Reads and writes between a contiguous data block and noncontiguous sets of logical address blocks in a persistent storage device

Information

  • Patent Grant
  • 9612948
  • Patent Number
    9,612,948
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, April 4, 2017
    7 years ago
Abstract
In the present disclosure, a persistent storage device includes both persistent storage, which includes a set of persistent storage blocks, and a storage controller. The persistent storage device stores and retrieves data in response to commands received from an external host device. The persistent storage device stores data, from a contiguous data block, to two or more sets of logical address blocks in persistent storage. The persistent storage device also retrieves data, corresponding to a contiguous data block, from two or more sets of logical address blocks in persistent. In both instances, the two or more sets of logical address blocks in persistent storage, in aggregate, are not contiguous.
Description
TECHNICAL FIELD

The disclosed embodiments relate generally to storage devices.


BACKGROUND

It is well known that logically contiguous storage provides for more efficient execution of input/output operations than logically noncontiguous storage. However, over time and as more operations are performed, storage typically becomes fragmented, thus leading to less efficient operations.


The embodiments described herein provide mechanisms and methods for more efficient reads and writes to storage devices.


SUMMARY

In the present disclosure, a persistent storage device includes persistent storage, which includes a set of persistent storage blocks, and a storage controller. The persistent storage device stores and retrieves data in response to commands received from an external host device. The persistent storage device stores data, from a contiguous data block, to two or more sets of logical address blocks in persistent storage. The persistent storage device also retrieves data, corresponding to a contiguous data block, from two or more sets of logical address blocks in persistent storage. In both instances, the two or more sets of logical address blocks in persistent storage, in aggregate, are not contiguous.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a system that includes a persistent storage device and an external host device, in accordance with some embodiments.



FIG. 2A is a schematic diagram corresponding to processing a write command that stores data from a contiguous block in host memory on a host device to two or more sets of logical address blocks in a persistent storage device, in accordance with some embodiments.



FIG. 2B is a schematic diagram corresponding to processing a read command that retrieves data from two or more sets of logical address blocks in a persistent storage device and stores the data to a contiguous block in host memory on a host device, in accordance with some embodiments.



FIG. 3A-3B are flow diagrams illustrating the processing of host commands by a persistent storage device, in accordance with some embodiments.



FIGS. 4A-4C illustrate a flow diagram of a process for managing a persistent storage device, including processing host read and write commands, in accordance with some embodiments.





Like reference numerals refer to corresponding parts throughout the drawings.


DESCRIPTION OF EMBODIMENTS

In some embodiments, data stored by a host device in persistent storage becomes fragmented over time. When that happens, it is difficult to allocate contiguous storage. In some embodiments, applications on the host cause the host to perform input/output (I/O) operations using non-contiguous data stored in persistent storage. In such embodiments, performing I/O operations using non-contiguous data is less efficient than performing I/O operations using contiguous blocks of data. In some embodiments, the host defragments data once it has become fragmented. For example, in some cases, the host suspends all applications and runs processes for defragmenting data in persistent storage. In that case, an application cannot perform an operation until the defragmentation processes are complete. In another example, the host runs the defragmentation processes while an application is still running Because the defragmentation processes are running simultaneously with the application, the application's performance slows down. In both cases, the time for an application to complete an operation increases, thereby decreasing efficiency.


In the present disclosure, a persistent storage device includes persistent storage, which includes a set of persistent storage blocks, and a storage controller. The storage controller is configured to store and retrieve data in response to commands received from an external host device. The storage controller is also configured to respond to a host write command by storing data from a write data contiguous data block to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command. Each set of logical address blocks specified by the host write command includes a set of contiguous logical address blocks, where the two or more sets of logical address blocks specified by the host write command, in aggregate, are not contiguous. The storage controller is further configured to respond to a host read command by retrieving data corresponding to a read data contiguous data block from persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command. Each set of logical address blocks specified by the host read command includes a set of contiguous logical address blocks, where the two or more sets of logical address blocks specified by the host read command, in aggregate, are not contiguous.


In some embodiments, the storage controller is further configured to execute the host write command or the host read command atomically. In some embodiments, the host write command specifies storage of a first block of data to a first persistent storage block corresponding to a first logical address block and storage of a second block of data to a second persistent storage block corresponding to a second logical address block, where the first and second blocks of data are contiguously stored in the write data contiguous data block, and wherein the first and second logical address blocks are noncontiguous. Similarly, in some embodiments, the host read command specifies retrieval of a first block of data from a first persistent storage block corresponding to a first logical address block and retrieval of a second block of data from a second persistent storage block corresponding to a second logical address block, where the first and second blocks of data are, after retrieval, contiguously stored in the read data contiguous data block, and wherein the first and second logical address blocks are noncontiguous. In some embodiments, the persistent storage device is implemented as a single, monolithic integrated circuit. In some embodiments, the persistent storage device also includes a host interface for interfacing the persistent storage device to a memory controller of the external host device.


In some embodiments, the persistent storage device includes a logical address to physical address map for associating logical block addresses with persistent storage blocks in the persistent storage device. In some embodiments, the two or more sets of logical address blocks specified by the host write command comprise logical block addresses, each associated with a corresponding persistent storage block, and the corresponding persistent storage blocks are identified by the storage controller using a logical block address to physical address mapping. Optionally, the write data contiguous data block or the read data contiguous data block corresponds to a contiguous data block in memory on the external host device.


In another aspect of the present disclosure, a method for managing a persistent storage device is provided. In some embodiments, the method is performed at the persistent storage device, which includes persistent storage and a storage controller. The persistent storage includes a set of persistent storage blocks. The method includes responding to a host write command received from an external host device by storing data from a write data contiguous data block to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command. Each set of logical address blocks specified by the host write command includes a set of contiguous logical address blocks, where the two or more sets of logical address blocks specified by the host write command, in aggregate, are not contiguous. The method further includes responding to a host read command by retrieving data corresponding to a read data contiguous data block from persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command. Each set of logical address blocks specified by the host read command includes a set of contiguous logical address blocks, where the two or more sets of logical address blocks specified by the host read command, in aggregate, are not contiguous.


In yet another aspect of the present disclosure, a non-transitory computer readable storage medium stores one or more programs for execution by a storage controller of a persistent storage device. Execution of the one or more programs by the storage controller causes the storage controller to perform any of the methods described above.


Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention and the described embodiments. However, the invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.



FIG. 1 is a block diagram illustrating a system 100 that includes a persistent storage device 106 and an external host device 102 (sometimes herein called host 102), in accordance with some embodiments. For convenience, host 102 is herein described as implemented as a single server or other single computer. Host 102 includes one or more processing units (CPU's) 104, one or more memory interfaces 107, memory 108, and one or more communication buses 110 for interconnecting these components. The communication buses 110 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Memory 108 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Further, memory 108 optionally includes one or more storage devices remotely located from the CPU(s) 104. Memory 108, or alternately the non-volatile memory device(s) within memory 108, includes a non-volatile computer readable storage medium. In some embodiments, memory 108 or the non-volatile computer readable storage medium of memory 108 stores the following programs, modules and data structures, or a subset thereof:

    • an operating system 112 that includes procedures for handling various basic system services and for performing hardware dependent tasks;
    • one or more applications 114 which are configured to (or include instructions to) submit read and write commands to persistent storage device 106 using storage access functions 122 and persistent storage LBAs 124; one or more applications 114 optionally utilizes application memory 116 to store data 117, for example data used by or associated with one of the applications 114; data 117 optionally includes write data, to be written to persistent storage 150 in persistent storage device 106 from write data block 118, and/or read data that has been retrieved from persistent storage 150 in persistent storage device 106 to be stored in read data block 120; in some implementations, write data block 118 and read data block 120 are each a contiguous block of data.
    • storage access functions 122 for reading and writing to persistent storage 150 of persistent storage device 106; and
    • persistent storage LBAs 124 for maintaining a mapping of which logical block addresses, corresponding to persistent storage blocks in persistent storage 150, contain what data.


Each of the aforementioned host functions, such as storage access functions 122, is configured for execution by the one or more processors (CPUs) 104 of host 102, so as to perform the associated storage access task or function with respect to persistent storage 150 in persistent storage device 106.


In some embodiments, host 102 is connected to persistent storage device 106 via a memory interface 107 of host 102 and a host interface 126 of persistent storage device 106. Host 102 is connected to persistent storage device 106 either directly or through a communication network (not shown) such as the Internet, other wide area networks, local area networks, metropolitan area networks, wireless networks, or any combination of such networks. Optionally, in some implementations, host 102 is connected to a plurality of persistent storage devices 106, only one of which is shown in FIG. 1.


In some embodiments, persistent storage device 106 includes persistent storage 150, one or more host interfaces 126, and storage controller 134. Storage controller 134 includes one or more processing units (CPU's) 128, memory 130, and one or more communication buses 132 for interconnecting these components. In some embodiments, communication buses 132 include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Memory 130 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 130 optionally includes one or more storage devices remotely located from the CPU(s) 128. Memory 130, or alternately the non-volatile memory device(s) within memory 130, includes a non-volatile computer readable storage medium. In some embodiments, memory 130 stores the following programs, modules and data structures, or a subset thereof:

    • host interface functions 136 that include procedures for handling commands sent from host 102 and received by persistent storage device 106 via its host interface 126;
    • storage (flash) functions 138 for handling persistent storage access commands issued by host 102; the storage functions 138 include a function 140 to write data to one or more specified persistent storage blocks and a function 142 to read data from one more specified persistent storage blocks;
    • atomic command execution module 144 for executing host read and host write commands, received from host 102, atomically;
    • one or more address translation functions 146 for translating logical block addresses to physical addresses; and
    • one or more address translation tables 148 for storing logical to physical address mapping information.


Each of the aforementioned storage controller functions, such as storage functions 138, is configured for execution by the one or more processors (CPUs) 128 of storage controller 134, so as to perform the associated task or function with respect to persistent storage 150.


Address translation function(s) 146 together with address translation tables 148 implement logical block address (LBA) to physical address (PHY) mapping, shown as LBA to PHY mapping 206 in FIG. 2.


As used herein, the term “atomic” refers to an operation that either succeeds as a whole, or fails as a whole. For example, an atomic execution of a write command specifying two blocks of write data will not be interrupted until either both blocks of write data are written, or the operation fails and neither block is written. Thus, the atomic execution of the write command in the given example will end in either a write completion of both blocks of data, or a failure to write any blocks of data. In such an example, an atomic execution of the write command will not result in a partial completion, i.e., write completion of only one block of write data.


As used herein, the term “persistent storage” refers to any type of persistent storage used as mass storage or secondary storage. In some embodiments, persistent storage is flash memory. In some implementations, persistent storage 150 includes a set of persistent storage blocks.


In some embodiments, commands issued by host 102, using the storage access functions 122 described above, are implemented as input/output control (ioctl) function calls, for example Unix or Linux ioctl function calls or similar function calls implemented in other operating systems. In some embodiments, commands are issued to persistent storage device 106 as a result of function calls by host 102.


An example of a command issued by host 102 to write data (e.g., data 117 stored in application memory 116 in memory 108 of host 102) to one or more persistent storage blocks, for invoking the write to persistent storage block function 140 in persistent storage device 106, is given by:


vwrite(buf, block1, count1, block2, count2, . . . )


where buf refers to a location in application memory 116 in memory 108 on host 102 containing data to be written, block1 refers to a starting position in persistent storage 150 to which count1 blocks of data, starting at buf, is to be written, and block2 refers to a starting position in persistent storage 150 to which count2 blocks of data is to be written, the count2 blocks of data following the count1 blocks of data in a contiguous block of data starting at buf. The number of (block, count) pairs in the vwrite command has no specific limit, and can generally range from two pairs to several dozen pairs or, optionally, hundreds of pairs, depending on the implementation.


In specific examples of calls to vwrite illustrated below, the values of the “block#” fields refer to logical block addresses, which correspond to the starting positions of the specified logical address blocks. For example, if the block1 field of a write command has a value of 2, then the write command indirectly specifies a set of persistent storage blocks, the number of which is given by the count1 field, by specifying a set of logical block addresses starting at logical block address 2. Thus, for example, if the count1 field had a value of 4, then the write command specifies that 4 blocks of data be written to the persistent storage blocks associated with the 4 logical block addresses (e.g., logical block addresses 2, 3, 4, and 5) starting at the specified logical block address, 2.


In some implementations, buf indicates the starting location of write data block 118. In some implementations, the count1 blocks of data to be written to block1 and the count2 blocks of data to be written to block2 are contiguously stored in write data block 118, starting at buf. In some implementations, the count1 blocks of data to be written to block1 and the count2 blocks of data to be written to block2 are only a portion of write data block 118. In some implementations, the starting locations, block1 and block2, are logical block addresses, and count1 and count2 refer to integer numbers of blocks of data to be written. Each of the aforementioned blocks of data has a size corresponding to the size of a respective persistent storage block.


In some implementations, for either vwrite and vread (described below), or both, a first set of logical address blocks, defined by block1 and count1 , and a second set of persistent storage blocks, defined by block2 and count2, are neighboring sets of logical address blocks, but are not contiguous in aggregate because they have a different order from the corresponding data blocks in application memory 116. An example of such a implementation would be a vwrite command in which (block1, count1 ) is equal to (2,2) and (block2, count2 ) is equal to (0,2).


An example of a command issued by host 102 to read data from one or more persistent storage blocks, for invoking the read from persistent storage block function 142 in persistent storage device 106, is given by:


vread(buf, block1, count1, block2, count2, . . . )


where buf refers to a location in application memory 116 in memory 108 on host 102 into which the read data is to be stored, block1 refers to a starting position (e.g., a first logical block address) in persistent storage 150 from which count1 blocks of data is to be read into application memory 116 starting at location buf, and block2 refers to a starting position (e.g., a second logical block address) in persistent storage 150 from which count2 blocks of data is to be read into application memory 116 starting at a position that is count1 blocks of data after buf. The number of (block, count) pairs in the vwrite command has no specific limit, and can generally range from two pairs to several dozen pairs or, optionally, hundreds of pairs, depending on the implementation.


Similarly to the host write command issued by host 102 to write data to one or more persistent storage blocks, in some implementations, the buf parameter of the vread ( ) host read command indicates the starting location of read data block 120. In some implementations, the count1 blocks of data to be read from block1 and the count2 blocks of data to be read from block2 are stored in read data block 118, in a contiguous block starting at buf. In some implementations, the count1 blocks of data to be read from block1 and the count2 blocks of data to be read from block2 are only a portion of read data block 120. As with vwrite, in some implementations the starting locations, block1 and block2, are logical block addresses, and count1 and count2 refer to integer numbers of blocks of data to be read and conveyed to host 102. As described above with reference to specific examples of vwrite, in specific examples of vread given below, the values of the “block#” fields refer to logical block addresses.


Each of the above identified modules, applications or programs corresponds to a set of instructions, executable by the one or more processors of host 102 or persistent storage device 106, for performing a function described above. The above identified modules, applications or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 108 or memory 130 optionally stores a subset of the modules and data structures identified above. Furthermore, in some implementations, memory 108 or memory 130 optionally stores additional modules and data structures not described above.


Although FIG. 1 shows a system 100 including host 102 and persistent storage device 106, FIG. 1 is intended more as a functional description of the various features which may be present in a set of servers than as a structural schematic of the embodiments described herein. In practice, and as recognized by those of ordinary skill in the art, items shown separately could be combined and some items could be separated.



FIGS. 2A and 2B illustrate a schematic diagram of host device 102 and persistent storage 150, in accordance with some embodiments. As illustrated in FIGS. 2A and 2B, host 102 contains data that has been stored, starting at position “hostbuf,” in application memory 116 of memory 108. In some embodiments, with respect to FIG. 2A, data blocks 0-6 of application memory 116 form write data block 118. In some embodiments, with respect to FIG. 2B, data blocks 0-6 of application memory 116 form read data block 120. As mentioned above, in some embodiments, write data block 118 or read data block 120 is contiguous. In FIGS. 2A and 2B, persistent storage 150 maps persistent storage LBAs 202 to persistent storage blocks 204 via LBA to PHY mapping 206. As used herein, the term “persistent storage blocks” refers to the physical address blocks of persistent storage 150.


As described above with reference to FIG. 1, host 102 issues a write command (sometimes herein called a host write command) or a read command (sometimes herein called a host read command). In some embodiments, the write command results from an instance of a call by a host application to the vwrite function, as described above. In some embodiments, the read command results from an instance of a call by a host application to the vread function, as described above. In some embodiments, the read/write command is issued by one or more CPU(s) 104 of host 102 through memory interface 107 and received by storage controller 134 via host interface 126.



FIG. 2A shows an example a write command issued by host 102 via the function call vwrite (hostbuf, 2, 2, 0, 2, 7, 3). In this example, hostbuf represents a starting position in application memory 116. The write command specifies that two blocks of data, starting at block 2 of host application memory 116, be stored in the persistent storage blocks corresponding to logical block addresses starting at 0 (i.e., logical block address 0 and 1). The write command also specifies that two blocks of data, starting two blocks after the starting position of hostbuf in application memory 116, be stored in the persistent storage blocks corresponding to logical block addresses starting at 2 (i.e., logical block addresses 2-3). Last, the write command specifies that three blocks of data, starting four blocks after the starting position of hostbuf in host application memory 116, be stored in the persistent storage blocks corresponding to logical block addresses starting at 7 (i.e., logical block addresses 7-9).


When the persistent storage device 106 receives a write command, to write data into specified persistent storage blocks of persistent storage device 106 from a contiguous write data block 118 (e.g., a command that invokes the write to PS block function 140), storage controller 134 identifies the persistent storage blocks specified by the write command and stores the write data to the persistent storage blocks corresponding to the logical block address specified by the write command. As mentioned above, logical block addresses are mapped to physical addresses through LBA to PHY mapping 206, using address translation function(s) 146 and address translation table(s) 148.



FIG. 2B shows an example of a read command issued by host 102 via the function call vread (hostbuf, 2, 2, 0, 2, 7, 3). In this example, hostbuf represents a starting position in application memory 116. The read command specifies that two blocks of data, stored in the persistent storage blocks corresponding to the logical block addresses starting at 2, be stored in application memory 116 at position hostbuf in application memory 116. The read command also specifies that two blocks of data, stored in the persistent storage blocks corresponding to the logical block addresses starting at 0, be stored in application memory 116 at the position immediately following the two blocks of data stored in application memory 116 starting at position hostbuf. Last, the read command specifies that three blocks of data, stored in the persistent storage blocks corresponding to the logical block addresses starting at 7, be stored in application memory 116 at the position immediately following the four blocks of data stored in application memory 116 starting at position hostbuf.


In some implementations, the storing of data blocks into application memory 116 occurs in the order specified by the command. In some other implementations, the order in which data is stored into application memory can vary, as long as the resulting positions of the data blocks in application memory 116, after execution of the read command, match the positions of the data blocks specified by the host read command. For example, in some embodiments, in the example given above with reference to FIG. 2B, the data in the two persistent storage blocks corresponding to logical block addresses starting at 0 are read and stored in application memory 116 before the data in the two persistent storage blocks starting at logical block 2 are read and stored in application memory 116, as long as the two data blocks read from the persistent storage blocks starting at logical block 0 are stored at the position in application memory 116 two blocks after the starting position, hostbuf.



FIGS. 3A and 3B are flow diagrams illustrating the processing of host commands received from host 102 by persistent storage device 106, in accordance with some embodiments. As mentioned above, in some implementations, the host commands are received from host 102 by persistent storage device 106 via host interface 126. In some implementations, the host commands are function calls issued by host 102 when applications 114 invoke storage access functions 122 so as to read data from or write data to persistent storage device 106.



FIG. 3A illustrates the processing of a write command. Host 102 first issues (302) a write command to write data to one or more persistent storage blocks. In some embodiments, the write command, e.g., vwrite (buf, block1, count1, block2, count2, . . . ), is issued by host 102 when an application 114 executes a corresponding one of the storage access functions 122. Persistent storage device 106 receives the write command (304). In response, storage controller 134 of persistent storage device 106 stores (306) the write data to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command. In some embodiments, storage controller 134 stores the write data by executing function 140 so as to write data the specified persistent storage blocks. In some embodiments, the data specified by the write command is stored in write data block 118 in application memory 116 on host 102. In some embodiments, write data block 118 is a contiguous data block.



FIG. 3B illustrates the processing of a read command. Host 102 issues (308) a read command to read data from one or more persistent storage blocks. In some embodiments, the read command is issued by host 102 when an application 114 executes a corresponding one of the storage access functions 122. Persistent storage device 106 receives (310) the read command. In response to the persistent storage read command, persistent storage device 106 retrieves (312) data stored in persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command. In some embodiments, the retrieved data corresponds to a read data contiguous data block. In some embodiments, the specified persistent storage blocks are identified using a logical block address to physical address mapping (e.g., mapping 206) to map logical addresses (e.g., logical block addresses) specified by the received read command to corresponding physical addresses. In some embodiments, storage controller 134 retrieves the read data from the specified persistent storage blocks and returns the data to host 102 via host interface 126. More specifically, in some embodiments, storage controller 134 of persistent storage device 106 reads the data from the specified persistent storage blocks and returns the read data to host 102, where the read data is received (316) by storage controller 134 and stored in read data block 120 in application memory 116 of memory 108. As with write data block 118, in some embodiments, read data block 120 is a contiguous data block.



FIGS. 4A-4C illustrate a flowchart representing a method 400 for managing a persistent storage device, such as persistent storage device 106 shown in FIG. 1, according to some embodiments. Method 400 includes operations for processing host read commands and host write commands. In some embodiments, method 400 is governed by instructions that are stored in a computer readable storage medium and that are executed by one or more processors of a device, such as the one or more processors 128 of storage controller 134 of persistent storage device 106, shown in FIG. 1.


In some embodiments, persistent storage device 106 receives (402) read and write commands from external host device 102. Examples of these commands are vwrite (buf, block1, count1, block2, count2, . . . ) and vread (buf, block1, count1, block2, count2, . . . ), as described above.


If host 102 issues a host write command, for example, vwrite (buf, block1, count1, block2, count2, . . . ), then in response to the host write command, persistent storage device 106 stores (404) data from a write data contiguous data block to persistent storage blocks. In some embodiments, operation 404 corresponds to operation 306 in FIG. 3A, as described above.


If host 102 issues a read command, for example, vread (buf, block1, count1, block2, count2, . . . ), then in response to the read command, persistent storage device 106 retrieves (414) data, corresponding to a read data contiguous data block, from persistent storage blocks. In some embodiments, operation 414 corresponds to operation 312 in FIG. 3B, as described above.


With regards to both operations 404 and 414, in some embodiments, the persistent storage blocks correspond (406/416) to two or more sets of logical address blocks specified by the host write/read command. In some embodiments, each set of logical address blocks specified by the host write/read command comprises (408/418) a set of contiguous logical address blocks, but the two or more sets of logical address blocks specified by the host write/read command, in aggregate, are not contiguous (410/420). As described above, in some implementations, the execution of the host write/read command is performed atomically (412/422). In some embodiments, the two or more sets of logical address blocks specified by the host write command comprise (434) logical block addresses, each associated with a corresponding persistent storage block.


In some embodiments, the host write command specifies (424) storage of a first block of data to a first persistent storage block corresponding to a first logical address block. The host write command also specifies (424) storage of a second block of data to a second persistent storage block corresponding to a second logical address block. In some embodiments, the first and second blocks of data are contiguously stored in the write data contiguous data block and the first and second logical address blocks are noncontiguous. In some embodiments, the write data contiguous data block corresponds (436) to a contiguous data block in memory 108 of external host device 102.


In some embodiments, the host read command specifies (426) retrieval of a first block of data from a first persistent storage block corresponding to a first logical address block. The host read command also specifies (426) retrieval of a second block of data from a second persistent storage block corresponding to a second logical address block. Similar to operation 424, in some embodiments, the first and second blocks of data are, after retrieval, contiguously stored in the read data contiguous data block and the first and second logical address blocks are noncontiguous. In some embodiments, the read data contiguous data block corresponds (436) to a contiguous data block in memory 108 of external host device 102.


In some embodiments, persistent storage device 106 is implemented (428) as a single, monolithic integrated circuit. In some embodiments, the persistent storage device includes (430) host interface 126 for interfacing persistent storage device 106 to memory controller 134 of external host device 102.


In some embodiments, storage controller 134 associates (432) logical block addresses, e.g., persistent storage LBAs 202, specified by the host write command and host read command, with persistent storage blocks 204 in persistent storage device 106 using LBA to PHY mapping 206, as described above. As described above, in some embodiments, a read or write command discussed above with reference to operations 404 or 414 specifies the persistent storage block to which data is to be written by specifying an associated logical block address. In such embodiments, the corresponding persistent storage block is identified (434) using a logical block address to physical block address mapping, e.g., LBA to PHY mapping 206.


Each of the host read commands described above can be viewed as a command for “gathering” data from disparate storage blocks in persistent storage and storing the gathered data in a single contiguous data block of the host 102 that issued the read command. Similarly, each of the host write commands described above can be viewed as a command for “scattering” data from a single contiguous data block of the host 102 to multiple disparate storage blocks in persistent storage. Further, use of the host read commands and host write commands described above can be used by a host application to avoid performing garbage collection operations, as such commands largely eliminate the need to move data stored in persistent storage to a set of persistent storage blocks having a contiguous set of logical block addresses.


Each of the operations shown in FIGS. 4A-4C optionally corresponds to instructions stored in a computer memory or computer readable storage medium, such as memory 130 of storage controller 134. The computer readable storage medium optionally includes a magnetic or optical disk storage device, solid state storage devices such as Flash memory, or other non-volatile memory device or devices. The computer readable instructions stored on the computer readable storage medium are in source code, assembly language code, object code, or other instruction format that is interpreted by one or more processors.


Although the terms “first,” “second,” etc. are used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without changing the meaning of the description, so long as all occurrences of the “first contact” are renamed consistently and all occurrences of the second contact are renamed consistently. The first contact and the second contact are both contacts, but they are not the same contact.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the present disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosed embodiments and various other embodiments with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A persistent storage device, comprising: persistent storage, comprising a set of persistent storage blocks; anda storage controller configured to store and retrieve data in response to commands received from an external host device, the storage controller further configured to: in response to a host write command, store all data from a single write data contiguous data block to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command, each set of logical address blocks specified by the host write command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host write command, in aggregate, are not contiguous; andin response to a host read command, retrieve data corresponding to all locations of a single read data contiguous data block from persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command, each set of logical address blocks specified by the host read command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host read command, in aggregate, are not contiguous.
  • 2. The persistent storage device of claim 1, wherein the storage controller is further configured to execute the host write command atomically, such that failure of said host write command to execute results in none of said two or more sets of logical address blocks specified by the host write command being stored in said persistent storage, and successful execution of said host write command results in all of said two or more sets of logical address blocks specified by the host write command being stored in said persistent storage.
  • 3. The persistent storage device of claim 1, wherein the storage controller is further configured to execute the host read command atomically, such that failure of said host read command to execute results in none of said two or more sets of logical address blocks specified by the host read command being read from said persistent storage into said read data contiguous data block, and successful execution of said host read command results in all of said two or more sets of logical address blocks specified by the host read command read from said persistent storage into said read data contiguous data block.
  • 4. The persistent storage device of claim 1, wherein the host write command specifies storage of a first block of data to a first persistent storage block corresponding to a first logical address block and storage of a second block of data to a second persistent storage block corresponding to a second logical address block, wherein the first and second blocks of data are contiguously stored in the write data contiguous data block, and wherein the first and second logical address blocks are noncontiguous.
  • 5. The persistent storage device of claim 1, wherein the host read command specifies retrieval of a first block of data from a first persistent storage block corresponding to a first logical address block and retrieval of a second block of data from a second persistent storage block corresponding to a second logical address block, wherein the first and second blocks of data are, after retrieval, contiguously stored in the read data contiguous data block, and wherein the first and second logical address blocks are noncontiguous.
  • 6. The persistent storage device of claim 1, wherein the single write data contiguous data block is a contiguous data block in memory of the external host device.
  • 7. The persistent storage device of claim 1, further comprising a host interface for interfacing the persistent storage device to a memory controller of the external host device.
  • 8. The persistent storage device of claim 1, further comprising a logical address to physical address map for associating logical block addresses with persistent storage blocks in the persistent storage device.
  • 9. The persistent storage device of claim 1, wherein the two or more sets of logical address blocks specified by the host read command comprise logical block addresses, each associated with a corresponding persistent storage block, and the corresponding persistent storage blocks are a noncontiguous set of storage blocks identified by the storage controller using a logical block address to physical address mapping.
  • 10. The persistent storage device of claim 1, wherein the write data contiguous data block or the read data contiguous data block corresponds to a single contiguous data block in memory on the external host device.
  • 11. A method for managing a persistent storage device, comprising: at the persistent storage device comprising persistent storage and a storage controller, the persistent storage comprising a set of persistent storage blocks: in response to a host write command received from an external host device, storing all data from a single write data contiguous data block to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command, each set of logical address blocks specified by the host write command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host write command, in aggregate, are not contiguous; andin response to a host read command, retrieving data corresponding to all locations of a single read data contiguous data block from persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command, each set of logical address blocks specified by the host read command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host read command, in aggregate, are not contiguous.
  • 12. The method of claim 11, wherein execution of the host write command is performed atomically, such that failure of said host write command to execute results in none of said two or more sets of logical address blocks specified by the host write command being stored in said persistent storage, and successful execution of said host write command results in all of said two or more sets of logical address blocks specified by the host write command being stored in said persistent storage.
  • 13. The method of claim 11, wherein execution of the host read command is performed atomically, such that failure of said host read command to execute results in none of said two or more sets of logical address blocks specified by the host read command being read from said persistent storage into said read data contiguous data block, and successful execution of said host read command results in all of said two or more sets of logical address blocks specified by the host read command read from said persistent storage into said read data contiguous data block.
  • 14. The method of claim 11, wherein the host write command specifies storage of a first block of data to a first persistent storage block corresponding first logical address block and storage of a second block of data to a second persistent storage block corresponding to a second logical address block, wherein the first and second blocks of data are contiguously stored in the write data contiguous data block, and wherein the first and second logical address blocks are noncontiguous.
  • 15. The method of claim 11, wherein the host read command specifies retrieval of a first block of data from a first persistent storage block corresponding first logical address block and retrieval of a second block of data from a second persistent storage block corresponding to a second logical address block, wherein the first and second blocks of data are then, after retrieval, contiguously stored in the read data contiguous data block, and wherein the first and second logical address blocks are noncontiguous.
  • 16. The method of claim 11, wherein the single write data contiguous data block is a contiguous data block in memory of the external host device.
  • 17. The method of claim 11, the persistent storage device further comprises a host interface for interfacing the persistent storage device to a memory controller of the external host device.
  • 18. The method of claim 11, further comprising associating logical block addresses specified by the host write command and host read command with persistent storage blocks in the persistent storage device using a logical address to physical address map.
  • 19. The method of claim 11, wherein the two or more sets of logical address blocks specified by the host read command comprise logical block addresses, each associated with a corresponding persistent storage block, and the corresponding persistent storage blocks are a noncontiguous set of storage blocks identified by the storage controller using a logical block address to physical address mapping.
  • 20. The method of claim 11, wherein the write data contiguous data block or the read data contiguous data block corresponds to a single contiguous data block in memory on the external host device.
  • 21. A non-transitory computer readable storage medium storing one or more programs for execution by a storage controller of a persistent storage device, the persistent storage device comprising persistent storage and the storage controller, the persistent storage comprising a set of persistent storage blocks, wherein the one or more programs, when executed by the storage controller of the persistent storage device, cause the persistent storage device to perform a method comprising: in response to a host write command received from an external host device, storing all data from a single write data contiguous data block to persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host write command, each set of logical address blocks specified by the host write command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host write command, in aggregate, are not contiguous; andin response to a host read command, retrieving data corresponding to all locations of a single read data contiguous data block from persistent storage blocks corresponding to two or more sets of logical address blocks specified by the host read command, each set of logical address blocks specified by the host read command comprising a set of contiguous logical address blocks, wherein the two or more sets of logical address blocks specified by the host read command, in aggregate, are not contiguous.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/746,501, filed Dec. 27, 2012, which is hereby incorporated by reference in its entirety.

US Referenced Citations (517)
Number Name Date Kind
4173737 Skerlos et al. Nov 1979 A
4888750 Kryder et al. Dec 1989 A
4916652 Schwarz et al. Apr 1990 A
5129089 Nielsen Jul 1992 A
5270979 Harari et al. Dec 1993 A
5329491 Brown et al. Jul 1994 A
5381528 Brunelle Jan 1995 A
5404485 Ban Apr 1995 A
5488702 Byers et al. Jan 1996 A
5519847 Fandrich et al. May 1996 A
5530705 Malone, Sr. Jun 1996 A
5537555 Landry et al. Jul 1996 A
5551003 Mattson et al. Aug 1996 A
5636342 Jeffries Jun 1997 A
5657332 Auclair et al. Aug 1997 A
5666114 Brodie et al. Sep 1997 A
5708849 Coke et al. Jan 1998 A
5765185 Lambrache et al. Jun 1998 A
5890193 Chevallier Mar 1999 A
5930188 Roohparvar Jul 1999 A
5936884 Hasbun et al. Aug 1999 A
5943692 Marberg et al. Aug 1999 A
5946714 Miyauchi Aug 1999 A
5982664 Watanabe Nov 1999 A
6000006 Bruce et al. Dec 1999 A
6006345 Berry, Jr. Dec 1999 A
6016560 Wada et al. Jan 2000 A
6018304 Bessios Jan 2000 A
6044472 Crohas Mar 2000 A
6070074 Perahia et al. May 2000 A
6104304 Clark et al. Aug 2000 A
6119250 Nishimura et al. Sep 2000 A
6138261 Wilcoxson et al. Oct 2000 A
6182264 Ott Jan 2001 B1
6192092 Dizon et al. Feb 2001 B1
6260120 Blumenau et al. Jul 2001 B1
6295592 Jeddeloh Sep 2001 B1
6311263 Barlow et al. Oct 2001 B1
6408394 Vander Kamp et al. Jun 2002 B1
6412042 Paterson et al. Jun 2002 B1
6442076 Roohparvar Aug 2002 B1
6449625 Wang Sep 2002 B1
6484224 Robins et al. Nov 2002 B1
6516437 Van Stralen et al. Feb 2003 B1
6564285 Mills et al. May 2003 B1
6647387 McKean et al. Nov 2003 B1
6678788 O'Connell Jan 2004 B1
6728879 Atkinson Apr 2004 B1
6757768 Potter et al. Jun 2004 B1
6775792 Ulrich et al. Aug 2004 B2
6810440 Micalizzi, Jr. et al. Oct 2004 B2
6836808 Bunce et al. Dec 2004 B2
6836815 Purcell et al. Dec 2004 B1
6842436 Moeller Jan 2005 B2
6865650 Morley et al. Mar 2005 B1
6871257 Conley et al. Mar 2005 B2
6895464 Chow et al. May 2005 B2
6934755 Saulpaugh et al. Aug 2005 B1
6966006 Pacheco et al. Nov 2005 B2
6978343 Ichiriu Dec 2005 B1
6980985 Amer-Yahia et al. Dec 2005 B1
6981205 Fukushima et al. Dec 2005 B2
6988171 Beardsley et al. Jan 2006 B2
7020017 Chen et al. Mar 2006 B2
7024514 Mukaida et al. Apr 2006 B2
7028165 Roth et al. Apr 2006 B2
7032123 Kane et al. Apr 2006 B2
7043505 Teague et al. May 2006 B1
7076598 Wang Jul 2006 B2
7100002 Shrader Aug 2006 B2
7102860 Wenzel Sep 2006 B2
7111293 Hersh et al. Sep 2006 B1
7126873 See et al. Oct 2006 B2
7133282 Sone Nov 2006 B2
7155579 Neils et al. Dec 2006 B1
7162678 Saliba Jan 2007 B2
7173852 Gorobets et al. Feb 2007 B2
7184446 Rashid et al. Feb 2007 B2
7212440 Gorobets May 2007 B2
7275170 Suzuki Sep 2007 B2
7295479 Yoon et al. Nov 2007 B2
7328377 Lewis et al. Feb 2008 B1
7486561 Mokhlesi Feb 2009 B2
7516292 Kimura et al. Apr 2009 B2
7523157 Aguilar, Jr. et al. Apr 2009 B2
7527466 Simmons May 2009 B2
7529466 Takahashi May 2009 B2
7533214 Aasheim et al. May 2009 B2
7546478 Kubo et al. Jun 2009 B2
7566987 Black et al. Jul 2009 B2
7571277 Mizushima Aug 2009 B2
7574554 Tanaka et al. Aug 2009 B2
7596643 Merry, Jr. et al. Sep 2009 B2
7669003 Sinclair et al. Feb 2010 B2
7681106 Jarrar et al. Mar 2010 B2
7685494 Varnica et al. Mar 2010 B1
7707481 Kirschner et al. Apr 2010 B2
7761655 Mizushima et al. Jul 2010 B2
7765454 Passint Jul 2010 B2
7774390 Shin Aug 2010 B2
7840762 Oh et al. Nov 2010 B2
7870326 Shin et al. Jan 2011 B2
7890818 Kong et al. Feb 2011 B2
7913022 Baxter Mar 2011 B1
7925960 Ho et al. Apr 2011 B2
7934052 Prins et al. Apr 2011 B2
7945825 Cohen et al. May 2011 B2
7954041 Hong et al. May 2011 B2
7971112 Murata Jun 2011 B2
7974368 Shieh et al. Jul 2011 B2
7978516 Olbrich et al. Jul 2011 B2
7996642 Smith Aug 2011 B1
8006161 Lestable et al. Aug 2011 B2
8032724 Smith Oct 2011 B1
8041884 Chang Oct 2011 B2
8042011 Nicolaidis et al. Oct 2011 B2
8069390 Lin Nov 2011 B2
8190967 Hong et al. May 2012 B2
8250380 Guyot Aug 2012 B2
8254181 Hwang et al. Aug 2012 B2
8259506 Sommer et al. Sep 2012 B1
8261020 Krishnaprasad et al. Sep 2012 B2
8312349 Reche et al. Nov 2012 B2
8385117 Sakurada et al. Feb 2013 B2
8412985 Bowers et al. Apr 2013 B1
8429436 Fillingim et al. Apr 2013 B2
8438459 Cho et al. May 2013 B2
8453022 Katz May 2013 B2
8510499 Banerjee Aug 2013 B1
8531888 Chilappagari et al. Sep 2013 B2
8554984 Yano et al. Oct 2013 B2
8627117 Johnston Jan 2014 B2
8634248 Sprouse et al. Jan 2014 B1
8694854 Dar et al. Apr 2014 B1
8724789 Altberg et al. May 2014 B2
8832384 de la Iglesia Sep 2014 B1
8874992 Desireddi et al. Oct 2014 B2
8885434 Kumar Nov 2014 B2
8898373 Kang et al. Nov 2014 B1
8909894 Singh et al. Dec 2014 B1
8910030 Goel Dec 2014 B2
8923066 Subramanian et al. Dec 2014 B1
9043517 Sprouse et al. May 2015 B1
9128690 Lotzenburger et al. Sep 2015 B2
9329789 Chu et al. May 2016 B1
20010026949 Ogawa et al. Oct 2001 A1
20010050824 Buch Dec 2001 A1
20020024846 Kawahara et al. Feb 2002 A1
20020032891 Yada et al. Mar 2002 A1
20020036515 Eldridge et al. Mar 2002 A1
20020083299 Van Huben et al. Jun 2002 A1
20020099904 Conley Jul 2002 A1
20020116651 Beckert et al. Aug 2002 A1
20020122334 Lee et al. Sep 2002 A1
20020152305 Jackson et al. Oct 2002 A1
20020162075 Talagala et al. Oct 2002 A1
20020165896 Kim Nov 2002 A1
20030041299 Kanazawa et al. Feb 2003 A1
20030043829 Rashid et al. Mar 2003 A1
20030079172 Yamagishi et al. Apr 2003 A1
20030088805 Majni et al. May 2003 A1
20030093628 Matter et al. May 2003 A1
20030163594 Aasheim et al. Aug 2003 A1
20030163629 Conley et al. Aug 2003 A1
20030188045 Jacobson Oct 2003 A1
20030189856 Cho et al. Oct 2003 A1
20030198100 Matsushita et al. Oct 2003 A1
20030204341 Guliani et al. Oct 2003 A1
20030212719 Yasuda et al. Nov 2003 A1
20030225961 Chow et al. Dec 2003 A1
20040024957 Lin et al. Feb 2004 A1
20040024963 Talagala et al. Feb 2004 A1
20040057575 Zhang et al. Mar 2004 A1
20040062157 Kawabe Apr 2004 A1
20040073829 Olarig Apr 2004 A1
20040085849 Myoung et al. May 2004 A1
20040114265 Talbert Jun 2004 A1
20040143710 Walmsley Jul 2004 A1
20040148561 Shen et al. Jul 2004 A1
20040153902 Machado et al. Aug 2004 A1
20040158775 Shibuya et al. Aug 2004 A1
20040167898 Margolus et al. Aug 2004 A1
20040181734 Saliba Sep 2004 A1
20040199714 Estakhri et al. Oct 2004 A1
20040210706 In et al. Oct 2004 A1
20040237018 Riley Nov 2004 A1
20050060456 Shrader et al. Mar 2005 A1
20050060501 Shrader Mar 2005 A1
20050073884 Gonzalez et al. Apr 2005 A1
20050108588 Yuan May 2005 A1
20050114587 Chou et al. May 2005 A1
20050138442 Keller, Jr. et al. Jun 2005 A1
20050144358 Conley et al. Jun 2005 A1
20050144361 Gonzalez et al. Jun 2005 A1
20050144367 Sinclair Jun 2005 A1
20050144516 Gonzalez et al. Jun 2005 A1
20050154825 Fair Jul 2005 A1
20050172065 Keays Aug 2005 A1
20050172207 Radke et al. Aug 2005 A1
20050193161 Lee et al. Sep 2005 A1
20050201148 Chen et al. Sep 2005 A1
20050210348 Totsuka Sep 2005 A1
20050231765 So et al. Oct 2005 A1
20050249013 Janzen et al. Nov 2005 A1
20050251617 Sinclair et al. Nov 2005 A1
20050257120 Gorobets et al. Nov 2005 A1
20050273560 Hulbert et al. Dec 2005 A1
20050281088 Ishidoshiro et al. Dec 2005 A1
20050289314 Adusumilli et al. Dec 2005 A1
20060010174 Nguyen et al. Jan 2006 A1
20060039196 Gorobets et al. Feb 2006 A1
20060039227 Lai et al. Feb 2006 A1
20060053246 Lee Mar 2006 A1
20060062054 Hamilton et al. Mar 2006 A1
20060069932 Oshikawa et al. Mar 2006 A1
20060085671 Majni et al. Apr 2006 A1
20060087893 Nishihara et al. Apr 2006 A1
20060103480 Moon et al. May 2006 A1
20060107181 Dave et al. May 2006 A1
20060136570 Pandya Jun 2006 A1
20060136655 Gorobets et al. Jun 2006 A1
20060136681 Jain et al. Jun 2006 A1
20060156177 Kottapalli et al. Jul 2006 A1
20060184738 Bridges et al. Aug 2006 A1
20060195650 Su et al. Aug 2006 A1
20060209592 Li et al. Sep 2006 A1
20060224841 Terai et al. Oct 2006 A1
20060244049 Yaoi et al. Nov 2006 A1
20060259528 Dussud et al. Nov 2006 A1
20060265568 Burton Nov 2006 A1
20060291301 Ziegelmayer Dec 2006 A1
20070011413 Nonaka et al. Jan 2007 A1
20070033376 Sinclair et al. Feb 2007 A1
20070058446 Hwang et al. Mar 2007 A1
20070061597 Holtzman et al. Mar 2007 A1
20070076479 Kim et al. Apr 2007 A1
20070081408 Kwon et al. Apr 2007 A1
20070083697 Birrell et al. Apr 2007 A1
20070088716 Brumme et al. Apr 2007 A1
20070091677 Lasser et al. Apr 2007 A1
20070101096 Gorobets May 2007 A1
20070106679 Perrin et al. May 2007 A1
20070113019 Beukema et al. May 2007 A1
20070133312 Roohparvar Jun 2007 A1
20070147113 Mokhlesi et al. Jun 2007 A1
20070150790 Gross et al. Jun 2007 A1
20070156842 Vermeulen et al. Jul 2007 A1
20070157064 Falik et al. Jul 2007 A1
20070174579 Shin Jul 2007 A1
20070180188 Fujibayashi et al. Aug 2007 A1
20070180346 Murin Aug 2007 A1
20070191993 Wyatt Aug 2007 A1
20070201274 Yu et al. Aug 2007 A1
20070204128 Lee et al. Aug 2007 A1
20070208901 Purcell et al. Sep 2007 A1
20070234143 Kim Oct 2007 A1
20070245061 Harriman Oct 2007 A1
20070245099 Gray et al. Oct 2007 A1
20070263442 Cornwell et al. Nov 2007 A1
20070268754 Lee et al. Nov 2007 A1
20070277036 Chamberlain et al. Nov 2007 A1
20070279988 Nguyen Dec 2007 A1
20070291556 Kamei Dec 2007 A1
20070294496 Goss et al. Dec 2007 A1
20070300130 Gorobets Dec 2007 A1
20080013390 Zipprich-Rasch Jan 2008 A1
20080019182 Yanagidaira et al. Jan 2008 A1
20080022163 Tanaka et al. Jan 2008 A1
20080028275 Chen et al. Jan 2008 A1
20080043871 Latouche et al. Feb 2008 A1
20080052446 Lasser et al. Feb 2008 A1
20080052451 Pua et al. Feb 2008 A1
20080056005 Aritome Mar 2008 A1
20080059602 Matsuda et al. Mar 2008 A1
20080071971 Kim et al. Mar 2008 A1
20080077841 Gonzalez et al. Mar 2008 A1
20080077937 Shin et al. Mar 2008 A1
20080086677 Yang et al. Apr 2008 A1
20080112226 Mokhlesi May 2008 A1
20080141043 Flynn et al. Jun 2008 A1
20080144371 Yeh et al. Jun 2008 A1
20080147714 Breternitz et al. Jun 2008 A1
20080147964 Chow et al. Jun 2008 A1
20080147998 Jeong Jun 2008 A1
20080148124 Zhang et al. Jun 2008 A1
20080163030 Lee Jul 2008 A1
20080168191 Biran et al. Jul 2008 A1
20080168319 Lee et al. Jul 2008 A1
20080170460 Oh et al. Jul 2008 A1
20080180084 Dougherty et al. Jul 2008 A1
20080209282 Lee et al. Aug 2008 A1
20080229000 Kim Sep 2008 A1
20080229003 Mizushima et al. Sep 2008 A1
20080229176 Arnez et al. Sep 2008 A1
20080270680 Chang Oct 2008 A1
20080282128 Lee et al. Nov 2008 A1
20080285351 Shlick et al. Nov 2008 A1
20080313132 Hao et al. Dec 2008 A1
20090003046 Nirschl et al. Jan 2009 A1
20090003058 Kang Jan 2009 A1
20090019216 Yamada et al. Jan 2009 A1
20090031083 Willis et al. Jan 2009 A1
20090037652 Yu et al. Feb 2009 A1
20090070608 Kobayashi Mar 2009 A1
20090116283 Ha et al. May 2009 A1
20090125671 Flynn et al. May 2009 A1
20090144598 Yoon et al. Jun 2009 A1
20090158288 Fulton et al. Jun 2009 A1
20090168525 Olbrich et al. Jul 2009 A1
20090172258 Olbrich et al. Jul 2009 A1
20090172259 Prins et al. Jul 2009 A1
20090172260 Olbrich et al. Jul 2009 A1
20090172261 Prins et al. Jul 2009 A1
20090172262 Olbrich et al. Jul 2009 A1
20090172308 Prins et al. Jul 2009 A1
20090172335 Kulkarni et al. Jul 2009 A1
20090172499 Olbrich et al. Jul 2009 A1
20090193058 Reid Jul 2009 A1
20090204823 Giordano et al. Aug 2009 A1
20090207660 Hwang et al. Aug 2009 A1
20090213649 Takahashi et al. Aug 2009 A1
20090222708 Yamaga Sep 2009 A1
20090228761 Perlmutter et al. Sep 2009 A1
20090235128 Eun et al. Sep 2009 A1
20090249160 Gao et al. Oct 2009 A1
20090268521 Ueno et al. Oct 2009 A1
20090292972 Seol et al. Nov 2009 A1
20090296466 Kim et al. Dec 2009 A1
20090296486 Kim et al. Dec 2009 A1
20090310422 Edahiro et al. Dec 2009 A1
20090319864 Shrader Dec 2009 A1
20100002506 Cho et al. Jan 2010 A1
20100008175 Sweere et al. Jan 2010 A1
20100011261 Cagno et al. Jan 2010 A1
20100020620 Kim et al. Jan 2010 A1
20100037012 Yano et al. Feb 2010 A1
20100054034 Furuta et al. Mar 2010 A1
20100061151 Miwa et al. Mar 2010 A1
20100091535 Sommer et al. Apr 2010 A1
20100103737 Park Apr 2010 A1
20100110798 Hoei et al. May 2010 A1
20100115206 de la Iglesia et al. May 2010 A1
20100118608 Song et al. May 2010 A1
20100138592 Cheon Jun 2010 A1
20100153616 Garratt Jun 2010 A1
20100161936 Royer et al. Jun 2010 A1
20100174959 No et al. Jul 2010 A1
20100185807 Meng et al. Jul 2010 A1
20100199027 Pucheral et al. Aug 2010 A1
20100199125 Reche Aug 2010 A1
20100199138 Rho Aug 2010 A1
20100202196 Lee et al. Aug 2010 A1
20100202239 Moshayedi et al. Aug 2010 A1
20100208521 Kim et al. Aug 2010 A1
20100257379 Wang et al. Oct 2010 A1
20100262889 Bains Oct 2010 A1
20100281207 Miller et al. Nov 2010 A1
20100281342 Chang et al. Nov 2010 A1
20100306222 Freedman et al. Dec 2010 A1
20100332858 Trantham et al. Dec 2010 A1
20100332863 Johnston Dec 2010 A1
20110010514 Benhase et al. Jan 2011 A1
20110022779 Lund Jan 2011 A1
20110022819 Post et al. Jan 2011 A1
20110051513 Shen et al. Mar 2011 A1
20110066597 Mashtizadeh et al. Mar 2011 A1
20110066806 Chhugani et al. Mar 2011 A1
20110072207 Jin et al. Mar 2011 A1
20110072302 Sartore Mar 2011 A1
20110078407 Lewis Mar 2011 A1
20110078496 Jeddeloh Mar 2011 A1
20110083060 Sakurada et al. Apr 2011 A1
20110099460 Dusija et al. Apr 2011 A1
20110113281 Zhang et al. May 2011 A1
20110122691 Sprouse May 2011 A1
20110131444 Buch et al. Jun 2011 A1
20110138260 Savin Jun 2011 A1
20110173378 Filor et al. Jul 2011 A1
20110179249 Hsiao Jul 2011 A1
20110199825 Han et al. Aug 2011 A1
20110205823 Hemink et al. Aug 2011 A1
20110213920 Frost et al. Sep 2011 A1
20110222342 Yoon et al. Sep 2011 A1
20110225346 Goss et al. Sep 2011 A1
20110228601 Olbrich et al. Sep 2011 A1
20110231600 Tanaka et al. Sep 2011 A1
20110239077 Bai et al. Sep 2011 A1
20110264843 Haines et al. Oct 2011 A1
20110271040 Kamizono Nov 2011 A1
20110283119 Szu et al. Nov 2011 A1
20110289125 Guthery Nov 2011 A1
20110320733 Sanford et al. Dec 2011 A1
20120011393 Roberts et al. Jan 2012 A1
20120017053 Yang et al. Jan 2012 A1
20120023144 Rub Jan 2012 A1
20120026799 Lee Feb 2012 A1
20120054414 Tsai et al. Mar 2012 A1
20120063234 Shiga et al. Mar 2012 A1
20120072639 Goss et al. Mar 2012 A1
20120096217 Son et al. Apr 2012 A1
20120110250 Sabbag et al. May 2012 A1
20120117317 Sheffler May 2012 A1
20120117397 Kolvick et al. May 2012 A1
20120124273 Goss et al. May 2012 A1
20120131286 Faith et al. May 2012 A1
20120151124 Baek et al. Jun 2012 A1
20120151253 Horn Jun 2012 A1
20120151294 Yoo et al. Jun 2012 A1
20120173797 Shen Jul 2012 A1
20120173826 Takaku Jul 2012 A1
20120185750 Hayami Jul 2012 A1
20120195126 Roohparvar Aug 2012 A1
20120203804 Burka et al. Aug 2012 A1
20120203951 Wood et al. Aug 2012 A1
20120210095 Nellans et al. Aug 2012 A1
20120216079 Fai et al. Aug 2012 A1
20120233391 Frost et al. Sep 2012 A1
20120236658 Byom et al. Sep 2012 A1
20120239858 Melik-Martirosian Sep 2012 A1
20120239868 Ryan et al. Sep 2012 A1
20120239976 Cometti et al. Sep 2012 A1
20120246204 Nalla et al. Sep 2012 A1
20120259863 Bodwin et al. Oct 2012 A1
20120275466 Bhadra et al. Nov 2012 A1
20120278564 Goss et al. Nov 2012 A1
20120284574 Avila et al. Nov 2012 A1
20120284587 Yu et al. Nov 2012 A1
20120297122 Gorobets Nov 2012 A1
20130007073 Varma Jan 2013 A1
20130007343 Rub et al. Jan 2013 A1
20130007381 Palmer Jan 2013 A1
20130007543 Goss et al. Jan 2013 A1
20130024735 Chung et al. Jan 2013 A1
20130031438 Hu et al. Jan 2013 A1
20130036418 Yadappanavar et al. Feb 2013 A1
20130038380 Cordero et al. Feb 2013 A1
20130047045 Hu et al. Feb 2013 A1
20130058145 Yu et al. Mar 2013 A1
20130070527 Sabbag et al. Mar 2013 A1
20130073784 Ng et al. Mar 2013 A1
20130073798 Kang et al. Mar 2013 A1
20130073924 D'Abreu et al. Mar 2013 A1
20130079942 Smola et al. Mar 2013 A1
20130086131 Hunt et al. Apr 2013 A1
20130086132 Hunt et al. Apr 2013 A1
20130094288 Patapoutian et al. Apr 2013 A1
20130103978 Akutsu Apr 2013 A1
20130110891 Ogasawara et al. May 2013 A1
20130111279 Jeon et al. May 2013 A1
20130111298 Seroff et al. May 2013 A1
20130117606 Anholt et al. May 2013 A1
20130121084 Jeon et al. May 2013 A1
20130124792 Melik-Martirosian et al. May 2013 A1
20130124888 Tanaka et al. May 2013 A1
20130128666 Avila et al. May 2013 A1
20130132647 Melik-Martirosian May 2013 A1
20130132652 Wood et al. May 2013 A1
20130159609 Haas et al. Jun 2013 A1
20130176784 Cometti et al. Jul 2013 A1
20130179646 Okubo et al. Jul 2013 A1
20130191601 Peterson et al. Jul 2013 A1
20130194865 Bandic et al. Aug 2013 A1
20130194874 Mu et al. Aug 2013 A1
20130232289 Zhong et al. Sep 2013 A1
20130238576 Binkert et al. Sep 2013 A1
20130254498 Adachi et al. Sep 2013 A1
20130254507 Islam et al. Sep 2013 A1
20130258738 Barkon et al. Oct 2013 A1
20130265838 Li Oct 2013 A1
20130282955 Parker et al. Oct 2013 A1
20130290611 Biederman et al. Oct 2013 A1
20130297613 Yu Nov 2013 A1
20130301373 Tam Nov 2013 A1
20130304980 Nachimuthu et al. Nov 2013 A1
20130314988 Desireddi et al. Nov 2013 A1
20130343131 Wu et al. Dec 2013 A1
20130346672 Sengupta et al. Dec 2013 A1
20140013027 Jannyavula Venkata Jan 2014 A1
20140013188 Wu et al. Jan 2014 A1
20140025864 Zhang et al. Jan 2014 A1
20140032890 Lee et al. Jan 2014 A1
20140063905 Ahn et al. Mar 2014 A1
20140067761 Chakrabarti et al. Mar 2014 A1
20140071761 Sharon et al. Mar 2014 A1
20140075133 Li et al. Mar 2014 A1
20140082261 Cohen et al. Mar 2014 A1
20140082310 Nakajima Mar 2014 A1
20140082456 Liu Mar 2014 A1
20140082459 Li et al. Mar 2014 A1
20140095775 Talagala et al. Apr 2014 A1
20140101389 Nellans et al. Apr 2014 A1
20140115238 Xi et al. Apr 2014 A1
20140122818 Hayasaka et al. May 2014 A1
20140122907 Johnston May 2014 A1
20140136762 Li et al. May 2014 A1
20140136883 Cohen May 2014 A1
20140136927 Li et al. May 2014 A1
20140143505 Sim et al. May 2014 A1
20140153333 Avila et al. Jun 2014 A1
20140157065 Ong Jun 2014 A1
20140173224 Fleischer et al. Jun 2014 A1
20140181458 Loh et al. Jun 2014 A1
20140201596 Baum et al. Jul 2014 A1
20140223084 Lee et al. Aug 2014 A1
20140244578 Winkelstraeter Aug 2014 A1
20140258755 Stenfort Sep 2014 A1
20140269090 Flynn et al. Sep 2014 A1
20140310494 Higgins et al. Oct 2014 A1
20140359381 Takeuchi et al. Dec 2014 A1
20150023097 Khoueir et al. Jan 2015 A1
20150032967 Udayashankar et al. Jan 2015 A1
20150037624 Thompson et al. Feb 2015 A1
20150153799 Lucas et al. Jun 2015 A1
20150153802 Lucas et al. Jun 2015 A1
20150212943 Yang et al. Jul 2015 A1
20150268879 Chu Sep 2015 A1
20150286438 Simionescu et al. Oct 2015 A1
Foreign Referenced Citations (17)
Number Date Country
1 299 800 Apr 2003 EP
1465203 Oct 2004 EP
1 990 921 Nov 2008 EP
2 386 958 Nov 2011 EP
2 620 946 Jul 2013 EP
2002-532806 Oct 2002 JP
WO 2007036834 Apr 2007 WO
WO 2007080586 Jul 2007 WO
WO 2008075292 Jun 2008 WO
WO 2008121553 Oct 2008 WO
WO 2008121577 Oct 2008 WO
WO 2009028281 Mar 2009 WO
WO 2009032945 Mar 2009 WO
WO 2009058140 May 2009 WO
WO 2009084724 Jul 2009 WO
WO 2009134576 Nov 2009 WO
WO 2011024015 Mar 2011 WO
Non-Patent Literature Citations (64)
Entry
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs.
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs.
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs.
Invitation to Pay Additional Fees dated Feb. 13, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 6 pages (Delpapa).
International Search Report and Written Opinion dated Jan. 21, 2015, received in International Application No. PCT/US2014/059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages (Dancho).
International Search Report and Written Opinion dated Feb. 18, 2015, received in International Application No. PCT/US2014/066921, which corresponds to U.S. Appl. No. 14/135,260, 13 pages (Fitzpatrick).
Ashkenazi et al., “Platform independent overall security architecture in multi-processor system-on-chip integrated circuits for use in mobile phones and handheld devices,” ScienceDirect, Computers and Electrical Engineering 33 (2007), 18 pages.
International Search Report and Written Opinion dated Mar. 9, 2015, received in International Patent Application No. PCT/US2014/059747, which corresponds to U.S. Appl. No. 14/137,440, 9 pages (Fitzpatrick).
Barr, Introduction to Watchdog Timers, Oct. 2001, 3 pgs.
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs.
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs.
McLean, Information Technology-AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs.
Park, A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD), Feb. 12-16, 2006, 4 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 16, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 9 pgs.
Pliant Technology, Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs.
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 9 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs.
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs.
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs.
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs.
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005.
Zeidman, 1999 Verilog Designer's Library, 9 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059453, Jun. 6, 2013, 12 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs.
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg.
International Search Report and Written Opinion dated Jul. 25, 2014, received in International Patent Application No. PCT/US2014/029453, which corresponds to U.S. Appl. No. 13/963,444, 9 pages (Frayer).
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George).
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George).
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/U52013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George).
International Search Report and Written Opinion dated Jun. 30, 2015, received in International Patent Application No. PCT/US2015/023927, which corresponds to U.S. Appl. No. 14/454,687, 11 pages (Kadayam).
International Search Report and Written Opinion dated Jul. 23, 2015, received in International Patent Application No. PCT/US2015/030850, which corresponds to U.S. Appl. No. 14/298,843, 12 pages (Ellis).
Bayer, “Prefix B-Trees”, ip.com Journal, ip.com Inc., West Henrietta, NY, Mar. 30, 2007, 29 pages.
Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, IBM Research Report, Jun. 23, 2009, http://domino.research.ibm.com/library/cyberdig.nsf/papers/40B2C45876D0D747852575E100620CE7/$File/rc24815.pdf, 13 pages.
Lee et al., “A Semi-Preemptive Garbage Collector for Solid State Drives,” Apr. 2011, IEEE, pp. 12-21.
Oracle, “Oracle9i: Database Concepts”, Jul. 2001, http://docs.oracle.com/cd/A91202—01/901—doc/server.901/a88856.pdf, 49 pages.
Office Action dated Feb. 17, 2015, received in Chinese Patent Application No. 201210334987.1, which corresponds to U.S. Appl. No. 12/082,207, 9 pages (Prins).
International Search Report and Written Opinion dated May 4, 2015, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 12 pages (George).
International Search Report and Written Opinion dated Mar. 17, 2015, received in International Patent Application No. PCT/US2014/067467, which corresponds to U.S. Appl. No. 14/135,420, 13 pages (Lucas).
International Search Report and Written Opinion dated Apr. 20, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 21 pages (Delpapa).
International Search Report and Written Opinion dated Jun. 8, 2015, received in International Patent Application No. PCT/US2015/018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages (Busch).
International Search Report and Written Opinion dated Jun. 2, 2015, received in International Patent Application No. PCT/US2015/018255, which corresponds to U.S. Appl. No. 14/336,967, 14 pages (Chander).
Office Action dated Dec. 8, 2014, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 7 pages (Olbrich).
Office Action dated Jul. 31, 2015, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 9 pages (Olbrich).
International Search Report and Written Opinion dated Sep. 14, 2015, received in International Patent Application No. PCT/US2015/036807, which corresponds to U.S. Appl. No. 14/311,152, 9 pages (Higgins).
Gasior, “Gigabyte's i-Ram storage device, Ram disk without the fuss,” The Tech Report, p. 1, Jan. 25, 2006, 5 pages.
IBM Research-Zurich, “The Fundamental Limit of Flash Random Write Performance: Understanding, Analysis and Performance Modeling,” Mar. 31, 2010, pp. 1-15.
Oestreicher et al., “Object Lifetimes in Java Card,” 1999, USENIX, 10 pages.
Office Action dated Apr. 25, 2016, received in Chinese Patent Application No. 201280066282.4, which corresponds to U.S. Appl. No. 13/602,047, 8 pages (Tai).
International Preliminary Report on Patentability dated May 24, 2016, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 9 pages. (George).
Related Publications (1)
Number Date Country
20140189264 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61746501 Dec 2012 US