Recess Pt structure for high k stacked capacitor in DRAM and FRAM, and the method to form this structure

Information

  • Patent Application
  • 20030077858
  • Publication Number
    20030077858
  • Date Filed
    October 18, 2001
    23 years ago
  • Date Published
    April 24, 2003
    21 years ago
Abstract
The exposure of the interface between the bottom electrode and barrier layer to a high temperature oxygen ambience is avoided by recessed Pt-in-situ deposited with a barrier layer.
Description


BACKGROUND OF THE INVENTION

[0001] The present invention generally relates to integrated circuit (IC) memory devices and, more particularly, to the fabrication of stacked capacitor structures in Dynamic Random Access Memories (DRAMs) and similar devices.


[0002] A platinum (Pt) electrode has been used in high k stacked capacitor structures in Dynamic Random Access Memory (DRAM) and Flash Random Access Memory (FRAM) devices because of its high work function. Stacked capacitors are connected to the devices through polycrystalline silicon (polysilicon) plugs (or, more simply, “polyplugs”). A barrier layer is required between bottom Pt electrode and the polyplug to avoid reaction between Pt and polysilicon and the oxidation of the polyplug during the deposition of high k capacitor films. However, after the bottom electrode is patterned by Reactive Ion Etch (RIE), the interface of Pt electrode and barrier layer is exposed, and diffusion of oxygen through the interface has been observed. The interface layer due to oxygen diffusion increases the contact resistance and decreases the capacitance, and therefore should be avoided.


[0003] It is therefore an object of the present invention to provide a capacitor structure and method of making the same which avoids the interface layer due to oxygen diffusion.


[0004] According to the invention, there is provided a recessed Pt electrode deposited in situ with the barrier layer. Since the barrier layer and Pt electrode are deposited in situ and the most exposed area during Chemical-Mechanical Polish (CMP) is Pt, the formation of an oxide layer on the barrier layer surface during OMP is avoided. There is more space for dielectric film (than a sidewall spacer structure) since the barrier layer is recessed and no spacer is required. The oxygen diffusion path is longer due to the lateral recess of the barrier. The process provides more tolerance to misalignment.







BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:


[0006] FIGS. IA to IH are cross-sectional diagrams showing the process for forming the recess structure according to the invention; and


[0007]
FIG. 2 is a cross-sectional view of the completed capacitor structure.







DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

[0008] Referring now to the drawings, and more particularly to FIGS. IA to 1H, there is shown the process for manufacture of the recess Pt structure for a high k stacked capacitor according to the invention. In FIG. IA, a silicon substrate 101 has formed therein the source 102 and drain 103 of a transistor device. Between the source and drain is a gate 104 of the transistor device. The entire substrate is covered with a layer 105 of silicon dioxide (SiO2). A stacked capacitor is to be connected to the drain 103, and to make that connection, a contact via 106 is formed in the SiO2 layer extending to the drain 103.


[0009] The contact via 106 is filed with polysilicon 107 in FIG. 1B, and the resulting structure is planarized using OMP in FIG. 10. This leaves a polyplug 108 in the via, and this polyplug is recessed by a polysilicon etch to form a recess 109 in FIG. 1D.


[0010] At this point in the process, a barrier 110 and the metal 111 which will form the bottom electrode of the stacked capacitor are deposited in situ, as shown in FIG. IE. The composition of barrier 110 is preferably tantalum silicon nitride (TaSiN). The metal III is Pt in the preferred embodiment, but other metals including ruthenium (Ru) and iridium (Ir) and metal oxides of rutherium (RuO2) and iridium (1r02) can be used to form the electrode. The structure is then planarized using CMP in FIG. IF, and then a metal 112 is deposited in FIG. 1G. If Pt is used as the metal III, the metal 112 is also Pt. The deposited metal is patterned in FIG. 1H using RIE to form the metal electrode 113.


[0011] The stacked capacitor structure is completed in FIG. 2 by depositing a high k dielectric 214 followed by depositing a Pt top electrode 215. The composition of the high k dielectric 214 can be (Ba, Sr)TiO3, BaTiO3, SrTiO3, Pb(Zr, Ti)O3Sr, Bi2Ta2Og. The top electrode may then be patterned as needed for the final DRAM or FRAM device.


[0012] By forming a recess in which the barrier layer and Pt electrode are deposited in situ, the most exposed area during CMP is Pt. Therefore, the formation of an oxide layer on the barrier layer surface during CMP is avoided in FIG. 1F. The result is a capacitor structure with reduced contact resistance and increased capacitance.


[0013] While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.


[0014] In the claims:


Claims
  • 1. A method of forming a high k stacked capacitor in a semiconductor memory device comprising the steps of: forming a contact via in a SiO2 layer covering a transistor device; filling the contact via with polysilicon to form a polyplug in the contact via; etching an exposed surface of the polyplug to form a recess; depositing in situ a barrier layer and a first metal or metal oxide layer; chemical-mechanical polishing to leave a planarized surface with a barrier layer and metal filling the recess; depositing a second metal or metal oxide layer and patterning the second metal layer to form a bottom electrode in contact with the metal within the recess; and depositing a high k material and a third metal or metal oxide layer to form the top electrode of the stacked capacitor.
  • 2. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 1, wherein the first, second and third metal layers are selected from the group consisting of Pt, Ir, Ru, RuO2, and 1r02.
  • 3. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 2, wherein the first, second and third metal layers are Pt.
  • 4. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 1, wherein the barrier layer is TaS iN.
  • 5. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 1, wherein the high k dielectric is selected from the group consisting of (Ba, Sr)TiO3, BaTiO3, SrTiO3, Pb(Zr, Ti)O3, and Bi2Ta2O9.
  • 6. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 5, wherein the first, second and third metal layers are Pt.
  • 7. The method of forming a high k stacked capacitor in a semiconductor memory device of claim 6, wherein the barrier layer is TaS iN.
  • 8. A high k stacked capacitor in a semiconductor memory device comprising: a silicon substrate having a transistor device and covered by a SiO2 layer; a polysilicon plug partially filling a via in the SiO2 layer and extending to the transistor device, the polysilicon plug defining a recess; an barrier layer and a metal layer deposited in situ and filling the recess; a first metal electrode formed in contact with the metal in the recess; a high k dielectric material covering the first metal electrode; and a second metal electrode formed over the high k dielectric material.
  • 9. The high k stacked capacitor in a semiconductor memory device of claim 8, wherein the metal filling the recess and the first and second electrodes are selected from the group consisting of Pt, Ir, Ru, RuO2, and 1r02.
  • 10. The high k stacked capacitor of claim 9 wherein the metal filling the recess and the first and second electrodes are Pt.
  • 11. The high k stacked capacitor in a semiconductor memory device of claim 8, wherein the barrier layer is TaSiN.
  • 12. The high k stacked capacitor in a semiconductor memory device of claim 8, wherein the high k dielectric is selected from the group consisting of (Ba, Sr)TiO3, BaTiO3, SrTiO3, Pb(Zr, Ti)03, and Bi2Ta2O9.
  • 13. The high k stacked capacitor in a semiconductor memory device of claim 12, wherein the first, second and third metal layers are Pt.
  • 14. The high k stacked capacitor in a semiconductor memory device of claim 13, wherein the barrier layer is TaSiN.