The present disclosure relates to a recording apparatus and a recording method.
There is known a recording apparatus that records an image onto a recording medium by discharging ink from a recording head onto the recording medium while relatively moving at least one of the recording medium and the recording head including a discharge port array in which a plurality of discharge ports is arrayed.
In such a recording apparatus, when an ink discharge defect occurs at a part of the plurality of discharge ports, the ink provided to a region on the recording medium that corresponds to this discharge port (hereinafter referred to as a defective discharge port) becomes insufficient and an image quality of an acquired image is deteriorated thereby.
To address a problem of such a discharge defect, Japanese Patent Application Laid-Open. No. 10-6488 discusses carrying out complementary recording in the vicinity of the region on the recording medium where the image should have been recorded by the defective discharge port with use of a discharge port located at a position adjacent to the defective discharge port in a direction in which the discharge ports are arrayed, thereby complementing the discharge defect at the defective discharge port.
However, the discharge defect may be unable to be appropriately complemented with use of the discharge port adjacent to the defective discharge port depending on discharge data. If ink discharge is set to the discharge port adjacent to the defective discharge port in the first place, the ink should also be discharged from the adjacent discharge port, and this adjacent discharge port cannot be used to complement the discharge defect.
Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2004-501009 discusses determining whether the ink discharge is set with respect to the discharge port adjacent to the defective discharge port, and causing the complementary recording to be carried out with use of a discharge port at which the ink discharge is not set.
However, Japanese Unexamined Patent Application Publication. (Translation of PCT Application) No. 2004-501009 necessitates processing such as determining whether the ink discharge is set to a plurality of discharge ports adjacent to the defective discharge port, and determining a position complementing a dot according to a result of this determination. These processing procedures need to be performed with respect to each pixel that should have been recorded by the defective discharge port, which undesirably increases a time taken for the processing, thereby raising a possibility of causing a reduction in a throughput of the recording.
The present disclosure has been made in consideration of the above-described problem, and is directed to carrying out the complementary recording with use of the discharge port adjacent to the defective discharge port while preventing or cutting down the reduction in the throughput of the recording.
The present disclosure has been made in consideration of the above-described problem, and is directed to complementing the discharge defect with use of the discharge port adjacent to the defective discharge port without excessively reducing the throughput.
According to an aspect of the present disclosure, a recording apparatus includes a recording head including a plurality of ink discharge ports arranged in a predetermined direction, a determination unit configured to, according to tone data indicating a tone of an image to be formed on a recording medium, determine whether or not to provide ink at a position corresponding to each of pixels forming the image on the recording medium, and a complementing unit configured to, according to discharge defect information identifying a defective discharge port at which a discharge defect has occurred among the plurality of ink discharge ports, determine to cause provision of complementary ink to be conducted from a different discharge port configured to discharge the ink at a different position from the identified defective discharge port. The recording apparatus controls a recording operation so as to move the recording head and the recording medium relative to each other in a direction intersecting the predetermined direction and provide the ink from the recording head onto the recording medium according to the determination made by the determination unit and the determination made by the complementing unit. With respect to at least one discharge port among the plurality of ink discharge ports, if this discharge port is identified as the defective discharge port, the complementing unit determines to use a discharge port configured to provide the ink at a complementing position on only predetermined one side that is one of positions adjacent in the predetermined direction to a position at which the at least one discharge port provides the ink, as the different discharge port. If a tone value indicated by the tone data is a tone value half as large as a maximum tone value, the determination unit determines not to discharge the ink at more than half of complementing positions, each of which is the complementing position for the at least one discharge port.
Further features and aspects of the present disclosure will become apparent from the following description of numerous example embodiments with reference to the attached drawings.
A recording medium P fed from a feeding unit 101 is conveyed at a predetermined speed in a +X direction (a conveyance direction and an intersection direction) while being sandwiched by conveyance roller pairs 103 and 104, and is discharged by a discharge unit 102. Recording heads 105 to 108 are arrayed so as to be lined up along the conveyance direction between the conveyance roller pair 103 on an upstream side and the conveyance roller pair 104 on a downstream side, and discharge ink in a Z direction according to recording data (binary recording data in this example), which is discharge data. The recording heads 105, 106, 107, and 108 discharge cyan ink, magenta ink, yellow ink, and black ink, respectively. Further, the respective colors of ink are supplied to the recording heads 105 to 108 via not-illustrated tubes.
In the present example embodiment, the recording medium P may be a continuous sheet held in a rolled form at the feeding unit 101 or may be a cut sheet cut into a standardized size in advance. In the case of the continuous sheet, after ends of recording operations by the recording heads 105 to 108, the recording medium P is cut into a predetermined length by a cutter 109 and is sorted onto discharge trays for each size at the discharge unit 102.
The recording head 105 includes a discharge port array in which twelve discharge ports seg0 to seg11 for discharging the ink are arrayed along a Y direction (an array direction and a predetermined direction) intersecting the X direction. More specifically, a row formed by seg0, seg2, seg4, seg6, seg8, and seg10, and a row formed by seg1, seg3, seg5, seg7, seg9, and seg11 are disposed at positions shifted from each other by 1200 dpi in the Y direction, and form one discharge port array.
A recording control system 13 in the recording apparatus is communicably connected to a higher-level apparatus (digital front end (DFE)) HC2, and the higher-level apparatus HC2 is communicably connected to a host apparatus HC1.
Original document data, which serves as a source of a recorded image, is generated or stored in the host apparatus HC1. The original document data here is generated in the form of an electronic file, such as a document file and an image file. This original document data is transmitted to the higher-level apparatus HC2, and the higher-level apparatus HC2 converts the received original document data into a data format usable by the recording control system 13, such as image data expressing an image as red, green, and blue (ROB). The data after the conversion is transmitted from the higher-level apparatus HC2 to the recording control system. 13 in the recording apparatus.
The recording control system 13 is broadly divided into a main controller 13A and an engine controller 13B. The main controller 13A includes a processing unit 131, a storage unit 132, an operation unit 133, an image processing nit 134, a communication interface (I/F) 135, a buffer 136, and a communication I/F 137.
The processing unit 131 is a processor, such as a central processing unit (CPU), and executes a program stored in the storage unit 132 to control the entire main controller 13A. The storage unit 132 is a storage device, such as a random access memory (RAM), a read only memory (ROM), a hard disk, and a solid-state drive (SSD). The storage unit 132 stores the program to be executed by the processing unit 131 and data therein, and further, provides a work area to the processing unit 131. The operation unit 133 is an input device, such as a touch panel, a keyboard, and a mouse, and receives an instruction of a user.
The image processing unit 134 is, for example, an electronic circuit including an image processing processor. The buffer 136 is, for example, a RAM, a hard disk, or an SSD. The communication I/F 135 communicates with the higher-level apparatus HC2, and the communication I/F 137 communicates with the engine controller 13B. In
Then, the recording data after the image processing that is stored in the buffer 136 is transmitted from the communication I/F 137 to the controller 13B. After that, the recording element disposed at each of the recording heads 105 to 108 is driven by the engine controller 13B based on the recording data, by which the recording operation is performed.
In the present example, the recording control system 13 has been described as being configured to include one unit each of the processing unit 131, the storage unit 132, the image processing unit 134, and the buffer 136, but may be configured to include a plurality of processing units 131, a plurality of storage units 132, a plurality of image processing units 134, and a plurality of buffers 136.
(Image Processing)
When the image processing is started, first, in step S1, the image processing unit 134 acquires the image data (the RGB data) read out from the buffer 136. Now, in the present example embodiment, the image data is formed by 8-bit information for each of R, G, and B values. Further, in the present example embodiment, the image data has a data resolution of 600 dpi×600 dpi. The image data indicates any of 256 values from 0 to 255 with respect to each pixel in the data resolution of 600 dpi×600 dpi.
Next, in step S2, the image processing unit 134 performs color conversion processing for converting the image data into ink color data (cyan (C), magenta (M), yellow (Y), and black (K) data) corresponding to the ink colors to be used in the recording. By this color conversion processing, the ink color data formed by 8-bit information for each of C, M, Y, and K values is generated. The ink color data indicates any of 256 values from 0 to 255 with respect to each pixel in the data resolution of 600 dpi×600 dpi.
Next, in step S3, the image processing unit 134 quantizes the ink color data, thereby generating tone data formed by 3-bit information for each of the C, M, Y, and Y values. The dither method, the error diffusion method, or the like can be performed as this quantization processing. In the present example embodiment, the tone data having the data resolution of 600 dpi×600 dpi is generated by the quantization processing. The tone data indicates any of 5 values from 0 to 4 levels (tone values of 5 steps) with respect to each pixel in the data resolution of 600 dpi×600 dpi.
Next, in step S4, the image processing unit 134 performs index development processing on the tone data, thereby generating the recording data formed by 1-bit information for each of C, M, Y, and K. The recording data generated by the index development processing has a data resolution of 1200 dpi×1200 dpi. More specifically, the recording data indicates whether or not to discharge the ink with respect to each pixel in the data resolution of 1200 dpi×1200 dpi.
In the present example embodiment, different index patterns are used according to the tone value indicated by the tone data in the index development processing in step S4. The index pattern refers to a pattern defining the number of pixel(s) and a position of a pixel at which the ink is discharged according to the tone value. Details of these index patterns and the index development processing in step S4 will be described below.
Next, in step S5, the image processing unit 134 acquires information indicating a discharge port at which an ink discharge defect has occurred (hereinafter also referred to as a defective discharge port). This information indicating the defective discharge port is stored in the RAM of the storage unit 132 in advance before the processing illustrated in
Conventionally known various methods can be used to identify the defective discharge port. One example thereof is to record a test patch by discharging the ink from all of the discharge ports of one recording head, and determine a location where the image is absent on this test patch by an optical sensor or by user's visual inspection. Then, a discharge port corresponding to this absence can be regarded as the defective discharge port.
Further, for example, the recording apparatus may be equipped with a sensor that outputs and receives light passing through immediately below the discharge ports while causing the ink to be discharged from all of the discharge ports of one recording head. In this case, at a discharge port at which no ink discharge defect has occurred (hereinafter referred to as a non-defective discharge port), the ink is discharged and therefore the light is shielded, so that the sensor does not receive the output light. However, at the defective discharge port, the light passes through immediately below the discharge port, so that the sensor receives the output light. The defective discharge port can also be identified in this manner.
The information indicating the defective discharge port identified in this manner is stored in the RAM in advance, and this information is read out in step S5.
Then, step S6, the image processing unit 134 performs complementing processing for complementing the discharge defect at the defective discharge port, thereby generating complementary data. A detail of this complementing processing, will also be described below.
After the above-described processing, the recording control system 13 generates the data to be actually used in the recording based on the generated recording data and the complementary data and transmits this data to the engine controller 13B, by which the recording operation is performed on the recording medium P from each of the recording heads 105 to 108 based on this data. The recording control system 13 may transmit the recording data and the complementary data to the engine controller 13B, and perform the recording operation while directly using these pieces of recording data and complementary data. Alternatively, the recording control system 13 may be configured to transmit the data to the engine controller 13B after combining the recording data and the complementary data into one piece of data by, for example, overwriting the generated recording data with the complementary data.
In the above description, the present example embodiment has been described as being configured in such a manner that the image processing unit 134 in the recording apparatus performs all of the processing procedures steps S1 to S6, but can also perform these processing procedures by another configuration. For example, the present example embodiment may be configured in such a manner that the host apparatus HC1 performs all of the processing procedures in steps S1 to S6. Alternatively, the present example embodiment may be configured in such a manner that, for example, the host apparatus HC1 performs the processing procedures up to the color conversion processing (step S2) and the recording apparatus performs the quantization processing (step S3) and the processing procedures after that. Alternatively, needless to say, the higher-level apparatus HC2 may perform a part or all of the processing procedures in steps S1 to S6.
(Index Development Processing)
The detail of the index development processing performed in the present example embodiment will be described.
(A) to (D) in
Now, each of the four types of index patterns illustrated in (A) to (D) of
For example, in the index pattern illustrated in (A) of
Therefore, if tone data having the tone value of the level 0 is input, the inexecution of the ink discharge is set at all of 2 pixels×2 pixels in the pixel group ((A0) of
The same also applies to the index patterns respectively illustrated in (B), (C), and (D) of
For example, if the index pattern B is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((B0) of
Further, if the index pattern C is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((CO) of
Further, if the index pattern D is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((DO) of
Then, as understood from
In the present example embodiment, the above-described index patterns A to D are arranged according to a predetermined arrangement pattern, and the index development is carried out on the tone data according to each of the arranged index patterns, by which the recording data is generated.
In the present example embodiment, the index patterns A to D are arranged in such a manner that the pixels at which the ink discharge is set are not located adjacent to each other in the Y direction when tone data having a tone value of the threshold value “2” or smaller is input.
For example, as illustrated in
Further, the index pattern A is also arranged at a pixel group that is the first from the left and the second from the top. Therefore, the input of the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the upper left and lower right pixels in the pixel group that is the first from the left and the second from the top as illustrated in (A2) of
Further, the index pattern B is arranged at a pixel group that is the first from the left and the second from the bottom. Therefore, the input of the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the upper left and lower right pixels in the pixel group that is the first from the left and the second from the bottom as illustrated in (B2) of
With regard to the other pixel groups, the input of the tone data having the tone value of the level 2 to each of the pixel groups also leads to a setting of the ink discharge with use of the index pattern arranged at each the pixel groups as illustrated in
Now, as understood from
(Complementing Processing)
The complementing processing performed in the present example embodiment will be described in detail.
In the present example embodiment, when the information indicating the defective discharge port is acquired in step S5, the recording apparatus generates complementary data for complementing the discharge defect thereof with use of the non-defective discharge port adjacent to the defective discharge port on a downstream side in the Y direction.
In the present example, the complementing processing will be described assuming that the discharge ports seg4 and seg7 among the discharge ports seg0 to seg11 are the defective discharge ports.
In this case, if the defective discharge port seg4 is set to discharge the ink with respect to a certain pixel by the recording data, the recording apparatus generates the complementary data so as to set the ink discharge at a pixel adjacent to this pixel on the downstream side in the Y direction with use of the non-defective discharge port seg3 adjacent to the defective discharge port seg4 on the downstream side in the Y direction.
Further, if the defective discharge port seg7 is set to discharge the ink with respect to a certain pixel by the recording data, the recording apparatus generates the complementary data so as to set the ink discharge at a pixel adjacent to this pixel on the downstream side in the Y direction with use of the non-defective discharge port seg6 adjacent to the defective discharge port seg7 on the downstream side in the Y direction.
In this manner, the recording apparatus can complement the discharge defects at the defective discharge ports seg4 and seg7 with use of the adjacent non-defective discharge ports seg3 and seg6, thereby succeeding in preventing or reducing the deterioration of the image quality. The discharge port to be used to complement the discharge defect when the discharge defect has occurred at some discharge port is set independently of the quantization processing and the index development processing. Further referring again to
(Processing for Generating Complementary Data)
Next, the complementary data generated when the index development processing and the complementing processing according to the above-described present example embodiment are performed will be described in detail with reference to
In
As described above, in the present example embodiment, the discharge defect at the defective discharge port seg4 and the discharge defect at the defective discharge port seg7 are complemented with use of the non-defective discharge port seg3 and the non-defective discharge port seg6, respectively.
Then, in the present example embodiment, as illustrated in
In the above-described manner, according to the present example embodiment, the recording apparatus becomes able to, with respect to all of the pixels corresponding to the defective discharge ports and set to be subjected to the ink discharge by the recording data, set the complementary discharge with respect to the pixels adjacent to these pixels in the Y direction. As a result, the deterioration of the image quality due to the discharge defect can be effectively prevented.
Next, a comparison configuration to be compared with the first example embodiment will be described.
(Index Development Processing)
In the comparison configuration, the index patterns A to D are arranged in such a manner that the pixels at which the ink discharge is set are located adjacent to each other in the Y direction when the tone data having the tone value of the threshold value “2” or smaller is input.
For example, as illustrated in
Further, the index pattern D is arranged at the pixel group that is the first from the left and the second from the top. Therefore, the input of the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the upper right and lower left pixels in the pixel group that is the first from the left and the second from the top as illustrated in (D2) of
Further, the index pattern B is arranged at the pixel group that is the first from the left and the second from the bottom. Therefore, the input f the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the upper left and lower right pixels in the pixel group that is the first from the left and the second from the bottom as illustrated in (B2) of
With regard to the other pixel groups, the input of the tone data having the tone value of the level 2 to each of the pixel groups also leads to a setting of the ink discharge with use of the index pattern arranged at each of the pixel groups as illustrated in
Now, as understood from
For example, in
(Complementing Processing)
In the comparison configuration, processing similar to the first example embodiment is performed as the complementing processing. More specifically, when the defective discharge port has occurred, the discharge defect is complemented with use of the non-defective discharge port adjacent to this defective discharge port on the downstream side in the Y direction as described with reference to
(Processing for Generating Complementary Data)
Next, the recording data and the complementary data generated when the index development processing and the complementing processing according to the above-described comparison configuration are performed will be described in detail with reference to
In
As described above, in the comparison configuration, the discharge defect at the defective discharge port seg4 and the discharge defect at the defective discharge port seg7 are also complemented with use of the non-defective discharge port seg3 and the non-defective discharge port seg6, respectively.
Now, as illustrated in.
However, as illustrated in
In this manner, according to the comparison configuration, the recording apparatus becomes unable to, with respect to a part of the pixels corresponding to the defective discharge ports and set to be subjected to the ink discharge by the recording data, complement the discharge defect with use of the pixels adjacent to these pixels in the Y direction.
In the above-described first example embodiment, the recording apparatus has been described as being configured to perform the index development processing so as to prohibit the pixels at which the ink discharge is set from being located adjacent to each other in the Y direction in the predetermined region, and perform the complementing processing so as to complement the discharge defect with use of the non-defective discharge port adjacent to the defective discharge port on the downstream side in the Y direction.
On the other hand, in a second example embodiment, the recording apparatus performs the index development processing while allowing the pixels at which the ink discharge is set to be located adjacent to each other in the Y direction in a part of the predetermined region. Then, the recording apparatus changes which is used to complement the discharge defect, the non-defective discharge port adjacent to the defective discharge port on an upstream side in the Y direction, or the non-defective discharge port adjacent to the defective discharge port on the downstream side in the Y direction, according to the position of the defective discharge port.
The second example embodiment will be described omitting descriptions of similar features to the above-described first example embodiment.
(Index Development Processing)
A detail of the index development processing performed in the present example embodiment will be described.
In the present example embodiment, index patterns E to H are further used in addition to the index patterns A to D illustrated in
For example, in the index pattern E illustrated in (E) of
The same also applies to the index pattern F, the index pattern G, and the index pattern H respectively illustrated in (F), (G), and (H) of
If the index pattern F is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((F0) of
Further, if the index pattern G is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((GO) of
Further, if the index pattern H is used, the inexecution of the ink discharge is set at all of the pixels for the level 0 ((HO) of
Then, as understood from
In the present example embodiment, the index patterns A to D illustrated in
In the present example embodiment, the index patterns A to H are arranged while allowing the pixels at which the ink discharge is set to be located adjacent to each other if different index patterns are allocated to these pixels when the tone data having the tone value of the threshold value “2” or smaller is input.
For example, as illustrated in
Further, the index pattern H is arranged at the pixel group that is the first from the left and the second from the top. Therefore, the input of the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the lower left and lower right pixels in the pixel group that is the first from the left and the second from the top as illustrated in (H2) of
Further, the index pattern C is arranged at the pixel group that is the first from the left and the second from the bottom. Therefore, the input of the tone data having the tone value of the level 2 leads to a setting of the ink discharge at the upper right and lower left pixels in the pixel group that is the first from the left and the second from the bottom as illustrated in (C2) of
With regard to the other pixel groups, the input of the tone data having the tone value of the level 2 to each of the pixel groups also leads to a setting of the ink discharge with use of the index pattern arranged at each the pixel groups as illustrated in
In the present example embodiment, as described above, the recording apparatus uses the index patterns A to D illustrated in
For example, a pixel that is the second from the left and the fourth from the top and a pixel that is the second from the left and the fourth from the bottom in
Further, for example, a pixel that is the fourth from the left and the third from the bottom and a pixel that is the fourth from the left and the second from the bottom in
(Complementing Processing)
The complementing processing performed in the present example embodiment will be described in detail.
In the present example embodiment, the complementing processing will be described assuming that a correspondence between the discharge ports and the arrangement pattern of the index patterns are such that the discharge port seg2 and an upper end of the arrangement pattern correspond to each other. More specifically, a region In1 at the upper end in the arrangement pattern illustrated in
Then, in the present example embodiment, when the discharge defect has occurred at some discharge port, the non-defective discharge port corresponding to the same index pattern as the defective discharge port is selected from the non-defective discharge port adjacent to the defective discharge port on the upstream side in the Y direction and the non-defective discharge port adjacent to the defective discharge port an the downstream side in the Y direction as the discharge port to be used to compensate the discharge defect.
For example, the defective discharge port seg4 corresponds to the region In2 (the region in which the index patterns H, B, G, and D are arranged in this order from the left) in the arrangement pattern, so that the non-defective discharge port seg5 corresponding to the same region In2 is selected from the non-defective discharge ports seg3 and seg5 adjacent to the discharge port seg4 in the Y direction as the discharge port for complementing the discharge defect at the defective discharge port seg4. Further, the defective discharge port seg7 corresponds to the region In3 (the region in which the index patterns C, E, A, and F are arranged in this order from the left) in the arrangement pattern, and therefore the non-defective discharge port seg6 corresponding to the same region In3 is selected from the non-defective discharge ports seg6 and seg8 adjacent to the discharge port seg7 in the Y direction as the discharge port for complementing the discharge defect at the defective discharge port seg7. Then, the complementary data is generated in such a manner that the ink discharge is set at these non-defective discharge ports seg5 and seg6 to be used to complement the discharge defects.
(Processing for Generating Complementary Data)
Next, the complementary data generated when the index development processing and the complementing processing according to the above-described present example embodiment are performed will be described in detail with reference to
In
As described above, in the present example embodiment, the discharge defect at the defective discharge port seg4 and the discharge defect at the defective discharge port seg7 are complemented with use of the non-defective discharge port seg5 and the non-defective discharge port seg6, respectively.
In the present example embodiment, the pixels at which the ink is discharged can be located adjacent to each other in the Y direction if the regions thereof correspond to the different index patterns (the different pixel groups) as described above. However, in the complementing processing according to the present example embodiment, the processing for complementing the discharge defect is performed with use of the non-defective discharge port adjacent to the defective discharge port in the Y direction and corresponding to the same index pattern (the same pixel group) as the defective discharge port. Therefore, even when the ink discharge is set at the non-defective discharge port corresponding to the different index pattern from the defective discharge port by the recording data, this non-defective discharge port is not used to complement the discharge defect. Then, if the tone value is the level or lower, the index patterns A to H do not cause the pixels at which the ink discharge is set to be located adjacent to each other, and therefore do not set the ink discharge at the positions adjacent to each other in the Y direction from the two discharge ports corresponding to the same index pattern.
Therefore, as illustrated in
Therefore, the complementary data can be generated in such a manner that the ink is discharged from the non-defective discharge ports seg5 and seg6 adjacent to the defective discharge ports seg4 and seg7 in the Y direction with respect to both the pixels adjacent in the Y direction to the pixels at which the ink discharge from the defective discharge ports seg4 and seg7 is set. This means that, as illustrated in
In the above-described manner, according to the present example embodiment, the recording apparatus also becomes able to, with respect to all of the pixels corresponding to the defective discharge ports and set to be subjected to the ink discharge by the recording data, conduct the complementary discharge with respect to the pixels adjacent to these pixels in the Y direction. As a result, the recording apparatus can effectively prevent or reduce the deterioration of the image quality due to the discharge defect.
In each of the above-described example embodiments, the recording apparatus has been described as being configured to complement the discharge defect by always using the non-defective discharge port adjacent to the defective discharge port on the same side regardless of a page and a job to be recorded when the defective discharge port has occurred, but the present disclosure can also be implemented by another configuration.
For example, in the first example embodiment, the discharge defects at the defective discharge ports seg4 and seg7 are complemented with use of the non-defective discharge ports seg3 and seg6 adjacent to the defective discharge ports seg4 and seg7 on the downstream side in the Y direction, but the recording apparatus may be configured to complement the discharge defects with use of the non-defective discharge ports seg5 and seg8 adjacent to the defective discharge ports on the upstream side the direction. Further, the recording apparatus may be configured to change a mode of complementing the discharge defects with use of the non-defective discharge ports seg3 and seg6 and a mode of complementing the discharge defects with use of the non-defective discharge ports seg5 and seg8 at a timing when the page or the job to be recorded is switched. Further, for example, in the first example embodiment, the defective discharge port seg4 is complemented with use of the discharge port seg3 adjacent to the defective discharge port seg4 on the downstream side in the Y direction, but the complementing source may be selectively switched in such a manner that some pixel is complemented with use of the discharge port seg3 and another pixel is complemented with use of the discharge port seg5 depending on the pixel even within the same mode.
Further, for example, in the second example embodiment, the discharge defect at the defective discharge port seg4 and the discharge defect at the defective discharge port seg7 are complemented with use of the non-defective discharge port seg5 adjacent to the defective discharge port seg4 on the upstream side in the Y direction and the non-defective discharge port seg6 adjacent to the defective discharge port seg7 on the downstream side in the Y direction, respectively, but the defective discharge port seg4 and the defective discharge port seg7 may be complemented with use of the non-defective discharge port seg3 and the non-defective discharge port seg8, respectively. However, in the case where the discharge defects are complemented with use f the non-defective discharge ports seg3 and seg8, the correspondence between the discharge ports and the arrangement pattern of the index patterns needs to be shifted in the Y direction relative to a case where the discharge defects are complemented with use of the non-defective discharge ports seg5 and seg6. This is because a failure to shift the correspondence may cause the pixels at which the ink discharge is set by the recording data to be located adjacent to each other in the Y direction since the defective discharge port seg4 and the non-defective discharge port seg3 correspond to the different regions In1 and In2 in the arrangement pattern. For example, if the correspondence between the discharge ports and the arrangement pattern is shifted so as to establish such a relationship that the discharge port seg1 and the upper end in the arrangement pattern correspond to each other, this shift leads to the defective discharge port seg4 and the non-defective discharge port seg3 corresponding to the same region In2, thereby succeeding in acquiring similar effects to the second example embodiment. The recording apparatus may be configured to change the mode of complementing the discharge defects with use of the non-defective discharge ports seg5 and seg6 that has been described in the second example embodiment and the above-described mode of complementing the discharge defects with use of the non-defective discharge ports seg3 and seg8 at the timing when the page or the job to be recorded is switched.
Further, in the first example embodiment, the recording apparatus has been described as being configured to perform the index development processing so as to prohibit the pixels at which the ink discharge is set from being located adjacent to each other in the Y direction with respect to all of the pixels in the region of 8 pixels×8 pixels when the tone data having the tone value of the level 2 is input as illustrated in
Further, in the second example embodiment, the recording apparatus has been described as being configured to perform the index development processing so as to prohibit the pixels at which the ink discharge is set from being located adjacent to each other in the Y direction with respect to all of the pixels from the perspective of each of the pixel groups of 2 pixels×2 pixels to which the same index pattern corresponds in the region of 8 pixels×8 pixels, when the tone data having the tone value of the level 2 is input as illustrated in
Further, in each of the example embodiments, the recording apparatus has been described referring to the example in which the tone data having the tone value of the level 2 is input, but similar effects can be acquired by employing the configuration according to each of the example embodiments even when the tone data having the tone value of the level 1 is input. The effects achieved by each of the example embodiments can be acquired when tone data having a tone value of a low level is input. Especially, noticeable effects can be acquired when the input tone data indicates a tone value (the level 2 in each of the example embodiments) approximately half as large as a maximum value (the level 4 in each of the example embodiments) among the tone values indicatable by the tone data. Therefore, it is desirable that the index pattern used in the present example embodiments is set in such a manner that pixels for which the threshold value is set to approximately the half of the maximum value among the tone values indicatable by the tone data are not located adjacent to each other in the Y direction within the same index pattern.
Further, in each of the example embodiments, the recording apparatus has been described as being configured to discharge the ink while moving the recording medium P relative to the fixed recording heads 105 to 108, but may be configured to discharge the ink while moving the recording head relative to a stationary recording medium (in the X direction illustrated in
Further, each of the example embodiments has been described with respect to the recording apparatus and the recording method using the recording apparatus, but the present disclosure can also be applied to an image processing apparatus or an image processing method that generates data for realizing the recording method described in each of the example embodiments. Further, the present disclosure can also be applied to a configuration in which a program for realizing the recording method described in each of the example embodiments is prepared in a different apparatus from the recording apparatus.
According to the recording apparatus of the present disclosure, the recording apparatus becomes able to complement the discharge defect with use of the discharge port adjacent to the defective discharge port without excessively reducing the throughput.
While the present disclosure has been described with reference to example embodiments, it is to be understood that the invention is not limited to the disclosed example embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-089517, filed Apr. 28, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-089517 | Apr 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20110090276 | Hirano | Apr 2011 | A1 |
20120062643 | Ito | Mar 2012 | A1 |
20140063101 | Hattori | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
10-006488 | Jan 1998 | JP |
2004-501009 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20180311953 A1 | Nov 2018 | US |