Embodiments described herein relate to apparatuses, systems, and methods the treatment of wounds, for example using dressings in combination with negative pressure wound therapy.
Prior art dressings for use in negative pressure have included a negative pressure source located in a remote location form the wound dressing. Having a remote negative pressure source such as a pump can be inconvenient to a user, who must find a place to locate the negative pressure source and must deal with the inconvenience of having tubing or other components connecting the negative pressure source with the wound dressing. Attempts have been made to incorporate a negative pressure source into the wound dressing. In these wound dressings, moisture from the wound can make it difficult to incorporate electronic components into the dressing.
Prior art dressings for use in negative pressure can also be difficult to apply, particularly around curved or non-flat body surfaces. When additional components are added to the wound dressing, this can make the wound dressing even more difficult to apply and uncomfortable to the user. Dressings which absorb and retain wound exudate can also be aesthetically unpleasing if the wound exudate is visible, making the wound dressing difficult to address in social situations.
Embodiments of the present disclosure relate to apparatuses and methods for wound treatment. Some of the wound treatment apparatuses described herein comprise a negative pressure source or a pump system for providing negative pressure to a wound. Wound treatment apparatuses may also comprise wound dressings that may be used in combination with the negative pressure sources and pump assemblies described herein. In some embodiments, a negative pressure source is incorporated into a wound dressing apparatus so that the wound dressing and the negative pressure source are part of an integral or integrated wound dressing structure that is applied simultaneously to a patient's wound.
In some aspects, a wound dressing apparatus comprises a wound contact layer configured to be positioned in contact with a wound, a first cover layer positioned over the wound contact layer, one or more spacer layers positioned between the wound contact layer and the first cover layer, wherein a spacer layer is positioned on an upper surface of the wound contact layer, an absorbent layer positioned over the spacer layer positioned on the upper surface of the wound contact layer, a negative pressure source configured to be in fluid communication with the wound, the negative pressure source configured to draw wound fluid through the one or more spacer layers into the absorbent layer, wherein the negative pressure source is located in one or both of a recess of a spacer layer or the absorbent layer, and a pocket or chamber defined at least in part by the first cover layer, and a first filter provided in a flow path between the negative pressure source and the wound contact layer.
The apparatus of the preceding paragraph may also include any combination of the following features described in this paragraph, among others described herein. The negative pressure source may be located in a recess in the absorbent layer. The absorbent layer may be positioned between the wound contact layer and the first cover layer. The first filter may be located in the first cover layer. The negative pressure source can be located in a chamber defined between the first cover layer and a second cover layer placed over the first cover layer. The apparatus can include a spacer layer or absorbent layer between the first cover layer and the second cover layer. A second filter can be located in the second cover layer. The apparatus can include a third cover layer positioned over the second cover layer, the third cover layer defining a chamber between the second cover layer and the third cover layer. The apparatus can include a further absorbent and/or spacer layer within the chamber defined between the second cover layer and the third cover layer. The apparatus can include a third filter in the third cover layer. The first cover layer can be positioned on an upper surface of the absorbent layer. The first cover layer can be sealed to the wound contact layer. The apparatus can include one or more ultrasonic oscillators. The one or more spacer layers can comprise a recess or pouch for receiving the absorbent layer and/or the negative pressure source. The negative pressure source can be positioned beneath the absorbent layer. The apparatus can include a pressure fuse configured to discontinue operation of the negative pressure source if the pressure exceeds a threshold pressure. The apparatus can include channels around a perimeter of the absorbent layer and across a middle of the absorbent layer to expose portions an underlying spacer layer. The apparatus can include a tube filled with magnetic fluid for creating negative pressure in the apparatus. The electronic components associated with the negative pressure source can be positioned in separate recesses within the absorbent layer and/or spacer layers.
Any of the features, components, or details of any of the arrangements or embodiments disclosed in this application, including without limitation any of the pump embodiments and any of the negative pressure wound therapy embodiments disclosed below, are interchangeably combinable with any other features, components, or details of any of the arrangements or embodiments disclosed herein to form new arrangements and embodiments.
Embodiments of the present disclosure will now be described hereinafter, by way of example only, with reference to the accompanying drawings in which:
Embodiments disclosed herein relate to apparatuses and methods of treating a wound with reduced pressure, including a source of negative pressure and wound dressing components and apparatuses. The apparatuses and components comprising the wound overlay and packing materials, if any, are sometimes collectively referred to herein as dressings.
It will be appreciated that throughout this specification reference is made to a wound. It is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sterniotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.
It will be understood that embodiments of the present disclosure are generally applicable to use in topical negative pressure (“TNP”) therapy systems. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability.
As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels relative to normal ambient atmospheric pressure, which can correspond to 760 mmHg (or 1 atm, 29.93 in Hg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760-X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg). In some embodiments, local ambient atmospheric pressure is used as a reference point, and such local atmospheric pressure may not necessarily be, for example, 760 mmHg.
The negative pressure range for some embodiments of the present disclosure can be approximately −80 mmHg, or between about −20 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure, which can be 760 mmHg. Thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively, a pressure range of over approximately −100 mmHg, or even −150 mmHg, can be supplied by the negative pressure apparatus.
In some embodiments of wound closure devices described herein, increased wound contraction can lead to increased tissue expansion in the surrounding wound tissue. This effect may be increased by varying the force applied to the tissue, for example by varying the negative pressure applied to the wound over time, possibly in conjunction with increased tensile forces applied to the wound via embodiments of the wound closure devices. In some embodiments, negative pressure may be varied over time for example using a sinusoidal wave, square wave, and/or in synchronization with one or more patient physiological indices (e.g., heartbeat). Examples of such applications where additional disclosure relating to the preceding may be found include U.S. Pat. No. 8,235,955, titled “Wound treatment apparatus and method,” issued on Aug. 7, 2012; and U.S. Pat. No. 7,753,894, titled “Wound cleansing apparatus with stress,” issued Jul. 13, 2010. The disclosures of both of these patents are hereby incorporated by reference in their entirety.
International Application PCT/GB2012/000587, titled “WOUND DRESSING AND METHOD OF TREATMENT” and filed on Jul. 12, 2012, and published as WO 2013/007973 A2 on Jan. 17, 2013, is an application, hereby incorporated and considered to be part of this specification, that is directed to embodiments, methods of manufacture, and wound dressing components and wound treatment apparatuses that may be used in combination or in addition to the embodiments described herein. Additionally, embodiments of the wound dressings, wound treatment apparatuses and methods described herein may also be used in combination or in addition to those described in U.S. Provisional Application No. 61/650,904, filed May 23, 2012, titled “APPARATUSES AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY,” International Application No. PCT/IB2013/001469, filed May 22, 2013, titled “APPARATUSES AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY,” and published as WO 2013/175306 on Nov. 28, 2013, U.S. Provisional Application No. 61/678,569, filed Aug. 1, 2012, titled “WOUND DRESSING AND METHOD OF TREATMENT,” U.S. Provisional Application No. 61/753,374, filed Jan. 16, 2013, titled “WOUND DRESSING AND METHOD OF TREATMENT,” U.S. Provisional Application Ser. No. 61/753,878, filed Jan. 17, 2013, titled “WOUND DRESSING AND METHOD OF TREATMENT,” U.S. Provisional Application No. 61/785,054, filed Mar. 14, 2013, titled “WOUND DRESSING AND METHOD OF TREATMENT,” U.S. Provisional Application No. 61/823,298, filed May 14, 2013, titled “WOUND DRESSING AND METHOD OF TREATMENT,” International Application No. PCT/IB2013/002102, filed Jul. 31, 2013, titled “WOUND DRESSING AND METHOD OF TREATMENT,” and published as WO 2014/020443 on Feb. 6, 2014, and International Application No. PCT/IB2013/002060, filed Jul. 31, 2013, titled “WOUND DRESSING,” and published as WO 2014/020440 on Feb. 6, 2014, the disclosures of which are hereby incorporated by reference in their entireties. Embodiments of the wound dressings, wound treatment apparatuses and methods described herein may also be used in combination or in addition to those described in U.S. patent application Ser. No. 13/092,042, filed Apr. 21, 2011, published as US2011/0282309, titled “WOUND DRESSING AND METHOD OF USE,” and which is hereby incorporated by reference in its entirety, including further details relating to embodiments of wound dressings, the wound dressing components and principles, and the materials used for the wound dressings.
In some embodiments, a source of negative pressure (such as a pump) and some or all other components of the TNP system, such as power source(s), sensor(s), connector(s), user interface component(s) (such as button(s), switch(es), speaker(s), screen(s), etc.) and the like, can be integral with the wound dressing. As is illustrated in
In some embodiments, the dressing can include the power source and other components, such as electronics, on and/or incorporated into the dressing and can utilize a wound contact layer and a first spacer layer within the dressing. The wound contact layer can be configured to be in contact with the wound. The wound contact layer can include an adhesive on the patient facing side for securing the dressing to the surrounding skin or on the top side for securing the wound contact layer to a cover layer or other layer of the dressing. In operation, the wound contact layer can be configured to provide unidirectional flow so as to facilitate removal of exudate from the wound while blocking or substantially preventing exudate from returning to the wound. The first spacer layer assists in distributing negative pressure over the wound site and facilitating transport of wound exudate and fluids into the wound dressing. Further, an absorbent layer (such as layer 240) for absorbing and retaining exudate aspirated from the wound can be utilized. In some embodiments, the absorbent layer includes a shaped form of a superabsorber layer with recesses or compartments for the pump, electronics, and accompanying components. These layers can be covered with one layer of a film or cover layer (or a first cover layer). The first cover layer can include a filter set (such as a filter provided at an opening in the first cover layer) that can be positioned within or over one of the recesses. The filter can be configured to align with one of the at least one recesses of the absorbent layer, and the filter can include hydrophobic material to protect the pump and/or other components from liquid exudates. The filter can block fluids while permitting gases to pass through. The pump, electronics, switch and battery can be positioned on top of the first cover layer. Another section of spacer, a second spacer, can be positioned above and/or surrounding the pump. In some embodiments, the second spacer can be smaller than the first spacer used above the wound contact layer. A section of top film or cover layer (or a second cover layer) is positioned over the top of the second spacer with a second filter associated with or positioned within the second cover layer (such as at an opening in the second cover layer). In some embodiments, the first and second cover layer can be made of the same material. In some embodiments, the first and second cover layers can be made of different material.
A second filter can be alternative or additionally used. For example, the second filter 220 can be constructed from antibacterial and/or antimicrobial materials so that the pump can exhaust gases into the atmosphere. Filter 220 can also help to reduce noise produced by the pump.
In certain embodiments, the first and second cover layers include a moisture vapor permeable material that protects the pump and electronic components from liquid exudate removed from the wound and other liquids, while allowing gases through. The pump and electronics can be pouched between the fluid impermeable membranes or cover layers with the only input and output being a filter on each side of the pump. The membranes and filter can protect the electronics from liquid from both sides. In some embodiments, the dressing and integrated electronics pouch can be used in the shower and/or can be in contact with liquid without impeding the operation of the pump and dressing.
In some embodiments, in addition to or instead of one or more batteries, one or more alternative energy generators (such as RF energy harvester, thermal energy harvester, and the like) can be included into the pump to provide an alternative to traditional power sources. Examples of energy harvesters are described in U.S. Provisional Application No. 62/097,273, filed on Dec. 29, 2014, and titled “Negative Pressure Wound Therapy Apparatus and Methods for Operating the Apparatus,” U.S. Provisional Application No. 62/172,704, filed on Jun. 8, 2015, and titled “Negative Pressure Wound Therapy Apparatus and Methods for Operating the Apparatus,” and International Application PCT/EP2015/080740, titled “Negative Pressure Wound Therapy Apparatus and Method of Operating the Apparatus” and filed on Dec. 21, 2015 the disclosures of which are incorporated in their entirety.
A pump 316, electronics package 315, and power source 314 (such as a battery) can be positioned above the cover layer 313 as shown in
In some embodiments, the operation of the pump can vary depending on the environmental humidity level. It can be advantageous to provide mechanisms to drive moisture out of the dressing or otherwise limit or control the humidity of the dressing. In some embodiments, a chamber generated by the layers above the pump can be used to act as a pressurized sink for gases (such as gases exhausted by the pump), thereby increasing the relative humidity (or RH) and delta RH across the outer membrane, which in turn can increase the rate of evaporation.
In some embodiments, the pump can include a piezoelectric transducer that causes negative pressure to be supplied to the wound. In certain embodiments, a secondary device (such as a secondary piezoelectric device) can be used to generate atomisation of the fluid in the dressing, either accelerating evaporation of the water portion of the wound fluid or firing it through the moisture vapor permeable (MVP) top film where it can then evaporate. This can reduce or eliminate the effect of environmental humidity on the capability of the dressing to evaporate water.
In some embodiments, as described below, the pump, electronics and/or associated components can be contained in single or multiple sealed pockets or pouches. The pockets or pouches can include the pump, electronics, and/or power source(s) (such as batteries) with or without a spacer layer and/or absorbent layer padding. The packets may be designed to allow easy separation of the electronics from the dressing for disposal.
In some embodiments, one or more cover layers can be used to form a pouch enclosing the pump and/or electronics package 650. In some embodiments, one or more portions of spacer layer 611 can be included around the first cover layer 613, the pump and electronics package 650, and the absorbent layer 622. Therefore, one or more spacer layer can run along the wound contact layer 610, can be positioned along the edge or height of the dressing, and/or run along the top of the dressing below the second cover layer 619. The one or more portions of the spacer layer 611 can form a pouch around the first cover layer 613, absorbent layer 622, and electronics package 650. A second filter 621 can be incorporated on a second cover layer 619. The second cover layer 619 can be positioned above the spacer layer 611, the absorbent layer 622, and the pump and/or electronics package 650 and can seal at the perimeter to the perimeter of the wound contact layer 610. The second filter 621 can be located at a position adjacent to an outlet or exhaust of the pump system. Additionally or alternatively, the exhaust of the pump can be gaseously connected to the filter 621 positioned proximate to the exhaust. The gaseous connection can include one or more conduits and/or chambers.
In some embodiments, the pump and electronics package 650 can be enclosed in a chamber defined by one or more cover layers. The first cover layer 613 could be positioned above the spacer layer 611 and extend up the edge or height of the dressing as shown in
In some embodiments, the dressing can include one or more ports at a perimeter or along a portion or the entire circumference of the dressing to provide negative pressure from the pump to the highest location (with respect to gravity) of the dressing. The circumference port or ports can be used to bring fluid to the uppermost spacer layer or highest portion of the spacer layer first before being drawn down into the superabsorbent layer and pump. In some embodiments, a full circumference port or multiple circumferential ports can be used. The circumference ports can be used at the perimeter of the wound dressing. This can make the fluid behaviour independent of the direction the dressing is applied in. Without this feature, the capacity can be lower if the port is positioned at the bottom portion of the applied dressing. For example, whether an integrated pump or a remote pump is used, if a dressing is positioned on a patient such that the negative pressure is directed into the dressing at a lower portion (with respect to gravity) of the dressing (such as because the pump is located at the bottom portion of the dressing when applied), the capacity of the dressing may be lower because fluid may tend to pool toward the bottom of the dressing. In some embodiments, multiple ports positioned circumferentially around the dressing, or a single circumferential port, in fluid communication with the negative pressure source, can be used to draw fluid through the spacer layer to higher locations on the dressing. Then, fluid can be drawn downward into the absorbent layer.
In some embodiments, the whole pump pouch as described above can be generated as a specific layer that can be brought into the factory as a reel and/or folded raw material, allowing the manufacture of a full system using the machinery used to manufacture the layers of a wound dressing. The pump and other components can be placed into their respective compartments in the dressing.
In some embodiments, one or more of the following pump additions can be added to the wound dressing with an integrated pump. The pressure sensor can be added onto a substrate of the pump (for example, ceramic substrate). A pressure fuse can be utilized on the pump substrate to discontinue operation of the pump if the pressure generated exceeds an acceptable threshold. Additionally, the pump can be designed for specific pressures. The pump can be designed to disable provision of negative pressure if fluid enters the pump itself.
Further elements can be incorporated into the device to increase the usability of this device. For example, one or more of speaker(s) and/or vibration indicator(s) can be included. The pump can be operated via a controller. One or more user interface elements for operating the pump can be included.
For example, when the magnetic fluid is actuated to move to the left, it could push a piston to force an exhaust valve on the left chamber to open, and at the same time, the leftward movement of the fluid could pull on a piston adjacent the right pump chamber to open an intake valve to allow air to enter the right chamber. Once the direction of the magnetic field was changed, the fluid could move rightward so that the piston on the right could shut the intake valve and open the exhaust valve on the right chamber to exhaust the air, while at the same time the rightward movement of the magnetic liquid would pull on the piston adjacent the left pump chamber to open the intake valve of that chamber to allow air in. In some embodiments, a membrane can be used as an alternative to the piston described previously. The membrane can be flexed in one direction to cause the intake valve to open and flexed in an opposite direction to cause the exhaust valve to open, where the intake and exhaust valves are not open at the same time. Therefore, the tube of magnetic fluid can be a sealed tube.
As shown in
All of the features disclosed in this specification (including any accompanying exhibits, claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The disclosure is not restricted to the details of any foregoing embodiments. The disclosure extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Certain embodiments of the disclosure are encompassed in the claims presented at the end of this specification, or in other claims presented at a later date. Additional embodiments are encompassed in the following set of numbered embodiments:
This application is a continuation of U.S. application Ser. No. 15/569,596, filed Oct. 26, 2017, which is a U.S. national stage application of International Patent Application No. PCT/EP2016/059329, filed on Apr. 26, 2016, which claims the benefit of U.S. Provisional Application No. 62/153,483, filed Apr. 27, 2015, and U.S. Provisional Application No. 62/154,078, filed Apr. 28, 2015, the entireties of both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3874387 | Barbieri | Apr 1975 | A |
4224941 | Stivala | Sep 1980 | A |
4398910 | Blake et al. | Aug 1983 | A |
4534356 | Papadakis | Aug 1985 | A |
4569674 | Phillips et al. | Feb 1986 | A |
4624656 | Clark et al. | Nov 1986 | A |
4681562 | Beck et al. | Jul 1987 | A |
4767943 | Adler et al. | Aug 1988 | A |
4979944 | Luzsicza | Dec 1990 | A |
5055195 | Trasch et al. | Oct 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5152757 | Eriksson | Oct 1992 | A |
5181905 | Flam | Jan 1993 | A |
5266928 | Johnson | Nov 1993 | A |
D357743 | Bilitz et al. | Apr 1995 | S |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5643189 | Masini | Jul 1997 | A |
5779657 | Daneshvar | Jul 1998 | A |
5833646 | Masini | Nov 1998 | A |
5902256 | Benaron | May 1999 | A |
5964723 | Augustine | Oct 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6142982 | Hunt et al. | Nov 2000 | A |
6168800 | Dobos et al. | Jan 2001 | B1 |
6183438 | Berguer | Feb 2001 | B1 |
6225523 | Masini | May 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6261283 | Morgan et al. | Jul 2001 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6471982 | Lydon et al. | Oct 2002 | B1 |
6599262 | Masini | Jul 2003 | B1 |
6607495 | Skalak et al. | Aug 2003 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6800074 | Henley et al. | Oct 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7067709 | Murata et al. | Jun 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7087806 | Scheinberg et al. | Aug 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7216651 | Argenta et al. | May 2007 | B2 |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7553306 | Hunt et al. | Jun 2009 | B1 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7611500 | Lina et al. | Nov 2009 | B1 |
7615036 | Joshi et al. | Nov 2009 | B2 |
D605775 | Koch et al. | Dec 2009 | S |
D608007 | Arbesman et al. | Jan 2010 | S |
7645253 | Gura et al. | Jan 2010 | B2 |
7687678 | Jacobs | Mar 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7779625 | Joshi | Aug 2010 | B2 |
D625422 | Arbesman et al. | Oct 2010 | S |
7837673 | Vogel | Nov 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7896864 | Lockwood et al. | Mar 2011 | B2 |
7922676 | Daskal et al. | Apr 2011 | B2 |
7922703 | Riesinger | Apr 2011 | B2 |
7942866 | Radl et al. | May 2011 | B2 |
7959624 | Riesinger | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
8007257 | Heaton et al. | Aug 2011 | B2 |
8007481 | Schuessler et al. | Aug 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8092441 | Sugito | Jan 2012 | B2 |
8118794 | Weston | Feb 2012 | B2 |
8158844 | McNeil | Apr 2012 | B2 |
8167869 | Wudyka | May 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8212100 | Moore | Jul 2012 | B2 |
8215929 | Shen et al. | Jul 2012 | B2 |
8323264 | Weston et al. | Dec 2012 | B2 |
8371829 | Jaeb et al. | Feb 2013 | B2 |
8372049 | Jaeb et al. | Feb 2013 | B2 |
8372050 | Jaeb et al. | Feb 2013 | B2 |
8404921 | Lee et al. | Mar 2013 | B2 |
8409160 | Locke et al. | Apr 2013 | B2 |
8414519 | Hudspeth et al. | Apr 2013 | B2 |
8419696 | Wilkes | Apr 2013 | B2 |
8425478 | Olson | Apr 2013 | B2 |
8439894 | Miller | May 2013 | B1 |
8444612 | Patel et al. | May 2013 | B2 |
8449508 | Coulthard et al. | May 2013 | B2 |
8500776 | Ebner | Aug 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8545464 | Weston | Oct 2013 | B2 |
8545466 | Andresen et al. | Oct 2013 | B2 |
8569566 | Blott et al. | Oct 2013 | B2 |
8603074 | Kagan | Dec 2013 | B2 |
8604265 | Locke et al. | Dec 2013 | B2 |
8628505 | Weston | Jan 2014 | B2 |
8641691 | Fink et al. | Feb 2014 | B2 |
8641693 | Locke et al. | Feb 2014 | B2 |
8702665 | Locke et al. | Apr 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8795257 | Coulthard | Aug 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8814842 | Coulthard et al. | Aug 2014 | B2 |
8821458 | Locke et al. | Sep 2014 | B2 |
8829263 | Haggstrom et al. | Sep 2014 | B2 |
8870837 | Locke et al. | Oct 2014 | B2 |
8915895 | Jaeb et al. | Dec 2014 | B2 |
8961496 | Locke et al. | Feb 2015 | B2 |
8974429 | Gordon et al. | Mar 2015 | B2 |
9050209 | Coulthard et al. | Jun 2015 | B2 |
9061095 | Adie et al. | Jun 2015 | B2 |
9084845 | Adie et al. | Jul 2015 | B2 |
9089630 | Perkins et al. | Jul 2015 | B2 |
9168330 | Joshi et al. | Oct 2015 | B2 |
9198802 | Robinson et al. | Dec 2015 | B2 |
9220822 | Hartwell | Dec 2015 | B2 |
9259558 | Tsai | Feb 2016 | B2 |
9265665 | Robinson et al. | Feb 2016 | B2 |
9265867 | Coulthard et al. | Feb 2016 | B2 |
9283118 | Locke et al. | Mar 2016 | B2 |
9414968 | Heagle | Aug 2016 | B2 |
9421133 | Hu et al. | Aug 2016 | B2 |
9427505 | Askem et al. | Aug 2016 | B2 |
9452088 | Shulman et al. | Sep 2016 | B2 |
9560975 | Mei et al. | Feb 2017 | B2 |
9629986 | Patel et al. | Apr 2017 | B2 |
D787690 | Mackay et al. | May 2017 | S |
9669138 | Joshi et al. | Jun 2017 | B2 |
9737649 | Begin et al. | Aug 2017 | B2 |
9814811 | Aalders et al. | Nov 2017 | B2 |
9925092 | Luckemeyer et al. | Mar 2018 | B2 |
RE46778 | Peron | Apr 2018 | E |
9956120 | Locke | May 2018 | B2 |
10004914 | Nettesheim et al. | Jun 2018 | B2 |
10010656 | Jaeb et al. | Jul 2018 | B2 |
10016544 | Coulthard et al. | Jul 2018 | B2 |
11607343 | Pratt et al. | Mar 2023 | B2 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040076662 | Riesinger | Apr 2004 | A1 |
20040087884 | Haddock et al. | May 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20050012616 | Forster et al. | Jan 2005 | A1 |
20050045461 | Sweetland et al. | Mar 2005 | A1 |
20050065471 | Kuntz | Mar 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060086598 | Sneek et al. | Apr 2006 | A1 |
20060107642 | Smith et al. | May 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070066946 | Haggstrom et al. | Mar 2007 | A1 |
20070078366 | Haggstrom | Apr 2007 | A1 |
20070128055 | Lee | Jun 2007 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070255187 | Branch | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080021356 | Castello Escude et al. | Jan 2008 | A1 |
20080051716 | Stutz | Feb 2008 | A1 |
20090012484 | Nielsen et al. | Jan 2009 | A1 |
20090048556 | Durand | Feb 2009 | A1 |
20100022990 | Karpowicz et al. | Jan 2010 | A1 |
20100100160 | Edman et al. | Apr 2010 | A1 |
20100137775 | Hu et al. | Jun 2010 | A1 |
20100160881 | Lin et al. | Jun 2010 | A1 |
20100280469 | Hall et al. | Nov 2010 | A1 |
20100292632 | Mulvihill et al. | Nov 2010 | A1 |
20110092927 | Wilkes et al. | Apr 2011 | A1 |
20110112492 | Bharti et al. | May 2011 | A1 |
20110178451 | Robinson et al. | Jul 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110292623 | Stanley | Dec 2011 | A1 |
20110305736 | Wieland et al. | Dec 2011 | A1 |
20120059294 | Schubert et al. | Mar 2012 | A1 |
20120109034 | Locke et al. | May 2012 | A1 |
20120109083 | Coulthard et al. | May 2012 | A1 |
20130090615 | Jaeb et al. | Apr 2013 | A1 |
20130102979 | Coulthard et al. | Apr 2013 | A1 |
20130165821 | Freedman | Jun 2013 | A1 |
20130215638 | Dabov et al. | Aug 2013 | A1 |
20140005618 | Locke et al. | Jan 2014 | A1 |
20140100536 | Angel | Apr 2014 | A1 |
20140343518 | Riesinger | Nov 2014 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150065965 | Haggstrom et al. | Mar 2015 | A1 |
20150073358 | Jaeb et al. | Mar 2015 | A1 |
20150174304 | Askem | Jun 2015 | A1 |
20150202354 | Wall | Jul 2015 | A1 |
20150224238 | Hartwell | Aug 2015 | A1 |
20150250931 | Bharti et al. | Sep 2015 | A1 |
20160015873 | Robinson et al. | Jan 2016 | A1 |
20160081859 | Hartwell | Mar 2016 | A1 |
20160166438 | Rovaniemi | Jun 2016 | A1 |
20160199546 | Chao | Jul 2016 | A1 |
20160242964 | Rapp et al. | Aug 2016 | A1 |
20160270967 | Hartwell | Sep 2016 | A1 |
20160271305 | Kurihara et al. | Sep 2016 | A1 |
20160361473 | Robinson et al. | Dec 2016 | A1 |
20170095598 | Joshi et al. | Apr 2017 | A1 |
20170112974 | Fujisaki | Apr 2017 | A1 |
20170112975 | Fujisaki | Apr 2017 | A1 |
20170127525 | Schonholz | May 2017 | A1 |
20170232189 | Qin et al. | Aug 2017 | A1 |
20170296714 | Locke et al. | Oct 2017 | A1 |
20170319761 | Locke et al. | Nov 2017 | A1 |
20170368239 | Askem et al. | Dec 2017 | A1 |
20180008760 | Zilbershlag et al. | Jan 2018 | A1 |
20180021178 | Locke et al. | Jan 2018 | A1 |
20180028728 | Aarestad et al. | Feb 2018 | A1 |
20180104393 | Wu et al. | Apr 2018 | A1 |
20180200414 | Askem et al. | Jul 2018 | A1 |
20180272052 | Locke et al. | Sep 2018 | A1 |
20180318137 | Donda et al. | Nov 2018 | A1 |
20180318165 | Donda et al. | Nov 2018 | A1 |
20180353771 | Kim et al. | Dec 2018 | A1 |
20190021911 | Askem et al. | Jan 2019 | A1 |
20190159938 | Askem et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
201664463 | Dec 2010 | CN |
19844355 | Apr 2000 | DE |
0512543 | Nov 1992 | EP |
1411874 | Apr 2004 | EP |
1455701 | Mar 2006 | EP |
1807032 | Jul 2007 | EP |
1476217 | Mar 2008 | EP |
1976477 | Oct 2008 | EP |
1507498 | Jul 2009 | EP |
1791579 | Jul 2009 | EP |
2109472 | Oct 2009 | EP |
1947987 | May 2010 | EP |
1358456 | Jul 2010 | EP |
2214728 | Aug 2010 | EP |
2279016 | Feb 2011 | EP |
2326295 | Jun 2011 | EP |
2340064 | Jul 2011 | EP |
2346468 | Jul 2011 | EP |
2349155 | Aug 2011 | EP |
2205190 | Sep 2011 | EP |
2370116 | Oct 2011 | EP |
2531761 | Dec 2012 | EP |
2231088 | Jan 2013 | EP |
2015655 | Mar 2013 | EP |
2285323 | Mar 2013 | EP |
2563421 | Mar 2013 | EP |
2049055 | Apr 2013 | EP |
2340066 | Apr 2013 | EP |
2440260 | May 2013 | EP |
2340062 | Jun 2013 | EP |
2603699 | Jun 2013 | EP |
1893145 | Jul 2013 | EP |
2370142 | Jul 2013 | EP |
2279017 | Aug 2013 | EP |
2370117 | Aug 2013 | EP |
2258443 | Sep 2013 | EP |
2263742 | Sep 2013 | EP |
2659915 | Nov 2013 | EP |
1848390 | Dec 2013 | EP |
1875081 | Dec 2013 | EP |
2271381 | Dec 2013 | EP |
2160166 | Jan 2014 | EP |
1565219 | Feb 2014 | EP |
2305325 | Apr 2014 | EP |
2323712 | Apr 2014 | EP |
2345437 | Apr 2014 | EP |
2451498 | Apr 2014 | EP |
2051675 | Jun 2014 | EP |
1485613 | Jul 2014 | EP |
1545644 | Aug 2014 | EP |
2349154 | Aug 2014 | EP |
2146759 | Sep 2014 | EP |
2416816 | Oct 2014 | EP |
2468323 | Oct 2014 | EP |
2658493 | Oct 2014 | EP |
1850818 | Dec 2014 | EP |
2268348 | Dec 2014 | EP |
2561128 | Jan 2015 | EP |
2829287 | Jan 2015 | EP |
2683285 | Feb 2015 | EP |
2470136 | Mar 2015 | EP |
2503974 | May 2015 | EP |
2249894 | Aug 2015 | EP |
2802366 | Aug 2015 | EP |
2438302 | Sep 2015 | EP |
2346545 | Oct 2015 | EP |
2438301 | Oct 2015 | EP |
2802304 | Dec 2015 | EP |
2852421 | Jan 2016 | EP |
2410962 | Mar 2016 | EP |
2640436 | Mar 2016 | EP |
2855937 | May 2016 | EP |
2433594 | Jun 2016 | EP |
2919730 | Jun 2016 | EP |
2861869 | Jul 2016 | EP |
2945584 | Jul 2016 | EP |
2293749 | Aug 2016 | EP |
3072542 | Sep 2016 | EP |
2305327 | Oct 2016 | EP |
2467086 | Oct 2016 | EP |
2470135 | Oct 2016 | EP |
2767305 | Oct 2016 | EP |
2282788 | Dec 2016 | EP |
2462956 | Mar 2017 | EP |
3139878 | Mar 2017 | EP |
2249761 | Apr 2017 | EP |
1587502 | May 2017 | EP |
1587554 | May 2017 | EP |
2731563 | May 2017 | EP |
2968871 | Jul 2017 | EP |
2632613 | Aug 2017 | EP |
2781208 | Aug 2017 | EP |
2888478 | Aug 2017 | EP |
2937107 | Aug 2017 | EP |
2967627 | Aug 2017 | EP |
3062751 | Aug 2017 | EP |
3139879 | Aug 2017 | EP |
2359784 | Sep 2017 | EP |
3151795 | Sep 2017 | EP |
2367518 | Oct 2017 | EP |
2675493 | Oct 2017 | EP |
3068455 | Oct 2017 | EP |
2558046 | Nov 2017 | EP |
2736548 | Nov 2017 | EP |
3052158 | Nov 2017 | EP |
2825220 | Dec 2017 | EP |
2593058 | Mar 2018 | EP |
3139880 | Mar 2018 | EP |
1496822 | Aug 2018 | EP |
2879633 | Aug 2018 | EP |
2227203 | Sep 2018 | EP |
2696826 | Sep 2018 | EP |
3106186 | Sep 2018 | EP |
3162330 | Sep 2018 | EP |
3169382 | Sep 2018 | EP |
3203953 | Sep 2018 | EP |
2941280 | Oct 2018 | EP |
3244852 | Oct 2018 | EP |
2687241 | Nov 2018 | EP |
2687243 | Nov 2018 | EP |
3062753 | Nov 2018 | EP |
3120879 | Dec 2018 | EP |
3191149 | Jan 2019 | EP |
2370130 | Mar 2019 | EP |
3053609 | Mar 2019 | EP |
3180048 | Mar 2019 | EP |
3143974 | Apr 2019 | EP |
2285432 | Jun 2019 | EP |
3050545 | Jul 2019 | EP |
3319656 | Aug 2019 | EP |
2355762 | Sep 2019 | EP |
2822613 | Sep 2019 | EP |
2863855 | Sep 2019 | EP |
2482912 | Oct 2019 | EP |
3038667 | Oct 2019 | EP |
3129095 | Oct 2019 | EP |
3191150 | Oct 2019 | EP |
3280466 | Oct 2019 | EP |
2244756 | Dec 2019 | EP |
2968702 | Dec 2019 | EP |
2939320 | Jun 2010 | FR |
2511523 | Sep 2014 | GB |
H04354722 | Dec 1992 | JP |
2014210023 | Nov 2014 | JP |
131622 | Aug 2013 | RU |
WO-9605873 | Feb 1996 | WO |
WO-2006114637 | Nov 2006 | WO |
WO-2007030601 | Mar 2007 | WO |
WO-2009098696 | Aug 2009 | WO |
WO-2009111657 | Sep 2009 | WO |
WO-2009120951 | Oct 2009 | WO |
WO-2011130570 | Oct 2011 | WO |
WO-2011135285 | Nov 2011 | WO |
WO-2011144888 | Nov 2011 | WO |
WO-2013136181 | Sep 2013 | WO |
WO-2013175306 | Nov 2013 | WO |
WO-2014099709 | Jun 2014 | WO |
WO-2016126560 | Aug 2016 | WO |
WO-2016174048 | Nov 2016 | WO |
WO-2017079174 | May 2017 | WO |
Entry |
---|
Brief Communication—Letter from the Opponent Aug. 26, 2022, re the Opposition of European Patent No. 3288508, mailed on Sep. 1, 2022, 2 pages. |
Brief Communication—Letter from the Proprietor Aug. 26, 2022, re the Opposition of European Patent No. 3288508, mailed on Sep. 1, 2022, 50 pages. |
Information about the Result of Oral Proceedings for the Opposition of European Patent No. 3288508, mailed on Oct. 26, 2022, 12 pages. |
Letter relating to the Appeal Procedure for the Opposition of the European Patent No. 3288508, mailed on Apr. 28, 2023, 48 pages. |
Statement of Grounds of Appeal for the European Patent No. 3288508, mailed on Apr. 26, 2023, 9 pages. |
Summons to Attend Oral Proceedings pursuant to rule 115(1) EPC for Patent No. 3288508, mailed on Dec. 13, 2021, 10 pages. |
Transmittal of Decision Summons for the Opposition of European Patent No. EP3288508, mailed on Dec. 23, 2022, 67 pages. |
Brief Communication—Letter from the Opponent, re the Opposition of European Patent No. 3288508, mailed on Mar. 18, 2021, 3 pages. |
Brief Communication—Letter from the Proprietor of the Patent for European Patent No. 3288508, mailed on Mar. 4, 2021, 26 pages. |
Communication of a Notice of Opposition, first information to patent proprietor—Statement of Facts and Arguments for the European Patent No. 3288508, mailed on Oct. 12, 2020, 26 pages. |
Communication of further notices of opposition pursuant to Rule 79(2) EPC for European Application No. 16718691.5, mailed on Oct. 20, 2020, 2 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2016/059329, mailed on Nov. 9, 2017, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2016/059329, mailed on Jul. 14, 2016, 10 pages. |
Boards of Appeal—A Letter of the Patent Proprietor dated Oct. 13, 2023 for European Patent No. 3288508, mailed on Oct. 19, 2023, 6 pages. |
Boards of Appeal—Letter of the Patent Proprietor dated Aug. 11, 2023 for European Patent No. 3288508, mailed on Aug. 18, 2023, 9 pages. |
Brief Communication—Letter from the Opponent dated Sep. 25, 2023, re the Opposition of European Patent No. 3288508, mailed on Sep. 28, 2023, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20210244570 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62154078 | Apr 2015 | US | |
62153483 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15569596 | US | |
Child | 17157200 | US |