1. Field of the Invention
The present invention relates to a recording apparatus and a control method thereof. Especially, the present invention relates to image data processing.
2. Description of the Related Art
Japanese Patent Application Laid-Open No. 10-13674 discusses performing correction processing on image data when performing image recording using a recording head to control density unevenness produced due to differences in the ink amount discharged by each recording element.
However, as illustrated in
According to an aspect of the invention, an apparatus, which is configured to record on a medium conveyed in a direction that intersects an array direction of a plurality of recording elements using a recording head on which the recording elements are arranged, includes a table in which the recording elements are divided into a plurality of groups, and which includes correction information corresponding to the recording elements for each group, a first acquisition unit configured to acquire position information about the medium in the array direction, a second acquisition unit configured to acquire the correction information based on the position information and the table, and a correction unit configured to correct image data based on the correction information.
Further features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
Various exemplary embodiments, features, and aspects of the invention will be described in detail below with reference to the drawings.
A central processing unit (CPU) 302 controls and manages the operations of an application-specific integrated circuit (ASIC) 301. A memory 304 is a synchronous dynamic random access memory (SDRAM) that acts as a main memory for the recording apparatus according to the present exemplary embodiment. The memory 304 is not limited to a SDRAM, and may be a DRAM or a static-RAM (SRAM).
A reception interface (I/F) 303 is an interface unit which receives data transferred from a host apparatus (PC) 320. This interface unit 303 loads a signal (data) based on an interface protocol such as universal serial bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 1394, and stores the loaded signal in a reception buffer 304A. Further, instead of receiving from the host apparatus (PC), the reception I/F 303 may be configured to receive data from an image reading unit.
Data stored in a reception buffer 1204 is read into an image processing unit 305. As illustrated in
The image data illustrated in
As illustrated in
A skew detection unit 313 detects skew. A skew control unit (skew acquisition unit) 307 acquires a skew amount, skew direction and the like based on information from the skew detection unit 313. The skew control unit 307 outputs skew-related information to the image processing unit. If the skew-related information is a periodic value, it may be pre-stored in the memory, and read when performing the conveyance operation.
An encoder unit 312 outputs a signal based on an operation of a conveyance unit. An encoder control unit (encoder acquisition unit) 308 acquires speed information about the conveyance unit or the paper sheet (recording medium), and information about a drive amount (rotation amount and movement amount). This information is output to a data rasterization unit 306 and the skew control unit 307.
Data stored in the recording data buffer 304C is read into the data rasterization unit 306 based on a timing of a recording control. The data rasterization unit 306 performs various processes, such as data rasterization processing and mask control, and stores dot data in a memory 309. As illustrated in
The data rasterization unit 306 generates a timing signal for driving the recording head based on information and signals from the encoder control unit 308. A head drive unit 310 transfers the binary data stored in the memory 309 to a recording head 311 based on the timing signal generated by the data rasterization unit 306. The head drive unit 310 generates a signal for driving the recording elements included in the recording head 311, and outputs the generated signal to the recording head 311. The recording head 311 drives the recording elements based on the binary data, and discharges ink.
Next, the HS processing will be described. As illustrated in
As illustrated in
Correction tables (TBLA, TBLB, TBLC, . . . ) corresponding to the recording element groups (regions) are stored in the correction table buffer 304B illustrated in
In this exemplary embodiment, to simplify the description, the density range of the image data is set from a density of 0 to 7, and includes correction values corresponding to each density.
The correction table buffer 304B is for example, a DRAM. Further, a buffer 3051 (e.g. an SRAM) capable of high-speed writing from the correction table buffer 304B includes regions 3051A and 3051B storing two correction tables. This enables writing of a correction table in one region while performing reading from a correction table in another region. The HS unit alternately accesses the correction data from one region each time reading is performed.
A direct memory access (DMA) control unit 3052 transfers a correction table from the correction table buffer 304B to a buffer 3051 based on an instruction from the HS unit 305C. The DMA control unit 3052 is a data transfer control unit. The HS unit 305C outputs an instruction when the correction processing of one region finishes.
Next, input and output of the data into/from the HS unit 305C will be described. As illustrated in
For example, as illustrated in
The HS unit 305C includes a raster counter 305C1 for managing the raster number. The HS unit 305C inputs image data, flag information (FLAG) indicating whether a pixel is the last pixel data of a raster, and parameter information (Param) from the density conversion unit 305B, which is at a previous stage of a pixel counter 305C2 count for managing the pixel number. The parameter information includes information, such as skew amount, for selecting the correction table. The HS unit 305C acquires position information about the sheet concerning the array direction of the recording elements based on this parameter information, and performs setting for the correction processing. For example, the HS unit 305C sets the range of the recording elements to be used among the recording element array, to the register of the HS unit 305C.
If the flag information is valid (flag information is set), specifically, if the flag information indicates the last pixel of the raster, the HS unit recognizes that the pixel data for the next raster is to be processed, and adds 1 to the raster counter. The raster counter is reset to zero before starting the processing of one piece of image data.
Based on the above configuration and initial setting, the processing is started by the image processing unit 305.
The HS unit 305C inputs the processed input pixel information and flag information indicating whether the pixel is the last pixel of the raster, from the density conversion unit 305B, which is a previous unit, and performs the above-described processing.
The image 1 will now be described. Processing is performed in order in the arrow direction from a pixel S, which is the leading pixel in the first raster. Specifically, processing is performed in order from region A to region K. When the processing of the first raster is finished, the processing of the next raster is performed in order from region A to region K. The final pixel in the last raster is the pixel E.
In
Thus, the HS unit performs correction processing by selecting the table to be referenced based on skew information included in the input parameter information (Param), and referencing the selected table.
Based on the above configuration, high-speed processing capable of handling the increased capacity of correction tables can be realized while suppressing increases in circuit size. Further, image unevenness can be reduced even when skew occurs during conveyance of the recording medium.
In a second exemplary embodiment, a configuration for luminance correction performed by a CS unit (luminance correction unit) 305F in the image processing unit 305 will be described.
Next, an exemplary embodiment of the recording apparatus (printer) using an inkjet system applied to the first and second exemplary embodiments will be described. The printer is an inkjet printer that uses a continuous sheet wound in a roll shape that can handle both one-sided and two-sided printing.
The sheet feeding unit 1 is a unit for storing and feeding a continuous sheet wound in a roll shape. The sheet feeding unit 1 can store two rolls R1 and R2, and alternatively pick up and feed these sheets. The number of rolls that can be stored is not limited to two. The sheet feeding unit 1 may be configured to store one roll or three or more rolls. The decurling unit 2 is a unit for reducing curl (curvature) of the sheet fed from the sheet feeding unit 1. In the decurling unit 2, curling is reduced by curving and squeezing the sheet so as to apply the opposite curvature to the curl by using two pinch rollers for one drive roller. The skew correction unit 3 is a unit for correcting skew (skew with respect to the original travelling direction) of the sheet which has passed the decurling unit 2. The skew of the sheet is corrected by pressing the sheet edge on a reference side against a guide member.
The print unit 4 is a unit for forming an image by a print head 14 on the sheet being conveyed. The print unit 4 includes a plurality of conveyance rollers for conveying the sheet. The print head 14 has line type print heads on which an inkjet nozzle array is formed over a range that covers the maximum width of the sheets which are expected to be used. In the print head 14, the plurality of print heads is arranged in parallel in the direction of sheet conveyance. In the present example, seven print heads are provided, corresponding to C (cyan), M (magenta), Y (yellow), LC (light cyan), LM (light magenta), G (gray), and K (black). As illustrated in
The inspection unit 5 is a unit for inspecting a print head nozzle state, a sheet conveyance state, an image position and the like, by optically reading an inspection pattern and the image printed on the sheet by the print unit 4. The cutter unit 6 includes a mechanical cutter which cuts the printed sheet to a predetermined length. The cutter unit 6 also includes a plurality of conveyance rollers for feeding the sheet to the next step. The information recording unit 7 is a unit for recording print information such as a print serial number and the date on a rear surface of the cut sheet. The drying unit 8 is a unit for drying the applied ink in a short period of time by heating the sheet printed by the print unit 4. The drying unit 8 also includes a conveyance belt and a conveyance roller for feeding the sheet onto the next step.
The sheet winding unit (sheet reverse unit, reverse unit) 9 is a unit for temporarily winding up the continuous sheet for which front surface printing has finished when performing two-sided printing. The sheet winding unit 9 includes a rotating wind drum for winding up the sheet. A continuous sheet for which front surface printing has finished but which has not yet been cut is temporarily wound up on the wind drum. When winding up is finished, the wind drum is rotated in reverse, and the wound-up sheet is fed to the decurling unit 2, and sent to the print unit 4. Thus, since the front and rear surfaces of the sheet have been reversed by the winding unit (sheet reverse unit) 9, printing can be performed on the rear surface by the print unit 4. The two-sided print operation will be described in more detail below.
The discharge conveyance unit 10 is a unit for conveying the sheet cut by the cutter unit 6 and dried by the drying unit 8, and transferring the sheet to the sorter unit 11. The sorter unit 11 is a unit which sorts the printed sheets into different trays of the discharge tray 12 for each group as necessary. The control unit 13 controls each of the units in the whole printer. The control unit 13 has a power source and a controller 15, which includes the above-described CPU, ASIC or similar control circuit, memory, and various I/O interfaces. The printer operations are controlled based on a command from the controller 15, or based on a command from an external device 16, such as a host computer, which is connected to the controller 15 via an I/O interface.
Next, the recording operation will be described. Since the operation is different for one-sided and two-sided printing, both of these operations will be described.
After this front surface print sequence, the operation switches to the rear surface print sequence. The wind drum of the sheet winding unit 9 is rotated in the reverse direction opposite to the direction during the winding up (in
While exemplary embodiments were described above, the present invention is not limited to the numbers in the embodiments described above. Further, for example, although the HS unit and the CS unit were described as the image correction unit, the present invention may also be applied to other correction processing.
For example, the number of recording elements included in the recording element array is not limited to 16 or 40. The number of recording element groups is not limited to 4 or 20 either. The number of recording elements constituting a group is not limited to 4, and may be, for example, a value such as 16 or 32.
Concerning the density level of the image data too, although the above exemplary embodiment was described with 8 density levels of 0 to 7, the present invention is not limited to those values. The number of density levels may be 128 or 256 levels. Moreover, although processing of image data of four rasters was described in the above exemplary embodiment, the present invention is not limited to this value.
Further, in the configuration illustrated in
In addition, concerning the configuration of the recording head, for example, as illustrated in
Moreover, in the above-described exemplary embodiment, concerning the order of the HS processing, the processing was performed in order of the regions in the raster. However, the processing may also be performed by performing processing for each identical region (each identical group) in order of those regions in such a manner that, as illustrated by the arrow in
The configuration of the table in the HS processing may be a common configuration using common tables (TBL1, TBL2, TBL3). The correction table buffer 304B illustrated in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures, and functions.
This application claims priority from Japanese Patent Application No. 2010-132129 filed Jun. 9, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-132129 | Jun 2010 | JP | national |