This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2010-037799 filed on Feb. 23, 2010.
1. Technical Field
The present invention relates to a recording head and an image forming apparatus.
2. Related Art
Conventionally, there is an electronic device which is provided with base boards connected by cables in which cables are connected to the frame ground of the base boards so that the electromagnetic noise radiating from the cables is suppressed.
According to an aspect of the invention, there is provided a recording head including: a non-electrically conductive support member; a base board provided above the support member, the base board being provided with light emitting elements arrayed along a predetermined direction for forming an image on a recording medium, a drive section for causing the light emitting elements to emit light, a first earth connection member provided at an end portion of the base board on the side of the base board at the side where an earth connection portion is provided to a casing of an image forming apparatus, and a second earth connection member provided at a location of a connection member, having one end connected to a control section for controlling the drive section and another end connected to drive section, the location being at the other end side that is connected to the drive section; a conducting member provided at a predetermined place relative to the support member and connected to the earth connection portion provided to the casing of the image forming apparatus; a first conduction section conducting between the conducting member and the first earth connection member; and a second conduction section conducting between the conducting member and the second earth connection member.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Detailed explanation follows of an exemplary embodiment of the present invention, with reference to the drawings.
First, explanation follows regarding a configuration of an image forming apparatus 10 according to the present exemplary embodiment. A schematic configuration diagram of an example of an image forming apparatus according to the present exemplary embodiment is shown in
The image forming apparatus 10 of the present exemplary embodiment is, as a specific example thereof, a monochrome printer for forming a monochrome image on recording paper P, and is one that forms a toner image corresponding to black (K) on the recording paper P.
The image forming apparatus 10 of the present exemplary embodiment is equipped with a paper supply container 14, a power circuit 16, a control circuit 18, a marking unit 20, a marking unit drive section 21, and a fixing device 22. The power circuit 16, the control circuit 18, the marking unit 20, the marking unit drive section 21 and the fixing device 22 are installed within a casing 12A, and the paper supply container 14 is installed within a casing 12B. Reference is simply made below to a casing 12 as a general term to refer to the casings 12A, 12B. The casing 12 is formed from a non-electrically conductive material, and as a specific example in the present exemplary embodiment, is a plastic cover formed from a non-electrically conductive plastic through which electricity does not pass. The metal plate 28 (referred to below as FG 28) configures a frame ground for making the casing 12 overall at the earth electrical potential (earth connection electrical potential) is provided to a portion of the internal wall of the casing 12. In the present exemplary embodiment, as a specific example, the FG 28 is provided in three directions, as shown in
The power circuit 16 includes a power circuit for supplying power to each section provided to the image forming apparatus 10, such as, for example, the marking unit 20, the fixing device 22, and the like. The control circuit 18 includes circuit(s) of, for example, a CPU, ROM, RAM and the like, for controlling the image forming apparatus 10 overall.
The paper supply container 14 is a container accommodating recording paper P for recording images. In the present exemplary embodiment, the recording paper P is conveyed out from the paper supply container 14 in the arrow A direction shown in
The marking unit 20 is driven by the marking unit drive section 21 and forms a toner image on the recording paper P. The marking unit 20 of the present exemplary embodiment is configured including a LED print head (referred to below as LPH) 30, a photoreceptor 32, a developing device 34, a transfer roller 38, and a charging roller 40. The photoreceptor 32 rotates at a predetermined velocity in the arrow B direction. The charging roller 40 is disposed at the peripheral face of the photoreceptor 32, in order to charge the surface of the photoreceptor 32 to a predetermined electrical potential. The charging roller 40 is an electrically conductive roller, and is disposed such that its peripheral face makes contact with the peripheral face of the photoreceptor 32.
The LPH 30 is a recording head provided at the peripheral face of the photoreceptor 32 for forming an electrostatic latent image on the photoreceptor 32, and is equipped for light sources with Light Emitting Diodes (LEDs) as light emitting elements. The LPH 30 forms an electrostatic latent image on the photoreceptor 32 by illuminating light beams onto the photoreceptor 32 according to image data. Detailed explanation is given below, however, as shown in
A LPH harness 24 is connected to the LPH 30 using a connector 55, and the LPH 30 is connected to the control circuit 18 by the LPH harness 24. In the present exemplary embodiment, the LPH harness 24 is pressed against the FG 28 by the marking unit 20, through a resilient member 42, so as to make contact with the FG 28 provided to the casing 12A. Specific examples of the resilient member 42 include, for example, sponge or the like.
Also disposed at the peripheral face of the photoreceptor 32 is the developing device 34 that develops the electrostatic latent image formed on the photoreceptor 32 using black (K) toner and forms a toner image. The developing device 34 is configured including a developing roll 36. A developing bias is applied to the developing roll 36 and the toner (not shown in the figures) filled in the developing device 34 adheres to the peripheral face of the developing roll 36. The toner adhered to the developing roll 36 is conveyed onto the surface of the photoreceptor 32 and the toner is rubbed off onto the photoreceptor 32, thereby developing the electrostatic latent image formed on the photoreceptor 32.
Also disposed at the peripheral face of the photoreceptor 32 is the transfer roller 38 for transferring the toner image on the photoreceptor 32 onto the recording paper P.
The fixing device 22 is a device for fixing toner images by fusing the toner of toner images formed on the recording paper P by the marking unit 20, and pressing the toner images onto the recording paper P. Monochrome images are thereby formed on the recording paper P. The recording paper P formed with the image is externally discharged from the image forming apparatus 10 (to the discharge container 26).
Next, explanation follows regarding a configuration of the LPH 30 of the present exemplary embodiment.
While omitted from the drawings, the LEDs in the present exemplary embodiment are plural individual LEDs arrayed, for example, in a staggered pattern along the length direction of the photoreceptor 32 (a predetermined direction). The rod lens array 52 is configured from imaging lenses that are gradient index rod lenses arrayed so as to correspond to each pixel (dot) according to the resolution. The rod lens array 52 focuses the light beams emitted from each of the LEDs onto the photoreceptor 32.
A drive circuit base board 56 is a base board provided with a circuit for driving the LEDs. The LPH harness 24 is connected to the drive circuit base board 56 by the connector 55, and, for example, a control signal for driving the LEDs is input from the control circuit 18 to the drive circuit base board 56 by the LPH harness 24. Thus, in the present exemplary embodiment, the LED base board 54 and the drive circuit base board 56 are formed as separated individual base boards, and the drive circuit base board 56 is connected to a central portion of the LED base board 54 by a connector 57. The connector 57 is a board-to-board connector for connecting a base board to another base board, a so-called B to B connector.
Earth connection pads 58A, 58B, 58C are, as shown in
A conducting body 60 is also disposed at one of the side faces of the housing 50, as shown in
The conducting body 60 is connected to the FG 28 (to the side wall of the face at the far side of the image forming apparatus 10 in
The electromagnetic noise radiating from the LPH 30 of the present exemplary embodiment is shown in
Generally, when current flows in a structural member having a long thin shape, the structural member acts as an antenna, and electromagnetic noise is radiated. Electromagnetic noise is effectively suppressed by connecting the two length direction ends of the structural member (the housing 50) to a conductive body (the FG 28), as in the present exemplary embodiment.
Namely, in the present exemplary embodiment, due to the conducting body 60 being disposed at the side face (the side face along the LED disposed direction) of the long thin shaped housing 50, the conducting body 60 being connected to the earth connection pad 58A provided at an end portion of the LED base board 54 on the FG 28 side, to the earth connection pad 58B provided in the vicinity of the connector 57 and to the earth connection pad 58C provided at an end portion at the opposite end side to that of the FG 28, respectively, and due to further connection to the FG 28, a face capacity-coupled to the LED base board 54 is secured in which noise radiating due to electromagnetic resonance of the housing 50 causes an alternating (AC) return current to flow, cancelling out noise.
Accordingly, electromagnetic noise is suppressed even if the housing 50 is a non conducting body. Electromagnetic noise is also suppressed even when the image forming apparatus 10 is not shielded overall by metal. There are generally cases where plastic, a non conducting body, is employed at the material of the casing 12, in order to reduce manufacturing cost by reducing the amount of metal employed, however, electromagnetic noise is suppressed even in such cases.
In addition, in the present exemplary embodiment, electromagnetic noise radiating from the LPH harness 24 is suppressed due to the LPH harness 24 being contacted with the FG 28 by the marking unit 20 acting through the resilient member 42, even without, for example, an earth connection line (not shown in the figures) connecting the LPH harness 24 to the FG 28. Note that, as shown in the present exemplary embodiment, preferably the LPH harness 24 is made to make close contact with the FG 28 at a position close to the LPH 30.
Electromagnetic noise is further suppressed by providing an electromagnetic shielding member on the surface of the LPH harness 24. By making close contact, and electrically connecting, the electromagnetic shielding member with the FG 28, electromagnetic noise is suppressed across a wide range from low frequencies to high frequencies. Specific examples of the LPH harness 24 provided with such a shielding member are shown in
As shown in
Furthermore, as shown in
Furthermore, in the present exemplary embodiment, since the LPH harness 24 is caused through the resilient member 42 to make contact with the FG 28, vibration of the marking unit 20 is suppressed from propagating to the casing 12A, and deterioration of image quality of the images formed by the image forming apparatus 10 is prevented.
Furthermore, in the present exemplary embodiment, due to the LED base board 54 and the drive circuit base board 56 being configured from separate individual base boards, the circuit pattern density of the base boards is reduced, in comparison to cases where the LED base board 54 and the drive circuit base board 56 are the same base board. Furthermore, even if driving conditions change, this is accommodated by changing one or other of the LED base board 54 or the drive circuit base board 56.
Further still, in the present exemplary embodiment, a central portion (the earth connection pad 58B) of the LED base board 54 is caused to be in conduction with the FG 28 and is at the earth electrical potential, and with the portions at both ends of the LED base board 54 as nodes, and the central portion of the LED base board 54 as an anti-node, since an earth electrical potential is provided at the portion of the anti-node of electromagnetic resonance, electromagnetic noise is further suppressed.
In the present exemplary embodiment, explanation has been given of a case in which the image forming apparatus 10 forms a single color (black) image on the recording paper P, there is no limitation thereto. In cases of an image forming apparatus that forms an image of plural colors (colored image) on the recording paper P, in order to form toner images of each of the colors on the recording paper P configuration may be made with one of the marking units 20 for each of the colors. Furthermore, whilst explanation has been given in the present exemplary embodiment of a case of direct image formation on the recording paper P there is no limitation thereto, and an intermediate transfer body may be employed.
Furthermore, while the conducting body 60 in the present exemplary embodiment is disposed at one face of the housing 50 there is no limitation thereto. Configuration may be made so as to dispose the conducting body 60 on the face disposed with the rod lens array 52 facing the photoreceptor 32, or so as to dispose the conducting body 60 on any side face other than the face on which the LED base board 54 is disposed. Furthermore, while the conducting body 60 in the present exemplary embodiment is directly adhered to the housing 50 there is no limitation thereto, and the conducting body 60 may be disposed at a predetermined distance from the housing 50. Such a predetermined distance is a distance arrived at as a distance that suppresses electromagnetic noise by, for example, prior testing or the like, and is generally 5 mm or greater.
Explanation follows regarding an LPH in another exemplary embodiment. A schematic configuration diagram of an example of the LPH of the present exemplary embodiment is shown in
In the LPH 90 of the present exemplary embodiment, instead of the conducting body 60 provided to the LPH 30 of the first exemplary embodiment, a snubber circuit 80 is provided to an end portion of the LED base board 54 at the side away from the FG 28. A specific example of the snubber circuit 80 of the present exemplary embodiment is shown in
An earth connection pad 58A is also provided to the LED base board 54, and the FG 28 and the LED base board 54 are electrically connected by a metal spring 73 attached to a metal plate 70.
In the LPH 90 of the present exemplary embodiment such as this, since the FG 28 and the earth connection pad 58A provided at the end portion on the FG 28 side of the LED base board 54 are connected, and the snubber circuit 80 is provided to the end portion on the opposite side of the LED base board 54 to the side of the FG 28, the snubber circuit 80 AC terminates the return current, and electromagnetic noise radiation by the housing 50 is suppressed.
In the present exemplary embodiment, as a specific example of the snubber circuit 80, configuration with the resistor 82 and the capacitor 84 is shown, however there is no limitation thereto, and other configurations may be adopted.
Explanation follows regarding an LPH in a further other exemplary embodiment. A schematic configuration diagram of an example of the LPH of the present exemplary embodiment is shown in
In the LPH 92 of the present exemplary embodiment, the snubber circuit 80 provided to the LPH 90 of the second exemplary embodiment is provided instead of the earth connection pad 58C provided to the LPH 30 of the first exemplary embodiment.
The LPH 92 of the present exemplary embodiment thereby has a conducting body 60 disposed on the side face of the long thin shaped housing 50, with the conducting body 60 being connected respectively to the earth connection pad 58A provided to the end of the LED base board 54 at the FG 28 side and to the earth connection pad 58B provided in the vicinity of the connector 57, thereby connecting the conducting body 60 to the FG 28. Since, furthermore, a snubber circuit 80 is provided at an end portion at the opposite side of the LED base board 54 to the FG 28 side, electromagnetic noise radiation by the housing 50 is suppressed.
Explanation follows regarding an LPH in a further other exemplary embodiment. A schematic configuration diagram of an example of the LPH of the present exemplary embodiment is shown in
In the LPH 94 of the present exemplary embodiment, a conductive body 61 is provided instead of the conducting body 60 provided to the LPH 92 of the third exemplary embodiment. The conductive body 61 of the present exemplary embodiment differs from the conducting body 60 in its length relative to the housing 50, and has a length up to the connection portion where the LPH harness 24 is connected. Specifically, as shown in
In the LPH 94 of the present exemplary embodiment such as this, in cases where the surface area of the conductive body provided to the housing 50 is small and the impedance is raised, since the length of the conductive body is from the end portion of the housing 50 at the FG 28 side to the LPH harness 24 and the snubber circuit 80 is provided to the end portion of the LED base board 54 at the opposite side to that of the FG 28 side, electromagnetic noise radiation by the housing 50 is suppressed.
Explanation follows regarding an LPH in a further other exemplary embodiment. A schematic configuration diagram of an example of the LPH of the present exemplary embodiment is shown in
The LED base board 54 of the LPH 96 of the present exemplary embodiment is further provided with an earth connection pad 58D between the earth connection pad 58A and the earth connection pad 58B of the LED base board 54 of the LPH 96 of the fourth exemplary embodiment. Furthermore, the earth connection pad 58D and the conductive body 61 are connected together with a connection member 62D.
Electromagnetic noise radiation from the LPH 96 of the present exemplary embodiment is shown in
In the present exemplary embodiment such as this, due to providing the earth connection pad 58D between the earth connection pad 58A and the earth connection pad 58B, and connecting the earth connection pad 58D to the conductive body 61 using the connection member 62D, since the resonance mode of the LED base board 54 is changed, the frequency distribution of the electromagnetic noise is changed. Consequently, since electromagnetic noise generated in a particular frequency band is distributed to other frequency bands, electromagnetic noise is distributed so as not to exceed regulation values in the frequency bands shown in radiofrequency radiation and electromagnetic field regulations, such as IEC 61000-4-3, JIS C 1000-4-3, or the like.
Number | Date | Country | Kind |
---|---|---|---|
2010-037799 | Feb 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6809752 | Nagamine | Oct 2004 | B2 |
7042591 | Yamazaki et al. | May 2006 | B1 |
8040368 | Yokoi | Oct 2011 | B2 |
Number | Date | Country |
---|---|---|
2002137437 | May 2002 | JP |
2004-122584 | Apr 2004 | JP |
2006-154076 | Jun 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20110205327 A1 | Aug 2011 | US |