorowski May 2017 A1
20170128700 Roche Rebollo May 2017 A1
20170156987 Babbs et al. Jun 2017 A1
20170172653 Urbanski et al. Jun 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20170259043 Chan et al. Sep 2017 A1
20170273713 Shah et al. Sep 2017 A1
20170326339 Bailey et al. Nov 2017 A1
20170361070 Hivert Dec 2017 A1
20170368255 Provost et al. Dec 2017 A1
20180021545 Mitchell et al. Jan 2018 A1
20180116690 Sarabia et al. May 2018 A1
20180117284 Appling et al. May 2018 A1
20180133438 Hulvershorn et al. May 2018 A1
20180154062 DeFonzo et al. Jun 2018 A1
20180154112 Chan et al. Jun 2018 A1
20180214674 Ebnet et al. Aug 2018 A1
20180296799 Horst et al. Oct 2018 A1
20180296804 Bierman Oct 2018 A1
20180310955 Lindekugel et al. Nov 2018 A1
20190015646 Matlock et al. Jan 2019 A1
20190060616 Solomon Feb 2019 A1
20190076167 Fantuzzi et al. Mar 2019 A1
20190134349 Cohn et al. May 2019 A1
20190192824 Cordeiro et al. Jun 2019 A1
20190201665 Turpin Jul 2019 A1
20190209812 Burkholz et al. Jul 2019 A1
20190255294 Mitchell et al. Aug 2019 A1
20190255298 Mitchell et al. Aug 2019 A1
20190275303 Tran et al. Sep 2019 A1
20190276268 Akingba Sep 2019 A1
20190321590 Burkholz et al. Oct 2019 A1
20200001051 Huang et al. Jan 2020 A1
20200016374 Burkholz et al. Jan 2020 A1
20200046948 Burkholz et al. Feb 2020 A1
20200100716 Devgon et al. Apr 2020 A1
20200129732 Vogt et al. Apr 2020 A1
20200147349 Holt May 2020 A1
20200197684 Wax Jun 2020 A1
20200237278 Asbaghi Jul 2020 A1
20200359995 Walsh et al. Nov 2020 A1
20210030944 Cushen et al. Feb 2021 A1
20210069471 Howell Mar 2021 A1
20210085927 Howell Mar 2021 A1
20210100985 Akcay et al. Apr 2021 A1
20210113809 Howell Apr 2021 A1
20210113810 Howell Apr 2021 A1
20210113816 DiCianni Apr 2021 A1
20210121661 Howell Apr 2021 A1
20210121667 Howell Apr 2021 A1
20210228842 Scherich et al. Jul 2021 A1
20210228843 Howell et al. Jul 2021 A1
20210290898 Burkholz Sep 2021 A1
20210290901 Burkholz et al. Sep 2021 A1
20210290913 Horst et al. Sep 2021 A1
20210322729 Howell Oct 2021 A1
20210330941 Howell et al. Oct 2021 A1
20210330942 Howell Oct 2021 A1
20210402149 Howell Dec 2021 A1
20210402153 Howell et al. Dec 2021 A1
20220001138 Howell Jan 2022 A1
20220032013 Howell et al. Feb 2022 A1
20220032014 Howell et al. Feb 2022 A1
20220062528 Thornley et al. Mar 2022 A1
20220126064 Tobin et al. Apr 2022 A1
20220193376 Spataro et al. Jun 2022 A1
20220193377 Haymond et al. Jun 2022 A1
20220193378 Spataro et al. Jun 2022 A1
20220323723 Spataro et al. Oct 2022 A1
20220331563 Papadia Oct 2022 A1
20230042898 Howell et al. Feb 2023 A1
20230096377 West et al. Mar 2023 A1
20230096740 Bechstein et al. Mar 2023 A1
20230099654 Blanchard et al. Mar 2023 A1
20230100482 Howell Mar 2023 A1
20230101455 Howell et al. Mar 2023 A1
20230102231 Bechstein et al. Mar 2023 A1
20230233814 Howell et al. Jul 2023 A1
Foreign Referenced Citations (102)
Number Date Country
202012006191 Jul 2012 DE
0653220 May 1995 EP
0730880 Sep 1996 EP
2061385 May 2009 EP
1458437 Mar 2010 EP
2248549 Nov 2010 EP
2319576 May 2011 EP
2366422 Sep 2011 EP
2486880 Aug 2012 EP
2486881 Aug 2012 EP
2486951 Aug 2012 EP
2512576 Oct 2012 EP
2152348 Feb 2015 EP
3473291 Apr 2019 EP
3093038 May 2019 EP
2260897 Sep 2019 EP
3693051 Aug 2020 EP
1273547 May 1972 GB
2004248987 Sep 2004 JP
2008054859 Mar 2008 JP
9421315 Sep 1994 WO
9532009 Nov 1995 WO
9844979 Oct 1998 WO
9853871 Dec 1998 WO
9912600 Mar 1999 WO
9926681 Jun 1999 WO
0006221 Feb 2000 WO
2003008020 Jan 2003 WO
2003057272 Jul 2003 WO
03068073 Aug 2003 WO
2003066125 Aug 2003 WO
2005096778 Oct 2005 WO
2006055288 May 2006 WO
2006055780 May 2006 WO
2007046850 Apr 2007 WO
2008033983 Mar 2008 WO
2008092029 Jul 2008 WO
2008131300 Oct 2008 WO
2008131289 Oct 2008 WO
2009114833 Sep 2009 WO
2009114837 Sep 2009 WO
2010048449 Apr 2010 WO
2010056906 May 2010 WO
2010083467 Jul 2010 WO
2010132608 Nov 2010 WO
2011081859 Jul 2011 WO
2011097639 Aug 2011 WO
2011109792 Sep 2011 WO
2011146764 Nov 2011 WO
2012068162 May 2012 WO
2012068166 May 2012 WO
2012135761 Oct 2012 WO
2012154277 Nov 2012 WO
2012162677 Nov 2012 WO
2013026045 Feb 2013 WO
2013138519 Sep 2013 WO
2014006403 Jan 2014 WO
2014100392 Jun 2014 WO
2014113257 Jul 2014 WO
2014152005 Sep 2014 WO
2014197614 Dec 2014 WO
2015057766 Apr 2015 WO
2015077560 May 2015 WO
2015168655 Nov 2015 WO
2016110824 Jul 2016 WO
2016123278 Aug 2016 WO
2016139590 Sep 2016 WO
2016139597 Sep 2016 WO
2016178974 Nov 2016 WO
2016187063 Nov 2016 WO
2016176065 Nov 2016 WO
2018089275 May 2018 WO
2018089285 May 2018 WO
2018089385 May 2018 WO
2018191547 Oct 2018 WO
2018213148 Nov 2018 WO
2018218236 Nov 2018 WO
2019050576 Mar 2019 WO
2019146026 Aug 2019 WO
2019199734 Oct 2019 WO
2020014149 Jan 2020 WO
2020069395 Apr 2020 WO
2020109448 Jun 2020 WO
2020113123 Jun 2020 WO
2021050302 Mar 2021 WO
2021077103 Apr 2021 WO
2021062023 Apr 2021 WO
2021081205 Apr 2021 WO
2021086793 May 2021 WO
2021236950 Nov 2021 WO
2022031618 Feb 2022 WO
2022094141 May 2022 WO
2022133297 Jun 2022 WO
2022-140406 Jun 2022 WO
2022140429 Jun 2022 WO
2022217098 Oct 2022 WO
2023014994 Feb 2023 WO
2023049498 Mar 2023 WO
2023049505 Mar 2023 WO
2023049511 Mar 2023 WO
2023049519 Mar 2023 WO
2023049522 Mar 2023 WO
Non-Patent Literature Citations (52)
Entry
PCT/US2021/014700 filed Jan. 22, 2021 International Search Report and Written Opinion dated Jun. 29, 2021.
PCT/US2021/028018 filed Apr. 19, 2021 International Search Report and Written Opinion dated Sep. 13, 2021.
PCT/US2021/028683 filed Apr. 22, 2021 International Search Report and Written Opinion dated Sep. 16, 2021.
PCT/US2021/033443 filed May 20, 2021 International Search Report and Written Opinion dated Sep. 23, 2021.
PCT/US2021/029183 filed Apr. 26, 2021 International Search Report and Written Opinion dated Sep. 24, 2021.
PCT/US2021/039843 filed Jun. 30, 2021 International Search Report and Written Opinion dated Nov. 11, 2021.
PCT/US2021/044029 filed Jul. 30, 2021 International Search Report and Written Opinion dated Dec. 9, 2021.
PCT/US2020/048583 filed Aug. 28, 2020 International Search Report and Written Opinion dated Nov. 13, 2020.
PCT/US2020/052536 filed Sep. 24, 2020 International Search Report and Written Opinion dated Dec. 4, 2020.
PCT/US2020/056364 filed Oct. 19, 2020 International Search Report and Written Opinion dated Jan. 19, 2021.
PCT/US2020/056864 filed Oct. 22, 2020 International Search Report and Written Opinion dated Jan. 14, 2021.
PCT/US2020/057202 filed Oct. 23, 2020 International Search Report and Written Opinion dated Jan. 21, 2021.
PCT/US2020/057397 filed Oct. 26, 2020 International Search Report and Written Opinion dated Mar. 10, 2021.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Final Office Action dated May 30, 2018.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Jan. 25, 2019.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Nov. 2, 2017.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Notice of Allowance dated May 15, 2019.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Non-Final Office Action dated May 11, 2021.
PCT/US2021/028018 filed Apr. 19, 2021 International Preliminary Report on Patentability dated Jun. 3, 2022.
PCT/US2021/064671 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 27, 2022.
PCT/US2022/024085 filed Apr. 8, 2022 International Search Report and Wirtten Opinion dated Sep. 12, 2022.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Examiner's Answer dated Oct. 31, 2022.
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Notice of Allowance dated Sep. 16, 2022.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Non-Final Office Action dated Oct. 25, 2022.
PCT/US2021/044223 filed Aug. 2, 2021 International Search Report and Written Opinion dated Dec. 21, 2021.
PCT/US2021/048275 filed Aug. 30, 2021 International Search Report and Written Opinion dated Jan. 4, 2022.
PCT/US2021/064174 filed Dec. 17, 2021 International Search Report and Written Opinion dated May 18, 2022.
PCT/US2021/064642 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 11, 2022.
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Non-Final Office Action dated May 11, 2022.
PCT/US2021/039084 filed Jun. 25, 2021 International Search Report and Written Opinion dated Jan. 10, 2022.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Final Office Action dated Jan. 25, 2022.
U.S. Appl. No. 17/006,553, filed Aug. 28, 2020 Non-Final Office Action dated Mar. 16, 2022.
U.S. Appl. No. 17/077,728, filed Oct. 22, 2020 Non-Final Office Action dated Feb. 9, 2022.
PCT/US2022/039614 filed Aug. 5, 2022 International Search Report and Written Opinion dated Dec. 22, 2022.
PCT/US2022/044848 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 3, 2023.
PCT/US2022/044879 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023.
PCT/US2022/044901 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023.
PCT/US2022/044918 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 21, 2023.
PCT/US2022/044923 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 15, 2023.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Apr. 24, 2023.
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Restriction Requirement dated Feb. 1, 2023.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Mar. 2, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Restriction Requirement dated Mar. 30, 2023.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Aug. 9, 2023.
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Non-Final Office Action dated Jul. 27, 2023.
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Restriction Requirement dated Jul. 20, 2023.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Final Office Action dated Jul. 27, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Non-Final Office Action dated Jul. 17, 2023.
PCT/US2021/057135 filed Oct. 28, 2021 International Preliminary Report on Patentability dated May 2, 2023.
PCT/US2023/011173 filed Jan. 19, 2023 International Search Report and Written Opinion dated May 22, 2023.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Non-Final Office Action dated Jun. 8, 2023.
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Restriction Requirement dated Jun. 7, 2023.
Related Publications (1)
Number Date Country
20210361915 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
63028445 May 2020 US