The present disclosure relates to a reaction chamber for a vapor deposition apparatus, and especially to a reaction chamber of reducing a ceiling temperature difference.
In modern semiconductor industry, a vapor deposition is employed to grow a thin film. In a conventional (planetary type) MOCVD reactor, a ceiling having a concavo-convex parts shape has been used for heat dissipation, as shown in
However, the ceiling shown in
It is the topic to solve the problem of large temperature difference between the upper and lower parts of the ceiling without affecting the vapor deposition process.
The present disclosure provides a reaction chamber for a vapor deposition apparatus, and the reaction chamber is designed to have a ceiling with uniform or near-uniform thickness. The flow space between the ceiling and the upper cavity can be adjusted cavity to have a un-obstacle flow channel and heat dissipation to reduce the temperature difference of the ceiling.
A reaction chamber according to an embodiment of the present disclosure comprises a susceptor for carrying substrates, a ceiling, an upper cavity, and protrusions. The front surface of the ceiling, facing the substrates, comprises front convex parts and front concave parts in an interlace arrangement to form a convex-concave surface. Each of the front concave parts is used as a gas channel. The rear surface of ceiling can be understood to have rear convex parts and rear concave parts corresponding to the front concave parts and the front convex parts of the front surface respectively. An upper cavity is disposed opposite to the rear surface of the ceiling, and each of the rear convex parts of the rear surface forms a first flow channel. Protrusions are disposed in the rear concave parts of the rear surface and separated to a side wall and a bottom wall, and the space of the rear concave parts forms a second flow channel, which is connected to the first flow channel for introducing a cooling fluid.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. The foregoing aspects and many of the attendant advantages of the present disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
With reference to
The rear convex parts 220 and the rear concave parts 222 of the rear surface 22 are radially arranged outward from a center of the ceiling 2. As described above, the front concave parts 202 corresponding to the rear convex parts 220, and the front convex parts 200 corresponding to the rear concave parts 222, so the thickness of the ceiling 2 is uniform, i.e. the thickness of the ceiling 2 is made uniform or near-uniform, as shown in
In one embodiment, the reaction chamber further comprises an upper cavity 3, opposites to the rear surface of the ceiling 2. The upper cavity 3 may comprise a cooling pipe for reducing the temperature difference between the upper and lower parts of the ceiling 2. The upper cavity 3 separated to each rear convex part 220 forms a first flow channel G1. Protrusions 4 may be disposed in the rear concave parts 222, separated to a side wall 224 and a bottom wall 226 of the rear concave parts 222 and each forms a second flow channel G2, which is connected to the first flow channel G1 to introduce a cooling fluid. For instance, the hydrogen can be introduced into the first flow channel G1 and/or the second flow channel G2 to facilitate the heat dissipation of the ceiling 2.
In an embodiment of the present disclosure, the protrusions 4 could be designed to protruded from the upper cavity 3, i.e. one-piece structure, as shown in
It should be noted that a size of each flow channel in the reaction chamber of the present disclosure can be adjusted as needed, please refer to
In one embodiment, each of the protrusions 4 may have a slanted side 40, as shown in
In summary, the reaction chamber for a vapor deposition apparatus of the present disclosure has a ceiling having uniform or near-uniform thicknesses. According to configuration, the front concave parts and the rear convex parts and front convex parts and the rear concave parts are corresponded to reduce the temperature difference between the upper and lower parts of the ceiling, and avoid to break the ceiling due to large temperature difference. In addition, the reaction chamber for the vapor deposition apparatus of the present disclosure has a uniform space between the ceiling and the upper cavity by the arrangement of the protrusions, thereby the cooling fluid flows evenly in the channel to dissipate heat. It can effectively dissipate heat and reduce the temperature difference of the ceiling without using a large amount of cooling fluid, and reduce the cost of the process.
The embodiments described above are merely illustrative of the technical spirit and features of the present disclosure, and are intended to enable those skilled in the art to understand the present disclosure and exploit the present disclosure. The scope of the claim, that is, the equivalent changes or modifications made by the spirit of the present disclosure, should still be included in the scope of the claim of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
107121309 A | Jun 2018 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20110126761 | Lee et al. | Jun 2011 | A1 |
20120003389 | Brien et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
552315 | Sep 2003 | TW |
WO-2012139006 | Oct 2012 | WO |
Entry |
---|
Search Report of TW Application No. 107121309, completed on Feb. 11, 2019, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20200017964 A1 | Jan 2020 | US |