1. Field of Invention
The field of the currently claimed embodiments of this invention relates to optical coherence tomography (OCT) systems, and more particularly to real-time 3D and 4D Fourier domain Doppler optical coherence tomography systems.
2. Discussion of Related Art
Optical coherence tomography (OCT) is a well-established, non-invasive optical imaging technology that can provide high-speed, high-resolution, three-dimensional images of biological samples. Since its invention in the early 1990s, OCT has been widely used for diagnosis, therapy monitoring, and ranging [1]. In vivo non-invasive imaging of both microcirculation and tissue structure is a hot area that has attracted significant amounts of interest since it is an indicator of biological functionality and abnormality of tissues. Pioneering work by Z. P. Chen et al. combining the Doppler principle with OCT has enabled high resolution tissue structure and blood flow imaging [2]. Since then, OCT-based flow imaging techniques have evolved into two different approaches: optical coherence angiography (OCA) to detect microvasculature [3-7] and Doppler tomography (ODT) to quantitatively measure blood flow [8-15]. In spectral domain ODT, the magnitude of Fourier transformation of the spectral interference fringes is used to reconstruct cross-sectional, structural image of the tissue sample, while the phase difference between adjacent A-scans is used to extract the velocity information of the flow within the tissue sample [2,8].
Real-time imaging of tissue structure and flow information is always desirable and is becoming more urgent as fast diagnosis, therapeutic response, and intraoperative OCT image-guided intervention become established medical practices. Due to the large amount of raw data generated by an OCT engine during a high-speed imaging process and heavy computation task for computer systems, real-time display is highly challenging. A graphics processing unit (GPU)-accelerated signal-processing method is a logical solution to this problem due to the way OCT data are acquired and due to the fact that they can be processed in parallel. Although researchers have reported a number of studies using GPU to real-time process and display OCT images [16-25], reports of real-time functional OCT imaging based on GPU processing—which is highly demanding and would be of great value for medical and clinical applications—have been uncommon. GPU-based speckle variance swept-source OCT (SS-OCT) [24] and 2D spectral domain Doppler OCT (SD-DOCT) [25] have recently been reported. There thus remains a need for improved OCT systems.
An optical coherence tomography imaging system according to an embodiment of the current invention includes a Fourier domain optical coherence tomography sensor system, a signal processing system configured to communicate with the Fourier domain optical coherence tomography sensor system to receive detection signals therefrom and to provide imaging signals, and an image display system configured to communicate with the signal processing system to receive the imaging signals. The signal processing system includes a parallel processor configured to calculate structure information and Doppler information from the detection signals in real time such that the imaging signals provide a real time display of combined structure and flow of an object under observation.
Further objectives and advantages will become apparent from a consideration of the description, drawings, and examples.
Some embodiments of the current invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent components can be employed and other methods developed without departing from the broad concepts of the current invention. All references cited anywhere in this specification, including the Background and Detailed Description sections, are incorporated by reference as if each had been individually incorporated.
Some embodiments of the current invention provide a real-time 3D (2D cross-sectional image plus time) and 4D (3D volume plus time) phase-resolved Doppler OCT (PRDOCT) imaging based on a configuration of dual graphics processing unit's. The dual graphics processing unit's configuration offers more computation power, dynamic task distribution with more stability, and an increased software-friendly environment when further performance enhancement is required [19]. To achieve real-time PRDOCT, we developed a GPU-based phase-resolving processing algorithm; this was integrated into our current GPU-accelerated processing algorithm, which included cubic wavelength-to-wavenumber domain interpolation, numerical dispersion compensation [18], numerical reference and saturation correction [23], fast Fourier transform, log-rescaling, and soft-thresholding. These processes are performed with the first GPU according to some embodiments of the current invention. Once 4D imaging data are processed, the whole structure volume and flow volume data are transferred to the second dedicated GPU for ray-casting-based volume rendering. The 3D and 4D imaging mode can be switched easily by a customized graphics user interface (GUI). For phase-resolved image processing, we combined a structure image-based mask, thresholding and an average window method to improve the signal-to-noise ratio of the Doppler phase image. Flow and structure volume rendering shares the same model view matrix—for the sake of easy visual registration when ray-casting was performed—with two different customized transfer functions. The model view matrix can be modified interactively through the GUI. This flexibility makes the interpretation of volume images easier, more reliable, and complements a single-view perspective. Real-time 2D simultaneous display of structure and flow images were presented at a frame rate of 70 fps with an image size of 1000×1024, corresponding to 70K raw spectra per second. To present the 3D image data set, real-time 3D volume rendering of tissue structure and flow images—each with a size of 512×512 pixels—were presented 64.9 ms after every volume scanning cycle where the acquired volume size was 500×256×512 (X×Y×Z). To the best of our knowledge, this is the first time online simultaneous structure and flow volume visualization have ever been reported. The theoretical maximum processing speed was measured to be 249,000 A-scans per second, which was above our current maximum imaging speed of 70,000 A-scans per second limited by the camera speed. Systematic flow phantom and in vivo chorioallantoic membrane (CAM) of chicken embryo imaging were performed to characterize and test our high-speed Doppler spectral domain OCT imaging platform.
Further additional concepts and embodiments of the current invention will be described by way of the following examples. However, the broad concepts of the current invention are not limited to these particular examples.
We integrated the GPU-accelerated Fourier domain PRDOCT method into our previously developed GPU-accelerated OCT data processing methods based on an in-house-developed spectral domain OCT. The hardware system configuration according to an embodiment of the current invention is shown in
We used a quad-core @2.4 GHz Dell Precision T7500 workstation to host a frame grabber (National Instrument, PCIe-1429, PCIE-x4 interface), a DAQ card (National Instrument, PCI 6211, PCI interface) to control the galvanometer mirrors and two NVIDIA (Santa Clara, Calif.) Geforce series GPUs: One is GTX 590 (PCIE-x16 interface, 32-stream multiprocessors, 1024 cores at 1.21 GHz, 3 GB graphics memory); the other is GTS 450 (PCIE-x16 interface, 4-stream multiprocessors, 192 cores at 1.57 GHz, 1 GB graphics memory). GTS 450 was dedicated to perform volume ray-casting and image rendering while GTX 590 was used to process all the necessary pre-volume rendering data sets for GTS 450. All the scanning control, data acquisition, image processing, and rendering were performed on this multi-thread, CPU-GPU heterogeneous computing system. A customized user interface was designed and programmed through C++ (Microsoft Visual Studio, 2008). We used computer unified device architecture (CUDA) version 4.0 from NVIDIA to program the GPU for general purpose computations [26].
Data Processing
After structure image processing, which includes wavelength-to-wavenumber cubic spline interpolation, numerical dispersion compensation, FFT, reference and saturation correction, the complex structure image can be expressed as
Ĩ(z,x)=A(z,x)exp[iφ(z,x)] (1)
where φ(z,x) is the phase of the analytic signal. The phase difference between adjacent A-scans, n and n−1, is calculated:
Based on the linear relationship between phase difference between adjacent A-lines and velocity, the velocity of flow signal image can be expressed as
In these examples the camera was running at 70 kHz. We measured our system phase noise level to be 0.065 rad by measuring the standard deviation of the phase of a stationary mirror as a target. The velocity of flowing target projected to the parallel direction of the scanning beam thus was [−14.2, −0.294][0.294, 14.2] mm/s. By varying the camera scanning speed, a different velocity range can be achieved based on Equation (3).
The phase-resolving processing box in
Volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, which simulates the physical vision process of the human eye in the real world and provides better visualization of the entire 3D image data than 2D slice extraction. Ray-casting is a simple and straightforward method for volume rendering. The principle of ray-casting demands heavy computing duty, so in general real-time volume rendering can only be realized by using hardware acceleration devices like GPU [17]. To render a 2D projection of the 3D data set, a modelview matrix—which defines the camera position relative to the volume—and an RGBA (red, green, blue, alpha) transfer function—which defines the RGBA value for every possible voxel value—are required. In this study the structure and flow velocity volume rendering shared the same modelview matrix controlled by the user for people to easily correlate the structure and flow image. An identical jet color map used when performing the phase value to color mapping with opacity equaling 0.2 was applied as the transfer function for flow velocity volume rendering. Another color map varying from black-red-yellow-green with opacity 1.0 was applied as the transfer function for structure volume rendering. Each volume data set consists of 500×256×512 voxels. Two 512×512 pixel size 2D projection images will be generated after volume rendering.
Results and Discussion
Prior to any structure and Doppler imaging, it was necessary to characterize the phase noise properties of our SD-OCT system. We calculated the phase variation by imaging a stationary mirror at 70 kHz A-scan rate without any averaging process. The result is shown in
To evaluate the system performance, we first performed a set of experiments using a phantom microchannel having a diameter of 300 μm with bovine milk flowing in it. The microchannel was fabricated by drilling a 300 μm channel on a transparent plastic substrate. The flow speed was controlled by a precision syringe pump. During the experiment we obtained B-scan images, each containing 1000 A-lines covering 0.6 mm.
Choosing the ideal intensity threshold value to generate the phase mask is important, as a lower threshold value would have less effect on generating a clean background, and a high threshold value would cause structure information loss—especially in situations such as when the intensity is low due to the shadowing effect of blood vessels while the flow speed is high. In this study, the threshold value was manually selected based on visual perception. Setting the pump speed at 0.8 ml/h,
We then performed 4D simultaneous structure and Doppler flow imaging. The camera was operating at 70 kHz A-line rate. Each B-mode image consisted of 1000 A-scans in the lateral fast X scanning direction. The volume consisted of 256 B-mode images in the lateral slow Y scanning direction. The displayed B-mode structure and flow images were 500×512 pixels; both were reduced by half in X and Z directions. Thus the volume data size was 500×256×512 (X×Y×Z) voxels, corresponding to a physical volume size 0.6×1.0×1.2 (X×Y×Z) mm3. It takes 3.66 s to acquire such volume data. The results are shown in
The time cost of all GPU kernel functions of a previous system data acquisition, processing, and rendering setup is shown in
In Vivo Chicken Embryo Imaging
We further tested our system by in vivo imaging of chicken embryo to show the potential benefits of our system for non-invasive assessment of microcirculations within tissues. Here we used the chorioallantoic membrane (CAM) of a 15-day-aged chick embryo as a model. The CAM is a well-established model for studying microvasculature and has been used extensively to investigate the effects of vasoactive drugs, optical and thermal processes in blood vessels, as well as retina simulation [27-28]. Shown in
In conclusion, we have demonstrated a real-time 3D and 4D phase-resolved Doppler optical coherence tomography based on dual GPUs configuration according to an embodiment of the current invention. A phase-resolving technique with structure image intensity-based thresholding mask and average window was implemented and accelerated through a GPU. Simultaneous B-mode structural and Doppler phase imaging at 70 fps with image size of 1000×1024 was obtained on both flow phantom and CAM model. The maximum processing speed of 249,000 A-lines per second was limited by our current camera speed. Simultaneous C-mode structural and Doppler phase imaging were demonstrated, with an acquisition time window of only 3.7 s and display delay of only 64.9 ms. This technology would have potential applications in real-time fast flow speed imaging and intraoperative guidance for microsurgeries and surgical outcome evaluation.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art how to make and use the invention. In describing embodiments of the invention, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
This invention was made with Government support of Grant Nos. 1R01EY021540-01A1 and R21 1R21NS063131-01A1, awarded by the Department of Health and Human Services, The National Institutes of Health (NIH). The U.S. Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
7359062 | Chen et al. | Apr 2008 | B2 |
8355776 | Milner | Jan 2013 | B2 |
8750586 | Wang et al. | Jun 2014 | B2 |
20050171438 | Chen et al. | Aug 2005 | A1 |
20080097185 | Feldman et al. | Apr 2008 | A1 |
20080097194 | Milner | Apr 2008 | A1 |
20080154128 | Milner | Jun 2008 | A1 |
20090093980 | Kemp et al. | Apr 2009 | A1 |
20110267340 | Kraus et al. | Nov 2011 | A1 |
20110273667 | Knighton et al. | Nov 2011 | A1 |
20110299034 | Walsh et al. | Dec 2011 | A1 |
20120063665 | Wang et al. | Mar 2012 | A1 |
20120136238 | Milner | May 2012 | A1 |
20120148069 | Bai et al. | Jun 2012 | A1 |
20120184847 | Feldman et al. | Jul 2012 | A1 |
20120281236 | Kang et al. | Nov 2012 | A1 |
20130044330 | Kang et al. | Feb 2013 | A1 |
20130197346 | Milner | Aug 2013 | A1 |
20140160484 | Kang et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
WO-9855830 | Dec 1998 | WO |
WO-2008124845 | Oct 2008 | WO |
WO-2009158399 | Dec 2009 | WO |
Entry |
---|
Yong Huang, Xuan Liu, Jin U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units”, published Aug. 20, 2012, Biomedical Optics Express, vol. 3, No. 9, p. 2162-2174. |
Yan Li, Raj Shekhar, and David Huang, “Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography,” Jun. 6, 2006, Ophthalmology, 113(5): 792-9.e2. |
Baumann et al., “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express. 2(6), 1539-1552 (2011). |
Chen et al., “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Letters 22, 1119-1121 (1997). |
Huang et al., “Real-time reference A—line subtraction and saturation artifact removal using graphics processing unit for high-frame rate Fourier-domain optical coherence tomography video imaging,” Opt. Engineering. 51(7), Jul. 2012. |
Jeoong et al., “Ultra-fast displaying spectral domain optical Doppler tomography system using a graphics processing unit,” Sensors 12, 6920-6929(May 2012). |
Kimel et al., “Differential vascular response to laser photothermolysis,” J. Invest. Dermatol. 103(5), 693-700 (1994). |
Lee et al., “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1558-1564 (Jul. 2012). |
Leng et al., “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina 24(3), 427-434 (2004). |
Liu et al., “Intensity-based modified Doppler variance algorithm: application to phase instable and stable optical coherence tomography systems,” Opt. Express 19, 11429-11440 (Jun. 2011). |
Mariampillai et al., “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Letters 33, 1530-1532 (2008). |
Nvidia, “Nvidia CUDA C Programming Guide Version 4.0,” May 2011. |
Rasakanthan et al., “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (Feb. 2011). |
Ren et al., “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Letters 37, 1388-1390 (Apr. 2012). |
Srinivasan et al., “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Letters 35, 43-45 (Jan. 2010). |
Tao et al., “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform” Opt. Express 16, 12350-12361 (2008). |
Van Der Jeught et al., “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15(3), 030511 (May/Jun. 2010). |
Wang et al., “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926-8940 (2009). |
Wang et al., “Three dimensional optical angiography,” Opt. Express 15, 4083-4097(2007). |
Watanabe et al., “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009). |
Watanabe et al., “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt. 49(25), 4756-4762 (2010). |
Werkmeister et al., “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Letters 33, 2967-2969(2008). |
Yazdanfar et al., “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424-431 (1997). |
Yuan et al., “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Opt. Express 17, 3951-3963 (2009). |
Zhang et al., “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express. 2(4), 764-770 (Apr. 2011). |
Zhang et al., “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18, 11772-11784 (2010). |
Zhang et al., “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electronics Lett. 47(5), 309-310 (Mar. 2011). |
Zhao et al., “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Letters 25, 1358-1360 (2000). |
Zhao et al., “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Letters 27, 98-100 (2002). |
Walther et al., “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sensors and Actuators A: Physical, vol. 156, 2009, pp. 14-21. |
Zhao et al., “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114-116 (2000). |
Number | Date | Country | |
---|---|---|---|
20140160487 A1 | Jun 2014 | US |