1. Field of the Invention
The present invention relates generally to reduced pressure treatment systems and in particular to a reduced pressure treatment system having a manually-activated pump for providing treatment to low-severity wounds.
2. Description of Related Art
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but one particular application of reduced pressure has involved treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at the wound site. Together these benefits result in increased development of granulation tissue and faster healing times.
While reduced pressure treatment is usually provided in a hospital or monitored-care setting, a great number of situations exist where it may be advantageous to provide reduced pressure therapy to ambulatory and other patients outside of these traditional settings. A conventional reduced pressure system includes an electrically-powered reduced pressure pump that requires a patient to remain relatively still during treatment. A need exists for a portable pump that is small in size and is capable of being manually-activated, and reactivated if necessary, by a patient receiving treatment.
The problems presented in providing reduced pressure treatment to ambulatory patients and low-severity wounds are solved by the systems and methods of the present invention. A manually-activated reduced pressure treatment system is provided in accordance with an embodiment of the present invention. The system includes a substantially rigid housing, and an end cap slidingly received by the housing. An inner chamber is disposed between the end cap and housing, and a volume of the inner chamber is variable in amount depending on the position of the end cap within the housing. The end cap is slidingly movable between an uncompressed position at which the volume of the inner chamber is at a maximum value and a compressed position at which the volume of the inner chamber is at a minimum value. A position indicating member is associated with the end cap and housing to indicate the position of the end cap relative to the housing at predetermined positions between the uncompressed position and the compressed position.
In accordance with another embodiment of the present invention, a manually-activated reduced pressure system is provided and includes a reduced pressure manifold configured to be placed adjacent a tissue site. A manually-compressible pump in fluid communication with the reduced pressure manifold delivers a reduced pressure to the tissue site. The manually-compressible pump includes a flexible and compressible side wall and first and second end caps connected at opposite ends of the side wall. An inner chamber is defined by the side wall and the end caps, and the inner chamber includes a volume that varies from a maximum value when the side wall is in an uncompressed position to a minimum value when the side wall is in a compressed position. A connection port is disposed in one of the first and second end caps to allow fluid communication between the inner chamber and the reduced pressure manifold. A one-way valve is disposed in one of the first end cap, the second end cap, and the side wall to allow fluid expulsion from the inner chamber. A hydrophobic filter in communication with the one-way valve prevents liquids from exiting the inner chamber through the one-way valve, and an odor filter in communication with the one-way valve eliminates odors associated with gases expelled through the one-way valve.
In still another embodiment of the present invention, a method of activating a reduced pressure treatment pump is provided. The method includes manually compressing a flexible diaphragm to reduce a volume of a chamber fluidly connected to a tissue site. The method further includes audibly, visually, or tactilely indicating the positioning of the flexible diaphragm at a position between an uncompressed position and a compressed position. An estimated reduced pressure provided by the compressed flexible diaphragm is determined based on the indicated position, and the reduced pressure is delivered to the tissue site.
In yet another embodiment of the present invention, a low-profile reduced pressure treatment system includes a reduced pressure source and a reduced pressure manifold configured to be placed adjacent a tissue site. A substantially flat reduced pressure delivery tube is fluidly connected between the reduced pressure source and the reduced pressure manifold. The tube includes a substantially rectangular cross-section and a plurality of corrugations within the tube to prevent collapse of the tube during delivery of reduced pressure.
Other objects, features, and advantages of the present invention will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring to
The bellows pump is preferably a cylindrically-shaped, manually operated pump that includes a corrugated side wall, or diaphragm 31. The corrugated side wall includes a plurality of ridges 35 and grooves 37 that facilitate compression of the bellows pump along its longitudinal axis. The bellows pump further includes a first end wall 39 and a second end 41 wall integrally connected at opposite ends of the corrugated side wall. Alternatively, the bellows pump may include first and second end caps, or valve caps 43 that are sealingly connected at opposite ends of the corrugated side wall (see
A connection port 53 is preferably disposed on one of the end walls of the bellows pump to allow fluid connection of the inner chamber with the reduced pressure delivery tube. An umbrella valve 55 and a duck bill valve 57 are operably connected to the connection port to selectively admit or expel fluids from the inner chamber. The duck bill valve provides one-way fluid communication from the reduced pressure delivery tube to the inner chamber. The umbrella valve provides one-way fluid communication from the inner chamber to the ambient atmosphere surrounding the bellows pump. A similar umbrella valve is disposed within the end wall opposite the end wall containing the connection port.
Referring more specifically to
The plurality of valves associated with the bellows pump selectively allows fluid exchange with the inner chamber. When the bellows pump is initially primed to the compressed position (caused by exerting a manual compressive force on the end walls), the gaseous fluids within the inner chamber are expelled through one or both of the umbrella valves. The gaseous fluids pass through the odor filter prior to exiting the inner chamber. With the bellows in the compressed position, the corrugated wall, which has been elastically deformed, attempts to resume its uncompressed state. As the corrugated wall moves back toward its uncompressed state, the volume of the inner chamber increases, which results in a decrease in pressure within the inner chamber (the inner chamber acts as a closed system P1*V1=P2*V2). The differential pressure between the inner chamber and the ambient atmosphere (i.e. pressure at the tissue site) results in gaseous and liquid fluids from the reduced pressure delivery tube and the wound dressing being drawn into the inner chamber. This then results in a reduced pressure at the tissue site. With a properly sealed wound dressing, this reduced pressure can be maintained at the tissue site. The fluids drawn from the tissue site enter the inner chamber through the duck bill valve. The duck bill valve prevents these fluids from exiting the inner chamber.
One goal of the bellows device is to deliver and maintain a reduced pressure at the tissue site until the inner chamber becomes completely filled with liquid wound exudate. In some instances, the bellows pump may reach the uncompressed position (following initial priming) without the inner chamber being fully filled with wound exudate and other liquids. In this case, the bellows pump may be re-primed by again exerting a compressive force on the end walls of the bellows pump. As the volume of the inner chamber again decreases, gaseous fluids within the inner chamber are expelled through the umbrella valves. The hydrophobic filters prevent liquids within the inner chamber from being expelled. Because the bellows pump includes more than one umbrella valve, the pump can be re-primed regardless of its orientation.
The bellows pump may include an absorbent foam disposed within the inner chamber to capture wound exudate and other fluids that are removed from the tissue site. Additionally, a one-way membrane may be provided within the bellows pump to prevent any fluids from backflowing out of the inner chamber.
Referring to
Referring to
It should be noted that while a bellows pump is described, any manually operated pump, including without limitation a diaphragm pump or a piston pump may be substituted for the bellows pump. In some situations, it may be desired to prime (or set) the pump using electrical power, but in most cases, the pump will be capable of manual operation by the user without electrical power.
Referring again to
The manifold is preferably a highly reticulated, open-cell foam. The manifold allows distribution of the reduced pressure provided by the bellows pump. It should be noted that any material capable of distributing reduced pressure could be used in place of the open-cell foam.
Referring to
Referring to
It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.
This application is a continuation of U.S. patent application Ser. No. 13/205,807, filed Aug. 9, 2011, which is a divisional of U.S. patent application Ser. No. 11/974,534, filed Oct. 15, 2007, now U.S. Pat. No. 8,007,257 which claims the benefit of U.S. Provisional Application No. 60/851,494, filed Oct. 13, 2006, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3602387 | Patnaude | Aug 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3779243 | Tussey | Dec 1973 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4278089 | Huck et al. | Jul 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4828546 | McNeil et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5102404 | Goldberg et al. | Apr 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5718355 | Garby et al. | Feb 1998 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060229586 | Faries | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
02-261472 | Oct 1990 | JP |
4129536 | Apr 1992 | JP |
2000-342679 | Dec 2000 | JP |
55-68370 | Aug 2014 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
88-04559 | Jun 1988 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
03-018098 | Mar 2003 | WO |
Entry |
---|
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (copy and certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., JR., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Bjorn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “ A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)} ivadinovic, V. Dukić, D. Maksimovio, D. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. E Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N. A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20140155849 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60851494 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11974534 | Oct 2007 | US |
Child | 13205807 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13205807 | Aug 2011 | US |
Child | 14172732 | US |