1. Field of the Invention
The present invention relates generally to tissue treatment devices and in particular to a reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities.
2. Description of Related Art
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but one particular application of reduced pressure has involved treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at the wound site. Together these benefits result in increased development of granulation tissue and faster healing times.
While reduced pressure can greatly benefit wound care and other instances where increased tissue growth is indicated, the amount of reduced pressure applied to a tissue site must be controlled to prevent damage to tissue and the possibility of excessive bleeding. It is a common occurrence for blockages to develop in systems that provide reduced pressure therapy. The usual method for addressing these blockages involves the application of additional negative pressure. This additional negative pressure can present a hazard to the safe use of these devices. A need therefore exists for a reduced pressure treatment system and method that is capable of balancing the application of reduced pressure to encourage tissue growth, yet prevent over application of reduced pressure that may cause damage to the tissue.
The problems presented in controlling the pressures applied by a tissue treatment system are solved by the systems and methods of the present invention. In one embodiment, a reduced pressure treatment system is provided that includes a reduced pressure source fluidly connected to a tissue site. A sensing device is provided in communication with the reduced pressure source to measure a source pressure at the reduced pressure source. A processing unit is in communication with the sensing device and is configured to determine a differential pressure between the source pressure and a desired tissue site pressure. The processing unit is further in communication with the reduced pressure source to regulate the source pressure applied by the reduced pressure source. The pressure is regulated such that the differential pressure does not exceed (a) a first maximum differential pressure if a blockage is present between the reduced pressure source and the tissue site and (b) a second maximum differential pressure if no blockage is present between the reduced pressure source and the tissue site.
In accordance with another embodiment of the present invention, a method of treating a tissue site is provided. The method includes applying a reduced pressure to a tissue site with a reduced pressure source. A source pressure is monitored at the reduced pressure source, and a differential pressure between the source pressure and the desired tissue site pressure is determined. If a blockage is present between the reduced pressure source and the tissue site, the differential pressure is limited to a first maximum differential pressure. If no blockage is present between the reduced pressure source and the tissue site, the differential pressure is limited to a second maximum differential pressure.
In still another embodiment of the present invention, a reduced pressure treatment system includes a means for applying reduced pressure to a tissue site and a means for monitoring a source pressure at the means for applying reduced pressure. The system further includes a means for determining a differential pressure between the source pressure and the desired tissue site pressure. A means is provided for limiting the differential pressure to a first maximum differential pressure if a blockage is present between the tissue site and the means for applying reduced pressure. The system further includes a means for limiting the differential pressure to a second maximum differential pressure that is higher than the first maximum differential pressure if no blockage is present between the tissue site and the means for applying reduced pressure.
Other objects, features, and advantages of the present invention will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be significantly less than the pressure normally associated with a complete vacuum. Consistent with this nomenclature, an increase in reduced pressure or vacuum pressure refers to a relative reduction of absolute pressure, while a decrease in reduced pressure or vacuum pressure refers to a relative increase of absolute pressure.
The term “tissue site” as used herein refers to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
Referring to
The distribution manifold 124 is primarily responsible for distributing reduced pressure to the tissue site 102, channeling exudates and other fluids away from the tissue site 102, inducing micro-deformation at the tissue site 102, and supporting the drape 128 to create a space in which reduced pressure is maintained. In practice, the distribution manifold 124 is typically an open-cell foam such as a reticulated polyurethane or polyvinyl alcohol foam. The open-cell foam is sized to fit the tissue site 102, placed into contact with the tissue 102, and then periodically replaced with smaller pieces of foam as tissue begins to grow and the tissue site 102 becomes smaller. Frequent replacement of the open-cell foam is necessary to minimize the in-growth of tissue into the cells of the foam. Despite the common use of open-cell foams, many alternative materials may be used as replaceable distribution manifolds, including gauze and any other materials capable of providing distribution characteristics. Similarly, non-replaceable, biocompatible materials may be used as a distribution manifold and then allowed to remain in place at the tissue site 102. In most cases, these biocompatible materials will serve as scaffolds for new tissue growth, and if bioresorbable, will be absorbed by the patient's body during or following treatment.
The reduced pressure treatment system 100 further includes a first sensing device 132 in communication with the tissue site 102 to measure a pressure at the tissue site 102. A second sensing device 136 is in communication with the reduced pressure source 104 to measure a source pressure at the reduced pressure source 104. The first and second sensing devices 132, 136 may be pressure sensors or any other type of sensors capable of determining a pressure of a fluid (i.e. a liquid or a gas). The first and second sensing devices 132, 136 may include processing units (not illustrated) to assist in collecting, interpreting, conditioning, or transmitting data. The physical connection between the sensing devices 132, 136 and the fluid components of the reduced pressure treatment system 100 may vary depending on the type of sensing device 132, 136 that is used. Similarly, the physical location at which each sensing device 132, 136 is connected to the fluid components of the reduced pressure treatment system 100 may vary as long as the desired pressure, or an approximation thereof, is being determined. The first sensing device 132 is illustrated in
With respect to the second sensing device 136, the second sensing device 136 may be connected to the conduit 108 (illustrated in
Referring still to
The processing unit 210 may further be in communication with (i) a memory 218 for storing data and software code, (ii) an input/output (I/O) unit 222 for communicating with other devices and systems, such as a valves or sensing devices, wirelessly, via a wire, or via a memory input device (not shown), (iii) a storage unit 226 that may store one or more data repositories 228a-228n (collectively 228), such as a database having one or more files, (iv) an electronic display 232 that may or may not be touch-sensitive, and (v) an alarm 236 that is capable of signaling a user of the reduced pressure therapy unit 140 using audio, visual, or other signals. The software 214 may be configured to interface with each of the other devices (e.g., electronic display 232) to allow management and observation of the reduced pressure treatment.
The processing unit 210 is in communication with the first and second sensing devices 132, 136 to control the application of reduced pressure by the reduced pressure source 104. In operation, a target pressure is prescribed (preferably by a doctor or other approved medical personnel) for delivery to the tissue site 102. The target pressure is the “desired” reduced pressure to which the tissue site 102 should be exposed. The desired tissue site pressure will vary from tissue site to tissue site, but will generally be chosen based on the type of tissue making up the tissue site, the type of injury or wound (if any), the medical condition of the patient, and the preference of the attending physician. After selecting the desired tissue site pressure, the reduced pressure source 104 is operated to achieve the desired tissue site pressure at the wound. In many cases, the reduced pressure source 104 will need to be operated at a higher reduced pressure (i.e. lower absolute pressure) than that of the desired tissue site pressure due to pressure losses between the reduced pressure source 104 and the tissue site 102. Moreover, the head pressure of exudates and other fluids within the conduits may result in a reduction of vacuum pressure at the tissue site 102. In
As an example of the potential losses caused by the weight of fluid in the conduits, a prescribed target pressure for a particular tissue site may be −125 mm Hg. If the canister 112 is positioned four feet above the tissue site, and if the conduit 116 between the canister 112 and tissue site 102 is completely full of fluid, the head pressure imposed by that fluid could be almost 100 mm Hg. This particular example may be very common if a tissue site is located on a lower extremity of a patient such as a foot and the canister 112 is mounted near or above the patient's head (e.g., on an IV pole when the patient is in a wheelchair). If the head pressure of fluid in the conduit 116 is approximately 100 mm Hg, a source pressure of approximately −225 mm Hg would need to be applied to result in a tissue site pressure of −125 mm Hg.
Another factor that can reduce the tissue site pressure (relative to the source pressure) is a conduit blockage between the tissue site 102 and the reduced pressure source 104. A pressure differential between the pressure supplied by the reduced pressure source 104 (i.e. the source pressure) and the desired tissue site pressure 102 is important to monitor because of the possibility that the pressure differential is at least partially caused by a blockage. If a blockage exists, it is obviously important to clear the blockage as soon as possible. Blockages prevent application of prescribed target pressures, which result in treatment delays and slower healing. On the other hand, attempting to clear a blockage by applying additional pressure to the conduits can be dangerous if the differential pressure across the blockage becomes too great. When a blockage clears in the presence of a high reduced pressure (relative to the tissue site), this high reduced pressure is almost instantaneously communicated to the tissue site. The rapid onset of additional reduced pressure at the tissue site may cause damage to tissues and initiate excessive bleeding.
The reduced pressure treatment system 100 described herein provides protection against harm to the tissue site 102 caused by high negative pressures while providing the ability to overcome high head pressures under normal (no blockage) conditions. The system 100 employs a “dual-zone” approach, in which pressure differentials between the source pressure and the desired tissue site pressure are monitored and then compared to one of two maximum differential pressures depending on whether a blockage is present. More specifically, if a desired tissue site pressure for the tissue site 102 has not been met, the source pressure at the reduced pressure source 104 will be increased and monitored by second sensing device 136. As the source pressure continues to be increased, the differential pressure between the source pressure and the desired tissue site pressure is determined. The differential pressure may be calculated by the processing unit 210 after receiving data from the second sensing device 136. As long as the differential pressure does not exceed the first maximum differential pressure, the reduced pressure treatment system 100 attempts to achieve the desired tissue site pressure at the tissue site 102. The first sensing device 132 continues to monitor the tissue site 102 to determine if the pressure at the tissue site 102 reaches the desired tissue site pressure.
The reduced pressure source is not allowed to continue increasing the source pressure indefinitely. Instead, the source pressure is limited based on the differential pressure between the source pressure and the desired tissue site pressure. In an initial “safe” or “green-zone” operation, the differential pressure will not be allowed to exceed a first maximum differential pressure. It has been found that a sudden clearing of a blockage can result in the source pressure being applied directly to the wound site. It is therefore necessary to limit the absolute source pressure to a safe differential above the desired tissue site pressure. Clinical practice has shown that about 50 mm Hg is a safe amount of differential pressure, and in one embodiment, the first maximum differential pressure is set to about 50 mm Hg. More specifically, for most tissue sites, an instantaneous change of about 50 mm Hg reduced pressure will not cause harm to the tissue site. Under many “blockage” situations, a 50 mm Hg or less differential pressure is sufficient to clear the blockage. However, in the event that a blockage is not cleared by this amount of differential pressure, the reduced pressure treatment system 100 will not allow a further increase in reduced pressure simply to clear the blockage. Instead, the processing unit 210 communicates an alarm condition indicating a blockage to the alarm 236 and continues to apply reduced pressure within the green-zone parameters (i.e. differential pressure not to exceed about 50 mm Hg).
If the differential pressure reaches the first maximum differential pressure (i.e. about 50 mm Hg) and the target pressure still exceeds the tissue site pressure, then a blockage test is performed. When a change in source pressure at the reduced pressure source 104 does not result in a directionally corresponding change in the tissue site pressure, a blockage is present between the tissue site 102 and the reduced pressure source 104. If a directionally corresponding change does occur as the tissue site 102 as indicated by first sensing device 132, then a blockage is not present.
If the blockage test determines that a blockage is not present, and the tissue site pressure does not yet equal the desired tissue site pressure, the source pressure may be safely increased as there is no risk of sudden onset of additional pressure to the tissue site. In this “red-zone” operation, the differential pressure will not be allowed to exceed a second maximum differential pressure. In one embodiment, the second maximum differential pressure is about 100 mm Hg. Red-zone operating parameters are provided for situations when the reduced pressure treatment system 100 has confirmed the absence of blockages between the reduced pressure source 104 and the tissue site 102. This mode of operation may be particularly useful in situations where excessive fluid head pressures at the tissue site cause the tissue site pressure to be much lower than the desired tissue site pressure despite repeated increases in the source pressure.
While it is preferred that the first maximum differential pressure be 50 mm Hg and the second maximum differential pressure be 100 mm Hg, these pressure values could vary depending on the particular tissue site being treated and individual medical considerations. Although the pressure protection system described above is a “dual-zone” system, it should be apparent that a multi-zone system having more than two pressure parameters may be employed to provide additional protections.
Referring to
It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.
This application is a divisional of U.S. patent application Ser. No. 11/903,165 filed Sep. 19, 2007 now U.S. Pat. No. 7,758,555, which claims the benefit of U.S. Provisional Application No. 60/849,138, filed Oct. 2, 2006, and U.S. Provisional Application No. 60/845,993, filed Sep. 19, 2006. All of the above-mentioned applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
1885926 | Lewis | Jun 1931 | A |
2378849 | Helleberg | Jun 1945 | A |
2381821 | Helleberg et al. | Aug 1945 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3419006 | King | Dec 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3585861 | Keng | Jun 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3744306 | Krueger | Jul 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3799702 | Weishaar | Mar 1974 | A |
3826254 | Mellor | Jul 1974 | A |
3892229 | Taylor et al. | Jul 1975 | A |
4080970 | Miller | Mar 1978 | A |
4091804 | Hasty | May 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4375217 | Arkans | Mar 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4509959 | McCombs | Apr 1985 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4534756 | Nelson | Aug 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4553431 | Nicolai | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4569674 | Phillips et al. | Feb 1986 | A |
4600015 | Evans et al. | Jul 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4650462 | DeSatnick et al. | Mar 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664652 | Weilbacher | May 1987 | A |
4664662 | Webster | May 1987 | A |
4698060 | D'Antonio et al. | Oct 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4713052 | Beck et al. | Dec 1987 | A |
4722332 | Saggers | Feb 1988 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4798583 | Beck et al. | Jan 1989 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4917112 | Kalt | Apr 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
5000741 | Kalt | Mar 1991 | A |
5001924 | Walter et al. | Mar 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5106629 | Cartmell et al. | Apr 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5160315 | Heinecke et al. | Nov 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5195995 | Walker | Mar 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5380294 | Persson | Jan 1995 | A |
5423737 | Cartmell et al. | Jun 1995 | A |
5429593 | Matory | Jul 1995 | A |
5435009 | Schild et al. | Jul 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5489262 | Cartmell et al. | Feb 1996 | A |
5497788 | Inman et al. | Mar 1996 | A |
5520629 | Heinecke et al. | May 1996 | A |
5526683 | Maggio | Jun 1996 | A |
5527274 | Zakko | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5538502 | Johnstone | Jul 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5562615 | Nassif | Oct 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5628230 | Flam | May 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5645539 | Solomon et al. | Jul 1997 | A |
5653244 | Shaw | Aug 1997 | A |
5690815 | Krasnoff et al. | Nov 1997 | A |
5808181 | Wamsiedler et al. | Sep 1998 | A |
5810765 | Oda | Sep 1998 | A |
5895869 | Von Behrens et al. | Apr 1999 | A |
5907093 | Lehmann | May 1999 | A |
5950238 | Klein | Sep 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6086450 | Mankovitz | Jul 2000 | A |
6109267 | Shaw et al. | Aug 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6142982 | Hunt et al. | Nov 2000 | A |
6162960 | Klein | Dec 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6302653 | Bryant et al. | Oct 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6361397 | Mankovitz et al. | Mar 2002 | B1 |
RE37651 | Wallsten et al. | Apr 2002 | E |
6402714 | Kraft-Kivikoski | Jun 2002 | B1 |
6420622 | Johnston et al. | Jul 2002 | B1 |
6440093 | McEwen et al. | Aug 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6537495 | Cambron et al. | Mar 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6585675 | O'Mahoney et al. | Jul 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767188 | Vrane et al. | Jul 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6867342 | Johnston et al. | Mar 2005 | B2 |
D503509 | Bell et al. | Apr 2005 | S |
6932786 | Giacomelli et al. | Aug 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7070584 | Johnston et al. | Jul 2006 | B2 |
7090647 | Mimura et al. | Aug 2006 | B2 |
7135007 | Scott et al. | Nov 2006 | B2 |
7144294 | Bell et al. | Dec 2006 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7201263 | Osada et al. | Apr 2007 | B2 |
7252014 | Mayer et al. | Aug 2007 | B1 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7670323 | Hunt et al. | Mar 2010 | B2 |
7758555 | Kelch et al. | Jul 2010 | B2 |
7927319 | Lawhorn | Apr 2011 | B2 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20030032915 | Saul | Feb 2003 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050148913 | Weston | Jul 2005 | A1 |
20050197647 | Doliver et al. | Sep 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060122558 | Sherman et al. | Jun 2006 | A1 |
20060173253 | Ganapathy et al. | Aug 2006 | A1 |
20060189887 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060229531 | Goldberger et al. | Oct 2006 | A1 |
20070032762 | Vogel | Feb 2007 | A1 |
20070032763 | Vogel | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070078444 | Larsson | Apr 2007 | A1 |
20070118096 | Smith et al. | May 2007 | A1 |
20070167927 | Hunt et al. | Jul 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080071235 | Locke et al. | Mar 2008 | A1 |
20080125698 | Gerg et al. | May 2008 | A1 |
20090099498 | Demers | Apr 2009 | A1 |
20100022934 | Hogard | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
550575 | Aug 1982 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
2805782 | Aug 2006 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 333 965 | Aug 1999 | GB |
2 329 127 | Aug 2000 | GB |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
WO 8002182 | Oct 1980 | WO |
WO 8704626 | Aug 1987 | WO |
WO 9010424 | Sep 1990 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9718007 | May 1997 | WO |
WO 9825122 | Jun 1998 | WO |
WO 9913793 | Mar 1999 | WO |
WO 0021586 | Apr 2000 | WO |
WO 03101508 | Dec 2003 | WO |
WO 2007133618 | Nov 2007 | WO |
WO 2008036360 | Mar 2008 | WO |
WO 2009019496 | Feb 2009 | WO |
WO 2009071926 | Jun 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100268179 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
60849138 | Oct 2006 | US | |
60845993 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11903165 | Sep 2007 | US |
Child | 12824582 | US |