Receptacle with low friction and low noise motion damper for lid

Information

  • Patent Grant
  • 10279996
  • Patent Number
    10,279,996
  • Date Filed
    Monday, September 17, 2012
    11 years ago
  • Date Issued
    Tuesday, May 7, 2019
    4 years ago
Abstract
A receptacle having a lid can be provided with a pair of dampers configured to slow the movement of the lid from its open position toward its closed position. The dampers can be provided at opposite ends of a pedal connected to the receptacle body at opposite lateral positions relative to a side of the receptacle body. In some embodiments, the damper is configured to be high endurance and low noise. For example, the damper may comprise lubricants, such as a graphite powder. The damper may also comprise a mechanism, such as foam infused with graphite powder, to disperse the lubricant over time. The damper may also employ surface features or noise dampening features in its housings to prevent or reduce noise.
Description
FIELD

The present embodiments relate to receptacles having doors or lids, some of the embodiments relating to mechanisms configured to slow at least the closing movement of the lid.


BACKGROUND

Receptacles and other devices having lids or doors are used in a variety of different settings. For example, in both residential and commercial settings, trashcans and other devices often have lids or doors for preventing the escape of the contents from the receptacle. In the context of trashcans, some trashcans include lids or doors to prevent odors from escaping and to hide the trash within the receptacle from view. Additionally, the lid of a trashcan helps prevent contamination from escaping from the receptacle.


Recently, trashcans with rotary-type motion dampers for slowing the motion of the lids have become commercially available. More specifically, these rotary dampening mechanisms are connected to the lids of the trashcans so as to slow the closing movement of the lids. As such, the trashcan is more aesthetically pleasing because the lid closes slowly, thereby preventing a loud slamming noise when the lid is moved to a closing position.


These types of trashcans often are pedal-actuated, i.e., they include a foot pedal, which is connected to the lid for moving the lid toward the open position. The rotary mechanisms are connected to the internal linkage connecting the foot pedal to the lid so as to slow the closing movement of the lid.


SUMMARY

The embodiments of the present invention provide a receptacle having a lid with a high endurance, low noise and/or low friction damper. In particular, the damper may comprise lubricants, such as a graphite powder. The damper may also comprise a dampening material, such as foam infused with graphite powder, to disperse the lubricant over time. The damper may also employ surface features and other sound dampening features in its housings to reduce noise.


In one embodiment, a trash receptacle is configured to reduce audible noises during operation. The trash receptacle may comprise: a body having an open top portion; a lid, coupled to the body, configured to pivotably move between an open and a closed position relative to the body; an actuator, coupled to the lid, configured to move the lid via a linkage connected to the lid. The linkage moves in response to an applied force by a user. A dampening device is coupled to the linkage and is configured to reduce audible noises during movement of the lid. The dampening device comprises an interior surface having at least one surface feature. The dampening device may comprise a lubricant, various surface features, such as dimples, and may be infused with a material, such as Teflon or Duracon. Various exemplary embodiments will now be described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The above mentioned and other features of the embodiments disclosed herein are described below with reference to the drawings of preferred embodiments. The illustrated embodiments are intended to illustrate, but not to limit the embodiments. The drawings contain the following figures:



FIG. 1 is a top, front, and right side perspective view of a receptacle assembly in accordance with an embodiment, having a pedal-actuated lid and with the lid in its opened position.



FIG. 2 is an exploded and perspective view of the trashcan illustrated in FIG. 1.



FIG. 3 is an enlarged, perspective, and partial sectional view of a mechanism disposed in the interior of the receptacle of FIG. 1 and connecting the pedal with a mechanism for opening the lid and with a dampening mechanism.



FIG. 4 is an enlarged, perspective, and partial sectional view of a modification of the embodiment illustrated in FIG. 3, including a mechanism designed to resist sliding of the receptacle during actuation of the pedal.



FIG. 5 is an enlarged sectional view of a damper mechanism that can be used with the receptacle illustrated in FIG. 1.



FIG. 6 is a top plan view of a lip seal that can be used with a damper illustrated in FIG. 5.



FIG. 7 is a sectional view of the lip seal of FIG. 6 taken along line 7-7 of FIG. 6 taken along line 7-7 of FIG. 6.



FIG. 8 is a sectional view of the damper mechanism of FIG. 5 in a position corresponding to when the lid is opened to its maximum opened position.



FIG. 9 is a schematic illustration of an air filtration device that can be used with the trashcan of FIG. 1, which includes an air guide assembly mounted to an interior side of the lid of the trashcan.



FIG. 10 is a further schematic illustration of the air filtration device illustrated in FIG. 9, showing the lid in a position close to a fully closed position.



FIG. 11 is an exploded view of another embodiment of the air filtration device illustrated in FIGS. 9 and 10.



FIG. 12 is a perspective view of an inner surface of a portion of the air filtration mechanism illustrated in FIGS. 9 and 10.



FIG. 13 is a sectional view of a modification of the air damper mechanism of FIG. 5.



FIG. 14 is an illustration of a piston of the air damper mechanism of FIG. 13.



FIG. 15 is an exploded view of the piston of FIG. 14.





DESCRIPTION OF THE EMBODIMENTS

The embodiments of a receptacle with a lid having at least one dampening device for dampening motion of the lid, an air filtration mechanism, and an anti-sliding device are all disclosed in the context of a trashcan. The embodiments disclosed herein are described in the context of a trashcan because they have particular utility in this context. However, the embodiments disclosed herein can be used in other contexts as well, including, for example, but without limitation, large commercial trashcans, doors, windows, security gates, and other larger doors or lids, as well as doors or lids for smaller devices, such as high precision scales, computer drives, etc.



FIGS. 1 and 2 illustrate an embodiment of a receptacle assembly 20. The assembly can include a body portion 22 and a lid portion 24 configured to move between opened and closed positions relative to the body 22, the open position being illustrated in FIG. 1.


The body 22 can include a base portion 26 and an upper body portion 28. The base portion 26 and the upper body portion 28 can be made from a single monolithic piece or from separate pieces connected together.


In the illustrated embodiment, the base portion includes a lower end 30 configured to support the receptacle 20 in a stable resting position when the trashcan assembly 20 rests on a surface such as a floor, which may be smooth, or uneven. The base portion 26 can be configured to support the upper body portion 28 such that the upper portion 28 can extend upwardly from the base 26.


The base portion 26 can also provide a mounting arrangement for a pedal 32. The trashcan assembly 20 can further include a mechanism configured to move the lid 24 from the closed to open positions when the pedal 32 is depressed, i.e., from a resting position to an actuating position, discussed in greater detail below.


The base portion 26 can be made from a single monolithic piece and/or from separate components connected together. In some embodiments, the base portion 26 includes an outer shell 34, which defines an interior cavity. In some embodiments, the outer shell 34 can be formed from sheet metals, such as sheet stainless steel, or other metals, or other materials including plastics, etc. In some embodiments, when sheet metal is used, such as sheet stainless steel, the shell 36 can be made from any of 23-26 gauge stainless sheet steel. Of course, the thinner the gauge sheet steel, the lighter and less expensive the shell 36 will be.


The upper body portion 28 can also include an outer shell 36, which defines an interior cavity. In some embodiments, the outer shell 36 can be configured to correspond to the shape of the outer surface of the shell 34.


The upper body portion can also include an upper support member 38 supported by an upper end of the shell 36. The upper support member 38 can be made monolithically with the shell 36 or it can be made from separate components attached to the shell 36. Similar to the shell 34, the shell 36 can be made from any material, including sheet metals, such as stainless steel (e.g., 23-26 gauge stainless sheet steel as noted above), other metals, or other plastics.


The upper support member 38 can be configured to support a liner 40 within the interior cavity defined by the shells 34 and/or 36. In some embodiments, the upper support member 38 includes a shoulder 42 configured to support an outwardly extending lip 44 of the liner 40. As such, the liner 40 can hang within the shells 34 and/or 36 from the upper support member 38. However, in other configurations, the liner 40 can rest upon an interior surface of the upper body 28 or the base 26. In such a configuration, the upper support member 38, while it does not support the weight of the liner 40, can provide for alignment of the liner 40 within the body 22.


The upper support member 38 can also include one or more apertures 46 configured to allow a portion of a lid opening mechanism to extend there through, described in greater detail below.


The upper support member 38 can also include additional apertures 48 which can allow air to flow into a space between the liner 40 and an interior surface of the shell 36, also described in greater detail below.


The lid 24 can be moveably mounted to the body 22 with any known device, such as a hinge, which can allow pivoting motion of the lid 24, or other devices providing different movements. The connection between the lid 24 and the body 22 can be constructed so as to connect the lid 24 to the upper support member 38 or directly to the shell 36.


Although not illustrated in FIG. 1 or 2, the trashcan assembly 20 can also include an additional trim ring 39 (FIG. 2) extending around an outer surface of the upper support member 38. In some embodiments, the additional trim ring 39 can be made from the same material as the shell 36 so as to provide a consistent outer appearance.


As illustrated in FIG. 1, the upper support member 38 can include a peripheral wall 50 extending around the entire periphery of the support member 38. However, the wall 50 can include cutouts, notches, or gaps if desired.


Further, the upper support member 38 can include additional recesses configured to allow a user to insert their fingers below the flange 44 of the liner 40 so as to allow a user to conveniently lift the liner 40 out of the body 22. The wall 50 can also include an outer surface 52 that is configured to cooperate with a corresponding surface on the lid 24, described in greater detail below.


With continued reference to FIG. 2, as noted above, a lid opening mechanism 60 can be configured to move the lid 24 from the closed to opened positions when the pedal 32 is moved from the resting to the actuated position. In some embodiments, as used herein, the phrase “resting position” of the pedal 32 refers to a position where the pedal 32 is pivoted towards an upper position. The actuated position of the pedal 32 can refer to when the pedal 32 is pressed downwardly (as viewed in FIG. 1), for example, by the foot of a user.


To allow for this movement between an upwardly pivoted position corresponding to the resting position, and a downwardly pivoted position corresponding to the actuated position, the pedal 32 can be supported by at least one pivot connection 62. In the illustrated embodiment, there are two pivot connections 62, 64 disposed at laterally opposite positions relative to the front side 66 of the trashcan assembly 20. The pivot mechanisms 62, 64 can be formed in any known manner.


For example, the pivot mechanisms 62, 64 can be formed with bearings supported by and/or defined by the base portion 26. In some embodiments, bearings 80, 82 are supported by the shell 34. In other embodiments, the pivot mechanism 62, 64 can be supported by an additional support member 68 which also can form part of the base portion 62. In the illustrated embodiment, the bearings 80, 82 are in the form of sleeves configured to pivotally support shafts 83, 85 of the pedal 32.


The support portion 68 can be configured to nest within shell 34 and/or the shell 36. In the illustrated embodiment, the support 68 includes an outwardly extending flange 70, which rests on an upper edge of the shell 34. Additionally, the flange 70 can be positioned so as to contact and support a lower edge 74 of the shell 36. Thus, as shown in FIG. 1, the outermost surface of the flange 70 can be approximately flush with the outermost surfaces of the shells 34, 36. However, in other embodiments, the outermost surface of the flange 70 can extend outwardly relative to the outermost surfaces of the shells 34, 36 or can be recessed inwardly from the outermost surfaces of the shells 34, 36.


In some embodiments, the shell 34 can include apertures (not shown) sized to allow portions of the pivot mechanism 62, 64, respectively, to extend there through. In some embodiments, first and second pivot shafts 63, 65 extend inwardly from the ends of the pedal 32, and through the bearings 80, 82, respectively. Additionally, in other embodiments, the support member 68 can include apertures (not shown) configured to be aligned with the bearings 80, 82, respectively, and also provide support for the pivot mechanisms 62, 64, respectively or the shafts 63, 65, respectively.


The pivot mechanisms 62, 64 can define pivot axes about which the pedal 32 can pivot. In some embodiments, the pivot axes defined by the pivot mechanism 62, 64 fall along the same axis.


In some embodiments, the mechanism 60 can also include levers 90, 92. The levers 90, 92 can include first ends 94, 96 engaged with the pedal 32 so as to pivot therewith. For example, the first ends 94, 96, can be mounted to the shafts 63, 65, or the shafts 83, 85 so as to rotate therewith. However, other configurations can also be used.


The levers 90, 92 can also include distal ends 98, 100. The distal ends 98, 100 can be connected to one or more members 102, 104 configured to transfer the movement of the pedal 32 between its resting and actuated positions into the movement of the lid 24 between its opened and closed positions.


For example, in some embodiments, the members 102, 104 can be made from a single rod, connected at their lower ends. For example, a single u-shaped rod can form both the members 102, 104. However, in the illustrated embodiment, the members 102, 104 are formed from separate rods. The lower ends of the rods 106, 108 extend into apertures defined in the distal ends 98, 100 of the levers 90, 92. When assembled, the members 102, 104 extend upwardly through the interior of the shell 34, through the support 68, through the interior of the shell 36, through the apertures 46 in the upper support member 38, and to the lid 24.


The upper ends 110, 112 of the members 102, 104 can be configured to interface with the lid 24 so as to pivot the lid 24 relative to the body 22. For example, in some embodiments, the upper ends 110, 112 can press against a portion of the lid 24 radially offset from a pivot axis defined by the hinge connecting the lid 24 to the body 22. As such, the radially offset contact between the upper ends 110, 112 and the lid 24 can cause the lid 24 to pivot about the hinge.


In other embodiments, the lid can include mounting tabs engaging the upper ends 110, 112 in a hinge-type arrangement. As such, the upper ends 110, 112 pivot within the hinge defined by the tabs, and thus move the lid 24 between its opened and closed positions, as the members 102, 104 are moved upward and downwardly in accordance with the movement of the pedal 32. This type of mechanism 60 is well known in the art, and thus, can be modified according to the shape and size of the overall trashcan 20.


In an exemplary configuration, the resting position of the pedal 32 is a position in which the pedal 32 is pivoted upwardly such that the distal ends 98, 100 of the levers 90, 92 are pivoted downwardly. In this position, the members 102, 104 are also pulled into a downward position, which would also correspond to the lid 24 being in a closed position. When a user steps on the pedal 32, thereby pivoting the pedal 32 downwardly, the levers 90, 92, pivoting about the axes defined by the pivot mechanisms 62, 64 pivot upwardly, thereby lifting the rod members 102, 104. As the rod members 102, 104 rise, the upper ends 110, 112 of the members 102, 104 press against the lid 24 or associated tabs, thereby moving the lid 24 from the closed position toward the open position.


With continued reference to FIG. 2, the trashcan assembly 20 can include one or more dampening devices 120, 122. The dampening devices 120, 122 can be any type of dampening device including, for example, but without limitation, rotary dampening devices, friction dampening devices, or fluid damping devices operating with liquid or gaseous working fluids. Other types of dampening mechanisms can also be used.


In some embodiments, the trashcan assembly 20 can include at least two dampening mechanisms, 120, 122 arranged so as to provide dampening against the movement of opposite ends of the pedal 32. The description of the damper 120 sets forth below applies to both the dampers 120, 122, although only the damper 120 and the components thereof are specifically identified below. Thus, the damper 122 can have a construction that is similar or identical to the damper 120.


With reference to FIG. 3, the damper mechanism 120 can be attached to a lever 90 in any known manner. In some embodiments, the damper 120 can be connected to the member 102 to thereby connect the damper mechanism 120 to the lever 90. Alternatively, the damper mechanism 120 can be directly connected to the lever 90.


In the illustrated embodiment, the damper mechanism 120 is connected to the lever 90 at an aperture 130. A connecting member 1320 of the damper 120, such as a pin, extends through the aperture 130, to thereby connect the lever 90 to the damper 120. In some embodiments, the damper 120 can be configured to dampen the downward movement of the lever.


As used herein, the “downward movement” of the lever 90 corresponds to the clockwise pivoting motion of the lever 90 about the pivot axis P defined by the pivot mechanism 62, as viewed in FIG. 3. This downward movement of the lever 90, i.e., clockwise pivot as viewed in FIG. 3 about the axis P corresponds to the movement of the lid 24 from the open position toward the closed position. As such, after a user releases the pedal 32 (FIG. 1 and FIG. 2) the damper mechanism 20 dampens the downward pivotal movement of the lever 90 and the lid 24.


The lid 24 and the pedal 32 can be biased toward the closed and resting positions, respectively, by way of any known device or configuration. For example, the weight of the lid 24 can be sufficient to move the lid 24 toward the closed position when nothing (other than gravity) is acting against the pedal 32. Optionally, springs can be added to the trashcan assembly 20, in any known configuration, to bias the lid 24 toward the closed position, and/or the pedal 32 to the resting position.



FIG. 3 also illustrates an optional stopper 140. The stopper 140 can be configured to define a limit of movement for the lever 90. For example, the stopper 140 can be configured to prevent the further downward pivoting of the lever 90 beyond a predetermined point.


Optionally, the stopper 140 can include an upper surface 142 positioned so as to press against a lower surface 144 of the lever 90. The position of the surface 142 can be arranged to stop the downward pivoting motion of the lever 90 as the lid 24 reaches its closed position.


In some embodiments, the stopper 140 can be positioned such that its uppermost surface is in a position in which the lower surface 144 of the lever 90 contacts the surface 142 just prior to the lid 24 reaching its fully closed position. As such, the stopper 140 can slow the closing movement of the lid 24 further and prevent the lid 24 from impacting the body 22 as it reaches its closed position. Further, in such a configuration, the stopper 140 can be made from soft and/or flexible materials such as foam rubber. Thus, the position of the stopper 140, its upper surface 142, and the material used to form the stopper 140 can be chosen to achieve the desired performance. In some embodiments, the stopper 140 is supported by the lower member 380 of the base 26. Additionally, in some embodiments, the damper 120 can be mounted to a portion of the support 68. FIG. 3 schematically illustrates the damper 120 being mounted to the support 68.


The positioning of the stopper 140 in the interior of the body 22 can provide further advantages. For example, when any of the moving components of the trash can 20 contact other components, there is the potential that such a contact can generate a noise. Thus, the lid 24 can generate noise when it contacts the upper support 38 or the liner 40 as the lid 24 reaches the closed position. Because the point of contact is also close to or at the boundary between the interior and exterior of the trash can 20, and because the lid is often the part of the trash can 20 that is the closest to the ears of a user, it is more likely that a noise generated by the lid 24 making contact with another component will be perceptible by the user.


Thus, by providing the stopper 140, or any other device configured to contact a moving component, in the interior of the trash can 20, any noise generated by contact between such internal components is less likely to be perceptible by the user. Additionally, by placing the stopper 140 near the bottom of the trash can 20, any noise generated by contacts is also less likely to be perceptible to a user. In operation, the stopper 140 can absorb some of the energy of the movement of the lid 24 toward its closed position, prior to the lid 24 reaching its closed position. This can also aid in reducing or eliminating noise that may be generated by the lid 24 reaching its closed position.


With reference to FIG. 4, the trashcan assembly 20 can also include an anti-sliding mechanism 150. The anti-sliding mechanism 150 can be configured to prevent or reduce a sliding motion caused by the forces generated when an operator depresses the pedal 32. In some embodiments, the anti-sliding mechanism 150 can be configured to increase an effective coefficient of friction between the trashcan assembly 20 and a surface upon which the trashcan 20 rests as the pedal 32 is moved from its resting position toward its actuating position.


For example, but without limitation, the anti-sliding mechanism 150 can be configured to convert the movement of the pedal 32, from its resting position toward its actuated position into a force pressing a friction member against the surface upon which the trashcan assembly 20 is resting. Such a surface can be, for example, but without limitation, vinyl flooring, wood flooring, carpeting, etc.


In some embodiments, as illustrated in FIG. 4, the anti-sliding mechanism includes an arm 152 connected to a friction device 154. The friction device 154 can be formed with any type of device that can generate friction at a contact patch between itself and the types of surfaces commonly found in homes, noted above, such as vinyl flooring, wood flooring, carpeting, etc.


In some embodiments, the friction device 154 can include a contact member 156 made of any rubber, or other material. Further, the contact member 156 can be made of a material or can include a surface texture that generates coefficients of friction with the typical flooring materials that are greater than the coefficients of friction between the other projections on the bottom of the base 26 and those types of flooring materials.


For example, as noted above, the base 380 can include projections in the form wheels, casters, gliders, and/or other extensions that together support trash can 20 in a stable and upright position on a surface, such as those flooring material surfaces noted above. Thus, the friction device 154 can include at least a portion (e.g., the contact member 156) made from a material or including a surface texture that provides a greater coefficient of friction with the typical flooring materials than the coefficient of friction between the other projections. In embodiments where there are a plurality of different projections on the bottom of the trash can assembly 20, an effective coefficient of friction of the combination of those projections and each flooring material can be determined experimentally, based on the resistance of the trashcan 20 against sliding along each of the different surfaces.


In some embodiments, the contact member can include an engagement member 158 configured to provide engagement between the contact member 156 and the arm 152. In some embodiments, the engagement member 158 can include a shaft portion 160 extending into a central portion of the contact member 156 and an upper flange portion 162. The upper flange portion 162 can be connected to a distal end 164 of the arm 152. However, other configurations can also be used.


A proximal end 166 of the arm 152 can be connected to the pedal 32, the lever 90, or the pivot mechanism 60. In the illustrated sectional view of FIG. 4, the proximal end 166 of the arm 152 is attached to a portion of the pivot mechanism 60. In the illustrated embodiment, this portion of the pivot mechanism 60 has a round outer surface.


The proximal end 166 of the arm 152 extends around a portion of the periphery of the pivot mechanism 60. Additionally, a screw 168 secures the proximal end 166 of the arm 152 to the pivot mechanism 60. The illustrated portion of the pivot mechanism 60 pivots with the lever 90 and the pedal 32 during operation.


Thus, with continued reference to FIG. 4, during operation, when the pedal 32 is moved downwardly from its resting position to its actuated position, the pivot mechanism 60 pivots in a counterclockwise direction (as viewed in FIG. 4). As such, the proximal portion 166 of the arm 152 is also pivoted in the same direction. However, because the distal end 164 of the arm 152 is attached to the contact member 156, which is positioned to contact the surface upon which the trashcan assembly 20 sits, the arm 152 is bent into the configuration illustrated in phantom line and identified by the reference numeral 152F. As such, this flexation of the arm 152 generates a downward force identified by the arrow 170. This downward force transfers some or all of the normal force created by the weight of the trashcan assembly 20 and the downward pressing of the pedal 32 by the user, to the contact member 156, thereby raising the coefficient friction existing between the trashcan assembly 20 and the surface which the contact member 156 contacts, i.e., the surface upon which the trashcan assembly 20 rests. This is because, as noted above, the contact member can be configured, by way of the material used to form the outer surface of the contact member 156 or the surface texture of the contact member 156 to have a greater coefficient of friction (with a flooring surface) than that of the other projections on the bottom of the base 380.


With reference again to FIG. 1, when a user depresses the pedal 32 with their foot, occasionally, a user can also push against the pedal 32 generating a rearward sliding force identified by the arrow 172 in FIG. 4. Thus, by providing the anti-sliding mechanism 150, an additional friction or “anti-sliding” force can be generated between the contact member 156 and the surface upon which the trashcan assembly 20 rests, to thereby prevent or reduce the rearward sliding motion of the trashcan assembly 20. In some embodiments, the arm 152 is made from a spring steel. However, other materials can be used. Additionally, the shape and configuration of the anti-sliding mechanism 150 can be designed, by one of ordinary skill in the art, to provide the desired amount of friction.


With reference to FIGS. 5-8, the damper mechanism 120 can be a fluid type damper operating with air as the working fluid. In the illustrated embodiment, the damper mechanism 120 can include a housing 200. The housing 200 can be mounted anywhere the trashcan assembly 20. In some embodiments, as illustrated schematically in FIG. 3, the housing 200 of the damper mechanism 120 can be mounted to the support member 68 of the base 26.


The housing 200 can define a cylinder in which a damper piston 202 can reciprocate. The dampening function of the dampening mechanism 120 is achieved by way of the resistance of the flow of a fluid, such as air, into and out of the housing 200. This can generate sufficient damping forces for slowing the closing of the lid 24. Such forces can be large.


The piston 202 can include a piston head 203 and a piston rod extending from the piston head 203 and outwardly from a lower end of the housing 200. The piston rod 205 can include an aperture 207 configured to allow the piston rod 205 to be pivotally connected to another member, such as the rod 132 or another member.


With continued reference to FIG. 5, when the pedal 32 (FIG. 1) is pressed toward the open position, the piston 202 inside the damper housing 200 is moved toward its uppermost position. With reference to FIG. 2, in the open position, the members 102, 104 hold the lid 24 toward in the open position, and the rear ends 98, 100 of the levers 90, 92 are also raised with respect to the foot pedal 32. When the rear of the levers 90, 92 are raised, the piston 202 is pushed upwardly inside the damper housing 200 by way of its connection to the lever 90, to the uppermost position illustrated in FIG. 8.


When the force on the pedal 32 is released, the combined forces from the weight of the lid 24 (if applicable), the weight of other components connected to the lid 24 and/or other biasing devices configured to bias the lid 24 toward the closed position, push the members 102, 104 downwardly. As the members 102, 104 move downwardly, they push the rear ends of the levers 90, 92 downwardly, thereby pulling the piston 202 downwardly within the housing 200 (FIG. 5). However, the relative pressure between the atmosphere acting on the bottom of the piston 202 and the air trapped between the top of the piston 202 and the top of the housing 200 opposes the immediate downward motion of the piston 202 as the piston begins to move downwardly, and thus opposes the downward motion of the rear ends of the levers 90, 92, and thus opposes the downward motion of the lid 24 toward its closed position.


In some embodiments, the piston 202 can be configured to provide less resistance to the upward movement of the piston 202 within the housing 200 but provide greater resistance against the downward movement of the piston 202 within the housing 200. This can be accomplished in any known manner.


In the illustrated embodiment, and with additional reference to FIGS. 6 and 7, the piston 202 can be provided with a lip seal 210. In some embodiments, the lip seal 210 can be configured to operate similarly to a check valve. Thus, the lip seal 210 can have any configuration that can provide a similar function.


In the illustrated embodiment, the lip seal 210 is generally annular in shape, having an inner wall 212 and an outer wall 214 connected by a top wall 216. The outer wall 214 can include an upper portion 218 that extends generally parallel to the inner wall 212 and a projecting portion 220 that is biased to extend radially outwardly relative to the upper portion 218. As such, the outer diameter 2200 defined by the upper portion 218 is slightly smaller than the diameter 222 defined by the projecting portion 220. Additionally, the ramped configuration of the projecting portion 220 (when in a relaxed state) relative to the upper portion 218 helps to achieve the check valve type functionality of the lip seal 210.


For example, with reference to FIG. 5, as the piston 202 moves upwardly within the housing 200 in the direction of arrow U, air A flows downwardly along the inner walls of the housing 200, past the projecting portion 220 of the lip seal 210. Due to the ramped shape of the projecting portion 220, the pressure generated within the upper portion of the housing 200 above the piston 202 helps deflect the projecting portion 220 radially inwardly, thereby allowing the air A to pass thereby without generating a larger resistance.


However, when the piston 202 moves downwardly within the housing 200, the air pressure in the space above the piston 202 drops relative to the pressure of the atmosphere, thereby causing the projecting portion 220 to further expand against the inner walls of the housing 200. This generates additional resistance to the flow of air Au into the space above the piston 202. As such, the lip seal 210 generates more resistance to the downward movement of the piston 202 than against the upward movement of the piston 202.


In some embodiments, the lip seal 210 can be lubricated with graphite powder. Such lubrication with graphite powder and the construction of dampers, which can be applied to the present dampers 120, 122, are disclosed in U.S. Pat. Nos. 6,513,811 and 6,726,219, the entire contents of both of which, including the specific portions including the descriptions of damper design and lubrication with graphite powder, are hereby incorporated by reference. Additionally, the size of the dampening mechanism 120 can be chosen by the designer to provide the desired functionality and performance.


For example, with reference to FIG. 8, the height of the housing 200, which determines the length of the maximum vertical movement of the piston 202 within the housing 200, can be chosen to accommodate the maximum vertical displacement of the point at which the dampening mechanism 120 is attached to the lever 90 (FIG. 3). Additionally, the diameter of the housing 200 and the type of lip seal 210 used affects the resistance generating during the downward movement of the piston 202. Thus, these dimensions can be chosen to provide the desired dampening characteristics.


Further advantages can also be achieved where the size of the housing 200 and the position at which the housing 200 is mounted within the assembly 20 can be adjusted to provide desired characteristics of the motion of the lid 24 during its closing movement. For example, it has been found that if the housing 200 is mounted in a position where the piston 202 is spaced excessively far from the top of the housing 200 when the piston 202 is at its maximum vertical position, the lid 24 can initially move too quickly from its fully opened position toward its closed position. Such an initial quick movement can cause the lid 24 to bounce during its downward movement.


However, if the mounting position of the housing 200 is adjusted so that the piston 202 is closely spaced relative to the top of the housing 200 when the piston 202 is at its maximum upper position (FIG. 8), the damper provides additional dampening, at least initially, thereby providing a slower, more aesthetically pleasing motion.


For example, by adjusting the position of the housing 200 such that a spacing between the piston 202 and the top of the housing 200 when the piston 202 is at its maximum position, when the foot pedal 32 is released, the lid 24 can begin to move very slowly initially, and slowly accelerate to an acceptably slow closing speed, such that the lid 24 does not make an excessive loud noise when it finally comes to rest against the support 38. In some embodiments, the spacing 240 can be equal to or less than about 10% of the total movement of the piston 202. The initial movement of the piston 202 is further slowed at the spacing 240 is about 5% or less of the total movement of the piston 202. Finally, mounting the housing 200 such that the spacing is about 4% or less of the total movement of the piston 202 provides further slowing, and thus achieves a more aesthetically pleasing movement.


A designer can choose the appropriate housing, piston, and lip seal combination to achieve the desired closing speed. Thus, in some embodiments, at least one of the lid 24, housing 200, piston 202, lip seal 210, pedal 32, and position of the pivot mechanism 62, 64 can be configured to achieve the desired closing speed. In some embodiments, for example, but without limitation, the above parameters can be chosen to achieve a closing speed of the lid of about 4-5 seconds from the moment a user removes their foot from the pedal 32.


With reference again to FIG. 2, the dampening mechanism 122 can be constructed and attached to the lever 92 in the same manner that the dampening mechanism 120 is attached to the lever 90. Additionally, the dampening mechanism 122 can be configured to provide approximately the same dampening performance as the dampening mechanism 120.


Thus, when the pedal 32 is actuated by a user, for example, when a user steps on the pedal 32 to move the pedal 32 from its resting position, pivoting downwardly toward its actuated position, the pistons within the dampening mechanisms 120, 122 are moved to their respective uppermost positions. During this motion, due to the arrangement of the lip seals 210 in each of these dampening mechanisms 120, 122, the dampening mechanisms 120, 122 provide little resistance to this opening motion. However, when the pedal is released by the user, the dampening mechanisms 120, 122 provide essentially the same dampening forces against the movement of the levers 90, 92. Thus, the dampening forces are applied more equally and more balanced to the pedal 32. As such, the movement of the pedal 32 from its actuated position back towards it resting position is more uniformed and is less likely to allow the pedal 32 to remain in a position that is twisted relative to the body 22.


With reference to FIG. 1, the lid 24 can also include a filtration mechanism 260. FIG. 9 is a schematic representation of the air filtration device 260, which is incorporated into the lid 24 in the illustrated embodiment.


As schematically shown in FIG. 9, the lid can include an outer lid member 262, an air guide 264 and a filter holder 266. The outer lid member 262 can be formed in any known manner. In some embodiments, the outer lid member 262 is formed from a piece of sheet metal, such as stainless steel. However, other materials can also be used. In the illustrated embodiment, the outer lid member 262 is solid and does not include any air holes. However, other configurations can also be used in which the outer lid member 262 includes air holes, and/or other features.


As shown in FIG. 9, an outer periphery 268 of the outer lid member 262 includes a shoulder 270. In the illustrated embodiment, the shoulder 270 extends downwardly from the outer periphery 268 of the outer lid member 262.


The air guide 264 can include an upper outer peripheral shoulder 272. In the illustrated embodiment, the upper outer peripheral shoulder 272 extends around the entire periphery of the air guide 264. Additionally, the outer surface of the upper outer peripheral shoulder 272 is configured to sit within the shoulder 270 of the outer lid member 262.


In some embodiments, the fit between the upper outer shoulder 272 and the shoulder 270 can form a generally air resistant seal. However, it is not necessary for the shoulder 272 and the shoulder 270 to form an air resistant seal. The contact and or close spacing between the shoulders 272, 270 can be sufficiently continuous to significantly resist the flow of air there between. Additionally, in some embodiments, an adhesive or other sealant can be used to form a seal between the shoulders 270, 272. With the air guide 264 fit with the outer lid member 262, a space 274 between the outer lid member 262 and the air guide 264.


The air guide 264 can also include an inner aperture 276. Additionally, the air guide 264 can include a filtration device 278 fit over the aperture 276. In some embodiments, the filtration device 278 can include a filter member 280 and a filter housing 282.


The filter member 280 can be any type of known filter device, such as those including activated charcoal. Preferably, the filter device 280 is configured to remove odors from air, such as those odors normally generated or discharged by common household trash.


The filter housing 282 can include an internal cavity designed to contain the filter device 280 and to seal against the aperture 276. Additionally, the cover 282 can include one or more apertures 284 configured to allow air to move from the exterior into the interior of the cover 282. Further, the cover 282 can be configured to form an additional seal around the periphery of the filter member 280 such that air entering the aperture 284 through the cover 282 will pass through the filter 280 before passing to the space 274. The movement of the air in such a manner is described in greater detail below.


A lower surface 290 of the air guide 264 can include an additional inner peripheral shoulder 292. The inner peripheral shoulder 292 can be configured to define an outer peripheral shape that is complementary to an inner peripheral shape of an upper end of an inner peripheral surface 294 of the liner 40. As such, when the lid 24 moves toward its closed position, the shoulder 292 can move into close proximity and/or make contact with the inner peripheral surface 294 of the liner 40. This can help in guiding the air from the interior of the trashcan assembly 20, into the filtration device 266, into the space 274, described in greater detail below. This close proximity or contact between the shoulder 292 and the inner peripheral surface 294 can also form an air resistant seal when the lid 24 is in its fully closed position, which can further aid in guiding the air from the interior of the trashcan assembly 20, into the filtration device 266, into the space 274.


The air guide 264 can also include an outer downwardly extending shoulder 300. The outer downwardly extending shoulder 300 can extend around the entire periphery of the air guide 264. Additionally, the outer downwardly extending peripheral shoulder 300 can be sized and shape to move into close proximity and/or make contact with the upwardly extending wall 50 (FIG. 1) of the upper support 38, and in some embodiments, form an air resistant seal. The air guide 264 can also include apertures 302 disposed outwardly from the shoulder 292.


During operation, for example, as the lid 24 moves from its open position toward its closed position, a slight compression of the air within the liner 40 can be generated. For example, when the lid 24 is in its open position, the air within the liner 40, existing within and above any trash that may be contained in the liner 40, is at atmospheric pressure. However, as the lid 24 pivots downwardly toward its closed position, and as the various shoulders at the periphery of the lid 24 come into the vicinity of corresponding shoulders and surfaces on the body 22, a positive air pressure can be created within the liner 40. On known trashcan designs with flat lids, this would typically cause a puff of air to be discharged from the interior of the trashcan assembly 20. If the air within such a trashcan contains strong odors, such odors would be pushed out into the room in which such a trashcan is positioned and likely toward a user of such a trashcan.


With reference to FIG. 10, the trashcan assembly 20 can be configured to use this momentary pulse of air to help guide air through the filtration device 260.


For example, as illustrated in FIG. 10, as the lid 24 approaches its closed position, the shoulder 292 of the air guide comes into close proximity and/or into contact with the upper inner peripheral surface 294 of the liner 40. Thus, air A within the liner 40 is trapped except for the apertures 284. Thus, as the pressure within the liner 40 rises during this downward movement of the lid 24, air A, due to its positive pressurization within the liner 40, is pushed through the apertures 284, and through the filter element 280 into the space 274. As such, the odors from the air can be removed by the filter element 280.


As noted above, the air guide 264 also includes apertures 302 disposed outwardly from the shoulder 292. Thus, the air A flowing through the apertures 284 and the filter member 280 can continue to flow through the space 274 and out of the space 274 through the apertures 302.


In some embodiments, a trashcan assembly 20 can be configured to allow the air passing through the apertures 302 to be discharged directly to the atmosphere. For example, the shoulder 300 can be provided with apertures.


However, further advantages can be achieved if the air filtration device 260 is configured to guide the air which has moved through the filter element 280 into a further interior compartment of the trashcan assembly 20, for example, between the shell 36 and the liner 40.


As noted above, the lower outer peripheral shoulder 300 of the air guide 264 can be configured to move into close proximity and/or contact with the upwardly standing wall 50 of the upper support 38. As such, as the lid 24 moves downwardly toward its closed position, the shoulder 300 can form a seal and/or an area of higher resistance to airflow. As such, air A flowing through the space 274 can exit the space 274 through the aperture 302, and then apertures 42 disposed in the upper support member 38 (described above with reference to FIG. 1).


The space between the shell 36 and the liner 40, identified by the reference numeral 320, can be open to the atmosphere. For example, this space 320 can be open to the atmosphere through various holes in the base 26. For example, the base 26 can include a plurality of various holes and apertures in the support plate 38 (as illustrated in FIG. 2). Additionally, the shell 36 can include an aperture 321 (FIG. 2) configured to perform as a handle for carrying the trashcan 20, and/or other apertures can also be provided.


Thus, as the lid 24 closes, air A can be pumped from the interior of the liner 40, through the filter element 280, and into the space 274, and the air A can be further pumped or urged downwardly into the interior of the trashcan assembly 20, such as the space 320 between the liner 40 and the shell 36. This can provide a further advantage in that the user experiences a smaller or no puff of air as the lid 24 closes. Additionally, if the user has not inserted a filter element 280 into air filtration device 260, or if the air filter element 280 has exceeded its useful lifespan, and can no longer remove odors from the air A, the user is not subjected to a puff of air filled with trash odors. Rather, this odor filled air is pumped downwardly into the interior of the trashcan and leaks out in various places near the base or other apertures. Thus, even when the air filtration device does not filter any odors from the air, it directs the “puff” of air into the interior of the body 22, thereby deflecting at least some of that flow of air away from the user.



FIGS. 1, 2, 11 and 12 illustrate a modification of the air filtration device illustrated in FIGS. 9 and 10. Thus, the air filtration device illustrated in FIGS. 11 and 12, along with its components corresponding to that of FIGS. 9 and 10, are identified with the same reference numerals except that a letter “A” has been added thereto. Thus, the construction and operation, and effects of the components described above apply to the device 260A described below, except as specifically noted below.


As shown in FIG. 11, the cover 282A includes an upper peripheral edge 360, having an outer dimension that is smaller than inner dimension of the aperture 276A of the air guide 264A. As such, the cover 282A generally fits within the aperture 276A.


With reference to FIG. 12, the edge 360 can include a plurality of apertures or notches 362. As such, when the cover 282A is inserted into the aperture 276A, it may make contact with an inner surface 364A of the outer lid member 262A. Thus, the notches 362 allow air to flow outwardly into the space 274A even if the cover 282A makes contact with the inner surface 364A. Other configurations can also be used. For example, the notches 362 can be provided in a wall fixed to the air guide 264 and the removable portion of the cover can attach to a periphery of the aperture 276A. The cover 282A filter can include one or more apertures 284A configured to allow air to move from the exterior into the interior of the cover 282A.


Additionally, with continued reference to FIG. 12, the air guide 264A can include a plurality of stiffening ribs 370 extending from the outer peripheral shoulder 272 inwardly toward the aperture 276A. This provides an additional benefit in that when the lid is closed and air is pumped into the space 274A, the surface of the air guide 264A surrounding the aperture 276A can be subjected to forces that would tend to deflect the surface of the air guide 264A due to the positive pressure within the liner 40. Similarly, as the lid 24 is opened, a slight vacuum can be created within the liner 40, thereby causing the surfaces of the air guide 264A surrounding the aperture 276A to tend to deflect toward the interior of the liner 40. These movements of the surfaces can cause failures and/or noises within the trashcan assembly 20A. Thus, the stiffening ribs 370 help reduce or prevent such noises or failures. As noted above, the air guide 264A can include apertures 302A.


With reference to FIGS. 13-15, the trashcan receptacle 20 can be provided with at least one dampening mechanism configured to provide dampening against the movement of the lid 24 in both the opening and closing directions. Such a dampening mechanism can be constructed in any known manner. By providing dampening in both the opening and closing directions, the trashcan 20 can avoid certain additional undesirable noises and/or damage.


For example, a user may intentionally or accidentally step on the pedal 32 with significantly more force than necessary to open a lid 24. This can cause a lid 24 to open at a great speed, and thereby raise the possibility that the lid 24 impacts a wall or another nearby body. Such an impact can cause a large noise. Additionally, such a movement of the lid 24 can damage the hinge mechanism connecting lid 24 to the body 22.


The dampening mechanism 1200 illustrated in FIGS. 13-15 is a modification of the dampening mechanisms 120, 122 described above with reference to FIGS. 2 and 5-8. Thus, the dampening mechanism 1200 of FIGS. 13-15 is identified by the same reference numeral, except that a capital letter “A” has been added thereto. Thus, the corresponding components can be constructed and operated in the same way as described above, except as specifically described below.


As illustrated in FIGS. 13 and 14, the dampening mechanism 120A includes two lip seals 210A and 400. The lip seal 400 can be constructed in the same manner as lip seal 210A. In other embodiments, the lip seal 400 can be different from the lip seal 210A, for example, if it is desired to provide different dampening performance against the upward motion of the piston than the downward motion of the piston. However, for convenience, the same reference numerals used to identify various parts of the lip seal 210A are used to identify the same or similar parts of the lip seal 400. Thus the configuration of the lip seal 400 can be the same or similar to the lip seal 210A, except as noted below.


With reference to FIGS. 14 and 15, the piston 2020 includes two peripheral grooves 402, 404 sized and shaped to retain the lip seals 21 OA, 400, respectively. A disk-shaped wall 406 can be disposed between the grooves 402, 404, and thus between the lip seals 21 OA, 400. As illustrated in FIG. 15, the disk 406 includes a large aperture 408, which allows for airflow between the lip seals 21 OA, 400, described in greater detail below.


With such a configuration, as noted above, the lip seal 21 OA resists the downward movement of the piston 2020 while the second lip seal 400 resists the upward movement of the piston 2020. As noted above, with regard to this description of the lip seal 210, the various parts of the lip seals 21 OA, 400, the lubrication used, etc., can be adjusted to provide the desired dampening characteristics.


Further advantages, including greater consistency in performance, can be achieved by providing the dampening mechanism 1200 with at least one metering channel 410,412, to allow air to leak around at least one of the lip seals 21 OA, 400.


For example, with reference to FIG. 15, the piston 2020 includes a lower wall 420 cooperating with the central disk 406 to define the channel 404. Additionally, the piston 2020 includes an upper wall 422 cooperating with the disk 406 to define the channel 402. However, other configurations can also be used.


As shown in FIG. 13, the upper wall 2160 of the lip seal 21 OA rests against the downwardly facing surface of the upper wall 422. Similarly, the upper wall 2160 of the lip seal 400 rests against the upwardly facing wall of the lower wall 420. Across the contact patch between the upper wall 2160 and the downwardly facing surface of the upper wall 422, the metering channel 412 extends so as to allow airflow between the exterior of the piston, and the space above the top of the piston 2020 and the interior of the piston 2020. Similarly, the metering channel 410 allows the flow of air from the exterior of the piston, beneath the upper wall 4160, of the lip seal 400, and into the interior of the piston.


Additionally, as noted above, the central disk 406 includes an aperture or notch 408 thus, air can leak from the atmosphere, beneath the wall 2160 of the lip seal 400, into the interior of the piston, upwardly through the notch 408, into the metering channel 412, then outwardly above the wall 2160 of the lip seal 21 OA, and into the space within the housing 2000 above the top of the piston 2020. As such, the metering channels 410,412 can limit the amount of dampening generated by the lip seals 21 OA, 400.


In an exemplary but nonlimiting embodiment, the housing 2000 can be made from a material commercially available under the trade name Acetal Oelrin with 10% Teflon added. The piston 2020 can also be made from the material known as Acetal Oelrin. Further, the lip seal 21 OA, 400 can be made from graphite impregnated nitrile. Other materials can also be used.


Further, in some examples, the metering channels 410, 412 can have a width of approximately 0.15 mm and a depth of approximately 0.15 mm. Additionally, depending on the performance desired, a plurality of metering channels 410, 412, can be provided on each of the walls 420, 422.


Additional advantages can be achieved by providing the dampening mechanism 1200 with the ability to provide variable dampening in at least one of its directions of movement. For example, when a user initially steps on the pedal 32 of the trashcan assembly 20, the lip seal 400 will oppose the upward movement of the piston 2020 within the housing 2000 due to its inverted orientation relative to the lip seal 21 OA. This will help prevent an excessively fast opening speed of the lid 24.


In some circumstances, the movement of the damper piston 2020 inside the damper housing 2000 may make groaning or squeaking noises, especially after a certain number of movement of the damper piston 2020, as the seals 21 OA and 400 of the damper piston 2020 rub against the surface of the damper housing 12. Without much lubrication between the seals 21 OA and 400, which are generally made of rubbery material, and the damper housing 2000, which is generally made of plastic material, the movement of the piston 2020 can cause groaning noises and be subject to frictional wear and rubbing. For example, groaning may start after from about 5000 to about 40,000 steps of the trash can pedal or movement of the damper piston 2020. In contrast, one embodiment that employed a textured interior surface for damper housing 2000 was able to improve the onset of groaning to about 150,000 cycles or steps.


In some embodiments, the damper housing 2000 is provided lubrication for the movement of the piston 2020 for less friction and substantially noise-less movement. For example, the lubrication may comprise a variety of lubricants alone or in combination, such as graphite powder, silicone grease, oils, and the like. Any type of lubricant may be employed in the embodiments.


Additionally, the damper housing 2000 may be constructed from various materials to reduce frictional wear and increase the number of steps (movements), for example, beyond 40000 steps until groaning noises commence. In some embodiments, the damper housing 12 can be infused with Teflon®, Duracon YF-10, and graphite powder to improve the lubrication between the seals 21 OA and 400 of the damper piston 2020 against the damper housing 2000. The percentage of the graphite powder can be about 5% of the damper housing content. In some embodiments, the graphite powder can be about 2 microns in diameter.


In some embodiments, the damper housing 2000 may be infused with a foam material infused with or containing graphite powder in the inner top portion. The size of the foam can be fitted inside the damper housing 2000, such as about 30 mm in diameter and about 5 mm thick. In addition, the foam can be saturated with a lubricant, such as a graphite powder, so that the lubricant disperses or trickles down each time the damper piston 2020 is actuated by the pedal of the trashcan.


In some embodiments, the housing 12 can be designed to have a surface to prevent audible groaning sounds during operating. Groaning may be caused due to rubbing of the damper housing 2000 and the damper piston 2020. Such groaning may occur after use, such as after about 40000 steps. It may be desirable to prevent or reduce groaning sounds.


The interior surface of damper housing 2000 may be modified to deaden or dampen groaning sounds. In particular, the interior surface of the damper housing 2000 may be textured or patterned. For example, the surface of the housing 12 may have a roughened surface or other surface features. Exemplary surface features may include dimples, ridges, grooves, and the like. These surface features may be concave, i.e., extending from the surface or convex or indentions, i.e., extending inward towards the surface. The surface features may comprise a variety of sizes on the order of nanometers, micrometers, millimeters, or higher.


Roughening of the surface or other types of surface features may serve to dissipate the sound energy as it propagates from the housing 12 as well as dispersing sound wave reflection to dampen or eliminate groaning sounds. The surface metrology of the housing 12 may thus be configured to reduce audible groaning sounds as the damping piston 2020 moves along the interior surface.


The roughness of the surface can be achieved by various means or treatments. For example, the surface of the interior of damper housing 2000 may be sprayed with damper housing material as mentioned above. Alternatively, the damper housing 2000 can be injection molded to have a rough surface or surface pattern. In other embodiments, the surface of the damper housing 2000 may be mechanically treated, such as milling, sandblasting, etching, laser etching, or other forms of machining, to create a textured or roughened surface that prevents groaning. In other embodiments, the damper housing 2000 may also under go various chemical treatments to create surface features.


In yet other embodiments, the housing 2000 may be constructed from various combinations of materials that insulate or dampen sound energy. For example, the housing 2000 may comprise one or more layers of sound deadening material, such as foam, fiberglass, plastic, etc. Such acoustic materials may absorb the sound energy, for example from groaning sounds, and/or may reflect the sound energy. In accordance with the principles of the embodiments, the housing 2000 may be configured with various surfaces to counteract different frequencies of groaning sounds.


Further, it has been found that it can be advantageous to provide a reduced dampening force against the initial movement of the pedal 32 toward its opening position. For example, with regard to some trashcans, such as a trashcan assembly 20 illustrated in FIG. 1, due to the pivoting arrangement of the lid 24, a user must apply the most amount of force to move the pedal 32 when the lid 24 is closed, as compared to the forces required to move the pedal 32 through the remainder of its opening motion. This is because when the lid 24 is orientated in its closed position, the weight of the lid 24, acting at its center of gravity, provides the largest torque against the pivoting movement of the lid 24 towards it open position. Thus, the force required to move the pedal 32 through its initial portion of its movement toward its opening position is greatest when the lid 24 is closed.


However, in operation, as the lid 24 pivots toward its open position, the horizontal position of the center of gravity moves closer to the pivot axis, and thus, the torque generated by the weight of the lid 24 decreases proportionally. As the center of gravity of the lid 24 moves directly over the pivot axis, the torque created by the weight of the lid falls to zero. Thus, as the lid 24 pivots toward its open position, depending on the force applied to the pedal, the lid can achieve an excessive angular velocity and thus an excessive angular momentum. This can result in damage to the lid 24, a hinge connecting the lid 24 to the trashcan assembly 20, a nearby wall, or other damage.


Further, if a trashcan includes a feature, such as a filtration device, which may generate a vacuum during the initial opening movement of the lid, the force required to move the pedal 32 from its initial resting position can be even greater due to the additional weight to the filtration device. Thus, it can be advantageous to provide a dampening mechanism that can reduce the initial dampening forces applied during the initial movement of the lid toward its opening position. Such a reduction in the initial movement of a pedal can be achieved through any known device, including, for example, but without limitation, lost motion devices, the sizing and configuration of the dampening device itself, and/or other devices.


With continued reference to FIGS. 13-15, the dampening mechanism 1200 can be configured to provide a variable or changing dampening force over the range of motion of the piston 2020 relative to the housing 2000 in at least one direction.


In some embodiments, this variable dampening can be provided by providing the housing 2000 with a zone 460 having a greater inner diameter than the remainder of the housing 2000. Additionally, the housing 2000 and the connection of the piston 2020 with the member 102 can be arranged such that the outer projection 2200 of the lip seal 400 contacts the inner surface of the housing 2000 in the zone 460 when the pedal 32 is in its resting position.


For example, but without limitation, the inner diameter of a portion of the zone 460 can be sufficiently greater than the remaining inner diameter of the housing 2000, that the projection 2200 of the lip seal 400 loses contact with at least a portion of the inner surface of the zone 460. Thus, when the pedal 32 is depressed by a user, initially, the lip seal 400 generates greatly reduced or no dampening force against the upward movement of the piston 2020 within the housing 2000. In some embodiments, the increase in diameter of the inner surface of the housing 2000 in the zone 460 is gradual. Thus, as the projection 2200 of the lip seal 400 moves from the lowest portion (as viewed in FIG. 13) of the zone 460, upwardly, the projection 2200 will remain oriented in the desired position, gradually regain contact with the inner surface of the housing 2000 and generate dampening force as it leaves the zone 460.


In some embodiments, the zone 460 can have the same diameter as the other parts of the inner surface of the housing 410, and the damper 1200 can be configured to provide reduced dampening against the opening movement of the lid 24 with other techniques. For example, the overall size and/or proportions, including for example, but without limitation, the total volume of the housings 200, 400, the stroke (i.e. the total distance the pistons 202, 2020 travel within the corresponding housing), the ratio of the stroke to the diameter of the housing, the compressibility of the working fluid (e.g., air and other gasses are “compressible fluids” and most liquids are “noncompressible”), can affect the dampening provided during the initial movement of the lid 24 toward the open position. Thus, in some configurations, one of these parameters can be determined to provide the desired reduced dampening for the desired portion of the initial movement of the lid 24 toward its open position.


As with the other dimensions of the housing 2000 and the lip seal 21 OA, 400, the configuration and length of the zone 460 can be adjusted to provide the desired dampening characteristics.


Although these embodiments have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present embodiments extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the embodiments and obvious modifications and equivalents thereof In addition, while several variations of the embodiments have been shown and described in detail, other modifications, which are within the scope of these embodiments, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the embodiments. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments. Thus, it is intended that the scope of at least some of the present embodiments herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A trash receptacle configured to reduce audible noises during operation, said trash receptacle comprising: a body having an open top portion;a lid, coupled to the body, configured to pivotably move between an open position and a closed position relative to the body;an actuator, coupled to the lid, configured to move the lid via a linkage connected to the lid, wherein the linkage moves in response to an applied force; anda dampening device comprising: a movable component coupled to the linkage;a graphite powder lubricant; anda housing having an interior surface having at least one roughening surface feature,wherein the housing is infused with a foam material that disperses a lubricant when the movable component is actuated by the linkage, wherein the lubricant comprises a graphite powder, wherein the foam material is saturated with the lubricant, and wherein the lubricant trickles downward each time the dampening device is actuated, andwherein at least a portion of the movable component slides against the at least one roughening feature when the lid pivots between the open and the closed positions, the at least one roughening feature configured to reduce audible noise generated by the movable component sliding against the housing.
  • 2. The trash receptacle of claim 1, wherein the dampening device comprises the housing and a piston and wherein the piston is coupled to the actuator.
  • 3. The trash receptacle of claim 1, wherein the dampening device comprises one or more layers of a sound deadening material.
  • 4. The trash receptacle of claim 1, wherein the dampening device is infused with polytetrafluoroethylene.
  • 5. The trash receptacle of claim 1, wherein the dampening device is infused with a polyplastic.
  • 6. The trash receptacle of claim 1, wherein the dampening device is configured to require a threshold amount of force applied by the actuator to open the lid when the lid is in the closed position.
  • 7. The trash receptacle of claim 1, wherein the actuator comprises a pedal at a bottom portion of the body.
  • 8. The trash receptacle of claim 1, wherein the at least one roughening surface feature comprises dimples.
  • 9. The trash receptacle of claim 1, wherein the at least one roughening surface feature comprises ridges.
  • 10. The trash receptacle of claim 1, wherein the at least one roughening surface feature comprises grooves.
  • 11. The trash receptacle of claim 1, wherein, when the lid pivots between the open and the closed positions, air passes between the movable component and the interior surface of the housing.
  • 12. The trash receptacle of claim 11, wherein the dampening device is configured to adapt for the compressibility of the air during movement of the lid toward the open position.
  • 13. The trash receptacle of claim 1, wherein the interior surface having the at least one roughening surface feature further comprises graphite powder.
  • 14. The trash receptacle of claim 13, wherein the graphite powder has a diameter of about 2 microns.
  • 15. The trash receptacle of claim 1, wherein the moveable portion of the dampening device and the roughening feature of the interior surface of the housing are configured to slide against each other when the lid pivots between the open and the closed positions for more than 40,000 iterations before the onset of audible groaning or squeaking noises.
  • 16. The trash receptacle of claim 1, wherein, when the movable component slides against the at least one roughening feature of the housing, the movable component substantially maintains its rotational position relative to the housing.
  • 17. The trash receptacle of claim 1, further comprising a lip seal coupled to the movable component, the lip seal comprising a projecting portion that is biased to extend radially outwardly, wherein: when the movable component moves into the housing, a pressure generated in a space above the movable component deflects the projecting portion radially inwardly; andwhen the movable component moves outward from the housing, the pressure in the space drops relative to the pressure of the atmosphere, thereby causing the projecting portion to further expand against an inner wall of the housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Application No. 61/535,908, entitled “RECEPTACLE WITH LOW FRICTION AND LOW NOISE MOTION DAMPER FOR LID,” filed Sep. 16, 2011, which is herein incorporated by reference in its entirety.

US Referenced Citations (526)
Number Name Date Kind
830182 Skov Sep 1906 A
1426211 Pausin Aug 1922 A
1461253 Owen Jul 1923 A
1754802 Raster Apr 1930 A
1820555 Buschman Aug 1931 A
1891651 Padelford et al. Dec 1932 A
1922729 Geibel Aug 1933 A
1980938 Geibel Nov 1934 A
2308326 Calcagno Jan 1943 A
D148825 Snider Feb 1948 S
2457274 Rifken Dec 1948 A
2759625 Ritter Aug 1956 A
2796309 Taylor Jun 1957 A
2888307 Graves et al. May 1959 A
2946474 Knapp Jul 1960 A
3008604 Garner Nov 1961 A
3023922 Arrington et al. Mar 1962 A
3137408 Taylor Jun 1964 A
3300082 Patterson Jan 1967 A
3392825 Gale et al. Jul 1968 A
3451453 Heck Jun 1969 A
3654534 Fischer Apr 1972 A
3800503 Maki Apr 1974 A
3820200 Myers Jun 1974 A
3825150 Taylor Jul 1974 A
3825215 Borglum Jul 1974 A
3886425 Weiss May 1975 A
3888406 Nippes Jun 1975 A
3891115 Ono Jun 1975 A
4014457 Hodge Mar 1977 A
4027774 Cote Jun 1977 A
4081105 Dagonnet et al. Mar 1978 A
4189808 Brown Feb 1980 A
4200197 Meyer et al. Apr 1980 A
4217616 Jessup Aug 1980 A
4303174 Anderson Dec 1981 A
4320851 Montoya Mar 1982 A
4349123 Yang Sep 1982 A
4357740 Brown Nov 1982 A
4416197 Kehl Nov 1983 A
4417669 Knowles et al. Nov 1983 A
4457483 Gagne Jul 1984 A
4535911 Goulter Aug 1985 A
4570304 Montreuil et al. Feb 1986 A
4576310 Isgar et al. Mar 1986 A
D284320 Kubic et al. Jun 1986 S
4609117 Pamment Sep 1986 A
4630332 Bisbing Dec 1986 A
4630752 DeMars Dec 1986 A
4664347 Brown et al. May 1987 A
4697312 Freyer Oct 1987 A
4711161 Swin et al. Dec 1987 A
4729490 Ziegenbein Mar 1988 A
4753367 Miller et al. Jun 1988 A
4763808 Guhl et al. Aug 1988 A
4765548 Sing Aug 1988 A
4765579 Robbins, III et al. Aug 1988 A
4785964 Miller et al. Nov 1988 A
4792039 Dayton Dec 1988 A
4794973 Perisic Jan 1989 A
4813592 Stolzman Mar 1989 A
4823979 Clark, Jr. Apr 1989 A
4834260 Auten May 1989 A
4863053 Oberg Sep 1989 A
4867339 Hahn Sep 1989 A
4869391 Farrington Sep 1989 A
4884717 Bussard et al. Dec 1989 A
4888532 Josson Dec 1989 A
4892223 DeMent Jan 1990 A
4892224 Graham Jan 1990 A
D307344 Massonnet Apr 1990 S
4913308 Culbertson Apr 1990 A
4915347 Iqbal et al. Apr 1990 A
4918568 Stone et al. Apr 1990 A
D308272 Koepsell May 1990 S
4923087 Burrows May 1990 A
4944419 Chandler Jul 1990 A
4948004 Chich Aug 1990 A
4964523 Bieltvedt et al. Oct 1990 A
4972966 Craft, Jr. Nov 1990 A
4996467 Day Feb 1991 A
5031793 Chen et al. Jul 1991 A
5048903 Loblein Sep 1991 A
5054724 Hutcheson Oct 1991 A
5065272 Owen et al. Nov 1991 A
5065891 Casey Nov 1991 A
5076462 Perrone Dec 1991 A
D323573 Schneider Jan 1992 S
5090585 Power Feb 1992 A
5090785 Stamp Feb 1992 A
5100087 Ashby Mar 1992 A
5111958 Witthoeft May 1992 A
D327760 Donnelly Jul 1992 S
D329929 Knoedler et al. Sep 1992 S
5147055 Samson et al. Sep 1992 A
5156290 Rodrigues Oct 1992 A
D331097 Sieren Nov 1992 S
5170904 Neuhaus Dec 1992 A
5174462 Hames Dec 1992 A
D332852 Delmerico Jan 1993 S
D335562 Evans May 1993 S
5213272 Gallagher et al. May 1993 A
5222704 Light Jun 1993 A
D337181 Warman Jul 1993 S
5226558 Whitney et al. Jul 1993 A
5230525 Delmerico et al. Jul 1993 A
5242074 Conaway et al. Sep 1993 A
D340333 Duran et al. Oct 1993 S
5249693 Gillispie et al. Oct 1993 A
5261553 Mueller et al. Nov 1993 A
5265511 Itzov Nov 1993 A
5295607 Chang Mar 1994 A
5305916 Suzuki et al. Apr 1994 A
5314151 Carter-Mann May 1994 A
5322179 Ting Jun 1994 A
5329212 Feigleson Jul 1994 A
5348222 Patey Sep 1994 A
5353950 Taylor et al. Oct 1994 A
5372272 Jennings Dec 1994 A
5381588 Nelson Jan 1995 A
5385258 Sutherlin Jan 1995 A
5390818 LaBuda Feb 1995 A
5404621 Heinke Apr 1995 A
5407089 Bird et al. Apr 1995 A
5419452 Mueller et al. May 1995 A
5471708 Lynch Dec 1995 A
5474201 Liu Dec 1995 A
5501358 Hobday Mar 1996 A
5520067 Gaba May 1996 A
5520303 Bernstein et al. May 1996 A
5531348 Baker et al. Jul 1996 A
5535913 Asbach et al. Jul 1996 A
5558254 Anderson et al. Sep 1996 A
5560283 Hannig Oct 1996 A
5584412 Wang Dec 1996 A
D377554 Adriaansen Jan 1997 S
5611507 Smith Mar 1997 A
5628424 Gola May 1997 A
5632401 Hurd May 1997 A
5636416 Anderson Jun 1997 A
5636761 Diamond et al. Jun 1997 A
5644111 Cerny et al. Jul 1997 A
5645186 Powers et al. Jul 1997 A
5650680 Chula Jul 1997 A
D383277 Peters Sep 1997 S
5662235 Nieto Sep 1997 A
5671847 Pedersen et al. Sep 1997 A
5690247 Boover Nov 1997 A
5695088 Kasbohm Dec 1997 A
5699929 Ouno Dec 1997 A
D388922 Peters Jan 1998 S
D389631 Peters Jan 1998 S
5704511 Kellams Jan 1998 A
5724837 Shin Mar 1998 A
5730312 Hung Mar 1998 A
5732845 Armaly, Jr. Mar 1998 A
5735495 Kubota Apr 1998 A
5738239 Triglia Apr 1998 A
5770935 Smith et al. Jun 1998 A
5799909 Ziegler Sep 1998 A
5816431 Giannopoulos Oct 1998 A
5816640 Nishimura Oct 1998 A
D401383 Gish Nov 1998 S
D401719 Van Leeuwen et al. Nov 1998 S
5873643 Burgess, Jr. et al. Feb 1999 A
5881896 Presnell et al. Mar 1999 A
5881901 Hampton Mar 1999 A
5884237 Kanki et al. Mar 1999 A
5887748 Nguyen Mar 1999 A
D412552 Burrows Aug 1999 S
5961105 Ehrnsberger et al. Oct 1999 A
5967392 Niemi et al. Oct 1999 A
5987708 Newton Nov 1999 A
6000569 Liu Dec 1999 A
6010024 Wang Jan 2000 A
6024238 Jaros Feb 2000 A
6036050 Ruane Mar 2000 A
6102239 Wien Aug 2000 A
6105859 Stafford Aug 2000 A
6123215 Windle Sep 2000 A
D431700 Roudebush Oct 2000 S
6126031 Reason Oct 2000 A
6129233 Schiller Oct 2000 A
6131861 Fortier, Jr. et al. Oct 2000 A
D435951 Yang et al. Jan 2001 S
6209744 Gill Apr 2001 B1
6211637 Studer Apr 2001 B1
6234339 Thomas May 2001 B1
6250492 Verbeek Jun 2001 B1
D445980 Tjugum Jul 2001 S
6286706 Tucker Sep 2001 B1
6328320 Walski et al. Dec 2001 B1
6345725 Lin Feb 2002 B1
6364147 Meinzinger et al. Apr 2002 B1
6386386 George May 2002 B1
6390321 Wang May 2002 B1
6401958 Foss et al. Jun 2002 B1
6519130 Breslow Feb 2003 B1
6557716 Chan May 2003 B1
D476456 Englert et al. Jun 2003 S
6596983 Brent Jul 2003 B2
6626316 Yang Sep 2003 B2
6626317 Pfiefer et al. Sep 2003 B2
6632064 Walker et al. Oct 2003 B1
D481846 Lin Nov 2003 S
D482169 Lin Nov 2003 S
6659407 Asaro Dec 2003 B2
6681950 Miller, Jr. et al. Jan 2004 B2
D488604 Yang et al. Apr 2004 S
D488903 Yang et al. Apr 2004 S
D489503 Lin May 2004 S
D489857 Yang et al. May 2004 S
D490583 Yang et al. May 2004 S
D490954 Brand Jun 2004 S
D491706 Yang et al. Jun 2004 S
6758366 Bourgund et al. Jul 2004 B2
D493930 Wang Aug 2004 S
D494723 Lin Aug 2004 S
6812655 Wang et al. Nov 2004 B1
6814249 Lin Nov 2004 B2
D499450 Goodman et al. Dec 2004 S
6837393 Kuo Jan 2005 B1
6857538 Lin Feb 2005 B2
6859005 Boliver Feb 2005 B2
D503021 Yang et al. Mar 2005 S
6866826 Moore et al. Mar 2005 B2
6883676 Lin Apr 2005 B2
D507090 Yang et al. Jul 2005 S
6920994 Lin Jul 2005 B2
6974948 Brent Dec 2005 B1
D513445 Lin Jan 2006 S
6981606 Yang et al. Jan 2006 B2
D517764 Wang Mar 2006 S
D517767 Yang et al. Mar 2006 S
D518266 Yang et al. Mar 2006 S
7017773 Gruber et al. Mar 2006 B2
7044323 Yang May 2006 B2
D525756 Yang et al. Jul 2006 S
7073677 Richardson et al. Jul 2006 B2
7077283 Yang et al. Jul 2006 B2
7080750 Wein et al. Jul 2006 B2
7086550 Yang et al. Aug 2006 B2
D528726 Lin Sep 2006 S
7121421 Yang et al. Oct 2006 B2
D531499 Zaidman Nov 2006 S
D535799 Epps Jan 2007 S
D535800 Yang et al. Jan 2007 S
7163591 Kim et al. Jan 2007 B2
7168591 Miller Jan 2007 B1
D537223 Lin Feb 2007 S
D537599 Lin Feb 2007 S
D537601 Lin Feb 2007 S
D537999 Lin Mar 2007 S
D538995 Lin Mar 2007 S
D539498 Yang et al. Mar 2007 S
D539499 Yang et al. Mar 2007 S
D540001 Zimmerman Apr 2007 S
D542001 Yang et al. May 2007 S
D542995 Lin May 2007 S
D543673 Yang et al. May 2007 S
D544170 Lin Jun 2007 S
D544171 Lin Jun 2007 S
D544671 Saunders et al. Jun 2007 S
D545024 Liao Jun 2007 S
7225943 Yang et al. Jun 2007 B2
D547020 Chen Jul 2007 S
7243811 Ramsey Jul 2007 B1
D550918 Wang et al. Sep 2007 S
D552319 Gusdorf Oct 2007 S
D552321 Yang et al. Oct 2007 S
D552823 Yang et al. Oct 2007 S
D552824 Zimmerman Oct 2007 S
D552825 Yang et al. Oct 2007 S
D555320 Yang et al. Nov 2007 S
D559494 Yang et al. Jan 2008 S
D559495 Yang et al. Jan 2008 S
D562522 Daams Feb 2008 S
7328842 Wagner et al. Feb 2008 B2
D564169 Wang Mar 2008 S
D564723 Yang et al. Mar 2008 S
D566367 Lin Apr 2008 S
D566369 Shek Apr 2008 S
D566923 Lin Apr 2008 S
D567468 Yang et al. Apr 2008 S
D568572 Yang et al. May 2008 S
D569720 Lablaine May 2008 S
7374060 Yang et al. May 2008 B2
D571520 Lin Jun 2008 S
7395990 Stevens Jul 2008 B1
7398913 McClure Jul 2008 B2
7404499 Ramsey Jul 2008 B1
D574569 Yang et al. Aug 2008 S
D576371 Zimmerman Sep 2008 S
D578265 Presnell Oct 2008 S
D578266 Yang et al. Oct 2008 S
D578268 Yang et al. Oct 2008 S
D578722 Yang et al. Oct 2008 S
7438199 Tidrick Oct 2008 B1
D580120 Lin Nov 2008 S
D580613 Yang et al. Nov 2008 S
D580615 Yang et al. Nov 2008 S
D581622 Presnell et al. Nov 2008 S
D584470 Bizzell et al. Jan 2009 S
D585171 Bizzell et al. Jan 2009 S
D585618 Yang et al. Jan 2009 S
D586070 Lin Feb 2009 S
7494021 Yang et al. Feb 2009 B2
D587874 Lin Mar 2009 S
D593271 Yang et al. May 2009 S
7530578 Niemeyer et al. May 2009 B2
7540396 Yang et al. Jun 2009 B2
7543716 Lin Jun 2009 B2
7559433 Yang et al. Jul 2009 B2
D599074 Bizzell et al. Aug 2009 S
D603119 Yang et al. Oct 2009 S
7607552 Efstathiou Oct 2009 B2
D604472 Blanks et al. Nov 2009 S
7614519 Krauth et al. Nov 2009 B2
7621420 Bandoh et al. Nov 2009 B2
7656109 Yang et al. Feb 2010 B2
D611216 Yang et al. Mar 2010 S
D611217 Bizzell et al. Mar 2010 S
D611671 Yang et al. Mar 2010 S
7694838 Yang et al. Apr 2010 B2
7703622 Bynoe Apr 2010 B1
D615270 Yang et al. May 2010 S
D615722 Yang et al. May 2010 S
7712285 Stravitz et al. May 2010 B2
7741801 Fukuizumi Jun 2010 B2
7748556 Yang et al. Jul 2010 B2
7781995 Yang et al. Aug 2010 B2
D623817 Yang et al. Sep 2010 S
D625068 Shannon Oct 2010 S
7806285 Yang et al. Oct 2010 B2
D627533 Yang et al. Nov 2010 S
D627944 Wang et al. Nov 2010 S
D629172 Liao Dec 2010 S
D630404 Yang et al. Jan 2011 S
D631221 Yang et al. Jan 2011 S
D632039 Yang et al. Feb 2011 S
D632864 Yang et al. Feb 2011 S
D634911 Yang et al. Mar 2011 S
D635319 Meyerhoffer Mar 2011 S
7896187 Haibel Mar 2011 B2
7922024 Yang et al. Apr 2011 B2
7950543 Yang et al. May 2011 B2
D644390 Smeets et al. Aug 2011 S
7992742 Kim Aug 2011 B1
8006857 Lin Aug 2011 B2
D644806 Yang et al. Sep 2011 S
D644807 Yang et al. Sep 2011 S
D649728 Campbell Nov 2011 S
8074833 Yang et al. Dec 2011 B2
8096445 Yang et al. Jan 2012 B2
D655061 Scaturro Feb 2012 S
8136688 Lee et al. Mar 2012 B2
D657108 Yang et al. Apr 2012 S
D657109 Liao Apr 2012 S
8297470 Yang et al. Oct 2012 B2
8317055 Zawrotny et al. Nov 2012 B2
D672520 Yang et al. Dec 2012 S
D673750 Quan Jan 2013 S
D675802 Yang et al. Feb 2013 S
D675803 Yang et al. Feb 2013 S
8418869 Yang et al. Apr 2013 B2
D689255 Sun Ting Kung et al. Sep 2013 S
8567630 Yang et al. Oct 2013 B2
8569980 Yang et al. Oct 2013 B2
8575537 Yao et al. Nov 2013 B2
8672171 Wynn et al. Mar 2014 B2
8678219 Wang et al. Mar 2014 B1
8686676 Yang et al. Apr 2014 B2
D704406 Kern May 2014 S
8716969 Yang et al. May 2014 B2
8720728 Yang et al. May 2014 B2
D709662 Yang et al. Jul 2014 S
8766582 Yang et al. Jul 2014 B2
8807378 Kaberna Aug 2014 B2
8807379 Hammond Aug 2014 B1
D714510 Yang et al. Sep 2014 S
D715575 Williams et al. Oct 2014 S
D716015 van de Leest Oct 2014 S
8851316 Barrett et al. Oct 2014 B2
8872459 Yang et al. Oct 2014 B2
D725860 Spivey et al. Mar 2015 S
D725861 Yang et al. Mar 2015 S
D730008 Yang et al. May 2015 S
9051093 Yang et al. Jun 2015 B2
D755461 Wall May 2016 S
D759934 Yang et al. Jun 2016 S
D762037 Chen Jul 2016 S
D765937 Chen Sep 2016 S
D766998 Kao et al. Sep 2016 S
9434538 Yang et al. Sep 2016 B2
D770121 Chen Oct 2016 S
D771344 Yang et al. Nov 2016 S
D773769 Chen Dec 2016 S
9573759 Yang et al. Feb 2017 B2
9586755 Yang et al. Mar 2017 B1
D787828 Thoma et al. May 2017 S
D790145 Chen Jun 2017 S
D793642 Yang et al. Aug 2017 S
D798016 Yang et al. Sep 2017 S
D804133 Yang et al. Sep 2017 S
9751692 Yang et al. Sep 2017 B2
9790025 Yang et al. Oct 2017 B2
9856080 Yang et al. Jan 2018 B2
20010002690 Rosky Jun 2001 A1
20010020619 Pfeifer et al. Sep 2001 A1
20010045512 Brent Nov 2001 A1
20020066736 Pyles Jun 2002 A1
20020092853 Wang Jul 2002 A1
20020096523 Pyles Jul 2002 A1
20020096524 Hardesty Jul 2002 A1
20020104266 Ranaudo Aug 2002 A1
20020116924 Winkelmann Aug 2002 A1
20030089719 Berger May 2003 A1
20030102316 Forest Jun 2003 A1
20030201265 Lin Oct 2003 A1
20030205979 Papari et al. Nov 2003 A1
20030230576 Lin Dec 2003 A1
20040016756 Lin Jan 2004 A1
20040134924 Hansen et al. Jul 2004 A1
20040140782 Okabe et al. Jul 2004 A1
20040164077 Kuo Aug 2004 A1
20040174268 Scott et al. Sep 2004 A1
20040175303 Lin Sep 2004 A1
20040199401 Wagner Oct 2004 A1
20040200938 Forlivio Oct 2004 A1
20040206758 Lin Oct 2004 A1
20040206760 Gagnebin Oct 2004 A1
20040251746 Ichimaru et al. Dec 2004 A1
20050017006 Kuo Jan 2005 A1
20050017010 Siegel et al. Jan 2005 A1
20050029281 Westermann et al. Feb 2005 A1
20050129803 Umeda Jun 2005 A1
20050258177 Woodson Nov 2005 A1
20050258794 Fukuizumi Nov 2005 A1
20060027579 Yang et al. Feb 2006 A1
20060103086 Niemeyer et al. May 2006 A1
20060138149 Tracy Jun 2006 A1
20060163257 Golbert Jul 2006 A1
20060175336 Wang Aug 2006 A1
20060186121 Yang et al. Aug 2006 A1
20060196874 Yang Sep 2006 A1
20060237641 Moeller et al. Oct 2006 A1
20060249510 Lin Nov 2006 A1
20060278643 Chiou Dec 2006 A1
20070012699 Yang et al. Jan 2007 A1
20070112699 Yang et al. Jan 2007 A1
20070034334 Ramsey et al. Feb 2007 A1
20070045326 Tramontina et al. Mar 2007 A1
20070090112 Kalman et al. Apr 2007 A1
20070114847 Ichimaru et al. May 2007 A1
20070181579 Kuo et al. Aug 2007 A1
20070209846 Wilson Sep 2007 A1
20070215622 Perez Sep 2007 A1
20070241109 Lin Oct 2007 A1
20070266637 McGowan Nov 2007 A1
20070272691 Wang et al. Nov 2007 A1
20070289972 Wynn et al. Dec 2007 A1
20080011754 Ramsey Jan 2008 A1
20080011910 Ramsey Jan 2008 A1
20080041863 Forest Feb 2008 A1
20080083756 Daniels Apr 2008 A1
20080083757 Parker et al. Apr 2008 A1
20080099274 Seel May 2008 A1
20080128428 Beckerman Jun 2008 A1
20080164257 Boll et al. Jul 2008 A1
20080236275 Breed et al. Oct 2008 A1
20080257889 Kovacevich et al. Oct 2008 A1
20080257890 Kovacevich et al. Oct 2008 A1
20080257891 Kovacevich et al. Oct 2008 A1
20080264948 Kovacevich et al. Oct 2008 A1
20080264950 Kovacevich et al. Oct 2008 A1
20080272119 Efstathiou Nov 2008 A1
20080272127 Kovacevich et al. Nov 2008 A1
20090071959 Cheung Mar 2009 A1
20090084788 Yang et al. Apr 2009 A1
20090136341 Kenyon May 2009 A1
20090230131 McDuffie et al. Sep 2009 A1
20090261105 Cunningham et al. Oct 2009 A1
20090266836 Mobley Oct 2009 A1
20100006572 Chiou Jan 2010 A1
20100084235 Lu Apr 2010 A1
20100096894 Fukai Apr 2010 A1
20100122985 Peters et al. May 2010 A1
20100147865 Yang et al. Jun 2010 A1
20100170904 Kalman et al. Jul 2010 A1
20100224627 Yang et al. Sep 2010 A1
20100237074 Yang et al. Sep 2010 A1
20100252557 Clements Oct 2010 A1
20100294769 Lee et al. Nov 2010 A1
20110017735 Wang et al. Jan 2011 A1
20110049149 Shih Mar 2011 A1
20110056952 Borowski et al. Mar 2011 A1
20110139781 Jin et al. Jun 2011 A1
20110220655 Yang et al. Sep 2011 A1
20110272409 Kasbohm Nov 2011 A1
20120145932 Yao et al. Jun 2012 A1
20120234849 Hughes et al. Sep 2012 A1
20120261423 Zawrotny et al. Oct 2012 A1
20130097809 Weber et al. Apr 2013 A1
20130105487 Baik May 2013 A1
20130233853 Yang et al. Sep 2013 A1
20130233857 Yang et al. Sep 2013 A1
20130240592 Woodruff Sep 2013 A1
20130248532 Yang et al. Sep 2013 A1
20130248535 Wolfe et al. Sep 2013 A1
20130300119 Anzalon et al. Nov 2013 A1
20140183193 Hammond et al. Jul 2014 A1
20140238989 Wang et al. Aug 2014 A1
20140246432 Yang et al. Sep 2014 A1
20140246434 Yang et al. Sep 2014 A1
20140305946 Han Oct 2014 A1
20140345453 Oh et al. Nov 2014 A1
20150251849 Yang et al. Sep 2015 A1
20150259139 Yang et al. Sep 2015 A1
20150259140 Yang et al. Sep 2015 A1
20150321841 Salas et al. Nov 2015 A1
20170096299 Yang et al. Apr 2017 A1
20170127669 Yang et al. May 2017 A1
20170166167 Heller et al. Jun 2017 A1
20170253429 Yang et al. Sep 2017 A1
20180093827 Yang et al. Apr 2018 A1
20180178978 Yang et al. Jun 2018 A1
Foreign Referenced Citations (144)
Number Date Country
622536 Apr 1992 AU
365296 Nov 2015 AU
201614908 Nov 2016 AU
201614909 Nov 2016 AU
2182840 Sep 1997 CA
2519295 Mar 2007 CA
132181 Jun 2010 CA
136938 May 2011 CA
141819 Apr 2012 CA
146601 Feb 2013 CA
152797 Apr 2014 CA
158595 Apr 2015 CA
158685 Apr 2015 CA
164264 Oct 2016 CA
164265 Oct 2016 CA
167073 Oct 2016 CA
170360 Mar 2017 CA
170399 Mar 2017 CA
168936 Oct 2017 CA
2075182 Apr 1991 CN
201105898 Aug 2008 CN
201372076 Dec 2009 CN
201447201 May 2010 CN
201512253 Jun 2010 CN
201597962 Oct 2010 CN
102190144 Sep 2011 CN
301947175 Jun 2012 CN
103207416 Jul 2013 CN
103300590 Sep 2013 CN
103381944 Nov 2013 CN
302771721 Mar 2014 CN
201330418089.X Mar 2014 CN
104016030 Sep 2014 CN
303188855 Apr 2015 CN
303206241 May 2015 CN
303611394 Mar 2016 CN
303622098 Mar 2016 CN
205169479 Apr 2016 CN
303967208 Dec 2016 CN
304018339 Jan 2017 CN
304018340 Jan 2017 CN
103381944 Mar 2017 CN
201310076306.0 Dec 2017 CN
201580000648.1 Jan 2018 CN
201730168630.4 Feb 2018 CN
1610087 Jul 1950 DE
822376 Nov 1951 DE
1283741 Jul 1966 DE
8436939 Mar 1985 DE
9108341 Oct 1991 DE
4225936 Feb 1994 DE
19525885 Mar 1997 DE
19617823 Nov 1997 DE
19809331 May 1999 DE
29918687 Mar 2000 DE
19933180 Jan 2001 DE
10148997 Apr 2003 DE
20217561 Mar 2004 DE
10337806 Mar 2005 DE
0582240 Jul 1993 EP
0903305 Mar 1999 EP
0906876 Apr 1999 EP
1094017 Apr 2001 EP
1361176 Nov 2003 EP
1136393 Apr 2004 EP
1447342 Aug 2004 EP
1600373 Nov 2005 EP
1647503 Apr 2006 EP
1686073 Aug 2006 EP
1918223 May 2008 EP
1700799 Aug 2009 EP
001164826-0001 Sep 2009 EP
001232904-0001 Oct 2010 EP
2343250 Jul 2011 EP
001908575-0001 Aug 2011 EP
001317416-0001 Apr 2012 EP
001317416-0002 Apr 2012 EP
001335285-0001 Jul 2012 EP
001335293-0001 Jul 2012 EP
001381636-001 Aug 2013 EP
001381792-0001 Aug 2013 EP
2636611 Sep 2013 EP
2636613 Sep 2013 EP
3144251 Mar 2014 EP
001420590-0001 Sep 2014 EP
2772454 Sep 2014 EP
2915763 Sep 2015 EP
2918518 Sep 2015 EP
002766782-0001 Nov 2015 EP
002766782-0002 Nov 2015 EP
002766881-0001 Nov 2015 EP
2364932 Apr 2016 EP
3042864 Jul 2016 EP
003177500-0001 Sep 2016 EP
003177500-0002 Sep 2016 EP
003362235-0001 Oct 2016 EP
003362052-0001 Nov 2016 EP
003996339-0001 May 2017 EP
003996339-0002 May 2017 EP
3214019 Sep 2017 EP
2887152 Dec 2006 FR
191004921 Jun 1910 GB
2384418 Jul 2003 GB
02-152670 Jun 1990 JP
H06-56011 Aug 1994 JP
06-272888 Sep 1994 JP
2004-106713 Apr 2004 JP
2004-231237 Aug 2004 JP
D1300450 May 2007 JP
D1300451 May 2007 JP
D1322056 Feb 2008 JP
D1398668 Oct 2010 JP
D1550907 Apr 2016 JP
D1551184 Apr 2016 JP
1585339 Aug 2017 JP
3003841370000 Jun 2005 KR
3004095430000 Mar 2006 KR
3004095430001 Jul 2006 KR
6908550 Dec 1970 NL
D129485 Jul 2009 TW
D133382 Feb 2010 TW
D133678 Mar 2010 TW
145989 Mar 2012 TW
D147147 May 2012 TW
D154797 Jul 2013 TW
D158187 Jan 2014 TW
D161587 Jul 2014 TW
D162495 Aug 2014 TW
D168957 Jul 2015 TW
D170334 Sep 2015 TW
201538406 Oct 2015 TW
D176312 Jun 2016 TW
D176313 Jun 2016 TW
D183552 Jun 2017 TW
D184449 Jul 2017 TW
WO 9202430 Feb 1992 WO
WO 9633671 Oct 1996 WO
WO 2005080232 Sep 2005 WO
WO 2006079263 Aug 2006 WO
WO 2007139570 Dec 2007 WO
WO 2009114495 Sep 2009 WO
WO 2015134902 Sep 2015 WO
WO 2015138625 Sep 2015 WO
WO 2016054109 Apr 2016 WO
Non-Patent Literature Citations (72)
Entry
U.S. Appl. No. 11/438,839, U.S. Pat. No. 7,656,109.
U.S. Appl. No. 10/940,167, U.S. Pat. No. 7,694,838.
U.S. Appl. No. 11/448,336, U.S. Pat. No. 7,748,556.
U.S. Appl. No. 11/514,518, U.S. Pat. No. 7,781,995.
U.S. Appl. No. 11/475,349, U.S. Pat. No. 7,922,024.
U.S. Appl. No. 11/134,107, U.S. Pat. No. 7,922,024.
U.S. Appl. No. 12/024,945, U.S. Pat. No. 8,096,445.
U.S. Appl. No. 12/399,828, U.S. Pat. No. 8,418,869.
U.S. Appl. No. 13/801,140, U.S. Pat. No. 8,567,630.
U.S. Appl. No. 13/040,786, 2011/0220648.
U.S. Appl. No. 12/024,946, U.S. Pat. No. 8,569,980.
U.S. Appl. No. 13/040,709, 2011/0220646.
U.S. Appl. No. 12/045,641, 2008/0237234.
U.S. Appl. No. 13/040,770, 2011/0220647.
U.S. Appl. No. 29/263,255, U.S. Pat. No. D. 552,823.
U.S. Appl. No. 29,263,258, U.S. Pat. No. D. 552,825.
U.S. Appl. No. 29/267,029, U.S. Pat. No. D. 559,494.
U.S. Appl. No. 29/277,816, U.S. Pat. No. D. 578,266.
U.S. Appl. No. 29/303,204, U.S. Pat. No. D. 611,216.
U.S. Appl. No. 29/334,146, U.S. Pat. No. D. 615,722.
U.S. Appl. No. 29/357,571, U.S. Pat. No. D. 634,911.
U.S. Appl. No. 29/386,880, U.S. Pat. No. D. 657,108.
U.S. Appl. No. 29/411,482, U.S. Pat. No. D. 672,520.
U.S. Appl. No. 29/411,490, U.S. Pat. No. D. 675,802.
U.S. Appl. No. 29/411,491, U.S. Pat. No. D. 675,803.
U.S. Appl. No. 11/074,140, 2006/0196874.
U.S. Appl. No. 12/200,861, 2009/0084788.
U.S. Appl. No. 12/727,954, 2010/0237074.
U.S. Appl. No. 13/047,662, 2011/0220655.
U.S. Appl. No. 13/417,084, 2013/0233853.
U.S. Appl. No. 13/787,638, 2013/0233857.
U.S. Appl. No. 13/788,778, 2013/0248532.
U.S. Appl. No. 13/783,149.
U.S. Appl. No. 29/447,313.
U.S. Appl. No. 29/484,903.
U.S. Appl. No. 29/484,764.
U.S. Appl. No. 14/198,460.
U.S. Appl. No. 13/783,149, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 29/447,313, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 29/484,903, filed Mar. 13, 2014, Yang et al.
U.S. Appl. No. 29,484,764, filed Mar. 1, 2013, Yang et al.
U.S. Appl. No. 14/198,460, filed Mar. 5, 2014, Yang et al.
Trento Corner 23 Trash Can, Hailo product webpage, May 2008, http://www.hailo.de/html/default.asp?site=12_71_107&lang=en.
European Search Report for European Application No. 06010394, dated Aug. 24, 2006, in 1 page.
U.S. Appl. No. 14/637,270, filed Mar. 4, 2015, Yang et al.
U.S. Appl. No. 14/639,049, filed Mar. 4, 2015, Yang et al.
U.S. Appl. No. 14/639,862, filed Mar. 5, 2015, Yang et al.
U.S. Appl. No. 29/519,549, filed Mar. 5, 2015, Yang et al.
U.S. Appl. No. 29/519,551, filed Mar. 5, 2015, Yang et al.
U.S. Appl. No. 14/856,309, filed Sep. 26, 2015, Yang et al.
U.S. Appl. No. 15/265,455, filed Sep. 14, 2016, Yang et al.
U.S. Appl. No. 29/584,385, filed Nov. 14, 2016, Yang et al.
U.S. Appl. No. 13/047,662, U.S. Pat. No. 9,434,538.
U.S. Appl. No. 29/519,551, U.S. Pat. No. D. 759,934.
U.S. Appl. No. 29/548,018.
U.S. Appl. No. 29/557,032.
U.S. Appl. No. 29/557,088.
U.S. Appl. No. 29/563,650.
U.S. Appl. No. 29/548,018, filed Dec. 9, 2015, Yang et al.
U.S. Appl. No. 29/557,032, filed Mar. 4, 2016, Yang et al.
U.S. Appl. No. 29/557,088, filed Mar. 4, 2016, Yang et al.
U.S. Appl. No. 29/563,650, filed May 6, 2016, Yang et al.
U.S. Appl. No. 15/448,245, filed Mar. 2, 2017, Yang et al.
U.S. Appl. No. 15/476,285, filed Mar. 31, 2017, Yang et al.
U.S. Appl. No. 29/610,345, filed Jul. 11, 2017, Yang et al.
U.S. Appl. No. 29/583,627, filed Jun. 22, 2017, Yang et al.
U.S. Appl. No. 29/608,587, filed Jun. 22, 2017, Yang et al.
U.S. Appl. No. 15/809,218, filed Nov. 10, 2017, Yang et al.
U.S. Appl. No. 29/631,301, filed Dec. 28, 2017, Yang et al.
U.S. Appl. No. 29/633,369, filed Jan. 12, 2018, to be determined.
U.S. Appl. No. 29/633,372, filed Jan. 12, 2018, to be Determined.
Web page showing picture of Hero Bullet trash can, archived Nov. 17, 2004, downloaded from http://web.archive.org/web/20041117003115/http://www.simplehuman.com/images/hero_bullet.jpg.
Related Publications (1)
Number Date Country
20130098913 A1 Apr 2013 US
Provisional Applications (1)
Number Date Country
61535908 Sep 2011 US