Recombinant human thymopoietin proteins and uses therefor

Information

  • Patent Grant
  • 5472856
  • Patent Number
    5,472,856
  • Date Filed
    Tuesday, December 21, 1993
    31 years ago
  • Date Issued
    Tuesday, December 5, 1995
    29 years ago
Abstract
The present invention provides novel nucleotide and amino acid sequences for human thymopoietin .alpha., .beta., and .gamma., methods of recombinantly expressing same, and diagnostic and therapeutic uses thereof.
Description

FIELD OF THE INVENTION
The present invention relates generally to human thymopoietin proteins and their use in diagnosis and therapy of various immune and nervous system conditions.
BACKGROUND OF THE INVENTION
Thymopoietin is a polypeptide produced by cells of the thymus and other cells, which has been implicated in various immune and nervous system pathways. There have been several attempts to isolate and sequence various species of thymopoietin. Thymopoietin was originally isolated as a 5 kDa, 49 amino acid protein from bovine thymus [Goldstein et al, Nature, 247:11-14 (1974). See also, Schlesinger and Goldstein, Cell, 5:361-365 (1975).] Later work described by T. Audhya et al, Biochemistry, 20(21):6195-6200 (1981) purported to provide the complete sequences for bovine thymopoietins. Three 49 amino acid sequences were described therein. Zevin-Sonkin et al, Immunol. Lett., 31:301-310 (1992) report the isolation of a bovine cDNA using oligonucleotide probes based on the original 49 amino acid bovine TP protein sequence [Schlesinger and Goldstein, cited above], which encodes the originally determined sequence at the N-terminus of a larger open reading frame.
The active site of thymopoietin, a pentapeptide of the sequence Arg-Lys-Asp-Val-Tyr [SEQ ID NO:7], was described by G. Goldstein et al, Science, 204:1309-1310 (1979) and in U.S. Pat. No. 4,190,646. There is a wealth of art describing analogs of the active site, termed thymopentin and their uses.
Attempts to isolate and sequence thymopoietin continue. For example, European Patent Application 502,607 describes bovine thymopoietin or thymopoietin-like cDNA clones.
Despite these publications and the knowledge of thymopoietin, to date, the cloning of the complete human thymopoietin gene and its recombinant expression has not been described. There remains a need in the art for a convenient method of producing human thymopoietin, fragments thereof, and polynucleotide sequences encoding the protein.
SUMMARY OF THE INVENTION
In one aspect, the invention provides three novel polynucleotide sequences encoding human thymopoietin proteins referred to as .alpha., .beta. and .gamma., isolated from other cellular materials with which they are naturally associated, and having a biological activity associated with immune function. These polynucleotide sequences are illustrated in FIG. 1 [SEQ ID NO:1], FIG. 2 [SEQ ID NO:3] and FIG. 3 [SEQ ID NO:5]. Fragments of these sequences are also embodied by this invention. These sequences or fragments thereof may also be optionally associated with conventionally used labels for diagnostic or research use.
In another aspect, the invention provides an expression vector which contains at least a polynucleotide sequence described above. In still another aspect, a host cell transformed with such an expression vector is provided.
In still another aspect, the present invention provides a method for producing a recombinant human thymopoietin protein which involves transforming a host cell with an expression vector containing a recombinant polynucleotide encoding a human thymopoietin protein by incubating the host cell and expression vector, and following transformation, culturing the transformed host cell under conditions that allow expression of the human thymopoietin.
In still another aspect, the present invention provides three proteins characterized by having activity in the immune system. These proteins are illustrated in FIGS. 1-3, and are designated herein as .alpha. SEQ ID NO: 2, .beta. SEQ ID NO: 4, and .gamma. SEQ ID NO: 6, respectively. These proteins are characterized by being isolated from the cellular material with which they are naturally associated. Advantageously, one or more of these sequences is capable of being produced recombinantly.
In yet another aspect, the present invention provides a pharmaceutical composition containing at least one of the thymopoietin proteins .alpha., .beta. or .gamma., and a pharmaceutically acceptable carrier.
In another aspect, the invention provides a method of treating a subject with a disorder of the immune or nervous system by administering to the subject a pharmaceutical composition of the invention.
In yet a further aspect, the invention provides a diagnostic reagent, such as a polyclonal or monoclonal antibody generated by use of one of these thymopoietin proteins or fragments thereof.
In another aspect, the invention provides a diagnostic reagent, such as a DNA probe, i.e., an oligonucleotide fragment derived from the polynucleotide sequence encoding one of the proteins of the invention or from the complementary strand. The reagents may be optionally associated with a detectable label.





Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A through 1D consecutively illustrate the nucleic acid [SEQ ID NO:1] and amino acid [SEQ ID NO:2] sequences of human thymopoietin .alpha..
FIGS. 2A through 2C consecutively illustrate the nucleic acid [SEQ ID NO:3] and amino acid [SEQ ID NO:4] sequences of human thymopoietin .beta..
FIGS. 3A through 3C consecutively illustrate the nucleic acid [SEQ ID NO:5] and amino acid [SEQ ID NO:6] sequences of human thymopoietin .gamma..
FIG. 4A provides a schematic diagram of the protein sequence of thymopoietin protein .alpha..
FIG. 4B provides a schematic diagram of the protein sequence of thymopoietin protein .beta..
FIG. 4C provides a schematic diagram of the protein sequence of thymopoietin protein .gamma..





DETAILED DESCRIPTION OF THE INVENTION
The present invention provides novel recombinant human thymopoietin (rhTP) nucleic acid sequences and proteins, designated .alpha., .beta., and .gamma.. These sequences are provided in FIGS. 1-3 [SEQ ID NO: 1-6], respectively. Advantageously, the nucleic acid sequences are useful as diagnostic probes, in gene therapy, and in the production of thymopoietin proteins. The proteins are useful for a variety of therapeutic and diagnostic applications, as well as for generation of other therapeutic and diagnostic reagents.
In the figures, the sequences are numbered differently than in the Sequence Listing. Specifically, in the figures, the sequences have been numbered so that amino acid +1 is the amino terminal proline of mature TP and nucleotide +1 is the first nucleotide of the proline codon. The initial Met, its codon, and the 5' end of the sequences all are designated in negative numbers. This is indicative of the fact that the initiating methionine is removed co-translationally by methionine aminopeptidase [R. A. Bradshaw, Trends Biochem. Sci., 14:276-279 (1989)]. In contrast, due to the limitations of the PatentIn program, the Sequence Listing does not contain any negative numbers. Thus, in the Sequence Listing, the 5' non-coding region begins with positive numbers and the first amino acid is Met. Throughout this application, fragments of the sequences will be referred to as in the figures, with the numbers of the Sequence Listing following in brackets.
As used herein, the term ".beta. numbering system" reflects the fact that two common regions are shared by hTP.beta. and hTP.gamma. and are identified by reference to the amino acids of the hTP.beta. protein. Because hTP.beta. has a 109 amino acid insert (indicated in bold in FIG. 2), discussed in detail below, between amino acids 220 and 221 of hTP.gamma., in the .beta.-numbering system, amino acid 330 of hTP.beta. is equivalent to amino acid 221 of hTP.gamma. (subtraction of the 109 .beta.-specific amino acids results in correct numbering for .gamma.). See FIGS. 4B and 4C.
The present invention provides the human thymopoietin .alpha., .beta., and .gamma. proteins. These proteins are characterized by the amino acid sequences of FIG. 1-3, respectively. Human TP.alpha. is 693 amino acids in length [SEQ ID NO:2] having a molecular weight of 75 kDa, hTP.beta. is a 453 amino acid protein [SEQ ID NO:4] having a molecular weight of 51 kDa; and human TP.gamma. is a 344 amino acid protein [SEQ ID NO:6] having a molecular weight of 39 kDa.
TPs .alpha., .beta., and .gamma. have identical N-terminal domains through Glu.sub.187 (indicated by an * in FIGS. 1-3). This region is termed .alpha..beta..gamma. [amino acids 2-188 of SEQ ID NO: 2, 4,6]. See FIGS. 4A-4C. After Glu.sub.187, TP .alpha. [SEQ ID NO:2] diverges from TPs .beta. [SEQ ID NO:4] and .gamma. [SEQ ID NO:6]. This unique region from amino acid 188 through amino acid 693 of hTP.alpha. [189-694 SEQ ID NO:2] is termed simply .alpha.. A unique hTP.beta. region is found at amino acid 221 through amino acid 329 [222-330 of SEQ ID NO:4]. TP.gamma. differs from TP.beta. only in missing the .beta.-specific domain containing amino acids 221-329 of TP.beta. (222-330 of SEQ ID NO:4]. The two regions common to hTP .beta. and hTP .gamma. are from amino acid 188-220 (.beta..gamma.1) [189-221 SEQ ID NO:4] and from amino acid 330-453 (.beta..gamma.2) [331-454 SEQ ID NO: 4], using the .beta. numbering system. In regions where the amino acid sequences of TPs .alpha. [SEQ ID NO:2], .beta. [SEQ ID NO:4], and .gamma. [SEQ ID NO:6] are identical, their nucleotide sequences are identical as well, consistent with their originating via alternative splicing of transcripts from a single gene. This was confirmed by sequencing of genomic clones.
Included in this invention are fragments of the TP .alpha., .beta. and .gamma. proteins [SEQ ID NOS: 2, 4, 6]. Preferably, these fragments are at least about 3 amino acids in length and are characterized by being biologically active. These fragments are desirable for use in generating therapeutic or diagnostic antibodies or for other diagnostic purposes. Particularly desirable are the following fragments which have been found to be immunogenic sites. The following Table I makes use of the nomenclature above, e.g. .alpha..beta..gamma. hTP.sub.1-52 relates to amino acids 1-52 of .alpha., .beta. and .gamma. (amino acids 2-53 of SEQ ID NO: 2, 4 and 6).
TABLE I______________________________________ SEQPeptides SEQ ID NOS: Peptides ID NOS:______________________________________.alpha..beta..gamma. hTP.sub.1-52 2, 4, 6 .alpha. hTP.sub.425-443 2(2-53) (426-444).alpha..beta..gamma. hTP.sub.1-19 2, 4, 6 .alpha. hTP.sub.518-538 2(2-20) (519-539).alpha..beta..gamma. hTP.sub.28-39 2, 4, 6 .alpha. hTP.sub.604-622 2(29-40) (605-623).alpha..beta..gamma. hTP.sub.40-52 2, 4, 6 .alpha. hTP.sub.188-197 2(41-53) (189-198).alpha..beta..gamma. hTP.sub.29-50 2, 4, 6 .alpha. hTP.sub.188-202 2(30-51) (189-203).alpha..beta..gamma. hTP.sub.56-71 2, 4, 6 .beta..gamma.1 hTP.sub.196-215 4, 6(57-72) (197-216).alpha..beta..gamma. hTP.sub.92-108 2, 4, 6 .beta. hTP.sub.247-265 4(93-109) (248-266).alpha..beta..gamma. hTP.sub.168-187 2, 4, 6 .beta. hTP.sub.312-329 4(169-188) (313-330).alpha. hTP.sub.233-253 2 .beta. .gamma.2 hTP.sub.332-348 4, 6(234-254) (333-349).alpha. hTP.sub.342-362 2 .beta..gamma.2 hTP.sub.397-412 4, 6(343-363) (398-413)______________________________________
Also included in the invention are analogs of the .alpha., .beta., and .gamma. proteins provided herein. Typically, such analogs differ by only 1, 2, 3 or 4 codon changes. Examples include polypeptides with minor amino acid variations from the illustrated amino acid sequences of .alpha., .beta. or .gamma. (FIGS. 1-3; SEQ ID NOS: 2, 4, 6); in particular, conservative amino acid replacements. Conservative replacements are those that take place within a family of amino acids that are related in their side chains and chemical properties.
Additionally, the .alpha., .beta., and .gamma. proteins [SEQ ID NOS: 2, 4, 6] of the invention may be altered, for example to improve production or to confer some other desired property upon the protein. For example, the transmembrane region of the protein, identified herein, may be removed, fully or in part, to obtain a soluble form of the protein. Alternatively, a TP protein of the invention may be truncated or modified to prevent localization to the nucleus or into the nuclear membrane. For example, the TP.alpha. may be modified to remove the putative nucleus localization motif at amino acids 189-195 [aa 190-196 of SEQ ID NO:2]. The carboxy terminal transmembrane localization motifs of TP.beta. and TP.gamma. can also be removed, e.g., at aa 411-431 [aa412-432 of SEQ ID NO: 4] (indicated by double underlining in FIGS. 2 and 3).
Without being bound by the theory of the mechanism by which these rhTP proteins function, the inventors believe that each protein has unique characteristics. Each of the proteins plays a role in cellular physiology, especially in the immune system. As illustrated in the Examples below, TP mRNA expression was detected in all tissues examined, suggesting that some TP function(s) may be important in many or all cell types. However, TP mRNA expression was highest in adult thymus and in fetal liver, a major fetal site for production of T cell precursors. This suggests that TPs may play important roles in T cell development and function.
Human TPs .alpha., .beta., and .gamma. [SEQ ID NOS: 2, 4, 6] do not appear to contain a cleavable hydrophobic amino-terminal signal peptide for directing the nascent peptide into the ER/Golgi pathway for protein secretion. The apparent absence of classical N-terminal hydrophobic cleavable signal sequences for secretion in TP .alpha., .beta., and .gamma. suggests that the proteins [SEQ ID NOS: 2, 4, 6] may be largely localized intracellularly and may have important intracellular functions. However, preliminary analysis of conditioned media from human and mouse T-cell lines using a TP immunoassay is consistent with the presence of one or more forms of extracellular TP. Extracellular TP may be generated by an alternative secretion pathway such as that used by interleukin-1 or the fibroblast growth factors, which also have no classical signal sequences [A. Rubartelli et al, Biochem. Soc. Trans., 19:255-259 (1991)].
TPs .beta. and .gamma. [SEQ ID NOS: 4 and 6] contain a hydrophobic domain near their carboxy termini, which may be a transmembrane signal-anchor domain. This putative transmembrane region is found at amino acid sequences 410-430, using the .beta. numbering system [411-431 of SEQ ID NO:4]. In contrast, TP .alpha. [SEQ ID NO: 2] does not appear to contain a membrane-spanning domain and is expected to be a soluble protein. Preliminary analysis of subcellular localization by immunofluorescence microscopy confirms the localizations suggested above, i.e., TPB and TP.gamma. being localized to the nuclear membrane and TP.alpha. being localized within the nucleus.
Examination of TP .alpha., .beta., and .gamma. sequences [SEQ ID NOS: 2, 4, 6] for additional motifs revealed potential phosphorylation sites for several protein kinases. Of particular interest is a consensus sequence for tyrosine phosphorylation in TP.alpha. [SEQ ID NO: 2] at Tyr.sub.626 (indicated by underlining in FIG. 1). Typically, phosphorylation on tyrosine serves to regulate activities of many proteins, particularly proteins involved in controlling cell growth and differentiation.
The nucleic acid sequences encoding these proteins are themselves useful for a variety of diagnostic and therapeutic uses, including gene therapy. Thus, the present invention also provides the nucleic acid sequences encoding hTP.alpha., .beta. and .gamma. [SEQ ID NOS: 2, 4, 6] and fragments thereof. The nucleic acid sequences of the invention are characterized by the DNA sequences of FIG. 1-3 [SEQ ID NOS: 1, 3, 5], respectively. Note that the first approximately 53 nucleotides of the TP.gamma. sequence of FIG. 3 may either be an alternatively spliced original TP.gamma. sequence, or alternatively may represent a non-TP cloning artifact.
In addition to the fragments encoding the peptide sequences of Table I, other fragments of these sequences may prove useful for a variety of uses. Desirably, these fragments are at least about 15 nucleotides in length and encode a desired amino acid sequence, e.g. an epitope, a therapeutically useful peptide, or the like. These nucleotide sequences of the invention may be isolated as in Example 1, described below. Alternatively, these sequences may be constructed using conventional genetic engineering or chemical synthesis techniques.
According to the invention, the nucleic acid sequences [SEQ ID NOS: 1, 3, 5] coding for, as well as the encoded .alpha., .beta., and .gamma. proteins [SEQ ID NOS: 2, 4, 6] described above and provided in FIGS. 1-3, may be modified. Utilizing the sequence data in these figures, it is within the skill of the art to obtain other polynucleotide sequences encoding the proteins of the invention. Such modifications at the nucleic acid level include, for example, modifications to the nucleotide sequences which are silent or which change the amino acids, e.g. to improve expression or secretion. Alternatively, the amino acid sequence may be modified to enhance protein stability or other characteristics, e.g. binding activity or bioavailability. In still another alternative, the polynucleotide and/or protein sequences may be modified by adding readily assayable tags to facilitate quantitation, where desirable. Nucleotides may be substituted, inserted, or deleted by known techniques, including, for example, in vitro mutagenesis and primer repair. Also included are allelic variations, caused by the natural degeneracy of the genetic code. For example, in one of the hTP.alpha. cDNA clones isolated, nucleotide 1792 is a G, which changes amino acid 598 from Gln to Glu (compare to SEQ ID NO:1 in which nucleotide 1792 is a C). Note, also, nucleotide 579 is C in the .beta. clone .lambda.T.6 and in a genomic clone, but T in the sequenced subclone of .lambda. clone .lambda.T.206, in both cases encoding leucine.
In addition to isolated nucleic acid sequences [SEQ ID NOS: 1, 3, 5] encoding the thymopoietin proteins .alpha., .beta., and .gamma. [SEQ ID NOS: 2, 4, 6] described herein, this invention also encompasses other nucleic acid sequences, such as those complementary to the illustrated DNA sequences. Useful DNA sequences also include those sequences which hybridize under high or moderately high stringency conditions [see, T. Maniatis et al, Molecular cloning (A Laboratory Manual), Cold Spring Harbor Laboratory (1982), pages 387 to 389] to the DNA sequences illustrated in FIG. 1-3. An example of a highly stringent hybridization condition is hybridization at 4XSSC at 65.degree. C. followed by a washing in 0.1XSSC at 65.degree. C. for an hour. Alternatively, an exemplary highly stringent hybridization condition is in 50% formamide, 4XSSC at 42.degree. C. Other, moderately high stringency conditions may also prove useful, e.g. hybridization in 4XSSC at 55.degree. C., followed by washing in 0.1XSSC at 37.degree. C. for an hour. Alternatively, an exemplary moderately high stringency hybridization condition is in 50% formamide, 4XSSC at 30.degree. C.
Once constructed, or isolated, as described in further detail in Example 1 below, these DNA sequences or suitable fragments are preferably employed to obtain proteins of this invention.
The DNA sequences of the invention are inserted into a suitable expression system to obtain the proteins of the invention. Desirably, the polynucleotide sequence is operably linked to a heterologous expression control sequence permitting expression of the human thymopoietin protein. Numerous types of appropriate expression systems are known in the art for mammalian (including human) expression, as well as insect, yeast, fungal, and bacterial expression, by standard molecular biology techniques. Bacterial expression systems, using such host cells as E. coli, are desirable for expression of thymopoietin.
Mammalian cell expression vectors are also desirable for expression. The mammalian cell expression vectors described herein may be synthesized by techniques well known to those skilled in this art. The components of the vectors, e.g. replicons, selection genes, enhancers, promoters, and the like, may be obtained from natural sources or synthesized by known procedures.
The transformation of these vectors into appropriate host cells can result in expression of the selected thymopoietin proteins. Other appropriate expression vectors, of which numerous types are known in the art for mammalian expression, can also be used for this purpose.
Suitable cells or cell lines for this method are mammalian cells, such as Human 293 cells, Chinese hamster ovary cells (CHO), the monkey COS-1 cell line or murine 3T3 cells derived from Swiss, Balb-c or NIH mice. The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening, and product production and purification are known in the art. [See, e.g., Gething and Sambrook, Nature, 293:620-625 (1981), or alternatively, Kaufman et al, Mol. Cell. Biol., 5(7):1750-1759 (1985) or Howley et al, U.S. Pat. No. 4,419,446]. Another suitable mammalian cell line is the CV-1 cell line.
Similarly useful as host cells suitable for the present invention are bacterial cells. For example, the various strains of E. coli (e.g., HB101, MC1061, and strains used in the following examples) are well-known as host cells in the field of biotechnology. Various strains of B. subtilis, Pseudomonas, other bacilli and the like may also be employed in this method.
Many strains of yeast cells known to those skilled in the art are also available as host cells for expression of the polypeptides of the present invention. Additionally, where desired, insect cells may be utilized as host cells in the method of the present invention. [See, e.g. Miller et al, Genetic Engineering, 8:277-298 (Plenum Press 1986) and references cited therein]. Fungal cells may also be employed as expression systems.
The host cells transformed with the one or more vectors carrying the thymopoietin DNA, e.g. by conventional means, may then be cultured under suitable conditions to obtain expression of the desired protein. The method of this present invention therefore comprises culturing a suitable cell or cell line, which has been transformed with a DNA sequence coding for thymopoietin, the coding sequence under the control of a transcriptional regulatory sequence. The expressed protein is then recovered, isolated, and purified from the culture medium (or from the cell, if expressed intracellularly) by appropriate means known to one of skill in the art.
For example, the proteins may be isolated following cell lysis in soluble form, or extracted in guanidine chloride. For example, a currently preferred method for purification of hTP.alpha. [SEQ ID NO: 2] is by lysis of the E. coli by freezing and thawing followed by sonication, and extraction of the recombinant protein with solutions containing 20 mM Tris HCl, pH 7.6, 1M urea or 1M guanidine HCl. In addition, molecular sieving, e.g. using a 300 kDa sieve [BioRad TSK-250] column, may be used.
If desired, the TP proteins of the invention may be produced as a fusion protein. For example, it may be desirable to produce such TP fusion proteins, to enhance expression of the protein in a selected host cell, or to improve purification. Suitable fusion partners for the rhTP proteins of the invention are well known to those of skill in the art and include, among others, .beta.-galactosidase and poly-histidine.
Other uses for the polynucleotide sequences of this invention include diagnostic and therapeutic uses. For example, the novel recombinant hTP nucleic acid sequences or genes of the invention, or suitable fragments thereof, are useful in gene therapy for correcting abnormalities, for example, those associated with an immune or nervous system disorder.
Another example involves incorporating a desired hTP nucleic acid sequence of the invention into a suitable vector or other delivery system. Suitable delivery systems are well known to those of skill in the art. Vectors containing such sequences may be administered, thus, treating deficiencies of TP via in vivo expression of the proteins of the invention. Such delivery systems enable the desired hTP gene to be incorporated into the target cell and to be translated by the cell. In such a manner, a recombinant hTP protein of the invention can be provided to a cell, particularly a cell in an individual having a condition characterized by a deficiency in TP.
These polynucleotide sequences of this invention may also be associated with detectable labels or components of label systems conventionally used in diagnostic or therapeutic methods. As diagnostic agents the polynucleotide sequences may be employed to detect or quantitate normal or mutant hTP mRNA or detect mutations in TP DNA in a patient sample.
The TP.alpha., .beta. and .gamma. proteins [SEQ ID NOS: 2, 4, 6] of the invention and compositions containing these proteins demonstrate a variety of regulatory effects on the mammalian immune system. For example, peptides of this invention offer treatment therapies for chronic infection, autoimmune disorders, and certain affective psychiatric or neurological disorders, as well as other conditions characterized by a disorder of the immune system. Because of the immunomodulatory characteristics of the subject proteins, they are therapeutically useful in the treatment of humans, and possibly animals, since they are capable of effecting changes in the immune system of the mammal.
These proteins have therapeutic uses in humans. For example, the rhTP proteins in a pharmaceutical composition of the present invention may be administered in vivo to raise levels of circulating TP in an individual requiring same, e.g., a patient suffering from disorders, e.g., stress related to insufficient levels of circulating hTP. Alternatively, the rhTP proteins of the invention may be administered in such a way as to produce a localized response. It is anticipated that these rhTP proteins will have longer half-lives than thymopentin.
Also, the proteins according to the present invention may be used to diminish the effects of aging on the immune system. As the thymus shrinks with age, the level of thymopoietin decreases. Thus, administration of proteins of this invention which have biological activity similar to thymopoietin can help reduce the effects of aging related to inefficient or non-functioning immune systems.
The invention further provides pharmaceutical compositions and a method for treatment of conditions resulting from disorder of the immune system and/or nervous system of a subject, which comprises administering to said subject a therapeutically-effective amount of at least one of the proteins or pharmaceutical compositions of this invention. Such pharmaceutical compositions of the invention contain one or more of the above-described proteins or acid- or base-addition salts thereof. Optionally, such compositions may further contain conventional therapeutic or other agents useful in treating the immune or other disorder. The subject proteins or pharmaceutical compositions containing the proteins or their acid or basic salts are generally considered to be useful when cellular immunity is an issue and particularly when there are deficiencies in immunity. The pharmaceutical compositions of the invention are also useful in treating imbalances and dysfunctions in the central nervous system.
As used herein, the term "therapeutically-effective amount" means an amount which is effective to treat the conditions referred to above. A protein of the present invention is generally effective when parenterally administered in amounts above about 0.01 .mu.g protein per kg of body weight (.mu.g/kg), and preferably from about 1 .mu.g/kg to about 10 mg/kg.
To prepare the pharmaceutical compositions of the present invention, a protein of this invention is combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. This carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., sublingual, rectal, nasal, or parenteral. The presently preferred route of administration is parenteral.
For parenteral products the carrier will usually comprise sterile water, although other ingredients may be included, e.g., to aid solubility or for preservation purposes. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents, and the like may be employed.
Both the nucleic acid and amino acid sequences of the invention are useful for generating reagents for use in diagnostic assays. The nucleic acid sequences, or suitable fragments thereof, are also useful for detecting thymopoietin mRNA levels, and gene mutations. Further, antibodies, including monoclonal, polyclonal, and recombinant antibodies, may be generated to these peptide sequences which may similarly be useful for measuring thymopoietin levels. Such monoclonal antibodies may be generated using the standard Kohler and Milstein technique as well as well known modifications thereof. Alternatively, other known techniques for the generation of monoclonal or recombinant antibodies may be employed using fragments of the proteins or polynucleotide sequences of this invention to generate antibodies suitable for both therapeutic and diagnostic application.
Thus, the invention provides a method for diagnosing an immune or nervous system disorder, and/or detecting a condition associated with increased or decreased levels of thymopoietin using conventional diagnostic assay methods. Such a diagnostic method may be performed using a monoclonal or polyclonal antibody directed against an epitope of protein .alpha., .beta., or .gamma., or a DNA probe of the invention, in an appropriate assay system.
The following examples illustrate the preferred methods for isolating and expressing the novel sequences of the invention. In view of the disclosure of these sequences, other methods for obtaining them are available to the art and are therefore encompassed in this invention. These examples are illustrative only and do not limit the scope of the invention.
EXAMPLE 1
Isolation of Human Thymopoietin cDNA Clones
Initial human thymopoietin cDNA clones were isolated from a commercial cDNA library prepared from human thymus RNA in the vector lambda GT10 (Clontech; Palo Alto, Calif.). The sequence of human thymopoietin .alpha. was determined from the overlapping cDNA clones .lambda.hTP-T.32 and .lambda.hTP-T.153, which together provide the complete open reading frame, and was verified in the genomic clone .lambda.SHG-1, obtained from a commercial genomic library in vector .lambda.FIXII [Stratagene]. Isolation of the clones from which the TP proteins .alpha., .beta. and .gamma. of the invention were derived was performed as follows.
The library was probed using two 95-mer oligonucleotides containing a 14 nucleotide overlap based on the bovine thymopoietin sequence of Zevin-Sonkin et al, Immunol. Lett., 31:301-310 (1992). The sense oligonucleotide sequence was: GGGAATTCGC CGCCGAGATG CCGGAGTTCC TGGAAGACCC CTCGGTCCTG ACGAAAGAGA AGTTGAAGAG TGAGTTGGTC GCCAACAATG TGACG :SEQ ID NO:8. The antisense oligonucleotide sequence was: GGGAATTCAG CGCTTCAGGG CCGTCAGGTG CTGCAGGTAG AGCTGCACAT ACACGTCTTT GCGCTGCTCC CCGGCCGGGA GCGTCACATT GTTGG: SEQ ID NO:9.
Clones .lambda.hTP-T.6 (hTP.beta.), .lambda.hTP-T.17 (hTP.beta.), and .lambda.hTP-T.32 (hTP.alpha.) were among the clones isolated in this initial screen. Clone .lambda.hTP-T.153 (hTP.alpha.) was among the clones isolated in a subsequent screen in which the probe was a 0.3 kb fragment isolated from the 3' end of .lambda.hTP-T.32 by digestion with the restriction enzymes Bam HI and Eco RI. Clones .lambda.hTP-T.206 (hTP.gamma.) and .lambda.hTP-T.209 (hTP.beta.) were among the clones isolated in a screen in which the probe was two overlapping oligonucleotides derived from the 3' end of .lambda.hTP-T.17, the sense oligonucleotide being SEQ ID NO:10 :TCTATCAAGC TATGGAAACC AACCAAGTAA ATCCCTTCTC TAATT and the antisense oligonucleotide being SEQ ID NO: 11: CATTCAGTTG GATTTTCTAG GGTCAACATG AAGAGAATTA GAGAAGGGAT.
The sequence of human thymopoietin .gamma. was determined from clone .lambda.hTP-T.206. The sequence of human thymopoietin .beta. was determined from the overlapping clones .lambda.hTP-T.6, .lambda.hTP-T.17, and .lambda.hTP-T.209. The clone numbers are based solely on the order of isolation from the library.
EXAMPLE 2
Analysis of TP Clones
Sequences were determined using Sequenase Version 2.0 (United States Biochemical) or Taq polymerase (Perkin-Elmer), on the original clone DNA, or on fragments subcloned into plasmid vectors. All sequences reported here were determined on both strands of at least one clone, and, except for the 3' untranslated sequences of TPs .beta. and .gamma., have been confirmed in one or more additional clones.
The sequences of human TP .alpha., .beta. and .gamma. are similar but not identical to the bovine sequence of Zevin-Sonkin et al, cited above, between amino acids 1-81, but show no further similarity beyond this point. Sequencing of the human TP gene [SEQ ID NO:1,3,5] in a genomic clone has revealed that the DNA sequence encoding amino acid 81 lies in the middle of an exon with no nearby potential splice donor sites, indicating that a TP containing C-terminal sequence similar to the bovine sequence is not produced from the human TP gene [SEQ ID NO:1,3,5].
Protein sequences were searched for motifs in release 9 of the Prosite database [A. Bairoch, Nucl. Acids Res., 21:3097-3103 (1993)] using MacPattern [R. Fuchs, Comput. Appl. Biosci., 7:105-106 (1991)]. This analysis revealed several potential phosphorylation sites for protein kinases, including KTYDAASY, amino acids 619-626 of TP.alpha. [620-627 of SEQ ID NO:2], which matches a consensus sequence for phosphorylation by some tyrosine kinases ([K/R]X.sub.2/3 [D/E]X.sub.2/3 Y) [T. Patschinsky et al, Proc. Natl. Acad. Sci., U.S.A., 79:973-977 (1982)].
Hydropathy analysis was performed by the method of D. M. Engelman et al, Ann. Rev. Biophys. Biophys. Chem., 15:321-353 (1986) as implemented in MacVector (Eastman Kodak Chemical Co., software version 4.1) and revealed that TPs .beta. and .gamma. [SEQ ID NOS: 4 and 6] contain a very hydrophobic region close to their carboxy termini that may function as a transmembrane domain. No compelling similarities to previously known protein or nucleic acid sequences other than TP were revealed.
EXAMPLE 3
Expression of Recombinant Human TP in Bacteria
The open reading frames (ORFs) for recombinant human thymopoietin cDNAs .alpha., .beta., and .gamma. [SEQ ID NOS: 1, 3, 5] have been expressed in E. coli using inducible T7 RNA polymerase-dependent pET expression vectors [Novagen; Studier et al, Meth. Enzymol., 185:60-89 (1990)] as follows.
To construct an hTP.alpha. expression vector, the ORF was amplified by PCR from .lambda.hTP-T.32 and an overlapping Bam HI/Hind III fragment from .lambda.hTP-T.153. Primers that introduced an Nhe I site at the 5' end and an Xho I site at the 3' end were used, allowing insertion into the vector pET-17b (Novagen) between the Nhe I and Xho I sites. This construct, called pEThTPe, pETTII, or pET17b-hTP.alpha., encodes hTP.alpha. as a fusion protein with three additional amino acids, Met Ala Ser at the amino terminus, followed by the hTPe sequence [SEQ ID NO: 2] beginning with Met Pro Glu.
To construct an hTP.beta. expression vector, the open reading frame was amplified by PCR from .lambda.T.17, using primers that introduced an Nde I site at the 5' end and a BamHI site at the 3' end, allowing ligation into the vector pET-3a. The resulting expression plasmid, called pEThTP.beta., pETTIa or pET3ahTP.beta., encoded hTP.beta. [SEQ ID NO: 4] and contained no additional amino acids.
pETHTP.gamma., pETTIb, or pET3ahTP.gamma. was constructed as described for pEThTP.beta., except the open reading frame was amplified from .lambda.hTP-T.206.
For expression, the plasmids were transformed into E. coli strain BL21(DE3) [Novagen] which contains the T7 RNA polymerase gene integrated into the chromosome and under the control of the lacUV5 promoter. Induction of transcription from the lacUV5 promoter by addition of isopropyl .beta.-D-thioglucoside [IPTG; Gibco-BRL] produces the T7 RNA polymerase, which in turn transcribes the hTP genes which are under the control of a T7 RNA polymerase-dependent promoter. Cells were grown in M9 medium supplemented with 1% casamino acid [Difco] and 100 .mu.g/mL ampicillin or carbenicillin [Sigma]. When the cell density reached an optical density of 0.3 to 0.5 at 600 nm (at approximately 4 hours), the T7 RNA polymerase was induced by addition of IPTG to 1 mM, and the cells were grown for an additional 4 hours or overnight.
To confirm that the bacteria had been transformed with the appropriate plasmids and that the correct proteins were being produced, lysates of E. coli strains expressing the recombinant TPs were compared to lysates of the human T cell line CEM [American Type Culture Collection, ATCC #CCL 119]. Mammalian cell extracts were prepared by lysing cells in 1% NP-40, 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1 mM EGTA, 0.5 mM DTT, plus the following protease inhibitors (Boehringer Mannheim):10 .mu.g/ml aprotinin, 0.3 mM pepstatin, 0.1 mM Pefabloc, 1 .mu.g/ml E-64. After passage through a 27 gauge needle 10 times to reduce viscosity and centrifugation to remove insoluble material, sample buffer [U. Laemmli, Nature, 227:658-680 (1970)] was added. E. coli extracts were prepared by direct lysis in sample buffer. Proteins were separated by SDS-PAGE in 10% gels (Novex) buffered with tricine, under reducing conditions. Proteins were transferred to nitrocellulose (Novex), and TPs were detected after incubation with an affinity-purified rabbit antiserum raised against a synthetic peptide consisting of amino acids 1 to 19 of the common amino terminal region of TPs .alpha., .beta. and .gamma. [2-20 of SEQ ID NO: 2, 4, 6] and peroxidase-linked goat anti-rabbit Ig (Pierce) using an enhanced chemiluminescence system (Amersham).
The molecular masses of the TPs .alpha., .beta. and .gamma. [SEQ ID NOS: 2, 4, 6] were determined by comparison to marker proteins in separate experiments. Recombinant hTPs .alpha., .beta., and .gamma. [SEQ ID NOS: 2, 4, 6] produce 75 kDa, 51 kDa and 39 kDa proteins that co-migrated with the major thymopoietin proteins expressed in the human T cell line CEM. See Example 4.
EXAMPLE 4
Characterization of TP Proteins
A. Western Blot Analysis
Recombinant TP .alpha., .gamma., and .gamma. [SEQ ID NOS: 2, 4, 6] expressed in E. coli were compared with the TP proteins expressed in the human T cell line CEM by immunoblotting as described above.
CEM cells express three major intracellular proteins detected with an antiserum against TP amino acids 1-19, with apparent molecular masses of 75, 51, and 39 kDa. The 75 kDa, 51 kDa, and 39 kDa CEM proteins are the sizes predicted from the cDNA sequences for TPs .alpha., .beta., and .gamma., respectively, and co-migrate with recombinant TPs .alpha., .beta., and .gamma..
B. Northern Blot Analysis
Poly(A).sup.+ RNA from the human T cell line CEM (ATCC) was prepared by extraction with acid guanidinium thiocyanate-phenol-chloroform [P. Chomczynski et al, Anal. Biochem., 162:156-159 (1987)] using RNAzol (Cinna/Biotecx), followed by selection on oligo-dT columns as described [Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd Edit., Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (1989).
C. TP mRNAs in T Cell Lines
Probes for detection of TP mRNAs were partially overlapping oligonucleotides that were radiolabelled by extension of 3' ends to generate the complete double stranded sequence. Oligonucleotide sequences used were the sense and antisense (complementary) sequences as follows,
.alpha./.beta./.gamma. sense: nucleotides 1 to 87 [208 to 294 of SEQ ID NO: 1,3,5], antisense: 156 to 64 [363 to 271 of SEQ ID NO: 1,3,5];
.alpha.-specific sense: 1488 to 1587 [1695 to 1795 of SEQ ID NO:1], antisense: 1587 to 1570 [1794 to 1777 of SEQ ID NO: 1];
.beta.-specific sense: 849 to 898 [1089 to 1139 of SEQ ID NO:4], antisense: 929 to 879 [1169 to 1119 of SEQ ID NO: 3];
.beta./.gamma.-specific sense: 1286 to 1330 [1527 to 1571 of SEQ ID NO:3], antisense: 1365 to 1316 [1605 to 1556 of SEQ ID NO: 3]
Three distinct major human TP mRNAs, estimated to be 4.4 kb, 4.1 kb, and 4.0 kb, were detected in CEM cells. All three mRNAs were detected when blots were probed with an oligonucleotide containing sequences encoding amino acids 1 to 52 of the human TPs [2-53 of SEQ ID NO: 2, 4, 6], sequences that are present in TPs .alpha., .beta., and .gamma.. As none of the cDNAs isolated contain complete 3' untranslated regions, the lengths of TP .alpha., .beta., and .gamma. mRNAs could not be determined simply from the lengths of the cDNAs. Only the .about.4.4 kb mRNA was detected with the .beta.-specific probe, only the .about.4.0 kb mRNA was detected with the .alpha.-specific probe, and the .about.4.1 kb mRNA was detected with the .beta./.gamma.-specific probe but not with s-specific or .beta.-specific probes, suggesting that the 4.4 kb mRNA encodes TP.beta., the 4.0 kb mRNA encodes TP.alpha., and the 4.1 kb mRNA encodes TP.gamma..
D. Expression of TP mRNAs in adult and fetal tissues
Poly(A).sup.+ RNA from human tissues and blots of human tissue mRNAs were purchased from Clontech. Glyoxylated poly(A).sup.+ RNAs were separated on 1% agarose gels and blotted to nylon membranes (Gibco BRL). Hybridization and washing conditions were as described in Sambrook et al, cited above. Sizes of mRNAs were determined by comparison to RNA size markers (Gibco BRL).
TP mRNAs were detected in all tissues examined, with highest expression in adult thymus and in fetal liver. In some tissues, TP mRNAs of slightly different sizes than the thymus mRNAs were resolved when electrophoresis times were extended. Whether such differences result from different 5' or 3' untranslated regions or additional distinct patterns of alternative splicing of coding exons is not yet known. Expression of TPs .alpha., .beta., and .gamma. SEQ ID NOS: 2, 4, 6] in many tissues, with particularly high expression in thymus, has also been observed in rodents, and initial analysis of rat TP cDNAs suggests a high level of sequence conservation between rat and human TP .alpha., consistent with important functions of TPs in thymus and other tissues.
EXAMPLE 5
Expression of Recombinant Human TP in Mammalian Cells
hTPs .alpha., .beta., and .gamma. [SEQ ID NOS: 2, 4, 6] were expressed in mammalian cells by PCR amplification of the open reading frames and insertion into the mammalian expression vector pCMV6, a derivative of pCMV1 ]S. Andersson et al, J. Biol. Chem., 264:8222-8229 (1989)] between the Kpn I and Sal I sites for TP.alpha. and the Kpn I and Not I sites for TP.beta. and TP.gamma.. The resulting vectors are transfected into human embryonal kidney 293 cells [American Type Culture Collection, Accession #CRL 1573] by conventional techniques using calcium phosphate precipitation. The transfected cells are cultured in DMEM medium at 37.degree. C. until confluent.
The proteins are then isolated from the cell culture by lysis and conventional purification techniques and authenticated by Western blotting and SDS/PAGE.
EXAMPLE 6
Production of Site-Specific Antibodies to the HTP Sequence--Synthesis of (HFP.sub.1-19)-Lysine Core
The antibodies described below were found to be capable of recognizing the specific peptide sequence within a larger synthetic peptide fragment or natural HTP molecule.
An octameric branched lysine lattice was synthesized as described [Posnett et al, J. Biol. Chem., 263:1719-1725 (1988)] and the protected hTP.sub.1-19 fragment was synthesized by growth from both the .alpha.- and .epsilon.-amino groups. An Applied Biosystems model 430A peptide synthesizer was used employing standard protocols and software version 1.4. All amino acids were double-coupled and the end-NH.sub.2 program was used to remove the terminal Boc-groups. The protected peptide-resin was treated with liquid hydrogen fluoride, in the presence of p-cresol, p-thiocresol, and dimethylsulfide as scavengers, at 0.degree. C. for 1 hour with constant stirring. Excess HF was removed by vacuum and the residue treated with ether to remove scavenger products. The peptide was extracted (3.times.50 mL) with 50% acetic acid and the solvents evaporated in vacuo, and the product freeze-dried.
The crude peptide was initially purified on an Amberlite IRA-68 ion-exchange column; further purification was accomplished by reversed-phase HPLC on a preparative C.sub.18 column. The solvents used were: water containing 0.1% trifluoroacetic acid (TFA) (buffer A) and CH.sub.3 CN--H.sub.2 O (4:1) containing 0.1% TFA (buffer B). A linear gradient of 15-30% buffer B over 100 minutes was used. The appropriate fractions containing the peptide were pooled, the solvents evaporated in vacuo, and the product freeze-dried. The purified peptide gave satisfactory amino acid analysis. This peptide was used as an immunogen to raise antibodies as described in Example 7.
EXAMPLE 7
Generation and Routine Testing of Antisera Against Specific Protein Sequences
A. Generation of Antiserum
In order to produce reagents for use in immunoassays for both research and clinical diagnostic purposes, animals, usually rabbits, are repeatedly exposed to a compound in order to initiate an immune response that results in the formation of specific antibodies against that substance. By selecting specific regions of the hTP protein, e.g., those peptides disclosed in Table I above, and synthesizing these regions as smaller peptides, antibodies can be generated that specifically recognize the selected peptide and, the larger hTP as well.
To greatly increase the antigenicity of the selected hTP peptide and assure greater exposure of the sequence of interest a polylysine core compound is designed which employs the multiple reactive sites on lysine to create a network of lysine molecules with repeats of the small hTP peptide as the final layer. Thus the odds of antibodies being generated against the specified hTP peptide sequence are greatly enhanced.
Antisera are produced by injecting emulsions comprised of the polylysine core compound and an adjuvant into laboratory animals, preferably rabbits or sheep (mice are preferred for monoclonal preparation), to help stimulate the immune response. The injections are given in multiple sites and at regular time intervals in order to create repeated exposures from several routes. After sufficient exposure to stimulate an immune response, e.g., about 40 days, sera is collected from the rabbits and tested for the presence of antibodies against the injected peptide sequence.
B. Testing of Antiserum Titers
Enzyme-Linked Immunoassay (ELISA): In order to determine the concentration of specific antibodies present in the sera against the peptide of interest, serial dilutions of the test sera are added to wells of a microtiter plate that has been coated with the peptide used to generate the antiserum. After allowing time for the antibodies to bind to the coated peptide, the unbound sera is washed from the plate. A solution containing enzyme-linked antibodies that recognize immunoglobulins of the species in which the antisera was generated (e.g., anti-rabbit IgG antibodies) is added to the wells. These "anti-rabbit" antibodies bind to the rabbit antibodies that are bound to the peptide coated plate; thus, enzyme molecules (horseradish peroxidase) are effectively placed at each site where an antibody initially bound to the peptide coated plate. The unbound "anti-rabbit" antibodies are then washed from the plate. A substrate, which when converted by the enzyme to a different molecular form results in a color reaction, is added to the wells.
The intensity of the color change is quantitated and used to determine the relative concentration of antibodies that bound to the peptide coated peptide. For purposes of comparison, the amount of antibody present (titer) is expressed as the concentration of antiserum required to produce a final color reaction with optical density of 1.0. This intensity generally represents a maximal response. Antisera showing sufficient titer are further characterized to determine both their full specificity and their utility in the various immuno-applications.
C. Results
Rabbits immunized with multiple antigenic peptides corresponding to amino acid sequences derived from the cDNAs of the invention yielded antiserums with the following titers (titer yielding 1.00D unit by ELISA):
______________________________________Peptides Titers SEQ ID NO______________________________________.alpha..beta..gamma. 1-19 8 .times. 10.sup.6 (2-20) 2, 4, 6.alpha..beta..gamma. 28-39 4 .times. 10.sup.5 (29-40) 2, 4, 6.alpha..beta..gamma. 29-50 1.2 .times. 10.sup.7 (30-51) 2, 4, 6.alpha..beta..gamma. 40-52 1.6 .times. 10.sup.7 (41-53) 2, 4, 6.alpha..beta..gamma. 56-71 1.5 .times. 10.sup.6 (57-72) 2, 4, 6.alpha..beta..gamma. 92-108 8 .times. 10.sup.6 (93-109) 2, 4, 6.alpha. 168-187 2 .times. 10.sup.5 (169-188) 2, 4, 6.alpha. 233-253 2 .times. 10.sup.6 (234-254) 2.alpha. 342-362 8 .times. 10.sup.6 (343-363) 2.alpha. 425-443 2.5 .times. 10.sup.5 (426-444) 2.alpha. 518-538 3 .times. 10.sup.6 (519-539) 2.alpha. 604-622 1.5 .times. 10.sup.6 (605-623) 2.alpha. 188-197 2.5 .times. 10.sup.5 (189-198) 2.beta..gamma.1 196-215 1 .times. 10.sup.6 (197-216) 4, 6.beta. 247-265 6 .times. 10.sup.6 (248-266) 4.beta. 312-329 3 .times. 10.sup.6 (313-330) 4.beta..gamma.2 332-348 3 .times. 10.sup.6 (333-349) 4 (224-240) 6.beta..gamma.2 397-412 3 .times. 10.sup.6 (398-413) 4 (289-304) 6______________________________________
EXAMPLE 8
Preparation of Monoclonal Antibodies Specific for Thymopoietin
A. Immunization
Synthetic peptide sequences (derived from the predicted protein sequences of each of three thymopoietin cDNAs) of approximately 20 amino acid residues were built on a branched core of seven lysine residues according to the method of Tam [see, e.g., Posnett et al, cited above]. These structures are referred to as multiple antigenic peptides (MAP). In particular, mice were immunized with the HTP.alpha..beta..gamma. sequence specified by residues 29-50 (GEQRKDVYVQLYLQHLTARNRP).sub.8 K.sub.7 G [30-51 of SEQ ID NO: 2, 4, 6].
Balb/c mice, 8-12 weeks of age, were injected with 50 .mu.g of MAP suspended in 200 .mu.l of adjuvant which was divided between the subcutaneous and peritoneal routes. The adjuvant for the first injection was either Ribi.TM. (Ribi ImmunoChem, Hamilton, Mont.) or complete Freund's adjuvant. For subsequent injections, Ribi.TM. or incomplete Freund's adjuvant was used. A minimum of four injections (but more often 6-10) were given at no less than two week intervals. Sera were collected from animals 5 days following a booster injection in order to monitor antibody response. The reactivity of test sera with the specific MAP immunogen was measured by ELISA. Sera with high titers to the specific MAP were tested by western blot for binding to the native TP present in lysates of the T cell line CEM [ATCC; CCL 119]. Only mice which had serum showing high titers to the specific MAP and detectable binding to native TP were considered for fusion.
B. Fusion
Splenocytes from immunoresponsive mice, in particular, a mouse immunized with HTP.sub.29-50 MAP, were mixed with P3X63Ag8U1 (HGPRT myeloma) cells [obtained from Dr. Matthew D. Scharff, Einstein University, Bronx, N.Y.] at a ratio of 1:1. Cell fusion was accomplished by treating the pelleted cells with 40% polyethylene glycol 4000 essentially as described in G. Kohler and C. Milstein, Nature, 256:495 (1975). Hybridomas were grown in HAT selection medium as 1000 independent cultures and supernatants from the cultures were screened for TP-specific MAb production about 2 weeks after fusion.
C. Hybridoma Selection
Selection for hybridomas producing TP-specific monoclonal antibodies was achieved by testing culture supernatants in ELISA systems in which the antigen on the plate was either bovine serum albumin (BSA) or the immunizing peptide. Supernatants negative for BSA and positive for the immunizing peptide were tested on additional synthetic peptides or enriched preparations of native TP and the hybridomas producing supernatants positive for only HTP.sub.29-50 containing synthetic peptides and the TP-enriched native materials were chosen for subcloning. Hybridoma clones arising from a single cell were isolated by two successive rounds of limit dilution plating. For the HTP.alpha..beta..gamma..sub.29-50 lysine core immunogen, three independent hybridomas (885-1.7B8, 885-1.6E10 & 885-1.1C6) were identified and cloned.
D. MAb Characterization
Anti-TP monoclonal antibodies, purified from murine ascites fluid, were shown to be specific for native Tp by the immunostaining profile observed on western blots of cell lysates prepared from the early T cell line CEM. Three proteins of apparent molecular sizes of 75 kDa, 51 kDa and 39 kDa (the sizes predicted by the TP cDNA sequences and verified by expression of the TP cDNA's in E. coli) were detected by the anti-HTP.sub.29-50 monoclonal antibodies. Preincubation of the antibodies with the synthetic HTP.sub.29-50 peptide but not with an irrelevant synthetic peptide resulted in the loss of immunostaining of the protein bands. This suggests that the protein bands recognized by the monoclonal antibodies are TP proteins.
E. Other TP-Specific MAbs
Other monoclonal antibodies specific for one or more of the TP proteins, were obtained by immunization with MAP immunogens. These include those reported in Table II below.
TABLE II______________________________________MAP MAb TP Proteins______________________________________HTP.alpha..beta..gamma. 1-19 850-1.10A8 .alpha..beta..gamma. 850-1.10F8 .alpha..beta..gamma.HTP.beta. 312-329 937-1.6G11 .beta. 937-1.2B11 .beta.HTP.alpha. 233-253 923-2.9F5 .alpha.______________________________________
Numerous modifications and variations of the present invention are included in the above-identified specification and are expected to be obvious to one of skill in the art. Such modifications and alterations to the compositions and processes of the present invention are believed to be encompassed in the scope of the claims appended hereto.
__________________________________________________________________________SEQUENCE LISTING(1) GENERAL INFORMATION:(iii) NUMBER OF SEQUENCES: 11(2) INFORMATION FOR SEQ ID NO:1:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2490 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(ix) FEATURE: (A) NAME/KEY: CDS(B) LOCATION: 205..2286(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:GTTCGTAGTTCGGCTCTGGGGTCTTTTGTGTCCGGGTCTGGCTTGGCTTTGTGTCCGCGA60GTTTTTGTTCCGCTCCGCAGCGCTCTTCCCGGGCAGGAGCCGTGAGGCTCGGAGGCGGCA120GCGCGGTCCCCGGCCAGGAGCAAGCGCGCCGGCGTGAGCGGCGGCGGCAAAGGCTGTGGG180GAGGGGGCTTCGCAGATCCCCGAGATGCCGGAGTTCCTGGAAGACCCCTCG231MetProGluPheLe uGluAspProSer15GTCCTGACAAAAGACAAGTTGAAGAGTGAGTTGGTCGCCAACAATGTG279ValLeuThrLysAspLysLeuLysSerGluLeuValAlaAsn AsnVal10152025ACGCTGCCGGCCGGGGAGCAGCGCAAAGACGTGTACGTCCAGCTCTAC327ThrLeuProAlaGlyGluGlnArgLysAspValTyr ValGlnLeuTyr303540CTGCAGCACCTCACGGCTCGCAACCGGCCGCCGCTCCCCGCCGGCACC375LeuGlnHisLeuThrAlaArgAsnArgProPro LeuProAlaGlyThr455055AACAGCAAGGGGCCCCCGGACTTCTCCAGTGACGAAGAGCGCGAGCCC423AsnSerLysGlyProProAspPheSerSerAsp GluGluArgGluPro606570ACCCCGGTCCTCGGCTCTGGGGCCGCCGCCGCGGGCCGGAGCCGAGCA471ThrProValLeuGlySerGlyAlaAlaAlaAlaGly ArgSerArgAla758085GCCGTCGGCAGGAAAGCCACAAAAAAAACTGATAAACCCAGACAAGAA519AlaValGlyArgLysAlaThrLysLysThrAspLysProArg GlnGlu9095100105GATAAAGATGATCTAGATGTAACAGAGCTCACTAATGAAGATCTTTTG567AspLysAspAspLeuAspValThrGluLeuThrAsn GluAspLeuLeu110115120GATCAGCTTGTGAAATACGGAGTGAATCCTGGTCCTATTGTGGGAACA615AspGlnLeuValLysTyrGlyValAsnProGly ProIleValGlyThr125130135ACCAGGAAGCTATATGAGAAAAAGCTTTTGAAACTGAGGGAACAAGGA663ThrArgLysLeuTyrGluLysLysLeuLeuLys LeuArgGluGlnGly140145150ACAGAATCAAGATCTTCTACTCCTCTGCCAACAATTTCTTCTTCAGCA711ThrGluSerArgSerSerThrProLeuProThrIle SerSerSerAla155160165GAAAATACAAGGCAGAATGGAAGTAATGATTCTGACAGATACAGTGAC759GluAsnThrArgGlnAsnGlySerAsnAspSerAspArgTyr SerAsp170175180185AATGAAGAAGGAAAGAAGAAAGAACACAAGAAAGTGAAGTCCACTAGG807AsnGluGluGlyLysLysLysGluHisLysLysVal LysSerThrArg190195200GATATTGTTCCTTTTTCTGAACTTGGAACTACTCCCTCTGGTGGTGGA855AspIleValProPheSerGluLeuGlyThrThr ProSerGlyGlyGly205210215TTTTTTCAGGGTATTTCTTTTCCTGAAATCTCCACCCGTCCTCCTTTG903PhePheGlnGlyIleSerPheProGluIleSer ThrArgProProLeu220225230GGCAGTACCGAACTACAGGCAGCTAAGAAAGTACATACTTCTAAGGGA951GlySerThrGluLeuGlnAlaAlaLysLysValHis ThrSerLysGly235240245GACCTACCTAGGGAGCCTCTTGTTGCCACAAACTTGCCTGGCAGGGGA999AspLeuProArgGluProLeuValAlaThrAsnLeuProGly ArgGly250255260265CAGTTGCAGAAGTTAGCCTCTGAAAGGAATTTGTTTATTTCATGCAAG1047GlnLeuGlnLysLeuAlaSerGluArgAsnLeuPhe IleSerCysLys270275280TCTAGCCATGATAGGTGTTTAGAGAAAAGTTCTTCGTCATCTTCTCAG1095SerSerHisAspArgCysLeuGluLysSerSer SerSerSerSerGln285290295CCTGAACACAGTGCCATGTTGGTCTCTACTGCAGCTTCTCCTTCACTG1143ProGluHisSerAlaMetLeuValSerThrAla AlaSerProSerLeu300305310ATTAAAGAAACCACCACTGGTTACTATAAAGACATAGTAGAAAATATT1191IleLysGluThrThrThrGlyTyrTyrLysAspIle ValGluAsnIle315320325TGCGGTAGAGAGAAAAGTGGAATTCAACCATTATGTCCTGAGAGGTCC1239CysGlyArgGluLysSerGlyIleGlnProLeuCysProGlu ArgSer330335340345CATATTTCAGATCAATCGCCTCTCTCCAGTAAAAGGAAAGCACTAGAA1287HisIleSerAspGlnSerProLeuSerSerLysArg LysAlaLeuGlu350355360GAGTCTGAGAGCTCACAACTAATTTCTCCGCCACTTGCCCAGGCAATC1335GluSerGluSerSerGlnLeuIleSerProPro LeuAlaGlnAlaIle365370375AGAGATTATGTCAATTCTCTGTTGGTCCAGGGTGGGGTAGGTAGTTTG1383ArgAspTyrValAsnSerLeuLeuValGlnGly GlyValGlySerLeu380385390CCTGGAACTTCTAACTCTATGCCCCCACTGGATGTAGAAAACATACAG1431ProGlyThrSerAsnSerMetProProLeuAspVal GluAsnIleGln395400405AAGAGAATTGATCAGTCTAAGTTTCAAGAAACTGAATTCCTGTCTCCT1479LysArgIleAspGlnSerLysPheGlnGluThrGluPheLeu SerPro410415420425CCAAGAAAAGTCCCTAGACTGAGTGAGAAGTCAGTGGAGGAAAGGGAT1527ProArgLysValProArgLeuSerGluLysSerVal GluGluArgAsp430435440TCAGGTTCCTTTGTGGCATTTCAGAACATACCTGGATCCGAACTGATG1575SerGlySerPheValAlaPheGlnAsnIlePro GlySerGluLeuMet445450455TCTTCTTTTGCCAAAACTGTTGTCTCTCATTCACTCACTACCTTAGGT1623SerSerPheAlaLysThrValValSerHisSer LeuThrThrLeuGly460465470CTAGAAGTGGCTAAGCAATCACAGCATGATAAAATAGATGCCTCAGAA1671LeuGluValAlaLysGlnSerGlnHisAspLysIle AspAlaSerGlu475480485CTATCTTTTCCCTTCCATGAATCTATTTTAAAAGTAATTGAAGAAGAA1719LeuSerPheProPheHisGluSerIleLeuLysValIleGlu GluGlu490495500505TGGCAGCAAGTTGACAGGCAGCTGCCTTCACTGGCATGCAAATATCCA1767TrpGlnGlnValAspArgGlnLeuProSerLeuAla CysLysTyrPro510515520GTTTCTTCCAGGGAGGCAACACAGATATTATCAGTTCCAAAAGTAGAT1815ValSerSerArgGluAlaThrGlnIleLeuSer ValProLysValAsp525530535GATGAAATCCTAGGGTTTATTTCTGAAGCCACTCCACTAGGAGGTATT1863AspGluIleLeuGlyPheIleSerGluAlaThr ProLeuGlyGlyIle540545550CAAGCAGCCTCCACTGAGTCTTGCAATCAGCAGTTGGACTTAGCACTC1911GlnAlaAlaSerThrGluSerCysAsnGlnGlnLeu AspLeuAlaLeu555560565TGTAGAGCATATGAAGCTGCAGCATCAGCATTGCAGATTGCAACTCAC1959CysArgAlaTyrGluAlaAlaAlaSerAlaLeuGlnIleAla ThrHis570575580585ACTGCCTTTGTAGCTAAGGCTATGCAGGCAGACATTAGTCAAGCTGCA2007ThrAlaPheValAlaLysAlaMetGlnAlaAspIle SerGlnAlaAla590595600CAGATTCTTAGCTCAGATCCTAGTCGTACCCACCAAGCGCTTGGGATT2055GlnIleLeuSerSerAspProSerArgThrHis GlnAlaLeuGlyIle605610615CTGAGCAAAACATATGATGCAGCCTCATATATTTGTGAAGCTGCATTT2103LeuSerLysThrTyrAspAlaAlaSerTyrIle CysGluAlaAlaPhe620625630GATGAAGTGAAGATGGCTGCCCATACCATGGGAAATGCCACTGTAGGT2151AspGluValLysMetAlaAlaHisThrMetGlyAsn AlaThrValGly635640645CGTCGATACCTCTGGCTGAAGGATTGCAAAATTAATTTAGCTTCTAAG2199ArgArgTyrLeuTrpLeuLysAspCysLysIleAsnLeuAla SerLys650655660665AATAAGCTGGCTTCCACTCCCTTTAAAGGTGGAACATTATTTGGAGGA2247AsnLysLeuAlaSerThrProPheLysGlyGlyThr LeuPheGlyGly670675680GAAGTATGCAAAGTAATTAAAAAGCGTGGAAATAAACACTAGTAAAATT2296GluValCysLysValIleLysLysArgGlyAsn LysHis685690AAGGACAAAAAGACATCTATCTTATCTTTCAGGTACTTTATGCCAACATTTTCTTTTCTG2356TTAAGGTTGTTTTAGTTTCCAGATAGGGCTAATTACAAAATGTTAAGCTTCTACCCATCA2416AATTACAGTATAAAAGTAATTGCCTGTGTAGAACTACTTGTCTTTTCTAAAGATTTGCGT2476AGATAGGAAGCCTG2490(2) INFORMATION FOR SEQ ID NO:2:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 694 amino acids (B) TYPE: amino acid(D) TOPOLOGY: linear(ii) MOLECULE TYPE: protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:MetProGluPheLeuGluAspProSerValLeuThrLysAspLysLeu151015L ysSerGluLeuValAlaAsnAsnValThrLeuProAlaGlyGluGln202530ArgLysAspValTyrValGlnLeuTyrLeuGlnHisLeuThrAlaArg3 54045AsnArgProProLeuProAlaGlyThrAsnSerLysGlyProProAsp505560PheSerSerAspGluGluArgGluProTh rProValLeuGlySerGly65707580AlaAlaAlaAlaGlyArgSerArgAlaAlaValGlyArgLysAlaThr8590 95LysLysThrAspLysProArgGlnGluAspLysAspAspLeuAspVal100105110ThrGluLeuThrAsnGluAspLeuLeuAspGlnLeuVal LysTyrGly115120125ValAsnProGlyProIleValGlyThrThrArgLysLeuTyrGluLys130135140LysLeuLeuL ysLeuArgGluGlnGlyThrGluSerArgSerSerThr145150155160ProLeuProThrIleSerSerSerAlaGluAsnThrArgGlnAsnGly 165170175SerAsnAspSerAspArgTyrSerAspAsnGluGluGlyLysLysLys180185190GluHisLysLysValLysSe rThrArgAspIleValProPheSerGlu195200205LeuGlyThrThrProSerGlyGlyGlyPhePheGlnGlyIleSerPhe210215 220ProGluIleSerThrArgProProLeuGlySerThrGluLeuGlnAla225230235240AlaLysLysValHisThrSerLysGlyAspLeuProArgGlu ProLeu245250255ValAlaThrAsnLeuProGlyArgGlyGlnLeuGlnLysLeuAlaSer260265270G luArgAsnLeuPheIleSerCysLysSerSerHisAspArgCysLeu275280285GluLysSerSerSerSerSerSerGlnProGluHisSerAlaMetLeu290 295300ValSerThrAlaAlaSerProSerLeuIleLysGluThrThrThrGly305310315320TyrTyrLysAspIleValGluAs nIleCysGlyArgGluLysSerGly325330335IleGlnProLeuCysProGluArgSerHisIleSerAspGlnSerPro340345 350LeuSerSerLysArgLysAlaLeuGluGluSerGluSerSerGlnLeu355360365IleSerProProLeuAlaGlnAlaIleArgAspTyrValAsn SerLeu370375380LeuValGlnGlyGlyValGlySerLeuProGlyThrSerAsnSerMet385390395400ProP roLeuAspValGluAsnIleGlnLysArgIleAspGlnSerLys405410415PheGlnGluThrGluPheLeuSerProProArgLysValProArgLeu 420425430SerGluLysSerValGluGluArgAspSerGlySerPheValAlaPhe435440445GlnAsnIleProGlySerGluLe uMetSerSerPheAlaLysThrVal450455460ValSerHisSerLeuThrThrLeuGlyLeuGluValAlaLysGlnSer465470475 480GlnHisAspLysIleAspAlaSerGluLeuSerPheProPheHisGlu485490495SerIleLeuLysValIleGluGluGluTrpGlnGlnVal AspArgGln500505510LeuProSerLeuAlaCysLysTyrProValSerSerArgGluAlaThr515520525GlnI leLeuSerValProLysValAspAspGluIleLeuGlyPheIle530535540SerGluAlaThrProLeuGlyGlyIleGlnAlaAlaSerThrGluSer54555 0555560CysAsnGlnGlnLeuAspLeuAlaLeuCysArgAlaTyrGluAlaAla565570575AlaSerAlaLeuGlnIleAl aThrHisThrAlaPheValAlaLysAla580585590MetGlnAlaAspIleSerGlnAlaAlaGlnIleLeuSerSerAspPro595600 605SerArgThrHisGlnAlaLeuGlyIleLeuSerLysThrTyrAspAla610615620AlaSerTyrIleCysGluAlaAlaPheAspGluValLysMetAlaAla625630635640HisThrMetGlyAsnAlaThrValGlyArgArgTyrLeuTrpLeuLys645650655A spCysLysIleAsnLeuAlaSerLysAsnLysLeuAlaSerThrPro660665670PheLysGlyGlyThrLeuPheGlyGlyGluValCysLysValIleLys67 5680685LysArgGlyAsnLysHis690(2) INFORMATION FOR SEQ ID NO:3:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1743 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA (ix) FEATURE:(A) NAME/KEY: CDS(B) LOCATION: 238..1599(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:GGTTGGTGCGAGCTTCCAGCTTGGCCGCAGTTGGTTCGTAGTTCGGCTCTGGGGTCTTTT60GTGTCCGGGTCTGGCTTGGCTTTGTGTCCGCGAGTTTTTGTTCCGCTCCGCAGC GCTCTT120CCCGGGCAGGAGCCGTGAGGCTCGGAGGCGGCAGCGCGGTCCCCGGCCAGGAGCAAGCGC180GCCGGCGTGAGCGGCGGCGGCAAAGGCTGTGGGGAGGGGGCTTCGCAGATCCCCGAG237ATGCCGGAGTTCCTGGAAGACCCC TCGGTCCTGACAAAAGACAAGTTG285MetProGluPheLeuGluAspProSerValLeuThrLysAspLysLeu151015AAGAGTGAGTTGGTCGCCAAC AATGTGACGCTGCCGGCCGGGGAGCAG333LysSerGluLeuValAlaAsnAsnValThrLeuProAlaGlyGluGln202530CGCAAAGACGTGTACGTCCAG CTCTACCTGCAGCACCTCACGGCTCGC381ArgLysAspValTyrValGlnLeuTyrLeuGlnHisLeuThrAlaArg354045AACCGGCCGCCGCTCCCCGCCGGC ACCAACAGCAAGGGGCCCCCGGAC429AsnArgProProLeuProAlaGlyThrAsnSerLysGlyProProAsp505560TTCTCCAGTGACGAAGAGCGCGAGCCCACC CCGGTCCTCGGCTCTGGG477PheSerSerAspGluGluArgGluProThrProValLeuGlySerGly65707580GCCGCCGCCGCGGGCCGGAGCCGA GCAGCCGTCGGCAGGAAAGCCACA525AlaAlaAlaAlaGlyArgSerArgAlaAlaValGlyArgLysAlaThr859095AAAAAAACTGATAAACCCAGA CAAGAAGATAAAGATGATCTAGATGTA573LysLysThrAspLysProArgGlnGluAspLysAspAspLeuAspVal100105110ACAGAGCTCACTAATGAAGAT CTTTTGGATCAGCTTGTGAAATACGGA621ThrGluLeuThrAsnGluAspLeuLeuAspGlnLeuValLysTyrGly115120125GTGAATCCTGGTCCTATTGTGGGA ACAACCAGGAAGCTATATGAGAAA669ValAsnProGlyProIleValGlyThrThrArgLysLeuTyrGluLys130135140AAGCTTTTGAAACTGAGGGAACAAGGAACA GAATCAAGATCTTCTACT717LysLeuLeuLysLeuArgGluGlnGlyThrGluSerArgSerSerThr145150155160CCTCTGCCAACAATTTCTTCTTCA GCAGAAAATACAAGGCAGAATGGA765ProLeuProThrIleSerSerSerAlaGluAsnThrArgGlnAsnGly165170175AGTAATGATTCTGACAGATAC AGTGACAATGAAGAAGACTCTAAAATA813SerAsnAspSerAspArgTyrSerAspAsnGluGluAspSerLysIle180185190GAGCTCAAGCTTGAGAAGAGA GAACCACTAAAGGGCAGAGCAAAGACT861GluLeuLysLeuGluLysArgGluProLeuLysGlyArgAlaLysThr195200205CCAGTAACACTCAAGCAAAGAAGA GTTGAGCACAATCAGAGCTATTCT909ProValThrLeuLysGlnArgArgValGluHisAsnGlnSerTyrSer210215220CAAGCTGGAATAACTGAGACTGAATGGACA AGTGGATCTTCAAAAGGC957GlnAlaGlyIleThrGluThrGluTrpThrSerGlySerSerLysGly225230235240GGACCTCTGCAGGCATTAACTAGG GAATCTACAAGAGGGTCAAGAAGA1005GlyProLeuGlnAlaLeuThrArgGluSerThrArgGlySerArgArg245250255ACTCCAAGGAAAAGGGTGGAA ACTTCAGAACATTTTCGTATAGATGGT1053ThrProArgLysArgValGluThrSerGluHisPheArgIleAspGly260265270CCAGTAATTTCAGAGAGTACT CCCATAGCTGAAACTATAATGGCTTCA1101ProValIleSerGluSerThrProIleAlaGluThrIleMetAlaSer275280285AGCAACGAATCCTTAGTTGTCAAT AGGGTGACTGGAAATTTCAAGCAT1149SerAsnGluSerLeuValValAsnArgValThrGlyAsnPheLysHis290295300GCATCTCCTATTCTGCCAATCACTGAATTC TCAGACATACCCAGAAGA1197AlaSerProIleLeuProIleThrGluPheSerAspIleProArgArg305310315320GCACCAAAGAAACCATTGACAAGA GCTGAAGTGGGAGAAAAAACAGAG1245AlaProLysLysProLeuThrArgAlaGluValGlyGluLysThrGlu325330335GAAAGAAGAGTAGAAAGGGAT ATTCTTAAGGAAATGTTCCCCTATGAA1293GluArgArgValGluArgAspIleLeuLysGluMetPheProTyrGlu340345350GCATCTACACCAACAGGAATT AGTGCTAGTTGCCGCAGACCAATCAAA1341AlaSerThrProThrGlyIleSerAlaSerCysArgArgProIleLys355360365GGGGCTGCAGGCCGGCCATTAGAA CTCAGTGATTTCAGGATGGAGGAG1389GlyAlaAlaGlyArgProLeuGluLeuSerAspPheArgMetGluGlu370375380TCTTTTTCATCTAAATATGTTCCTAAGTAT GTTCCCTTGGCAGATGTC1437SerPheSerSerLysTyrValProLysTyrValProLeuAlaAspVal385390395400AAGTCAGAAAAGACAAAAAAGGGA CGCTCCATTCCCGTATGGATAAAA1485LysSerGluLysThrLysLysGlyArgSerIleProValTrpIleLys405410415ATTTTGCTGTTTGTTGTTGTG GCAGTTTTTTTGTTTTTGGTCTATCAA1533IleLeuLeuPheValValValAlaValPheLeuPheLeuValTyrGln420425430GCTATGGAAACCAACCAAGTA AATCCCTTCTCTAATTTTCTTCATGTT1581AlaMetGluThrAsnGlnValAsnProPheSerAsnPheLeuHisVal435440445GACCCTAGAAAATCCAACTGAATGG TATCTCTTTGGCACGTTCAACTT1629AspProArgLysSerAsn450GGTCTCCTATTTTCAATAACTGTTGAAAAACATTTGTGTACACTTGTTGACTCCAAGAAC1689TAAAAATAATGTGATTTCGCCTCAATAAATGTAGTATTTC ATTGAAAAGCAAAC1743(2) INFORMATION FOR SEQ ID NO:4:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 454 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear(ii) MOLECULE TYPE: protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:MetProGluPheLeuGluAspProSerValLeuThrLys AspLysLeu151015LysSerGluLeuValAlaAsnAsnValThrLeuProAlaGlyGluGln202530ArgLysAspValTyrValGlnLeuTyrLeuGlnHisLeuThrAlaArg354045AsnArgProProLeuProAlaGlyThrAsnSerLysGlyProProAsp50 5560PheSerSerAspGluGluArgGluProThrProValLeuGlySerGly65707580AlaAlaAlaAlaGlyArgSe rArgAlaAlaValGlyArgLysAlaThr859095LysLysThrAspLysProArgGlnGluAspLysAspAspLeuAspVal100 105110ThrGluLeuThrAsnGluAspLeuLeuAspGlnLeuValLysTyrGly115120125ValAsnProGlyProIleValGlyThrThrArgLysLeu TyrGluLys130135140LysLeuLeuLysLeuArgGluGlnGlyThrGluSerArgSerSerThr145150155160P roLeuProThrIleSerSerSerAlaGluAsnThrArgGlnAsnGly165170175SerAsnAspSerAspArgTyrSerAspAsnGluGluAspSerLysIle 180185190GluLeuLysLeuGluLysArgGluProLeuLysGlyArgAlaLysThr195200205ProValThrLeuLysGlnAr gArgValGluHisAsnGlnSerTyrSer210215220GlnAlaGlyIleThrGluThrGluTrpThrSerGlySerSerLysGly225230235 240GlyProLeuGlnAlaLeuThrArgGluSerThrArgGlySerArgArg245250255ThrProArgLysArgValGluThrSerGluHisPhe ArgIleAspGly260265270ProValIleSerGluSerThrProIleAlaGluThrIleMetAlaSer275280285S erAsnGluSerLeuValValAsnArgValThrGlyAsnPheLysHis290295300AlaSerProIleLeuProIleThrGluPheSerAspIleProArgArg305 310315320AlaProLysLysProLeuThrArgAlaGluValGlyGluLysThrGlu325330335GluArgArgValGluAr gAspIleLeuLysGluMetPheProTyrGlu340345350AlaSerThrProThrGlyIleSerAlaSerCysArgArgProIleLys355360 365GlyAlaAlaGlyArgProLeuGluLeuSerAspPheArgMetGluGlu370375380SerPheSerSerLysTyrValProLysTyrValProLeuAlaAsp Val385390395400LysSerGluLysThrLysLysGlyArgSerIleProValTrpIleLys405410415IleLeuLeuPheValValValAlaValPheLeuPheLeuValTyrGln420425430AlaMetGluThrAsnGlnValAsnProPheSerAsnPheLeuHisVal 435440445AspProArgLysSerAsn450(2) INFORMATION FOR SEQ ID NO:5:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2392 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(ix) FEATURE:(A) NAME/KEY: CDS(B) LOCATION: 241..1275(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:CCCTGCTACCAAGGCCCAGCTATGGCCCCAGGGTTGAAAAGTTATGAGGGTCAGGGGTCT60TTTGTGTCCGGGTCTGGCTTGGCTTTGTGTCCGCGAGTTTTTGTTCCGCT CCGCAGCGCT120CTTCCCGGGCAGGAGCCGTGAGGCTCGGAGGCGGCAGCGCGGTCCCCGGCCAGGAGCAAG180CGCGCCGGCGTGAGCGGCGGCGGCAAAGGCTGTGGGGAGGGGGCTTCGCAGATCCCCGAG240ATGCCGGAGTTCCTGGAAGACCCCT CGGTCCTGACAAAAGACAAGTTGAAGAGTGAGTTG300GTCGCCAACAATGTGACGCTGCCGGCCGGGGAGCAGCGCAAAGACGTGTACGTCCAGCTC360TACCTGCAGCACCTCACGGCTCGCAACCGGCCGCCGCTCCCCGCCGGCACCAACAGCAAG420 GGGCCCCCGGACTTCTCCAGTGACGAAGAGCGCGAGCCCACCCCGGTCCTCGGCTCTGGG480GCCGCCGCCGCGGGCCGGAGCCGAGCAGCCGTCGGCAGGAAAGCCACAAAAAAAACTGAT540AAACCCAGACAAGAAGATAAAGATGATCTAGATGTAACAGAGC TCACTAATGAAGATCTT600TTGGATCAGCTTGTGAAATACGGAGTGAATCCTGGTCCTATTGTGGGAACAACCAGGAAG660CTATATGAGAAAAAGCTTTTGAAACTGAGGGAACAAGGAACAGAATCAAGATCTTCTACT720CCTCTGCCAACAATTTCT TCTTCAGCAGAAAATACAAGGCAGAATGGAAGTAATGATTCT780GACAGATACAGTGACAATGAAGAAGACTCTAAAATAGAGCTYAAGCTTGAGAAGAGAGAA840CCACTAAAGGGCAGAGCAAAGACTCCAGTAACACTCAAGCAAAGAAGAGTTGAGCACAAT 900CAGGTGGGAGAAAAAACAGAGGAAAGAAGAGTAGAAAGGGATATTCTTAAGGAAATGTTC960CCCTATGAAGCATCTACACCAACAGGAATTAGTGCTAGTTGCCGCAGACCAATCAAAGGG1020GCTGCAGGCCGGCCATTAGAACTCAGTGATTTCAGG ATGGAGGAGTCTTTTTCATCTAAA1080TATGTTCCTAAGTATGTTCCCTTGGCAGATGTCAAGTCAGAAAAGACAAAAAAGGGACGC1140TCCATTCCCGTATGGATAAAAATTTTGCTGTTTGTTGTTGTGGCAGTTTTTTTGTTTTTG1200GTCTATCAAG CTATGGAAACCAACCAAGTAAATCCCTTCTCTAATTTTCTTCATGTTGAC1260CCTAGAAAATCCAACTGAATGGTATCTCTTTGGCACGTTCAACTTGGTCTCCTATTTTCA1320ATAACTGTTGAAAAACATTTGTGTACACTTGTTGACTCCAAGAACTAAAAATAA TGTGAT1380TTCGCCTCAATAAATGTAGTATTTCATTGAAAAGCAAACAAAATATATATAAATGGACTT1440CATTAAAATGTTTTTGAACTTTGGACTAGTAGGAGATCACTTTGTGCCATATGAATAATC1500TTTTTTAGCTCTGGAACTTTTTGTAGGCT TTATTTTTTTAATGTGGGCATCTTATTTCAT1560TTTTGAAAAAATGTATATGTTTTTTGTGTATTTGGGAAACGAAGGGTGAAACATGGTAGT1620ATAATGTGAAGCTACACATTTAAATACTTAGAATTCTTACAGAAAAGATTTTAAGAATTA1680TTC TCTGCTGAATAAAAACTGCAAATATGTGAAACATAATGAAATTCAGTAAGAGGAAAA1740GTAACTTGGTTGTACTTTTTGTAACTGCAACAAAGTTTGATGGTGTTTATGAGGAAAAGT1800ACAGCAATAATCTCTTCTGTAACCTTTATTAATAGTAATGTTGTTGT AGCCCTATCATAC1860TCACTTTTTAAGACACAGTATCATGAAAGTCCTATTTCAGTAAGACCCATTTACATACAG1920TAGATTTTTAGCAGAGATCTTTTAGTGTAACATACATATTTTAGAGAATTGTTGGCTAGC1980TGTACATGTTTTGAAAAGCTG TTTAGCTAGCTATAAGGCTATAATTGGAAATTTGTATTT2040TTTATTTACAGCAAAACATTTATTCAGTCATCCAGTTTGCTACCAAAATATGTTTTAGAT2100AAGTGTGTGTATGTTTGTTTAGAAGTTAGAAATTGTAAACACTGGTCTTATGTTTCATTT216 0GGATTCATTATTGCATTGTCTTGTTACCAGAAACAAATTTTGCCGAGCTTTTTTTGCCCT2220ATATTTCCCAGCATAATTTGATTAGAAAGTACAAAAAGGGCCGGGCGCGGTGGCTTACGC2280CTGTAATCCCAGCACTTTGGGAGGCCAGGGCGGGTGGATC ACGAGGTCAGGAGATCGGGA2340CCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAAAAAAAAAAAAA2392(2) INFORMATION FOR SEQ ID NO:6:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 345 amino acids(B) TYPE: amino acid(D) TOPOLOGY: unknown(ii ) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:MetProGluPheLeuGluAspProSerValLeuThrLysAspLysLeu151015LysSerGluLeuValAlaAsnAsnValThrLeuPro AlaGlyGluGln202530ArgLysAspValTyrValGlnLeuTyrLeuGlnHisLeuThrAlaArg354045Asn ArgProProLeuProAlaGlyThrAsnSerLysGlyProProAsp505560PheSerSerAspGluGluArgGluProThrProValLeuGlySerGly657 07580AlaAlaAlaAlaGlyArgSerArgAlaAlaValGlyArgLysAlaThr859095LysLysThrAspLysProArg GlnGluAspLysAspAspLeuAspVal100105110ThrGluLeuThrAsnGluAspLeuLeuAspGlnLeuValLysTyrGly115120 125ValAsnProGlyProIleValGlyThrThrArgLysLeuTyrGluLys130135140LysLeuLeuLysLeuArgGluGlnGlyThrGluSerArgSerSerThr145150155160ProLeuProThrIleSerSerSerAlaGluAsnThrArgGlnAsnGly165170175Se rAsnAspSerAspArgTyrSerAspAsnGluGluAspSerLysIle180185190GluLeuLysLeuGluLysArgGluProLeuLysGlyArgAlaLysThr195 200205ProValThrLeuLysGlnArgArgValGluHisAsnGlnValGlyGlu210215220LysThrGluGluArgArgValGluArgAsp IleLeuLysGluMetPhe225230235240ProTyrGluAlaSerThrProThrGlyIleSerAlaSerCysArgArg245250 255ProIleLysGlyAlaAlaGlyArgProLeuGluLeuSerAspPheArg260265270MetGluGluSerPheSerSerLysTyrValProLysTyr ValProLeu275280285AlaAspValLysSerGluLysThrLysLysGlyArgSerIleProVal290295300TrpIleLysIl eLeuLeuPheValValValAlaValPheLeuPheLeu305310315320ValTyrGlnAlaMetGluThrAsnGlnValAsnProPheSerAsnPhe 325330335LeuHisValAspProArgLysSerAsn340345(2) INFORMATION FOR SEQ ID NO:7:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown(ii) MOLECULE TYPE: peptide(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:ArgLysAspValTyr15(2) INFORMATION FOR SEQ ID NO:8:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 95 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: unknown(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:GGGAATTCGCCGCCGAGATGCCGGAGTTCCTGGAAGACCCCTCGGTCCTGACGAAAGAGA60AGTTGAAGAGTGAGTTGGTCGCCAACAATGTGACG95(2) INFORMATION FOR SEQ ID NO:9:(i ) SEQUENCE CHARACTERISTICS:(A) LENGTH: 95 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: unknown(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:GGGAATTCAGCGCTTCAGGGCCGTCAGGTGCTGCAGGTAGAGCTGCACATACACGTCTTT60GCGCTGCTCC CCGGCCGGGAGCGTCACATTGTTGG95(2) INFORMATION FOR SEQ ID NO:10:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: unknown(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: TCTATCAAGCTATGGAAACCAACCAAGTAAATCCCTTCTCTAATT45(2) INFORMATION FOR SEQ ID NO:11:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 50 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: unknown(D) TOPOLOGY: unknown(ii) MOLECULE TYPE: cDNA(xi ) SEQUENCE DESCRIPTION: SEQ ID NO:11:CATTCAGTTGGATTTTCTAGGGTCAACATGAAGAGAATTAGAGAAGGGAT50
Claims
  • 1. A polynucleotide sequence encoding a thymopoietin protein, said sequence isolated from the cellular material with which it is naturally associated, which is selected from the group consisting of
  • (a) SEQ ID NO: 1,
  • (b) SEQ ID NO: 3,
  • (c) SEQ ID NO: 5, and
  • (d) a sequence complementary to any of sequences (a) through (c).
  • 2. A vector comprising a polynucleotide sequence according to claim 1.
  • 3. A host cell transformed by a vector according to claim 2.
  • 4. The host cell according to claim 3 wherein said polynucleotide is operably linked to a heterologous expression control sequence capable of directing the expression of the protein encoded by said sequence in a selected host cell.
  • 5. The host cell according to claim 3 selected from the group consisting of bacterial, fungal, insect, and mammalian cells.
  • 6. The host cell according to claim 5 wherein said cell is E. coli.
  • 7. A method for producing recombinant human thymopoietin comprising incubating a transformed host cell comprising the polynucleotide sequence of claim 1 encoding human thymopoietin under conditions that allow expression of the human thymopoietin and recovering the thymopoietin therefrom.
  • 8. A method of producing recombinant human thymopoietin comprising:
  • (a) providing a host cell and an expression vector comprising the polynucleotide sequence of claim 1 encoding human thymopoietin operably linked to an expression control sequence directing the expression of the human thymopoietin;
  • (b) incubating the host cell under conditions which allow transfection of the host cell by the vector and expression of the human thymopoietin; and
  • (c) recovering said recombinant human thymopoietin.
  • 9. The method according to claim 8 wherein said conditions permit the secretion of the human thymopoietin.
  • 10. A diagnostic reagent comprising a polynucleotide sequence of claim 1 and a detectable label.
  • 11. A polynucleotide sequence encoding a thymopoietin protein, said sequence isolated from the cellular material with which it is naturally associated, which is selected from the group consisting of SEQ ID NO: 1 and a sequence complementary thereto.
  • 12. A polynucleotide sequence encoding a thymopoietin protein, said sequence isolated from the cellular material with which it is naturally associated, which is selected from the group consisting of SEQ ID NO: 3 and a sequence complementary thereto.
  • 13. A polynucleotide sequence encoding a thymopoietin protein, said sequence isolated from the cellular material with which it is naturally associated, which is selected from the group consisting of SEQ ID NO: 5 and a sequence complementary thereto.
US Referenced Citations (6)
Number Name Date Kind
4002740 Goldstein et al. Jan 1977
4077949 Goldstein Mar 1978
4120951 Goldstein Oct 1978
4190646 Goldstein et al. Feb 1980
4745051 Smith et al. May 1988
4923964 Goldstein et al. May 1990
Foreign Referenced Citations (1)
Number Date Country
502607 Sep 1992 EPX
Non-Patent Literature Citations (28)
Entry
Sambrook et al. Molecular Cloning, A Lab. Manual, vol. 3, chip 16, pp. 16.2-16.31 Cold Spring Harbor Lab. Press, 1989.
C. Harris et al, "Three Distinct Human Thymopoietins are Derived from Alternatively Spliced mRNAs", Proc. Natl. Acad. Sci. USA, 91(14):6283-6287 (Jul. 1994).
C. Harris et al, "Multiple Distinct Human Thymopoietins are Derived from Alternatively Spliced mRNAs", Mol. Biol. of the Cell, 4(Suppl.):453a, Abstract No. 2632 (Oct. 1993).
K. Bolla et al, "Prevention of Recurrences in Frequently Relapsing Herpes Labialis with Thymopentin", Surv. Immunol. Res., 4(1):37-47 (1985).
E. Sundal and K. Bolla, "Therapy with Thymopentin: A Clinical Overview", Immune Regulation by Characterized Polypeptides, ed. Alan R. Liss, Inc., pp. 121-136 (1987).
G. Goldstein et al, "Isolation of Bovine Thymin: A Polypeptide Hormone of the Thymus", Nature, 247(5435):11-14 (Jan. 4, 1974) [Goldstein I].
G. Goldstein et al, "A Synthetic Pentapeptide with Biological Activity Characteristic of the Thymic Hormone Thymopoietin", Science, 204:1309-1310 (Jun. 22, 1979).
M. Scheid et al, "The Generation and Regulation of Lymphocyte Populations, Evidence from Differentiative Induction Systems in vitro", J. Exp. Med., 147:1727-1743 (Jun. 1, 1978) [Scheid I].
M. Scheid et al, "Differentiation of T Cells in Nude Mice", Science, 190:1211-1213 (Dec. 19, 1975) [Scheid II].
K. Venkatasubramanian et al, "Binding of Thymopoietin to the Acetylcholine Receptor", Proc. Natl. Acad. Sci. USA, 83;3171-3174 (May 1986).
T. Abiko et al, "Syntheses and Effects of a Thymopoietin II Fragment and its Analogs on the Impaired T-Cell Transformation in a Patient with Common Variable Immunodeficiency", J. Appl. Biochem., 7:408-422 (publ. Dec. 1985; mailing date Mar. 11, 1986).
D. Schlesinger et al, "The Amino Acid Sequence of Thymopoietin II", Cell, 5:361-365 (Aug. 1975).
T. Audhya et al, "Complete Amino Acid Sequences of Bovine Thymopoietins I, II, and III: Closely Homologous Polypeptides", Biochemistry, 20(21):6195-6200 (Oct. 16, 1981).
D. Zevin-Sonkin et al, "Molecular Cloning of the Bovine Thymopoietin Gene and its Expression in Different Calf Tissues: Evidence for a Predominant Expression in Thymocytes", Immunol. Lett., 31:301-310 (Jan. 12, 1992).
R. Basch et al, "Induction of T-Cell Differentiation in Vitro by Thymin, a Purified Polypeptide Hormone of the Thymus", Proc. Natl. Acad. Sci. USA, 71(4):1474-1478 (Apr. 1974) [Basch I].
D. Schlesinger et al, "Chemical Synthesis of a Peptide Fragment of Thymopoietin II that Induces Selective T Cell Differentiation", Cell, 5:367-370 (Aug. 1975) [Schlesinger II].
R. A. Basch et al, "Thymopoietin-Induced Acquisition of Responsiveness to T Cell Mitogens", Cell. Immunol., 20:218-228 (publ. Dec. 1975; mailing date Jan. 7, 1976) [Basch II].
G. Goldstein et al, "Thymopoietin and Myasthenia Gravis: Neostigmine-Responsive Neuromuscular Block Produced in Mice by a Synthetic Peptide Fragment of Thymopoietin", Lancet, 2:256-262 (Aug. 9, 1975) [Goldstein III].
G. Sunshine et al, "Thymopoietin Enhances the Allogeneic Response and Cyclic GMP Levels of Mouse Peripheral, Thymus-Derived Lymphocytes", J. Immunol., 120(5):1594-1599 (May 1978).
R. Brown et al, "Immunoreactive Thymopoietin in the Mouse Central Nervous System", Brain Research, 381:237-243 (Aug. 6, 1986).
T. Audhya et al, "Contrasting Biological Activities of Thymopoietin and Splenin, Two Closely Related Polypeptide Products of Thymus and Spleen", Proc. Natl. Acad. Sci. USA, 81:2847-2849 (May 1984) [Audhya II].
T. Audhya et al, "Isolation and Complete Amino Acid Sequence of Human Thymopoietin and Splenin", Proc. Natl. Acad. Sci. USA, 84:3545-3549 (Jun. 1987) [Audhya III].
G. Goldstein, "Lymphocyte Differentiations Induced by Thymopoietin, Bursopoietin and Ubiquitin", Molecular Control of Proliferation and Differentiation, Academic Press, Inc., pp. 197-202 (Feb. 1978) [Goldstein IV].
G. Goldstein et al, "Thymopoietin and Bursopoietin: Induction Signals Regulating Early Lymphocyte Differentiation", Cold Spring Harbor Symposia on Quantitative Biology, vol. XLI, pp. 5-8, Cold Spring Harbor Laboratory (1977) [Goldstein V].
M. Quik et al, "Evidence for Thymopoietin and Thymopoietin/alpha-bungarotoxin/nicotinic Receptors within the Brain", Proc. Natl. Acad. Sci. USA, 88:2603-2607 (Mar. 1991) [Quik I].
M. Quik et al, "Thymopoietin Inhibits Function and Ligand Binding to Nicotinic Receptors at the Neuromuscular Junction", J. Pharm. Exp. Therm., 254(3):1113-1119 (Jul. 1990) [Quik II].
M. Quik et al, "Rapid Communication--Thymopoietin, a Thymic Polypeptide, Specifically Interacts at Neuronal Nicotinic alpha-Bungarotoxin Receptors", J. Neurochemistry, 53(4):1320-1323 (Sep. 12, 1989) [Quik III].
F. Revah et al, "Calcium-Dependent Effect of the Thymic Polypeptide Thymopoietin on the Desensitization of the Nicotinic Acetylcholine Receptor", Proc. Natl. Acad. Sci. USA, 84:3477-3481 (May 1987).