Forming dielectric layers on a substrate by chemical reaction of gases is one of the primary steps in the fabrication of modern semiconductor devices. These deposition processes include chemical vapor deposition (CVD) as well as plasma enhanced chemical vapor deposition (PECVD), which uses plasma in combination with traditional CVD techniques. CVD and PECVD dielectric layers can be used as different layers in semiconductor devices. For example, the dielectric layers may be used as intermetal dielectric layers between conductive lines or interconnects in a device. Alternatively, the dielectric layers may be used as barrier layers, etch stops, or spacers, as well as other layers.
Dielectric layers that are used for applications such as barrier layers and spacers are typically deposited over features, e.g., horizontal interconnects for subsequently formed lines, vertical interconnects (vias), gate stacks, etc., in a patterned substrate. Preferably, the deposition provides a conformal layer. However, it is often difficult to achieve conformal deposition as the barrier layer formed over a feature may have surface defects including uneven thickness. During deposition, the barrier layer material may overloaf, that is, deposit excess material on the shoulders of a via and deposit too little material in the base of the via, forming a shape that looks like the side of a loaf of bread. In extreme cases, the shoulders of a via may merge to form a joined, sealed surface across the top of the via. The film thickness non-uniformity across the wafer can negatively impact the drive current improvement from one device to another. Modulating the process parameters alone does not significantly improve the step coverage and pattern loading problems.
Deposition of conformal layers over gate stacks to provide layers that are subsequently etched to form spacers is also challenging. While methods of depositing silicon nitride and silicon oxide layers for spacers using high temperature, low pressure conventional CVD have been developed, the thermal budget for such techniques is becoming too high as semiconductor device geometry continues to shrink. PECVD processes of silicon nitride and silicon oxide deposition can be performed at lower temperatures, but the step coverage and pattern loading results are not as desirable as those obtained with high temperature, low pressure CVD.
Therefore, a need exists for more conformal methods of depositing dielectric films over features in a patterned substrate.
Aspects of the disclosure pertain to methods of depositing conformal silicon oxide multi-layers on patterned substrates. The conformal silicon oxide multi-layers are each formed by depositing multiple sub-layers. Sub-layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS) and an oxygen-containing precursor into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. A plasma treatment may follow formation of sub-layers to further improve conformality and to decrease the wet etch rate of the conformal silicon oxide multi-layer film. The deposition of conformal silicon oxide multi-layers grown according to embodiments have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
Embodiments of the invention include methods for forming a conformal silicon oxide multi-layer on a patterned substrate in a substrate processing region of a processing chamber. The patterned substrate has a densely patterned region and a sparsely patterned region. The method comprising the sequential steps (1) performing a first cycle of chemical vapor deposition comprising the operations: flowing BDEAS into the substrate processing region, flowing a first oxygen-containing precursor into the substrate processing region, and forming a first conformal silicon oxide sub-layer of the conformal silicon oxide multi-layer on the patterned substrate from the BDEAS and the oxygen-containing precursor by chemical vapor deposition. The method further includes (2) removing unreacted and partially-reacted precursors from the substrate processing region. The method further includes (3) performing a second cycle of chemical vapor deposition comprising the operations: flowing BDEAS into the substrate processing region, flowing a second oxygen-containing precursor into the substrate processing region, forming a second conformal silicon oxide sub-layer of the conformal silicon oxide multi-layer on the patterned substrate from the BDEAS and the oxygen-containing precursor by chemical vapor deposition. The thickness of the first conformal silicon oxide sub-layer is about 100 Å or less.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed embodiments. The features and advantages of the disclosed embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the disclosed embodiments may be realized by reference to the remaining portions of the specification and the drawings.
Aspects of the disclosure pertain to methods of depositing conformal silicon oxide multi-layers on patterned substrates. The conformal silicon oxide multi-layers are each formed by depositing multiple sub-layers. Sub-layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS) and an oxygen-containing precursor into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. A plasma treatment may follow formation of sub-layers to further improve conformality and to decrease the wet etch rate of the conformal silicon oxide multi-layer film. The deposition of conformal silicon oxide multi-layers grown according to embodiments have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
Embodiments of the invention are directed to methods of forming silicon oxide on a patterned surface of a substrate. Sub-atmospheric CVD (SACVD) and related processes involve flowing a silicon-containing precursor and an oxidizing precursor into a processing chamber to form silicon oxide on the substrate. The silicon-containing precursor may include TEOS and the oxidizing precursor may include ozone (O3), oxygen (O2) and/or oxygen radicals. The inventors have discovered that forming silicon oxide multi-layers in combination with using BDEAS as the silicon-containing precursor reduces the pattern-loading effect (PLE) of the deposited silicon oxide.
Without binding the claim coverage with hypothetical mechanisms which may or may not be entirely correct, it is still beneficial to describe effects which may be occurring during the formation of the conformal silicon oxide multi-layer. BDEAS is more reactive than TEOS and other alternative silicon-containing precursors but relies more heavily on the presence of the oxygen-containing precursor due to the absence of oxygen within BDEAS. The combination of BDEAS and oxygen (O2) preferentially reacts at or near the surface resulting in a deposition rate roughly proportional to the exposed surface area. This behavior is likely the cause of the desirable conformality reported herein. As the chemical reactions proceed, the chemical species in the near-surface area change over time. The inventors have found that the silicon oxide film becomes less conformal as the deposition proceeds. In order to regain the favorable surface-limited reaction, reacted and partially reacted chemical species may be removed from the substrate processing region and deposition may be restarted. Periodic removal of the reacted species may give rise to a growth process more uniformly dominated by surface reactions so that higher surface area regions of a patterned substrate receive additional deposition relative to lower surface area regions. The additional deposition results in a relatively constant film thickness across a patterned substrate having both high feature density areas and relatively open areas.
In order to better understand and appreciate the invention, reference is now made to
Unreacted and partially-reacted precursors are generated and linger near the patterned substrate, inhibiting highly conformal growth especially beyond a certain thickness of a deposited sub-layer of silicon oxide. Unreacted and partially-reacted precursors are removed from the substrate processing region (operation 120) to allow future deposition cycles to be more conformal. An optional plasma treatment (operation 125) may be used to densify the conformal silicon oxide layer prior to additional deposition. In some embodiments, the optional plasma treatment is not used. Once the desired thickness of silicon oxide is achieved, the patterned substrate may be removed from the substrate processing region (operation 130). The decision to terminate or continue depositing additional sub-layers is made in operation 127. If additional deposition is desired or required for a certain application, deposition begins again (operation 115). The formation of a conformal silicon oxide multi-layer may involve the deposition of two, three, four, five (or more) conformal sub-layers, in disclosed embodiments.
The plasma treatment (operation 125) may follow none, some or each of the sub-layer depositions (operation 115). Each sub-layer deposition may be referred to herein as a “cycle” of chemical vapor deposition. The combined deposition of two cycles may be described as a first and second cycle of deposition. Additional cycles may be used depending on the conformality and/or thickness required for the combined deposition. Plasma treatment involves introducing a plasma treatment gas into the substrate processing region during or after the removal of the unreacted and partially-reacted precursors (operation 120). The plasma treatment gas comprises one or more of argon, helium, ozone or nitrogen (N2), in disclosed embodiments. Other gases may also be used. The optional inclusion of plasma treatment (operation 125) serves to densify the sub-layer prior to removing the substrate or proceeding with additional deposition. The plasma treatment has been found to be more effective for thinner sub-layers. Sub-layer thicknesses are described herein following the plasma treatment, in the event that a plasma treatment is employed. Sub-layer thicknesses may be less than or about 100 Å, less than or about 50 Å or less than or about 35 Å, in embodiments of the invention. The plasma power is applied to the substrate processing region so the plasma may be described as local. For a 300 millimeter diameter circular substrate, plasma power may be greater than 300 Watts, between 300 Watts and 1500 Watts or between 400 Watts and 1000 Watts in embodiments of the invention. Appropriate correction is required for substrates having a different exposed area used for deposition. Plasma frequencies of several hundred kilohertz (e.g. 350 kHz) appear to have reduced effect than higher frequencies (13.6 MHz). The plasma excitation frequency is greater than or about 5 MHz or about 13.6 MHz, in embodiments of the invention. Microwave frequencies may also densify conformal silicon oxide sub-layers.
Characteristics of the formation of silicon oxide depend similarly on the flow rates of oxygen (O2) and BDEAS. Increasing the flow rate of oxygen (O2) from a small value results in an increase in deposition rate. The deposition rate plateaus after a threshold value of the oxygen flow rate is reached. The flow rate of oxygen (O2) may be less than one of 40 standard liters per minute (slm), 30 slm, 25 slm, 20 slm or 15 slm, in disclosed embodiments, to increase the efficient use of oxygen thereby reducing the consumption of oxygen which is not incorporated into the conformal silicon oxide film. The flow rate of oxygen (O2) may be greater than one of 5 slm, 10 slm, 15 slm, 20 slm and 25 slm, in disclosed embodiments, to maintain productive growth rates of the conformal silicon oxide film. Additional embodiments result from the combination of one of the upper limits with one of the lower limits.
The dependence on ozone (O3) has a different character. A relatively small concentration of ozone promotes growth rate while maintaining conformality by ensuring surface resident deposition reactions. High flows of ozone undesirably increase the pattern loading effect (PLE). In some embodiments of the invention, essentially no ozone is flowed into the substrate processing region. When employed, the flow rate of ozone is accompanied by molecular oxygen, but the flow rates given here include only the ozone contribution to the total flow rate. The flow rate of ozone (O3) may be less than one of 1 slm, 500 sccm, 300 sccm, 200 sccm, 150 sccm, 100 sccm and 70 sccm, in order to avoid a relatively high pattern loading effect. The lower the ozone flow rate, the less the pattern loading effect. The restricted flow of a precursor is sometimes referred to as a choked flow. In this case, the choked flow of ozone may substantially confine the reaction closer to or on the patterned substrate surface, thereby promoting a uniform deposition regardless of the local exposed pattern area density.
The flows of O3, O2 and BDEAS as described above are concurrent, in disclosed embodiments. Flow rates, as used herein, are not necessarily constant during the process. Flow rates of the different precursors may be initiated and terminated in different orders and their magnitudes may be varied. As such, concurrent does not mean that all three flows initiate and terminate together. Concurrent, as used herein, means that a period of time exists during the deposition in which all three flows are non-zero. In disclosed embodiments, all three precursor flows are non-zero for the duration of a deposition process. Unless otherwise indicated, mass flow rate magnitudes indicated herein are given for the approximate peak flow rate used during the process. Flow rate magnitudes indicated herein are for deposition on one side of a pair of 300 mm diameter wafers (area approximately 1400 cm2). Appropriate correction based on deposition area is needed for a different number of wafers, larger or smaller wafers, double sided deposition or deposition on alternative geometry substrates (e.g. rectangular substrates).
The pressure in the substrate processing region during deposition of each silicon oxide sub-layer may be less than for many SACVD and HARP processes (e.g. 600 Torr) due to the reactivity of BDEAS. The pressure during the formation of the conformal silicon oxide sub-layers may be less than one of 350 Torr, 300 Torr, 250 Torr, 200 Torr or 150 Torr, in disclosed embodiments, to lessen the risk of uncontrolled reaction. The pressure may be greater than one of 50 Torr, 100 Torr, 150 Torr or 200 Torr, in disclosed embodiments, to maintain productive growth rates. Additional embodiments result from the combination of an upper limits with a lower limit.
The substrate temperature is below a threshold value, in embodiments, also to ensure that the reactions associated with deposition of silicon oxide sub-layers proceed near or on the surface of the patterned substrate. The temperature of the substrate during the deposition of the conformal silicon oxide is below one of 400° C., 375° C., 350° C., 325° C. and 300° C., in disclosed embodiments. No plasma is present in the substrate processing region during deposition in embodiments. A small ac and/or dc voltage may be applied to the substrate processing region without detriment to the benefits of the deposition process, according to embodiments. Such an excitation should not be considered to deviate from the scope of “essentially” plasma-free or a process having “essentially” no plasma as may be recited in some claims.
Supplying a choked flow of ozone along with TEOS also forms a conformal layer of silicon oxide. However, the film formed thereby possesses greater porosity and a high wet etch rate. Conformal silicon oxide multi-layers formed using BDEAS have greater density and comparatively lower wet etch rate. The wet etch rate of silicon oxide multi-layers formed according to disclosed embodiments possess wet etch rates (using a 1% HF solution) of less than one of 6, 5, 4, 3 or 2.5 times the wet etch rate of a thermally grown silicon oxide layer, in disclosed embodiments. The greater density and lower wet etch rate of conformal silicon oxide films grown in disclosed embodiments presented herein enables the conformal silicon oxide films (or portions thereof) to be incorporated into finished devices. More porous films, such as those grown with choked ozone and TEOS at low substrate temperature, must generally be removed due to the less resilient structure. As such, material grown using BDEAS and ozone may be left on the patterned substrate during subsequent processing.
During the removal of unreacted and partially-reacted precursors (operation 120) the flow of BDEAS may be terminated to allow deposition reaction by-products to be removed from the processing region. The pressure in the chamber is reduced during or following the removal of the unreacted and partially-reacted precursors (operation 120) in embodiments of the invention. The reduced pressures ensure that the by-product concentration is reduced sufficiently to restore the conformality of subsequently deposited sub-layers. Alternatively, the plasma treatment gas may be flowed into the substrate processing region to displace the unreacted and partially-reacted precursors. Regardless of the method of removal, the partial pressure of BDEAS within the substrate processing region may be reduced to below or about 10%, below or about 5% or below or about 3% of the partial pressure of BDEAS during the operation of flowing BDEAS and the oxygen-containing precursor, in embodiments of the invention. The partial pressure of BDEAS present in the substrate processing region is an indicator of the concentration of the concentration of unreacted and partially-reacted precursors residing in the near surface region.
The pressure in the substrate processing region during the plasma treatment (operation 125) of one, some or each silicon oxide sub-layer may be less than 50 Torr, 20 Torr, 10 Torr, or 8 Torr, in disclosed embodiments. The pressure may be greater than one of 1 Torr, 2 Torr, 3 Torr or 4 Torr, in disclosed embodiments. Additional embodiments of the invention result from the combination of an upper limits with a lower limit.
A conformal silicon oxide multi-layer was also grown with an intervening plasma treatment formed from nitrogen (N2) and sub-layers of 35 Å thickness. The WERR was measured to be 4.41. A similarly prepared conformal silicon oxide multi-layer film having sub-layers (each 75 Å thick) was found to have a larger WERR of 5.72. This establishes that plasma treatment has a limit on the depth of treatment penetration. Thinner sub-layers are densified more completely than thicker sub-layers. Three more pairs of conformal silicon oxide multi-layers were formed with plasma treatment gases of ozone, helium and argon. The two pairs of multi-layers processed with ozone and helium plasmas were similar in WERR to one another. Argon plasmas produced lower WERR films and the nitrogen plasma, for comparison, resulted in higher WERR films. In a preferred embodiment, the plasma treatment gas comprises argon. Generally speaking, the plasma treatment gas may comprise a combination of these exemplary gases but may also comprise other gases since the chemical reactivity does not appear to play a central role.
The pattern loading was quantified by comparing the horizontal growth of the conformal silicon oxide multi-layer from a vertical feature in a sparsely patterned region and a densely patterned region. An exemplary densely patterned region may have greater number of features than a sparsely patterned region to create the greater exposed surface area within a same area viewed from above the patterned substrate. A densely patterned region may have an exposed vertical area greater than a sparsely patterned region by a multiplicative factor greater than one of 2, 3, 5, 10 or 20, in disclosed embodiments. The thickness of the conformal silicon oxide multi-layer in a densely patterned region may be within one of 20%, 15%, 10%, 5% and 3% of the thickness of the conformal silicon oxide multi-layer in a sparsely patterned region, in embodiments of the invention. The thickness in each region may be measured on vertical surfaces in which case the growth is in a horizontal direction. Alternatively, the thickness may be measured on a horizontal surface within each region and the growth may then be in the vertical direction. The terms “vertical” and “horizontal” are used throughout to include substantially vertical and substantially horizontal directions which may or may not deviate from the theoretical vertical and horizontal by up to about 10 degrees.
Exemplary Substrate Processing System
Deposition chambers that may implement embodiments of the present invention may include sub-atmospheric chemical vapor deposition (SACVD) chambers and more generally, deposition chambers which allow operation at relatively high pressures without necessarily applying plasma excitation. Specific examples of CVD systems that may implement embodiments of the invention include the CENTURA ULTIMA® SACVD chambers/systems, and PRODUCER® HARP, eHARP and SACVD chambers/systems, available from Applied Materials, Inc. of Santa Clara, Calif.
Embodiments of the deposition systems may be incorporated into larger fabrication systems for producing integrated circuit chips.
Substrate processing chambers 308a-f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber (e.g., 308c-d and 308e-f) may be used to deposit the dielectric material on the substrate, and the third pair of processing chambers (e.g., 308a-b) may be used to treat the deposited dielectic with a plasma. In another configuration, the same two pairs of processing chambers (e.g., 308c-d and 308e-f) may be configured to both deposit and plasma treat a deposited dielectric film on the substrate, while the third pair of chambers (e.g., 308a-b) may be used for UV or E-beam curing of the deposited film. In still another configuration, all three pairs of chambers (e.g., 308a-f) may be configured to deposit and cure a dielectric film on the substrate. In yet another configuration, two pairs of processing chambers (e.g., 308c-d and 308e-f) may be used for both deposition and UV or E-beam curing of the dielectric, while a third pair of processing chambers (e.g. 308a-b) may be used for annealing the dielectric film. Any one or more of the processes described may be carried out on chamber(s) separated from the fabrication system shown in disclosed embodiments.
Substrate processing chamber 410 includes an enclosure assembly 412 housing a chamber interior 415 with a gas reaction area 416. A gas distribution plate 420 is provided above the gas reaction area 416 for dispersing reactive gases and other gases, such as purge gases, through perforated holes in the gas distribution plate 420 to a substrate (not shown) that rests on a vertically movable heater 425 (which may also be referred to as a substrate support pedestal). Vertically movable heater 425 can be controllably moved between a lower position, where a substrate can be loaded or unloaded, for example, and a processing position closely adjacent to the gas distribution plate 420, indicated by a dashed line 413, or to other positions for other purposes, such as for an etch or cleaning process. A center board (not shown) includes sensors for providing information on the position of the substrate.
Gas distribution plate 420 may be of the variety described in U.S. Pat. No. 6,793,733. These plates improve the uniformity of gas disbursement at the substrate and are particularly advantageous in deposition processes that vary gas concentration ratios. In some examples, the plates work in combination with the vertically movable heater 425 (or movable substrate support pedestal) such that deposition gases are released farther from the substrate when the ratio is heavily skewed in one direction (e.g., when the concentration of a silicon-containing gas is small compared to the concentration of an oxidizer-containing gas) and are released closer to the substrate as the concentration changes (e.g., when the concentration of silicon-containing gas in the mixture is higher). In other examples, the orifices of the gas distribution plate are designed to provide more uniform mixing of the gases.
Vertically movable heater 425 includes an electrically resistive heating element (not shown) enclosed in a ceramic. The ceramic protects the heating element from potentially corrosive chamber environments and allows the heater to attain temperatures up to about 800° C. In an exemplary embodiment, all surfaces of vertically movable heater 425 exposed within the chamber interior 415 are made of a ceramic material, such as aluminum oxide (Al2O3 or alumina) or aluminum nitride.
Reactive and carrier gases are supplied through process gas supply line 443 into a gas mixing box (also called a gas mixing block) 427, where they are preferably mixed together and delivered to the gas distribution plate 420. The gas mixing block 427 is preferably a dual input mixing block coupled to a process gas supply line 443 and to a cleaning/etch gas conduit 447. A gate valve 428 operates to admit or seal gas or plasma from cleaning/etch gas conduit 447 to the gas mixing block 427. The cleaning/etch gas conduit 447 receives gases from a remote plasma system (RPS 455), which has an input line 457 for receiving input gases. During deposition processing, gas supplied to gas distribution plate 420 is vented toward the substrate surface (as indicated by arrows 421), where it may be uniformly distributed radially across the substrate surface, typically in a laminar flow.
Purging gas may be delivered into the chamber interior 415 through the gas distribution plate 420 and/or an inlet port or tube (not shown) through a wall (preferably the bottom) of enclosure assembly 412. The purging gas flows upward from the inlet port past vertically movable heater 425 and to an annular pumping channel 440. An exhaust system then exhausts the gas (as indicated by arrow 422) into the annular pumping channel 440 and through an exhaust line 460 to a pumping system 488, which includes one or more vacuum pumps. Exhaust gases and entrained particles are drawn from the annular pumping channel 440 through the exhaust line 460 at a rate controlled by a throttle valve system 463.
The RPS 455 can produce a plasma for selected applications, such as chamber cleaning or etching native oxide or residue from a process substrate. Plasma species produced in RPS 455 from precursors supplied via the input line 457 are sent via cleaning/etch gas conduit 447 for dispersion through the gas distribution plate 420 to the gas reaction area 416. Precursor gases for a cleaning application may include fluorine, chlorine, and other reactive elements. The RPS 455 also may be adapted to deposit plasma enhanced CVD films by selecting appropriate deposition precursor gases for use in the RPS 455.
The system controller 453 controls activities and operating parameters of the deposition system. The processor 451 executes system control software, such as a computer program stored in a memory 452 coupled to the processor 451. The memory 452 typically consists of a combination of static random access memories (cache), dynamic random access memories (DRAM) and hard disk drives but of course the memory 452 may also consist of other kinds of memory, such as solid-state memory devices. In addition to these memory means the substrate processing chamber 410 in a preferred embodiment includes a removable storage media drive, USB ports and a card rack (not shown).
The processor 451 operates according to system control software programmed to operate the device according to the methods disclosed herein. For example, sets of instructions may dictate the timing, mixture of gases, chamber pressure, chamber temperature, plasma power levels, susceptor position, and other parameters of a particular process. The instructions are conveyed to the appropriate hardware preferably through direct cabling carrying analog or digital signals conveying signals originating from an input-output I/O module 450. Other computer programs such as those stored on other memory including, for example, a USB thumb drive, a floppy disk or another computer program product inserted in a disk drive or other appropriate drive, may also be used to operate the processor 451 to configure the substrate processing chamber 410 for varied uses.
The processor 451 may have a card rack (not shown) that contains a single-board computer, analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of the semiconductor processing system 300 conform to the Versa Modular European (VME) standard which defines board, card cage, and connector dimensions and types. The VME standard also defines the bus structure having a 16-bit data bus and 24-bit address bus.
A process for depositing a conformal silicon oxide multi-layer on a patterned substrate or a process for cleaning a chamber can be implemented using a computer program product that is executed by the system controller. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Microsoft Windows® library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller is via a flat-panel touch-sensitive monitor. In the preferred embodiment two monitors are used, one mounted in the clean room wall for the operators and the other behind the wall for the service technicians. The two monitors may simultaneously display the same information, in which case only one accepts input at a time. To select a particular screen or function, the operator touches a designated area of the touch-sensitive monitor. The touched area changes its highlighted color, or a new menu or screen is displayed, confirming communication between the operator and the touch-sensitive monitor. Other devices, such as a keyboard, mouse, or other pointing or communication device, may be used instead of or in addition to the touch-sensitive monitor to allow the user to communicate with the system controller.
The embodiment disclosed herein relies on direct cabling and a single processor 451. Alternative embodiments comprising multi-core processors, multiple processors under distributed control and wireless communication between the system controller and controlled objects are also possible.
The RPS 455 is integrally located and mounted below the substrate processing chamber 410 with cleaning/etch gas conduit 447 coming up alongside substrate processing chamber 410 to the gate valve 428 and the gas mixing block 427, located above substrate processing chamber 410. Plasma power generator 411 and ozonator 459 are located remote from the clean room. Supply lines 483 and 485 from the gas supply panel 480 provide reactive gases to process gas supply line 443. The gas supply panel 480 includes lines from gas or liquid sources 490 that provide the process gases for the selected application. The gas supply panel 480 has a gas mixing system 493 that mixes selected gases before flow to the gas mixing block 427. In some embodiments, gas mixing system 493 includes a liquid injection system for vaporizing one or more reactant liquids such as BDEAS, tetraethylorthosilicate (“TEOS”), triethylborate (“TEB”), and triethylphosphate (“TEPO”). Vapor from the liquids is usually combined with a carrier gas, such as helium. Supply lines for the process gases may include (i) shut-off valves 495 that can be used to automatically or manually shut off the flow of process gas into supply line 485 or input line 457, and (ii) liquid flow meters (LFM) 401 or other types of controllers that measure the flow of gas or liquid through the supply lines.
As an example, a mixture including BDEAS as a silicon source may be used with gas mixing system 493 in a deposition process for forming a silicon oxide film. Sources of dopants such as phosphorous and boron may include TEPO and TEB which may also be introduced to gas mixing system 493. Precursors delivered to gas mixing system 493 may be liquid at room temperature and pressure and may be vaporized by conventional boiler-type or bubbler-type hot boxes. Alternatively, a liquid injection system may be used and offers greater control of the volume of reactant liquid introduced into the gas mixing system. The liquid is typically injected as a fine spray or mist into the carrier gas flow before being delivered to a heated gas supply line 485 to the gas mixing block and chamber. Oxygen (O2) flows to the chamber through supply line 483, to be combined with the reactant gases from heated gas supply line 485 near or in the chamber. Of course, it is recognized that other sources of dopants, silicon, oxygen and additive precursors may also be used. Though shown as an individual gas supply line, supply line 485 may actually comprise multiple lines separated to discourage inter-precursor reactions before the precursors are flowed into chamber interior 415.
As used herein “substrate” may be a support substrate with or without layers formed thereon. The support substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. A layer of “silicon oxide” may include minority concentrations of other elemental constituents such as nitrogen, hydrogen, carbon and the like. A gas may be a combination of two or more gases. The terms trench and gap are used throughout with no implication that the etched geometry necessarily has a large horizontal aspect ratio. Viewed from above the surface, gaps may appear circular, oval, polygonal, rectangular, or a variety of other shapes. Gaps may also be a region between two pillars in which case the gaps are not physical separate from other gaps. As used herein, a conformal layer refers to a generally uniform layer of material on a surface in the same shape as the surface, i.e., the surface of the layer and the surface being covered are generally parallel. A person having ordinary skill in the art will recognize that the deposited material likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application claims the benefit of U.S. Prov. Pat. App. No. 61/449,148 filed Mar. 4, 2011, and titled “REDUCED PATTERN LOADING USING SILICON OXIDE MULTI-LAYERS,” which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4147571 | Stringfellow et al. | Apr 1979 | A |
4200666 | Reinberg | Apr 1980 | A |
4816098 | Davis et al. | Mar 1989 | A |
4818326 | Liu et al. | Apr 1989 | A |
4910043 | Freeman et al. | Mar 1990 | A |
4931354 | Wakino et al. | Jun 1990 | A |
4946593 | Pinigis | Aug 1990 | A |
5016332 | Reichelderfer et al. | May 1991 | A |
5110407 | Ono et al. | May 1992 | A |
5212119 | Hah et al. | May 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5279784 | Bender et al. | Jan 1994 | A |
5364488 | Minato et al. | Nov 1994 | A |
5393708 | Hsia et al. | Feb 1995 | A |
5426076 | Moghadam | Jun 1995 | A |
5434109 | Geissler et al. | Jul 1995 | A |
5468687 | Carl et al. | Nov 1995 | A |
5485420 | Lage et al. | Jan 1996 | A |
5530293 | Cohen et al. | Jun 1996 | A |
5547703 | Camilletti et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5578532 | van de Ven et al. | Nov 1996 | A |
5587014 | Iyechika et al. | Dec 1996 | A |
5593741 | Ikeda | Jan 1997 | A |
5620525 | van de Ven et al. | Apr 1997 | A |
5622784 | Okaue et al. | Apr 1997 | A |
5635409 | Moslehi | Jun 1997 | A |
5665643 | Shin | Sep 1997 | A |
5691009 | Sandhu | Nov 1997 | A |
5769951 | van de Ven et al. | Jun 1998 | A |
5786263 | Perera | Jul 1998 | A |
5811325 | Lin et al. | Sep 1998 | A |
5843233 | van de Ven et al. | Dec 1998 | A |
5853607 | Zhao et al. | Dec 1998 | A |
5882417 | van de Ven et al. | Mar 1999 | A |
5925411 | van de Ven et al. | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5935340 | Xia et al. | Aug 1999 | A |
5937308 | Gardner et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5961850 | Satou et al. | Oct 1999 | A |
5966595 | Thakur et al. | Oct 1999 | A |
6008515 | Hsia et al. | Dec 1999 | A |
6009830 | Li et al. | Jan 2000 | A |
6014979 | Van Autryve et al. | Jan 2000 | A |
6017791 | Wang et al. | Jan 2000 | A |
6024044 | Law et al. | Feb 2000 | A |
6087243 | Wang | Jul 2000 | A |
6090442 | Klaus et al. | Jul 2000 | A |
6090723 | Thakur et al. | Jul 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6114219 | Spikes et al. | Sep 2000 | A |
6121130 | Chua et al. | Sep 2000 | A |
6140242 | Oh et al. | Oct 2000 | A |
6146970 | Witek et al. | Nov 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6156394 | Yamasaki et al. | Dec 2000 | A |
6156581 | Vaudo et al. | Dec 2000 | A |
6165834 | Agarwal et al. | Dec 2000 | A |
6180490 | Vassiliev et al. | Jan 2001 | B1 |
6187682 | Denning et al. | Feb 2001 | B1 |
6191004 | Hsiao | Feb 2001 | B1 |
6207587 | Li et al. | Mar 2001 | B1 |
6211040 | Liu et al. | Apr 2001 | B1 |
6258690 | Zenke | Jul 2001 | B1 |
6287962 | Lin | Sep 2001 | B1 |
6296255 | Hashimoto | Oct 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6339997 | Nakagawa et al. | Jan 2002 | B1 |
6355581 | Vassiliev et al. | Mar 2002 | B1 |
6383954 | Wang et al. | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6406677 | Carter et al. | Jun 2002 | B1 |
6413583 | Moghadam et al. | Jul 2002 | B1 |
6448187 | Yau et al. | Sep 2002 | B2 |
6469283 | Burkhart et al. | Oct 2002 | B1 |
6503557 | Joret | Jan 2003 | B1 |
6506253 | Sakuma | Jan 2003 | B2 |
6508879 | Hashimoto | Jan 2003 | B1 |
6509283 | Thomas | Jan 2003 | B1 |
6524931 | Perera | Feb 2003 | B1 |
6528332 | Mahanpour et al. | Mar 2003 | B2 |
6544900 | Raaijmakers et al. | Apr 2003 | B2 |
6548416 | Han et al. | Apr 2003 | B2 |
6548899 | Ross | Apr 2003 | B2 |
6559026 | Rossman et al. | May 2003 | B1 |
6566278 | Harvey et al. | May 2003 | B1 |
6583063 | Khan et al. | Jun 2003 | B1 |
6583069 | Vassiliev et al. | Jun 2003 | B1 |
6589868 | Rossman | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6599839 | Gabriel et al. | Jul 2003 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6614181 | Harvey et al. | Sep 2003 | B1 |
6624064 | Sahin et al. | Sep 2003 | B1 |
6630413 | Todd | Oct 2003 | B2 |
6645303 | Frankel et al. | Nov 2003 | B2 |
6656804 | Tsujikawa et al. | Dec 2003 | B2 |
6660391 | Rose et al. | Dec 2003 | B1 |
6667553 | Cerny et al. | Dec 2003 | B2 |
6670284 | Yin | Dec 2003 | B2 |
6676751 | Solomon et al. | Jan 2004 | B2 |
6682659 | Cho et al. | Jan 2004 | B1 |
6682969 | Basceri et al. | Jan 2004 | B1 |
6683364 | Oh et al. | Jan 2004 | B2 |
6706634 | Seitz et al. | Mar 2004 | B1 |
6716770 | O'Neill et al. | Apr 2004 | B2 |
6756085 | Waldfried et al. | Jun 2004 | B2 |
6762126 | Cho et al. | Jul 2004 | B2 |
6787191 | Hanahata et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6800571 | Cheung et al. | Oct 2004 | B2 |
6818517 | Maes | Nov 2004 | B1 |
6819886 | Runkowske et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6833052 | Li et al. | Dec 2004 | B2 |
6833322 | Anderson et al. | Dec 2004 | B2 |
6833578 | Tu et al. | Dec 2004 | B1 |
6835278 | Selbrede et al. | Dec 2004 | B2 |
6849520 | Kim et al. | Feb 2005 | B2 |
6858523 | Deboer et al. | Feb 2005 | B2 |
6858533 | Chu et al. | Feb 2005 | B2 |
6867086 | Chen et al. | Mar 2005 | B1 |
6872323 | Entley et al. | Mar 2005 | B1 |
6875687 | Weidman et al. | Apr 2005 | B1 |
6890403 | Cheung | May 2005 | B2 |
6900067 | Kobayashi et al. | May 2005 | B2 |
6955836 | Kumagi et al. | Oct 2005 | B2 |
6958112 | Karim et al. | Oct 2005 | B2 |
7018902 | Visokay et al. | Mar 2006 | B2 |
7077904 | Cho et al. | Jul 2006 | B2 |
7084076 | Park et al. | Aug 2006 | B2 |
7087497 | Yuan et al. | Aug 2006 | B2 |
7109114 | Chen et al. | Sep 2006 | B2 |
7115419 | Suzuki | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129185 | Aoyama et al. | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7176144 | Wang et al. | Feb 2007 | B1 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7192626 | Dussarrat et al. | Mar 2007 | B2 |
7205248 | Li et al. | Apr 2007 | B2 |
7220461 | Hasebe et al. | May 2007 | B2 |
7297608 | Papasouliotis et al. | Nov 2007 | B1 |
7335609 | Ingle et al. | Feb 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7419903 | Haukka et al. | Sep 2008 | B2 |
7435661 | Miller et al. | Oct 2008 | B2 |
7456116 | Ingle et al. | Nov 2008 | B2 |
7498273 | Mallick et al. | Mar 2009 | B2 |
7514375 | Shanker et al. | Apr 2009 | B1 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7524735 | Gauri et al. | Apr 2009 | B1 |
7524750 | Nemani et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7622369 | Lee et al. | Nov 2009 | B1 |
7745352 | Mallick et al. | Jun 2010 | B2 |
7749574 | Mahajani et al. | Jul 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7803722 | Liang | Sep 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825044 | Mallick et al. | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7902080 | Chen et al. | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7935643 | Liang et al. | May 2011 | B2 |
7943514 | West | May 2011 | B2 |
7943531 | Nemani et al. | May 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
7994019 | Kweskin et al. | Aug 2011 | B1 |
8119544 | Hasebe et al. | Feb 2012 | B2 |
8129555 | Cheng et al. | Mar 2012 | B2 |
8232176 | Lubomirsky et al. | Jul 2012 | B2 |
8236708 | Kweskin et al. | Aug 2012 | B2 |
8242031 | Mallick et al. | Aug 2012 | B2 |
8264066 | Lo et al. | Sep 2012 | B2 |
8304351 | Wang et al. | Nov 2012 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8445078 | Liang et al. | May 2013 | B2 |
8449942 | Liang et al. | May 2013 | B2 |
8466067 | Liang et al. | Jun 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
20010021595 | Jang et al. | Sep 2001 | A1 |
20010029114 | Vulpio et al. | Oct 2001 | A1 |
20010038919 | Berry et al. | Nov 2001 | A1 |
20010042511 | Liu et al. | Nov 2001 | A1 |
20010048980 | Kishimoto et al. | Dec 2001 | A1 |
20010054387 | Frankel et al. | Dec 2001 | A1 |
20010055889 | Iyer | Dec 2001 | A1 |
20020027286 | Sundararajan et al. | Mar 2002 | A1 |
20020048969 | Suzuki et al. | Apr 2002 | A1 |
20020068416 | Hsieh et al. | Jun 2002 | A1 |
20020068466 | Lee et al. | Jun 2002 | A1 |
20020079523 | Zheng et al. | Jun 2002 | A1 |
20020081817 | Bhakta et al. | Jun 2002 | A1 |
20020081842 | Sambucetti et al. | Jun 2002 | A1 |
20020086166 | Hendricks et al. | Jul 2002 | A1 |
20020119607 | Miyasaka et al. | Aug 2002 | A1 |
20020127350 | Ishikawa et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020142585 | Mandal | Oct 2002 | A1 |
20020146879 | Fu et al. | Oct 2002 | A1 |
20020160585 | Park | Oct 2002 | A1 |
20020164421 | Chiang et al. | Nov 2002 | A1 |
20020164429 | Gaillard et al. | Nov 2002 | A1 |
20020164891 | Gates et al. | Nov 2002 | A1 |
20020177298 | Konishi et al. | Nov 2002 | A1 |
20020182893 | Ballantine et al. | Dec 2002 | A1 |
20030001201 | Yuzuriha et al. | Jan 2003 | A1 |
20030023113 | Druzkowski et al. | Jan 2003 | A1 |
20030040199 | Agarwal | Feb 2003 | A1 |
20030064154 | Laxman et al. | Apr 2003 | A1 |
20030077918 | Wu et al. | Apr 2003 | A1 |
20030113992 | Yau et al. | Jun 2003 | A1 |
20030118748 | Kumagai et al. | Jun 2003 | A1 |
20030124873 | Xing et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030159656 | Tan et al. | Aug 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030194881 | Totsuka et al. | Oct 2003 | A1 |
20030199151 | Ho et al. | Oct 2003 | A1 |
20030203653 | Buchanan et al. | Oct 2003 | A1 |
20030207561 | Dubin et al. | Nov 2003 | A1 |
20030232495 | Moghadam et al. | Dec 2003 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040020601 | Zhao et al. | Feb 2004 | A1 |
20040029352 | Beyer et al. | Feb 2004 | A1 |
20040029353 | Zheng et al. | Feb 2004 | A1 |
20040048492 | Ishikawa et al. | Mar 2004 | A1 |
20040065253 | Pois et al. | Apr 2004 | A1 |
20040079118 | M'Saad et al. | Apr 2004 | A1 |
20040082131 | Tsujikawa et al. | Apr 2004 | A1 |
20040084680 | Ruelke et al. | May 2004 | A1 |
20040110354 | Natzle et al. | Jun 2004 | A1 |
20040139983 | Lakshmanan et al. | Jul 2004 | A1 |
20040146661 | Kapoor et al. | Jul 2004 | A1 |
20040152342 | Li et al. | Aug 2004 | A1 |
20040161899 | Luo et al. | Aug 2004 | A1 |
20040166680 | Miyajima et al. | Aug 2004 | A1 |
20040175501 | Lukas et al. | Sep 2004 | A1 |
20040180557 | Park et al. | Sep 2004 | A1 |
20040183202 | Usami | Sep 2004 | A1 |
20040185641 | Tanabe et al. | Sep 2004 | A1 |
20040194706 | Wang et al. | Oct 2004 | A1 |
20040197843 | Chou et al. | Oct 2004 | A1 |
20040216844 | Janakiraman et al. | Nov 2004 | A1 |
20040219780 | Ohuchi | Nov 2004 | A1 |
20040224534 | Beulens et al. | Nov 2004 | A1 |
20040231590 | Ovshinsky | Nov 2004 | A1 |
20040241342 | Karim et al. | Dec 2004 | A1 |
20040253826 | Ivanov et al. | Dec 2004 | A1 |
20050001556 | Hoffman et al. | Jan 2005 | A1 |
20050014354 | Ozawa et al. | Jan 2005 | A1 |
20050019494 | Moghadam et al. | Jan 2005 | A1 |
20050026443 | Goo et al. | Feb 2005 | A1 |
20050042889 | Lee et al. | Feb 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050087140 | Yuda et al. | Apr 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050118794 | Babayan et al. | Jun 2005 | A1 |
20050121145 | Du Bois et al. | Jun 2005 | A1 |
20050142895 | Ingle et al. | Jun 2005 | A1 |
20050153574 | Mandal | Jul 2005 | A1 |
20050160974 | Ivanov et al. | Jul 2005 | A1 |
20050181555 | Haukka et al. | Aug 2005 | A1 |
20050186731 | Derderian et al. | Aug 2005 | A1 |
20050186789 | Agarwal | Aug 2005 | A1 |
20050196533 | Hasebe et al. | Sep 2005 | A1 |
20050196935 | Ishitsuka et al. | Sep 2005 | A1 |
20050196977 | Saito et al. | Sep 2005 | A1 |
20050224866 | Higashi et al. | Oct 2005 | A1 |
20050227017 | Senzaki et al. | Oct 2005 | A1 |
20050227499 | Park et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050233595 | Choi et al. | Oct 2005 | A1 |
20050250340 | Chen et al. | Nov 2005 | A1 |
20050257890 | Park et al. | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20050287775 | Hasebe et al. | Dec 2005 | A1 |
20060011984 | Currie | Jan 2006 | A1 |
20060014399 | Joe | Jan 2006 | A1 |
20060030151 | Ding et al. | Feb 2006 | A1 |
20060030165 | Ingle et al. | Feb 2006 | A1 |
20060046427 | Ingle et al. | Mar 2006 | A1 |
20060046506 | Fukiage | Mar 2006 | A1 |
20060055004 | Gates et al. | Mar 2006 | A1 |
20060068599 | Baek et al. | Mar 2006 | A1 |
20060075966 | Chen et al. | Apr 2006 | A1 |
20060088985 | Haverkort et al. | Apr 2006 | A1 |
20060090694 | Cho et al. | May 2006 | A1 |
20060091104 | Takeshita et al. | May 2006 | A1 |
20060096540 | Choi | May 2006 | A1 |
20060102977 | Fucsko et al. | May 2006 | A1 |
20060105106 | Balseanu et al. | May 2006 | A1 |
20060110939 | Joshi et al. | May 2006 | A1 |
20060110943 | Swerts et al. | May 2006 | A1 |
20060121394 | Chi | Jun 2006 | A1 |
20060158101 | Camilletti et al. | Jul 2006 | A1 |
20060159847 | Porter et al. | Jul 2006 | A1 |
20060160372 | Dorfman | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060178018 | Olsen | Aug 2006 | A1 |
20060211265 | Trott | Sep 2006 | A1 |
20060223315 | Yokota et al. | Oct 2006 | A1 |
20060228903 | McSwiney et al. | Oct 2006 | A1 |
20060252240 | Gschwandtner et al. | Nov 2006 | A1 |
20060263522 | Byun | Nov 2006 | A1 |
20060281496 | Cedraeus | Dec 2006 | A1 |
20060286774 | Singh et al. | Dec 2006 | A1 |
20060286776 | Ranish et al. | Dec 2006 | A1 |
20070004170 | Kawasaki et al. | Jan 2007 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020392 | Kobrin et al. | Jan 2007 | A1 |
20070026689 | Nakata et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031609 | Kumar et al. | Feb 2007 | A1 |
20070032054 | Ramaswamy et al. | Feb 2007 | A1 |
20070049044 | Marsh | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066022 | Chen et al. | Mar 2007 | A1 |
20070077777 | Gumpher | Apr 2007 | A1 |
20070092661 | Ryuzaki et al. | Apr 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111546 | Iyer et al. | May 2007 | A1 |
20070128864 | Ma et al. | Jun 2007 | A1 |
20070134433 | Dussarrat et al. | Jun 2007 | A1 |
20070166892 | Hori | Jul 2007 | A1 |
20070173073 | Weber | Jul 2007 | A1 |
20070181966 | Watatani et al. | Aug 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232082 | Balseanu et al. | Oct 2007 | A1 |
20070275569 | Moghadam et al. | Nov 2007 | A1 |
20070281106 | Lubomirsky et al. | Dec 2007 | A1 |
20070281448 | Chen et al. | Dec 2007 | A1 |
20070281495 | Mallick et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20070289534 | Lubomirsky et al. | Dec 2007 | A1 |
20070298585 | Lubomirsky et al. | Dec 2007 | A1 |
20080000423 | Fukiage | Jan 2008 | A1 |
20080014711 | Choi et al. | Jan 2008 | A1 |
20080014759 | Chua et al. | Jan 2008 | A1 |
20080020591 | Balseanu et al. | Jan 2008 | A1 |
20080026597 | Munro et al. | Jan 2008 | A1 |
20080038486 | Treichel et al. | Feb 2008 | A1 |
20080063809 | Lee et al. | Mar 2008 | A1 |
20080070409 | Park et al. | Mar 2008 | A1 |
20080081104 | Hasebe et al. | Apr 2008 | A1 |
20080085607 | Yu et al. | Apr 2008 | A1 |
20080096364 | Wilson et al. | Apr 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080102223 | Wagner et al. | May 2008 | A1 |
20080102650 | Adams et al. | May 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080188087 | Chen et al. | Aug 2008 | A1 |
20080206954 | Choi et al. | Aug 2008 | A1 |
20080241358 | Joe et al. | Oct 2008 | A1 |
20080260969 | Dussarrat et al. | Oct 2008 | A1 |
20080305648 | Fukazawa et al. | Dec 2008 | A1 |
20080318429 | Ozawa et al. | Dec 2008 | A1 |
20090031953 | Ingle et al. | Feb 2009 | A1 |
20090035917 | Ahn et al. | Feb 2009 | A1 |
20090053901 | Goto et al. | Feb 2009 | A1 |
20090054674 | Lukas et al. | Feb 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090075490 | Dussarrat et al. | Mar 2009 | A1 |
20090093132 | Xu et al. | Apr 2009 | A1 |
20090095714 | Chen et al. | Apr 2009 | A1 |
20090104755 | Mallick et al. | Apr 2009 | A1 |
20090104789 | Mallick et al. | Apr 2009 | A1 |
20090104790 | Liang | Apr 2009 | A1 |
20090104791 | Nemani et al. | Apr 2009 | A1 |
20090104798 | Hirano | Apr 2009 | A1 |
20090142935 | Fukuzawa et al. | Jun 2009 | A1 |
20090170282 | Dong | Jul 2009 | A1 |
20090181550 | Hasebe et al. | Jul 2009 | A1 |
20090194809 | Cho | Aug 2009 | A1 |
20090203225 | Gates et al. | Aug 2009 | A1 |
20090206409 | Arisumi et al. | Aug 2009 | A1 |
20090209081 | Matero et al. | Aug 2009 | A1 |
20090215251 | Vellaikal et al. | Aug 2009 | A1 |
20090224374 | Bhatia et al. | Sep 2009 | A1 |
20090232985 | Dussarrat et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090277587 | Lubomirsky et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20090289284 | Goh et al. | Nov 2009 | A1 |
20090294925 | Lin et al. | Dec 2009 | A1 |
20090298257 | Lee et al. | Dec 2009 | A1 |
20090325391 | De Vusser et al. | Dec 2009 | A1 |
20100052066 | Yu et al. | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100081094 | Hasebe et al. | Apr 2010 | A1 |
20100081293 | Mallick et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100136313 | Shimizu et al. | Jun 2010 | A1 |
20100140756 | Kozasa et al. | Jun 2010 | A1 |
20100143609 | Fukazawa et al. | Jun 2010 | A1 |
20100184302 | Lee et al. | Jul 2010 | A1 |
20100190317 | Iwasawa et al. | Jul 2010 | A1 |
20100190348 | Akae et al. | Jul 2010 | A1 |
20100221428 | Dussarrat | Sep 2010 | A1 |
20100221925 | Lee et al. | Sep 2010 | A1 |
20100227276 | Mizuno | Sep 2010 | A1 |
20100255655 | Mallick et al. | Oct 2010 | A1 |
20100261318 | Feng et al. | Oct 2010 | A1 |
20100283097 | Endoh et al. | Nov 2010 | A1 |
20110014798 | Mallick et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110045676 | Park et al. | Feb 2011 | A1 |
20110111137 | Liang et al. | May 2011 | A1 |
20110129616 | Ingle et al. | Jun 2011 | A1 |
20110136347 | Kovarsky et al. | Jun 2011 | A1 |
20110159213 | Cai et al. | Jun 2011 | A1 |
20110159703 | Liang et al. | Jun 2011 | A1 |
20110165347 | Miller et al. | Jul 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110186990 | Mawatari et al. | Aug 2011 | A1 |
20110187000 | West | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110223774 | Kweskin et al. | Sep 2011 | A1 |
20120003840 | Wang et al. | Jan 2012 | A1 |
20120009802 | LaVoie et al. | Jan 2012 | A1 |
20120074387 | King | Mar 2012 | A1 |
20120079982 | Lubomirsky et al. | Apr 2012 | A1 |
20120083133 | Solis et al. | Apr 2012 | A1 |
20120094468 | Bhatia et al. | Apr 2012 | A1 |
20120094476 | Tanaka et al. | Apr 2012 | A1 |
20120111831 | Ha | May 2012 | A1 |
20120122302 | Weidman et al. | May 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120145079 | Lubomirsky et al. | Jun 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120177846 | Li et al. | Jul 2012 | A1 |
20120190178 | Wang et al. | Jul 2012 | A1 |
20120193778 | Mawatari | Aug 2012 | A1 |
20120213940 | Mallick | Aug 2012 | A1 |
20120238108 | Chen et al. | Sep 2012 | A1 |
20120269989 | Liang et al. | Oct 2012 | A1 |
20120292720 | Chen et al. | Nov 2012 | A1 |
20120309205 | Wang et al. | Dec 2012 | A1 |
20130062736 | Brighton et al. | Mar 2013 | A1 |
20130084711 | Liang et al. | Apr 2013 | A1 |
20130149462 | Liang et al. | Jun 2013 | A1 |
20130193578 | Yu et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
19654737 | Jul 1997 | DE |
0892083 | Jan 1999 | EP |
1095958 | May 2001 | EP |
1717848 | Nov 2006 | EP |
61-234534 | Oct 1986 | JP |
64-048425 | Feb 1989 | JP |
1-198033 | Aug 1989 | JP |
01-235259 | Sep 1989 | JP |
01241826 | Sep 1989 | JP |
03-197684 | Aug 1991 | JP |
03-286531 | Dec 1991 | JP |
2004-328825 | Nov 1992 | JP |
05-259156 | Oct 1993 | JP |
05-304147 | Nov 1993 | JP |
06-077150 | Mar 1994 | JP |
6-168930 | Jun 1994 | JP |
07-014826 | Jan 1995 | JP |
07-169762 | Jul 1995 | JP |
07-316823 | Dec 1995 | JP |
08-236518 | Sep 1996 | JP |
08-288286 | Nov 1996 | JP |
09-237785 | Sep 1997 | JP |
10-163183 | Jun 1998 | JP |
11-274285 | Oct 1999 | JP |
2001-148382 | May 2001 | JP |
2002-370059 | Dec 2002 | JP |
2003-179054 | Jun 2003 | JP |
2004-012315 | Jan 2004 | JP |
2004-327639 | Nov 2004 | JP |
2005-142448 | Jun 2005 | JP |
2005-268396 | Sep 2005 | JP |
2005-302848 | Oct 2005 | JP |
2008-159824 | Jul 2008 | JP |
2008218684 | Sep 2008 | JP |
2011-220127 | Nov 2011 | JP |
10-2004-0091978 | Nov 2004 | KR |
1020040104533 | Dec 2004 | KR |
10-2005-0003758 | Jan 2005 | KR |
1020060081350 | Jan 2005 | KR |
10-2005-0072332 | Jul 2005 | KR |
10-2005-0085838 | Aug 2005 | KR |
10-2005-0094183 | Sep 2005 | KR |
10-2009-0011765 | Feb 2009 | KR |
10-2009-0121361 | Nov 2009 | KR |
10-2009-0122860 | Dec 2009 | KR |
10-2010-0085743 | Jul 2010 | KR |
200514163 | Apr 2005 | TW |
200707582 | Feb 2007 | TW |
WO 02077320 | Oct 2002 | WO |
WO 03066933 | Aug 2003 | WO |
WO 2005078784 | Aug 2005 | WO |
WO 2007040856 | Apr 2007 | WO |
WO 2007140376 | Dec 2007 | WO |
WO 2007140424 | Dec 2007 | WO |
2009055340 | Apr 2009 | WO |
2010080216 | Jul 2010 | WO |
2013145148 | Oct 2012 | WO |
2013025336 | Feb 2013 | WO |
Entry |
---|
Alexandrov, S. E., et al., “Formation of Silicon Nitride Films by Remote Plasma-enhanced Chemical Vapour Deposition”. Advanced Materials for Optics and Electronics, vol. 2, 301-312 (1993). |
Bowen, C., et al., “New Processing Techniques: Sweeping of Quartz Wafers and a Practical Method for Processing Quartz Resonators Under Controlled Conditions,” Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 648-656. |
International Search Report and Written Opinion of PCT/US2011/054635, mailed Jul. 9, 2012, 11 pages. |
International Search Report and Written Opinion of PCT/US2011/054981, mailed May 9, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2011/054984, mailed May 11, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2011/066601, mailed Jul. 20, 2012, 10 pages. |
Loboda, M.J., et al., “Chemical influence of inert gas on the thin film stress in plasma-enhanced chemical vapor deposited a- SiN:H films”. Journal of Materials Research, vol. 11, No. 2, Feb. 1996, pp. 391-398. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part V. Diphenylamino-derivatives of Silane,” J. Chem. Soc. (A), Apr. 1969, pp. 636-638. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part VI. The Preparation and Properties of Disilazane,” J. Chem. Soc. (A), Apr. 1969, pp. 639-642. |
Aylett, B. J. et al., “The Preparation and Some Properties of Disilylamine-Correspondence,” Inorganic Chemistry, Jan. 1966, p. 167. |
Beach, David B., “Infrared and Mass Spectroscopic Study of the Reaction of Silyl Iodide and Ammonia. Infrared Spectrum to Silylamine,” Inorganic Chemistry, Sep. 1992, pp. 4174-4177, vol. 31 No. 20. |
Burg, Anton B. et al., “Silyl-Amino Boron Compounds,” J. Amer. Chem. Soc., Jul. 1950, pp. 3103-3107, vol. 72. |
Coltrin, M.E., et al., “Chemistry of AlGaN Particulate Formation,” National Nuclear Security Administration, Physical, Chemical, & Nano Sciences Center, Research Briefs, 2005, pp. 42-43. |
Davison, A et al., “The Raman Spectra of Manganese and Rhenium Carbonyl Hydrides and Some Related Species,” Inorganic Chemistry, Apr. 1967, pp. 845-847, vol. 6 No. 4. |
Dussarrat, C. et al., “Low Pressure Chemical Vapor Deposition of Silicon Nitride Using Mono- and Disilylamine,” Chemical Vapor Deposition XVI and EUROCVD 14 vol. 2 Proceedings of the International Symposium, Part of the 203rd Electrochemical Society Meeting in Paris France, Apr. 27-May 2, 2003, 11 pages. |
Gulleri, G. et al., “Deposition Temperature Determination of HDPCVD Silicon Dioxide Films,” 2005, Microelectronic Engineering, vol. 82, pp. 236-241. |
Kang, Hun, “A Study of the Nucleation and Formation of Multi-functional Nanostructures using GaN-Based Materials for Device Applications,” Georgia Institute of Technology, Doctor of Philosophy in the School of Electrical & Computer Engineering Dissertation, Dec. 2006, p. 14. |
Lee, Eun Gu, et al., “Effects of Wet Oxidation on the Electrical Properties of sub-10 nm thick silicon nitride films”, Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH. vol. 205, No. 2, Dec. 1, 1991, pp. 246-251. |
Lucovsky, G. et al., “Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology, vol. 4, No. 3, May-Jun. 1986, pp. 681-688. |
Norman, Arlan D. et al., “Reaction of Silylphosphine with Ammonia,” Inoragnic Chemistry, Jun. 1979, pp. 1594-1597, vol. 18 No. 6. |
Sujishi, Sei et al., “Effect of Replacement of Carbon by Silicon in Trimethylamine on the Stabilities of the Trimethylboron Addition Compounds. Estimation of the Resonance Energy for Silicon-Nitrogen Partial Double Bond,” Amer. Chem. Soc., Sep. 20, 1954, pp. 4631-4636, vol. 76. |
Tsu, D. V. et al., “Silicon Nitride and Silicon Diimide Grown by Remote Plasma Enhanced Chemical Vapor Deposition”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY.; US, vol. 4, No. 3, Part 01, May 1, 1986, pp. 480-485. |
Ward, L. G. L. et al., “The Preparation and Properties of Bis-Disilanyl Sulphide and Tris-Disilanylamine,” J. Inorg. Nucl. Chem., Dec. 1961, pp. 287-293, vol. 21, Pergamon Press Ltd., Northern Ireland. |
Ward, Laird G. L., “Bromosilane, Iodosilane, and Trisilyamine,” Inorganic Syntheses, 1968, pp. 159-170, vol. 11. |
Zuckerman, J.J., “Inorganic Reactions and Methods,” Formation of Bonds to N, P, As, Sb, Bi (Part 1), ISBN-0-89573-250-5, Jan. 1998, 5 pages, vol. 7, VCH Publishers, Inc., New York. |
Franz, et al., “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electronics, Jun. 1971, pp. 449-505, vol. 14, Issue 6, Germany. Abstract Only. |
International Search Report and Written Opinion of PCT/US2011/066275, mailed Sep. 24, 2012, 9 pages. |
International Search Report and Written Opinion of PCT/US2012/026786, mailed Jan. 2, 2013, 7 pages. |
International Search Report and Written Opinion of PCT/US2012/031640 mailed Oct. 18, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/039629, mailed Dec. 26, 2012, 6 pages. |
Tripp, et al., “The Anodic Oxidation of Silicon Nitride Films on Silicon,” Journal of the Electrochemical Society, 1970, pp. 157-159, 117(2). |
Usenko, et al., “Silicon Nitride Surface Conversion into Oxide to Enable Hydrophilic Bonding,” ECS Meeting Abstracts, 2010, 1 page, Abstract #1716, 218th ECS Meeting. |
International Search Report and Written Opinion of PCT/US2012/053999, mailed Feb. 27, 2013, 12 pages. |
International Search Report and Written Opinion of PCT/US2012/065086, mailed Mar. 25, 2013, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/059400, mailed Mar. 26, 2013, 11 pages. |
Wang Li et al., “Properties of Hydrogenated Amorphous Silicon Caarbide Films Irradiated by Excimer Pulse Laser,” 1998, Abstract Only. |
Ying-Yu et al., “Preparation of SiC Thin Film Using Organosilicon by Remote Plasma CVD Method,” 1999, Abstract Only. |
Number | Date | Country | |
---|---|---|---|
20120225565 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61449148 | Mar 2011 | US |