This application relates to the field of implantable medical devices, and in particular to batteries useable in an implantable medical device.
Implantable stimulation devices deliver electrical stimuli to nerves and tissues for the therapy of various biological disorders, such as pacemakers to treat cardiac arrhythmia, defibrillators to treat cardiac fibrillation, cochlear stimulators to treat deafness, retinal stimulators to treat blindness, muscle stimulators to produce coordinated limb movement, spinal cord stimulators to treat chronic pain, cortical and deep brain stimulators to treat motor and psychological disorders, and other neural stimulators to treat urinary incontinence, sleep apnea, shoulder subluxation, etc. The description that follows will generally focus on the use of the invention within a Spinal Cord Stimulation (SCS) system, such as that disclosed in U.S. Pat. No. 6,516,227. However, the present invention may find applicability with any implantable medical.
An SCS system typically includes an Implantable Pulse Generator (IPG) 10 shown in plan and cross-sectional views in
In the illustrated IPG 10, there are thirty-two lead electrodes (E1-E32) split between four leads 14, with the header 28 containing a 2×2 array of lead connectors 24. However, the number of leads and electrodes in an IPG is application specific and therefore can vary. In a SCS application, the electrode leads 14 are typically implanted proximate to the dura in a patient's spinal cord, and when a four-lead IPG 10 is used, these leads are usually split with two on each of the right and left sides of the dura. The proximal electrodes 22 are tunneled through the patient's tissue to a distant location such as the buttocks where the IPG case 30 is implanted, at which point they are coupled to the lead connectors 24. A four-lead IPG 10 can also be used for Deep Brain Stimulation (DBS) in another example. In other IPG examples designed for implantation directly at a site requiring stimulation, the IPG can be lead-less, having electrodes 16 instead appearing on the body of the IPG for contacting the patient's tissue.
As shown in the cross section of
An issue requiring care in an IPG 10, especially one in which the battery 36 is rechargeable, is design of the battery management circuitry, which is described in one example in commonly-owned U.S. Patent Application Publication 2013/0023943, which is incorporated herein by reference in its entirety.
As noted, an external charger 90, typically a hand-held, battery-powered device, produces a magnetic non-data-modulated charging field 98 (e.g., 80 kHz) from a coil 92. The magnetic field 98 is met in the IPG 10 by front-end charging circuitry 96, where it induces a current in the charging coil 44 in the IPG 10. This induced current is rectified 46 to a voltage V1, which is then filtered (by a capacitor) and limited in its magnitude (by a Zener diode, e.g., to 5.5V), and passed through a back-flow-prevention diode 48 to produce a DC voltage, Vdc. Transistors 102 coupled to the charging coil 44 can be controlled by the IPG 10 (via control signal LSK) to transmit data back to the external charger 90 during production of the magnetic field 98 via Load Shift Keying, as is well known.
As discussed in the '943 Publication, Vdc is provided to battery management circuitry 84, which may reside on an Application Specific Integrated Circuit (ASIC) along with other circuitry necessary for IPG 10 operation, including current generation circuitry (used to provide specified currents to selected ones of the electrodes 16); telemetry circuitry (for modulating and demodulating data associated with telemetry coil 42 of
The battery management circuitry 84 in
As depicted, the charging circuitry 80, the load isolation circuitry 82, and the battery 36r generally have a T-shaped topology, with the charging circuitry 80 intervening between the front-end charging circuitry 96 (Vdc) and the positive terminal (Vbat(r)) of the battery 36r, and with the load isolation circuitry 82 intervening between Vbat(r) and the load 75.
As discussed in the '943 Publication, the load isolation circuitry 82 can prohibit the battery 36r (Vbat(r)) from being passed to power the load (Vload) dependent on a number of conditions. For example, if the load 75 is drawing a significantly high current (as indicated by overcurrent detection circuitry 74 via assertion of control signal OI); if Vbat(r) is too low (as indicated by rechargeable battery undervoltage detector 70 via assertion of a rechargeable battery undervoltage control signal UV(r)); or if an external magnetic field signal μ is indicated by a Reed switch 78 (e.g., in an emergency condition warranting presentation by the patient of an external shut-off magnet), the load 75 will be decoupled from Vbat(r) via switches 62 or 64. Load isolation circuitry 82 is discussed in further detail in the above-incorporated '943 Publication. Discharge circuitry 68 is also provided to intentionally drain the battery 36r if Vbat(r) is too high.
The charging circuitry 80 begins at Vdc—the DC-voltage produced by the front-end charging circuitry 96 in response to the external charger 90's magnetic field 98. Vdc splits into two paths in the charging circuitry 80 that are connected in parallel between Vdc and Vbat(r): a trickle charging path, and an active charging path, either of which can be used to provide a charging current (Ibat) to the battery 36r.
The trickle charging path is passive, i.e., its operation is not controlled by control signals, and requires no power other than that provided by Vdc to produce a charging current (Itrickle) for the battery 36r. As shown, the trickle charging path presents Vdc to a current-limiting resistor 50 and one or more diodes 52, and is used to provide a small charging current, Itrickle, to the battery 36r. Using a small trickle charging current is particularly useful when the battery 36r is significantly depleted, i.e., if Vbat(r) is below a threshold Vt1, such as 2.7V for example.
To produce Itrickle, Vdc must be higher than the sum of the voltage drops across the resistor 50 and diode(s) 52 and the voltage of the battery 36r, Vbat(r). If Vdc is small (perhaps because the coupling between the external charger 90 and the IPG 10 is poor) or non-existent, diodes 52 will prevent the battery 36r from draining backwards through the trickle charging path. Itrickle is generally on the order of ten milliamps. This is desirably small, because a significantly depleted rechargeable battery 36r can be damaged if it receives charging currents (Ibat) that are too high, as is well known.
The active charging path proceeds in
Circuitry for the current/voltage source 56 in the active charging path is shown in
The current source 110 used to produce Iref is adjustable via control signals Itrim[2:0], and also comprises a current mirror. As shown, a system reference current, I′ (e.g., 100 nA), is mirrored transistors 116, 118, and 120, each of which are coupled in series to gating transistors controlled by the Itrim control signals. Transistors 116, 118, and 120 are preferably of different widths, or comprise different numbers of transistors in parallel, to provide different contributions to Iref. For example, transistors 116, 118, and 120 may respectively contribute I′*N, I′*2N, and I′*4N to Iref, thus allowing Iref to vary from I′*N to I′*7N in increments of I′*N, depending on which control signals Itrim0, Itrim1, and Itrim2 are active. Additional Itrim control signals and additional current mirror output transistors (e.g., 116-120) could be used to control Iref over a wider range, and/or with smaller resolution. Adjusting Iref in this manner in turn adjusts Iactive via operation of the current mirror transistor 104 and 106 discussed above.
Control signals Itrim are issued by a source controller 86. As shown at the bottom of
The mode in which the source 56 operates to generate a charging current depends on the magnitude of the battery voltage, Vbat(r), which is known to the microcontroller 100. If the battery 36r is significantly depleted, i.e., Vbat(r)<Vt1 (e.g., 2.7), the microcontroller 100 commands the source controller 86 to disable the source 56. This occurs by the source controller 86 issuing charge enable control signal Ch_en=‘0’ to the reference current generator 113, which turns off N-channel transistor 108 and disables generation of the reference current, Iref, and hence Iactive. Thus, the battery 36r in this circumstance can only be charged via the trickle charging path, and only if magnetic field 98 and Vdc are present and sufficient.
If Vbat(r)>Vt1, but below an upper threshold Vt2 described further below (i.e., if Vt1<Vbat(r)<Vt2), the source 56 operates in a constant current mode. In this mode, Ch_en=‘1’, and transistor 108 allows Iref and hence Iactive to flow with a magnitude ultimately set by the Itrim control signals. When source 56 operates in constant current mode, Iactive is generally on the order of 50 milliamps. A P-channel transistor 114 in the active current path is fully on in constant current mode, thus allowing Iactive to flow to the battery 36r without resistance.
If Vbat(r)>Vt2 (e.g., 4.0 V), the source 56 operates in a constant voltage mode. Ch_en and the Itrim control signals are still asserted in this mode. Crossing of the Vt2 threshold and switching of charging modes is affected via rechargeable voltage measurement circuitry 111 in the source 56. Vbat(r) is determined in this circuitry 111 via a high-impedance resistor ladder, which produces a voltage Va indicative of Vbat(r). Va and a known band-gap reference voltage, Vref(a), are compared at a comparator 112. When Va>Vref(a), indicating that Vbat(r)>Vt2, the comparator 112 starts to turn off transistor 114, and the source 56 operates in constant voltage mode, providing an essentially constant voltage to the positive terminal of the battery 36r. As the internal cell voltage of the battery 36r increases in this mode, its internal resistance causes Iactive to fall off exponentially, until Vbat(r) reaches a maximum value, Vmax(r) (e.g., 4.2V). At this point, the microcontroller 100 will consider charging of the battery 36r to be complete, and will once again assert Ch_en=‘0’ to curtail further active charging. (Additionally, overvoltage switch 60 may also be opened). By contrast, when Va<Vref(a), indicating that Vbat(r)<Vt2, the comparator 112 turns on P-channel transistor 114, and the source 56 operates in constant current mode as described earlier. Voltage Va can be trimmed as necessary using control signals Vtrim to trim the resistance in the ladder, which essentially sets threshold Vt2.
The battery management circuitry 84 of
The problem of low levels for Vbat(r) is significant. If Vbat(r) is severely depleted, i.e., if Vbat(r)<Vuv(r)=2.0V for example, it may be difficult to recover (recharge) the battery 36r by traditional charging techniques. This is because rechargeable batteries are unable to handle large charging currents without damage, and Itrickle, as passively set by the resistance R of the components (50, 52) in the trickle charging path, may be too large when Vbat(r)<Vuv(r). This problem is exacerbated the lower Vbat(r) becomes.
As discussed above, one solution to the problem of battery depletion is to decouple the battery 36r from the load 75 via the load isolation circuitry 82 to prevent the battery from being further depleted by the load. This is the function of the rechargeable battery undervoltage detector 70, which as disclosed in the '943 Publication is shown in
However, decoupling the battery from the load 75 during a rechargeable battery undervoltage condition brings other problems. The load 75 includes all of the remaining circuitry in the IPG, including the microcontroller 100 and the ASIC, which are completely shut down. Once power is eventually restored to these circuits, their state may be uncertain. For example, the inventors consider it particularly unfortunate that the timing (clock) circuitry in the IPG can lose its time basis, such that when the timing circuitry is later powered (assuming the battery 36r is eventually recharged), the timing circuitry will be reset to zero. Because various data is logged and stored with timestamps for later review, having an unreliable timestamp makes it difficult to review data spanning such a loss of time basis. See, e.g., U.S. Pat. No. 8,065,019 (discussing a solution to this problem involving time basis resetting in the IPG using timestamps provided wirelessly by an external device).
Plus, it may simply be difficult to reliably decouple the load 75 using the load isolation switches 62 and 64 if Vbat(r) is very low (e.g., <1.0 V). This is because the load switches 62 and 64 comprise P-channel transistors, which require a high signal (‘1’) to turn these transistors off. However, if Vbat(r) drops to very low levels, it cannot be guaranteed that control signal UV(r) can be generated by the rechargeable battery undervoltage detector 70 (
Despite the protections provided in the '943 Publication to keep the battery 36r from depleting to severe levels, such depletion is still possible, and the ability to recovery the battery made more difficult during subsequent charging sessions. Solutions to these problems are disclosed herein.
A rechargeable-battery Implantable Medical Device (IMD) such as an IPG is disclosed. The IMD includes a primary (non-rechargeable) battery which can be used as a back up to power critical loads in the IMD (e.g., timing circuitry) when the rechargeable battery is undervoltage and other non-critical loads are thus decoupled from the rechargeable battery. A rechargeable battery undervoltage detector provides at least one rechargeable battery undervoltage control signal to a power supply selector, which is used to set the power supply for the critical loads either to the rechargeable battery voltage when the rechargeable battery is not undervoltage, or to the primary battery voltage when the rechargeable battery is undervoltage. Thus, such critical loads can continue to operate despite the rechargeable battery undervoltage condition. Circuitry for detecting the rechargeable battery undervoltage condition may be included as part of the critical loads, and so the undervoltage control signal(s) is reliably generated in a manner to additionally decouple the rechargeable battery from the load to prevent further rechargeable battery depletion. In a modification, an additional primary battery undervoltage detector is provided to generate at least one primary battery undervoltage control signal, and to control the power supply selector to set the power supply for the critical loads to the voltage of the rechargeable battery, even if it is not as high as desired, during a primary battery undervoltage condition.
New to the battery management circuitry 184 is the addition of a primary (non-rechargeable) battery 36p, which is used in conjunction with the rechargeable battery 36r. The primary battery 36p can comprise any number of battery chemistries used in implantable medical devices. The maximum voltage of the primary battery, Vmax(p), when fresh, can be established in different manners, and may comprise a number of cells connected together in series. Vmax(p) is preferably greater than the undervoltage threshold voltage for the rechargeable battery 36r, which as before can be Vuv(r)=2.0V. Still more preferably, Vmax(p) is significantly higher than this threshold Vuv(r), such as from 2.5 to 4.5 V.
Vbat(p) is preferably used to power certain loads in the IPG 10 during a rechargeable battery undervoltage condition—e.g., when Vbat(r)<Vuv(r)=2.0V. In this regard, the load in the IPG has been split into critical loads (load 75b) potentially powered by either the rechargeable battery 36r or the primary battery 36p, as explained further below; and non-critical loads 75a which are only powered by the rechargeable battery 36r, and which are subject to being decoupled from the rechargeable battery 36r when during a rechargeable battery undervoltage condition. Critical loads 75b can include circuitry that is desirable to power even during a rechargeable battery undervoltage condition, such as timing circuitry 152 for example, as well as circuitry used to determine whether the rechargeable battery undervoltage condition exists, such as a rechargeable battery undervoltage detector 130, explained further below. Non-critical loads 75a can comprise circuitry involved in providing therapy to a patient, such as the microcontroller 100 and/or the ASIC mentioned earlier. It is preferable that critical loads 75b in the IPG 10 are limited to reduce the current drawn from the primary battery 36p during a rechargeable battery undervoltage condition (Icrit).
Also new to battery management circuitry 184 are the rechargeable battery undervoltage detector 130 just mentioned, and a power supply selector 140. Rechargeable battery undervoltage detector 130 which may differ in construction from the rechargeable battery undervoltage detector 70 described earlier (
By way of summary, and as shown in the chart at the bottom of
By contrast, when Vbat(r)<Vuv(r), a rechargeable battery undervoltage condition exists. Rechargeable battery undervoltage detector 130 thus sets UV(r)=‘1’, which sets Vsup=Vbat(p) in the power supply selector 140. As such, critical loads 75b are powered by Vbat(p). Because UV(r)=‘1’, load isolation switches 62 and 64 are off, and thus the non-critical loads 75a are decoupled from the rechargeable battery 36r, i.e., Vload=0. (Because Vload isn't actually tied to ground, it will more accurately float, eventually near ground). In effect, when the rechargeable battery 36r is undervoltage, critical loads 75b are powered by the primary battery 36p (Vbat(p)), and the rechargeable battery 36r is decoupled from all loads 75a or 75b, thus preventing depletion of the rechargeable battery 36r.
Details of rechargeable battery undervoltage detector 130 and power supply selector 140 are shown in one example in
In the example shown in
Notice that active elements in the rechargeable battery undervoltage detector 130—the Vref(b) generator 135, the comparator 132, and the inverter 136—are powered by Vsup, which should normally be of a sufficient voltage to reliably drive such elements, i.e., either Vbat(r)>Vuv(r), else Vbat(p), which is also preferably greater than Vuv(r) as noted earlier. Thus, control signals UV(r) and UV(r)* are referenced to (i.e., derived from) Vsup, and thus should also be of sufficient voltage.
Note that sufficiency of the UV(r) control signal(s) is beneficial compared to the prior art, and in particular the passive rechargeable battery undervoltage detector 70 discussed previously (
While beneficial, it is not strictly necessary in all implementations that the rechargeable battery undervoltage detector 130 be powered by Vsup like the remainder of the critical loads 75b. Instead, the rechargeable battery undervoltage detector 130 may passively generate the UV(r) control signal(s) (see
Power supply selector 140 sets the power supply voltage for the critical loads 75b, Vsup, to either Vbat(r) or Vbat(p) using the UV(r) control signal(s) generated by the rechargeable battery undervoltage detector 130. In the example shown, power supply selector 140 comprises two transistors 142 and 144, which in this example are P-channel transistors. Transistors 142 and 144 are coupled at their drains to Vbat(p) of primary battery 36p and Vbat(r) of rechargeable battery 36r respectively, and at their sources to Vsup. If Vbat>Vuv(r) (UV(r)/UV(r)*=0/1), transistor 144 is on, transistor 142 is off, and Vbat(r) is passed to Vsup. If Vbat<Vuv(r) (UV(r)/UV(r)*=1/0), transistor 142 is on, transistor 144 is off, and Vbat(p) is passed to Vsup. Thus, and as discussed earlier, Vsup should normally be of a sufficient voltage to reliably power the critical loads 75b and allow them to continue operating, even when non-critical loads 75a are no longer powered. This allows, in just one example, timing circuitry 152 to continue to track the time basis of the IPG 10 despite the rechargeable battery undervoltage condition. Still other beneficial circuits in the IPG 10 could also similarly be powered by the primary battery 36p as part of the critical loads.
Optional diodes 146 and 148 span the sources and drains of transistors 142 and 144, and are beneficial to smooth transition of Vsup between Vbat(r) and Vbat(p) and to otherwise decouple Vbat(r) and Vbat(p). Operation of transistors 142 and 144 are ideally mutually exclusive, with one being on when the other is off. However, due to parasitics, delays and other non-idealities, transistors 142 and 144 could both be on at the same time for a very short period. This runs the risk of shorting Vbat(r) and Vbat(p) during this very short period, with current flowing from the higher to the lower of these voltages. Likewise, transistors 142 and 144 could both be off at the same time for a very short period, which would run the risk that Vsup is decoupled from both Vbat(r) and Vbat(p), and could therefore drop in value to a point at which it could not reliably drive the critical loads 75b.
Diodes 146 and 148 can be used to address these concerns, and setting of the on resistances of the transistors 142 and 144 can also be helpful. The on resistance of the transistors 142 and 144 can be made to have a significant resistance, such as 100-500 ohms. Diodes 146 and 148 can comprise low-threshold voltages diodes, such as Schottky diodes. So configured, if both transistors 142 and 144 are simultaneously on, the significant resistance of the transistor associated with the lower of Vbat(r) or Vbat(p) will impair an influx of current from the higher voltage supply, which again should be very short in duration. If both transistors 142 and 144 are simultaneously off, current can flow from the higher voltage supply through its associated diode to Vsup to prevent its interruption; the other diode associated with the lower voltage supply would not receive current from the higher voltage supply, because its associated diode would be reversed biased.
Another manner in which rechargeable battery undervoltage detector 130 can be implemented is shown in
In all of the examples, the IPG 10 includes a charging coil 44 for receiving operational power from an external charger 90 (
In most of the examples shown in
Because patients are trained to recharge the rechargeable battery 36r in the IPG 10 in a manner to keep it from severely depleting, Vbat(r) would hopefully only rarely fall below Vuv(r), and thus primary battery 36p would only be used sparingly to continue to power critical loads 75b. Moreover, by minimizing the critical loads 75b, the current drawn by such loads (Icrit) is preferably kept low. Thus, the primary battery 36p should deplete slowly, and hopefully will last the natural lifetime of the IPG 10 before the primary battery 36p reaches its End of Life (EOL)—that is, before Vbat(p) falls to a primary battery undervoltage threshold (Vuv(p)) at which it can no longer power the critical loads 75b.
Should Vbat(p) fall below this threshold Vuv(p) and is therefore in effect useless, it is preferable that the power supply selector 140 set Vsup to the voltage of the rechargeable battery, Vbat(r), even if Vbat(r) is insufficient: Although Vbat(r) may be insufficient, it may eventually be recharged or recovered to a point where it can power the loads 75a and 75b, whereas Vbat(p) cannot.
Modification to the battery management circuitry 184 to affect such behavior by the power supply selector 140 is shown in
As shown in
As shown in
Both undervoltage control signals UV(r) and UV(p) are sent to the power supply selector 140, where they are met by a logic block 182 powered by Vsup. Logic gates inside the logic block process UV(r) and UV(p) to produce signals at the gates of the P-channel transistors 142 and 144 to either set Vsup to Vbat(r) or Vbat(p). In the example shown, logic block 182 contains a NAND logic gate 184 and two inverters 186 and 188, although other processing of the UV(r) and UV(b) signals could be used to control power supply selection.
If UV(r)=‘0’, indicating that the rechargeable battery 36r is not undervoltage (Vbat(r)>Vuv(r)), the NAND gate outputs a ‘1’, regardless of the level of Vbat(p) or the status of UV(p). The NAND output is provided to the gate of transistor 142, turning it off. This NAND output is inverted 188 (‘0’) and provided to the gate of transistor 144, turning it on. Thus Vsup=Vbat(r), which is desired because Vbat(r) is sufficient. UV(r)=‘0’ will also turn on load isolation switches 62 and 64, setting Vload=Vbat(r). Thus, both critical loads 75b and non-critical loads 75a are powered by Vbat(r).
If UV(r)=‘1’, indicating that the rechargeable battery 36r is undervoltage (Vbat(r)<Vuv(r)), Vsup will be set to Vbat(p), but only if Vbat(p) is not undervoltage (Vbat(p)>Vuv(p)); else Vsup is set to Vbat(r), even if it is insufficient. This works as follows.
If UV(p)=‘0’, indicating that the primary battery 36p is not undervoltage (Vbat(p)>Vuv(p)), both inputs to the NAND gate 184 are ‘1’ (after UV(p) is inverted 186). The NAND gate 184 outputs a ‘0’, which turns transistor 142 on, and inverter 188 outputs a ‘1’, which turns transistor 144 off. Thus, Vsup=Vbat(p) to power the critical loads 75b, which is desired because Vbat(p) is sufficient. UV(r)=‘1’ will also turn off load isolation switches 62 and 64, decoupling the non-critical loads 75a from Vbat(r) (i.e., Vload=0).
If UV(p)=‘1’, indicating that the primary battery 36p is undervoltage (Vbat(p)<Vuv(p)), inverter 186 inputs a ‘0’ to the NAND gate 184, which will necessarily output a ‘1’, regardless of UV(r). The NAND output is provided to the gate of transistor 142, turning it off, and its inverse is provided to the gate of transistor 144, turning it on. Thus Vsup=Vbat(r) to power the critical loads 75b, even if it is not currently as high as desired. UV(r)=‘1’ will also turn off load isolation switches 62 and 64, decoupling the non-critical loads 75a from Vbat(r) (i.e., Vload=0), although because UV(r) is derived from Vbat(r), it may not be wholly reliable. The table in
The disclosed technique can be used in conjunction with other techniques addressing rechargeable battery depletion in an IMD, such as those disclosed in U.S. Patent Application Publications Serial Nos. 2015/0196768 and 2015/0196764, which are both incorporated herein by reference in their entireties.
Although particular embodiments of the present invention have been shown and described, it should be understood that the above discussion is not intended to limit the present invention to these embodiments. It will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention. Thus, the present invention is intended to cover alternatives, modifications, and equivalents that may fall within the spirit and scope of the present invention as defined by the claims.
This is a continuation of U.S. Non-Provisional patent application Ser. No. 14/599,735, filed Jan. 19, 2015 (now U.S. Pat. No. 9,345,883), which is a Non-Provisional of U.S. Provisional Patent Application Ser. No. 61/940,272, filed Feb. 14, 2014. Priority is claimed to these applications, and they are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3522811 | Wingrove et al. | Aug 1970 | A |
3867950 | Fischell | Feb 1975 | A |
3888260 | Fischell | Jun 1975 | A |
3942535 | Schulman | Mar 1976 | A |
4082097 | Mann et al. | Apr 1978 | A |
4096866 | Fischell | Jun 1978 | A |
4408607 | Maurer | Oct 1983 | A |
4548209 | Wielders et al. | Oct 1985 | A |
4556061 | Barreras et al. | Dec 1985 | A |
4599523 | Pless et al. | Jul 1986 | A |
4793353 | Borkan | Dec 1988 | A |
4947844 | McDermott | Aug 1990 | A |
5080096 | Hooper et al. | Jan 1992 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5235979 | Adams | Aug 1993 | A |
5312439 | Loeb | May 1994 | A |
5314458 | Najafi et al. | May 1994 | A |
5391193 | Thompson | Feb 1995 | A |
5411357 | Munshi et al. | May 1995 | A |
5557210 | Cappa et al. | Sep 1996 | A |
5584883 | Rauch et al. | Dec 1996 | A |
5591212 | Keimel | Jan 1997 | A |
5602460 | Fernandez et al. | Feb 1997 | A |
5650974 | Yoshimura | Jul 1997 | A |
5679022 | Cappa et al. | Oct 1997 | A |
5702431 | Wang et al. | Dec 1997 | A |
5713939 | Nedungadi et al. | Feb 1998 | A |
5733313 | Barreras et al. | Mar 1998 | A |
5769877 | Barreras et al. | Jun 1998 | A |
5807397 | Barreras et al. | Sep 1998 | A |
5869970 | Palm et al. | Feb 1999 | A |
5904705 | Kroll et al. | May 1999 | A |
5925068 | Kroll | Jul 1999 | A |
6067474 | Schulman et al. | May 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6185452 | Schulman et al. | Feb 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6272382 | Faltys et al. | Aug 2001 | B1 |
6308101 | Faltys et al. | Oct 2001 | B1 |
6350263 | Wetzig et al. | Feb 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6507173 | Spiridon et al. | Jan 2003 | B1 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6553262 | Lang et al. | Apr 2003 | B1 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6650942 | Howard et al. | Nov 2003 | B2 |
6757566 | Weiner et al. | Jun 2004 | B2 |
6778856 | Connelly et al. | Aug 2004 | B2 |
6826430 | Faltys et al. | Nov 2004 | B2 |
6894456 | Tsukamoto | May 2005 | B2 |
6920359 | Meadows et al. | Jul 2005 | B2 |
7012405 | Nishida et al. | Mar 2006 | B2 |
7079893 | Greatbatch et al. | Jul 2006 | B2 |
7177691 | Meadows et al. | Feb 2007 | B2 |
7177698 | Klosterman et al. | Feb 2007 | B2 |
7184836 | Meadows et al. | Feb 2007 | B1 |
7209784 | Schmidt | Apr 2007 | B2 |
7212110 | Martin et al. | May 2007 | B1 |
7248929 | Meadows et al. | Jul 2007 | B2 |
7295878 | Meadows et al. | Nov 2007 | B1 |
7337001 | Schmidt | Feb 2008 | B2 |
7428438 | Parramon et al. | Sep 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7482438 | Eliu et al. | Jan 2009 | B2 |
7528582 | Ferguson | May 2009 | B1 |
7545398 | Sawada | Jun 2009 | B2 |
7565204 | Matei | Jul 2009 | B2 |
7657315 | Schmidt | Feb 2010 | B2 |
7720546 | Ginggen et al. | May 2010 | B2 |
7773581 | Spurlin et al. | Jun 2010 | B2 |
7801600 | Carbunaru | Sep 2010 | B1 |
7801615 | Meadows et al. | Sep 2010 | B2 |
7822480 | Park et al. | Oct 2010 | B2 |
7840279 | He | Nov 2010 | B2 |
7962222 | He et al. | Jun 2011 | B2 |
8027728 | Schmidt et al. | Sep 2011 | B2 |
8175717 | Haller et al. | May 2012 | B2 |
8185212 | Carbunaru et al. | May 2012 | B2 |
8305052 | Batikoff et al. | Nov 2012 | B2 |
8386048 | McClure et al. | Feb 2013 | B2 |
8401659 | Von Arx et al. | Mar 2013 | B2 |
8423132 | Vaingast et al. | Apr 2013 | B2 |
8478404 | Maile et al. | Jul 2013 | B2 |
8577474 | Rahman et al. | Nov 2013 | B2 |
8606362 | He et al. | Dec 2013 | B2 |
8676318 | Carbunaru et al. | Mar 2014 | B2 |
20020133211 | Weiner et al. | Sep 2002 | A1 |
20030191504 | Meadows et al. | Oct 2003 | A1 |
20030195581 | Meadows et al. | Oct 2003 | A1 |
20040217734 | Shum | Nov 2004 | A1 |
20050131495 | Parramon et al. | Jun 2005 | A1 |
20070060980 | Strother et al. | Mar 2007 | A1 |
20070150019 | Youker | Jun 2007 | A1 |
20070270922 | Zierhofer et al. | Nov 2007 | A1 |
20110276110 | Whitehurst et al. | Nov 2011 | A1 |
20130023943 | Parramon et al. | Jan 2013 | A1 |
20140249603 | Yan et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
06-125994 | May 1994 | JP |
2000122811 | Apr 2000 | JP |
2001-322515 | Nov 2001 | JP |
2002201321 | Jul 2002 | JP |
Entry |
---|
Data Sheet for Motorola Device No. MC33349, “Lithium Battery Protection Circuit for One Cell Battery Packs,” (May 2000). |
Number | Date | Country | |
---|---|---|---|
20160250475 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61940272 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14599735 | Jan 2015 | US |
Child | 15149791 | US |