The present invention relates generally to memory devices, and particularly to methods and systems for reading data from memory cells.
Several types of memory devices, such as Flash memories, use arrays of analog memory cells for storing data. Each analog memory cell stores a quantity of an analog value, such as an electrical charge or voltage, which represents the information stored in the cell. In Flash memories, for example, each analog memory cell holds a certain amount of electrical charge. The range of possible analog values is typically divided into regions, each region corresponding to one or more data bit values. Data is written to an analog memory cell by writing a nominal analog value that corresponds to the desired bit or bits. The possible bit values that can be stored in an analog memory cell are also referred to as the memory states of the cell.
Some memory devices, commonly referred to as Single-Level Cell (SLC) devices, store a single bit of information in each memory cell, i.e., each memory cell can be programmed to assume two possible memory states. Higher-density devices, often referred to as Multi-Level Cell (MLC) devices, store two or more bits per memory cell, i.e., can be programmed to assume more than two possible memory states.
Flash memory devices are described, for example, by Bez et al., in “Introduction to Flash Memory,” Proceedings of the IEEE, volume 91, number 4, April, 2003, pages 489-502, which is incorporated herein by reference. Multi-level Flash cells and devices are described, for example, by Eitan et al., in “Multilevel Flash Cells and their Trade-Offs,” Proceedings of the 1996 IEEE International Electron Devices Meeting (IEDM), New York, N.Y., pages 169-172, which is incorporated herein by reference. The paper compares several kinds of multilevel Flash cells, such as common ground, DINOR, AND, NOR and NAND cells.
Eitan et al., describe another type of analog memory cell called Nitride Read Only Memory (NROM) in “Can NROM, a 2-bit, Trapping Storage NVM Cell, Give a Real Challenge to Floating Gate Cells?” Proceedings of the 1999 International Conference on Solid State Devices and Materials (SSDM), Tokyo, Japan, Sep. 21-24, 1999, pages 522-524, which is incorporated herein by reference. NROM cells are also described by Maayan et al., in “A 512 Mb NROM Flash Data Storage Memory with 8 MB/s Data Rate”, Proceedings of the 2002 IEEE International Solid-State Circuits Conference (ISSCC 2002), San Francisco, Calif., Feb. 3-7, 2002, pages 100-101, which is incorporated herein by reference. Other exemplary types of analog memory cells are Floating Gate (FG) cells, Ferroelectric RAM (FRAM) cells, magnetic RAM (MRAM) cells, Charge Trap Flash (CTF) and phase change RAM (PRAM, also referred to as Phase Change Memory—PCM) cells. FRAM, MRAM and PRAM cells are described, for example, by Kim and Koh in “Future Memory Technology including Emerging New Memories,” Proceedings of the 24th International Conference on Microelectronics (MIEL), Nis, Serbia and Montenegro, May 16-19, 2004, volume 1, pages 377-384, which is incorporated herein by reference.
The analog values read from analog memory cells are sometimes distorted. The distortion may be due to various reasons, such as electrical field coupling from neighboring memory cells, disturb noise caused by memory access operations on other cells in the array and threshold voltage drift caused by device aging. Some common distortion mechanisms are described in the article by Bez et al., cited above. Distortion effects are also described by Lee et al., in “Effects of Floating Gate Interference on NAND Flash Memory Cell Operation,” IEEE Electron Device Letters, (23:5), May, 2002, pages 264-266, which is incorporated herein by reference.
Reading data from analog memory cells often involves comparing the analog values stored in the cells to one or more thresholds, or reference levels. Several methods for determining the appropriate threshold values are known in the art. For example, U.S. Pat. No. 5,657,332, whose disclosure is incorporated herein by reference, describes methods for recovering from hard errors in a solid-state memory system. Hard errors may arise from cells whose threshold voltages drifted from their intended level to cause read errors. The memory system includes an array of memory cells, each cell capable of having its threshold voltage programmed or erased to an intended level. An error checking scheme is provided for each of a plurality of groups of cells for identifying read errors therein. A read reference level is adjusted before each read operation on the individual group of cells containing read errors, each time the read reference level being displaced a predetermined step from a reference level for normal read, until the error checking means no longer indicates read errors. The drifted threshold voltage of each cell associated with a read error is re-written to its intended level.
U.S. Pat. No. 7,023,735, whose disclosure is incorporated herein by reference, describes methods for reading Flash memory cells, which, in addition to comparing the threshold voltages of Flash cells to integral reference voltages, compare the threshold voltages to fractional reference voltages.
U.S. Patent Application Publication 2007/0091677, whose disclosure is incorporated herein by reference, describes methods, devices and computer readable code for reading data from one or more flash memory cells, and for recovering from read errors. In some embodiments, in the event of an error correction failure by an error detection and correction module, the flash memory cells are re-read at least once using one or more modified reference voltages, until successful error correction may be carried out. In some embodiments, after successful error correction, a subsequent read request is handled without re-writing data to the flash memory cells in the interim.
U.S. Pat. No. 6,963,505, whose disclosure is incorporated herein by reference, describes a method, circuit and system for determining a reference voltage. In some embodiments a set of operating reference cells is established to be used in operating cells in a Non-Volatile Memory (NVM) block or array. At least a subset of cells of the NVM block or array may be read using each of two or more sets of test reference cells, where each set of test reference cells may generate or otherwise provide reference voltages at least slightly offset from each other set of test reference cells. For each set of test reference cells used to read at least a subset of the NVM block, a read error rate may be calculated or otherwise determined. A set of test reference cells associated with a relatively low read error rate may be selected as the set of operating reference cells to be used in operating other cells, outside the subset of cells, in the NVM block or array.
U.S. Pat. No. 7,196,928 and U.S. patent Application Publications 2006/0221692, 2007/0103986, 2007/0109845 and 2007/0109849, whose disclosures are incorporated herein by reference, describe several processes for reading a memory cell, which take into account the programmed state of an adjacent memory cell.
Some known methods use information regarding the quality of stored data when reading the data from memory cells. For example, U.S. Pat. No. 6,751,766, whose disclosure is incorporated herein by reference, describes several methods for assessing the quality of data stored in a memory system, and for operating the memory system according to the assessed quality. The data quality is sometimes assessed during read operations. Subsequent use of an Error Correction Code (ECC) can utilize the quality indications to detect and reconstruct the data with improved effectiveness. Alternatively, a statistics of data quality can be constructed and digital data values can be associated in a modified manner to prevent data corruption.
Embodiments of the present invention provide a method for operating a memory, including:
storing data, which is encoded with an Error Correction Code (ECC), in analog memory cells of the memory by writing respective analog input values selected from a set of nominal values to the analog memory cells;
reading the stored data by performing multiple read operations that compare analog output values of the analog memory cells to different, respective read thresholds so as to produce multiple comparison results for each of the analog memory cells, wherein at least two of the read thresholds are positioned between a pair of the nominal values that are adjacent to one another in the set of the nominal values;
computing soft metrics responsively to the multiple comparison results; and
decoding the ECC using the soft metrics, so as to extract the data stored in the analog memory cells.
In some embodiments, each of the analog memory cells stores one or more bits of the data, and each of the soft metrics corresponds to one of the bits. In an embodiment, each of at least some of the analog memory cells stores two or more bits of the data, reading the data includes, for each of the at least some of the analog memory cells, reading the two or more data bits in respective two or more decoding stages, and computing the soft metrics includes modifying a soft metric of a first bit read in a first decoding stage responsively to a value of a second bit read in a second decoding stage that precedes the first decoding stage. Modifying the soft metric may include conditionally inverting the soft metric of the first bit depending on the value of the second bit.
In another embodiment, the method includes making an initial attempt to decode the ECC using an initial set of the read thresholds, such that no more than one of the read thresholds in the initial set is positioned between each pair of the nominal values that are adjacent to one another, and comparing the analog output values to the multiple read thresholds upon a failure of the initial attempt.
In yet another embodiment, each comparison result has one of first and second possible values, and computing the soft metrics includes determining respective first and second counts of the comparison results having the first and second possible values, and computing the soft metrics based on the first and second counts.
In still another embodiment, the method further includes, upon failing to decode the ECC, adding one or more additional read thresholds to the multiple read thresholds, re-computing the soft metrics responsively to the additional read thresholds, and decoding the ECC using the re-computed soft metrics. Adding the additional threshold may include progressively increasing a number of the read thresholds until a predetermined condition is met.
In a disclosed embodiment, reading the data from a first group of the analog memory cells further includes estimating interference caused to the first group by a second group of the analog memory cells and canceling the estimated interference. Canceling the estimated interference may include modifying the soft metrics associated with the first group responsively to the estimated interference. In some embodiment, the method includes, upon failing to decode the ECC in the first group, selecting whether to perform one of:
re-reading the data in the second group, so as to re-estimate and cancel the interference;
re-estimating the interference by reading the data in a third group of the memory cells; and
adding one or more additional read thresholds and re-reading the data in the first group using the additional read thresholds.
In an embodiment, computing the soft metrics includes normalizing the soft metrics so as not to depend on a number of the read thresholds. Performing the multiple read operations may include positioning the multiple read thresholds at non-uniform intervals with respect to one another.
There is additionally provided, in accordance with an embodiment of the present invention, a data storage apparatus, including:
an interface, which is operative to communicate with a memory that includes a plurality of analog memory cells; and
a memory signal processor (MSP), which is connected to the interface and is coupled to store data, which is encoded with an Error Correction Code (ECC), in the analog memory cells by writing respective input analog values selected from a set of nominal values to the analog memory cells, to read the stored data by performing multiple read operations that compare analog output values of the analog memory cells to different, respective read thresholds so as to produce multiple comparison results for each of the analog memory cells, wherein at least two of the read thresholds are positioned between a pair of the nominal values that are adjacent to one another in the set of the nominal values, to compute soft metrics responsively to the multiple comparison results, and to decode the ECC using the soft metrics, so as to extract the data stored in the analog memory cells.
There is also provided, in accordance with an embodiment of the present invention, a data storage apparatus, including:
a memory device, including:
a plurality of analog memory cells, which are configured to store data, which is encoded with an Error Correction Code (ECC) and written to the analog memory cells as respective analog input values selected from a set of nominal values; and
reading circuitry, which is coupled to read the stored data by performing multiple read operations that compare output analog values of the analog memory cells to different, respective read thresholds so as to produce multiple comparison results for each of the analog memory cells, wherein at least two of the read thresholds are positioned between a pair of the nominal values that are adjacent to one another in the set of the nominal values, to compute soft metrics responsively to the multiple comparison results, and to output the computed soft metrics; and
a Memory Signal Processor (MSP) device, which is connected to the memory device and is coupled to accept the soft metrics computed by the reading circuitry, and to decode the ECC using the soft metrics.
There is further provided, in accordance with an embodiment of the present invention, a method for operating a memory, including:
storing data, which is encoded with an Error Correction Code (ECC), in analog memory cells of the memory by writing respective analog input values to the analog memory cells;
reading the stored data by comparing analog output values of the analog memory cells to a set of read thresholds, so as to produce multiple comparison results for each of the analog memory cells;
computing soft metrics responsively to the multiple comparison results;
decoding the ECC using the soft metrics, so as to extract the data stored in the analog memory cells; and
upon a failure to successfully extract the data, extending the set of the read thresholds by adding one or more new read thresholds to the set, updating the multiple comparison results based on the extended set of the read thresholds, re-computing the soft metrics and re-decoding the ECC, so as to extract the data.
In an embodiment, extending the set of the read thresholds includes selecting the one or more new read thresholds responsively to the output analog values of the analog memory cells. Selecting the one or more new read thresholds may include determining at least one property selected from a group of properties consisting of a number of the new read thresholds and values of the new read thresholds.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Embodiments of the present invention provide improved methods and systems for reading data from analog memory cells, such as Flash memory cells. In some embodiments that are described hereinbelow, a Memory Signal Processor (MSP) stores data, which is encoded with an Error Correction Code (ECC), in an array of analog memory cells. The MSP stores the encoded data by writing respective analog values to the analog memory cells. The analog values are selected from a set of nominal analog values, which represent the data.
The MSP reads the data from the analog memory cells by performing multiple read operations, which compare the analog values written to the cells to multiple read thresholds. The read thresholds are set so that at least two of them are positioned between a pair of adjacent nominal analog values. The multiple threshold comparisons produce multiple comparison results for each of the analog memory cells. The MSP computes soft metrics based on the multiple comparison results. The soft metrics provide quantitative measures of the levels of confidence or certainty that are associated with the values read from the memory cells, or of individual bits within the memory cells. The MSP decodes the ECC using the soft metrics. In some embodiments, the MSP increases the number of read thresholds in an iterative manner, until successful decoding is achieved.
Some known reading methods differentiate between adjacent memory states using a single threshold at any given time. Unlike these known methods, the methods and systems described herein perform multiple read operations using multiple thresholds, which are positioned between adjacent memory states. Typically, multiple thresholds are positioned in boundary regions between adjacent nominal values, so that the multiple comparison results convey valuable information regarding the statistical distribution of the analog values in these regions. As a result, the soft metrics, which are based on this information, enable the ECC decoding process to correct a higher number of read errors and to provide an improved overall error probability.
Some known reading methods modify the threshold values in order to improve decoding performance. Unlike these known methods, the methods and systems described herein do not adapt the threshold values, but rather add new thresholds to the existing set, and improve the decoding performance by refining the accuracy of the soft metrics.
The improved decoding performance achieved by the disclosed methods and systems enables improving the data storage reliability, storage density and retention time of memory devices, and enables lowering the memory device cost and complexity for a given performance level.
System 20 comprises a memory device 24, which stores data in a memory cell array 28. The memory array comprises multiple analog memory cells 32. In the context of the present patent application and in the claims, the term “analog memory cell” is used to describe any memory cell that holds a continuous, analog value of a physical parameter, such as an electrical voltage or charge. Array 28 may comprise analog memory cells of any kind, such as, for example, NAND, NOR and CTF Flash cells, PCM, NROM, FRAM, MRAM and DRAM cells. The charge levels stored in the cells and/or the analog voltages or currents written into and read out of the cells are referred to herein collectively as analog values.
System 20 stores data in the analog memory cells by programming the cells to assume respective memory states. The memory states are selected from a finite set of possible states, and each state corresponds to a certain nominal analog value. For example, a 2 bit/cell MLC can be programmed to assume one of four possible memory states by writing one of four possible nominal analog values into the cell.
Data for storage in memory device 24 is provided to the device and cached in data buffers 36. The data is then converted to analog voltages and written into memory cells 32 using a reading/writing (R/W) unit 40, whose functionality is described in greater detail below. When reading data out of array 28, R/W unit 40 converts the electrical charge, and thus the analog voltages of memory cells 32, into digital samples having a resolution of one or more bits. The samples are cached in buffers 36. The operation and timing of memory device 24 is managed by control logic 48.
The storage and retrieval of data in and out of memory device 24 is performed by a Memory Signal Processor (MSP) 52. MSP 52 comprises a signal processing unit 60, which processes the data that is written into and read from device 24. Unit 60 encodes the data to be written into the memory cells using an Error Correction Code (ECC), and decodes the ECC of the retrieved data.
In particular, MSP 52 reads data out of memory cells 32 by comparing the values read from the cells to multiple read thresholds. The ECC decoding scheme used by unit 60 operates on soft metrics, which are computed based on the multiple threshold comparisons. Exemplary methods for reading data and for computing soft metrics are described in detail below.
Many known ECC decoding schemes can accept soft metrics of the encoded bits or symbols as input. For example, unit 60 may use a block code such as the Bose-Chaudhuri-Hocquenghem (BCH) code, Low-Density Parity Check (LDPC) code or Reed-Solomon (RS) code, a trellis code, a turbo-code, or any other suitable ECC and decoding scheme, which is able to operate on soft metrics. The methods and systems described herein are not limited to block codes and can be used with convolutional codes, as well.
MSP 52 comprises a data buffer 72, which is used by unit 60 for storing data and for interfacing with memory device 24. MSP 52 also comprises an Input/Output (I/O) buffer 56, which forms an interface between the MSP and the host system. A controller 76 manages the operation and timing of MSP 52. Signal processing unit 60 and controller 76 may be implemented in hardware. Alternatively, unit 60 and/or controller 76 may comprise microprocessors that run suitable software, or a combination of hardware and software elements.
The configuration of
In the exemplary system configuration shown in
In a typical writing operation, data to be written into memory device 24 is accepted from the host and cached in I/O buffer 56. The data is transferred, via data buffers 72, to memory device 24. The data may be pre-processed by MSP 52 before it is transferred to the memory device for programming. For example, unit 60 may encode the data using an ECC, add certain data for internal use, and/or scramble the data. In device 24 the data is temporarily stored in buffers 36. R/W unit 40 converts the data to nominal analog values and writes the nominal values into the appropriate cells 32 of array 28.
In a typical reading operation, R/W unit 40 reads analog values out of the appropriate memory cells 32 and converts them to soft digital samples. The samples are cached in buffers 36 and transferred to buffers 72 of MSP 52. In some embodiments, unit 60 of MSP 52 converts the samples to data bits. As noted above, the range of possible analog values is divided into two or more regions, with each region representing a certain combination of one or more data bits.
As will be described in greater detail further below, the memory cells are read by comparing their analog values to multiple sets of read thresholds. For each cell, the MSP computes a soft metric based on the multiple comparison results. The soft metrics are then used by the MSP when decoding the ECC. The decoded data is transferred via I/O buffer 56 to the host system.
Memory cells 32 of array 28 are arranged in a grid having multiple rows and columns. Each cell 32 comprises a floating gate Metal-Oxide Semiconductor (MOS) transistor. A certain amount of electrical charge (electrons or holes) can be stored in a particular cell by applying appropriate voltage levels to the transistor gate, source and drain. The value stored in the cell can be read by measuring the threshold voltage of the cell, which is defined as the minimal voltage that needs to be applied to the gate of the transistor in order to cause the transistor to conduct. The read threshold voltage is indicative of the charge stored in the cell.
In the exemplary configuration of
Typically, R/W unit 40 reads the threshold voltage of a particular cell 32 by applying varying voltage levels to its gate (i.e., to the word line to which the cell is connected) and checking whether the drain current of the cell exceeds a certain threshold (i.e., whether the transistor conducts). Unit 40 usually applies a sequence of different voltage values to the word line to which the cell is connected, and determines the lowest gate voltage value for which the drain current exceeds the threshold. Typically, unit 40 reads a group of cells, referred to as a page, simultaneously. Alternatively, R/W unit may use any other technique or circuitry for reading and writing values to and from memory cells 32 of array 28.
The memory cell array is typically divided into multiple pages, i.e., groups of memory cells that are programmed and read simultaneously. In some embodiments, each page comprises an entire row of the array. In alternative embodiments, each row (word line) can be divided into two or more pages. For example, in some SLC devices each row is divided into two pages, one comprising the odd-order cells and the other comprising the even-order cells. Typically but not necessarily, a two-bit-per-cell memory device usually has four pages per row, a three-bit-per-cell memory device has six pages per row, and a four-bit-per-cell memory device has eight pages per row.
Erasing of cells is usually carried out in blocks that contain multiple pages. Typical memory devices may comprise several thousand erasure blocks. In a typical two-bit-per-cell MLC device, each erasure block is on the order of 32 word lines, each comprising several thousand cells. Each word line is often partitioned into four pages (odd/even order cells, least/most significant bit of the cells). Alternatively, other block sizes and configurations can also be used. Three-bit-per cell devices often have 192 pages per erasure block, and four-bit-per-cell devices often have 256 pages per block.
Some memory devices comprise two or more separate memory cell arrays, often referred to as planes. Since each plane has a certain “busy” period between successive write operations, data can be written alternately to the different planes in order to increase programming speed.
The analog values (e.g., threshold voltages) stored in memory cells 32 may contain various types of distortion, which are caused by different distortion mechanisms in array 28. For example, electrical cross-coupling between nearby cells in the array may modify the threshold voltage of a particular cell. As another example, electrical charge may leak from the cells over time. As a result of this aging effect, the threshold voltage of the cells may drift over time from the initially-written value. Another type of distortion, commonly referred to as disturb noise, is caused by memory access operations (e.g., read, write or erase operations) on certain cells in the array, which cause unintended charge variations in other cells. As yet another example, the source-drain current of a particular cell can be affected by the charge in adjacent cells, e.g., other cells in the same NAND cell string, via an effect referred to as Back Pattern Dependency (BPD).
The distortion in memory cells 32 degrades the performance of the memory device, e.g., the error probability when reconstructing the data, the achievable storage capacity and/or the achievable data retention period. Performance degradation is particularly severe in MLC devices, in which the differences between the different voltage levels that represent the data are relatively small.
Embodiments of the present invention provide improved methods and systems for reading data from analog memory cells 32 of array 28, by using multiple read thresholds. The methods described herein are suitable for both SLC devices (as illustrated, for example, in
As can be seen in the figure, curves 90A and 90B overlap. In other words, there is a finite probability that a memory cell, which was programmed to a certain bit value, will be erroneously interpreted as being programmed to another bit value. The position of the read threshold or thresholds used to differentiate between “1” and “0” has a considerable effect on the probability of error. In some embodiments of the present invention, MSP 52 reconstructs the data stored in the memory cells by combining information, which is obtained using multiple read thresholds, in order to reduce the probability of error.
For each memory cell being read, the MSP computes a soft metric using the multiple comparison results. The soft metric indicates a confidence level or measure of certainty associated with the value read from the memory cell. In some embodiments, the soft metric indicates a likelihood that the read value corresponds to a certain data value (e.g., a very low metric value may indicate a high certainty that the read value corresponds to a “1”, a very high metric value indicates that the read value is likely to represent a “0”, and intermediate metric values indicate lower confidence). In other embodiments, the metric value indicates the reliability of the read value without indicating a particular bit value (e.g., low metric value indicates low confidence, high metric value represents high confidence).
In the context of the present patent application and in the claims, the term “soft metric” refers to any type of quantitative measure that conveys more than a single bit of information, i.e., more than two possible values. For example, the soft metric may comprise a fixed- or floating-point numerical value represented using two or more bits. Another exemplary type of soft metric, sometimes referred to as “erasure,” assigns each read memory cell one of three possible values—“0”, “1” or “uncertain.” Further alternatively, any other suitable type of soft metric can be used.
Note that when each cell stores multiple data bits, a soft metric value may be computed and assigned to each individual bit. For example, in a four-level MLC, one metric value is computed for the Least Significant Bit (LSB) and another metric value is computed for the Most Significant Bit (MSB). Detailed examples of metric computation methods for both SLC and MLC applications are described further below.
MSP 52 may use any suitable method for computing the soft metric value based on the multiple comparison results. In some embodiments, the MSP may use a table, which provides the metric values associated with different combinations of the comparison results. For example, the following table can be used with the five-threshold configuration of
The table above provides thirty-two soft metric values denoted M1 . . . M32, which correspond to the thirty-two possible combinations of five comparison results of thresholds T1 . . . T5. Following the notation of
Typically, M1 and M32 will indicate high confidence levels, since these metric values correspond to situations in which the read operations with all five thresholds produce the same comparison results. Other combinations of comparison results will usually be assigned metrics that indicate lower confidence levels.
Some sets of comparison results may be regarded as inconsistent or self-contradictory. For example, assume T1<T2<T3<T4<T5, and that the five comparison results produced by thresholds T1 . . . T5 are denoted C1 . . . C5, respectively. The result set ‘1,1,1,0,1’ for a certain memory cell is inconsistent because it indicates that the analog value is larger than T4 and smaller than T3, even though T4>T3. Such a result set may be caused, for example, when the cell has a high level of read noise in at least one of the read operations. Result sets such as ‘1,1,1,1,0’, ‘1,1,1,0,0’, or ‘1,0,0,0,0’, on the other hand, are consistent.
The MSP may treat inconsistent sets of comparison results in different manners, by assigning them different soft metric values. For example, the MSP may regard inconsistent result sets as uncertain and mark them as erasures to the ECC decoding process. Alternatively, the MSP may disregard or otherwise attempt to resolve some inconsistencies. For example, the MSP may regard a ‘1,1,0,1,1,’ result set similarly to a ‘1,1,1,1,1’ set, assuming that the “0” comparison result of T3 was caused by read noise.
Alternatively to using tables, MSP 52 may evaluate a function that operates on the multiple comparison results and produces the corresponding soft metric value. For example, the MSP may evaluate Log Likelihood Ratios (LLRs) of individual bits in each memory cell, which are defined as
wherein Xi denotes a particular data bit stored in the memory cell in question, and r denotes the analog value read from the cell. The use of LLRs as metrics that are provided to an ECC decoding process is described, for example, in PCT Patent Application PCT/IL2007/000580, entitled “Combined Distortion Estimation and Error Correction Coding For Memory Devices,” filed May 10, 2007, whose disclosure is incorporated herein by reference.
In order to calculate the LLR, the MSP may maintain two values for each memory cell: (1) the largest read threshold that was found to be below the analog value of the cell, denoted Va, and (2) the smallest read threshold that was found to be above the analog value of the cell, denoted Vb. The LLR of the cell can be shown to be approximated by
wherein T1 denotes the center analog value of the nearest distribution that has “1” as its data bit, and T0 denotes the center value of the nearest distribution having “0” as its data bit. The distribution of r is assumed Gaussian with variance σ2.
As the memory cell is read with an increasing number of read thresholds, the MSP updates Va and Vb. At each stage, the actual analog value of the cell is known to be within the interval [Va, Vb]. As the number of thresholds increases, the interval shrinks, the uncertainty becomes smaller and the estimated LLR becomes more accurate.
Further alternatively, the MSP may use any other suitable method or mechanism for computing the soft metric values based on the multiple comparison results.
MSP 52 uses the soft metrics when decoding the ECC. In a typical application, the data stored in a group of memory cells, such as in a certain memory page, forms a single codeword. When decoding a certain ECC codeword, signal processing unit 60 of the MSP uses the soft metric values of the memory cells in the group. As a result, memory cells that are considered to have a high confidence level are given more weight in the ECC decoding process, and vice versa.
In some embodiments, MSP 52 reads the threshold voltage of the cell using each of the fifteen thresholds, and computes a soft metric based on the fifteen comparison results. The MSP may use any type of soft metric and any method of computing the metric value based on the multiple comparison results. The MSP uses the soft metric values as input to the ECC decoding process, as explained above.
In alternative embodiments, the memory cell is read in two stages, corresponding to the two bits stored in the cell. For example, in the configuration of
A similar multi-stage comparison process can be carried out in multi-level cells storing a higher number of bits. For example, in eight-level (3 bit/cell) cells, the MSP and R/W unit may perform a three-stage comparison process to decode the individual bits. Apart from the first stage, the selection of the thresholds used in each stage typically depends on the decoded values of the previous bits.
In alternative multi-stage reading processes, each bit is read independently of the other bits. For example, referring to
The threshold configurations shown in
The MSP typically repeats the process of steps 100 and 104 above over a group of memory cells, whose data forms a single ECC codeword. In a typical implementation, R/W unit 40 reads the cells of an entire page of the memory device, using a particular threshold value, simultaneously. Once the soft metrics of the cells that store a certain codeword are computed, the MSP decodes the codeword using the metrics, at a decoding step 108. The MSP extracts the decoded data, at a data extraction step 112. The decoded data is typically output to the host system.
The multiple-threshold reading methods described herein can also be viewed as an efficient means for obtaining accurate information regarding the stored analog values using a relatively small number of read operations. Theoretically, if the exact analog values stored in the memory cells were known to the MSP (e.g., by employing high-resolution analog-to-digital conversion), this information could be used to extract probability measures on the stored data. However, the basic read operation of analog memory devices, such as Flash memories, usually comprises comparison operations, which compare the analog value stored in a cell to a single threshold. In order to obtain the analog value with a given resolution, the entire possible voltage range would have to be searched or scanned with the desired resolution. For example, if the range of possible analog values is 0-4V, and the desired resolution is 10 mV, 400 read operations would be needed. In practice, however, much of the valuable statistical information can be obtained by performing a much smaller number of read operations, for example by positioning the read thresholds in a region around the midpoint between distributions. The methods and systems described herein thus provide efficient means of gaining insight to such analog value statistics using a relatively small number of read operations.
In many practical cases, performing a large number of read operations on a certain memory cell is a computationally-intensive task, which complicates and slows down the data retrieval process. Moreover, the ECC is usually strong enough to successfully decode the vast majority of codewords, even when the memory cells are read using a single set of thresholds. Therefore, in some embodiments, the MSP initially reads the memory cells using a single set of thresholds. The MSP reverts to read the memory cells that correspond to a certain codeword using the multiple-threshold methods described herein only when the ECC decoding process fails.
The methods of
In some embodiments, the MSP computes the soft metric value based on the number of computation results falling on either side of the thresholds. (In the description that follows, a “0” comparison result means the read value was higher than the threshold, and vice versa. This convention, however, is chosen purely for the sake of convenience, and the opposite convention can also be used.) Consider, for example, the exemplary SLC embodiment of
The method begins with the MSP defining multiple thresholds, at a threshold definition step 116. Typically but not necessarily, the thresholds are defined within the boundary region between the voltage distribution. In
The MSP reads the memory cells using the multiple thresholds, at a reading step 120. The MSP counts the number of comparison results falling on either side of the thresholds, at a counting step 124. In other words, the MSP determines the number of “0” comparison results and/or the number of “1” results out of the total number of threshold comparisons.
The MSP computes a soft metric associated with the cell (or with an individual bit within the cell) based on the count of comparison results, at a metric computation step 128. For example, assuming the five-threshold configuration of
In the table above, if all five computation results are “1”, the stored data bit is “1” with high likelihood, therefore the maximum metric value of “1111” is assigned. At the other extreme, if all five comparison results are “0”, the stored bit is likely to be “0”, and the minimum metric value of “0000” is assigned. If some comparison results are “0” and others are “1”, the metric value is set to an intermediate value, which grows monotonously with the number of “1” results out of the total.
Alternatively, any other suitable method for determining the soft metric value based on the count of comparison results can be used. The metric computation may be implemented by querying a table that holds the metric values and is indexed by the count of comparison results, evaluating a function that operates on the count of the comparison results, or using any other suitable mechanism.
Exemplary Hardware Implementation for MLC Metric Computation
As noted above, when computing the soft metrics of individual bits in a multi-level cell, the selection of thresholds may depend on the values of previously-decoded bits. Moreover, the values of previously-decoded bits may in some cases affect the metric value itself.
Consider, for example, the four-level cell configuration of
The second decoding stage (decoding of the MSB) depends on the results of the first stage. When the LSB is “0”, decoding the MSB comprises determining whether the read value is likely to belong to curve 94C or to curve 94D. When the LSB is “1”, decoding the MSB comprises determining whether the read value is likely to belong to curve 94A or to curve 94B.
Note, however, that when comparing curves 94A and 94B (i.e., when LSB=“1”), high threshold voltages correspond to MSB=“0” and low threshold voltages correspond to MSB=“1”. When comparing curves 94C and 94D (i.e., when LSB=“0”) the situation is reversed, with high threshold voltages corresponding to MSB=“1” MSB and low threshold voltages corresponding to MSB=“0”. In such a situation, the soft metric value that depends on the count of comparison results should sometimes be inverted, so as to maintain the convention that a high metric value corresponds to “0” data. The decision whether or not to invert the metric value depends on the value of the previous bit. Equivalently, the value of the currently-read bit can be inverted instead of inverting the metric value. The conditional operation of inverting a value only if a previous value is equal to “1” can be implemented by performing an eXclusive-OR (XOR) operation between the current and previous bit values.
The circuit of
The circuit comprises a XOR circuit 134, which performs a bit-wise XOR operation between a byte 130 of hard bit decisions from the current page (MSBs) and a byte 132 of previously-decoded data bits (LSBs) from the previous page. Thus, for a particular cell, when the previously-decoded LSB is “1”, the currently-read MSB is inverted. An adder 136 sums the results of the XOR operations. The adder output is accumulated as a soft metric 140 of the MSB. A vector 138 holds the accumulated metrics of the MSBs of the different cells. The same circuit can also be used to compute the soft metrics of the LSBs, which do not depend on any previous values. In order to compute the LSB soft metrics, byte 132 is filled with zeros so that the XOR operation is bypassed and byte 130 is provided to adder 136 unchanged.
The circuit of
In alternative embodiments, the soft metrics of individual bits of a multi-level cell can be calculated independently for different bits. These methods may be of particular benefit when the read data values of previous bits are not available when reading a certain bit. Referring to the 2 bit/cell example of
In the present example, the MSP forms the pairs (T14, T35), (T12, T33), (T11, T31), (T13, T32) and (T15, T34). For each pair, the MSP performs two read operations and checks whether the read value falls in the interval between the thresholds, or outside the interval. The MSP counts the number of threshold pairs in which the analog value falls between the two thresholds (indicating MSB=“0”) and/or the number of threshold pairs in which the analog value falls outside the interval between the two thresholds (indicating MSB=“1”). The MSP computes a soft metric based on the counts.
A similar method can be applied to eight-level, 3 bit/cell MLC. Assume, for example, an eight-level MLC device whose eight levels are denoted L1 . . . L8 and are mapped to the bit triplets ‘111’, ‘011’, ‘001’, ‘101’, ‘100’, ‘000’, ‘010’, ‘110’, respectively. The MSP can compute the soft metric of the MSB (leftmost bit in the triplet) of such a cell independently of the other bits by performing comparisons using four sets of multiple thresholds. Each threshold set is positioned between adjacent levels having different MSB values. In the present example, one set is positioned between levels L1 and L2, another set between L3 and L4, a third set between L5 and L6 and a fourth set between L7 and L8. The four threshold sets divide the analog value axis into five intervals denoted I1 . . . I5, such that the MSB has the same value within each interval.
Using this division, the MSP determines that the MSB is “0” if the read analog value read from the cell falls within interval I2 or I4, and “1” if the analog value falls within interval I1, I3 or I5. In order to compute the soft metric of the MSB, the MSP forms groups of four thresholds, with each group containing one threshold from each set. Moving from group to group, each threshold is moved in the direction in which the MSB value transition is from “1” to “0”. For each threshold group, the MSP performs four read operations and checks whether the read value falls in intervals corresponding to “1” or in intervals corresponding to “0”. The MSP counts the number of threshold groups in which the analog value falls in intervals that correspond to MSB=“0” and/or the number of groups in which the analog value falls in intervals that correspond to MSB=“1”. The MSP computes a soft metric based on the counts.
Typically but not necessarily, soft metrics that are based on counting comparison results of a given type assume that the read thresholds are positioned symmetrically around the midpoint between distributions.
The comparison and metric computation operations described above consume both time and computation resources, which grow with the number of thresholds. Therefore, it is sometimes advantageous to use only as many thresholds as needed to successfully reconstruct the data. In some embodiments, the MSP initially attempts to compute the soft metrics and decode the data with a relatively small number of thresholds, and increase their number only when needed.
For example, the MSP may make an initial attempt to decode the ECC using an initial set of read thresholds in which only a single threshold is positioned between each pair of adjacent nominal values (memory states). In these embodiments, the MSP reverts to multiple-threshold decoding upon failure of the initial decoding attempt.
The method begins with the MSP adding one or more additional thresholds to the set of thresholds used, and reading the group of memory cells using the added thresholds, at a threshold addition step 142.
The MSP updates the count of comparison results (i.e., the number of “0” and/or “1” results out of the total), at a count updating step 144. The updated count reflects the comparison results of the previous thresholds as well as of the newly-added thresholds. The MSP then computes the soft metrics based on the updated accumulated count of comparison results, and a metric updating step 146.
In some cases, the MSP may compute the metrics from scratch at each iteration. Alternatively, the MSP may store the metric values and/or comparison result counts from previous iterations, and update them to account for the newly-added comparison results. Generally, the soft metric computed at a given iteration may depend on the current comparison result count, on previous counts and on previous metric values.
The MSP computes soft metrics based on the accumulated count of comparison results, at a metric computation step 146. Any suitable metric computation method can be used, such as the exemplary methods described above. The MSP attempts to decode the codeword using the soft metrics, at an ECC decoding step 148. The MSP checks whether the ECC decoding was successful, at an ECC checking step 150. If successful, the MSP extracts and outputs the data, at a data extraction step 152, and the method terminates.
If, on the other hand, ECC decoding fails, the method loops back to threshold addition step 142 above. The MSP adds one or more additional thresholds to the set of thresholds, computes soft metrics based on the extended set, and attempts to decode the ECC again.
The method of
Alternatively to continuing the iterations until successful decoding of the ECC, the MSP may evaluate any other suitable condition, and stop the iterative process when the condition is met. For example, the MSP may continue to add thresholds until reaching a maximum number of thresholds, or a maximum number of iterations.
In some embodiments, the ECC decoding process may comprise an iterative process. Iterative decoding processes are commonly used to decode codes such as LDPC and turbo codes. In these embodiments, the iterative decoding process is provided with increasingly-improving metrics, which are based on an increasing number of read thresholds. In other words, the iterative decoding process starts decoding using metrics, which are based on a certain initial number of thresholds. Subsequent iterations of the iterative decoding process are provided with metrics that are based on an increasing number of read thresholds, until the iterative decoding process converges to a valid codeword.
Additionally or alternatively to using an ECC in the method of
The MSP may use various methods and criteria for selecting how many thresholds to add at each iteration, and in which order. For example, thresholds can be added two at a time, gradually moving away from the initial threshold position in both directions. In other words, assuming the MSP initially attempts to use a threshold denoted T and that the thresholds are spaced at regular intervals of Δ, the threshold sets in the first four iterations are:
{T, T+Δ, T−Δ}
{T, T+Δ, T−Δ, T+2Δ, T−2Δ}
{T, T+Δ, T−Δ, T+2Δ, T−2Δ, T+3Δ, T−3Δ}
{T, T+A, T−Δ, T+2Δ, T−2Δ, T+3Δ, T−3Δ, T+4Δ, T−4Δ}
When computing soft metrics that depend on varying numbers of thresholds, such as in the method of
In some embodiments, the MSP normalizes the soft values read from the memory cells based on the number of thresholds. For example, the MSP may apply bit extension to the values to reach a certain constant number of bits, e.g., five-bits. For example, the bit-extended value may be given by
wherein Val denotes the input soft value and N denotes the number of thresholds used to evaluate Val. Max Val denotes the maximum value of the bit-extended soft value, e.g., 31 for five-bit representation. Alternatively, the MSP may apply any other suitable data scaling mechanism.
In some embodiments, the MSP has information regarding the level of distortion or interference in the memory cells being read. Various methods can be used to estimate interference levels in memory cells. Exemplary methods are described in PCT Patent Application PCT/IL2007/000580, cited above and in PCT Patent Application PCT/IL2007/000576, entitled “Distortion Estimation and Cancellation in Memory Devices,” filed May 10, 2007, and PCT Patent Application PCT/IL2007/001059, entitled “Estimation of Non-Linear Distortion in Memory Devices,” filed Aug. 27, 2007, whose disclosures are incorporated herein by reference.
When an estimate of the interference is available to the MSP, the MSP may add the effect of the interference to the soft values, or otherwise modify the soft values based on the estimated interference, before these values are provided to the ECC decoder.
In the process of
The scaled soft values are provided to an interference cancellation module 156, which also accepts estimates of the interference level in the respective memory cells. Module 156 subtracts or otherwise cancels out the interference estimates from the corresponding soft values, to produce soft values that are properly scaled and contain reduced levels of interference. The soft values are provided to a metric computation module 158, which computes the soft metrics and provides them to the ECC decoder.
Re-reading cells with additional thresholds and estimating the interference from neighboring memory cells are two operations that on one hand improve the reading performance, and on the other hand consume time and computational power. In some embodiments, the MSP may combine the two operations and trade-off one operation for another. For example, the MSP may determine at each iteration whether it is preferable to refine the decoding accuracy by re-reading the current page using an additional threshold, or to refine the interference estimation by reading (or re-reading) a group of interfering cells.
The method begins with the MSP reading a page of memory cells, at a reading step 160. At each cycle of the process, the MSP may select to either (1) re-read the desired page using an additional threshold, or (2) read a page of interfering cells. The MSP may apply various policies or heuristics in determining which of the two actions to take at each cycle. The MSP may read different groups of interfering cells at different cycles.
For example, the MSP may alternate between the two operations, thus adding a threshold every two cycles and estimating interference every two cycles. Alternatively, the MSP may choose which action to take based on the estimated level of the distortion. For example, if recent interference estimations indicate that the level of interference is low, the MSP may give precedence to adding threshold comparisons, and refine the interference estimation at larger intervals. Further alternatively, the decision may depend on the type of page being read. For example, even- and odd-order pages may experience different interference levels, and the MSP may apply different decision logic for different page types. Pages located on the last word line in a block may also experience different interference levels and may be treated differently. Since the interference may depend on the order in which the pages were written, different trade-offs may apply to higher- and lower-number pages within a word line.
In some cases, memory cells within the desired page may cause interference to one another. Thus, the group of interfered cells and the group of interfering cells may sometimes overlap.
Based on the updated information, the MSP subtracts the interference estimation from the read soft values, at an interference cancellation step 162, and computes the soft metrics, at a metric calculation step 164. The MSP then decodes the ECC, at a decoding step 166, and checks whether ECC decoding was successful, at a success checking step 168.
If the ECC was decoded successfully, the method terminates, at a success termination step 170, and the MSP typically extracts and outputs the data. Otherwise, the MSP checks whether the number of iterations (cycles) exceeds a predetermined maximum number, at an iteration number checking step 172. If the maximum number of iterations was exceeded, the method terminates without successfully reading the data, at an error termination step 174. Otherwise, the method loops back to reading step 160 above, and the MSP again determines whether to add another threshold or refine the interference estimation in the next cycle.
In both iterative methods of
When using the methods and systems described above, the multiple comparison results associated with the multiple thresholds are typically communicated from memory device 24 to MSP 52. The resulting communication bandwidth between the memory device and the MSP may become prohibitive, especially when using a large number of threshold sets and/or when the number of nominal levels per memory cell is high. In some practical cases, the communication bandwidth over the interface between the MSP and the memory device may become the limiting factor that determines the memory access speed of system 20. This effect becomes even more severe when a single MSP 52 is connected to multiple memory devices 24.
In alternative embodiments of the present invention, some of the re-reading functions are carried out internally to the memory device, so as to reduce the communication bandwidth between the memory device and the MSP.
Unlike the embodiment shown in
MSP 208 comprises an ECC decoder 232. The ECC decoder accepts the soft metrics sent from unit 224 of memory device 204 and decodes the ECC based on the metrics. The MSP typically outputs the decoded data to the host system. When MSP 208 controls multiple memory devices 204, a single ECC decoder may decodes the data sent from all the memory devices. Alternatively, multiple ECC decoders may be used.
When using the configuration of
The functional partitioning between R/W unit 220 and metric calculation unit 224 is an exemplary partitioning, which is chosen purely for the sake of conceptual clarity. In alternative embodiments, the reading, threshold comparison, threshold setting and metric computation functions can be partitioned in any other way, as desired. Thus, R/W unit 220, internal bus 228 and metric calculation unit 224 are collectively regarded as a reading circuit, which reads the analog memory cell and produces soft metrics.
As noted above, the soft metric computation sometimes takes into account estimation and cancellation of the interference in the read memory cells. In some embodiments, the interference estimation and cancellation functionality can also be carried out by the reading circuit internally to memory device 204, e.g., by unit 224. In these embodiments, unit 224 sends to the MSP soft metrics, in which the interference is already taken into account. Some aspects of carrying out signal processing functions internally to the memory device are described in U.S. Provisional Patent Application 60/917,653, cited above.
Although the embodiments described herein mainly address retrieving data from solid-state memory devices, the principles of the present invention can also be used for storing and retrieving data in Hard Disk Drives (HDD) and other data storage media and devices.
It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This applicationis an application for reissue of U.S. Pat. No. 8,145,984 B2, which is a continuation of U.S. patent application Ser. No. 11/995,814 filed on Jan. 15, 2008, which is the national stage entry of PCT/IL2007/001315 filed on Oct. 30, 2007, which claims the benefit of U.S. Provisional Patent Application 60/863,506, filed Oct. 30, 2006, U.S. Provisional Patent Application 60/867,399, filed Nov. 28, 2006, U.S. Provisional Patent Application 60/888,828, filed Feb. 8, 2007, U.S. Provisional Patent Application 60/889,277, filed Feb. 11, 2007, U.S. Provisional Patent Application 60/892,869, filed Mar. 4, 2007, U.S. Provisional Patent Application 60/894,456, filed Mar. 13, 2007, U.S. Provisional Patent Application 60/917,653, filed May 12, 2007, U.S. Provisional Patent Application 60/950,884, filed Jul. 20, 2007, and U.S. Provisional Patent Application 60/951,215, filed Jul. 22, 2007. The disclosures of all these related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3668631 | Griffith et al. | Jun 1972 | A |
3668632 | Oldham | Jun 1972 | A |
4058851 | Scheuneman | Nov 1977 | A |
4112502 | Scheuneman | Sep 1978 | A |
4394763 | Nagano et al. | Jul 1983 | A |
4413339 | Riggle et al. | Nov 1983 | A |
4556961 | Iwahashi et al. | Dec 1985 | A |
4558431 | Satoh | Dec 1985 | A |
4608687 | Dutton | Aug 1986 | A |
4654847 | Dutton | Mar 1987 | A |
4661929 | Aoki et al. | Apr 1987 | A |
4768171 | Tada | Aug 1988 | A |
4811285 | Walker et al. | Mar 1989 | A |
4899342 | Potter et al. | Feb 1990 | A |
4910706 | Hyatt | Mar 1990 | A |
4993029 | Galbraith et al. | Feb 1991 | A |
5056089 | Furuta et al. | Oct 1991 | A |
5077722 | Geist et al. | Dec 1991 | A |
5126808 | Montalvo et al. | Jun 1992 | A |
5163021 | Mehrotra et al. | Nov 1992 | A |
5172338 | Mehrotra et al. | Dec 1992 | A |
5182558 | Mayo | Jan 1993 | A |
5182752 | DeRoo et al. | Jan 1993 | A |
5191584 | Anderson | Mar 1993 | A |
5200959 | Gross et al. | Apr 1993 | A |
5237535 | Mielke et al. | Aug 1993 | A |
5272669 | Samachisa et al. | Dec 1993 | A |
5276649 | Hoshita et al. | Jan 1994 | A |
5287469 | Tsuboi | Feb 1994 | A |
5365484 | Cleveland et al. | Nov 1994 | A |
5388064 | Khan | Feb 1995 | A |
5416646 | Shirai | May 1995 | A |
5416782 | Wells et al. | May 1995 | A |
5446854 | Khalidi et al. | Aug 1995 | A |
5450424 | Okugaki et al. | Sep 1995 | A |
5469444 | Endoh et al. | Nov 1995 | A |
5473753 | Wells et al. | Dec 1995 | A |
5479170 | Cauwenberghs et al. | Dec 1995 | A |
5508958 | Fazio et al. | Apr 1996 | A |
5519831 | Holzhammer | May 1996 | A |
5532962 | Auclair et al. | Jul 1996 | A |
5541886 | Hasbun | Jul 1996 | A |
5600677 | Citta et al. | Feb 1997 | A |
5638320 | Wong et al. | Jun 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5675540 | Roohparvar | Oct 1997 | A |
5682352 | Wong et al. | Oct 1997 | A |
5687114 | Khan | Nov 1997 | A |
5696717 | Koh | Dec 1997 | A |
5726649 | Tamaru et al. | Mar 1998 | A |
5726934 | Tran et al. | Mar 1998 | A |
5742752 | De Koening | Apr 1998 | A |
5748533 | Dunlap et al. | May 1998 | A |
5748534 | Dunlap et al. | May 1998 | A |
5751637 | Chen et al. | May 1998 | A |
5761402 | Kaneda et al. | Jun 1998 | A |
5798966 | Keeney | Aug 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5801985 | Roohparvar et al. | Sep 1998 | A |
5838832 | Barnsley | Nov 1998 | A |
5860106 | Domen et al. | Jan 1999 | A |
5867114 | Barbir | Feb 1999 | A |
5867428 | Ishii et al. | Feb 1999 | A |
5867429 | Chen et al. | Feb 1999 | A |
5877986 | Harari et al. | Mar 1999 | A |
5889937 | Tamagawa | Mar 1999 | A |
5901089 | Korsh et al. | May 1999 | A |
5909449 | So et al. | Jun 1999 | A |
5912906 | Wu et al. | Jun 1999 | A |
5930167 | Lee et al. | Jul 1999 | A |
5937424 | Leak et al. | Aug 1999 | A |
5942004 | Cappelletti | Aug 1999 | A |
5946716 | Karp et al. | Aug 1999 | A |
5969986 | Wong et al. | Oct 1999 | A |
5982668 | Ishii et al. | Nov 1999 | A |
5991517 | Harari et al. | Nov 1999 | A |
5995417 | Chen et al. | Nov 1999 | A |
6009014 | Hollmer et al. | Dec 1999 | A |
6009016 | Ishii et al. | Dec 1999 | A |
6023425 | Ishii et al. | Feb 2000 | A |
6034891 | Norman | Mar 2000 | A |
6040993 | Chen et al. | Mar 2000 | A |
6041430 | Yamauchi | Mar 2000 | A |
6073204 | Lakhani et al. | Jun 2000 | A |
6101614 | Gonzales et al. | Aug 2000 | A |
6128237 | Shirley et al. | Oct 2000 | A |
6134140 | Tanaka et al. | Oct 2000 | A |
6134143 | Norman | Oct 2000 | A |
6134631 | Jennings | Oct 2000 | A |
6141261 | Patti | Oct 2000 | A |
6151246 | So et al. | Nov 2000 | A |
6157573 | Ishii et al. | Dec 2000 | A |
6166962 | Chen et al. | Dec 2000 | A |
6169691 | Pasotti et al. | Jan 2001 | B1 |
6178466 | Gilbertson et al. | Jan 2001 | B1 |
6185134 | Tanaka et al. | Feb 2001 | B1 |
6209113 | Roohparvar | Mar 2001 | B1 |
6212654 | Lou et al. | Apr 2001 | B1 |
6219276 | Parker | Apr 2001 | B1 |
6219447 | Lee et al. | Apr 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6240458 | Gilbertson | May 2001 | B1 |
6259627 | Wong | Jul 2001 | B1 |
6275419 | Guterman et al. | Aug 2001 | B1 |
6278632 | Chevallier | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6288944 | Kawamura | Sep 2001 | B1 |
6292394 | Cohen et al. | Sep 2001 | B1 |
6301151 | Engh et al. | Oct 2001 | B1 |
6304486 | Yano | Oct 2001 | B1 |
6307776 | So et al. | Oct 2001 | B1 |
6317363 | Guterman et al. | Nov 2001 | B1 |
6317364 | Guterman et al. | Nov 2001 | B1 |
6345004 | Omura et al. | Feb 2002 | B1 |
6360346 | Miyauchi et al. | Mar 2002 | B1 |
6363008 | Wong | Mar 2002 | B1 |
6363454 | Lakhani et al. | Mar 2002 | B1 |
6366496 | Torelli et al. | Apr 2002 | B1 |
6385092 | Ishii et al. | May 2002 | B1 |
6392932 | Ishii et al. | May 2002 | B1 |
6396742 | Korsh et al. | May 2002 | B1 |
6397364 | Barkan | May 2002 | B1 |
6405323 | Lin et al. | Jun 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6418060 | Yong et al. | Jul 2002 | B1 |
6442585 | Dean et al. | Aug 2002 | B1 |
6445602 | Kokudo et al. | Sep 2002 | B1 |
6452838 | Ishii et al. | Sep 2002 | B1 |
6456528 | Chen | Sep 2002 | B1 |
6466476 | Wong et al. | Oct 2002 | B1 |
6467062 | Barkan | Oct 2002 | B1 |
6469931 | Ban et al. | Oct 2002 | B1 |
6490236 | Fukuda et al. | Dec 2002 | B1 |
6522580 | Chen et al. | Feb 2003 | B2 |
6525952 | Araki et al. | Feb 2003 | B2 |
6532556 | Wong et al. | Mar 2003 | B1 |
6538922 | Khalid et al. | Mar 2003 | B1 |
6549464 | Tanaka et al. | Apr 2003 | B2 |
6553510 | Pekny et al. | Apr 2003 | B1 |
6558967 | Wong | May 2003 | B1 |
6560152 | Cernea | May 2003 | B1 |
6567311 | Ishii et al. | May 2003 | B2 |
6577539 | Iwahashi | Jun 2003 | B2 |
6584012 | Banks | Jun 2003 | B2 |
6615307 | Roohparvar | Sep 2003 | B1 |
6621739 | Gonzalez et al. | Sep 2003 | B2 |
6640326 | Buckingham et al. | Oct 2003 | B1 |
6643169 | Rudelic et al. | Nov 2003 | B2 |
6646913 | Micheloni et al. | Nov 2003 | B2 |
6678192 | Gongwer et al. | Jan 2004 | B2 |
6683811 | Ishii et al. | Jan 2004 | B2 |
6687155 | Nagasue | Feb 2004 | B2 |
6707748 | Lin et al. | Mar 2004 | B2 |
6708257 | Bao | Mar 2004 | B2 |
6714449 | Khalid | Mar 2004 | B2 |
6717847 | Chen | Apr 2004 | B2 |
6731557 | Beretta | May 2004 | B2 |
6738293 | Iwahashi | May 2004 | B1 |
6751766 | Guterman et al. | Jun 2004 | B2 |
6757193 | Chen et al. | Jun 2004 | B2 |
6774808 | Hibbs et al. | Aug 2004 | B1 |
6781877 | Cernea et al. | Aug 2004 | B2 |
6804805 | Rub | Oct 2004 | B2 |
6807095 | Chen et al. | Oct 2004 | B2 |
6807101 | Ooishi et al. | Oct 2004 | B2 |
6809964 | Moschopoulos et al. | Oct 2004 | B2 |
6819592 | Noguchi et al. | Nov 2004 | B2 |
6829167 | Tu et al. | Dec 2004 | B2 |
6845052 | Ho et al. | Jan 2005 | B1 |
6851018 | Wyatt et al. | Feb 2005 | B2 |
6851081 | Yamamoto | Feb 2005 | B2 |
6856546 | Guterman et al. | Feb 2005 | B2 |
6862218 | Guterman et al. | Mar 2005 | B2 |
6870767 | Rudelic et al. | Mar 2005 | B2 |
6870773 | Noguchi et al. | Mar 2005 | B2 |
6873552 | Ishii et al. | Mar 2005 | B2 |
6879520 | Hosono et al. | Apr 2005 | B2 |
6882567 | Wong | Apr 2005 | B1 |
6894926 | Guterman et al. | May 2005 | B2 |
6907497 | Hosono et al. | Jun 2005 | B2 |
6925009 | Noguchi et al. | Aug 2005 | B2 |
6930925 | Guo et al. | Aug 2005 | B2 |
6934188 | Roohparvar | Aug 2005 | B2 |
6937511 | Hsu et al. | Aug 2005 | B2 |
6958938 | Noguchi et al. | Oct 2005 | B2 |
6963505 | Cohen | Nov 2005 | B2 |
6972993 | Conley et al. | Dec 2005 | B2 |
6988175 | Lasser | Jan 2006 | B2 |
6992932 | Cohen | Jan 2006 | B2 |
6999344 | Hosono et al. | Feb 2006 | B2 |
7002843 | Guterman et al. | Feb 2006 | B2 |
7006379 | Noguchi et al. | Feb 2006 | B2 |
7012835 | Gonzalez et al. | Mar 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7023735 | Ban et al. | Apr 2006 | B2 |
7031210 | Park et al. | Apr 2006 | B2 |
7031214 | Tran | Apr 2006 | B2 |
7031216 | You | Apr 2006 | B2 |
7039846 | Hewitt et al. | May 2006 | B2 |
7042766 | Wang et al. | May 2006 | B1 |
7054193 | Wong | May 2006 | B1 |
7054199 | Lee et al. | May 2006 | B2 |
7057958 | So et al. | Jun 2006 | B2 |
7065147 | Ophir et al. | Jun 2006 | B2 |
7068539 | Guterman et al. | Jun 2006 | B2 |
7071849 | Zhang | Jul 2006 | B2 |
7072222 | Ishii et al. | Jul 2006 | B2 |
7079555 | Baydar et al. | Jul 2006 | B2 |
7088615 | Guterman et al. | Aug 2006 | B2 |
7099194 | Tu et al. | Aug 2006 | B2 |
7102924 | Chen et al. | Sep 2006 | B2 |
7113432 | Mokhlesi | Sep 2006 | B2 |
7130210 | Bathul et al. | Oct 2006 | B2 |
7139192 | Wong | Nov 2006 | B1 |
7139198 | Guterman et al. | Nov 2006 | B2 |
7145805 | Ishii et al. | Dec 2006 | B2 |
7151692 | Wu | Dec 2006 | B2 |
7170781 | So et al. | Jan 2007 | B2 |
7170802 | Cernea et al. | Jan 2007 | B2 |
7173859 | Hemink | Feb 2007 | B2 |
7177184 | Chen | Feb 2007 | B2 |
7177195 | Gonzalez et al. | Feb 2007 | B2 |
7177199 | Chen et al. | Feb 2007 | B2 |
7177200 | Ronen et al. | Feb 2007 | B2 |
7184338 | Nakakawa et al. | Feb 2007 | B2 |
7187195 | Kim | Mar 2007 | B2 |
7187592 | Guterman et al. | Mar 2007 | B2 |
7190614 | Wu | Mar 2007 | B2 |
7193898 | Cernea | Mar 2007 | B2 |
7193921 | Choi et al. | Mar 2007 | B2 |
7196644 | Anderson et al. | Mar 2007 | B1 |
7196928 | Chen | Mar 2007 | B2 |
7196933 | Shibata | Mar 2007 | B2 |
7197594 | Raz et al. | Mar 2007 | B2 |
7200062 | Kinsely et al. | Apr 2007 | B2 |
7210077 | Brandenberger et al. | Apr 2007 | B2 |
7221592 | Nazarian | May 2007 | B2 |
7224613 | Chen et al. | May 2007 | B2 |
7231474 | Helms et al. | Jun 2007 | B1 |
7231562 | Ohlhoff et al. | Jun 2007 | B2 |
7243275 | Gongwer et al. | Jul 2007 | B2 |
7254690 | Rao | Aug 2007 | B2 |
7254763 | Aadsen et al. | Aug 2007 | B2 |
7257027 | Park | Aug 2007 | B2 |
7259987 | Chen et al. | Aug 2007 | B2 |
7266026 | Gongwer et al. | Sep 2007 | B2 |
7266069 | Chu | Sep 2007 | B2 |
7269066 | Nguyen et al. | Sep 2007 | B2 |
7272757 | Stocken | Sep 2007 | B2 |
7274611 | Roohparvar | Sep 2007 | B2 |
7277355 | Tanzawa | Oct 2007 | B2 |
7280398 | Lee et al. | Oct 2007 | B1 |
7280409 | Misumi et al. | Oct 2007 | B2 |
7280415 | Hwang et al. | Oct 2007 | B2 |
7283399 | Ishii et al. | Oct 2007 | B2 |
7289344 | Chen | Oct 2007 | B2 |
7301807 | Khalid et al. | Nov 2007 | B2 |
7301817 | Li et al. | Nov 2007 | B2 |
7308525 | Lasser et al. | Dec 2007 | B2 |
7310255 | Chan | Dec 2007 | B2 |
7310269 | Shibata | Dec 2007 | B2 |
7310271 | Lee | Dec 2007 | B2 |
7310272 | Mokhlesi et al. | Dec 2007 | B1 |
7310347 | Lasser | Dec 2007 | B2 |
7321509 | Chen et al. | Jan 2008 | B2 |
7328384 | Kulkarni et al. | Feb 2008 | B1 |
7342831 | Mokhlesi et al. | Mar 2008 | B2 |
7343330 | Boesjes et al. | Mar 2008 | B1 |
7345924 | Nguyen et al. | Mar 2008 | B2 |
7345928 | Li | Mar 2008 | B2 |
7349263 | Kim et al. | Mar 2008 | B2 |
7356755 | Fackenthal | Apr 2008 | B2 |
7363420 | Lin et al. | Apr 2008 | B2 |
7365671 | Anderson | Apr 2008 | B1 |
7388781 | Litsyn et al. | Jun 2008 | B2 |
7397697 | So et al. | Jul 2008 | B2 |
7405974 | Yaoi et al. | Jul 2008 | B2 |
7405979 | Ishii et al. | Jul 2008 | B2 |
7408804 | Hemink et al. | Aug 2008 | B2 |
7408810 | Aritome et al. | Aug 2008 | B2 |
7409473 | Conley et al. | Aug 2008 | B2 |
7409623 | Baker et al. | Aug 2008 | B2 |
7420847 | Li | Sep 2008 | B2 |
7433231 | Aritome | Oct 2008 | B2 |
7433697 | Karaoguz et al. | Oct 2008 | B2 |
7434111 | Sugiura et al. | Oct 2008 | B2 |
7437498 | Ronen | Oct 2008 | B2 |
7440324 | Mokhlesi | Oct 2008 | B2 |
7440331 | Hemink | Oct 2008 | B2 |
7441067 | Gorobetz et al. | Oct 2008 | B2 |
7447970 | Wu et al. | Nov 2008 | B2 |
7450421 | Mokhlesi et al. | Nov 2008 | B2 |
7453737 | Ha | Nov 2008 | B2 |
7457163 | Hemink | Nov 2008 | B2 |
7457897 | Lee et al. | Nov 2008 | B1 |
7460410 | Nagai et al. | Dec 2008 | B2 |
7460412 | Lee et al. | Dec 2008 | B2 |
7466592 | Mitani et al. | Dec 2008 | B2 |
7468907 | Kang et al. | Dec 2008 | B2 |
7468911 | Lutze et al. | Dec 2008 | B2 |
7471581 | Tran et al. | Dec 2008 | B2 |
7483319 | Brown | Jan 2009 | B2 |
7487329 | Hepkin et al. | Feb 2009 | B2 |
7492641 | Hosono et al. | Feb 2009 | B2 |
7508710 | Mokhlesi | Mar 2009 | B2 |
7526711 | Orio | Apr 2009 | B2 |
7539061 | Lee | May 2009 | B2 |
7539062 | Doyle | May 2009 | B2 |
7551492 | Kim | Jun 2009 | B2 |
7558109 | Brandman et al. | Jul 2009 | B2 |
7558839 | McGovern | Jul 2009 | B1 |
7568135 | Cornwell et al. | Jul 2009 | B2 |
7570520 | Kamei et al. | Aug 2009 | B2 |
7590002 | Mokhlesi et al. | Sep 2009 | B2 |
7593259 | Kim | Sep 2009 | B2 |
7594093 | Kancherla | Sep 2009 | B1 |
7596707 | Vemula | Sep 2009 | B1 |
7609787 | Jahan et al. | Oct 2009 | B2 |
7613043 | Cornwell et al. | Nov 2009 | B2 |
7616498 | Mokhlesi et al. | Nov 2009 | B2 |
7619918 | Aritome | Nov 2009 | B2 |
7631245 | Lasser | Dec 2009 | B2 |
7633798 | Sarin et al. | Dec 2009 | B2 |
7633802 | Mokhlesi | Dec 2009 | B2 |
7639532 | Roohparvar et al. | Dec 2009 | B2 |
7644347 | Alexander et al. | Jan 2010 | B2 |
7656734 | Thorp et al. | Feb 2010 | B2 |
7660158 | Aritome | Feb 2010 | B2 |
7660183 | Ware et al. | Feb 2010 | B2 |
7661054 | Huffman et al. | Feb 2010 | B2 |
7665007 | Yang et al. | Feb 2010 | B2 |
7680987 | Clark et al. | Mar 2010 | B1 |
7733712 | Walston et al. | Jun 2010 | B1 |
7742351 | Inoue et al. | Jun 2010 | B2 |
7761624 | Karamcheti et al. | Jul 2010 | B2 |
7810017 | Radke | Oct 2010 | B2 |
7848149 | Gonzales et al. | Dec 2010 | B2 |
7869273 | Lee et al. | Jan 2011 | B2 |
7885119 | Li | Feb 2011 | B2 |
7924613 | Sommer | Apr 2011 | B1 |
7925936 | Sommer | Apr 2011 | B1 |
7928497 | Yaegashi | Apr 2011 | B2 |
7930515 | Gupta et al. | Apr 2011 | B2 |
7945825 | Cohen et al. | May 2011 | B2 |
7978516 | Olbrich et al. | Jul 2011 | B2 |
8014094 | Jin | Sep 2011 | B1 |
8037380 | Cagno et al. | Oct 2011 | B2 |
8040744 | Gorobets et al. | Oct 2011 | B2 |
8156403 | Shalvi et al. | Apr 2012 | B2 |
20010002172 | Tanaka et al. | May 2001 | A1 |
20010006479 | Ikehashi et al. | Jul 2001 | A1 |
20020038440 | Barkan | Mar 2002 | A1 |
20020056064 | Kidorf et al. | May 2002 | A1 |
20020118574 | Gongwer et al. | Aug 2002 | A1 |
20020133684 | Anderson | Sep 2002 | A1 |
20020166091 | Kidorf et al. | Nov 2002 | A1 |
20020174295 | Ulrich et al. | Nov 2002 | A1 |
20020196510 | Hietala et al. | Dec 2002 | A1 |
20030002348 | Chen et al. | Jan 2003 | A1 |
20030103400 | Van Tran | Jun 2003 | A1 |
20030161183 | Van Tran | Aug 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20040057265 | Mirabel et al. | Mar 2004 | A1 |
20040057285 | Cernea et al. | Mar 2004 | A1 |
20040083333 | Chang et al. | Apr 2004 | A1 |
20040083334 | Chang et al. | Apr 2004 | A1 |
20040105311 | Cernea et al. | Jun 2004 | A1 |
20040114437 | Li | Jun 2004 | A1 |
20040160842 | Fukiage | Aug 2004 | A1 |
20040223371 | Roohparvar | Nov 2004 | A1 |
20050007802 | Gerpheide | Jan 2005 | A1 |
20050013165 | Ban | Jan 2005 | A1 |
20050024941 | Lasser et al. | Feb 2005 | A1 |
20050024978 | Ronen | Feb 2005 | A1 |
20050030788 | Parkinson et al. | Feb 2005 | A1 |
20050086574 | Fackenthal | Apr 2005 | A1 |
20050121436 | Kamitani et al. | Jun 2005 | A1 |
20050157555 | Ono et al. | Jul 2005 | A1 |
20050162913 | Chen | Jul 2005 | A1 |
20050169051 | Khalid et al. | Aug 2005 | A1 |
20050189649 | Maruyama et al. | Sep 2005 | A1 |
20050213393 | Lasser | Sep 2005 | A1 |
20050224853 | Ohkawa | Oct 2005 | A1 |
20050240745 | Iyer et al. | Oct 2005 | A1 |
20050243626 | Ronen | Nov 2005 | A1 |
20060004952 | Lasser | Jan 2006 | A1 |
20060028875 | Avraham et al. | Feb 2006 | A1 |
20060028877 | Meir | Feb 2006 | A1 |
20060101193 | Murin | May 2006 | A1 |
20060106972 | Gorobets et al. | May 2006 | A1 |
20060107136 | Gongwer et al. | May 2006 | A1 |
20060129750 | Lee et al. | Jun 2006 | A1 |
20060133141 | Gorobets | Jun 2006 | A1 |
20060156189 | Tomlin | Jul 2006 | A1 |
20060179334 | Brittain et al. | Aug 2006 | A1 |
20060190699 | Lee | Aug 2006 | A1 |
20060203546 | Lasser | Sep 2006 | A1 |
20060218359 | Sanders et al. | Sep 2006 | A1 |
20060221692 | Chen | Oct 2006 | A1 |
20060221705 | Hemink et al. | Oct 2006 | A1 |
20060221714 | Li et al. | Oct 2006 | A1 |
20060239077 | Park et al. | Oct 2006 | A1 |
20060239081 | Roohparvar | Oct 2006 | A1 |
20060256620 | Nguyen et al. | Nov 2006 | A1 |
20060256626 | Werner et al. | Nov 2006 | A1 |
20060256891 | Yuan et al. | Nov 2006 | A1 |
20060271748 | Jain et al. | Nov 2006 | A1 |
20060285392 | Incarnati et al. | Dec 2006 | A1 |
20060285396 | Ha | Dec 2006 | A1 |
20070006013 | Moshayedi et al. | Jan 2007 | A1 |
20070019481 | Park | Jan 2007 | A1 |
20070033581 | Tomlin et al. | Feb 2007 | A1 |
20070047314 | Goda et al. | Mar 2007 | A1 |
20070047326 | Nguyen et al. | Mar 2007 | A1 |
20070050536 | Kolokowsky | Mar 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061502 | Lasser et al. | Mar 2007 | A1 |
20070067667 | Ikeuchi et al. | Mar 2007 | A1 |
20070074093 | Lasser | Mar 2007 | A1 |
20070086239 | Litsyn et al. | Apr 2007 | A1 |
20070086260 | Sinclair | Apr 2007 | A1 |
20070089034 | Litsyn et al. | Apr 2007 | A1 |
20070091677 | Lasser et al. | Apr 2007 | A1 |
20070091694 | Lee et al. | Apr 2007 | A1 |
20070103978 | Conley et al. | May 2007 | A1 |
20070103986 | Chen | May 2007 | A1 |
20070109845 | Chen | May 2007 | A1 |
20070109849 | Chen | May 2007 | A1 |
20070115726 | Cohen et al. | May 2007 | A1 |
20070118713 | Guterman et al. | May 2007 | A1 |
20070143378 | Gorobetz | Jun 2007 | A1 |
20070143531 | Atri | Jun 2007 | A1 |
20070159889 | Kang et al. | Jul 2007 | A1 |
20070159892 | Kang et al. | Jul 2007 | A1 |
20070159907 | Kwak | Jul 2007 | A1 |
20070168837 | Murin | Jul 2007 | A1 |
20070171714 | Wu et al. | Jul 2007 | A1 |
20070183210 | Choi et al. | Aug 2007 | A1 |
20070189073 | Aritome | Aug 2007 | A1 |
20070195602 | Fong et al. | Aug 2007 | A1 |
20070206426 | Mokhlesi | Sep 2007 | A1 |
20070208904 | Hsieh et al. | Sep 2007 | A1 |
20070226599 | Motwani | Sep 2007 | A1 |
20070236990 | Aritome | Oct 2007 | A1 |
20070253249 | Kang et al. | Nov 2007 | A1 |
20070256620 | Viggiano et al. | Nov 2007 | A1 |
20070263455 | Cornwell et al. | Nov 2007 | A1 |
20070266232 | Rodgers et al. | Nov 2007 | A1 |
20070271424 | Lee et al. | Nov 2007 | A1 |
20070280000 | Fujiu et al. | Dec 2007 | A1 |
20070291571 | Balasundaram | Dec 2007 | A1 |
20070297234 | Cernea et al. | Dec 2007 | A1 |
20080010395 | Mylly et al. | Jan 2008 | A1 |
20080025121 | Tanzawa | Jan 2008 | A1 |
20080043535 | Roohparvar | Feb 2008 | A1 |
20080049504 | Kasahara et al. | Feb 2008 | A1 |
20080049506 | Guterman | Feb 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080055993 | Lee | Mar 2008 | A1 |
20080080243 | Edahiro et al. | Apr 2008 | A1 |
20080082730 | Kim et al. | Apr 2008 | A1 |
20080089123 | Chae et al. | Apr 2008 | A1 |
20080104309 | Cheon et al. | May 2008 | A1 |
20080104312 | Lasser | May 2008 | A1 |
20080109590 | Jung et al. | May 2008 | A1 |
20080115017 | Jacobson | May 2008 | A1 |
20080123420 | Brandman et al. | May 2008 | A1 |
20080126686 | Sokolov et al. | May 2008 | A1 |
20080130341 | Shalvi et al. | Jun 2008 | A1 |
20080148115 | Sokolov et al. | Jun 2008 | A1 |
20080151618 | Sharon et al. | Jun 2008 | A1 |
20080151667 | Miu et al. | Jun 2008 | A1 |
20080158958 | Sokolov et al. | Jul 2008 | A1 |
20080181001 | Shalvi | Jul 2008 | A1 |
20080198650 | Shalvi et al. | Aug 2008 | A1 |
20080198654 | Toda | Aug 2008 | A1 |
20080209116 | Caulkins | Aug 2008 | A1 |
20080209304 | Winarski et al. | Aug 2008 | A1 |
20080215798 | Sharon et al. | Sep 2008 | A1 |
20080219050 | Shalvi et al. | Sep 2008 | A1 |
20080239093 | Easwar et al. | Oct 2008 | A1 |
20080239812 | Abiko et al. | Oct 2008 | A1 |
20080253188 | Aritome | Oct 2008 | A1 |
20080263262 | Sokolov et al. | Oct 2008 | A1 |
20080263676 | Mo et al. | Oct 2008 | A1 |
20080270730 | Lasser et al. | Oct 2008 | A1 |
20080282106 | Shalvi et al. | Nov 2008 | A1 |
20080288714 | Salomon et al. | Nov 2008 | A1 |
20090013233 | Radke | Jan 2009 | A1 |
20090024905 | Shalvi et al. | Jan 2009 | A1 |
20090034337 | Aritome | Feb 2009 | A1 |
20090043831 | Antonopoulos et al. | Feb 2009 | A1 |
20090043951 | Shalvi et al. | Feb 2009 | A1 |
20090049234 | Oh et al. | Feb 2009 | A1 |
20090073762 | Lee et al. | Mar 2009 | A1 |
20090086542 | Lee et al. | Apr 2009 | A1 |
20090089484 | Chu | Apr 2009 | A1 |
20090091979 | Shalvi | Apr 2009 | A1 |
20090094930 | Schwoerer | Apr 2009 | A1 |
20090106485 | Anholt | Apr 2009 | A1 |
20090112949 | Ergan et al. | Apr 2009 | A1 |
20090132755 | Radke | May 2009 | A1 |
20090144600 | Perlmutter et al. | Jun 2009 | A1 |
20090150894 | Huang et al. | Jun 2009 | A1 |
20090157950 | Selinger | Jun 2009 | A1 |
20090157964 | Kasorla et al. | Jun 2009 | A1 |
20090158126 | Perlmutter et al. | Jun 2009 | A1 |
20090168524 | Golov et al. | Jul 2009 | A1 |
20090172257 | Prins et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090193184 | Yu et al. | Jul 2009 | A1 |
20090199074 | Sommer et al. | Aug 2009 | A1 |
20090204824 | Lin et al. | Aug 2009 | A1 |
20090204872 | Yu et al. | Aug 2009 | A1 |
20090213653 | Perlmutter et al. | Aug 2009 | A1 |
20090213654 | Perlmutter et al. | Aug 2009 | A1 |
20090225595 | Kim | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090240872 | Perlmutter et al. | Sep 2009 | A1 |
20090265509 | Klein | Oct 2009 | A1 |
20090300227 | Nochimowski et al. | Dec 2009 | A1 |
20090323412 | Mokhlesi et al. | Dec 2009 | A1 |
20090327608 | Eschmann | Dec 2009 | A1 |
20100017650 | Chin et al. | Jan 2010 | A1 |
20100034022 | Dutta et al. | Feb 2010 | A1 |
20100057976 | Lasser | Mar 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100082883 | Chen et al. | Apr 2010 | A1 |
20100083247 | Kanevsky et al. | Apr 2010 | A1 |
20100110580 | Takashima | May 2010 | A1 |
20100124088 | Shalvi et al. | May 2010 | A1 |
20100131697 | Alrod et al. | May 2010 | A1 |
20100131827 | Sokolov et al. | May 2010 | A1 |
20100142268 | Aritome | Jun 2010 | A1 |
20100142277 | Yang et al. | Jun 2010 | A1 |
20100157675 | Shalvi et al. | Jun 2010 | A1 |
20100165689 | Rotbard et al. | Jul 2010 | A1 |
20100169547 | Ou | Jul 2010 | A1 |
20100169743 | Vogan et al. | Jul 2010 | A1 |
20100174847 | Paley et al. | Jul 2010 | A1 |
20100195390 | Shalvi | Aug 2010 | A1 |
20100199150 | Shalvi et al. | Aug 2010 | A1 |
20100220509 | Sokolov et al. | Sep 2010 | A1 |
20100220510 | Shalvi | Sep 2010 | A1 |
20100250836 | Sokolov et al. | Sep 2010 | A1 |
20110066793 | Burd | Mar 2011 | A1 |
20110075482 | Shepard et al. | Mar 2011 | A1 |
20110107049 | Kwon et al. | May 2011 | A1 |
20110199823 | Bar-Or et al. | Aug 2011 | A1 |
20110302354 | Miller | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
0783754 | Jul 1997 | EP |
1434236 | Jun 2004 | EP |
1605509 | Dec 2005 | EP |
9610256 | Apr 1996 | WO |
9828745 | Jul 1998 | WO |
02100112 | Dec 2002 | WO |
03100791 | Dec 2003 | WO |
2007046084 | Apr 2007 | WO |
2007132452 | Nov 2007 | WO |
2007132453 | Nov 2007 | WO |
2007132456 | Nov 2007 | WO |
2007132457 | Nov 2007 | WO |
2007132458 | Nov 2007 | WO |
2007146010 | Dec 2007 | WO |
2008026203 | Mar 2008 | WO |
2008053472 | May 2008 | WO |
2008053473 | May 2008 | WO |
2008068747 | Jun 2008 | WO |
2008077284 | Jul 2008 | WO |
2008083131 | Jul 2008 | WO |
2008099958 | Aug 2008 | WO |
2008111058 | Sep 2008 | WO |
2008124760 | Oct 2008 | WO |
2008139441 | Nov 2008 | WO |
2009037691 | Mar 2009 | WO |
2009037697 | Mar 2009 | WO |
2009038961 | Mar 2009 | WO |
2009050703 | Apr 2009 | WO |
2009053961 | Apr 2009 | WO |
2009053962 | Apr 2009 | WO |
2009053963 | Apr 2009 | WO |
2009063450 | May 2009 | WO |
2009072100 | Jun 2009 | WO |
2009072101 | Jun 2009 | WO |
2009072102 | Jun 2009 | WO |
2009072103 | Jun 2009 | WO |
2009072104 | Jun 2009 | WO |
2009072105 | Jun 2009 | WO |
2009074978 | Jun 2009 | WO |
2009074979 | Jun 2009 | WO |
2009078006 | Jun 2009 | WO |
2009095902 | Aug 2009 | WO |
2011024015 | Mar 2011 | WO |
Entry |
---|
Agrell et al., “Closest Point Search in Lattices”, IEEE Transactions on Information Theory, vol. 48, No. 8, pp. 2201-2214, Aug. 2002. |
Ankolekar et al., “Multibit Error-Correction Methods for Latency-Constrained Flash Memory Systems”, IEEE Transactions on Device and Materials Reliability, vol. 10, No. 1, pp. 33-39, Mar. 2010. |
Berman et al., “Mitigating Inter-Cell Coupling Effects in MLC NAND Flash via Constrained Coding”, Flash Memory Summit, Santa Clara, USA, Aug. 19, 2010. |
Bez et al., “Introduction to Flash memory”, Proceedings of the IEEE, vol. 91, No. 4, pp. 489-502, Apr. 2003. |
Blahut, R.E., “Theory and Practice of Error Control Codes,” Addison-Wesley, May 1984, section 3.2, pp. 47-48. |
Chang, L., “Hybrid Solid State Disks: Combining Heterogeneous NAND Flash in Large SSDs”, ASPDAC, Jan. 2008. |
Cho et al., “Multi-Level NAND Flash Memory with Non-Uniform Threshold Voltage Distribution,” IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb. 5-7, 2001, pp. 28-29 and 424. |
Compaq et al., “Universal Serial Bus Specification”, revision 2.0, Apr. 27, 2000. |
Databahn™, “Flash memory controller IP”, Denali Software, Inc., 1994 https://www.denali.com/en/products/databahn—flash.jsp. |
Datalight, Inc., “FlashFX Pro 3.1 High Performance Flash Manager for Rapid Development of Reliable Products”, Nov. 16, 2006. |
Duann, N., Silicon Motion Presentation “SLC & MLC Hybrid”, Flash Memory Summit, Santa Clara, USA, Aug. 2008. |
Eitan et al., “Can NROM, a 2-bit, Trapping Storage NVM Cell, Give a Real Challenge to Flating Gate Cells?”, Proceedings of the 1999 International Conference on Solid State Devices and Materials (SSDM), pp. 522-524, Tokyo, Japan 1999. |
Eitan et al., “Multilevel Flash Cells and their Trade-Offs”, Proceedings of the 1996 IEEE International Electron Devices Meeting (IEDM), pp. 169-172, New York, USA 1996. |
Engh et al., “A self adaptive programming method with 5 mV accuracy for multi-level storage in Flash”, pp. 115-118, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference, May 12-15, 2002. |
Engineering Windows 7, “Support and Q&A for Solid-State Drives”, e7blog, May 5, 2009. |
Goodman et al., “On-Chip ECC for Multi-Level Random Access Memories,” Proceedings of the IEEE/CAM Information Theory Workshop, Ithaca, USA, Jun. 25-29, 1989. |
Gotou, H., “An Experimental Confirmation of Automatic Threshold Voltage Convergence in a Flash Memory Using Alernating Word-Line Voltage Pulses”, IEEE Electron Device Letters, vol. 18, No. 10, pp. 503-505, Oct. 1997. |
Han et al., “An Intelligent Garbage Collection Algorithm for Flash Memory Storages”, Computational Science and Its Applications—ICCSA 2006, vol. 3980/2006, pp. 1019-1027, Springer Berlin / Heidelberg, Germany, May 11, 2006. |
Han et al., “CATA: A Garbage Collection Scheme for Flash Memory File Systems”, Ubiquitous Intelligence and Computing, vol. 4159/2006, p. 103-112, Springer Berlin / Heidelberg, Aug. 25, 2006. |
Hong et al., “NAND Flash-based Disk Cache Using SLC/MLC Combined Flash Memory”, 2010 International Workshop on Storage Network Architecture and Parallel I/Os, pp. 21-30, USA, May 3, 2010. |
Horstein, “On the Design of Signals for Sequential and Nonsequential Detection Systems with Feedback,” IEEE Transactions on Information Theory IT-12:4 (Oct. 1966), pp. 448-455. |
How to Resolve Bad Super Block: Magic Number Wrong“in BSD”, Free Online Articles Director Article Base, posted Sep. 5, 2009. |
Huffman, A., “Non-Volatile Memory Host Controller Interface (NVMHCI)”, Specification 1.0, Apr. 14, 2008. |
Jedec Standard JESD84-C44, “Embedded MultiMediaCard (eMMC) Mechanical Standard, with Optional Reset Signal”, Jedec Solid State Technology Association, USA, Jul. 2009. |
Jedec, “UFS Specification”, version 0.1, Nov. 11, 2009. |
Jung et al., in “A 117 mm.sup.2 3.3V Only 128 Mb Multilevel NAND Flash Memory for Mass Storage Applications,” IEEE Journal of Solid State Circuits, (11:31), Nov. 1996, pp. 1575-1583. |
Kang et al., “A Superblock-based Flash Translation Layer for NAND Flash Memory”, Proceedings of the 6th ACM & IEEE International Conference on Embedded Software, pp. 161-170, Seoul, Korea, Oct. 22-26, 2006. |
Kawaguchi et al. 1995. A flash-memory based file system. In Proceedings of the USENIX 1995 Technical Conference , New Orleans, Louisiana. 155-164. |
Kim et al., “Future Memory Technology including Emerging New Memories”, Proceedings of the 24th International Conference on Microelectronics (MIEL), vol. 1, pp. 377-384, Nis, Serbia and Montenegro, May 16-19, 2004. |
Lee et al., “Effects of Floating Gate Interference on NAND Flash Memory Cell Operation”, IEEE Electron Device Letters, vol. 23, No. 5, pp. 264-266, May 2002. |
Maayan et al., “A 512 Mb NROM Flash Data Storage Memory with 8 MB/s Data Rate”, Proceedings of the 2002 IEEE International Solid-State circuits Conference (ISSCC 2002), pp. 100-101, San Francisco, USA, Feb. 3-7, 2002. |
Mielke et al., “Recovery Effects in the Distributed Cycling of Flash Memories”, IEEE 44th Annual International Reliability Physics Symposium, pp. 29-35, San Jose, USA, Mar. 2006. |
Micron Technology Inc., “Memory Management in NAND Flash Arrays”, Technical Note, year 2005. |
Numonyx, “M25PE16: 16-Mbit, page-erasable serial flash memory with byte-alterability, 75 MHz SPI bus, standard pinout”, Apr. 2008. |
Onfi, “Open NAND Flash Interface Specification,” revision 1.0, Dec. 28, 2006. |
Panchbhai et al., “Improving Reliability of NAND Based Flash Memory Using Hybrid SLC/MLC Device”, Project Proposal for CSci 8980—Advanced Storage Systems, University of Minnesota, USA, Spring 2009. |
Park et al., “Sub-Grouped Superblock Management for High-Performance Flash Storages”, IEICE Electronics Express, vol. 6, No. 6, pp. 297-303, Mar. 25, 2009. |
Phison Electronics Corporation, “PS8000 Controller Specification (for SD Card)”, revision 1.2, Document No. S-07018, Mar. 28, 2007. |
Shalvi, et al., “Signal Codes,” Proceedings of the 2003 IEEE Information Theory Workshop (ITW'2003), Paris, France, Mar. 31-Apr. 4, 2003. |
SD Group and SD Card Association, “SD Specifications Part 1 Physical Layer Specification”, version 3.01, draft 1.00, Nov. 9, 2009. |
Serial ATA International Organization, “Serial ATA Revision 3.0 Specification”, Jun. 2, 2009. |
Shiozaki, A., “Adaptive Type-II Hybrid Broadcast ARQ System”, IEEE Transactions on Communications, vol. 44, Issue 4, pp. 420-422, Apr. 1996. |
Suh et al., “A 3.3V 32Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme”, IEEE Journal of Solid-State Circuits, vol. 30, No. 11, pp. 1149-1156, Nov. 1995. |
ST Microelectronics, “Bad Block Management in NAND Flash Memories”, Application note AN-1819, Geneva, Switzerland, May 2004. |
ST Microelectronics, “Wear Leveling in Single Level Cell NAND Flash Memories,” Application note AN-1822 Geneva, Switzerland, Feb. 2007. |
Super User Forums, “SD Card Failure, can't read superblock”, posted Aug. 8, 2010. |
Takeuchi et al., “A Double Level VTH Select Gate Array Architecture for Multi-Level NAND Flash Memories”, Digest of Technical Papers, 1995 Symposium on VLSI Circuits, pp. 69-70, Jun. 8-10, 1995. |
Takeuchi et al., “A Multipage Cell Architecture for High-Speed Programming Multilevel NAND Flash Memories”, IEEE Journal of Solid State Circuits, vol. 33, No. 8, Aug. 1998. |
Ubuntu Forums, “Memory Stick Failed IO Superblock”, posted Nov. 11, 2009. |
Wu et al., “eNVy: A non-Volatile, Main Memory Storage System”, Proceedings of the 6th International Conference on Architectural support for programming languages and operating systems, pp. 86-87, San Jose, USA, 1994. |
International Application PCT/IL2007/000575 Search Report dated May 30, 2008. |
International Application PCT/IL2007/000576 Search Report dated Jul. 7, 2008. |
International Application PCT/IL2007/000579 Search report dated Jul. 3, 2008. |
International Application PCT/IL2007/000580 Search Report dated Sep. 11, 2008. |
International Application PCT/IL2007/000581 Search Report dated Aug. 25, 2008. |
International Application PCT/IL2007/001059 Search report dated Aug. 7, 2008. |
International Application PCT/IL2007/001315 search report dated Aug. 7, 2008. |
International Application PCT/IL2007/001316 Search report dated Jul. 22, 2008. |
International Application PCT/IL2007/001488 Search report dated Jun. 20, 2008. |
International Application PCT/IL2008/000329 Search report dated Nov. 25, 2008. |
International Application PCT/IL2008/000519 Search report dated Nov. 20, 2008. |
International Application PCT/IL2008/001188 Search Report dated Jan. 28, 2009. |
International Application PCT/IL2008/001356 Search Report dated Feb. 3, 2009. |
International Application PCT/IL2008/001446 Search report dated Feb. 20, 2009. |
U.S. Appl. No. 11/949,135 Official Action dated Oct. 2, 2009. |
U.S. Appl. No. 12/019,011 Official Action dated Nov. 20, 2009. |
U.S. Appl. No. 11/957,970 Official Action dated May 20, 2010. |
U.S. Appl. No. 12/171,797 Official Action dated Aug. 25, 2010. |
U.S. Appl. No. 11/945,575 Official Action dated Aug. 24, 2010. |
U.S. Appl. No. 12/497,707 Official Action dated Sep. 15, 2010. |
U.S. Appl. No. 11/995,801 Official Action dated Oct. 15, 2010. |
U.S. Appl. No. 12/045,520 Official Action dated Nov. 16, 2010. |
U.S. Appl. No. 12/388,528 Official Action dated Nov. 29, 2010. |
U.S. Appl. No. 11/995,814 Official Action dated Dec. 17, 2010. |
U.S. Appl. No. 12/251,471 Official Action dated Jan. 3, 2011. |
U.S. Appl. No. 12/534,898 Official Action dated Mar. 23, 2011. |
Chinese Application # 200780026181.3 Official Action dated Apr. 8, 2011. |
U.S. Appl. No. 12/178,318 Official Action dated May 31, 2011. |
U.S. Appl. No. 11/995,813 Official Action dated Jun. 16, 2011. |
U.S. Appl. No. 12/344,233 Official Action dated Jun. 24, 2011. |
U.S. Appl. No. 12/251,471, filed Oct. 15, 2008. |
U.S. Appl. No. 12/534,893, filed Aug. 4, 2009. |
U.S. Appl. No. 12/534,898, filed Aug. 4, 2009. |
U.S. Appl. No. 12/551,583, filed Sep. 1, 2009. |
U.S. Appl. No. 12/551,567, filed Sep. 1, 2009. |
U.S. Appl. No. 12/558,528, filed Sep. 13, 2009. |
U.S. Appl. No. 12/579,430, filed Oct. 15, 2009. |
U.S. Appl. No. 12/579,432, filed Oct. 15, 2009. |
U.S. Appl. No. 12/607,078, filed Oct. 28, 2009. |
U.S. Appl. No. 12/607,085, filed Oct. 28, 2009. |
U.S. Appl. No. 12/649,358, filed Dec. 30, 2009. |
U.S. Appl. No. 12/649,360, filed Dec. 30, 2009. |
U.S. Appl. No. 12/688,883, filed Jan. 17, 2010. |
U.S. Appl. No. 12/728,296, filed Mar. 22, 2010. |
U.S. Appl. No. 12/758,003, filed Apr. 11, 2010. |
U.S. Appl. No. 12/880,101, filed Sep. 12, 2010. |
U.S. Appl. No. 12/890,724, filed Sep. 27, 2010. |
U.S. Appl. No. 12/822,207, filed Jun. 24, 2010. |
U.S. Appl. No. 12/987,174, filed Jan. 10, 2011. |
U.S. Appl. No. 12/987,175, filed Jan. 10, 2011. |
U.S. Appl. No. 12/963,649, filed Dec. 9, 2010. |
U.S. Appl. No. 13/021,754, filed Feb. 6, 2011. |
U.S. Appl. No. 13/047,822, filed Mar. 15, 2011. |
U.S. Appl. No. 13/069,406, filed Mar. 23, 2011. |
U.S. Appl. No. 13/088,361, filed Apr. 17, 2011. |
U.S. Appl. No. 13/170,202, filed Jun. 28, 2011. |
U.S. Appl. No. 13/171,467, filed Jun. 29, 2011. |
U.S. Appl. No. 13/176,761, filed Jul. 6, 2011. |
Wei, L., “Trellis-Coded Modulation With Multidimensional Constellations”, IEEE Transactions on Information Theory, vol. IT-33, No. 4, pp. 483-501, Jul. 1987. |
U.S. Appl. No. 12/649,360 Official Action dated Aug. 9, 2011. |
U.S. Appl. No. 12/405,275 Official Action dated Jul. 29, 2011. |
Conway et al., “Sphere Packings, Lattices and Groups”, 3rd edition, chapter 4, pp. 94-135, Springer, New York, USA 1998. |
Chinese Patent Application # 200780040493.X Official Action dated Jun. 15, 2011. |
U.S. Appl. No. 12/037,487 Official Action dated Oct. 3, 2011. |
U.S. Appl. No. 13/192,495, filed Jul. 28, 2011. |
U.S. Appl. No. 13/192,504, filed Jul. 28, 2011. |
U.S. Appl. No. 13/192,852, filed Aug. 2, 2011. |
U.S. Appl. No. 13/231,963, filed Sep. 14, 2011. |
U.S. Appl. No. 13/239,408, filed Sep. 22, 2011. |
U.S. Appl. No. 13/239,411, filed Sep. 22, 2011. |
U.S. Appl. No. 13/214,257, filed Aug. 22, 2011. |
U.S. Appl. No. 13/192,501, filed Jul. 28, 2011. |
U.S. Appl. No. 12/323,544 Office Action dated Dec. 13, 2011. |
U.S. Appl. No. 12/332,368 Office Action dated Nov. 10, 2011. |
U.S. Appl. No. 12/063,544 Office Action dated Dec. 14, 2011. |
U.S. Appl. No. 12/186,867 Office Action dated Jan. 17, 2012. |
U.S. Appl. No. 12/119,069 Office Action dated Nov. 14, 2011. |
U.S. Appl. No. 12/037,487 Office Action dated Jan. 3, 2012. |
U.S. Appl. No. 11/995,812 Office Action dated Oct. 28, 2011. |
U.S. Appl. No. 12/551,567 Office Action dated Oct. 27, 2011. |
U.S. Appl. No. 12/618,732 Office Action dated Nov. 4, 2011. |
U.S. Appl. No. 12/649,382 Office Action dated Jan. 6, 2012. |
U.S. Appl. No. 13/284,909, filed on Oct. 30, 2011. |
U.S. Appl. No. 13/284,913, filed on Oct. 30, 2011. |
U.S. Appl. No. 13/338,335, filed on Dec. 28, 2011. |
U.S. Appl. No. 13/355,536, filed on Jan. 22, 2012. |
Kim et al., “Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding”, Proceedings of the 40th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-40), Chicago, USA, Dec. 1-5, 2007. |
US 7,161,836, 01/2007, Wan et al. (withdrawn). |
Number | Date | Country | |
---|---|---|---|
60863506 | Oct 2006 | US | |
60867399 | Nov 2006 | US | |
60888828 | Feb 2007 | US | |
60889277 | Feb 2007 | US | |
60892869 | Mar 2007 | US | |
60894456 | Mar 2007 | US | |
60917653 | May 2007 | US | |
60950884 | Jul 2007 | US | |
60951215 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11995814 | US | |
Child | 13114049 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13114049 | May 2011 | US |
Child | 14226413 | US |