Sato et al., Individual and Mass Operation of Biological Cells Using Micromechanical Silicon Devices, Central Research Laboratory, Advanced Research Laboratory, Hitachi, Ltd., 1-29- Higshikoigakubo, Kokubunji, Tokyo 185 Japan; Sensors and Actuators, A21 A23 (1990) pp. 948-953. |
Anand and Southern “Pulsed Field Gel Electrophoresis,” Gel Electrophoresis of Nucleic Acids—A Practical Approach, 2d. Ed., D. Rickwood and B.D. Hames (New York:IRL Press 1990), pp 101-123. |
Anderson and Young, “Quantitative Filter Hybridization,” Nucleic Acid Hybridization—A Practical Approach, Eds. B.D. Hames and S.J. Higgins (Washington, D.C. :IRL Press 1985) pp 73-111. |
Baines, “Setting a Sequence to Sequence a Sequence,” Bio/Technology, 10:757-758 (1992). |
Barinaga, “Will ‘DNA Chip’ Speed Genome Initiative?”, Science, 253:1489 (1991). |
Beattie et al., “Genosensor Technology,” The 1992 San Diego Conference: Genetic Recognition, pp 1-5 (Nov., 1992). |
Beltz et al., “Isolation of Multigene Families and Determination of Homologies by Filter Hybridization Methods,” Methods in Enzymology, 100:266-285 (1983). |
Connor et al., “Detection of Sickle Cell β3-Globin Allele by Hybridization With Synthetic Oligonucleotides,” Proc. Natl. Acad. Sci. USA, 80:278-282 (1983). |
Drmanac et al., “Sequencing of Megabase Plus DNA by Hybridization: Theory of the Method,” Genomics, 4:114-128 (1989). |
Drmanac et al., “DNA Sequence Determination by Hybridixation: A Strategy for Efficeint Large-Scale Sequencing,” Science, 260: 1649-1652 (1993). |
Fodor et al., “Multiplexed Biochemical Assays With Biological Chips,” Nature, 364:555-556 (1993). |
Fodor et al., “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Science, 251:767-773 (1992). |
Horejsi, “Some Theoretical Aspects of Affinity Electrophoresis,” Journal of Chromatography, 178:1-13 (1979). |
Horjsi et al., Determination of Dissociation Constants of Lectin Sugar Complexes by Means of Affinity Electrophoresis, Biochimica at Biophysica Acta, 499:200-300 (1977). |
Ranki et al., “Sandwich Hybridization as a Convenient Method for the Detection of Nucleic Acids in Crude Samples,” Gene, 21:77-85 (1983). |
Saiki, “Amplification of Genomic DNA,” PCR Protocols: A Guide to Methods and Applications, (Academic Press, Inc. 1990), pp 13-20. |
Southern et al., “Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides Evaluation Using Experimental Models,” Genomics, 13:1008-1017 (1992). |
Strezoska et al., “DNA Sequencing by Hybridization: 100 Bases Read by a Non-Gel-Based Method”, Proc. Natl. Acad. Sci. USA, 88:10089-93 (1991). |
Wallace et al., “Hybridization of Synthetic Oligodcoxyribonucleotides to Φ × 174 DNA: The Effect of Single Base Pair Mismatch,” Nucleic Acid Res., 6:3543-3557 (1979). |
Washizu, “Electrostatic Manipulatiaon of Biological Objects,” Journal of Electrostatics, 25:109-123 (1990). |
Washizu and Kurosawa, “Electrostatic Manipulation of DNA in Microfabricated Structures,” IEEE Transactions on Industry Applications, 26:1165-1172 (1990). |
Brown et al., “Electrochemically Induced Adsorption of Radio-Labelled DNA on Gold and HOPG Substrates for STM Investigations”, Ultramicroscopy, 38 (1991) pp 253-264. |
Palacek, “New Trends in Electrochemical Analysis of Nucleic Acids”, Bioelectrochemistry and Bioenergetics, 20 (1988) pp 179-194. |
“Flexcon '96” Technical Society Program. |