RECOMBINANT CLOSTRIDIAL NEUROTOXINS WITH ENHANCED MEMBRANE LOCALIZATION

Information

  • Patent Application
  • 20150322118
  • Publication Number
    20150322118
  • Date Filed
    December 05, 2013
    11 years ago
  • Date Published
    November 12, 2015
    9 years ago
Abstract
This invention relates to novel recombinant clostridial neurotoxins exhibiting increased membrane localization and to methods for the manufacture of such recombinant clostridial neurotoxins. These methods comprise the steps of inserting a nucleic acid sequence coding for a C2 domain into a nucleic acid sequence coding for a parental clostridial neurotoxin and expression of the recombinant nucleic acid sequence comprising the C2 domain in a host cell. The invention further relates to novel recombinant single-chain precursor clostridial neurotoxins used in such methods, nucleic acid sequences encoding such recombinant single-chain precursor clostridial neurotoxins, and pharmaceutical compositions comprising the recombinant clostridial neurotoxin with increased membrane localization.
Description
FIELD OF THE INVENTION

This invention relates to novel recombinant clostridial neurotoxins exhibiting increased membrane localization and to methods for the manufacture of such recombinant clostridial neurotoxins. These methods comprise the steps of inserting a nucleic acid sequence coding for a C2 domain into a nucleic acid sequence coding for a parental clostridial neurotoxin and expression of the recombinant nucleic acid sequence comprising the C2 domain in a host cell. The invention further relates to novel recombinant single-chain precursor clostridial neurotoxins used in such methods, nucleic acid sequences encoding such recombinant single-chain precursor clostridial neurotoxins, and pharmaceutical compositions comprising the recombinant clostridial neurotoxin with increased membrane localization.


BACKGROUND OF THE INVENTION


Clostridium is a genus of anaerobe gram-positive bacteria, belonging to the Firmicutes. Clostridium consists of around 100 species that include common free-living bacteria as well as important pathogens, such as Clostridium botulinum and Clostridium tetani. Both species produce neurotoxins, botulinum toxin and tetanus toxin, respectively. These neurotoxins are potent inhibitors of calcium-dependent neurotransmitter secretion of neuronal cells and are among the strongest toxins known to man. The lethal dose in humans lies between 0.1 ng and 1 ng per kilogram of body weight.


Oral ingestion of botulinum toxin via contaminated food or generation of botulinum toxin in wounds can cause botulism, which is characterised by paralysis of various muscles. Paralysis of the breathing muscles can cause death of the affected individual.


Although both botulinum neurotoxin (BoNT) and tetanus neurotoxin (TxNT) function via a similar initial physiological mechanism of action, inhibiting neurotransmitter release from the axon of the affected neuron into the synapse, they differ in their clinical response. While the botulinum toxin acts at the neuromuscular junction and other cholinergic synapses in the peripheral nervous system, inhibiting the release of the neurotransmitter acetylcholine and thereby causing flaccid paralysis, the tetanus toxin acts mainly in the central nervous system, preventing the release of the inhibitory neurotransmitters GABA (gamma-aminobutyric acid) and glycine by degrading the protein synaptobrevin. The consequent overactivity in the muscles results in generalized contractions of the agonist and antagonist musculature, termed a tetanic spasm (rigid paralysis).


While the tetanus neurotoxin exists in one immunologically distinct type, the botulinum neurotoxins are known to occur in seven different immunogenic types, termed BoNT/A through BoNT/G. Most Clostridium botulinum strains produce one type of neurotoxin, but strains producing multiple toxins have also been described.


Botulinum and tetanus neurotoxins have highly homologous amino acid sequences and show a similar domain structure. Their biologically active form comprises two peptide chains, a light chain of about 50 kDa and a heavy chain of about 100 kDa, linked by a disulfide bond. A linker or loop region, whose length varies among different clostridial toxins, is located between the two cysteine residues forming the disulfide bond. This loop region is proteolytically cleaved by an unknown clostridial endoprotease to obtain the biologically active toxin.


The molecular mechanism of intoxication by TxNT and BoNT appears to be similar as well: entry into the target neuron is mediated by binding of the C-terminal part of the heavy chain to a specific cell surface receptor; the toxin is then taken up by receptor-mediated endocytosis. The low pH in the so formed endosome then triggers a conformational change in the clostridial toxin which allows it to embed itself in the endosomal membrane and to translocate through the endosomal membrane into the cytoplasm, where the disulfide bond joining the heavy and the light chain is reduced. The light chain can then selectively cleave so called SNARE-proteins, which are essential for different steps of neurotransmitter release into the synaptic cleft, e.g. recognition, docking and fusion of neurotransmitter-containing vesicles with the plasma membrane. TxNT, BoNT/B, BoNT/D, BoNT/F, and BoNT/G cause proteolytic cleavage of synaptobrevin or VAMP (vesicle-associated membrane protein), BoNT/A and BoNT/E cleave the plasma membrane-associated protein SNAP-25, and BoNT/C cleaves the integral plasma membrane protein syntaxin and SNAP-25.


Clostridial neurotoxins display variable durations of action that are serotype specific. The clinical therapeutic effect of BoNT/A lasts approximately 3 months for neuromuscular disorders and 6 to 12 months for hyperhidrosis. The effects of BoNT/E, on the other hand, last less than 4 weeks. The longer lasting therapeutic effect of BoNT/A makes it preferable for clinical use compared to the other serotypes, for example serotypes B, C1, D, E, F and G. One possible explanation for the divergent durations of action might be the distinct subcellular localizations of BoNT serotypes. The protease domain of BoNT/A light chain localizes in a punctate manner to the plasma membrane of neuronal cells, co-localizing with its substrate SNAP-25. In contrast, the short-duration BoNT/E serotype is cytoplasmic. Membrane association might protect BoNT/A from cytosolic degradation mechanisms allowing for prolonged persistence of BoNT/A in the neuronal cell.


In Clostridium botulinum, the botulinum toxin is formed as a protein complex comprising the neurotoxic component and non-toxic proteins. The accessory proteins embed the neurotoxic component thereby protecting it from degradation by digestive enzymes in the gastrointestinal tract. Thus, botulinum neurotoxins of most serotypes are orally toxic. Complexes with either 450 kDa or with 900 kDa are obtainable from cultures of Clostridium botulinum.


In recent years, botulinum neurotoxins have been used as therapeutic agents in the treatment of dystonias and spasms. Preparations comprising botulinum toxin complexes are commercially available, e.g. from Ipsen Ltd (Dysport) or Allergan Inc. (Botox®). A high purity neurotoxic component, free of any complexing proteins, is for example available from Merz Pharmaceuticals GmbH, Frankfurt (Xeomin).


Clostridial neurotoxins are usually injected into the affected muscle tissue, bringing the agent close to the neuromuscular end plate, i.e. close to the cellular receptor mediating its uptake into the nerve cell controlling said affected muscle. Various degrees of neurotoxin spread have been observed. The neurotoxin spread is thought to depend on the injected amount and the particular neurotoxin preparation. It can result in adverse side effects such as paralysis in nearby muscle tissue, which can largely be avoided by reducing the injected doses to the therapeutically relevant level. Overdosing can also trigger the immune system to generate neutralizing antibodies that inactivate the neurotoxin preventing it from relieving the involuntary muscle activity. Immunologic tolerance to botulinum toxin has been shown to correlate with cumulative doses.


At present, clostridial neurotoxins are still predominantly produced by fermentation processes using appropriate Clostridium strains. However, industrial production of clostridial neurotoxin from anaerobic Clostridium culture is a cumbersome and time-consuming process. Due to the high toxicity of the final product, the procedure must be performed under strict containment. During the fermentation process, the single-chain precursors are proteolytically cleaved by an unknown clostridial protease to obtain the biologically active di-chain clostridial neurotoxin. The degree of neurotoxin activation by proteolytic cleavage varies between different strains and neurotoxin serotypes, which is a major consideration for the manufacture due to the requirement of neurotoxin preparations with a well-defined biological activity. Furthermore, during fermentation processes using Clostridium strains the clostridial neurotoxins are produced as protein complexes, in which the neurotoxic component is embedded by accessory proteins. These accessory proteins have no beneficial effect on biological activity or duration of effect. They can however trigger an immune reaction in the patient, resulting in immunity against the clostridial neurotoxin. Manufacture of recombinant clostridial neurotoxins, which are not embedded by auxiliary proteins, might therefore be advantageous.


Methods for the recombinant expression of clostridial neurotoxins in E. coli are well known in the art (see, for example, WO 00/12728, WO 01/14570, or WO 2006/076902). Furthermore, clostridial neurotoxins have been expressed in eukaryotic expression systems, such as in Pichia pastoris, Pichia methanolica, Saccharomyces cerevisiae, insect cells and mammalian cells (see WO 2006/017749).


Recombinant clostridial neurotoxins may be expressed as single-chain precursors, which subsequently have to be proteolytically cleaved to obtain the final biologically active clostridial neurotoxin. Thus, clostridial neurotoxins may be expressed in high yield in rapidly-growing bacteria as relatively non-toxic single-chain polypeptides.


Furthermore, it might be advantageous to modify clostridial neurotoxin characteristics regarding biological activity, cell specificity, antigenic potential and duration of effect by genetic engineering to obtain neurotoxins with new therapeutic properties in specific clinical areas. Genetic modification of clostridial neurotoxins might allow altering the mode of action or expanding the range of therapeutic targets.


WO 96/39166 discloses analogues of botulinum toxin comprising amino acid residues which are more resistant to degradation in neuromuscular tissue.


Patent family based on WO 02/08268 (including family member U.S. Pat. No. 6,903,187) discloses a clostridial neurotoxin comprising a structural modification selected from addition or deletion of a leucine-based motif, which alters the biological persistence of the neurotoxin (see also: Fernandez-Salas et al., Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 3208-3213; Wang et al., J. Biol. Chem. 286 (2011) 6375-6385). Fernandez-Salas et al. initially hypothesized that the increased persistence was due to the membrane-binding properties of the dileucine motif (see Fernandez-Salas et al., loc. cit., p. 3211 and 3213). Wang et al. mention this membrane theory (see Wang et al., loc. cit., p. 6376, left column, last full paragraph, and p. 6383, first full paragraph of “Discussion”), but favor an alternative theory: the protection from degradation by proteolysis (see Wang et al., loc. cit., p. 6384, left column, lines 27ff).


US 2002/0127247 describes clostridial neurotoxins comprising modifications in secondary modification sites and exhibiting altered biological persistence.


Botulinum toxin variants exhibiting longer biological half lives in neuromuscular tissue than naturally occurring botulinum toxins would be advantageous in order to reduce administration frequency and the incidence of neutralising antibody generation since immunologic tolerance to botulinum toxin is correlated with cumulative doses.


Furthermore, BoNT serotypes exhibiting a short duration of action could potentially be effectively used in clinical applications, if their biological persistence could be enhanced. Modified BoNT/E with an increased duration of action could potentially be used in patients exhibiting an immune reaction against BoNT/A. Moreover, BoNT/E was shown to induce a more severe block of pain mediator release from sensory neurons than BoNT/A. In clinical applications where BoNT/A provides only partial pain relief or in just a subset of patients such as headache, or were BoNT/E has been found to be more effective than BoNT/A but gives only short-term therapy, such as epilepsy, BoNT/E with an increased duration of effect might prove useful.


There is a strong demand to produce clostridial neurotoxins with an increased duration of effect, in order to allow for reduction of administration frequency and exploitation of the therapeutic potential of BoNT serotypes which have so far been considered impractical for clinical application due to their short half-lives. Ideally, the duration of effect of a particular clostridial neurotoxin can be adjusted in a tailor-made fashion in order to address any particular features and demands of a given indication, such as amount of neurotoxin being administered, frequency of administration etc. To date, such aspects have not been solved satisfactorily.


OBJECTS OF THE INVENTION

It was an object of the invention to provide recombinant clostridial neurotoxins exhibiting an increased duration of effect and to establish a reliable and accurate method for manufacturing and obtaining such recombinant clostridial neurotoxins. In particular, the generation of recombinant clostridial neurotoxins, which are protected from cytosolic degradation due to their enhanced association with cellular membranes, is intended by the invention. Such a method and novel precursor clostridial neurotoxins used in such methods would serve to satisfy the great need for recombinant clostridial neurotoxins exhibiting an increased duration of effect.


SUMMARY OF THE INVENTION

The naturally occurring botulinum toxin serotypes display highly divergent durations of effect, probably due to their distinct subcellular localization. BoNT/A exhibiting the longest persistence was shown to localize in the vicinity of the plasma membrane of neuronal cells, whereas the short-duration BoNT/E serotype is cytosolic. Enhancing binding affinity of clostridial neurotoxins to the plasma membrane might thus prove efficient in protecting them and increasing their duration of effect.


So far, no modified clostridial neurotoxins exhibiting enhanced membrane localisation are available. Surprisingly, it has been found that recombinant clostridial neurotoxins with an increased tendency to associate with cellular membranes can be obtained by cloning a sequence encoding a C2 domain into a gene encoding a parental clostridial neurotoxin, and by subsequent heterologous expression of the generated construct in recombinant host cells.


Thus, in one aspect, the present invention relates to a recombinant clostridial neurotoxin comprising a C2 domain.


In another aspect, the present invention relates to a pharmaceutical composition comprising the recombinant clostridial neurotoxin of the present invention.


In yet another aspect, the present invention relates to the use of the composition of the present invention for cosmetic treatment.


In another aspect, the present invention relates to a method for the generation of the recombinant clostridial neurotoxin of the present invention, comprising the step of obtaining a recombinant nucleic acid sequence encoding a recombinant single-chain precursor clostridial neurotoxin by the insertion of a nucleic acid sequence encoding said C2 domain into a nucleic acid sequence encoding a parental clostridial neurotoxin.


In another aspect, the present invention relates to a recombinant single-chain precursor clostridial neurotoxin comprising a C2 domain.


In another aspect, the present invention relates to a nucleic acid sequence encoding the recombinant single-chain precursor clostridial neurotoxin of the present invention.


In another aspect, the present invention relates to a method for obtaining the nucleic acid sequence of the present invention, comprising the step of inserting a nucleic acid sequence encoding a C2 domain into a nucleic acid sequence encoding a parental clostridial neurotoxin.


In another aspect, the present invention relates to a vector comprising the nucleic acid sequence of the present invention, or the nucleic acid sequence obtainable by the method of the present invention.


In another aspect, the present invention relates to a recombinant host cell comprising the nucleic acid sequence of the present invention, the nucleic acid sequence obtainable by the method of the present invention, or the vector of the present invention.


In another aspect, the present invention relates to a method for producing the recombinant single-chain precursor clostridial neurotoxin of the present invention, comprising the step of expressing the nucleic acid sequence of the present invention, or the nucleic acid sequence obtainable by the method of the present invention, or the vector of the present invention in a recombinant host cell, or cultivating the recombinant host cell of the present invention under conditions that result in the expression of said nucleic acid sequence.







DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of the invention and the examples included therein.


In one aspect, the present invention relates to a recombinant clostridial neurotoxin comprising a C2 domain.


In the context of the present invention, the term “clostridial neurotoxin” refers to a natural neurotoxin obtainable from bacteria of the class Clostridia, including Clostridium tetani and Clostridium botulinum, or to a neurotoxin obtainable from alternative sources, including from recombinant technologies or from genetic or chemical modification. Particularly, the clostridial neurotoxins have endopeptidase activity.


Clostridial neurotoxins are produced as single-chain precursors that are proteolytically cleaved by an unknown clostridial endoprotease within the loop region to obtain the biologically active disulfide-linked di-chain form of the neurotoxin, which comprises two chain elements, a functionally active light chain and a functionally active heavy chain, where one end of the light chain is linked to one end of the heavy chain not via a peptide bond, but via a disulfide bond.


In the context of the present invention, the term “clostridial neurotoxin light chain” refers to that part of a clostridial neurotoxin that comprises an endopeptidase activity responsible for cleaving one or more proteins that is/are part of the so-called SNARE-complex involved in the process resulting in the release of neurotransmitter into the synaptic cleft: In naturally occurring clostridial neurotoxins, the light chain has a molecular weight of approx. 50 kDa.


In the context of the present invention, the term “clostridial neurotoxin heavy chain” refers to that part of a clostridial neurotoxin that is responsible for entry of the neurotoxin into the neuronal cell: In naturally occurring clostridial neurotoxins, the heavy chain has a molecular weight of approx. 100 kDa.


In the context of the present invention, the term “functionally active clostridial neurotoxin chain” refers to a recombinant clostridial neurotoxin chain able to perform the biological functions of a naturally occurring Clostridium botulinum neurotoxin chain to at least about 50%, particularly to at least about 60%, to at least about 70%, to at least about 80%, and most particularly to at least about 90%, where the biological functions of clostridial neurotoxin chains include, but are not limited to, binding of the heavy chain to the neuronal cell, entry of the neurotoxin into a neuronal cell, release of the light chain from the di-chain neurotoxin, and endopeptidase activity of the light chain. Methods for determining a neurotoxic activity can be found, for example, in WO 95/32738, which describes the reconstitution of separately obtained light and heavy chains of tetanus toxin and botulinum toxin.


In the context of the present invention, the term “recombinant clostridial neurotoxin” refers to a composition comprising a clostridial neurotoxin that is obtained by expression of the neurotoxin in a heterologous cell such as E. coli, and including, but not limited to, the raw material obtained from a fermentation process (supernatant, composition after cell lysis), a fraction comprising a clostridial neurotoxin obtained from separating the ingredients of such a raw material in a purification process, an isolated and essentially pure protein, and a formulation for pharmaceutical and/or aesthetic use comprising a clostridial neurotoxin and additionally pharmaceutically acceptable solvents and/or excipients.


In the context of the present invention, the term “recombinant clostridial neurotoxin” further refers to a clostridial neurotoxin based on a parental clostridial neurotoxin comprising a heterologous C2 domain, i.e. a C2 domain that is not naturally occurring in a clostridial neurotoxin, in particular a C2 domain from a species other than Clostridium botulinum, in particular a C2 domain from a human protein.


In the context of the present invention, the term “C2 domain” refers to a widely occurring membrane targeting domain classified by InterPro (Hunter et al., InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2012 January; 40(Database issue):D306-12) as “C2 calcium/lipid-binding domain, CaLB (IPR008973)”. Three subclasses of C2 domains are currently known: C2 calcium-dependent membrane targeting domain (IPR000008); phosphatidylinositol 3-kinase C2 (PI3K C2) domain (IPR002420); and tensin phosphatase, C2 domain (IPR014020). The C2 domains are domains of between about 100 and 160 amino acid residues found in many cellular peripheral proteins involved in signal transduction or membrane trafficking. C2 domains exhibit a wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. They show similar tertiary structures consisting of an eight-stranded antiparallel β-sandwich. In many C2 domains, three Ca2+ binding loops are located at the end of the eight-stranded antiparallel β-sandwich, but in other C2 domains one or more of these loops may be missing. The tensin-type C2 domain, for example, lacks two of the three conserved loops that bind Ca2+. Due to local structural variation, particularly in the Ca2+ binding loops, C2 domains exhibit functional diversities and distinct subcellular localization patterns. A discussion of C2 domains, their binding to membrane components and ways of identifying C2 domains by homology searches can be found, for example, in Cho & Stahelin, (2006), Biochim Biophys Acta, 1761 (8), 838-849.


Comprehensive information about proteins is collected by the UniProt Consortium (The UniProt Consortium, Reorganizing the protein space at the Universal Protein Resource (UniProt), Nucleic Acids Research, 2012, Vol. 40, Database issue D71-D75), which maintains a database of proteins, which have been reviewed and annotated manually (UniProtKB/Swiss-Prot), and a database of proteins, which have not yet been reviewed and only been annotated automatically (UniProtKB/TrEMBL). Both databases are publically accessible via the internet, and are archived on a regular basis (Leinonen, R., Diez, F. G., Binns, D., Fleischmann, W., Lopez, R. and Apweiler, R. (2009) UniProt archive. Bioinformatics, 20, 3236-3237). As of November 2012, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL list a total of 634 reviewed (C2 calcium-dependent membrane targeting domain: 573 entries; phosphatidylinositol 3-kinase C2 (PI3K C2) domain: 28 entries; tensin phosphatase, C2 domain: 33 entries), and 12,915 unreviewed proteins, respectively, which were identified to comprise at least one C2 domain. Table 5 contains a list of the 648 reviewed proteins. In total, there are 157 reviewed (UniProtKB/Swiss-Prot) (C2 calcium-dependent membrane targeting domain: 142 entries; phosphatidylinositol 3-kinase C2 (PI3K C2) domain: 5 entries; tensin phosphatase, C2 domain: 9 entries) and 317 unreviewed (UniProtKB/TrEMBL) human protein entries (organism: Homo sapiens). Table 6 contains a list of these 474 proteins (Table 6A: reviewed proteins; Table 6B: unreviewed proteins).


A C2 domain has been identified to be present in the alpha toxin of Clostridium perfringens (see: Chahinian et al., Curr. Protein Pept. Sci. 2000, 91-103; Guilluard et al., Molecular Microbiology 26 (1997) 867-876; and Naylor et al., J. Mol. Biol. 294 (1999) 757-770). The alpha toxin of Clostridium perfringens, however, is not a neurotoxin, but a phospholipase that generally acts on tissue cells by first binding via calcium-dependent interaction of a C-terminal C2 domain with the cell membrane.


In one embodiment, the membrane directing activity of a C2 domain is transferred to a parental clostridial neurotoxin by N- or C-terminally fusing said C2 domain to said parental clostridial neurotoxin light chain. N- or C-terminal fusion of a C2 domain to the parental clostridial neurotoxin light chain causes direct membrane binding of the clostridial neurotoxin light chain, thus affecting the subcellular localization of the catalytically active clostridial neurotoxin present in the recombinant clostridial neurotoxin.


In the context of the present invention, the term “comprises” or “comprising” means “including, but not limited to”. The term is intended to be open-ended, to specify the presence of any stated features, elements, integers, steps or components, but not to preclude the presence or addition of one or more other features, elements, integers, steps, components, or groups thereof. The term “comprising” thus includes the more restrictive terms “consisting of” and “consisting essentially of”.


In particular embodiments, said C2 domain is a C2 domain present in a protein listed in Table 5. In particular other embodiments, said C2 domain is a human C2 domain, particularly a human C2 domain present in a human protein listed in Table 6, particularly in Table 6A, particularly a human C2 domain present in a human protein selected from the list of: ABR; BAIP3; BCR; C2CD3; C2D1A; C2D1B; CAN5; CANE; CAPS1; CAPS2; CPNE1; CPNE2; CPNE3; CPNE4; CPNE5; CPNE6; CPNE7; CPNE8; CPNE9; CUO25; DAB2P; DOC2A; DOC2B; DYSF; ESYT1; ESYT2; ESYT3; FR1L5; FTM; HECW1; HECW2; ITCH; ITSN1; ITSN2; KPCA; KPCB; KPCE; KPCG; KPCL; MCTP1; MCTP2; MYOF; NEDD4; NED4L; NGAP; OTOF; P3C2A; P3C2B; P3C2G; PA24A; PA24B; PA24D; PA24E; PA24F; POLO; PERF; PLCB1; PLCB2; PLCB3; PLCB4; PLCD1; PLCD3; PLCD4; PLCE1; PLCG1; PLCG2; PLCH1; PLCH2; PLCL1; PLCL2; PLCZ1; RASA1; RASA2; RASA3; RASL1; RASL2; RFIP1; RFIP2; RFIP5; RGS3; RIMS1; RIMS2; RIMS3; RIMS4; RP3A; RPGR1; SMUF1; SMUF2; SY14L; SYGP1; SYT1; SYT10; SYT11; SYT12; SYT13; SYT14; SYT15; SYT16; SYT17; SYT2; SYT3; SYT4; SYT5; SYT6; SYT7; SYT8; SYT9; SYTL1; SYTL2; SYTL3; SYTL4; SYTL5; TAC2N; TOLIP; UN13A; UN13B; UN13C; UN13D; WWC2; WWP1; and WWP2. In particular embodiments, the C2 domain a human C2 domain present in a human protein selected from the list of: DOC2A; DOC2B; DYSF; ESYT1; ESYT2; ESYT3; FR1L5; KPCA; KPCB; KPCG; MYOF; NED4L; PLCD1; PLCD3; PLCZ1; RFIP1; RFIP2; RFIP5; RP3A; SYT1; SYT10; SYT2; SYT3; SYT4; SYT5; SYT6; SYT7; SYT9; and SYTL1.


In particular embodiments, said C2 domain has the amino acid sequence of one of the C2 domains listed in Table 1 (SEQ ID NOs: 1 to 32). More particularly said C2 domain is selected from SEQ-ID NOs. 1 to 2 and SEQ-ID NOs 27-29.


In particular embodiments C2 domain is a functional variant of a C2 domain present in a human protein, and/or listed in Table 1.


In the context of the present invention, the term “functional variant of a C2 domain” refers to a domain that differs in the amino acid sequence and/or the nucleic acid sequence encoding the amino acid sequence from a naturally occurring C2 domain, but is still functionally active. In this context “functionally active” or biologically active” means that said variant maintains the membrane directing activity of a C2 domain. In the context of the present invention, the term “functionally active” refers to the property of a recombinant C2 domain to perform the biological function of a naturally occurring C2 domain to at least about 50%, particularly to at least about 60%, to at least about 70%, to at least about 80%, and most particularly to at least about 90%, where the biological functions include, but are not limited to, binding of the C2 domain to the natural binding targets of C2 domains.


On the protein level, a functional variant will maintain key features of the corresponding C2 domain, such as key residues for maintaining the eight-stranded antiparallel β-sandwich structure, and/or key residues for maintaining the Ca2+ binding sites, but may contain one or more mutations comprising a deletion of one or more amino acids of the corresponding C2 domain, an addition of one or more amino acids of the corresponding C2 domain, and/or a substitution of one or more amino acids of the corresponding C2 domain. Particularly, said deleted, added and/or substituted amino acids are consecutive amino acids. According to the teaching of the present invention, any number of amino acids may be added, deleted, and/or substituted, as long as the functional variant remains biologically active. For example, 1, 2, 3, 4, 5, up to 10, up to 15, up to 25, up to 50, up to 100, up to 200, up to 400, up to 500 amino acids or even more amino acids may be added, deleted, and/or substituted. Accordingly, a functional variant of the C2 domain may be a biologically active fragment of a naturally occurring C2 domain. This C2 domain fragment may contain an N-terminal, C-terminal, and/or one or more internal deletion(s).


In particular embodiments, said C2 domain is inserted at (i) the N-terminus of the light chain of said parental clostridial neurotoxin or (ii) at the C-terminus of the light chain of said parental clostridial neurotoxin, and is thus present at (i) the N-terminus of the light chain of said recombinant clostridial neurotoxin or (ii) at the C-terminus of the light chain of said recombinant clostridial neurotoxin, respectively.


In particular embodiments, said clostridial neurotoxin is selected from (i) a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, and G, particularly Clostridium botulinum neurotoxin serotype A, C and E, or (ii) from a functional variant of a Clostridium botulinum neurotoxin of (i), or (iii) from a chimeric Clostridium botulinum neurotoxin, wherein the clostridial neurotoxin light chain and heavy chain are from different parental clostridial neurotoxin serotypes.


In the context of the present invention, the term “Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, and G” refers to neurotoxins found in and obtainable from Clostridium botulinum. Currently, seven serologically distinct types, designated serotypes A, B, C, D, E, F, and G are known, including certain subtypes (e.g. A1, A2, A3, A4 and A5).


In particular embodiments the clostridial neurotoxin is selected from a Clostridium botulinum neurotoxin serotype A, C and E, or from a functional variant of any such Clostridium botulinum neurotoxin.


In the context of the present invention, the term “functional variant of a clostridial neurotoxin” refers to a neurotoxin that differs in the amino acid sequence and/or the nucleic acid sequence encoding the amino acid sequence from a clostridial neurotoxin, but is still functionally active. In the context of the present invention, the term “functionally active” refers to the property of a recombinant clostridial neurotoxin to exhibit a biological activity of at least about 50%, particularly to at least about 60%, at least about 70%, at least about 80%, and most particularly at least about 90% of the biological activity of a naturally occurring parental clostridial neurotoxin, i.e. a parental clostridial neurotoxin without C2 domain, where the biological functions include, but are not limited to, binding to the neurotoxin receptor, entry of the neurotoxin into a neuronal cell, release of the light chain from the two-chain neurotoxin, and endopeptidase activity of the light chain, and thus inhibition of neurotransmitter release from the affected nerve cell.


On the protein level, a functional variant will maintain key features of the corresponding clostridial neurotoxin, such as key residues for the endopeptidase activity in the light chain, or key residues for the attachment to the neurotoxin receptors or for translocation through the endosomal membrane in the heavy chain, but may contain one or more mutations comprising a deletion of one or more amino acids of the corresponding clostridial neurotoxin, an addition of one or more amino acids of the corresponding clostridial neurotoxin, and/or a substitution of one or more amino acids of the corresponding clostridial neurotoxin. Particularly, said deleted, added and/or substituted amino acids are consecutive amino acids. According to the teaching of the present invention, any number of amino acids may be added, deleted, and/or substituted, as long as the functional variant remains biologically active. For example, 1, 2, 3, 4, 5, up to 10, up to 15, up to 25, up to 50, up to 100, up to 200, up to 400, up to 500 amino acids or even more amino acids may be added, deleted, and/or substituted. Accordingly, a functional variant of the neurotoxin may be a biologically active fragment of a naturally occurring neurotoxin. This neurotoxin fragment may contain an N-terminal, C-terminal, and/or one or more internal deletion(s).


In another embodiment, the functional variant of a clostridial neurotoxin additionally comprises a signal peptide. Usually, said signal peptide will be located at the N-terminus of the neurotoxin. Many such signal peptides are known in the art and are comprised by the present invention. In particular, the signal peptide results in transport of the neurotoxin across a biological membrane, such as the membrane of the endoplasmic reticulum, the Golgi membrane or the plasma membrane of a eukaryotic or prokaryotic cell. It has been found that signal peptides, when attached to the neurotoxin, will mediate secretion of the neurotoxin into the supernatant of the cells. In certain embodiments, the signal peptide will be cleaved off in the course of, or subsequent to, secretion, so that the secreted protein lacks the N-terminal signal peptide, is composed of separate light and heavy chains, which are covalently linked by disulfide bridges, and is proteolytically active.


In particular embodiments, the functional variant has in its clostridium neurotoxin part a sequence identity of at least about 40%, at least about 50%, at least about 60%, at least about 70% or most particularly at least about 80%, and a sequence homology of at least about 60%, at least about 70%, at least about 80%, at least about 90%, or most particularly at least about 95% to the corresponding part in the parental clostridial neurotoxin. Methods and algorithms for determining sequence identity and/or homology, including the comparison of variants having deletions, additions, and/or substitutions relative to a parental sequence, are well known to the practitioner of ordinary skill in the art. On the DNA level, the nucleic acid sequences encoding the functional homologue and the parental clostridial neurotoxin may differ to a larger extent due to the degeneracy of the genetic code. It is known that the usage of codons is different between prokaryotic and eukaryotic organisms. Thus, when expressing a prokaryotic protein such as a clostridial neurotoxin, in a eukaryotic expression system, it may be necessary, or at least helpful, to adapt the nucleic acid sequence to the codon usage of the expression host cell, meaning that sequence identity or homology may be rather low on the nucleic acid level.


In the context of the present invention, the term “variant” refers to a neurotoxin that is a chemically, enzymatically, or genetically modified derivative of a corresponding clostridial neurotoxin, including chemically or genetically modified neurotoxin from C. botulinum, particularly of C. botulinum neurotoxin serotype A, C or E. A chemically modified derivative may be one that is modified by pyruvation, phosphorylation, sulfatation, lipidation, pegylation, glycosylation and/or the chemical addition of an amino acid or a polypeptide comprising between 2 and about 100 amino acids, including modification occurring in the eukaryotic host cell used for expressing the derivative. An enzymatically modified derivative is one that is modified by the activity of enzymes, such as endo- or exoproteolytic enzymes, including modification by enzymes of the eukaryotic host cell used for expressing the derivative. As pointed out above, a genetically modified derivative is one that has been modified by deletion or substitution of one or more amino acids contained in, or by addition of one or more amino acids (including polypeptides comprising between 2 and about 100 amino acids) to, the amino acid sequence of said clostridial neurotoxin. Methods for designing and constructing such chemically or genetically modified derivatives and for testing of such variants for functionality are well known to anyone of ordinary skill in the art.


In particular embodiments, said recombinant clostridial neurotoxin has the amino acid sequence as found in any one of the sequences in Table 2 (SEQ ID NOs: 33 to 36).


The recombinant clostridial neurotoxins of the present invention shows increased membrane localization in vivo relative to an identical clostridial neurotoxin without the C2 domain.


In the context of the present invention, the term “increased/enhanced membrane localisation” means that the portion of recombinant neurotoxin showing membrane localisation is more than about 1.5-fold, particularly more than about 2-fold increased relative to the identical neurotoxin without the C2 domain as determined by confocal microscopy.


In the context of the present invention, the term “about” or “approximately” means within 20%, alternatively within 10%, including within 5% of a given value or range. Alternatively, especially in biological systems, the term “about” means within about a log (i.e. an order of magnitude), including within a factor of two of a given value.


In particular embodiments, said recombinant clostridial neurotoxin shows increased duration of effect relative to an identical clostridial neurotoxin without the C2 domain.


In particular embodiments, the C- or N-terminal fusion of a C2 domain to the clostridial neurotoxin light chain increases the membrane affinity of the clostridial neurotoxin light chain, resulting in the membrane association of the clostridial neurotoxin. Membrane binding of the clostridial neurotoxin prevents cytosolic degradation of the neurotoxin, thereby slowing down removal of the neurotoxin out of the neuronal cell. The catalytically active clostridial neurotoxin light chain is therefore longer available in the neuronal cell, causing increased duration of effect.


In the context of the present invention, the term “increased duration of effect” or “increased duration of action” refers to a longer lasting denervation mediated by a clostridial neurotoxin of the present invention. For example, as disclosed herein, administration of a disulfide-linked di-chain clostridial neurotoxin comprising a C2 domain results in localized paralysis for a longer period of time relative to administration of an identical disulfide-linked di-chain clostridial neurotoxin without the C2 domain.


In the context of the present invention, the term “increased duration of effect/action” is defined as a more than about 20%, particularly more than about 50%, more particularly more than about 90% increased duration of effect of the recombinant neurotoxin of the present invention relative to the identical neurotoxin without the C2 domain.


In the context of the present invention the term “chemodenervation” refers to denervation resulting from administration of a chemodenervating agent, for example a neurotoxin.


In the context of the present invention, the term “localized denervation” or “localized paralysis” refers to denervation of a particular anatomical region, usually a muscle or a group of anatomically and/or physiologically related muscles, which results from administration of a chemodenervating agent, for example a neurotoxin, to the particular anatomical region.


In particular embodiments, the increased duration of effect is due to an increased biological half-life.


In the context of the present invention, the term “biological half-life” specifies the lifespan of a protein, for example of a clostridial neurotoxin, in vivo. In the context of the present invention, the term “biological half-life” refers to the period of time, by which half of a protein pool is degraded in vivo. For example it refers to the period of time, by which half of the amount of clostridial neurotoxin of one administered dosage is degraded.


In the context of the present invention, the term “increased biological half-life” is defined as a more than about 20%, particularly more than about 50%, more particularly more than about 90% increased biological half-life of the recombinant neurotoxin of the present invention relative to the identical neurotoxin without the C2 domain.


In particular embodiments, the recombinant clostridial neurotoxin is for the use in the treatment of a disease requiring improved chemodenervation, wherein the recombinant clostridial neurotoxin causes longer lasting denervation relative to an identical clostridial neurotoxin without the C2 domain.


In particular other embodiments, the recombinant clostridial neurotoxin is for use in the treatment of (a) patients showing an immune reaction against BoNT/A, or (b) headache or epilepsy, wherein the recombinant clostridial neurotoxin is of serotype E.


In another aspect, the present invention relates to a pharmaceutical composition comprising the recombinant clostridial neurotoxin of the present invention.


In yet another aspect, the present invention relates to the use of the composition of the present invention for cosmetic treatment.


In particular embodiments, the recombinant clostridial neurotoxin of the present invention or the pharmaceutical composition of the present invention is for use in the treatment of a disease or condition taken from the list of: cervical dystonia (spasmodic torticollis), blepharospasm, severe primary axillary hyperhidrosis, achalasia, lower back pain, benign prostate hypertrophy, chronic focal painful neuropathies, migraine and other headache disorders, and cosmetic or aesthetic applications.


Additional indications where treatment with Botulinum neurotoxins is currently under investigation and where the pharmaceutical composition of the present invention may be used, include pediatric incontinence, incontinence due to overactive bladder, and incontinence due to neurogenic bladder, anal fissure, spastic disorders associated with injury or disease of the central nervous system including trauma, stroke, multiple sclerosis, Parkinson's disease, or cerebral palsy, focal dystonias affecting the limbs, face, jaw or vocal cords, temporomandibular joint (TMJ) pain disorders, diabetic neuropathy, wound healing, excessive salivation, vocal cord dysfunction, reduction of the Masseter muscle for decreasing the size of the lower jaw, treatment and prevention of chronic headache and chronic musculoskeletal pain, treatment of snoring noise, assistance in weight loss by increasing the gastric emptying time.


Most recently, clostridial neurotoxins have been evaluated for the treatment of other new indications, for example painful keloid, diabetic neuropathic pain, refractory knee pain, trigeminal neuralgia trigger-zone application to control pain, scarring after cleft-lip surgery, cancer and depression.


In another aspect, the present invention relates to a method for the generation of the recombinant clostridial neurotoxin of the present invention, comprising the step of obtaining a recombinant nucleic acid sequence encoding a recombinant single-chain precursor clostridial neurotoxin by the insertion of a nucleic acid sequence encoding said C2 domain into a nucleic acid sequence encoding a parental clostridial neurotoxin.


In the context of the present invention, the term “recombinant nucleic acid sequence” refers to a nucleic acid, which has been generated by joining genetic material from two different sources.


In the context of the present invention, the term “single-chain precursor clostridial neurotoxin” refers to a single-chain precursor for a disulfide-linked di-chain clostridial neurotoxin, comprising a functionally active clostridial neurotoxin light chain, a functionally active neurotoxin heavy chain, and a loop region linking the C-terminus of the light chain with the N-terminus of the heavy chain.


In the context of the present invention, the term “recombinant single-chain precursor clostridial neurotoxin” refers to a single-chain precursor clostridial neurotoxin comprising a heterologous C2 domain, i.e. a C2 domain from a species other than Clostridium botulinum.


In particular embodiments, the recombinant single-chain precursor clostridial neurotoxin comprises a protease cleavage site in said loop region.


Single-chain precursor clostridial neurotoxins have to be proteolytically cleaved to obtain the final biologically active clostridial neurotoxins. Proteolytic cleavage may either occur during heterologous expression by host cell enzymes, or by adding proteolytic enzymes to the raw protein material isolated after heterologous expression. Naturally occurring clostridial neurotoxins usually contain one or more cleavage signals for proteases which post-translationally cleave the single-chain precursor molecule, so that the final di- or multimeric complex can form. At present, clostridial neurotoxins are still predominantly produced by fermentation processes using appropriate Clostridium strains. During the fermentation process, the single-chain precursors are proteolytically cleaved by an unknown clostridial protease to obtain the biologically active di-chain clostridial neurotoxin. In cases, where the single-chain precursor molecule is the precursor of a protease, autocatalytic cleavage may occur. Alternatively, the protease can be a separate non-clostridial enzyme expressed in the same cell. WO 2006/076902 describes the proteolytic cleavage of a recombinant clostridial neurotoxin single-chain precursor at a heterologous recognition and cleavage site by incubation of the E. coli host cell lysate. The proteolytic cleavage is carried out by an unknown E. coli protease. In certain applications of recombinant expression, modified protease cleavage sites have been introduced recombinantly into the interchain region between the light and heavy chain of clostridial toxins, e.g. protease cleavage sites for human thrombin or non-human proteases (see WO 01/14570).


In particular embodiments, the protease cleavage site is a site that is cleaved by a protease selected from the list of: a protease selected from the list of: thrombin, trypsin, enterokinase, factor 1Xa, plant papain, insect papain, crustacean papain, enterokinase, human rhinovirus 3C protease, human enterovirus 3C protease, tobacco etch virus protease, Tobacco Vein Mottling Virus, subtilisin and caspase 3.


In a particular embodiment, the recombinant single-chain precursor clostridial neurotoxin further comprises a binding tag, particularly selected from the group comprising: glutathione-S-transferase (GST), maltose binding protein (MBP), a His-tag, a StrepTag, or a FLAG-tag.


In the context of the present invention, the term “parental clostridial neurotoxin” refers to an initial clostridial neurotoxin without a heterologous C2 domain, selected from a natural clostridial neurotoxin, a functional variant of a clostridial neurotoxin or a chimeric clostridial neurotoxin, wherein the clostridial neurotoxin light chain and heavy chain are from different clostridial neurotoxin serotypes.


In particular embodiments, the method for the generation of the recombinant clostridial neurotoxin of the present invention further comprises the step of heterologously expressing said recombinant nucleic acid sequence in a host cell, particularly in a bacterial host cell, more particularly in an E. coli host cell.


In certain embodiments, the E. coli cells are selected from E. coli XL1-Blue, Nova Blue, TOP10, XL10-Gold, BL21, and K12.


In particular embodiments, the method for the generation of the recombinant clostridial neurotoxin of the present invention additionally comprises at least one of the steps of (i) generating a disulfide-linked di-chain recombinant clostridial neurotoxin comprising a C2 domain by causing or allowing contacting of said recombinant single-chain precursor clostridial neurotoxin with an endoprotease and (ii) purification of said recombinant single-chain precursor clostridial neurotoxin or said disulfide-linked di-chain recombinant clostridial neurotoxin by chromatography.


In particular embodiments, the recombinant single-chain precursor clostridial neurotoxin, or the recombinant disulfide-linked di-chain clostridial neurotoxin, is purified after expression, or in the case of the recombinant disulfide-linked di-chain clostridial neurotoxin, after the cleavage reaction. In particular such embodiments, the protein is purified by chromatography, particularly by immunoaffinity chromatography, or by chromatography on an ion exchange matrix, a hydrophobic interaction matrix, or a multimodal chromatography matrix, particularly a strong ion exchange matrix, more particularly a strong cation exchange matrix.


In the context of the present invention, the term “causing . . . contacting of said recombinant single-chain precursor clostridial neurotoxin . . . with an endoprotease” refers to an active and/or direct step of bringing said neurotoxin and said endoprotease in contact, whereas the term “allowing contacting of a recombinant single-chain precursor clostridial neurotoxin . . . with an endoprotease” refers to an indirect step of establishing conditions in such a way that said neurotoxin and said endoprotease are getting in contact to each other.


In the context of the present invention, the term “endoprotease” refers to a protease that breaks peptide bonds of non-terminal amino acids (i.e. within the polypeptide chain). As they do not attack terminal amino acids, endoproteases cannot break down peptides into monomers.


In particular embodiments, cleavage of the recombinant single-chain precursor clostridial neurotoxin is near-complete.


In the context of the present invention, the term “near-complete” is defined as more than about 95% cleavage, particularly more than about 97.5%, more particularly more than about 99% as determined by SDS-PAGE and subsequent Western Blot or reversed phase chromatography.


In particular embodiments, cleavage of the recombinant single-chain precursor clostridial neurotoxin occurs at a heterologous cleavage signal located in the loop region of the recombinant precursor clostridial neurotoxin.


In particular embodiments, the cleavage reaction is performed with crude host cell lysates containing said single-chain precursor protein.


In other particular embodiments, the single-chain precursor protein is purified or partially purified, particularly by a first chromatographic enrichment step, prior to the cleavage reaction.


In the context of the present invention, the term “purified” relates to more than about 90% purity. In the context of the present invention, the term “partially purified” relates to purity of less than about 90% and an enrichment of more than about two fold.


In another aspect, the present invention relates to a recombinant single-chain precursor clostridial neurotoxin comprising a C2 domain.


In particular embodiments, said C2 domain is a C2 domain present in a protein listed in Table 5. In particular other embodiments, said C2 domain is a human C2 domain, particularly a human C2 domain present in a human protein listed in Table 6, particularly in Table 6A, particularly a human C2 domain present in a human protein selected from the list of: ABR; BAIP3; BCR; C2CD3; C2D1A; C2D1B; CAN5; CANE; CAPS1; CAPS2; CPNE1; CPNE2; CPNE3; CPNE4; CPNE5; CPNE6; CPNE7; CPNE8; CPNE9; CUO25; DAB2P; DOC2A; DOC2B; DYSF; ESYT1; ESYT2; ESYT3; FR1L5; FTM; HECW1; HECW2; ITCH; ITSN1; ITSN2; KPCA; KPCB; KPCE; KPCG; KPCL; MCTP1; MCTP2; MYOF; NEDD4; NED4L; NGAP; OTOF; P3C2A; P3C2B; P3C2G; PA24A; PA24B; PA24D; PA24E; PA24F; POLO; PERF; PLCB1; PLCB2; PLCB3; PLCB4; PLCD1; PLCD3; PLCD4; PLCE1; PLCG1; PLCG2; PLCH1; PLCH2; PLCL1; PLCL2; PLCZ1; RASA1; RASA2; RASA3; RASL1; RASL2; RFIP1; RFIP2; RFIP5; RGS3; RIMS1; RIMS2; RIMS3; RIMS4; RP3A; RPGR1; SMUF1; SMUF2; SY14L; SYGP1; SYT1; SYT2; SYT3; SYT4; SYT5; SYT6; SYT7; SYT8; SYT9; SYT10; SYT11; SYT12; SYT13; SYT14; SYT15; SYT16; SYT17; SYTL1; SYTL2; SYTL3; SYTL4; SYTL5; TAC2N; TOLIP; UN13A; UN13B; UN13C; UN13D; WWC2; WWP1; and WWP2. In particular embodiments, the C2 domain is a human C2 domain present in a human protein selected from the list of: DOC2A; DOC2B; DYSF; ESYT1; ESYT2; ESYT3; FR1L5; KPCA; KPCB; KPCG; MYOF; NED4L; PLCD1; PLCD3; PLCZ1; RFIP1; RFIP2; RFIP5; RP3A; SYT1; SYT2; SYT3; SYT4; SYT5; SYT6; SYT7; SYT9; SYT10; and SYTL1. In particular embodiments, the C2 domain is a human C2 domain present in a human protein selected from the list of: RP3A, ESYT1, ESYT2, and ESYT3.


In particular embodiments, said C2 domain has the amino acid sequence of one of the C2 domains listed in Table 1 (SEQ ID NOs: 1 to 32). More particularly said C2 domain is selected from SEQ ID NOs: 1 to 2 and SEQ ID NOs: 27 to 29.


In particular embodiments, said C2 domain is located at (i) the N-terminus of the light chain of the clostridial neurotoxin, or (ii) at the C-terminus of the light chain of the clostridial neurotoxin.


In particular embodiments, said clostridial neurotoxin is selected from (i) a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, and G, particularly Clostridium botulinum neurotoxin serotype A, C and E, or (ii) from a functional variant of a Clostridium botulinum neurotoxin of (i), or (iii) from a chimeric Clostridium botulinum neurotoxin, wherein the clostridial neurotoxin light chain and heavy chain are from different clostridial neurotoxin serotypes.


In particular embodiments, said recombinant single-chain precursor clostridial neurotoxin has the amino acid sequence as found in any one of the sequences in Table 2 (SEQ ID NOs: 33 to 36).


In another aspect, the present invention relates to a nucleic acid sequence encoding the recombinant single-chain precursor clostridial neurotoxin of the present invention, particularly a nucleic acid sequence comprising a C2 domain-coding nucleic acid sequence selected from the group of nucleic acid sequences of Table 3 (SEQ ID NOs: 37 to 68), particularly wherein said nucleic acid has the sequence as found in Table 4 (SEQ ID NOs: 69 to 72).


In another aspect, the present invention relates to a method for obtaining the nucleic acid sequence of the present invention, comprising the step of inserting a nucleic acid sequence encoding a C2 domain into a nucleic acid sequence encoding a parental clostridial neurotoxin.


In another aspect, the present invention relates to a vector comprising the nucleic acid sequence of the present invention, or the nucleic acid sequence obtainable by the method of the present invention.


In another aspect, the present invention relates to a recombinant host cell comprising the nucleic acid sequence of the present invention, the nucleic acid sequence obtainable by the method of the present invention, or the vector of the present invention.


In certain embodiments, the recombinant host cells are selected from E. coli XL1-Blue, Nova Blue, TOP10, XL10-Gold, BL21, and K12.


In another aspect, the present invention relates to a method for producing the recombinant single-chain precursor clostridial neurotoxin of the present invention, comprising the step of expressing the nucleic acid sequence of the present invention, or the nucleic acid sequence obtainable by the method of the present invention, or the vector of the present invention in a recombinant host cell, or cultivating the recombinant host cell of the present invention under conditions that result in the expression of said nucleic acid sequence.


EXAMPLES
Example 1
Generation of a Botulinum Toxin Construct Comprising an N-Terminal C2 Domain

A DNA sequence coding for a C2 domain is attached to a DNA sequence coding for botulinum toxin type A comprised in an expression vector for E. coli by means of gene synthesis and subcloning. The generated construct is transformed into the E. coli expression strain BL21 and the modified botulinum toxin is heterologously expressed. Purification of the toxin from E. coli cell lysates is performed by immunoaffinity chromatography (His-Tag), ion exchange chromatography, and gel filtration.


Table 4 shows the sequences of two exemplary constructs with C2 domains added N-terminally (SEQ ID NOs: 69 and 70). The constructs comprise a sequence encoding a thrombin cleavage site in the loop region.


Example 2
Generation of a Botulinum Toxin Construct Comprising a C2 Domain at the C-Terminus of the Light Chain

A DNA sequence coding for a C2 domain is inserted into the DNA sequence coding for a botulinum toxin type A between the DNA segments coding for the light and the heavy chain by means of gene synthesis and sub cloning. This construct is generated in an expression vector for E. coli, transformed into the E. coli expression strain BL21 and the modified botulinum toxin is heterologously expressed. The purification of the toxin from E. coli cell lysates is performed by immunoaffinity chromatography (His-Tag), ion exchange chromatography, and gel filtration.









TABLE 1







Human C2 Domains









Human
SEQ



Protein
ID NO:
Protein Sequence





RP3A (C2
 1
SLQCTIIKAKGLKPMDSNGLADPYVKLH


domain 1)

LLPGASKSNKLRTKTLRNTRNPIWNETL




VYHGITDEDMQRKTLRISVCDEDKFGHN




EFIGETRFSLKKLKPNQRKNFN





RP3A (C2
 2
GLIVGIIRCVHLAAMDANGYSDPFVKLW


domain 2)

LKPDMGKKAKHKTQIKKKTLNPEFNEEF




FYDIKHSDLAKKSLDISVWDYDIGKSND




YIGGCQLGISAKGERLKHWYECLKNKDK




KIE





DOC2A
 3
TLHCSILRAKGLKPMDFNGLADPYVKLH




LLPGACKANKLKTKTQRNTLNPVWNEDL




TYSGITDDDITHKVLRIAVCDEDKLSHN




EFIGEIRVPLRRLKPSQKKHFN





DOC2B
 4
ALHCTITKAKGLKPMDHNGLADPYVKLH




LLPGASKANKLRTKTLRNTLNPTWNETL




TYYGITDEDMIRKTLRISVCDEDKFRHN




EFIGETRVPLKKLKPNHTKTFS





SYTL1
 5
ELRVHVIQCQGLAAARRRRSDPYVKSYL




LPDKQSKRKTAVKKRNLNPVFNETLRYS




VPQAELQGRVLSLSVWHRESLGRNIFLG




EVEVPLDTWDWGSEPTWL





NED4L
 6
ILRVKVVSGIDLAKKDIFGASDPYVKLS




LYVADENRELALVQTKTIKKTLNPKWNE




EFYFRVNPSNHRLLFEVFDENRLTRDDF




LGQVDVPLSHLPTEDPTMER





KPCA
 7
KLHVTVRDAKNLIPMDPNGLSDPYVKLK




LIPDPKNESKQKTKTIRSTLNPQWNESF




TFKLKPSDKDRRLSVEIWDWDRTTRNDF




MGSLSFGVSELMKMPASGWY





KPCB
 8
VLIVLVRDAKNLVPMDPNGLSDPYVKLK




LIPDPKSESKQKTKTIKCSLNPEWNETF




RFQLKESDKDRRLSVEIWDWDLTSRNDF




MGSLSFGISELQKASVDGWF





KPCG
 9
EIHVTVGEARNLIPMDPNGLSDPYVKLK




LIPDPRNLTKQKTRTVKATLNPVWNETF




VFNLKPGDVERRLSVEVWDWDRTSRNDF




MGAMSFGVSELLKAPVDGWY





PLCD1
10
RLNIRVISGQQLPKVNKNKNSIVDPKVT




VEIHGVSRDVASRQTAVITNNGFNPWWD




TEFAFEVVVPDLALIRFLVEDYDASSKN




DFIGQSTIPLNSLKQGYRHVHL





PLCD3
11
TLSIQVLTAQQLPKLNAEKPHSIVDPLV




RIEIHGVPADCARQETDYVLNNGFNPRW




GQTLQFQLRAPELALVRFVVEDYDATSP




NDFVGQFTLPLSSLKQGYRHIHL





PLCZ1
12
TLTIRLISGIQLPLTHSSSNKGDSLVII




EVFGVPNDQMKQQTRVIKKNAFSPRWNE




TFTFIIHVPELALIRFVVEGQGLIAGNE




FLGQYTLPLLCMNKGYRRIPL





PTEN
13
YRPVALLFHKMMFETIPMFSGGTCNPQF




VVCQLKVKIYSSNSGPTRREDKFMYFEF




PQPLPVCGDIKVEFFHKQNKMLKKDKMF




HFWVNTFFIPGPEETSEKVENGSLCDQE




IDSICSIERADNDKEYLVLTLTKNDLDK




ANKDKANRYFSPNFKVKLYFTK





RFIP1
14
HVQVTVLQARGLRAKGPGGTSDAYAVIQ




VGKEKYATSVSERSLGAPVWREEATFEL




PSLLSSGPAAAATLQLTVLHRALLGLDK




FLGRAEVDLRDLHRDQGRRKT





RFIP5
15
HVQVTVLRARGLRGKSSGAGSTSDAYTV




IQVGREKYSTSVVEKTHGCPEWREECSF




ELPPGALDGLLRAQEADAGPAPWAASSA




AACELVLTTMHRSLIGVDKFLGQATVAL




DEVFGAGRAQHT





RFIP2
16
HVQVTVLQAKDLKPKGKSGTNDTYTIIQ




LGKEKYSTSVAEKTLEPVWKEEASFELP




GLLIQGSPEKYILFLIVMHRSLVGLDKF




LGQVAINLNDIFEDKQRRKT





SYT1 (C2
17
QLLVGIIQAAELPALDMGGTSDPYVKVF


domain 1)

LLPDKKKKFETKVHRKTLNPVFNEQFTF




KVPYSELGGKTLVMAVYDFDRFSKHDII




GEFKVPMNTVDFGHVTEEW





SYT1 (C2
18
KLTVVILEAKNLKKMDVGGLSDPYVKIH


domain 2)

LMQNGKRLKKKKTTIKKNTLNPYYNESF




SFEVPFEQIQKVQVVVTVLDYDKIGKND




AIGKVFVGYNSTGAELRHWSDMLANPRR




PIA





SYT2
19
QLTVGVLQAAELPALDMGGTSDPYVKVF




LLPDKKKKYETKVHRKTLNPAFNETFTF




KVPYQELGGKTLVMAIYDFDRFSKHDII




GEVKVPMNTVDLGQPIEEW





SYT3
20
QLVVRILQALDLPAKDSNGFSDPYVKIY




LLPDRKKKFQTKVHRKTLNPVFNETFQF




SVPLAELAQRKLHFSVYDFDRFSRHDLI




GQVVLDNLLELAEQPPDRPL





SYT4
21
AFVVNIKEARGLPAMDEQSMTSDPYIKM




TILPEKKHKVKTRVLRKTLDPAFDETFT




FYGIPYTQIQELALHFTILSFDRFSRDD




IIGEVLIPLSGIELSEGKMLM





SYT5
22
QLLVGILQAMGLAALDLGGSSDPYVRVY




LLPDKRRRYETKVHRQTLNPHFGETFAF




KVPYVELGGRVLVMAVYDFDRFSRNDAI




GEVRVPMSSVDLGRPVQAW





SYT6
23
TLIVRILKAFDLPAKDFCGSSDPYVKIY




LLPDRKCKLQTRVHRKTLNPTFDENFHF




PVPYEELADRKLHLSVFDFDRFSRHDMI




GEVILDNLFEASDLSRETSIW





SYT7
24
TLTVKIMKAQELPAKDFSGTSDPFVKIY




LLPDKKHKLETKVKRKNLNPHWNETFLF




EGFPYEKVVQRILYLQVLDYDRFSRNDP




IGEVSIPLNKVDLTQMQTFW





SYT9
25
QLIVKIHKAVNLPAKDFSGTSDPYVKIY




LLPDRKTKHQTKVHRKTLNPVFDEVFLF




PVPYNDLEARKLHFSVYDFDRFSRHDLI




GQVVVDHFLDLADFPRECIL





SYT10
26
LLVVKIIKALDLPAKDFTGTSDPYVKMY




LLPDRKKKFQTRVHRKTLNPLFDETFQF




PVAYDQLSNRKLHFSVYDFDRFSRHDMI




GEVILDNLFEVSDLSREATV





ESYT1
27
KLVSIVHGCRSLRQNGRDPPDPYVSLLL




LPDKNRGTKRRTSQKKRTLSPEFNERFE




WELPLDEAQRRKLDVSVKSNSSFMSRER




ELLGKVQLDLAETDLSQGVARW





ESYT2
28
LGQIQLTIRHSSQRNKLIVVVHACRNLI




AFSEDGSDPYVRMYLLPDKRRSGRRKTH




VSKKTLNPVFDQSFDFSVSLPEVQRRTL




DVAVKNSGGFLSKDKGLLGKVLVALASE




ELAKGWTQWYDLTEDGT





ESYT3
29
CLSVLINGCRNLTPCTSSGADPYVRVYL




LPERKWACRKKTSVKRKTLEPLFDETFE




FFVPMEEVKKRSLDVAVKNSRPLGSHRR




KELGKVLIDLSKEDLIKGFSQWYE





DYSF
30
MLCCLLVRASNLPSAKKDRRSDPVASLT




FRGVKKRTKVIKNSVNPVWNEGFEWDLK




GIPLDQGSELHVVVKDHETMGRNRFLGE




AKVPLREVLATPSLSAS





MYOF
31
MLRVIVESASNIPKTKFGKPDPIVSVIF




KDEKKKTKKVDNELNPVWNEILEFDLRG




IPLDFSSSLGIIVKDFETIGQNKLIGTA




TVALKDLTGDQSRSLP





FR1L5
32
QVRVKVFEARQLMGNNIKPVVKVSIAGQ




QHQTRIKMGNNPFFNEIFFQNFHEVPAK




FFDETILIQTDIGFIYHSPGHTLLRKWL




GLCQPNNPGSG
















TABLE 2







C2 Domain-Containing Constructs











SEQ
C2



Insertion
ID NO:
domain:
BoNT/A with C2 Domain





N-terminal
33
RP3A (C2
MSLQCTIIKAKGLKPMDSNGLADPYVKLHLLPGASKSNKLRTKTLRNTRNP




domain 1)
IWNETLVYHGITDEDMQRKTLRISVCDEDKFGHNEFIGETRFSLKKLKPNQ





RKNFNPFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPE





RDTFTNPEEGDLNPPPEAKQVPVSYYDSTYLSTDNEKDNYLKGVTKLFERI





YSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQPDGSYRSEEL





NLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESL





EVDTNPLLGAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYY





EMSGLEVSFEELRTFGGHDAKFIDSLQENEFRLYYYNKFKDIASTLNKAKS





IVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLTEIYTEDN





FVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQ





NTEINNMNFTKLKNFTGLFEFYKLLCVRGIITSKAGAGKSLVPRGSAGAGA





LNDLCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDLIQ





QYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMF





HYLRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAM





FLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYIGPALNIGNMLYKDDFV





GALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNE





KWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYT





EEEKNNINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVK





RLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNNTLSTDIPFQLSKYV





DNQRLLSTFTEYIKNIINTSILNLRYESNHLIDLSRYASKINIGSKVNFDP





IDKNQIQLFNLESSKIEVILKNAIVYNSMYENFSTSFWIRIPKYFNSISLN





NEYTIINCMENNSGWKVSLNYGEIIWTLQDTQEIKQRVVFKYSQMINISDY





INRWIFVTITNNRLNNSKIYINGRLIDQKPISNLGNIHASNNIMFKLDGCR





DTHRYIWIKYFNLFDKELNEKEIKDLYDNQSNSGILKDFWGDYLQYDKPYY





MLNLYDPNKYVDVNNVGIRGYMYLKGPRGSVMTTNIYLNSSLYRGTKFIIK





KYASGNKDNIVRNNDRVYINVVVKNKEYRLATNASQAGVEKILSALEIPDV





GNLSQVVVMKSKNDQGITNKCKMNLQDNNGNDIGFIGFHQFNNIAKLVASN





WYNRQIERSSRTLGCSWEFIPVDDGWGERPL-





N-terminal
34
ESYT2
MLGQIQLTIRHSSQRNKLIVVVHACRNLIAFSEDGSDPYVRMYLLPDKRRS





GRRKTHVSKKTLNPVFDQSFDFSVSLPEVQRRTLDVAVKNSGGFLSKDKGL





LGKVLVALASEELAKGWTQWYDLTEDGTPFVNKQFNYKDPVNGVDIAYIKI





PNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPVSYYDS





TYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTE





LKVIDTNCINVIQPDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTR





NGYGSTQYIRFSPDFTFGFEESLEVDTNPLLGAGKFATDPAVTLAHELIHA





GHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSLQE





NEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGK





FSVDKLKFDKLYKMLTEIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPK





VNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTKLKNFTGLFEFYKLLCVR





GIITSKAGAGKSLVPRGSAGAGALNDLCIKVNNWDLFFSPSEDNFTNDLNK





GEEITSDTNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQL





ELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIALTNSVNEALLNP





SRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADI





TIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFAL





VSYIANKVLTVQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKM





KEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLNESINKAMIN





INKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQV





DRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTFTEYIKNIINTSILNLRYES





NHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIVYNS





MYENFSTSFWIRIPKYFNSISLNNEYTIINCMENNSGWKVSLNYGEIIWTL





QDTQEIKQRVVFKYSQMINISDYINRWIFVTITNNRLNNSKIYINGRLIDQ





KPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYFNLFDKELNEKEIKDLYD





NQSNSGILKDFWGDYLQYDKPYYMLNLYDPNKYVDVNNVGIRGYMYLKGPR





GSVMTTNIYLNSSLYRGTKFIIKKYASGNKDNIVRNNDRVYINVVVKNKEY





RLATNASQAGVEKILSALEIPDVGNLSQVVVMKSKNDQGITNKCKMNLQDN





NGNDIGFIGFHQFNNIAKLVASNWYNRQIERSSRTLGCSWEFIPVDDGWGE





RPL-





Linker
35
RP3A (C2
MPFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTF


region

domain 1)
TNPEEGDLNPPPEAKQVPVSYYDSTYLSTDNEKDNYLKGVTKLFERIYSTD





LGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQPDGSYRSEELNLVI





IGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDT





NPLLGAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSG





LEVSFEELRTFGGHDAKFIDSLQENEFRLYYYNKFKDIASTLNKAKSIVGT





TASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLTEIYTEDNFVKF





FKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEI





NNMNFTKLKNFTGLFEFYKLLCVRGIITSLQCTIIKAKGLKPMDSNGLADP





YVKLHLLPGASKSNKLRTKTLRNTRNPIWNETLVYHGITDEDMQRKTLRIS





VCDEDKFGHNEFIGETRFSLKKLKPNQRKNFNSKAGAGKSLVPRGSAGAGA





LNDLCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDLIQ





QYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMF





HYLRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAM





FLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYIGPALNIGNMLYKDDFV





GALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNE





KWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYT





EEEKNNINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVK





RLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNNTLSTDIPFQLSKYV





DNQRLLSTFTEYIKNIINTSILNLRYESNHLIDLSRYASKINIGSKVNFDP





IDKNQIQLFNLESSKIEVILKNAIVYNSMYENFSTSFWIRIPKYFNSISLN





NEYTIINCMENNSGWKVSLNYGEIIWTLQDTQEIKQRVVFKYSQMINISDY





INRWIFVTITNNRLNNSKIYINGRLIDQKPISNLGNIHASNNIMFKLDGCR





DTHRYIWIKYFNLFDKELNEKEIKDLYDNQSNSGILKDFWGDYLQYDKPYY





MLNLYDPNKYVDVNNVGIRGYMYLKGPRGSVMTTNIYLNSSLYRGTKFIIK





KYASGNKDNIVRNNDRVYINVVVKNKEYRLATNASQAGVEKILSALEIPDV





GNLSQVVVMKSKNDQGITNKCKMNLQDNNGNDIGFIGFHQFNNIAKLVASN





WYNRQIERSSRTLGCSWEFIPVDDGWGERPL-





Linker
36
ESYT2
MPFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTF


region


TNPEEGDLNPPPEAKQVPVSYYDSTYLSTDNEKDNYLKGVTKLFERIYSTD





LGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQPDGSYRSEELNLVI





IGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDT





NPLLGAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSG





LEVSFEELRTFGGHDAKFIDSLQENEFRLYYYNKFKDIASTLNKAKSIVGT





TASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLTEIYTEDNFVKF





FKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEI





NNMNFTKLKNFTGLFEFYKLLCVRGIITLGQIQLTIRHSSQRNKLIVVVHA





CRNLIAFSEDGSDPYVRMYLLPDKRRSGRRKTHVSKKTLNPVFDQSFDFSV





SLPEVQRRTLDVAVKNSGGFLSKDKGLLGKVLVALASEELAKGWTQWYDLT





EDGTSKAGAGKSLVPRGSAGAGALNDLCIKVNNWDLFFSPSEDNFTNDLNK





GEEITSDTNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQL





ELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIALTNSVNEALLNP





SRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADI





TIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFAL





VSYIANKVLTVQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKM





KEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLNESINKAMIN





INKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQV





DRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTFTEYIKNIINTSILNLRYES





NHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIVYNS





MYENFSTSFWIRIPKYFNSISLNNEYTIINCMENNSGWKVSLNYGEIIWTL





QDTQEIKQRVVFKYSQMINISDYINRWIFVTITNNRLNNSKIYINGRLIDQ





KPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYFNLFDKELNEKEIKDLYD





NQSNSGILKDFWGDYLQYDKPYYMLNLYDPNKYVDVNNVGIRGYMYLKGPR





GSVMTTNIYLNSSLYRGTKFIIKKYASGNKDNIVRNNDRVYINVVVKNKEY





RLATNASQAGVEKILSALEIPDVGNLSQVVVMKSKNDQGITNKCKMNLQDN





NGNDIGFIGFHQFNNIAKLVASNWYNRQIERSSRTLGCSWEFIPVDDGWGE





RPL-
















TABLE 3







Human C2 Domain-coding Sequences









Human
SEQ



Protein
ID NO:
Protein Sequence





RP3A (C2
37
TCCCTGCAGTGCACCATCATTAAGGCCAAGGGCCTGAAGCCCATGGATTCAAACGGCTTGGCTGATCCCTAC


domain 1)

GTTAAGCTGCACCTCCTGCCGGGAGCCAGCAAGTCCAACAAGCTTCGTACAAAAACTCTGCGGAATACCCGG




AACCCCATCTGGAATGAGACCCTCGTGTATCACGGCATCACCGATGAGGACATGCAAAGGAAGACCCTCAGG




ATCTCCGTCTGTGATGAGGACAAATTTGGCCACAATGAATTTATTGGTGAGACCAGATTCTCCCTCAAGAAA




CTGAAGCCCAACCAGAGGAAGAATTTCAAC





RP3A (C2
38
GGCCTCATTGTGGGCATCATACGCTGCGTGCACCTGGCTGCCATGGACGCTAATGGCTACTCAGACCCATTC


domain 2)

GTCAAGCTCTGGCTGAAACCGGACATGGGAAAGAAGGCCAAACACAAGACTCAAATTAAAAAGAAAACCTTG




AATCCCGAATTCAATGAGGAGTTTTTCTATGACATCAAACACAGTGACCTGGCAAAGAAGTCACTGGACATT




TCAGTCTGGGACTATGACATCGGCAAGTCCAATGATTACATCGGAGGCTGCCAGCTGGGGATCTCTGCCAAG




GGAGAGCGCTTAAAACACTGGTACGAGTGTCTGAAAAATAAAGACAAGAAGATAGAG





DOC2A
39
ACTCTGCACTGTAGCATCCTCAGGGCCAAGGGCCTCAAGCCCATGGATTTCAATGGCCTCGCCGACCCCTAC




GTCAAGCTGCACTTGCTGCCTGGAGCCTGTAAGGCCAATAAGCTAAAAACGAAGACTCAGAGGAACACACTG




AATCCCGTGTGGAATGAGGACCTGACTTACAGCGGGATCACAGATGACGACATCACGCACAAGGTGCTCAGG




ATCGCCGTCTGTGATGAGGACAAGCTGAGTCACAATGAGTTTATTGGGGAGATCCGCGTGCCCCTCCGCCGC




CTCAAGCCTTCGCAGAAGAAGCATTTTAAC





DOC2B
40
GCCCTCCACTGCACCATCACCAAGGCCAAGGGCCTGAAGCCAATGGACCACAATGGGCTGGCAGACCCCTAC




GTCAAGCTGCACCTGCTGCCAGGAGCCAGTAAGGCAAATAAGCTCAGAACAAAAACTCTCCGTAACACTCTG




AACCCCACATGGAACGAGACCCTCACTTACTACGGGATCACAGATGAAGACATGATCCGCAAGACCCTGCGG




ATCTCTGTGTGTGACGAGGACAAATTCCGGCACAATGAGTTCATCGGGGAGACACGTGTGCCCCTGAAGAAG




CTGAAACCCAACCACACCAAGACCTTCAGC





SYTL1
41
GAGCTGCGCGTGCACGTGATCCAGTGCCAGGGCCTGGCCGCCGCCCGGCGCCGCCGCTCGGACCCCTACGTC




AAAAGCTACCTCCTCCCGGATAAGCAGAGCAAGCGCAAGACGGCGGTGAAGAAACGGAATCTGAATCCGGTT




TTCAACGAGACTCTCCGGTACTCCGTCCCGCAGGCCGAGCTTCAGGGCCGCGTGCTGAGCCTGTCTGTGTGG




CACCGCGAAAGCCTGGGTCGCAACATCTTTCTGGGCGAAGTTGAAGTGCCCCTGGACACGTGGGACTGGGGC




TCTGAGCCCACCTGGCTC





NED4L
42
ATTCTCAGAGTAAAAGTTGTTTCTGGAATTGATCTCGCCAAAAAGGACATCTTTGGAGCCAGTGATCCGTAT




GTGAAACTTTCATTGTACGTAGCGGATGAGAATAGAGAACTTGCTTTGGTCCAGACAAAAACAATTAAAAAG




ACACTGAACCCAAAATGGAATGAAGAATTTTATTTCAGGGTAAACCCATCTAATCACAGACTCCTATTTGAA




GTATTTGACGAAAATAGACTGACACGAGACGACTTCCTGGGCCAGGTGGACGTGCCCCTTAGTCACCTTCCG




ACAGAAGATCCAACCATGGAGCGA





KPCA
43
AAGCTCCATGTCACAGTACGAGATGCAAAAAATCTAATCCCTATGGATCCAAACGGGCTTTCAGATCCTTAT




GTGAAGCTGAAACTTATTCCTGATCCCAAGAATGAAAGCAAGCAAAAAACCAAAACCATCCGCTCCACACTA




AATCCGCAGTGGAATGAGTCCTTTACATTCAAATTGAAACCTTCAGACAAAGACCGACGACTGTCTGTAGAA




ATCTGGGACTGGGATCGAACAACAAGGAATGACTTCATGGGATCCCTTTCCTTTGGAGTTTCGGAGCTGATG




AAGATGCCGGCCAGTGGATGGTAC





KPCB
44
GTCCTCATTGTCCTCGTAAGAGATGCTAAAAACCTTGTACCTATGGACCCCAATGGCCTGTCAGATCCCTAC




GTAAAACTGAAACTGATTCCCGATCCCAAAAGTGAGAGCAAACAGAAGACCAAAACCATCAAATGCTCCCTC




AACCCTGAGTGGAATGAGACATTTAGATTTCAGCTGAAAGAATCGGACAAAGACAGAAGACTGTCAGTAGAG




ATTTGGGATTGGGATTTGACCAGCAGGAATGACTTCATGGGATCTTTGTCCTTTGGGATTTCTGAACTTCAG




AAAGCCAGTGTTGATGGCTGGTTT





KPCG
45
GAGATCCACGTAACTGTTGGCGAGGCCCGTAACCTAATTCCTATGGACCCCAATGGTCTCTCTGATCCCTAT




GTGAAACTGAAGCTCATCCCAGACCCTCGGAACCTGACGAAACAGAAGACCCGAACGGTGAAAGCCACGCTA




AACCCTGTGTGGAATGAGACCTTTGTGTTCAACCTGAAGCCAGGGGATGTGGAGCGCCGGCTCAGCGTGGAG




GTGTGGGACTGGGACCGGACCTCCCGCAACGACTTCATGGGGGCCATGTCCTTTGGCGTCTCGGAGCTGCTC




AAGGCGCCCGTGGATGGCTGGTAC





PLCD1
46
CGGCTCAACATCAGGGTCATTTCGGGGCAGCAGCTGCCAAAAGTCAACAAGAATAAGAATTCAATTGTGGAC




CCCAAAGTGACAGTGGAGATCCATGGCGTGAGCCGGGACGTGGCCAGCCGCCAGACTGCTGTCATCACCAAC




AATGGTTTCAACCCATGGTGGGACACGGAGTTTGCGTTTGAGGTAGTTGTGCCTGACCTTGCCCTCATCCGC




TTCTTGGTGGAAGATTATGATGCCTCCTCCAAGAATGACTTCATTGGCCAGAGTACCATCCCCTTGAACAGC




CTCAAGCAAGGATACCGCCATGTCCACCTC





PLCD3
47
ACTCTCAGCATCCAGGTGCTGACTGCACAGCAGCTGCCCAAGCTGAATGCCGAGAAGCCACACTCCATTGTG




GACCCCCTGGTGCGCATTGAGATCCATGGGGTGCCCGCAGACTGTGCCCGGCAGGAGACTGACTACGTGCTC




AACAATGGCTTCAACCCCCGCTGGGGGCAGACCCTGCAGTTCCAGCTGCGGGCTCCGGAGCTGGCACTGGTC




CGGTTTGTGGTGGAAGATTATGACGCCACCTCCCCCAATGACTTTGTGGGCCAGTTTACACTGCCTCTTAGC




AGCCTAAAGCAAGGGTACCGCCACATACACCTG





PLCZ1
48
ACACTTACAATAAGGCTCATCAGTGGTATCCAGTTGCCTCTTACTCATTCATCATCTAACAAAGGTGATTCA




TTAGTAATTATAGAAGTTTTTGGTGTTCCAAATGATCAAATGAAGCAGCAGACTCGTGTAATTAAAAAAAAT




GCTTTTAGTCCAAGATGGAATGAAACATTCACATTTATTATTCATGTCCCAGAATTGGCATTGATACGTTTT




GTTGTTGAAGGTCAAGGTTTAATAGCAGGAAATGAATTTCTTGGGCAATATACTTTGCCACTTCTATGCATG




AACAAAGGTTATCGTCGTATTCCTCTG





PTEN
49
TATAGACCAGTGGCACTGTTGTTTCACAAGATGATGTTTGAAACTATTCCAATGTTCAGTGGCGGAACTTGC




AATCCTCAGTTTGTGGTCTGCCAGCTAAAGGTGAAGATATATTCCTCCAATTCAGGACCCACACGACGGGAA




GACAAGTTCATGTACTTTGAGTTCCCTCAGCCGTTACCTGTGTGTGGTGATATCAAAGTAGAGTTCTTCCAC




AAACAGAACAAGATGCTAAAAAAGGACAAAATGTTTCACTTTTGGGTAAATACATTCTTCATACCAGGACCA




GAGGAAACCTCAGAAAAAGTAGAAAATGGAAGTCTATGTGATCAAGAAATCGATAGCATTTGCAGTATAGAG




CGTGCAGATAATGACAAGGAATATCTAGTACTTACTTTAACAAAAAATGATCTTGACAAAGCAAATAAAGAC




AAAGCCAACCGATACTTTTCTCCAAATTTTAAGGTGAAGCTGTACTTCACAAAA





RFIP1
50
CACGTGCAGGTGACGGTGCTGCAGGCGCGGGGCCTGCGGGCCAAGGGCCCCGGGGGCACGAGCGACGCGTAC




GCGGTGATCCAGGTGGGCAAGGAGAAGTACGCCACCTCCGTGTCGGAGCGCAGCCTGGGCGCGCCCGTGTGG




CGCGAGGAGGCCACCTTCGAGCTGCCATCGCTGCTGTCCTCCGGACCCGCGGCCGCCGCCACCCTGCAGCTC




ACCGTGCTGCACCGCGCGCTGCTCGGCCTCGACAAGTTCCTGGGCCGCGCCGAGGTGGACCTGCGGGATCTG




CACCGCGACCAGGGCCGCAGGAAGACG





RFIP5
51
CACGTCCAGGTGACGGTGCTGCGGGCCCGCGGGCTGCGGGGCAAGAGCTCGGGAGCGGGCAGCACCAGCGAC




GCGTACACGGTGATCCAGGTGGGCCGCGAGAAGTACAGTACGTCGGTGGTGGAGAAGACGCACGGCTGCCCC




GAGTGGCGTGAGGAGTGCTCCTTCGAGCTGCCGCCGGGGGCCCTGGATGGCCTGCTGCGGGCGCAGGAGGCC




GACGCGGGCCCGGCGCCCTGGGCCGCGAGCTCCGCCGCCGCCTGCGAGCTGGTGCTCACCACCATGCACCGC




TCGCTCATCGGCGTCGACAAGTTCCTGGGCCAGGCCACGGTGGCGCTGGACGAGGTCTTCGGCGCAGGCCGC




GCCCAGCACACG





RFIP2
52
CACGTGCAGGTCACAGTGCTCCAAGCCAAAGATCTGAAGCCAAAAGGCAAAAGTGGTACCAATGACACATAC




ACTATAATTCAGCTGGGCAAGGAAAAGTACTCCACCTCTGTAGCTGAGAAAACCCTTGAGCCAGTTTGGAAG




GAGGAGGCCTCTTTCGAGCTACCTGGATTGCTAATTCAGGGAAGTCCAGAGAAATACATTCTTTTCCTTATA




GTTATGCACAGGTCCCTGGTGGGTCTGGATAAATTTTTAGGGCAGGTGGCAATCAATCTCAATGACATCTTT




GAGGACAAACAAAGAAGGAAAACA





SYT1 (C2
53
CAGCTGCTGGTAGGGATCATTCAGGCTGCCGAACTGCCCGCCTTGGACATGGGGGGCACATCTGATCCTTAC


domain 1)

GTGAAAGTGTTTCTGCTACCTGATAAGAAGAAGAAATTTGAGACAAAAGTCCACCGAAAAACCCTTAATCCT




GTCTTCAATGAGCAATTTACTTTCAAGGTACCATACTCGGAATTGGGTGGCAAAACCCTAGTGATGGCTGTA




TATGATTTTGATCGTTTCTCTAAGCATGACATCATTGGAGAATTTAAAGTCCCTATGAACACAGTGGATTTT




GGCCATGTAACTGAGGAATGG





SYT1 (C2
54
AAGCTGACTGTTGTCATTCTGGAGGCAAAGAACCTGAAGAAGATGGATGTGGGTGGCTTATCCGATCCTTAT


domain 2)

GTGAAGATTCATCTGATGCAGAATGGTAAGAGGCTGAAGAAGAAAAAGACAACAATTAAAAAGAACACACTT




AACCCCTACTACAATGAGTCATTCAGCTTTGAAGTACCTTTTGAACAAATCCAGAAAGTGCAGGTGGTGGTA




ACTGTTTTGGACTATGACAAGATTGGCAAGAACGATGCCATCGGCAAAGTCTTTGTGGGCTACAACAGCACC




GGCGCGGAGCTGCGACACTGGTCAGACATGCTGGCCAACCCCAGGCGACCTATTGCC





SYT2
55
CAGCTTACTGTGGGCGTTCTGCAGGCTGCTGAACTGCCTGCCCTGGACATGGGAGGCACCTCAGACCCTTAT




GTCAAGGTCTTCCTCCTTCCTGACAAGAAGAAGAAATATGAGACCAAAGTCCATCGGAAGACACTGAACCCT




GCCTTCAATGAAACCTTCACCTTCAAGGTGCCATACCAGGAGCTTGGGGGCAAAACTCTGGTGATGGCCATC




TATGACTTTGACCGCTTCTCCAAACATGACATCATTGGAGAGGTAAAGGTGCCTATGAACACAGTGGACCTC




GGCCAGCCCATTGAGGAGTGG





SYT3
56
CAGCTGGTGGTGAGGATCCTGCAGGCCCTGGACCTCCCTGCCAAGGACTCCAACGGCTTCTCAGACCCCTAC




GTCAAGATCTACCTGCTGCCTGACCGCAAGAAAAAGTTTCAGACCAAGGTGCACAGGAAGACCCTGAACCCC




GTCTTCAATGAGACGTTTCAATTCTCGGTGCCCCTGGCCGAGCTGGCCCAACGCAAACTGCACTTCAGCGTC




TATGACTTTGACCGCTTCTCGCGGCACGACCTCATCGGCCAGGTGGTGCTGGACAACCTCCTGGAGCTGGCC




GAGCAGCCCCCTGACCGCCCGCTC





SYT4
57
GCATTTGTGGTCAATATCAAGGAAGCCCGTGGCTTGCCAGCCATGGATGAGCAGTCGATGACCTCTGACCCA




TATATCAAAATGACGATCCTCCCAGAGAAGAAGCATAAAGTGAAAACTAGAGTGCTGAGAAAAACCTTGGAT




CCAGCTTTTGATGAGACCTTTACATTCTATGGGATACCCTACACCCAAATCCAAGAATTGGCCTTGCACTTC




ACAATTTTGAGTTTTGACAGGTTTTCAAGAGATGATATCATTGGGGAAGTTCTAATTCCTCTCTCGGGAATT




GAATTATCTGAAGGAAAAATGTTAATG





SYT5
58
CAGCTGCTGGTGGGCATTCTGCAAGCAATGGGATTGGCAGCCTTGGATCTTGGTGGCTCCTCGGACCCCTAT




GTGCGGGTCTACCTGCTGCCGGACAAACGGAGGCGGTACGAGACCAAGGTGCATCGGCAGACGCTGAACCCT




CACTTTGGGGAGACCTTCGCCTTCAAGGTCCCCTACGTGGAGCTGGGGGGCAGGGTGCTGGTCATGGCGGTG




TACGACTTCGACCGCTTCTCTCGCAATGACGCCATCGGGGAGGTGCGGGTCCCTATGAGCTCCGTGGACCTG




GGGCGGCCAGTGCAGGCCTGG





SYT6
59
ACCCTGATTGTGCGTATCCTGAAGGCTTTTGACCTCCCTGCCAAGGACTTTTGTGGAAGCTCTGACCCTTAT




GTCAAGATCTACCTCCTGCCTGACCGCAAATGCAAGCTGCAGACCCGGGTGCACCGCAAGACCCTGAACCCC




ACCTTTGATGAGAACTTCCACTTCCCTGTGCCCTATGAGGAGCTGGCTGACCGCAAGCTGCATCTCAGTGTC




TTCGACTTTGACCGCTTCTCCCGCCATGACATGATTGGCGAGGTCATCCTGGACAACCTCTTTGAGGCCTCT




GACCTGTCTCGGGAAACCTCCATCTGG





SYT7
60
ACGCTCACCGTGAAGATCATGAAGGCCCAGGAGCTGCCGGCCAAGGACTTCAGCGGCACCAGCGACCCCTTC




GTCAAGATCTACCTGCTGCCCGACAAGAAGCACAAGCTGGAGACCAAGGTGAAGCGGAAGAACCTGAACCCC




CACTGGAACGAGACCTTCCTCTTTGAAGGTTTTCCCTATGAGAAGGTGGTGCAGAGGATCCTCTACCTCCAA




GTCCTGGACTATGACCGCTTCAGCCGCAACGACCCCATTGGGGAGGTGTCCATCCCCCTTAACAAGGTGGAC




CTGACCCAGATGCAGACCTTCTGG





SYT9
61
CAGCTCATAGTGAAGATTCACAAAGCTGTCAATTTGCCCGCCAAGGACTTTTCTGGGACTTCAGATCCTTAT




GTCAAGATCTATTTGCTTCCTGATCGGAAAACAAAACACCAGACTAAAGTTCACAGAAAGACCCTGAACCCT




GTGTTTGATGAAGTGTTTTTATTTCCGGTTCCCTACAATGACCTTGAAGCACGGAAGCTTCACTTCTCTGTG




TACGACTTTGACAGGTTCTCTCGTCATGACTTAATCGGCCAAGTGGTGGTGGATCACTTCCTAGACTTGGCT




GATTTCCCCAGGGAGTGCATCCTT





SYT10
62
CTTCTAGTTGTTAAAATTATCAAAGCTTTAGATCTCCCTGCTAAAGACTTCACAGGAACTTCTGACCCTTAT




GTGAAGATGTATCTTCTTCCAGATAGGAAAAAGAAATTTCAGACCCGCGTGCACAGAAAGACTTTAAATCCT




CTATTTGATGAAACTTTTCAATTTCCTGTAGCATATGATCAACTAAGCAACCGAAAACTACATTTCAGTGTG




TATGATTTTGACAGATTTTCTAGACATGACATGATTGGGGAAGTGATTCTTGATAATTTGTTTGAAGTCTCT




GATCTCTCCAGGGAAGCCACAGTA





ESYT1
63
AAGCTGGTCAGCATTGTTCATGGTTGCCGGTCCCTTCGACAGAATGGACGTGATCCTCCTGATCCCTATGTG




TCACTGTTGCTACTGCCAGACAAGAACCGAGGCACCAAGAGGAGGACCTCACAGAAGAAGAGGACCCTGAGT




CCTGAATTTAATGAACGGTTTGAGTGGGAACTCCCCCTGGATGAGGCCCAGAGACGAAAGCTGGATGTCTCT




GTCAAGTCTAATTCCTCCTTCATGTCAAGAGAGCGTGAGCTGCTGGGGAAGGTGCAGCTGGACCTAGCTGAG




ACAGACCTTTCCCAGGGTGTAGCCCGGTGG





ESYT2
64
CTGGGGCAGATCCAGCTGACCATCCGGCACAGCTCGCAGAGAAACAAGCTTATCGTGGTCGTGCATGCCTGC




AGAAACCTCATTGCCTTCTCTGAAGACGGCTCTGACCCCTATGTCCGCATGTATTTATTACCAGACAAGAGG




CGGTCAGGAAGGAGGAAAACACACGTGTCAAAGAAAACATTAAATCCAGTGTTTGATCAAAGCTTTGATTTC




AGTGTTTCGTTACCAGAAGTGCAGAGGAGAACGCTCGACGTTGCCGTGAAGAACAGTGGCGGCTTCCTGTCC




AAAGACAAAGGGCTCCTTGGCAAAGTATTGGTTGCTCTGGCATCTGAAGAACTTGCCAAAGGCTGGACCCAG




TGGTATGACCTCACGGAAGATGGGACG





ESYT3
65
TGCCTCAGCGTGCTAATCAATGGCTGCAGAAACCTAACACCATGTACCAGCAGTGGAGCTGATCCCTACGTC




CGTGTCTACTTGTTGCCAGAAAGGAAGTGGGCATGTCGTAAGAAGACTTCAGTGAAGCGGAAGACCTTGGAA




CCCCTGTTTGATGAGACATTTGAATTTTTTGTTCCCATGGAAGAAGTAAAGAAGAGGTCACTAGATGTTGCA




GTGAAAAATAGTAGGCCACTTGGCTCACACAGAAGAAAGGAGTTAGGAAAAGTACTGATTGACTTATCAAAA




GAAGATCTGATTAAGGGCTTTTCACAATGGTATGAG





DYSF
66
ATGCTGTGCTGCCTGCTGGTGAGGGCCAGCAACCTCCCCAGTGCGAAGAAGGACCGGCGCAGCGACCCTGTC




GCAAGCCTGACTTTCCGAGGGGTGAAGAAGAGAACCAAAGTCATCAAGAACAGCGTGAACCCTGTATGGAAT




GAGGGATTTGAATGGGACCTCAAGGGCATCCCCCTGGACCAGGGCTCTGAGCTTCATGTGGTGGTCAAAGAC




CATGAGACGATGGGGAGGAACAGGTTCCTGGGGGAAGCCAAGGTCCCACTCCGAGAGGTCCTCGCCACCCCT




AGTCTGTCCGCCAGC





MYOF
67
ATGCTGCGAGTGATTGTGGAATCTGCCAGCAATATCCCTAAAACGAAATTTGGCAAGCCGGATCCTATTGTT




TCTGTCATTTTTAAGGATGAGAAAAAGAAAACAAAGAAAGTTGATAATGAATTGAACCCTGTCTGGAATGAG




ATTTTGGAGTTTGACTTGAGGGGTATACCACTGGACTTTTCATCTTCCCTTGGGATTATTGTGAAAGATTTT




GAGACAATTGGACAAAATAAATTAATTGGCACGGCGACTGTAGCCCTGAAGGACCTGACTGGTGACCAGAGC




AGATCCCTGCCG





FR1L5
68
CAGGTTCGAGTGAAGGTGTTTGAAGCCCGACAGCTCATGGGCAACAACATCAAACCAGTGGTGAAGGTGTCC




ATCGCAGGCCAGCAGCACCAGACACGCATCAAGATGGGAAACAACCCTTTCTTTAATGAGATCTTCTTCCAG




AATTTTCATGAGGTTCCTGCAAAGTTCTTTGATGAGACCATCTTAATCCAGACAGATATTGGGTTTATCTAC




CATTCTCCAGGTCACACACTCCTAAGGAAATGGCTAGGCCTCTGCCAGCCAAATAACCCTGGCAGTGGT
















TABLE 4







C2 Domain-Containing Constructs











SEQ




Insertion
ID NO:
C2 domain:
BoNT/A with C2 Domain





N-terminal
69
RP3A (C2
ATGTCCCTGCAGTGCACCATCATTAAGGCCAAGGGCCTGAAGCCCATGGATTCAAACGGCTTGGC




domain 1)
TGATCCCTACGTTAAGCTGCACCTCCTGCCGGGAGCCAGCAAGTCCAACAAGCTTCGTACAAAAA





CTCTGCGGAATACCCGGAACCCCATCTGGAATGAGACCCTCGTGTATCACGGCATCACCGATGAG





GACATGCAAAGGAAGACCCTCAGGATCTCCGTCTGTGATGAGGACAAATTTGGCCACAATGAATT





TATTGGTGAGACCAGATTCTCCCTCAAGAAACTGAAGCCCAACCAGAGGAAGAATTTCAACCCAT





TTGTTAATAAACAATTTAATTATAAAGATCCTGTAAATGGTGTTGATATTGCTTATATAAAAATT





CCAAATGCAGGACAAATGCAACCAGTAAAAGCTTTTAAAATTCATAATAAAATATGGGTTATTCC





AGAAAGAGATACATTTACAAATCCTGAAGAAGGAGATTTAAATCCACCACCAGAAGCAAAACAAG





TTCCAGTTTCATATTATGATTCAACATATTTAAGTACAGATAATGAAAAAGATAATTATTTAAAG





GGAGTTACAAAATTATTTGAGAGAATTTATTCAACTGATCTTGGAAGAATGTTGTTAACATCAAT





AGTAAGGGGAATACCATTTTGGGGTGGAAGTACAATAGATACAGAATTAAAAGTTATTGATACTA





ATTGTATTAATGTGATACAACCAGATGGTAGTTATAGATCAGAAGAACTTAATCTAGTAATAATA





GGACCCTCAGCTGATATTATACAGTTTGAATGTAAAAGCTTTGGACATGAAGTTTTGAATCTTAC





GCGAAATGGTTATGGCTCTACTCAATACATTAGATTTAGCCCAGATTTTACATTTGGTTTTGAGG





AGTCACTTGAAGTTGATACAAATCCTCTTTTAGGTGCAGGCAAATTTGCTACAGATCCAGCAGTA





ACATTAGCACATGAACTTATACATGCTGGACATAGATTATATGGAATAGCAATTAATCCAAATAG





GGTTTTTAAAGTAAATACTAATGCCTATTATGAAATGAGTGGGTTAGAAGTAAGCTTTGAGGAAC





TTAGAACATTTGGGGGACATGATGCAAAGTTTATAGATAGTTTACAGGAAAACGAATTTCGTCTA





TATTATTATAATAAGTTTAAAGATATAGCAAGTACACTTAATAAAGCTAAATCAATAGTAGGTAC





TACTGCTTCATTACAGTATATGAAAAATGTTTTTAAAGAGAAATATCTCCTATCTGAAGATACAT





CTGGAAAATTTTCGGTAGATAAATTAAAATTTGATAAGTTATACAAAATGTTAACAGAGATTTAC





ACAGAGGATAATTTTGTTAAGTTTTTTAAAGTACTTAACAGAAAAACATATTTGAATTTTGATAA





AGCCGTATTTAAGATAAATATAGTACCTAAGGTAAATTACACAATATATGATGGATTTAATTTAA





GAAATACAAATTTAGCAGCAAACTTTAATGGTCAAAATACAGAAATTAATAATATGAATTTTACT





AAACTAAAAAATTTTACTGGATTGTTTGAATTTTATAAGTTGCTATGTGTGCGCGGCATCATTAC





CAGCAAGGCAGGTGCGGGCAAGTCCTTGGTTCCGCGTGGCAGCGCCGGCGCCGGCGCGCTCAATG





ATCTGTGTATCAAAGTTAATAATTGGGACTTGTTTTTTAGTCCTTCAGAAGATAATTTTACTAAT





GATCTAAATAAAGGAGAAGAAATTACATCTGATACTAATATAGAAGCAGCAGAAGAAAATATTAG





TTTAGATTTAATACAACAATATTATTTAACCTTTAATTTTGATAATGAACCTGAAAATATTTCAA





TAGAAAATCTTTCAAGTGACATTATAGGCCAATTAGAACTTATGCCTAATATAGAAAGATTTCCT





AATGGAAAAAAGTATGAGTTAGATAAATATACTATGTTCCATTATCTTCGTGCTCAAGAATTTGA





ACATGGTAAATCTAGGATTGCTTTAACAAATTCTGTTAACGAAGCATTATTAAATCCTAGTCGTG





TTTATACATTTTTTTCTTCAGACTATGTAAAGAAAGTTAATAAAGCTACGGAGGCAGCTATGTTT





TTAGGCTGGGTAGAACAATTAGTATATGATTTTACCGATGAAACTAGCGAAGTAAGTACTACGGA





TAAAATTGCGGATATAACTATAATTATTCCATATATAGGACCTGCTTTAAATATAGGTAATATGT





TATATAAAGATGATTTTGTAGGTGCTTTAATATTTTCAGGAGCTGTTATTCTGTTAGAATTTATA





CCAGAGATTGCAATACCTGTATTAGGTACTTTTGCACTTGTATCATATATTGCGAATAAGGTTCT





AACCGTTCAAACAATAGATAATGCTTTAAGTAAAAGAAATGAAAAATGGGATGAGGTCTATAAAT





ATATAGTAACAAATTGGTTAGCAAAGGTTAATACACAGATTGATCTAATAAGAAAAAAAATGAAA





GAAGCTTTAGAAAATCAAGCAGAAGCAACAAAGGCTATAATAAACTATCAGTATAATCAATATAC





TGAGGAAGAGAAAAATAATATTAATTTTAATATTGATGATTTAAGTTCGAAACTTAATGAGTCTA





TAAATAAAGCTATGATTAATATAAATAAATTTTTGAATCAATGCTCTGTTTCATATTTAATGAAT





TCTATGATCCCTTATGGTGTTAAACGGTTAGAAGATTTTGATGCTAGTCTTAAAGATGCATTATT





AAAGTATATATATGATAATAGAGGAACTTTAATTGGTCAAGTAGATAGATTAAAAGATAAAGTTA





ATAATACACTTAGTACAGATATACCTTTTCAGCTTTCCAAATACGTAGATAATCAAAGATTATTA





TCTACATTTACTGAATATATTAAGAATATTATTAATACTTCTATATTGAATTTAAGATATGAAAG





TAATCATTTAATAGACTTATCTAGGTATGCATCAAAAATAAATATTGGTAGTAAAGTAAATTTTG





ATCCAATAGATAAAAATCAAATTCAATTATTTAATTTAGAAAGTAGTAAAATTGAGGTAATTTTA





AAAAATGCTATTGTATATAATAGTATGTATGAAAATTTTAGTACTAGCTTTTGGATAAGAATTCC





TAAGTATTTTAACAGTATAAGTCTAAATAATGAATATACAATAATAAATTGTATGGAAAATAATT





CAGGATGGAAAGTATCACTTAATTATGGTGAAATAATCTGGACTTTACAGGATACTCAGGAAATA





AAACAAAGAGTAGTTTTTAAATACAGTCAAATGATTAATATATCAGATTATATAAACAGATGGAT





TTTTGTAACTATCACTAATAATAGATTAAATAACTCTAAAATTTATATAAATGGAAGATTAATAG





ATCAAAAACCAATTTCAAATTTAGGTAATATTCATGCTAGTAATAATATAATGTTTAAATTAGAT





GGTTGTAGAGATACACATAGATATATTTGGATAAAATATTTTAATCTTTTTGATAAGGAATTAAA





TGAAAAAGAAATCAAAGATTTATATGATAATCAATCAAATTCAGGTATTTTAAAAGACTTTTGGG





GTGATTATTTACAATATGATAAACCATACTATATGTTAAATTTATATGATCCAAATAAATATGTC





GATGTAAATAATGTAGGTATTAGAGGTTATATGTATCTTAAAGGGCCTAGAGGTAGCGTAATGAC





TACAAACATTTATTTAAATTCAAGTTTGTATAGGGGGACAAAATTTATTATAAAAAAATATGCTT





CTGGAAATAAAGATAATATTGTTAGAAATAATGATCGTGTATATATTAATGTAGTAGTTAAAAAT





AAAGAATATAGGTTAGCTACTAATGCATCACAGGCAGGCGTAGAAAAAATACTAAGTGCATTAGA





AATACCTGATGTAGGAAATCTAAGTCAAGTAGTAGTAATGAAGTCAAAAAATGATCAAGGAATAA





CAAATAAATGCAAAATGAATTTACAAGATAATAATGGGAATGATATAGGCTTTATAGGATTTCAT





CAGTTTAATAATATAGCTAAACTAGTAGCAAGTAATTGGTATAATAGACAAATAGAAAGATCTAG





TAGGACTTTGGGTTGCTCATGGGAATTTATTCCTGTAGATGATGGATGGGGAGAAAGGCCACTGT





AA





N-terminal
70
ESYT2
ATGCTGGGGCAGATCCAGCTGACCATCCGGCACAGCTCGCAGAGAAACAAGCTTATCGTGGTCGT





GCATGCCTGCAGAAACCTCATTGCCTTCTCTGAAGACGGCTCTGACCCCTATGTCCGCATGTATT





TATTACCAGACAAGAGGCGGTCAGGAAGGAGGAAAACACACGTGTCAAAGAAAACATTAAATCCA





GTGTTTGATCAAAGCTTTGATTTCAGTGTTTCGTTACCAGAAGTGCAGAGGAGAACGCTCGACGT





TGCCGTGAAGAACAGTGGCGGCTTCCTGTCCAAAGACAAAGGGCTCCTTGGCAAAGTATTGGTTG





CTCTGGCATCTGAAGAACTTGCCAAAGGCTGGACCCAGTGGTATGACCTCACGGAAGATGGGACG





CCATTTGTTAATAAACAATTTAATTATAAAGATCCTGTAAATGGTGTTGATATTGCTTATATAAA





AATTCCAAATGCAGGACAAATGCAACCAGTAAAAGCTTTTAAAATTCATAATAAAATATGGGTTA





TTCCAGAAAGAGATACATTTACAAATCCTGAAGAAGGAGATTTAAATCCACCACCAGAAGCAAAA





CAAGTTCCAGTTTCATATTATGATTCAACATATTTAAGTACAGATAATGAAAAAGATAATTATTT





AAAGGGAGTTACAAAATTATTTGAGAGAATTTATTCAACTGATCTTGGAAGAATGTTGTTAACAT





CAATAGTAAGGGGAATACCATTTTGGGGTGGAAGTACAATAGATACAGAATTAAAAGTTATTGAT





ACTAATTGTATTAATGTGATACAACCAGATGGTAGTTATAGATCAGAAGAACTTAATCTAGTAAT





AATAGGACCCTCAGCTGATATTATACAGTTTGAATGTAAAAGCTTTGGACATGAAGTTTTGAATC





TTACGCGAAATGGTTATGGCTCTACTCAATACATTAGATTTAGCCCAGATTTTACATTTGGTTTT





GAGGAGTCACTTGAAGTTGATACAAATCCTCTTTTAGGTGCAGGCAAATTTGCTACAGATCCAGC





AGTAACATTAGCACATGAACTTATACATGCTGGACATAGATTATATGGAATAGCAATTAATCCAA





ATAGGGTTTTTAAAGTAAATACTAATGCCTATTATGAAATGAGTGGGTTAGAAGTAAGCTTTGAG





GAACTTAGAACATTTGGGGGACATGATGCAAAGTTTATAGATAGTTTACAGGAAAACGAATTTCG





TCTATATTATTATAATAAGTTTAAAGATATAGCAAGTACACTTAATAAAGCTAAATCAATAGTAG





GTACTACTGCTTCATTACAGTATATGAAAAATGTTTTTAAAGAGAAATATCTCCTATCTGAAGAT





ACATCTGGAAAATTTTCGGTAGATAAATTAAAATTTGATAAGTTATACAAAATGTTAACAGAGAT





TTACACAGAGGATAATTTTGTTAAGTTTTTTAAAGTACTTAACAGAAAAACATATTTGAATTTTG





ATAAAGCCGTATTTAAGATAAATATAGTACCTAAGGTAAATTACACAATATATGATGGATTTAAT





TTAAGAAATACAAATTTAGCAGCAAACTTTAATGGTCAAAATACAGAAATTAATAATATGAATTT





TACTAAACTAAAAAATTTTACTGGATTGTTTGAATTTTATAAGTTGCTATGTGTGCGCGGCATCA





TTACCAGCAAGGCAGGTGCGGGCAAGTCCTTGGTTCCGCGTGGCAGCGCCGGCGCCGGCGCGCTC





AATGATCTGTGTATCAAAGTTAATAATTGGGACTTGTTTTTTAGTCCTTCAGAAGATAATTTTAC





TAATGATCTAAATAAAGGAGAAGAAATTACATCTGATACTAATATAGAAGCAGCAGAAGAAAATA





TTAGTTTAGATTTAATACAACAATATTATTTAACCTTTAATTTTGATAATGAACCTGAAAATATT





TCAATAGAAAATCTTTCAAGTGACATTATAGGCCAATTAGAACTTATGCCTAATATAGAAAGATT





TCCTAATGGAAAAAAGTATGAGTTAGATAAATATACTATGTTCCATTATCTTCGTGCTCAAGAAT





TTGAACATGGTAAATCTAGGATTGCTTTAACAAATTCTGTTAACGAAGCATTATTAAATCCTAGT





CGTGTTTATACATTTTTTTCTTCAGACTATGTAAAGAAAGTTAATAAAGCTACGGAGGCAGCTAT





GTTTTTAGGCTGGGTAGAACAATTAGTATATGATTTTACCGATGAAACTAGCGAAGTAAGTACTA





CGGATAAAATTGCGGATATAACTATAATTATTCCATATATAGGACCTGCTTTAAATATAGGTAAT





ATGTTATATAAAGATGATTTTGTAGGTGCTTTAATATTTTCAGGAGCTGTTATTCTGTTAGAATT





TATACCAGAGATTGCAATACCTGTATTAGGTACTTTTGCACTTGTATCATATATTGCGAATAAGG





TTCTAACCGTTCAAACAATAGATAATGCTTTAAGTAAAAGAAATGAAAAATGGGATGAGGTCTAT





AAATATATAGTAACAAATTGGTTAGCAAAGGTTAATACACAGATTGATCTAATAAGAAAAAAAAT





GAAAGAAGCTTTAGAAAATCAAGCAGAAGCAACAAAGGCTATAATAAACTATCAGTATAATCAAT





ATACTGAGGAAGAGAAAAATAATATTAATTTTAATATTGATGATTTAAGTTCGAAACTTAATGAG





TCTATAAATAAAGCTATGATTAATATAAATAAATTTTTGAATCAATGCTCTGTTTCATATTTAAT





GAATTCTATGATCCCTTATGGTGTTAAACGGTTAGAAGATTTTGATGCTAGTCTTAAAGATGCAT





TATTAAAGTATATATATGATAATAGAGGAACTTTAATTGGTCAAGTAGATAGATTAAAAGATAAA





GTTAATAATACACTTAGTACAGATATACCTTTTCAGCTTTCCAAATACGTAGATAATCAAAGATT





ATTATCTACATTTACTGAATATATTAAGAATATTATTAATACTTCTATATTGAATTTAAGATATG





AAAGTAATCATTTAATAGACTTATCTAGGTATGCATCAAAAATAAATATTGGTAGTAAAGTAAAT





TTTGATCCAATAGATAAAAATCAAATTCAATTATTTAATTTAGAAAGTAGTAAAATTGAGGTAAT





TTTAAAAAATGCTATTGTATATAATAGTATGTATGAAAATTTTAGTACTAGCTTTTGGATAAGAA





TTCCTAAGTATTTTAACAGTATAAGTCTAAATAATGAATATACAATAATAAATTGTATGGAAAAT





AATTCAGGATGGAAAGTATCACTTAATTATGGTGAAATAATCTGGACTTTACAGGATACTCAGGA





AATAAAACAAAGAGTAGTTTTTAAATACAGTCAAATGATTAATATATCAGATTATATAAACAGAT





GGATTTTTGTAACTATCACTAATAATAGATTAAATAACTCTAAAATTTATATAAATGGAAGATTA





ATAGATCAAAAACCAATTTCAAATTTAGGTAATATTCATGCTAGTAATAATATAATGTTTAAATT





AGATGGTTGTAGAGATACACATAGATATATTTGGATAAAATATTTTAATCTTTTTGATAAGGAAT





TAAATGAAAAAGAAATCAAAGATTTATATGATAATCAATCAAATTCAGGTATTTTAAAAGACTTT





TGGGGTGATTATTTACAATATGATAAACCATACTATATGTTAAATTTATATGATCCAAATAAATA





TGTCGATGTAAATAATGTAGGTATTAGAGGTTATATGTATCTTAAAGGGCCTAGAGGTAGCGTAA





TGACTACAAACATTTATTTAAATTCAAGTTTGTATAGGGGGACAAAATTTATTATAAAAAAATAT





GCTTCTGGAAATAAAGATAATATTGTTAGAAATAATGATCGTGTATATATTAATGTAGTAGTTAA





AAATAAAGAATATAGGTTAGCTACTAATGCATCACAGGCAGGCGTAGAAAAAATACTAAGTGCAT





TAGAAATACCTGATGTAGGAAATCTAAGTCAAGTAGTAGTAATGAAGTCAAAAAATGATCAAGGA





ATAACAAATAAATGCAAAATGAATTTACAAGATAATAATGGGAATGATATAGGCTTTATAGGATT





TCATCAGTTTAATAATATAGCTAAACTAGTAGCAAGTAATTGGTATAATAGACAAATAGAAAGAT





CTAGTAGGACTTTGGGTTGCTCATGGGAATTTATTCCTGTAGATGATGGATGGGGAGAAAGGCCA





CTGTAA





Linker
71
RP3A (C2
ATGCCATTTGTTAATAAACAATTTAATTATAAAGATCCTGTAAATGGTGTTGATATTGCTTATAT


region

domain 1)
AAAAATTCCAAATGCAGGACAAATGCAACCAGTAAAAGCTTTTAAAATTCATAATAAAATATGGG





TTATTCCAGAAAGAGATACATTTACAAATCCTGAAGAAGGAGATTTAAATCCACCACCAGAAGCA





AAACAAGTTCCAGTTTCATATTATGATTCAACATATTTAAGTACAGATAATGAAAAAGATAATTA





TTTAAAGGGAGTTACAAAATTATTTGAGAGAATTTATTCAACTGATCTTGGAAGAATGTTGTTAA





CATCAATAGTAAGGGGAATACCATTTTGGGGTGGAAGTACAATAGATACAGAATTAAAAGTTATT





GATACTAATTGTATTAATGTGATACAACCAGATGGTAGTTATAGATCAGAAGAACTTAATCTAGT





AATAATAGGACCCTCAGCTGATATTATACAGTTTGAATGTAAAAGCTTTGGACATGAAGTTTTGA





ATCTTACGCGAAATGGTTATGGCTCTACTCAATACATTAGATTTAGCCCAGATTTTACATTTGGT





TTTGAGGAGTCACTTGAAGTTGATACAAATCCTCTTTTAGGTGCAGGCAAATTTGCTACAGATCC





AGCAGTAACATTAGCACATGAACTTATACATGCTGGACATAGATTATATGGAATAGCAATTAATC





CAAATAGGGTTTTTAAAGTAAATACTAATGCCTATTATGAAATGAGTGGGTTAGAAGTAAGCTTT





GAGGAACTTAGAACATTTGGGGGACATGATGCAAAGTTTATAGATAGTTTACAGGAAAACGAATT





TCGTCTATATTATTATAATAAGTTTAAAGATATAGCAAGTACACTTAATAAAGCTAAATCAATAG





TAGGTACTACTGCTTCATTACAGTATATGAAAAATGTTTTTAAAGAGAAATATCTCCTATCTGAA





GATACATCTGGAAAATTTTCGGTAGATAAATTAAAATTTGATAAGTTATACAAAATGTTAACAGA





GATTTACACAGAGGATAATTTTGTTAAGTTTTTTAAAGTACTTAACAGAAAAACATATTTGAATT





TTGATAAAGCCGTATTTAAGATAAATATAGTACCTAAGGTAAATTACACAATATATGATGGATTT





AATTTAAGAAATACAAATTTAGCAGCAAACTTTAATGGTCAAAATACAGAAATTAATAATATGAA





TTTTACTAAACTAAAAAATTTTACTGGATTGTTTGAATTTTATAAGTTGCTATGTGTGCGCGGCA





TCATTACCTCCCTGCAGTGCACCATCATTAAGGCCAAGGGCCTGAAGCCCATGGATTCAAACGGC





TTGGCTGATCCCTACGTTAAGCTGCACCTCCTGCCGGGAGCCAGCAAGTCCAACAAGCTTCGTAC





AAAAACTCTGCGGAATACCCGGAACCCCATCTGGAATGAGACCCTCGTGTATCACGGCATCACCG





ATGAGGACATGCAAAGGAAGACCCTCAGGATCTCCGTCTGTGATGAGGACAAATTTGGCCACAAT





GAATTTATTGGTGAGACCAGATTCTCCCTCAAGAAACTGAAGCCCAACCAGAGGAAGAATTTCAA





CAGCAAGGCAGGTGCGGGCAAGTCCTTGGTTCCGCGTGGCAGCGCCGGCGCCGGCGCGCTCAATG





ATCTGTGTATCAAAGTTAATAATTGGGACTTGTTTTTTAGTCCTTCAGAAGATAATTTTACTAAT





GATCTAAATAAAGGAGAAGAAATTACATCTGATACTAATATAGAAGCAGCAGAAGAAAATATTAG





TTTAGATTTAATACAACAATATTATTTAACCTTTAATTTTGATAATGAACCTGAAAATATTTCAA





TAGAAAATCTTTCAAGTGACATTATAGGCCAATTAGAACTTATGCCTAATATAGAAAGATTTCCT





AATGGAAAAAAGTATGAGTTAGATAAATATACTATGTTCCATTATCTTCGTGCTCAAGAATTTGA





ACATGGTAAATCTAGGATTGCTTTAACAAATTCTGTTAACGAAGCATTATTAAATCCTAGTCGTG





TTTATACATTTTTTTCTTCAGACTATGTAAAGAAAGTTAATAAAGCTACGGAGGCAGCTATGTTT





TTAGGCTGGGTAGAACAATTAGTATATGATTTTACCGATGAAACTAGCGAAGTAAGTACTACGGA





TAAAATTGCGGATATAACTATAATTATTCCATATATAGGACCTGCTTTAAATATAGGTAATATGT





TATATAAAGATGATTTTGTAGGTGCTTTAATATTTTCAGGAGCTGTTATTCTGTTAGAATTTATA





CCAGAGATTGCAATACCTGTATTAGGTACTTTTGCACTTGTATCATATATTGCGAATAAGGTTCT





AACCGTTCAAACAATAGATAATGCTTTAAGTAAAAGAAATGAAAAATGGGATGAGGTCTATAAAT





ATATAGTAACAAATTGGTTAGCAAAGGTTAATACACAGATTGATCTAATAAGAAAAAAAATGAAA





GAAGCTTTAGAAAATCAAGCAGAAGCAACAAAGGCTATAATAAACTATCAGTATAATCAATATAC





TGAGGAAGAGAAAAATAATATTAATTTTAATATTGATGATTTAAGTTCGAAACTTAATGAGTCTA





TAAATAAAGCTATGATTAATATAAATAAATTTTTGAATCAATGCTCTGTTTCATATTTAATGAAT





TCTATGATCCCTTATGGTGTTAAACGGTTAGAAGATTTTGATGCTAGTCTTAAAGATGCATTATT





AAAGTATATATATGATAATAGAGGAACTTTAATTGGTCAAGTAGATAGATTAAAAGATAAAGTTA





ATAATACACTTAGTACAGATATACCTTTTCAGCTTTCCAAATACGTAGATAATCAAAGATTATTA





TCTACATTTACTGAATATATTAAGAATATTATTAATACTTCTATATTGAATTTAAGATATGAAAG





TAATCATTTAATAGACTTATCTAGGTATGCATCAAAAATAAATATTGGTAGTAAAGTAAATTTTG





ATCCAATAGATAAAAATCAAATTCAATTATTTAATTTAGAAAGTAGTAAAATTGAGGTAATTTTA





AAAAATGCTATTGTATATAATAGTATGTATGAAAATTTTAGTACTAGCTTTTGGATAAGAATTCC





TAAGTATTTTAACAGTATAAGTCTAAATAATGAATATACAATAATAAATTGTATGGAAAATAATT





CAGGATGGAAAGTATCACTTAATTATGGTGAAATAATCTGGACTTTACAGGATACTCAGGAAATA





AAACAAAGAGTAGTTTTTAAATACAGTCAAATGATTAATATATCAGATTATATAAACAGATGGAT





TTTTGTAACTATCACTAATAATAGATTAAATAACTCTAAAATTTATATAAATGGAAGATTAATAG





ATCAAAAACCAATTTCAAATTTAGGTAATATTCATGCTAGTAATAATATAATGTTTAAATTAGAT





GGTTGTAGAGATACACATAGATATATTTGGATAAAATATTTTAATCTTTTTGATAAGGAATTAAA





TGAAAAAGAAATCAAAGATTTATATGATAATCAATCAAATTCAGGTATTTTAAAAGACTTTTGGG





GTGATTATTTACAATATGATAAACCATACTATATGTTAAATTTATATGATCCAAATAAATATGTC





GATGTAAATAATGTAGGTATTAGAGGTTATATGTATCTTAAAGGGCCTAGAGGTAGCGTAATGAC





TACAAACATTTATTTAAATTCAAGTTTGTATAGGGGGACAAAATTTATTATAAAAAAATATGCTT





CTGGAAATAAAGATAATATTGTTAGAAATAATGATCGTGTATATATTAATGTAGTAGTTAAAAAT





AAAGAATATAGGTTAGCTACTAATGCATCACAGGCAGGCGTAGAAAAAATACTAAGTGCATTAGA





AATACCTGATGTAGGAAATCTAAGTCAAGTAGTAGTAATGAAGTCAAAAAATGATCAAGGAATAA





CAAATAAATGCAAAATGAATTTACAAGATAATAATGGGAATGATATAGGCTTTATAGGATTTCAT





CAGTTTAATAATATAGCTAAACTAGTAGCAAGTAATTGGTATAATAGACAAATAGAAAGATCTAG





TAGGACTTTGGGTTGCTCATGGGAATTTATTCCTGTAGATGATGGATGGGGAGAAAGGCCACTGT





AA





Linker
72
ESYT2
ATGCCATTTGTTAATAAACAATTTAATTATAAAGATCCTGTAAATGGTGTTGATATTGCTTATAT


region


AAAAATTCCAAATGCAGGACAAATGCAACCAGTAAAAGCTTTTAAAATTCATAATAAAATATGGG





TTATTCCAGAAAGAGATACATTTACAAATCCTGAAGAAGGAGATTTAAATCCACCACCAGAAGCA





AAACAAGTTCCAGTTTCATATTATGATTCAACATATTTAAGTACAGATAATGAAAAAGATAATTA





TTTAAAGGGAGTTACAAAATTATTTGAGAGAATTTATTCAACTGATCTTGGAAGAATGTTGTTAA





CATCAATAGTAAGGGGAATACCATTTTGGGGTGGAAGTACAATAGATACAGAATTAAAAGTTATT





GATACTAATTGTATTAATGTGATACAACCAGATGGTAGTTATAGATCAGAAGAACTTAATCTAGT





AATAATAGGACCCTCAGCTGATATTATACAGTTTGAATGTAAAAGCTTTGGACATGAAGTTTTGA





ATCTTACGCGAAATGGTTATGGCTCTACTCAATACATTAGATTTAGCCCAGATTTTACATTTGGT





TTTGAGGAGTCACTTGAAGTTGATACAAATCCTCTTTTAGGTGCAGGCAAATTTGCTACAGATCC





AGCAGTAACATTAGCACATGAACTTATACATGCTGGACATAGATTATATGGAATAGCAATTAATC





CAAATAGGGTTTTTAAAGTAAATACTAATGCCTATTATGAAATGAGTGGGTTAGAAGTAAGCTTT





GAGGAACTTAGAACATTTGGGGGACATGATGCAAAGTTTATAGATAGTTTACAGGAAAACGAATT





TCGTCTATATTATTATAATAAGTTTAAAGATATAGCAAGTACACTTAATAAAGCTAAATCAATAG





TAGGTACTACTGCTTCATTACAGTATATGAAAAATGTTTTTAAAGAGAAATATCTCCTATCTGAA





GATACATCTGGAAAATTTTCGGTAGATAAATTAAAATTTGATAAGTTATACAAAATGTTAACAGA





GATTTACACAGAGGATAATTTTGTTAAGTTTTTTAAAGTACTTAACAGAAAAACATATTTGAATT





TTGATAAAGCCGTATTTAAGATAAATATAGTACCTAAGGTAAATTACACAATATATGATGGATTT





AATTTAAGAAATACAAATTTAGCAGCAAACTTTAATGGTCAAAATACAGAAATTAATAATATGAA





TTTTACTAAACTAAAAAATTTTACTGGATTGTTTGAATTTTATAAGTTGCTATGTGTGCGCGGCA





TCATTACCCTGGGGCAGATCCAGCTGACCATCCGGCACAGCTCGCAGAGAAACAAGCTTATCGTG





GTCGTGCATGCCTGCAGAAACCTCATTGCCTTCTCTGAAGACGGCTCTGACCCCTATGTCCGCAT





GTATTTATTACCAGACAAGAGGCGGTCAGGAAGGAGGAAAACACACGTGTCAAAGAAAACATTAA





ATCCAGTGTTTGATCAAAGCTTTGATTTCAGTGTTTCGTTACCAGAAGTGCAGAGGAGAACGCTC





GACGTTGCCGTGAAGAACAGTGGCGGCTTCCTGTCCAAAGACAAAGGGCTCCTTGGCAAAGTATT





GGTTGCTCTGGCATCTGAAGAACTTGCCAAAGGCTGGACCCAGTGGTATGACCTCACGGAAGATG





GGACGAGCAAGGCAGGTGCGGGCAAGTCCTTGGTTCCGCGTGGCAGCGCCGGCGCCGGCGCGCTC





AATGATCTGTGTATCAAAGTTAATAATTGGGACTTGTTTTTTAGTCCTTCAGAAGATAATTTTAC





TAATGATCTAAATAAAGGAGAAGAAATTACATCTGATACTAATATAGAAGCAGCAGAAGAAAATA





TTAGTTTAGATTTAATACAACAATATTATTTAACCTTTAATTTTGATAATGAACCTGAAAATATT





TCAATAGAAAATCTTTCAAGTGACATTATAGGCCAATTAGAACTTATGCCTAATATAGAAAGATT





TCCTAATGGAAAAAAGTATGAGTTAGATAAATATACTATGTTCCATTATCTTCGTGCTCAAGAAT





TTGAACATGGTAAATCTAGGATTGCTTTAACAAATTCTGTTAACGAAGCATTATTAAATCCTAGT





CGTGTTTATACATTTTTTTCTTCAGACTATGTAAAGAAAGTTAATAAAGCTACGGAGGCAGCTAT





GTTTTTAGGCTGGGTAGAACAATTAGTATATGATTTTACCGATGAAACTAGCGAAGTAAGTACTA





CGGATAAAATTGCGGATATAACTATAATTATTCCATATATAGGACCTGCTTTAAATATAGGTAAT





ATGTTATATAAAGATGATTTTGTAGGTGCTTTAATATTTTCAGGAGCTGTTATTCTGTTAGAATT





TATACCAGAGATTGCAATACCTGTATTAGGTACTTTTGCACTTGTATCATATATTGCGAATAAGG





TTCTAACCGTTCAAACAATAGATAATGCTTTAAGTAAAAGAAATGAAAAATGGGATGAGGTCTAT





AAATATATAGTAACAAATTGGTTAGCAAAGGTTAATACACAGATTGATCTAATAAGAAAAAAAAT





GAAAGAAGCTTTAGAAAATCAAGCAGAAGCAACAAAGGCTATAATAAACTATCAGTATAATCAAT





ATACTGAGGAAGAGAAAAATAATATTAATTTTAATATTGATGATTTAAGTTCGAAACTTAATGAG





TCTATAAATAAAGCTATGATTAATATAAATAAATTTTTGAATCAATGCTCTGTTTCATATTTAAT





GAATTCTATGATCCCTTATGGTGTTAAACGGTTAGAAGATTTTGATGCTAGTCTTAAAGATGCAT





TATTAAAGTATATATATGATAATAGAGGAACTTTAATTGGTCAAGTAGATAGATTAAAAGATAAA





GTTAATAATACACTTAGTACAGATATACCTTTTCAGCTTTCCAAATACGTAGATAATCAAAGATT





ATTATCTACATTTACTGAATATATTAAGAATATTATTAATACTTCTATATTGAATTTAAGATATG





AAAGTAATCATTTAATAGACTTATCTAGGTATGCATCAAAAATAAATATTGGTAGTAAAGTAAAT





TTTGATCCAATAGATAAAAATCAAATTCAATTATTTAATTTAGAAAGTAGTAAAATTGAGGTAAT





TTTAAAAAATGCTATTGTATATAATAGTATGTATGAAAATTTTAGTACTAGCTTTTGGATAAGAA





TTCCTAAGTATTTTAACAGTATAAGTCTAAATAATGAATATACAATAATAAATTGTATGGAAAAT





AATTCAGGATGGAAAGTATCACTTAATTATGGTGAAATAATCTGGACTTTACAGGATACTCAGGA





AATAAAACAAAGAGTAGTTTTTAAATACAGTCAAATGATTAATATATCAGATTATATAAACAGAT





GGATTTTTGTAACTATCACTAATAATAGATTAAATAACTCTAAAATTTATATAAATGGAAGATTA





ATAGATCAAAAACCAATTTCAAATTTAGGTAATATTCATGCTAGTAATAATATAATGTTTAAATT





AGATGGTTGTAGAGATACACATAGATATATTTGGATAAAATATTTTAATCTTTTTGATAAGGAAT





TAAATGAAAAAGAAATCAAAGATTTATATGATAATCAATCAAATTCAGGTATTTTAAAAGACTTT





TGGGGTGATTATTTACAATATGATAAACCATACTATATGTTAAATTTATATGATCCAAATAAATA





TGTCGATGTAAATAATGTAGGTATTAGAGGTTATATGTATCTTAAAGGGCCTAGAGGTAGCGTAA





TGACTACAAACATTTATTTAAATTCAAGTTTGTATAGGGGGACAAAATTTATTATAAAAAAATAT





GCTTCTGGAAATAAAGATAATATTGTTAGAAATAATGATCGTGTATATATTAATGTAGTAGTTAA





AAATAAAGAATATAGGTTAGCTACTAATGCATCACAGGCAGGCGTAGAAAAAATACTAAGTGCAT





TAGAAATACCTGATGTAGGAAATCTAAGTCAAGTAGTAGTAATGAAGTCAAAAAATGATCAAGGA





ATAACAAATAAATGCAAAATGAATTTACAAGATAATAATGGGAATGATATAGGCTTTATAGGATT





TCATCAGTTTAATAATATAGCTAAACTAGTAGCAAGTAATTGGTATAATAGACAAATAGAAAGAT





CTAGTAGGACTTTGGGTTGCTCATGGGAATTTATTCCTGTAGATGATGGATGGGGAGAAAGGCCA





CTGTAA
















TABLE 5







C2 Domain-Containing Proteins Listed in UniProtKB/Swiss-Prot (Reviewed Proteins)


[Domain(s): C2 domain(s) = C2 calcium-dependent membrane targeting domain(s);


number in parentheses = number of C2 domains in protein]















Entry
Entry name
Domain(s)
Entry
Entry name
Domain(s)
Entry
Entry name
Domain(s)





P34885
KPC1B_CAEEL
C2 domain (1)
Q16974
KPC1_APLCA
C2 domain (1)
P05130
KPC1_DROME
C2 domain (1)


Q25378
KPC1_LYTPI
C2 domain (1)
Q16975
KPC2_APLCA
C2 domain (1)
P90980
KPC2_CAEEL
C2 domain (1)


P13677
KPC2_DROME
C2 domain (1)
P04409
KPCA_BOVIN
C2 domain (1)
P17252
KPCA_HUMAN
C2 domain (1)


P20444
KPCA_MOUSE
C2 domain (1)
P10102
KPCA_RABIT
C2 domain (1)
P05696
KPCA_RAT
C2 domain (1)


P05126
KPCB_BOVIN
C2 domain (1)
Q7SY24
KPCB_DANRE
C2 domain (1)
P05771
KPCB_HUMAN
C2 domain (1)


P68404
KPCB_MOUSE
C2 domain (1)
P05772
KPCB_RABIT
C2 domain (1)
P68403
KPCB_RAT
C2 domain (1)


Q7LZQ8
KPCB_XENLA
C2 domain (1)
A8KBH6
KPCB_XENTR
C2 domain (1)
Q5PU49
KPCD_CANFA
C2 domain (1)


Q05655
KPCD_HUMAN
C2 domain (1)
P28867
KPCD_MOUSE
C2 domain (1)
P09215
KPCD_RAT
C2 domain (1)


Q02156
KPCE_HUMAN
C2 domain (1)
P16054
KPCE_MOUSE
C2 domain (1)
P10830
KPCE_RABIT
C2 domain (1)


P09216
KPCE_RAT
C2 domain (1)
P05128
KPCG_BOVIN
C2 domain (1)
P05129
KPCG_HUMAN
C2 domain (1)


Q4R4U2
KPCG_MACFA
C2 domain (1)
P63318
KPCG_MOUSE
C2 domain (1)
P10829
KPCG_RABIT
C2 domain (1)


P63319
KPCG_RAT
C2 domain (1)
P24723
KPCL_HUMAN
C2 domain (1)
P23298
KPCL_MOUSE
C2 domain (1)


Q64617
KPCL_RAT
C2 domain (1)
Q04759
KPCT_HUMAN
C2 domain (1)
Q02111
KPCT_MOUSE
C2 domain (1)


Q9WTQ0
KPCT_RAT
C2 domain (1)
P24583
KPC1_YEAST
C2 domain (1)
P11792
SCH9_YEAST
C2 domain (1)


Q54IF2
Y0670_DICDI
C2 domain (1)
A1A4I4
PKN1_BOVIN
C2 domain (1)
Q16512
PKN1_HUMAN
C2 domain (1)


P70268
PKN1_MOUSE
C2 domain (1)
Q63433
PKN1_RAT
C2 domain (1)
A7MBL8
PKN2_DANRE
C2 domain (1)


Q16513
PKN2_HUMAN
C2 domain (1)
Q8BWW9
PKN2_MOUSE
C2 domain (1)
O08874
PKN2_RAT
C2 domain (1)


A1Z7T0
PKN_DROME
C2 domain (1)
Q55A55
Y9848_DICDI
C2 domain (1)
Q8L7A4
AGD11_ARATH
C2 domain (1)


Q9FVJ3
AGD12_ARATH
C2 domain (1)
Q8LFN9
AGD13_ARATH
C2 domain (1)
P48423
GAP1_DROME
C2 domain (2)


C9J798
RAS4B_HUMAN
C2 domain (2)
Q15283
RASA2_HUMAN
C2 domain (2)
P58069
RASA2_MOUSE
C2 domain (2)


Q63713
RASA2_RAT
C2 domain (2)
Q28013
RASA3_BOVIN
C2 domain (2)
Q14644
RASA3_HUMAN
C2 domain (2)


Q60790
RASA3_MOUSE
C2 domain (2)
Q9QYJ2
RASA3_RAT
C2 domain (2)
O95294
RASL1_HUMAN
C2 domain (2)


Q9Z268
RASL1_MOUSE
C2 domain (2)
O43374
RASL2_HUMAN
C2 domain (2)
Q6PFQ7
RASL2_MOUSE
C2 domain (2)


Q86KB1
ADCB_DICDI
C2 domain (1)
Q55CH0
ADCC_DICDI
C2 domain (1)
Q941L2
BAP1_ARATH
C2 domain (1)


Q58FX0
BAP2_ARATH
C2 domain (1)
Q2KJ18
C2C4A_BOVIN
C2 domain (1)
Q8NCU7
C2C4A_HUMAN
C2 domain (1)


A6NLJ0
C2C4B_HUMAN
C2 domain (1)
Q8TF44
C2C4C_HUMAN
C2 domain (1)
Q5HZI2
C2C4C_MOUSE
C2 domain (1)


P0CG09
C2C4D_MOUSE
C2 domain (1)
Q6P1N0
C2D1A_HUMAN
C2 domain (1)
Q8K1A6
C2D1A_MOUSE
C2 domain (1)


Q66HA5
C2D1A_RAT
C2 domain (1)
Q5T0F9
C2D1B_HUMAN
C2 domain (1)
Q8BRN9
C2D1B_MOUSE
C2 domain (1)


Q5FVK6
C2D1B_RAT
C2 domain (1)
Q6PF54
C2D1B_XENLA
C2 domain (1)
Q9U2M8
C2D1_CAEEL
C2 domain (1)


Q9VKJ9
C2D1_DROME
C2 domain (1)
Q29M42
C2D1_DROPS
C2 domain (1)
Q9P2K1
C2D2A_HUMAN
C2 domain (1)


Q8CFW7
C2D2A_MOUSE
C2 domain (1)
B7Z1M9
C2D4D_HUMAN
C2 domain (1)
Q93XX4
C2D61_ARATH
C2 domain (1)


Q8N5R6
CCD33_HUMAN
C2 domain (1)
Q3ULW6
CCD33_MOUSE
C2 domain (1)
Q5XIR4
CCD33_RAT
C2 domain (1)


Q8MUF9
CPLA_DICDI
C2 domain (1)
Q9Y426
CU025_HUMAN
C2 domain (1)
A2WWV5
ERG1_ORYSI
C2 domain (1)


Q0JHU5
ERG1_ORYSJ
C2 domain (1)
Q25AG5
ERG3_ORYSI
C2 domain (1)
Q0JBH9
ERG3_ORYSJ
C2 domain (1)


O94701
INN1_SCHPO
C2 domain (1)
P53901
INN1_YEAST
C2 domain (1)
Q96PE3
INP4A_HUMAN
C2 domain (1)


Q9EPW0
INP4A_MOUSE
C2 domain (1)
Q62784
INP4A_RAT
C2 domain (1)
O15327
INP4B_HUMAN
C2 domain (1)


Q4R4D7
INP4B_MACFA
C2 domain (1)
Q6P1Y8
INP4B_MOUSE
C2 domain (1)
Q5RA60
INP4B_PONAB
C2 domain (1)


Q9QWG5
INP4B_RAT
C2 domain (1)
Q86YS7
K0528_HUMAN
C2 domain (1)
Q7TPS5
K0528_MOUSE
C2 domain (1)


Q5RDC8
K0528_PONAB
C2 domain (1)
Q28BX9
K0528_XENTR
C2 domain (1)
Q9ZT47
PP16A_CUCMA
C2 domain (1)


Q9ZT46
PP16B_CUCMA
C2 domain (1)
P53037
PSD2_YEAST
C2 domain (1)
O14111
PSD3_SCHPO
C2 domain (1)


Q9UJD0
RIMS3_HUMAN
C2 domain (1)
Q80U57
RIMS3_MOUSE
C2 domain (1)
Q9JIR3
RIMS3_RAT
C2 domain (1)


Q9H426
RIMS4_HUMAN
C2 domain (1)
P60191
RIMS4_MOUSE
C2 domain (1)
Q8CIX1
RIMS4_RAT
C2 domain (1)


Q9GLM3
RPGR1_BOVIN
C2 domain (1)
Q96KN7
RPGR1_HUMAN
C2 domain (1)
Q9EPQ2
RPGR1_MOUSE
C2 domain (1)


Q58G82
SY14L_HUMAN
C2 domain (1)
Q8N9U0
TAC2N_HUMAN
C2 domain (1)
Q91XT6
TAC2N_MOUSE
C2 domain (1)


Q9P2Y5
UVRAG_HUMAN
C2 domain (1)
Q9ULE0
WWC3_HUMAN
C2 domain (1)
Q54FM6
Y0753_DICDI
C2 domain (1)


Q9C8S6
Y1322_ARATH
C2 domain (1)
O00443
P3C2A_HUMAN
C2 domain (1)
Q61194
P3C2A_MOUSE
C2 domain (1)


Q5RAY1
P3C2A_PONAB
C2 domain (1)
O00750
P3C2B_HUMAN
C2 domain (1)
O75747
P3C2G_HUMAN
C2 domain (1)


O70167
P3C2G_MOUSE
C2 domain (1)
O70173
P3C2G_RAT
C2 domain (1)
Q22036
CAN5_CAEEL
C2 domain (1)


O15484
CAN5_HUMAN
C2 domain (1)
O08688
CAN5_MOUSE
C2 domain (1)
Q8R4C0
CAN5_RAT
C2 domain (1)


Q9Y6Q1
CAN6_HUMAN
C2 domain (1)
O35646
CAN6_MOUSE
C2 domain (1)
O88501
CAN6_RAT
C2 domain (1)


Q4LBC8
TOIPA_ONCMY
C2 domain (1)
Q3B8H2
TOIPA_XENLA
C2 domain (1)
Q4LBC7
TOIPB_ONCMY
C2 domain (1)


Q6INE3
TOIPB_XENLA
C2 domain (1)
Q2LGB5
TOLIP_BOVIN
C2 domain (1)
Q5ZK05
TOLIP_CHICK
C2 domain (1)


Q7ZV43
TOLIP_DANRE
C2 domain (1)
C1BZR1
TOLIP_ESOLU
C2 domain (1)
Q9H0E2
TOLIP_HUMAN
C2 domain (1)


Q9QZ06
TOLIP_MOUSE
C2 domain (1)
A2RUW1
TOLIP_RAT
C2 domain (1)
B5X370
TOLIP_SALSA
C2 domain (1)


Q6DFR0
TOLIP_XENTR
C2 domain (1)
Q54WH2
FORA_DICDI
C2 domain (1)
Q15811
ITSN1_HUMAN
C2 domain (1)


Q9Z0R4
ITSN1_MOUSE
C2 domain (1)
Q9NZM3
ITSN2_HUMAN
C2 domain (1)
Q9Z0R6
ITSN2_MOUSE
C2 domain (1)


A6QNS3
ABR_BOVIN
C2 domain (1)
Q12979
ABR_HUMAN
C2 domain (1)
Q5SSL4
ABR_MOUSE
C2 domain (1)


Q8AVG0
ABR_XENLA
C2 domain (1)
A4II46
ABR_XENTR
C2 domain (1)
P11274
BCR_HUMAN
C2 domain (1)


Q6PAJ1
BCR_MOUSE
C2 domain (1)
P08487
PLCG1_BOVIN
C2 domain (1)
P19174
PLCG1_HUMAN
C2 domain (1)


Q62077
PLCG1_MOUSE
C2 domain (1)
P10686
PLCG1_RAT
C2 domain (1)
P40977
PLC1_SCHPO
C2 domain (1)


P32383
PLC1_YEAST
C2 domain (1)
Q39032
PLCD1_ARATH
C2 domain (1)
Q56W08
PLCD3_ARATH
C2 domain (1)


Q944C1
PLCD4_ARATH
C2 domain (1)
Q1RML2
PLCZ1_BOVIN
C2 domain (1)
Q2VRL0
PLCZ1_CHICK
C2 domain (1)


Q86YW0
PLCZ1_HUMAN
C2 domain (1)
Q95JS1
PLCZ1_MACFA
C2 domain (1)
Q8K4D7
PLCZ1_MOUSE
C2 domain (1)


Q7YRU3
PLCZ1_PIG
C2 domain (1)
Q5FX52
PLCZ1_RAT
C2 domain (1)
Q02158
PLC_DICDI
C2 domain (1)


P10895
PLCD1_BOVIN
C2 domain (1)
P51178
PLCD1_HUMAN
C2 domain (1)
Q8R3B1
PLCD1_MOUSE
C2 domain (1)


P10688
PLCD1_RAT
C2 domain (1)
Q4KWH8
PLCH1_HUMAN
C2 domain (1)
Q4KWH5
PLCH1_MOUSE
C2 domain (1)


O75038
PLCH2_HUMAN
C2 domain (1)
A2AP18
PLCH2_MOUSE
C2 domain (1)
Q8N3E9
PLCD3_HUMAN
C2 domain (1)


Q8K2J0
PLCD3_MOUSE
C2 domain (1)
P21671
PLCD4_BOVIN
C2 domain (1)
Q9BRC7
PLCD4_HUMAN
C2 domain (1)


Q4R6L3
PLCD4_MACFA
C2 domain (1)
Q8K3R3
PLCD4_MOUSE
C2 domain (1)
Q8SPR7
PLCD4_PIG
C2 domain (1)


Q5RET0
PLCD4_PONAB
C2 domain (1)
Q62711
PLCD4_RAT
C2 domain (1)
Q32NH8
PLCD4_XENLA
C2 domain (1)


A5D6R3
PLD3A_DANRE
C2 domain (1)
Q39033
PLCD2_ARATH
C2 domain (1)
Q944C2
PLCD5_ARATH
C2 domain (1)


Q9LY51
PLCD7_ARATH
C2 domain (1)
P14222
PERF_HUMAN
C2 domain (1)
P10820
PERF_MOUSE
C2 domain (1)


P35763
PERF_RAT
C2 domain (1)
Q6WKZ4
RFIP1_HUMAN
C2 domain (1)
Q9D620
RFIP1_MOUSE
C2 domain (1)


Q3B7T9
RFIP1_RAT
C2 domain (1)
Q7L804
RFIP2_HUMAN
C2 domain (1)
Q9BXF6
RFIP5_HUMAN
C2 domain (1)


Q8R361
RFIP5_MOUSE
C2 domain (1)
Q9UTG2
PUB2_SCHPO
C2 domain (1)
Q76N89
HECW1_HUMAN
C2 domain (1)


Q8K4P8
HECW1_MOUSE
C2 domain (1)
Q9P2P5
HECW2_HUMAN
C2 domain (1)
Q6I6G8
HECW2_MOUSE
C2 domain (1)


Q9HCE7
SMUF1_HUMAN
C2 domain (1)
Q9CUN6
SMUF1_MOUSE
C2 domain (1)
Q9PUN2
SMUF1_XENLA
C2 domain (1)


Q9VVI3
NEDD4_DROME
C2 domain (1)
P46935
NEDD4_MOUSE
C2 domain (1)
Q62940
NEDD4_RAT
C2 domain (1)


Q92462
PUB1_SCHPO
C2 domain (1)
O14326
PUB3_SCHPO
C2 domain (1)
A1CQG2
RSP5_ASPCL
C2 domain (1)


B0XQ72
RSP5_ASPFC
C2 domain (1)
B8N7E5
RSP5_ASPFN
C2 domain (1)
Q4WTF3
RSP5_ASPFU
C2 domain (1)


A2QQ28
RSP5_ASPNC
C2 domain (1)
Q2UBP1
RSP5_ASPOR
C2 domain (1)
Q0CCL1
RSP5_ASPTN
C2 domain (1)


Q5BDP1
RSP5_EMENI
C2 domain (1)
A1D3C5
RSP5_NEOFI
C2 domain (1)
P39940
RSP5_YEAST
C2 domain (1)


Q9V853
SMUF1_DROME
C2 domain (1)
A9JRZ0
SMUF2_DANRE
C2 domain (1)
Q9HAU4
SMUF2_HUMAN
C2 domain (1)


A2A5Z6
SMUF2_MOUSE
C2 domain (1)
Q2TAS2
SMUF2_XENLA
C2 domain (1)
Q96J02
ITCH_HUMAN
C2 domain (1)


Q8C863
ITCH_MOUSE
C2 domain (1)
Q96PU5
NED4L_HUMAN
C2 domain (1)
Q8CFI0
NED4L_MOUSE
C2 domain (1)


Q5RBF2
NED4L_PONAB
C2 domain (1)
Q9Y0H4
SUDX_DROME
C2 domain (1)
Q9H0M0
WWP1_HUMAN
C2 domain (1)


Q8BZZ3
WWP1_MOUSE
C2 domain (1)
O00308
WWP2_HUMAN
C2 domain (1)
Q9DBH0
WWP2_MOUSE
C2 domain (1)


O13683
YDY2_SCHPO
C2 domain (1)
Q08748
YO296_YEAST
C2 domain (1)
Q9ULU8
CAPS1_HUMAN
C2 domain (1)


Q80TJ1
CAPS1_MOUSE
C2 domain (1)
Q62717
CAPS1_RAT
C2 domain (1)
Q6GLR7
CAPS1_XENLA
C2 domain (1)


Q86UW7
CAPS2_HUMAN
C2 domain (1)
Q8BYR5
CAPS2_MOUSE
C2 domain (1)
Q60PC0
CAPS_CAEBR
C2 domain (1)


Q23658
CAPS_CAEEL
C2 domain (1)
Q9NHE5
CAPS_DROME
C2 domain (1)
P49796
RGS3_HUMAN
C2 domain (1)


Q86NH1
SYD1_CAEEL
C2 domain (1)
Q9V9S7
SYDE_DROME
C2 domain (1)
Q15111
PLCL1_HUMAN
C2 domain (1)


Q3USB7
PLCL1_MOUSE
C2 domain (1)
Q62688
PLCL1_RAT
C2 domain (1)
Q9UPR0
PLCL2_HUMAN
C2 domain (1)


Q8K394
PLCL2_MOUSE
C2 domain (1)
P16885
PLCG2_HUMAN
C2 domain (1)
Q8CIH5
PLCG2_MOUSE
C2 domain (1)


P24135
PLCG2_RAT
C2 domain (1)
Q5VWQ8
DAB2P_HUMAN
C2 domain (1)
Q3UHC7
DAB2P_MOUSE
C2 domain (1)


Q8MLZ5
GAP2_CAEEL
C2 domain (1)
Q8T498
GAP2_DROME
C2 domain (1)
Q9UJF2
NGAP_HUMAN
C2 domain (1)


A6QQ91
RASL3_BOVIN
C2 domain (1)
Q86YV0
RASL3_HUMAN
C2 domain (1)
Q8C2K5
RASL3_MOUSE
C2 domain (1)


Q96PV0
SYGP1_HUMAN
C2 domain (1)
F6SEU4
SYGP1_MOUSE
C2 domain (1)
Q9QUH6
SYGP1_RAT
C2 domain (1)


P09851
RASA1_BOVIN
C2 domain (1)
P20936
RASA1_HUMAN
C2 domain (1)
P50904
RASA1_RAT
C2 domain (1)


Q54E35
GACEE_DICDI
C2 domain (1)
P25455
PIP1_DROME
C2 domain (1)
P13217
PIPA_DROME
C2 domain (1)


O13433
PLC1_CANAX
C2 domain (1)
P10894
PLCB1_BOVIN
C2 domain (1)
Q9NQ66
PLCB1_HUMAN
C2 domain (1)


Q9Z1B3
PLCB1_MOUSE
C2 domain (1)
P10687
PLCB1_RAT
C2 domain (1)
Q00722
PLCB2_HUMAN
C2 domain (1)


A3KGF7
PLCB2_MOUSE
C2 domain (1)
O89040
PLCB2_RAT
C2 domain (1)
Q01970
PLCB3_HUMAN
C2 domain (1)


P51432
PLCB3_MOUSE
C2 domain (1)
Q99JE6
PLCB3_RAT
C2 domain (1)
Q07722
PLCB4_BOVIN
C2 domain (1)


Q15147
PLCB4_HUMAN
C2 domain (1)
Q9QW07
PLCB4_RAT
C2 domain (1)
Q8GV43
PLCD6_ARATH
C2 domain (1)


Q9STZ3
PLCD8_ARATH
C2 domain (1)
Q6NMA7
PLCD9_ARATH
C2 domain (1)
Q9P212
PLCE1_HUMAN
C2 domain (1)


Q8K4S1
PLCE1_MOUSE
C2 domain (1)
Q99P84
PLCE1_RAT
C2 domain (1)
A4IFJ5
PA24A_BOVIN
C2 domain (1)


P49147
PA24A_CHICK
C2 domain (1)
P50392
PA24A_DANRE
C2 domain (1)
O77793
PA24A_HORSE
C2 domain (1)


P47712
PA24A_HUMAN
C2 domain (1)
P47713
PA24A_MOUSE
C2 domain (1)
Q5R8A5
PA24A_PONAB
C2 domain (1)


Q9TT38
PA24A_RABIT
C2 domain (1)
P50393
PA24A_RAT
C2 domain (1)
Q7T0T9
PA24A_XENLA
C2 domain (1)


B1WAZ6
PA24A_XENTR
C2 domain (1)
P0C869
PA24B_HUMAN
C2 domain (1)
P0C871
PA24B_MOUSE
C2 domain (1)


Q86XP0
PA24D_HUMAN
C2 domain (1)
Q50L43
PA24D_MOUSE
C2 domain (1)
Q3MJ16
PA24E_HUMAN
C2 domain (1)


Q50L42
PA24E_MOUSE
C2 domain (1)
Q68DD2
PA24F_HUMAN
C2 domain (1)
Q50L41
PA24F_MOUSE
C2 domain (1)


Q38882
PLDA1_ARATH
C2 domain (1)
O82549
PLDA1_BRAOC
C2 domain (1)
P86387
PLDA1_CARPA
C2 domain (1)


Q70EW5
PLDA1_CYNCA
C2 domain (1)
Q43270
PLDA1_MAIZE
C2 domain (1)
Q43007
PLDA1_ORYSJ
C2 domain (1)


O04883
PLDA1_PIMBR
C2 domain (1)
Q41142
PLDA1_RICCO
C2 domain (1)
P93400
PLDA1_TOBAC
C2 domain (1)


O04865
PLDA1_VIGUN
C2 domain (1)
Q9SSQ9
PLDA2_ARATH
C2 domain (1)
P55939
PLDA2_BRAOC
C2 domain (1)


P93844
PLDA2_ORYSJ
C2 domain (1)
P93733
PLDB1_ARATH
C2 domain (1)
O23078
PLDB2_ARATH
C2 domain (1)


Q9C5Y0
PLDD1_ARATH
C2 domain (1)
Q9C888
PLDE1_ARATH
C2 domain (1)
Q9T053
PLDG1_ARATH
C2 domain (1)


Q9T051
PLDG2_ARATH
C2 domain (1)
Q9T052
PLDG3_ARATH
C2 domain (1)
P58766
PLDZ1_ARATH
C2 domain (1)


P33314
BUD2_YEAST
C2 domain (1)
Q6P730
DAB2P_RAT
C2 domain (1)
Q54Y08
NGAP_DICDI
C2 domain (1)


Q8WQC0
RGS7_CAEEL
C2 domain (1)
Q61CA4
SYD1_CAEBR
C2 domain (1)
Q5VT97
SYDE2_HUMAN
C2 domain (1)


Q54T86
DWWA_DICDI
C2 domain (1)
B3LWS4
KIBRA_DROAN
C2 domain (1)
B3P3M8
KIBRA_DROER
C2 domain (1)


Q9VFG8
KIBRA_DROME
C2 domain (1)
B4K6I9
KIBRA_DROMO
C2 domain (1)
B4HEJ6
KIBRA_DROSE
C2 domain (1)


B4M5X4
KIBRA_DROVI
C2 domain (1)
B4NAD3
KIBRA_DROWI
C2 domain (1)
B4PSQ2
KIBRA_DROYA
C2 domain (1)


Q8IX03
KIBRA_HUMAN
C2 domain (1)
Q5SXA9
KIBRA_MOUSE
C2 domain (1)
A4IIJ3
KIBRA_XENTR
C2 domain (1)


Q6AWC2
WWC2_HUMAN
C2 domain (1)
Q6NXJ0
WWC2_MOUSE
C2 domain (1)
Q6DJR2
WWC2_XENTR
C2 domain (1)


Q4AC94
C2CD3_HUMAN
C2 domains (2)
Q52KB6
C2CD3_MOUSE
C2 domains (2)
A0JM13
C2CD3_XENTR
C2 domains (2)


Q14183
DOC2A_HUMAN
C2 domains (2)
Q7TNF0
DOC2A_MOUSE
C2 domains (2)
P70611
DOC2A_RAT
C2 domains (2)


Q14184
DOC2B_HUMAN
C2 domains (2)
P70169
DOC2B_MOUSE
C2 domains (2)
P70610
DOC2B_RAT
C2 domains (2)


Q9ESN1
DOC2G_MOUSE
C2 domains (2)
Q17388
FER1_CAEEL
C2 domains (2)
Q68CZ1
FTM_HUMAN
C2 domains (2)


Q8CG73
FTM_MOUSE
C2 domains (2)
Q9USG8
MU190_SCHPO
C2 domains (2)
P24505
SY61_DISOM
C2 domains (2)


P24506
SY62_DISOM
C2 domains (2)
P24507
SY63_DISOM
C2 domains (2)
P41823
SY65_APLCA
C2 domains (2)


P21521
SY65_DROME
C2 domains (2)
Q6XYQ8
SYT10_HUMAN
C2 domains (2)
Q9R0N4
SYT10_MOUSE
C2 domains (2)


Q5RCK6
SYT10_PONAB
C2 domains (2)
O08625
SYT10_RAT
C2 domains (2)
Q9BT88
SYT11_HUMAN
C2 domains (2)


Q9R0N3
SYT11_MOUSE
C2 domains (2)
O08835
SYT11_RAT
C2 domains (2)
Q8IV01
SYT12_HUMAN
C2 domains (2)


Q920N7
SYT12_MOUSE
C2 domains (2)
P97610
SYT12_RAT
C2 domains (2)
Q7L8C5
SYT13_HUMAN
C2 domains (2)


Q9EQT6
SYT13_MOUSE
C2 domains (2)
Q925B5
SYT13_RAT
C2 domains (2)
Q8NB59
SYT14_HUMAN
C2 domains (2)


Q7TN84
SYT14_MOUSE
C2 domains (2)
Q9BQS2
SYT15_HUMAN
C2 domains (2)
Q8C6N3
SYT15_MOUSE
C2 domains (2)


P59926
SYT15_RAT
C2 domains (2)
Q17RD7
SYT16_HUMAN
C2 domains (2)
Q7TN83
SYT16_MOUSE
C2 domains (2)


Q9BSW7
SYT17_HUMAN
C2 domains (2)
Q920M7
SYT17_MOUSE
C2 domains (2)
Q5R8Q5
SYT17_PONAB
C2 domains (2)


Q62807
SYT17_RAT
C2 domains (2)
A4IJ05
SYT17_XENTR
C2 domains (2)
Q9SKR2
SYT1_ARATH
C2 domains (2)


P48018
SYT1_BOVIN
C2 domains (2)
P34693
SYT1_CAEEL
C2 domains (2)
P47191
SYT1_CHICK
C2 domains (2)


P21579
SYT1_HUMAN
C2 domains (2)
Q60HC0
SYT1_MACFA
C2 domains (2)
P46096
SYT1_MOUSE
C2 domains (2)


Q5R4J5
SYT1_PONAB
C2 domains (2)
P21707
SYT1_RAT
C2 domains (2)
B6ETT4
SYT2_ARATH
C2 domains (2)


Q8N9I0
SYT2_HUMAN
C2 domains (2)
P46097
SYT2_MOUSE
C2 domains (2)
P29101
SYT2_RAT
C2 domains (2)


Q7XA06
SYT3_ARATH
C2 domains (2)
Q9BQG1
SYT3_HUMAN
C2 domains (2)
O35681
SYT3_MOUSE
C2 domains (2)


P40748
SYT3_RAT
C2 domains (2)
A0JJX5
SYT4_ARATH
C2 domains (2)
Q9H2B2
SYT4_HUMAN
C2 domains (2)


P40749
SYT4_MOUSE
C2 domains (2)
P50232
SYT4_RAT
C2 domains (2)
Q8L706
SYT5_ARATH
C2 domains (2)


O00445
SYT5_HUMAN
C2 domains (2)
Q9R0N5
SYT5_MOUSE
C2 domains (2)
P47861
SYT5_RAT
C2 domains (2)


Q5T7P8
SYT6_HUMAN
C2 domains (2)
Q9R0N8
SYT6_MOUSE
C2 domains (2)
Q62746
SYT6_RAT
C2 domains (2)


O43581
SYT7_HUMAN
C2 domains (2)
Q9R0N7
SYT7_MOUSE
C2 domains (2)
Q8NBV8
SYT8_HUMAN
C2 domains (2)


Q9R0N6
SYT8_MOUSE
C2 domains (2)
Q925B4
SYT8_RAT
C2 domains (2)
Q86SS6
SYT9_HUMAN
C2 domains (2)


Q9R0N9
SYT9_MOUSE
C2 domains (2)
Q925C0
SYT9_RAT
C2 domains (2)
O14065
YC31_SCHPO
C2 domains (2)


Q86UR5
RIMS1_HUMAN
C2 domains (2)
Q99NE5
RIMS1_MOUSE
C2 domains (2)
Q9JIR4
RIMS1_RAT
C2 domains (2)


Q9UQ26
RIMS2_HUMAN
C2 domains (2)
Q9EQZ7
RIMS2_MOUSE
C2 domains (2)
Q9JIS1
RIMS2_RAT
C2 domains (2)


Q22366
RIM_CAEEL
C2 domains (2)
P41885
RBF1_CAEEL
C2 domains (2)
Q06846
RP3A_BOVIN
C2 domains (2)


Q9Y2J0
RP3A_HUMAN
C2 domains (2)
P47708
RP3A_MOUSE
C2 domains (2)
P47709
RP3A_RAT
C2 domains (2)


Q96C24
SYTL4_HUMAN
C2 domains (2)
Q9R0Q1
SYTL4_MOUSE
C2 domains (2)
Q8VHQ7
SYTL4_RAT
C2 domains (2)


Q8TDW5
SYTL5_HUMAN
C2 domains (2)
Q80T23
SYTL5_MOUSE
C2 domains (2)
Q812E4
SYTL5_RAT
C2 domains (2)


Q9ZVT9
C2GR1_ARATH
C2 domains (2)
Q9FGS8
C2GR2_ARATH
C2 domains (2)
O94812
BAIP3_HUMAN
C2 domains (2)


Q80TT2
BAIP3_MOUSE
C2 domains (2)
Q70J99
UN13D_HUMAN
C2 domains (2)
B2RUP2
UN13D_MOUSE
C2 domains (2)


Q9R189
UN13D_RAT
C2 domains (2)
Q8NB66
UN13C_HUMAN
C2 domains (2)
Q8K0T7
UN13C_MOUSE
C2 domains (2)


Q62770
UN13C_RAT
C2 domains (2)
Q9PU36
PCLO_CHICK
C2 domains (2)
Q9Y6V0
PCLO_HUMAN
C2 domains (2)


Q9QYX7
PCLO_MOUSE
C2 domains (2)
Q9JKS6
PCLO_RAT
C2 domains (2)
Q8IYJ3
SYTL1_HUMAN
C2 domains (2)


Q99N80
SYTL1_MOUSE
C2 domains (2)
A6QP06
SYTL2_BOVIN
C2 domains (2)
Q9HCH5
SYTL2_HUMAN
C2 domains (2)


Q99N50
SYTL2_MOUSE
C2 domains (2)
Q4VX76
SYTL3_HUMAN
C2 domains (2)
Q99N48
SYTL3_MOUSE
C2 domains (2)


Q941L3
BON1_ARATH
C2 domains (2)
Q5S1W2
BON2_ARATH
C2 domains (2)
Q5XQC7
BON3_ARATH
C2 domains (2)


Q7YXU4
CPNA_DICDI
C2 domains (2)
Q86K21
CPNB_DICDI
C2 domains (2)
Q54P51
CPNC_DICDI
C2 domains (2)


Q55GG1
CPND_DICDI
C2 domains (2)
Q99829
CPNE1_HUMAN
C2 domains (2)
Q8C166
CPNE1_MOUSE
C2 domains (2)


Q96FN4
CPNE2_HUMAN
C2 domains (2)
P59108
CPNE2_MOUSE
C2 domains (2)
O75131
CPNE3_HUMAN
C2 domains (2)


Q8BT60
CPNE3_MOUSE
C2 domains (2)
Q5RAE1
CPNE3_PONAB
C2 domains (2)
Q96A23
CPNE4_HUMAN
C2 domains (2)


Q8BLR2
CPNE4_MOUSE
C2 domains (2)
Q9HCH3
CPNE5_HUMAN
C2 domains (2)
Q8JZW4
CPNE5_MOUSE
C2 domains (2)


Q2KHY1
CPNE6_BOVIN
C2 domains (2)
O95741
CPNE6_HUMAN
C2 domains (2)
Q9Z140
CPNE6_MOUSE
C2 domains (2)


Q5R4W6
CPNE6_PONAB
C2 domains (2)
Q9UBL6
CPNE7_HUMAN
C2 domains (2)
Q0VE82
CPNE7_MOUSE
C2 domains (2)


Q86YQ8
CPNE8_HUMAN
C2 domains (2)
Q9DC53
CPNE8_MOUSE
C2 domains (2)
Q8IYJ1
CPNE9_HUMAN
C2 domains (2)


Q1RLL3
CPNE9_MOUSE
C2 domains (2)
Q5BJS7
CPNE9_RAT
C2 domains (2)
Q54FY7
CPNE_DICDI
C2 domains (2)


Q1ZXB3
CPNF_DICDI
C2 domains (2)
A8WMY4
NRA1_CAEBR
C2 domains (2)
Q9XUB9
NRA1_CAEEL
C2 domains (2)


Q5FWL4
EST2A_XENLA
C2 domains (3)
Q7ZWU7
EST2B_XENLA
C2 domains (3)
A0FGR8
ESYT2_HUMAN
C2 domains (3)


Q3TZZ7
ESYT2_MOUSE
C2 domains (3)
A0FGR9
ESYT3_HUMAN
C2 domains (3)
Q5DTI8
ESYT3_MOUSE
C2 domains (3)


Q5M7N9
ESYT3_XENTR
C2 domains (3)
Q6DN14
MCTP1_HUMAN
C2 domains (3)
Q6DN12
MCTP2_HUMAN
C2 domains (3)


Q5RJH2
MCTP2_MOUSE
C2 domains (3)
Q12466
TCB1_YEAST
C2 domains (3)
P48231
TCB2_YEAST
C2 domains (3)


Q03640
TCB3_YEAST
C2 domains (3)
Q9UT00
YKH3_SCHPO
C2 domains (3)
Q9UPW8
UN13A_HUMAN
C2 domains (3)


Q4KUS2
UN13A_MOUSE
C2 domains (3)
Q62768
UN13A_RAT
C2 domains (3)
O14795
UN13B_HUMAN
C2 domains (3)


Q9Z1N9
UN13B_MOUSE
C2 domains (3)
Q62769
UN13B_RAT
C2 domains (3)
P27715
UNC13_CAEEL
C2 domains (3)


B3DLH6
MYOF_XENTR
C2 domains (4)
Q5SPC5
OTOF_DANRE
C2 domains (4)
Q9HC10
OTOF_HUMAN
C2 domains (4)


Q9ESF1
OTOF_MOUSE
C2 domains (4)
Q9ERC5
OTOF_RAT
C2 domains (4)
A6QQP7
DYSF_BOVIN
C2 domains (5)


O75923
DYSF_HUMAN
C2 domains (5)
Q9ESD7
DYSF_MOUSE
C2 domains (5)
Q9BSJ8
ESYT1_HUMAN
C2 domains (5)


Q3U7R1
ESYT1_MOUSE
C2 domains (5)
Q5RAG2
ESYT1_PONAB
C2 domains (5)
Q9Z1X1
ESYT1_RAT
C2 domains (5)


A9Z1Z3
FR1L4_HUMAN
C2 domains (5)
A3KGK3
FR1L4_MOUSE
C2 domains (5)
Q9NZM1
MYOF_HUMAN
C2 domains (5)


Q69ZN7
MYOF_MOUSE
C2 domains (5)
A0AVI2
FR1L5_HUMAN
C2 domains (6)
Q2WGJ9
FR1L6_HUMAN
C2 domains (6)


P42347
PI3K1_SOYBN
PI3K-type (1)
P42348
PI3K2_SOYBN
PI3K-type (1)
P54676
PI3K4_DICDI
PI3K-type (1)


P42339
PI3K_ARATH
PI3K-type (1)
Q8NEB9
PK3C3_HUMAN
PI3K-type (1)
Q6PF93
PK3C3_MOUSE
PI3K-type (1)


Q5D891
PK3C3_PIG
PI3K-type (1)
O88763
PK3C3_RAT
PI3K-type (1)
Q6AZN6
PK3C3_XENLA
PI3K-type (1)


Q92213
VPS34_CANAX
PI3K-type (1)
P50520
VPS34_SCHPO
PI3K-type (1)
P22543
VPS34_YEAST
PI3K-type (1)


P0C5E7
AGE1_CAEBR
PI3K-type (1)
Q94125
AGE1_CAEEL
PI3K-type (1)
P54673
PI3K1_DICDI
PI3K-type (1)


P32871
PK3CA_BOVIN
PI3K-type (1)
P42336
PK3CA_HUMAN
PI3K-type (1)
P42337
PK3CA_MOUSE
PI3K-type (1)


P42338
PK3CB_HUMAN
PI3K-type (1)
Q8BTI9
PK3CB_MOUSE
PI3K-type (1)
Q9Z1L0
PK3CB_RAT
PI3K-type (1)


O00329
PK3CD_HUMAN
PI3K-type (1)
O35904
PK3CD_MOUSE
PI3K-type (1)
P48736
PK3CG_HUMAN
PI3K-type (1)


Q9JHG7
PK3CG_MOUSE
PI3K-type (1)
O02697
PK3CG_PIG
PI3K-type (1)
P54674
PI3K2_DICDI
PI3K-type (1)


P54675
PI3K3_DICDI
PI3K-type (1)
Q5T6R2
TPT2L_HUMAN
tensin-type (1)
Q7XWS7
FH12_ORYSJ
tensin-type (1)


Q9LVN1
FH13_ARATH
tensin-type (1)
Q9C6S1
FH14_ARATH
tensin-type (1)
Q9SK28
FH18_ARATH
tensin-type (1)


Q9FLQ7
FH20_ARATH
tensin-type (1)
Q7G6K7
FH3_ORYSJ
tensin-type (1)
Q84ZL0
FH5_ORYSJ
tensin-type (1)


Q6ZCX3
FH6_ORYSJ
tensin-type (1)
Q6K8Z4
FH7_ORYSJ
tensin-type (1)
Q27974
AUXI_BOVIN
tensin-type (1)


O75061
AUXI_HUMAN
tensin-type (1)
Q80TZ3
AUXI_MOUSE
tensin-type (1)
O14976
GAK_HUMAN
tensin-type (1)


Q99KY4
GAK_MOUSE
tensin-type (1)
P97874
GAK_RAT
tensin-type (1)
Q63HR2
TENC1_HUMAN
tensin-type (1)


Q8CGB6
TENC1_MOUSE
tensin-type (1)
Q54JL7
CNRN_DICDI
tensin-type (1)
P60483
PTEN_CANFA
tensin-type (1)


Q8T9S7
PTEN_DICDI
tensin-type (1)
P60484
PTEN_HUMAN
tensin-type (1)
O08586
PTEN_MOUSE
tensin-type (1)


Q9PUT6
PTEN_XENLA
tensin-type (1)
P91301
TAG83_CAEEL
tensin-type (1)
Q6XPS3
TPTE2_HUMAN
tensin-type (1)


Q4R6N0
TPTE2_MACFA
tensin-type (1)
P56180
TPTE_HUMAN
tensin-type (1)
Q9GLM4
TENS1_BOVIN
tensin-type (1)


Q9HBL0
TENS1_HUMAN
tensin-type (1)
Q68CZ2
TENS3_HUMAN
tensin-type (1)
Q5SSZ5
TENS3_MOUSE
tensin-type (1)


Q04205
TENS_CHICK
tensin-type (1)









Table 6: C2 Domain-Containing Human Proteins









TABLE 6A







C2 Domain-Containing Human Proteins Listed in UniProtKB/Swiss-Prot (Reviewed Proteins)


[Domains: C2 domain(s) = C2 calcium-dependent membrane targeting domain(s);;


number in parentheses = number of C2 domains in protein]
















Entry name


Entry name


Entry name



Entry
[. . . _HUMAN]
Domain(s)
Entry
[. . . _HUMAN]
Domain(s)
Entry
[. . . _HUMAN]
Domain(s)





Q12979
ABR
C2 domain (1)
O94812
BAIP3
C2 domains (2)
P11274
BCR
C2 domain (1)


Q8NCU7
C2C4A
C2 domain (1)
A6NLJ0
C2C4B
C2 domain (1)
Q8TF44
C2C4C
C2 domain (1)


Q4AC94
C2CD3
C2 domains (2)
Q6P1N0
C2D1A
C2 domain (1)
Q5T0F9
C2D1B
C2 domain (1)


Q9P2K1
C2D2A
C2 domain (1)
B7Z1M9
C2D4D
C2 domain (1)
O15484
CAN5
C2 domain (1)


Q9Y6Q1
CAN6
C2 domain (1)
Q9ULU8
CAPS1
C2 domain (1)
Q86UW7
CAPS2
C2 domain (1)


Q8N5R6
CCD33
C2 domain (1)
Q99829
CPNE1
C2 domains (2)
Q96FN4
CPNE2
C2 domains (2)


O75131
CPNE3
C2 domains (2)
Q96A23
CPNE4
C2 domains (2)
Q9HCH3
CPNE5
C2 domains (2)


O95741
CPNE6
C2 domains (2)
Q9UBL6
CPNE7
C2 domains (2)
Q86YQ8
CPNE8
C2 domains (2)


Q8IYJ1
CPNE9
C2 domains (2)
Q9Y426
CU025
C2 domain (1)
Q5VWQ8
DAB2P
C2 domain (1)


Q14183
DOC2A
C2 domains (2)
Q14184
DOC2B
C2 domains (2)
O75923
DYSF
C2 domains (5)


Q9BSJ8
ESYT1
C2 domains (5)
A0FGR8
ESYT2
C2 domains (3)
A0FGR9
ESYT3
C2 domains (3)


A9Z1Z3
FR1L4
C2 domains (5)
A0AVI2
FR1L5
C2 domains (6)
Q2WGJ9
FR1L6
C2 domains (6)


Q68CZ1
FTM
C2 domains (2)
Q76N89
HECW1
C2 domain (1)
Q9P2P5
HECW2
C2 domain (1)


Q96PE3
INP4A
C2 domain (1)
O15327
INP4B
C2 domain (1)
Q96J02
ITCH
C2 domain (1)


Q15811
ITSN1
C2 domain (1)
Q9NZM3
ITSN2
C2 domain
Q86YS7
K0528
C2 domain (1)







(1)domains(5)


Q8IX03
KIBRA
C2 domain (1)
P17252
KPCA
C2 domain (1)
P05771
KPCB
C2 domain (1)


Q05655
KPCD
C2 domain (1)
Q02156
KPCE
C2 domain (1)
P05129
KPCG
C2 domain (1)


P24723
KPCL
C2 domain (1)
Q04759
KPCT
C2 domain (1)
Q6DN14
MCTP1
C2 domains (3)


Q6DN12
MCTP2
C2 domains (3)
Q9NZM1
MYOF
C2 domains (5)
P46934
NEDD4
C2 domain


Q96PU5
NED4L
C2 domain (1)
Q9UJF2
NGAP
C2 domain (1)
Q9HC10
OTOF
C2 domains (4)


O00443
P3C2A
C2 domain (1)
O00750
P3C2B
C2 domain (1)
O75747
P3C2G
C2 domain (1)


P47712
PA24A
C2 domain (1)
P0C869
PA24B
C2 domain (1)
Q86XP0
PA24D
C2 domain (1)


Q3MJ16
PA24E
C2 domain (1)
Q68DD2
PA24F
C2 domain (1)
Q9Y6V0
PCLO
C2 domains (2)


P14222
PERF
C2 domain (1)
Q16512
PKN1
C2 domain (1)
Q16513
PKN2
C2 domain (1)


Q9NQ66
PLCB1
C2 domain (1)
Q00722
PLCB2
C2 domain (1)
Q01970
PLCB3
C2 domain (1)


Q15147
PLCB4
C2 domain (1)
P51178
PLCD1
C2 domain (1)
Q8N3E9
PLCD3
C2 domain (1)


Q9BRC7
PLCD4
C2 domain (1)
Q9P212
PLCE1
C2 domain (1)
P19174
PLCG1
C2 domain (1)


P16885
PLCG2
C2 domain (1)
Q4KWH8
PLCH1
C2 domain (1)
O75038
PLCH2
C2 domain (1)


Q15111
PLCL1
C2 domain (1)
Q9UPR0
PLCL2
C2 domain (1)
Q86YW0
PLCZ1
C2 domain (1)


C9J798
RAS4B
C2 domains (2)
P20936
RASA1
C2 domain (1)
Q15283
RASA2
C2 domains (2)


Q14644
RASA3
C2 domains (2)
O95294
RASL1
C2 domains (2)
O43374
RASL2
C2 domains (2)


Q86YV0
RASL3
C2 domain (1)
Q6WKZ4
RFIP1
C2 domain (1)
Q7L804
RFIP2
C2 domain (1)


Q9BXF6
RFIP5
C2 domain (1)
P49796
RGS3
C2 domain (1)
Q86UR5
RIMS1
C2 domains (2)


Q9UQ26
RIMS2
C2 domains (2)
Q9UJD0
RIMS3
C2 domain (1)
Q9H426
RIMS4
C2 domain (1)


Q9Y2J0
RP3A
C2 domains (2)
Q96KN7
RPGR1
C2 domain (1)
Q9HCE7
SMUF1
C2 domain (1)


Q9HAU4
SMUF2
C2 domain (1)
Q58G82
SY14L
C2 domain (1)
Q5VT97
SYDE2
C2 domain (1)


Q96PV0
SYGP1
C2 domain (1)
P21579
SYT1
C2 domains (2)
Q6XYQ8
SYT10
C2 domains (2)


Q9BT88
SYT11
C2 domains (2)
Q8IV01
SYT12
C2 domains (2)
Q7L8C5
SYT13
C2 domains (2)


Q8NB59
SYT14
C2 domains (2)
Q9BQS2
SYT15
C2 domains (2)
Q17RD7
SYT16
C2 domains (2)


Q9BSW7
SYT17
C2 domains (2)
Q8N9I0
SYT2
C2 domains (2)
Q9BQG1
SYT3
C2 domains (2)


Q9H2B2
SYT4
C2 domains (2)
O00445
SYT5
C2 domains (2)
Q5T7P8
SYT6
C2 domains (2)


O43581
SYT7
C2 domains (2)
Q8NBV8
SYT8
C2 domains (2)
Q86SS6
SYT9
C2 domains (2)


Q8IYJ3
SYTL1
C2 domains (2)
Q9HCH5
SYTL2
C2 domains (2)
Q4VX76
SYTL3
C2 domains (2)


Q96C24
SYTL4
C2 domains (2)
Q8TDW5
SYTL5
C2 domains (2)
Q8N9U0
TAC2N
C2 domain (1)


Q9H0E2
TOLIP
C2 domain (1)
Q9UPW8
UN13A
C2 domains (3)
O14795
UN13B
C2 domains (3)


Q8NB66
UN13C
C2 domains (2)
Q70J99
UN13D
C2 domains (2)
Q9P2Y5
UVRAG
C2 domain (1)


Q6AWC2
WWC2
C2 domain (1)
Q9ULE0
WWC3
C2 domain (1)
Q9H0M0
WWP1
C2 domain (1)


O00308
WWP2
C2 domain (1)
Q8NEB9
PK3C3
PI3K-type (1)
P42336
PK3CA
PI3K-type (1)


P42338
PK3CB
PI3K-type (1)
O00329
PK3CD
PI3K-type (1)
P48736
PK3CG
PI3K-type (1)


O75061
AUXI
tensin-type (1)
O14976
GAK
tensin-type (1)
P60484
PTEN
tensin-type (1)


Q63HR2
TENC1
tensin-type (1)
Q9HBL0
TENS1
tensin-type (1)
Q68CZ2
TENS3
tensin-type (1)


Q5T6R2
TPT2L
tensin-type (1)
P56180
TPTE
tensin-type (1)
Q6XPS3
TPTE2
tensin-type (1)
















TABLE 6B







C2 Domain-Containing Human Proteins Listed in UniProtKB/TrEMBL (Unreviewed Proteins)


[Domains: C2 domain(s) = assignment to C2 domain subfamilies not yet done;


number in parentheses = number of C2 domains in protein]














Entry
Domain(s)
Entry
Domain(s)
Entry
Domain(s)
Entry
Domain(s)





A1L3Y1
C2 domains (2)
A2A284
C2 domain (1)
A2A2B2
C2 domains (2)
A2RQD7
C2 domain (1)


A2RUF7
C2 domain (1)
A4D1A8
C2 domain (1)
A4D1V5
C2 domain (1)
A4FU00
C2 domains (2)


A4FU94
C2 domain (1)
A5PKZ7
C2 domain (1)
A6H8K5
C2 domain (1)
A6H8W8
C2 domain (1)


A6NCR4
C2 domains (2)
A6NGX9
C2 domain (1)
A6PVH9
C2 domains (2)
A8CTX8
C2 domain (1)


A8CTY3
C2 domain (1)
A8K0V7
C2 domains (2)
A8K112
C2 domains (2)
A8K2C1
C2 domains (2)


A8K2S1
C2 domain (1)
A8K539
C2 domains (2)
A8K7K1
C2 domains (2)
A8K8A4
C2 domains (2)


A8K8F9
C2 domain (1)
A8K973
C2 domains (2)
A8K9T5
C2 domain (1)
A8KAH3
C2 domains (2)


B0AZL9
C2 domains (2)
B0QZ18
C2 domains (2)
B1AM27
C2 domains (3)
B2R5T1
C2 domain (1)


B2R7R4
C2 domains (2)
B2R9M7
C2 domain (1)
B2RCA8
C2 domains (2)
B2RD40
C2 domains (2)


B3KMV5
C2 domains (5)
B3KR18
C2 domain (1)
B3KUZ4
C2 domain (1)
B3KV15
C2 domain (1)


B3KW89
C2 domain (1)
B3KWG8
C2 domain (1)
B3KWK1
C2 domain (1)
B3KX91
C2 domains (2)


B3KXN8
C2 domain (1)
B3KXR5
C2 domain (1)
B4DEH7
C2 domains (2)
B4DEJ2
C2 domain (1)


B4DEU3
C2 domains (2)
B4DF98
C2 domain (1)
B4DG06
C2 domains (2)
B4DG55
C2 domains (2)


B4DGA2
C2 domain (1)
B4DGS5
C2 domain (1)
B4DH42
C2 domain (1)
B4DIK3
C2 domains (2)


B4DJB2
C2 domains (2)
B4DK40
C2 domain (1)
B4DMA3
C2 domain (1)
B4DMA9
C2 domain (1)


B4DN85
C2 domain (1)
B4DQA6
C2 domains (2)
B4DRC6
C2 domain (1)
B4DRK9
C2 domains (2)


B4DRN7
C2 domain (1)
B4DRP1
C2 domains (2)
B4DS63
C2 domains (2)
B4DTL2
C2 domain (1)


B4DTL8
C2 domain (1)
B4DTX4
C2 domain (1)
B4DYZ4
C2 domain (1)
B4DZI4
C2 domain (1)


B4E065
C2 domain (1)
B4E2A9
C2 domains (2)
B4E2P5
C2 domain (1)
B4E3H3
C2 domain (1)


B4E3M8
C2 domains (2)
B5BU77
C2 domain (1)
B7WPN2
C2 domain (1)
B7Z1M3
C2 domains (2)


B7Z1R9
C2 domains (2)
B7Z2M0
C2 domains (2)
B7Z2Q9
C2 domains (2)
B7Z2R1
C2 domains (5)


B7Z2W4
C2 domains (2)
B7Z2X0
C2 domain (1)
B7Z300
C2 domains (2)
B7Z370
C2 domains (2)


B7Z3G9
C2 domain (1)
B7Z3S1
C2 domains (2)
B7Z3V9
C2 domain (1)
B7Z3W6
C2 domain (1)


B7Z405
C2 domain (1)
B7Z4G1
C2 domains (2)
B7Z683
C2 domain (1)
B7Z6H2
C2 domain (1)


B7Z6K9
C2 domain (1)
B7Z6S2
C2 domain (1)
B7Z7W2
C2 domain (1)
B7Z7Z1
C2 domain (1)


B7Z870
C2 domain (1)
B7Z8G4
C2 domains (4)
B7Z8Q0
C2 domain (1)
B7Z9G3
C2 domain (1)


B7Z9Z3
C2 domains (2)
B7Z9Z7
C2 domains (2)
B7ZKJ9
C2 domains (2)
B7ZKM4
C2 domains (2)


B7ZL55
C2 domains (2)
B7ZLI3
C2 domains (3)
B7ZLK1
C2 domain (1)
B7ZLK2
C2 domain (1)


B7ZLL0
C2 domain (1)
B7ZM61
C2 domain (1)
B7ZM86
C2 domain (1)
B9DI81
C2 domain (1)


B9DI82
C2 domain (1)
B9DI83
C2 domain (1)
B9EGH5
C2 domain (1)
C9IZ68
C2 domain (1)


C9J281
C2 domain (1)
C9JCN0
C2 domains (7)
C9JEA7
C2 domain (1)
C9JK77
C2 domain (1)


C9JR22
C2 domain (1)
D6R8Z9
C2 domain (1)
D6RA03
C2 domains (2)
D6RA42
C2 domains (3)


D6RDY0
C2 domain (1)
D6RF99
C2 domain (1)
E1P613
C2 domain (1)
E2QRH8
C2 domain (1)


E5KVZ4
C2 domains (2)
E5RG68
C2 domains (2)
E5RG97
C2 domain (1)
E5RGM0
C2 domains (2)


E5RHZ0
C2 domain (1)
E5RI36
C2 domain (1)
E5RJ85
C2 domain (1)
E5RJR1
C2 domains (2)


E5RK78
C2 domains (2)
E6Y8C6
C2 domain (1)
E7ENC2
C2 domains (2)
E7ENH5
C2 domains (2)


E7ENV7
C2 domains (2)
E7ERK1
C2 domain (1)
E7EU42
C2 domain (1)
E7EUB9
C2 domains (2)


E9PCB7
C2 domains (2)
E9PCZ1
C2 domain (1)
E9PD98
C2 domain (1)
E9PDN4
C2 domain (1);









C2 domains (2)


E9PF48
C2 domains (2)
E9PFB6
C2 domain (1)
E9PGC0
C2 domain (1)
E9PHF5
C2 domains (2)


E9PJ31
C2 domain (1)
E9PPL3
C2 domain (1);
E9PQL8
C2 domain (1)
E9PS29
C2 domain (1)





C2 domains (2)


F2Z2V0
C2 domains (2)
F2Z3K9
C2 domain (1)
F5GWN5
C2 domain (1)
F5GXN1
C2 domains (2)


F5GXT2
C2 domains (2)
F5GZC2
C2 domains (2)
F5GZU9
C2 domains (2)
F5H090
C2 domains (2)


F5H126
C2 domains (2)
F5H1N2
C2 domains (2)
F5H2A1
C2 domain (1)
F5H2A8
C2 domains (2)


F5H2B0
C2 domains (2)
F5H2Y6
C2 domain (1)
F5H3L4
C2 domain (1)
F5H415
C2 domain (1)


F5H426
C2 domains (2)
F5H5C4
C2 domain (1)
F5H5R1
C2 domain (1)
F5H6C1
C2 domains (2)


F5H7F0
C2 domains (2)
F5H8B3
C2 domain (1)
F8VP47
C2 domains (2)
F8VQX1
C2 domains (2)


F8VRH9
C2 domains (2)
F8VTU5
C2 domain (1)
F8VZH8
C2 domains (3)
F8W059
C2 domains (3)


F8W0P6
C2 domains (3)
F8W6L0
C2 domains (3)
F8W6W8
C2 domains (2)
F8W6X8
C2 domains (2)


F8W7H4
C2 domains (2)
F8W8J4
C2 domains (7)
F8W8M9
C2 domains (3)
F8W9B9
C2 domains (2)


F8WD47
C2 domains (2)
G3V0F9
C2 domains (2)
G3V1Y0
C2 domains (2)
G3V520
C2 domain (1)


G5E960
C2 domain (1)
H0UI19
C2 domains (2)
H0Y3G9
C2 domains (2)
H0Y458
C2 domain (1)


H0Y848
C2 domain (1);
H0Y8M9
C2 domain (1)
H0Y9S8
C2 domains (2)
H0Y9Y6
C2 domains (2)



C2 domains (2)


H0YA70
C2 domains (2)
H0YBE7
C2 domain (1)
H0YBU2
C2 domain (1)
H0YBU6
C2 domains (2)


H0YCJ2
C2 domain (1)
H0YCQ9
C2 domain (1);
H0YD14
C2 domains (3)
H0YE56
C2 domains (2)





C2 domains (2)


H0YGH7
C2 domain (1)
H0YGY7
C2 domain (1)
H0YH40
C2 domain (1)
H0YIH4
C2 domain (1)


H0YJ73
C2 domains (2)
H0YK35
C2 domain (1)
H0YK44
C2 domain (1)
H3BLX3
C2 domains (2)


H3BLZ3
C2 domain (1)
H3BMD0
C2 domain (1)
H3BN78
C2 domains (2)
H3BNF7
C2 domain (1)


H3BQZ6
C2 domains (2)
H3BRH9
C2 domains (2)
H3BS47
C2 domains (2)
H3BSH4
C2 domain (1)


H3BSN9
C2 domain (1)
H3BSU5
C2 domains (2)
H3BSX1
C2 domain (1)
H3BTI1
C2 domain (1)


H3BU41
C2 domain (1)
H3BUC8
C2 domain (1)
H3BUD4
C2 domain (1)
H3BUH8
C2 domains (2)


H3BV03
C2 domains (2)
H3BVI3
C2 domains (2)
H7BXE5
C2 domains (3)
H7BXI1
C2 domains (3)


H7C276
C2 domain (1)
H7C281
C2 domain (1)
H7C2Q1
C2 domains (2)
I3L194
C2 domain (1)


I3L1Z0
C2 domain (1)
I6L9C3
C2 domains (2)
I6L9J0
C2 domains (2)
J3KNP0
C2 domain (1)


J3KP28
C2 domains (2)
J3KQA0
C2 domains (2)
J3KQI7
C2 domains (3)
J3KR03
C2 domains (2)


J3KRN5
C2 domain (1)
J3QQM4
C2 domain (1)
J3QRY2
C2 domain (1)
Q05BS5
C2 domains (2)


Q05DL8
C2 domains (2)
Q12843
C2 domain (1)
Q12844
C2 domain (1)
Q14BD3
C2 domain (1)


Q14BD4
C2 domain (1)
Q2NKJ5
C2 domains (3)
Q2NL74
C2 domains (2)
Q2NNQ7
C2 domains (7)


Q2NNQ8
C2 domains (5)
Q2TSD3
C2 domain (1)
Q2Z1P3
C2 domain (1)
Q307T1
C2 domain (1)


Q32P40
C2 domain (1)
Q3I768
C2 domain (1)
Q3MI43
C2 domain (1)
Q3ZCW0
C2 domain (1)


Q495U1
C2 domains (2)
Q4FD32
C2 domains (2)
Q4LE43
C2 domain (1)
Q4LE65
C2 domain (1)


Q4LE73
C2 domains (3)
Q53TM3
C2 domain (1)
Q59EE9
C2 domain (1)
Q59EZ0
C2 domain (1)


Q59F62
C2 domain (1)
Q59F77
C2 domain (1)
Q59FI5
C2 domain (1)
Q59GK3
C2 domain (1)


Q59H24
C2 domains (2)
Q5HYD7
C2 domain (1)
Q5JX44
C2 domains (2)
Q5JX60
C2 domains (2)


Q5JY20
C2 domains (2)
Q5JY22
C2 domains (2)
Q5JY23
C2 domains (2)
Q5JY24
C2 domains (2)


Q5JYS9
C2 domain (1)
Q5SSD0
C2 domain (1)
Q5SSD1
C2 domains (2)
Q6PJY8
C2 domains (2)


Q6PKD5
C2 domains (2)
Q6ZNK2
C2 domain (1)
Q719H8
C2 domain (1)
Q71SF7
C2 domains (2)


Q71UV9
C2 domain (1)
Q7Z727
C2 domain (1)
Q86YU9
C2 domain (1)
Q8IUP3
C2 domain (1)


Q8IV92
C2 domain (1)
Q8N1A4
C2 domain (1)
Q8N7E6
C2 domains (2)
Q8N7S5
C2 domain (1)


Q8N7X7
C2 domain (1)
Q8NCP8
C2 domain (1)
Q8NDM9
C2 domains (2)
Q9BQS1
C2 domain (1)


Q9UFY1
C2 domain (1)








Claims
  • 1-15. (canceled)
  • 16. A recombinant clostridial neurotoxin comprising a C2 domain.
  • 17. The recombinant clostridial neurotoxin of claim 16, wherein the C2 domain is (i) a C2 domain present in a protein listed in Table 5, or (ii) a human C2 domain present in a protein listed in Table 6.
  • 18. The recombinant clostridial neurotoxin of claim 1, wherein the C2 domain is a human C2 domain present in a human protein selected from the group consisting of ABR, BAIP3, BCR, C2CD3, C2D1A, C2D1B, CAN5, CAN6, CAPS1, CAPS2, CPNE1, CPNE2, CPNE3, CPNE4, CPNE5, CPNE6, CPNE7, CPNE5, CPNE9, CU025; DAB2P, DOC2A, DOC2B, DYSF, ESYT1, ESYT2, ESYT3; FR1L5, FTM, HECW1, HECW2, ITCH, ITSN1, ITSN2, KPCA, KPCB, KPCE, KPCG, KPCL, MCTP1, MCTP2, MYOF, NEDD4, NED4L, NGAP, OTOF, P3C2A, P3C2B, P3C2G, PA24A, PA24B, PA24D, PA24E, PA24F, PCLO, PERF, PLCB1, PLCB2, PLCB3, PLCB4, PLCD1, PLCD3, PLCD4, PLCE1, PLCG1, PLCG2, PLCH1, PLCH2, PLCL1, PLCL2, PLCZ1, RASA1, RASA2, RASA3, RAK1, RASL2, RFIP1, RFIP2, RFIP5, RGS3, RIMS1, RIMS2, RIMS3, RIMS4, RP3A, RPGR1, SMUF1, SMUF2, SY14L, SYGP1, SYT1, SYT2, SYT4, SYT5, SYT6, SYT7, SYT8, SYT9, SYT10, SYT11, SYT12, SYT13, SYT14, SYT15, SYT18, SYT17, SYTL1, SYTL2, SYTL3, SYTL4, SYTL5, TAC2N, TOLIP, UN13A, UN13B, UN13C, UN13D, WWC2, WWP1, WWP2, DOC2A, DOC2B, DYSF, ESYT1, ESYT2, ESYT3, KPCA, KPCB, KPCG, MYOF, NED4L, PLCD1, PLCD3, PLCZ1, RFIP1, RFIP2, RFIP5, RP3A, SYT1, SYT2, SYT3, SYT4, SYT5, SYT6, SYT7, SYT9, SYT10, and SYTL1.
  • 19. The recombinant clostridial neurotoxin of claim 16, wherein the clostridial neurotoxin is selected from a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, and G.
  • 20. The recombinant clostridial neurotoxin of claim 16, wherein the clostridial neurotoxin is selected from Clostridium botulinum neurotoxin serotype A, C and E.
  • 21. The recombinant clostridial neurotoxin of claim 16, wherein the clostridial neurotoxin is a functional variant of a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, or G.
  • 22. The recombinant clostridial neurotoxin of claim 16, wherein the clostridial neurotoxin is a chimeric Clostridium botulinum neurotoxin, wherein the clostridial neurotoxin light chain and heavy chain are from different clostridial neurotoxin serotypes.
  • 23. The recombinant clostridial neurotoxin of claim 16, wherein the recombinant clostridial neurotoxin comprises an amino acid sequence selected from any one of the sequences set forth in SEQ ID NOs: 33 to 36.
  • 24. The recombinant clostridial neurotoxin of claim 18, wherein the recombinant clostridial neurotoxin shows increased duration of effect relative to an identical clostridial neurotoxin without the C2 domain.
  • 25. A pharmaceutical composition comprising the recombinant clostridial neurotoxin of claim 16.
  • 26. A recombinant single-chain precursor clostridial neurotoxin comprising a C2 domain.
  • 27. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the C2 domain is (i) a C2 domain present in a protein listed in Table 5, or (ii) a human C2 domain present in a human protein listed in Table 6.
  • 28. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the C2 domain is a human C2 domain present in a human protein selected from the group consisting of ABR, BAIP3, BCR, C2CD3, C2D1A, C2D1B, CAN5, CAN6, CAPS1, CAPS2, CPNE1, CPNE2, CPNE3, CPNE4, CPNE5, CPNE6, CPNE7, CPNE8, CPNE9, CU025; DAB2P, DOC2A, DOC2B, DYSF, ESYT1, ESYT2, ESYT3; FR1L5, FTM, HECW1, HECW2, ITCH, ITSN1, ITSN2, KPCA, KPCB, KPCE, KPCG, KPCL, MCTP1, MCTP2, MYOF, NEDD4, NED4L, NGAP, OTOF, P3C2A, P3C2B, P3C2G, PA24A, PA24B, PA24D, PA24E, PA24F, PCLO, PERF, PLCB1, PLCB2, PLCB3, PLCB4, PLCD1, PLCD3, PLCD4, PLCE1, PLCG1, PLCG2, PLCH1, PLCH2, PLCL1, PLCL2, PLCZ1, RASA1, RASA2, RASA3, RASL1, RASL2, RFIP1, RFIP2, RFIP5, RGS3, RIMS1, RIMS2, RIMS4, RP3A, RPGR1, SMUF1, SMUF2, SY14L, SYGP1, SYT1, SYT2, SYT3, SYT4, SYT5, SYT6, SYT7, SYT8, SYT9, SYT10, SYT11, SYT12, SYT13, SYT14, SYT15, SYT16, SYT17, SYTL1, SYTL2, SYTL3, SYTL4, SYTL5, TAC2N, TOLIP, UN13A, UN13B, UN13C, UN13D, WWC2, WWP1, WWP2, DOC2A, DOC2B, DYSF, ESYT1, ESYT2, ESYT3, FR1L5, KPCA, KPCB, KPCG, MYOF, NED4L, PLCD1, PLCD3, PLCZ1, RFIP1, RFIP2, RFIP5, RP3A, SYT1, SYT2, SYT3, SYT4, SYT5, SYT6, SYT7, SYT9, SYT10, and SYTL1.
  • 29. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the clostridial neurotoxin is selected from a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, and G.
  • 30. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the clostridial neurotoxin is selected from Clostridium botulinum neurotoxin serotype A, C and E.
  • 31. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the clostridial neurotoxin is a functional variant of a Clostridium botulinum neurotoxin serotype A, B, C, D, E, F, or G.
  • 32. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the clostridial neurotoxin is a chimeric Clostridium botulinum neurotoxin, wherein the clostridial neurotoxin light chain and heavy chain are from different clostridial neurotoxin serotypes.
  • 33. The recombinant single-chain precursor clostridial neurotoxin of claim 26, wherein the recombinant clostridial neurotoxin comprises an amino acid sequence selected from any one of the sequences set forth in SEQ ID NOs: 33 to 36.
  • 34. A nucleic acid encoding the recombinant single-chain precursor clostridial neurotoxin of claim 26.
  • 35. The nucleic acid of claim 34, comprising a nucleic acid sequence selected from any one of the sequences set forth in SEQ ID NOs: 37 to 68.
  • 36. The nucleic acid of claim 34, comprising a nucleic acid sequence selected from any one of the sequences set forth in SEQ ID NOs: 69 to 72.
  • 37. A method for obtaining the nucleic acid of claim 26, comprising the step of inserting a nucleic acid encoding a C2 domain into a nucleic acid encoding a parental clostridial neurotoxin.
  • 38. A vector comprising the nucleic acid of claim 26.
  • 39. A recombinant host cell comprising the nucleic acid of claim 26.
  • 40. A method for producing the recombinant single-chain precursor clostridial neurotoxin of claim 26, comprising the step of expressing a nucleic acid encoding the recombinant single-chain precursor clostridial neurotoxin comprising a C2 domain in a host cell, cultivating the host cell under conditions which result in the expression of the nucleic acid and recombinant single-chain precursor clostridial neurotoxin, and recovering the recombinant single-chain precursor clostridial neurotoxin.
  • 41. A method of treating a disease requiring improved chemodenervation, comprising administering the recombinant clostridial neurotoxin of claim 16 to a subject in need thereof, wherein the recombinant clostridial neurotoxin exhibits longer lasting denervation relative to an identical clostridial neurotoxin without a C2 domain.
  • 42. A method of cosmetic treatment comprising administering the recombinant clostridial neurotoxin of claim 16 to a subject, wherein the recombinant clostridial neurotoxin exhibits longer lasting denervation relative to an identical clostridial neurotoxin without a C2 domain.
Priority Claims (1)
Number Date Country Kind
12008148.4 Dec 2012 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/003680 12/5/2013 WO 00
Provisional Applications (1)
Number Date Country
61733525 Dec 2012 US