The present invention relates to an apparatus and a method for treating a wound by applying reduced pressure to the wound. In this context, the term “wound” is to be interpreted broadly, to include any body part of a patient that may be treated using reduced pressure.
The treatment of open or chronic wounds that are too large to spontaneously close or otherwise fail to heal has long been a troublesome area of medical practice. Closure of an open wound requires inward migration of surrounding epithelial and subcutaneous tissue. Some wounds, however, are sufficiently large or infected that they are unable to heal spontaneously. In such instances, a zone of stasis in which localized edema restricts the flow of blood to the epithelial and subcutaneous tissue forms near the surface of the wound. Without sufficient blood flow, the wound is unable to successfully fight bacterial infection and is accordingly unable to close spontaneously.
An initial stage of wound healing is characterized by the formation of granulation tissue which is a matrix of collagen, fibronectin, and hyaluronic acid carrying macrophages, fibroblasts, and neovasculature that forms the basis for subsequent epithelialization of the wound. Infection and poor vascularization hinder the formation of granulation tissue within wounded tissue, thereby inhibiting wound healing. It therefore becomes desirable to provide a technique for increasing blood circulation within wounded tissue to promote spontaneous healing and to reduce infection.
Another problem encountered during the treatment of wounds is the selection of an appropriate technique for wound closure during the healing process. Sutures are often used to apply force to adjacent viable tissue in order to induce the edges of a wound to migrate together and heal. However, sutures apply a closure force to only a very small percentage of the area surrounding a wound. When there is scarring, edema, or insufficient tissue, the tension produced by the sutures can become great causing excessive pressure to be exerted by the sutures upon the tissue adjacent to each suture. As a result, the adjacent tissue often becomes ischemic thereby rendering suturing of large wounds counterproductive. If the quantity or size of the sutures is increased to reduce the tension required of any single suture, the quantity of foreign material within the wound is concomitantly increased and the wound is more apt to become infected. Additionally, the size or type of a particular wound may prevent the use of sutures to promote wound closure. It therefore becomes desirable to provide an apparatus and method for closing a large wound that distributes a closure force evenly about the periphery of the wound.
Wounds resulting from ischemia, or lack of blood flow, are also often difficult to heal since decreased blood flow to a wound may inhibit normal immune reaction to fight infection. Patients that are bedridden or otherwise non-ambulatory are susceptible to such ischemic wounds as decubitus ulcers or pressure sores. Decubitus ulcers form as a result of constant compression of the skin surface and underlying tissue thus restricting circulation. Since the patient is often unable to feel the wound or to move sufficiently to relieve the pressure, such wounds can become self-perpetuating. Although it is common to treat such wounds with flaps, the conditions that initially caused the wound may also work against successful flap attachment. Wheelchair-bound paraplegics, for example, must still remain seated after treatment of pelvic pressure sores. It therefore becomes desirable to provide a treatment procedure for ischemic wounds that can be conducted in situ upon an immobile or partially mobile patient.
Other types of wounds in which ischemia leads to progressive deterioration include partial thickness burns. A partial thickness burn is a burn in which the cell death due to thermal trauma does not extend below the deepest epidermal structures such as hair follicles, sweat glands, or sebaceous glands. The progression of partial thickness burns to deeper burns is a major problem in burn therapy. The ability to control or diminish the depth of burns greatly enhances the prognosis for burn patients and decreases morbidity resulting from burns. Partial thickness burns are formed of a zone of coagulation, which encompasses tissue killed by thermal injury, and a zone of stasis. The zone of stasis is a layer of tissue immediately beneath the zone of coagulation. Cells within the zone of stasis are viable, but the blood flow is static because of collapse of vascular structures due to localized edema. Unless blood flow is re-established within the zone of stasis soon after injury, the tissue within the zone of stasis also dies. The death of tissue within the zone of stasis is caused by lack of oxygen and nutrients, reperfusion injury (re-establishment of blood flow after prolonged ischemia), and decreased migration of white blood cells to the zone resulting in bacterial proliferation. Again, it becomes desirable to provide a technique for treating burn wounds by enhancing blood circulation to the wounded tissue to inhibit burn penetration.
There exist various apparatus utilizing reduced pressure for treatment of these types of wounds. See, for example, U.S. Pat. No. 5,636,643. The apparatus existing in the art is generally comprised of a fluid impermeable cover that covers the wound, which is directly or indirectly connected to a source of suction so that an area of reduced pressure is created beneath the cover in the area of the wound. Some type of packing material, such as gauze, is also often placed in the area of the wound beneath the cover to prevent overgrowth of the wound. Apparatus existing in the relevant art, however, suffer from several disadvantages.
One such disadvantage is the necessity to change the packing material placed in the wound during the period of treatment. This requirement is expensive because multiple dressings are necessary and medical staff must expend time to change the dressings. In addition, there is an increased risk of infection and intrusion of other harmful foreign material into the wound area. It is therefore desirable to have a reduced pressure wound treatment system having a dressing that does not need to be changed, or needs to be changed fewer times, during the period of treatment.
In addition, the existing apparatus do not have adequate means to monitor the pressure in the area of the wound beneath the cover. If the cover is not adequately sealed to the tissue surrounding the wound, reduced pressure cannot be maintained beneath the cover so that the benefits of the treatment are lost or diminished. In addition, pressure leaks through the seal cause the source of suction to operate more frequently, which consumes more energy and causes the suction equipment to wear faster than it would otherwise, reducing its useful life. Further, the flow of air into the wound area as a result of such leaks can result in increased risk of infection and intrusion of other harmful foreign material into the wound area. It is therefore desirable to have a relatively inexpensive means of monitoring the pressure level beneath the cover at the site of the wound.
In addition, the existing apparatus do not have a means to determine the amount of blood flow to the tissue at the site of the wound. As discussed above, adequate blood circulation in the area of the wound is essential for the healing process to proceed as desired. Areas of tissue having an increased level of blood circulation generally have a higher temperature than areas that have a comparatively lower level of blood circulation. It is therefore desirable to have a means of monitoring the relative temperature within the area of the wound.
Finally, it is sometimes necessary to transport patients in need of reduced pressure wound care. It is also sometimes necessary to provide reduced pressure treatment in the field. It is therefore also desirable to have a wound treatment apparatus that is portable and self-contained, which can accompany the patient during such transport or be used to provide reduced pressure treatment in the field.
The present invention is directed to a reduced pressure wound treatment apparatus and method that satisfy the needs described above. As described in greater detail below, it has many advantages over existing apparatus when used for its intended purpose, as well as novel features that result in a new reduced pressure wound treatment apparatus and method that are not anticipated, rendered obvious, suggested, or even implied by any of the prior art apparatuses, either alone or in any combination thereof.
In accordance with the present invention a wound treatment apparatus is provided for treating a wound by applying reduced pressure (i.e. pressure that is below ambient atmospheric pressure) to the wound in a controlled manner for a selected time period in a manner that overcomes the disadvantages of currently existing apparatus. The application of reduced pressure to a wound provides such benefits as faster healing, increased formation of granulation tissue, closure of chronic open wounds, reduction of bacterial density within wounds, inhibition of burn penetration, and enhancement of flap and graft attachment. Wounds that have exhibited positive response to treatment by the application of negative pressure include infected open wounds, decubitus ulcers, dehisced incisions, partial thickness burns, and various lesions to which flaps or grafts have been attached.
The wound treatment apparatus in accordance with the present invention includes a reduced pressure application appliance that is applied to a treatment site at which there is a wound and normal tissue surrounding the wound. The reduced pressure application appliance includes a fluid impermeable wound cover for covering and enclosing the wound. In a particular embodiment of the present invention, the wound cover also includes means for visually monitoring the pressure in the area of the site of the wound beneath the wound cover. These means include a plurality of protrusions on the surface of the cover that are recessed when a predetermined pressure is present beneath the cover, but are increasingly displaced above the remaining surface of the cover as the pressure beneath the cover increases above a predetermined pressure. In a similar manner, the cover may contain areas that are displaced as protrusions away from the remaining surface of the cover toward the wound when reduced pressure is applied beneath the cover, and the displacement of the protrusions decreases as the pressure beneath the cover increases. The protrusions may also be a different color (or a different shade of the same color) from that on the remaining surface of the cover. In addition, the protrusions may produce a noise as they are displaced away from the remaining surface of the cover, providing an audible indication that the pressure beneath the cover is increasing.
The appliance also includes sealing means for sealing the wound cover to the surrounding tissue of the wound in order to maintain reduced pressure in the vicinity of the wound during wound treatment. When the wound cover is sealed in position over the wound site, a generally fluid-tight or gas-tight sealed enclosure is formed over the wound site. The sealing means may be in the form of an adhesive applied to the underside of the wound cover for sealing the wound cover around the periphery of the wound. The sealing means may also include a separate sealing member such as an adhesive strip or a sealing ring in the form of a tubular pad or inflatable cuff secured to the wound cover for positioning around the periphery of the wound. In selected embodiments, the reduced pressure within the sealed enclosure under the wound cover may serve to seal the wound cover in position at the wound site. The reduced pressure appliance also includes a suction port for supplying reduced pressure within the sealed volume enclosed beneath the wound cover. The suction port may be in the form of a nipple on the wound cover. Alternatively, the suction port may be in the form of a tube attached to the wound cover or provided as a feedthrough beneath the wound cover.
The appliance may also include an absorbable matrix for placement in the wound in order to encourage tissue in the area of the wound to grow into the matrix during treatment. The absorbable matrix is constructed of an absorbable material that is absorbed into the epithelial and subcutaneous tissue in the wound as the wound heals. The matrix may vary in thickness and rigidity, and it may be desirable to use a spongy absorbable material for the patient's comfort if the patient must lie upon the appliance during treatment. The matrix may also be perforated and constructed in a sponge-type or foam-type structure to enhance gas flow and to reduce the weight of the matrix. Because of the absorbable nature of the absorbable matrix, the matrix should require less frequent changing than other dressing types during the treatment process. In other circumstances, the matrix may not need to be changed at all during the treatment process.
A vacuum system is connected with the reduced pressure appliance in order to provide suction or reduced pressure to the appliance. For this purpose, the vacuum system includes a suction pump or suction device for connection with the suction port of the appliance for producing the reduced pressure over the wound site. The vacuum system may include a section of hose or tube, such as a vacuum hose, that interconnects the suction device with the suction port of the appliance to provide the reduced pressure at the wound site. A fluid collection system may be provided intermediate the vacuum hose of the suction device and the suction port of the appliance to trap any exudate that may be aspirated from the wound by the negative pressure appliance. A stop mechanism may also be provided for the vacuum system to halt production of the reduced pressure at the wound site in the event that an excessive quantity of exudate has been collected. The apparatus may also include a control device for controlling the pump.
In a particular embodiment of the invention, the wound cover for the reduced pressure appliance may be in the form of a gas impermeable covering sheet of flexible polymer material, such as polyethylene, having an adhesive backing that provides the seal for securing the sheet over the wound site to provide a gas-tight or fluid-tight sealed enclosure over the wound site. The vacuum system of the wound treatment apparatus may include a suction pump having a vacuum hose that is connected with a suction tube serving as a suction port for the appliance. The suction tube for the appliance runs beneath the cover sheet that is sealed in position over the wound site and into the fluid-tight enclosure provided under the cover sheet. An adhesive backing on the cover sheet is used to provide a fluid-tight seal around the feedthrough for the suction tube at the wound site. Within the enclosure, the suction tube is connected with the absorbable matrix for placement in the wound. The absorbable matrix functions to more uniformly apply reduced pressure or suction over the wound site while holding the cover sheet substantially out of the wound during the application of reduced pressure at the enclosed wound site.
In another particular version of the invention, the wound treatment apparatus also includes means to monitor the temperature of the tissue in the area of the wound. In a particular embodiment of this version of the invention, a temperature sensitive layer composed of a temperature sensitive material is placed adjacent to the lower surface of the wound cover. The temperature sensitive layer changes color, or changes from one shade of a color to another shade of the same color, as the temperature of the material changes. In this embodiment of the invention, the wound cover is composed of a transparent or semi-transparent material allowing the temperature sensitive material to be observed from above the wound cover. Alternatively, the wound cover is composed of a temperature sensitive material that changes color, or changes from one shade of a color to another shade of the same color, as the temperature of the material changes. In another embodiment of this version of the invention, one or more temperature measuring devices are placed in the area of the wound. The temperature measuring devices are preferably placed adjacent to the wound tissue, but may also be placed in other locations under or above the wound cover, to monitor the temperature of said tissue. Temperature measuring devices located under the wound cover have leads that feedthrough beneath the wound cover. The leads are connected to an alarm system that produces one or more alarm signals when the temperature measured by one or more of the temperature measuring devices exceeds or is lower than a predetermined value. In another embodiment of this version of the invention, the temperature measuring devices are also connected through their respective leads and the alarm system to a temperature display or recording device that produces a display or record of the temperature in the area of the wound.
In another particular version of the invention, the wound treatment apparatus is portable and self-contained. In this version of the invention, a miniature vacuum source is used to provide suction to the reduced pressure appliance. Similarly, the fluid collection system is of the minimum size desired to collect and maintain the amount of exudate expected to be aspirated from the wound during the time of anticipated use of the portable wound treatment apparatus. A filter may also be placed in the connection between the vacuum source and the fluid collection system to avoid contamination of the source by the fluid aspirated from the wound. As a result, reduced pressure treatment of a wound can continue even if it becomes necessary to transport the patient because the apparatus can accompany a patient during the transport. The portable apparatus is not, however, limited to this use alone. It can be used in any application where a portable treatment apparatus is advantageous, such as treatment of wounds in the field.
There has thus been outlined, rather broadly, the more primary features of the present invention. There are additional features that are also included in the various embodiments of the invention that are described hereinafter and that form the subject matter of the claims appended hereto. In this respect, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the following drawings. This invention may be embodied in the form illustrated in the accompanying drawings, but the drawings are illustrative only and changes may be made in the specific construction illustrated and described within the scope of the appended claims. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings, in which:
In accordance with the present invention, a wound treatment apparatus is provided for treating a wound by application of reduced pressure (i.e., below atmospheric pressure) so that suction may be applied to a wound site 25 in a controlled manner for a selected period of time.
The absorbable matrix 32 is placed over substantially the expanse of the wound 25 to encourage growth of tissue in the area of the wound 25 into the matrix 32 as the wound heals. The size and configuration of the absorbable matrix 32 can be adjusted to fit the individual wound 25. It can be formed from a variety of absorbable materials, preferably a material that is also porous. The matrix 32 should be constructed in a manner so that it is sufficiently porous to allow oxygen to reach the wound 25. The absorbable matrix 32 is preferably constructed of a non-toxic material that is absorbable by the epithelial and subcutaneous tissue within the area of the wound 25, such as collogens derived from healthy mammals, absorbable synthetic polymers, or other materials similar to those used for absorbable dressings. An example is a dehydrating material derived from seaweed for treatment of exudating wounds. The matrix 32 may vary in thickness and rigidity, although it may be desirable to use a spongy or layered, non-woven absorbable material for the patient's comfort if the patient must lie upon the appliance 30 during treatment. The matrix 32 may also be perforated and constructed in a foam-type, sponge-type, or non-woven layered structure to enhance gas flow and to reduce the weight of the appliance 30. As shown in
In another embodiment of the invention, the absorbable matrix 32 has the same features as described above and as illustrated in
In addition, this embodiment of the matrix 32 is not limited to layers. The matrix 32 may be constructed in any configuration having materials of different absorption rates in any portion of the matrix 32 that is desired to promote wound healing. For example, as illustrated in
The fluid-impermeable wound cover 40 in the embodiment of the reduced pressure appliance 30 illustrated in
The reduced pressure appliance 30 is not, however, limited to the configuration illustrated in
The appliance 30 also includes a suction port in the form of a hollow suction tube 45 that connects with the vacuum system 50 to provide suction within the sealed enclosure. The suction tubing 45 serves as a suction port for the appliance 30. In the embodiment of the invention illustrated in
Tubing 45 and tube segment 45a are sufficiently flexible to permit movement of the tubing but are sufficiently rigid to resist constriction when reduced pressure is supplied to the appliance 30 or when the location of the wound 25 is such that the patient must sit or lie upon the tubing 45 or upon the reduced pressure appliance 30. The matrix-tube assembly comprising the absorbable matrix 32 and the tube 45 may be fabricated by snaking the end of the tube segment 45a through an internal passageway in the absorbable matrix 32 such as by pulling the end of the tube segment 45a through the passageway using forceps. The matrix-tube assembly 32 and 45 is preferably prepared prior to use under sterile conditions and then stored in an aseptic package.
As shown in
As shown in
The container 71 may also include a fluid impenetrable flexible liner within its volume that is used to collect the exudate in a manner that avoids contaminating the container 71 with pathogenic microbes and other harmful matter present in the exudate. In such case, the flexible liner may be directly connected to the first port 72 and second port 73 in a manner so that no exudate comes into direct contact with the container 71. In this embodiment, the preferred liner is a flexible bag constructed of a polymer material, which is connected to the first port 72.
The vacuum system 50 and collection system 70 preferably include a shutoff mechanism for halting or inhibiting the supply of the reduced pressure to the appliance 30 in the event that the exudate aspirated from the wound 25 exceeds a predetermined quantity. Interrupting the application of suction to the appliance 30 is desirable to prevent exsanguination in the unlikely event a blood vessel ruptures under the wound cover 40 during treatment. If, for example, a blood vessel ruptures in the vicinity of the wound 25, a shut-off mechanism would be useful to prevent the vacuum system 50 from aspirating any significant quantity of blood from the patient.
The shutoff mechanism 75 may be comprised of any means that enables the vacuum system 50 to halt the supply of reduced pressure to the wound cover 40 at any time that the volume of exudate from the wound 25 exceeds a predetermined amount. Such means may include mechanical switches, electrical switches operably connected to the vacuum system controller 52, optical, thermal or weight sensors operably connected to the vacuum system controller 52, and any other means that are currently known in the relevant art or which may hereafter be discovered. The shutoff mechanism 75, as illustrated in
In another version of the invention, the wound treatment apparatus includes means to monitor the pressure beneath the wound cover 40 at the site of the wound 25. In one embodiment of this version of the invention, as illustrated in
The protrusions 60 may be constructed of the same material as the remainder of the cover 40, or may be constructed of a material different from the remainder of the cover 40, depending upon the sensitivity of pressure monitoring desired. Similarly, the protrusions 60 may be constructed of material having the same thickness as the remainder of the cover 40, or material of a different thickness, depending upon the sensitivity of pressure monitoring desired. For example, if the reduced pressure beneath the cover 40 is of a relatively low level, so that the difference between the ambient atmospheric pressure above the cover 40 is relatively small when compared to the reduced pressure beneath the cover 40, it may be desirable to have the protrusions 60 be able to change shape with relatively small changes in pressure beneath the cover 40 during the treatment period. In such case, it may be preferable to have the protrusions 60 of a thickness less than the thickness of the remaining cover material. It may also be preferable to have the protrusions 60 constructed of a material more pliable than the material of which the remainder of the cover 40 is constructed. Similarly, if the reduced pressure beneath the cover 40 is of a relatively high level, so that the difference between the ambient atmospheric pressure above the cover 40 is relatively large when compared to the reduced pressure beneath the cover 40, it may be desirable to have the protrusions 60 be able to change shape with relatively large changes in pressure beneath the cover 40 during the treatment period. In such case, it may be preferable to have the protrusions 60 of a thickness more similar to the thickness of the remaining cover material. It may also be preferable to have the protrusions 60 constructed of a material that is more similar to the material of which the remainder of the cover 40 is constructed in terms of pliability.
By preselecting the thickness and pliability of the material used to construct the protrusions 60, it may also be possible to monitor the pressure by partial deflections of the protrusions 60. For example, the protrusions 60 may be displaced in an increasing amount above the remaining surface 43 of the cover 40 as the pressure beneath the cover 40 increases (i.e., the level of reduced pressure decreases). This relationship of displacement of the protrusions 60 to the increase in pressure beneath the cover 40 may be linear or based upon some other function. Similarly, the protrusions 60 may be constructed so that they only begin to be displaced when a predetermined pressure differential occurs between the area under the cover 40 and the area above the cover 40. It should be noted, however, that this version of the invention is intended as a means to provide an inexpensive and approximate visual indication of the occurrence of loss of reduced pressure beneath the cover and may not be a means to accurately measure the actual pressure beneath the cover or the actual difference between the pressure above the cover and the reduced pressure beneath the cover.
As a result, the preferable thicknesses and materials to be used in constructing the cover 40 and protrusions 60 in this version of the invention are dependent upon a multitude of factors, including the desired pressure beneath the cover 40. Preferably, the wound cover 40 is constructed of polyurethane, having a thickness of only a few mils to ⅛th inch, and having protrusions 60 constructed of the same material as the remaining portion of the cover 40, said protrusions 60 having a thickness only slightly less than the thickness of the cover 40 to a relatively small fraction of the thickness of the cover 40.
Further, the protrusions 60 may be constructed of material that is of a different color than the color of the remaining surface 43 of the cover 40. Similarly, the protrusions 60 may be of a different shade of the same color as the remaining surface 43 of the cover 40. As the protrusions 60 are displaced away from the remaining surface 43 of the cover 40, the protrusions 60 may change color as a result of the expansion of the material comprising the protrusions 60.
In another embodiment of this version of the invention, the protrusions work in the manner opposite to that described above. In this embodiment, the cover has within it a plurality of areas that are displaced away (i.e., pulled down) from the remaining surface of the cover toward the wound when reduced pressure is applied beneath the cover. This downward displacement is the result of the reduced pressure suction, which causes tension that pulls the protrusions away from the remaining surface of the cover. As the pressure beneath the cover increases, the tension on the protrusions weakens allowing the protrusions to recede back into the cover. The principles discussed above with respect to thickness, materials, color, and partial deflection monitoring of pressure apply to this embodiment of the invention as well. It should be noted that bellows-type protrusions are not used in this embodiment.
The protrusions 60 may also have a means whereby they produce an audible sound as the protrusions 60 are being displaced away from the remaining surface 43 of the cover 40. This sound may be produced by the “crinkling” or vibration of the material as it is displaced away from the remaining surface 43 of the cover 40.
It should be noted that the means to monitor the pressure beneath the cover described in this embodiment of the invention may be used independently of any other feature of this invention. In addition, the means to monitor pressure beneath the cover is not limited to use in treatment of open wounds, decubitus ulcers, dehisced incisions, partial thickness burns, and various lesions to which flaps or grafts have been attached. Instead, said pressure monitoring means may be used in any application involving reduced pressure in the treatment of any portion of the body of a patient, such as cosmetic surgery, cosmetic healing, and prophylactic suctioning for cosmetic and psychological reasons. In addition, the cover may be of any configuration, including the cover configurations specifically discussed above. Further, it is not necessary that any packing material or matrix be present in the area of the wound beneath the cover in this version of the invention. Nor is it necessary that the features included in this version of the invention be included as a part of any other version or embodiment of this invention.
In another version of the invention, the wound treatment apparatus includes means to monitor the temperature in the area of the wound 25. In one embodiment of this second version of the invention, as illustrated in
The temperature sensitive layer 80 (or the cover 40, if it is composed of a temperature sensitive material) may be composed of any material that changes properties in a manner that does not adversely affect the operation of the reduced pressure appliance 30. Preferably, the temperature sensitive layer 80 is composed of a material that changes color, or changes from one shade of a color to another shade of the same color, as the temperature of the material changes. The change in color or shade preferably occurs within the temperature range that may be expected in the area of the wound 25. In other words, the change in color or shade of the material should be significant enough to adequately indicate changes in temperature within the range of temperatures expected in the area of the wound 25. More preferably, the temperature sensitive material is a material that changes color in the range from approximately 95 degrees Fahrenheit to approximately 105 degrees Fahrenheit.
In the embodiment of the invention shown in
The wound cover 40 is placed over the temperature sensitive layer 80 and sealed to the normal skin 24 surrounding the wound 25. If the cover 40 and the temperature sensitive layer 80 are an integrated unit, however, the unit is placed over the packing material or matrix 32a without a separate temperature sensitive layer 80. If the cover 40 is composed of a temperature sensitive material, it is placed over the packing material or matrix without an additional temperature sensitive layer 80. It should be noted, however, that the temperature sensitive material used in this embodiment of the invention is intended as a means to provide an approximate visual indication of the temperature in the area of the wound 25 beneath the cover 4, and may not accurately measure the actual temperature beneath the cover 40.
In another embodiment of this second version of the invention, one or more temperature measuring devices 81 are placed within the area of the wound 25 and connected to an alarm system, generally designated as 82. The temperature measuring devices 81 may also be connected to a temperature display and recording device 83. An example of this embodiment is illustrated in
The temperature measuring devices 81 are preferably capable of measuring temperatures in the range of temperatures expected in the area of the wound 25. More preferably, the temperature measuring devices 81 are capable of measuring temperatures in the range of 95 degrees Fahrenheit to 105 degrees Fahrenheit. The temperature measuring devices 81 may be any device that measures temperature in the desired range and produces a corresponding signal that may be interpreted by the alarm system 82 and temperature display and recording device 83. The temperature measuring devices 81 must, however, not be harmful to body tissue. The temperature measuring devices 81 are preferably thermocouples or optical sensors or detectors. The temperature measuring devices 81 are more preferably thermocouples that generate an electronic signal representing the temperature measured by the thermocouple.
The temperature measuring devices 81 are connected by leads 84 to an alarm system 82. The leads 84 may be in any form compatible with the temperature measuring devices 81 and the alarm system 82 and recording device 83. Preferably, the leads 84 are cables or wires constructed of an electrically conductive material, optical fiber, or other medium enabling data transmission that transfers the signals from the temperature measuring devices 81 to the alarm system 82 and the display and recording device 83. Leads 84 placed under the wound cover 40 feedthrough the seal 42 beneath the cover 40 in a manner similar to that for the tubing (as illustrated and discussed above in connection with
The alarm system 82 is comprised of a computer or other data processor 85 and an alarm device 86. The computer or data processor 85 receives the signals from the temperature measuring devices 81 and converts them to electronic or other signals that are recognized by the alarm device 86. The computer or data processor 85 is of a type that is commonly available in the relevant art. The alarm device 86 may produce any type of audible sound as an alarm, such as a ringing sound, buzzing, chirping or other common alarm noise. Alternatively, the alarm device 86 may include a digitally produced audible voice that presents predetermined messages corresponding to different temperature conditions in the area of the wound 25. The alarm device 86 preferably produces different levels of alarm depending upon the temperature measurements received from the temperature measuring devices 81. For example, as the temperature drops below or rises above successive preselected values of temperature, as measured by any temperature measuring device 81, the alarm device 86 may sound successive predetermined alarm pitches, sounds, messages or series of sounds. Similarly, as the temperature measured by multiple temperature measuring devices 81 successively falls below or rises above a preselected temperature, the alarm device 86 may sound successive predetermined alarm pitches, sounds, messages or series of sounds. The alarm system 82 may also be connected to the vacuum supply 50, so that upon production of a predetermined alarm by the alarm device 86, the vacuum pump controller 52 causes the pump 51 to cease operation.
The computer or data processor 85 may also be connected to a temperature display and recording device 83 that records the temperatures measured by one or more of the temperature measuring devices 81. The temperature recording device 83 may be any device designed to record or display data that is compatible with the signals produced by the computer or data processor 85. Such devices are preferably devices that record data on compact disks, floppy disks, magnetic tape, integrated circuits, or other similar media in digital form or “manual” devices that record or display data in a visually depicted form, such as a chart recorder or visual electronic display, such as an LCD or CRT monitor. The more preferred temperature display and recording device 83 is a device recording data on a compact disk used in conjunction with an LCD monitor.
It should be noted that in this embodiment of this version of the invention the cover 40 may be of any configuration, including the cover configuration illustrated in
In another version of the invention, the wound treatment apparatus 220 is portable and may be self-contained. In a first embodiment of this version of the invention, as illustrated in
The wound cover 240 may be of almost any size, shape, and configuration adapted to treat the wound. Thus, the wound cover 240 is not limited to the embodiment illustrated in
The vacuum source 250 may be attached to the cover 240 using any means that is compatible with the structure of the cover 240 and the vacuum source 250. For example, if the cover 240 is constructed of a flexible, fluid impermeable material, the vacuum source 250 may be attached to the cover 240 using an adhesive material, such as a glue or other liquid or sprayed adhesive, adhesive tape, and similar means that are currently known in the relevant art or which may hereafter be discovered. As another example, if the wound cover 240 is constructed of a rigid material, the vacuum source 250 may be attached to the cover 240 using a variety of fasteners and similar means, such as anchors, bolts, rivets, screws, nuts, latch and clasp, hook and loop fasteners (such as that commonly sold under the trade name VELCRO), ultrasonic welding, and similar structures that are currently known in the relevant art or which may hereafter be discovered. The vacuum source 250 may therefore be permanently attached to the cover 240, or the vacuum source 250 may be removably attached to the cover 240 allowing the vacuum source 250 to be reused after being used for a treatment even if the cover 240 is no longer usable after such treatment. The means of fastening the vacuum source 250 to the cover 240 must, however, be accomplished in a manner that allows the cover 240 to maintain the desired reduced pressure beneath the cover 240 while it is in use. Thus, gasket or sealant material may be used to seal any areas of perforation of the cover 240 where the fastener penetrates the surface of the cover 240.
The fluid collection system 270 in the embodiment illustrated in
As illustrated in
In the embodiment illustrated in
Use of the wound treatment apparatus can be illustrated by a prospective example involving a reduced pressure appliance 30 of the type discussed in connection with
Negative pressure appliances are useful for treating a variety of wounds. Treatment of a wound can be carried out by securing a negative pressure appliance to the treatment site as previously shown and described, and then maintaining a substantially continuous or cyclical reduced pressure within the appliance until the wound has reached a desired improved condition. A selected state of improved condition may include formation of granulation tissue sufficient for the attachment of a flap or graft, reduction of microbial infection in the wound, arrest or reversal of burn penetration, closure of the wound, integration of a flap or graft with the underlying wounded tissue, complete healing of the wound, or other stages of improvement or healing appropriate to a given type of wound or wound complex.
It may be preferable to change the appliance periodically during treatment, particularly when using appliances incorporating a packing material on or in the wound. The time between changing the appliance where an absorbable matrix is placed on or in the wound would ordinarily be a greater time interval that is generally dependent upon the nature of the wound. Where it is necessary to change the absorbable matrix during the treatment period, it may also be necessary to remove a portion of the matrix, but leave in place the portion of the matrix into which there has been significant tissue growth. In such cases, the portion of the matrix without significant tissue growth incorporated therein should be carefully removed by cutting or tearing away such portion from the remaining portion. New absorbable material can be placed in the area from which the prior material has been removed.
The wound treatment apparatus is preferably operated using a negative or reduced pressure ranging from 0.01 to 0.99 atmospheres, and more preferably practiced using a negative or reduced pressure ranging between 0.5 to 0.8 atmospheres. The time period for use of the wound treatment apparatus on a wound may preferably be at least 12 hours, but can be, for example, extended for one or more days. There is no upper limit beyond which use of the wound treatment apparatus is no longer beneficial; use of the wound treatment apparatus increases the rate of closure up to the time the wound actually closes. Satisfactory treatment of various types of wounds has been obtained via the use of reduced pressures equivalent to about 2 to 7 in. Hg below atmospheric pressure.
Supplying reduced pressure to the appliance in an intermittent or cyclic manner has also been demonstrated to be useful for treating wounds. Intermittent or cyclic supply of reduced pressure to an appliance may be achieved by manual or automatic control of the vacuum system 50. A cycle ratio, the ratio of “on” time to “off” time, in such an intermittent reduced pressure treatment may be as low as 1:10 or as high as 10:1. The preferred ratio is approximately 1:1 which is usually accomplished in alternating 5 minute intervals of reduced pressure supply and non-supply.
A suitable vacuum system 50 includes any suction pump capable of providing at least 0.1 pounds of suction to the wound, and preferably up to three pounds suction, and most preferably up to fourteen (14) pounds suction. The pump can be any ordinary suction pump suitable for medical purposes that is capable of providing the necessary suction. The dimension of the tubing interconnecting the pump and the reduced pressure appliance is controlled by the pump's ability to provide the suction level needed for operation. A ¼ inch diameter tube may be suitable.
In treating damaged tissue, use of the invention usually comprises the steps of applying negative pressure to a wound for a selected time and at a selected magnitude sufficient to reduce bacterial density in the wound. Open wounds are almost always contaminated with harmful bacteria. The application of negative pressure to a wound appears to reduce the bacterial density of the wound. It is believed that this effect is due to either the bacteria's incompatibility with a negative pressure environment or the increased blood flow to the wound area, as blood brings with it cells and enzymes to destroy the bacteria.
Burns may generally be treated using a method that comprises the steps of applying negative pressure to the burn over an area with predetermined reduced pressure and for a time sufficient to inhibit formation of a full thickness burn. A partial thickness burn, one which has a surface layer of dead tissue and an underlying zone of stasis, is often sufficiently infected so that it will transform within 24-48 hours into a full thickness burn, one in which all epidermal structures are destroyed. The application of negative pressure to the wound prevents the infection from becoming sufficiently severe to cause destruction of the underlying epidermal structures. The magnitude, pattern, and duration of pressure application can vary with the individual wound.
Further embodiments of this patent application include the embodiments described in U.S. Provisional Application No. 60/430,827, filed on Dec. 4, 2002, and U.S. Provisional Application No. 60/407,783, filed on Sep. 3, 2002. These embodiments are described further below, with reference to the figures from these provisional applications that are incorporated by reference herein.
A subject of this patent application is an improved process of applying continuous sub atmospheric pressure to a wound to assist in healing by using a layer of material that is thermal sensitive. This thermal sensitive material has several distinct properties. Feedback from this thermal layer is transmitted to a microprocessor which in turn will control distinct areas, cells or divisions of the wound healing apparatus to adjust the pressure in each area to an optimal amount.
This system improves upon other methodologies of healing wounds. A wound can be defined as a change in the integrity of the skin which would allows fluid, gases, and other materials to pass through below topical levels into the body or allow bodily fluids to pass through the skin to the outside atmosphere. The human and other conditions need to have a barrier in place to prevent a variety of trauma, to the tissues and organs.
FIG. 7 of U.S. Provisional Application No. 60/430,827 depicts the system in its simplest format. A material that is occlusive or semi-occlusive is applied to the wound. The material of this cover dressing is temperature sensitive and will change colors to reflect the temperature of the wound surface. The purpose of this temperature change is to show the clinician, patient, and others area that may have difficulty with blood flow or low temperature or too high of a temperature. The temperature that the material reflects may need to be adjusted based on distance from the wounds and any insulating materials that may have to lie between the material and the wound. Here, a simple depiction shows the relationship but in actuality there may need to be other materials between these two layers to assist in the wound healing process.
FIG. 1 of U.S. Provisional Application No. 60/430,827 depicts the system that includes the system to create a sub-atmospheric pressure on the wound bed or generation of suction or pressure differentials. It also includes an occlusive or semi-occlusive dressing and a system of a sponge, gauze or foam. The system is sealed to the wound with a sealing paste or adhesive on the dressing. The cover dressing that is occlusive or semi-occlusive, this material that changes colors may be the same material that responds to temperature or it may be a secondary layer. There is a tubing system that transmits the pressure differential between the suction device and the wound site where the sponge, gauze, or foam and occlusive dressing is present. There is a seal between the occlusive or semi-occlusive dressing and the wound allowing for a buildup of negative pressure. Finally there is a feedback system that allows for adjustment of the suction device that generates pressure differentials based on the readings of the various sites throughout the wound treatment system.
As another embodiment the occlusive or semi-occlusive layer may also change color to show the local pressure on the wound site. The system then has measurement device of suction or pressure differentials through the wound treatment system. This measurement device is again, actually present in the cover dressing and the dressing responds to the amount of pressure applied by changing colors. This layer or the cover dressing would also have the ability to insure that the proper pressures are measured on the wound bed as well as what shows on the suction pump.
FIG. 1 of U.S. Provisional Application No. 60/430,827 depicts the system that has been invented. It improves upon previous systems. First, the system allows for application of the pressure differentials in several locations. The locations are shown here as Area 1, Area 2, and so on to Area end. The amount of areas can be as small as two or tens of thousands if needed. These measurement systems are connected with the suction pump in a feedback system. This feedback system allows for the pump to generate additional suction or less suction based on the readings. The reading may be of pressure or temperature depending on what application is selected. The feedback system may incorporate a microprocessor that would allow for various analyses of the readings and then generate instructions for the pump to produce more vacuum or reduce the vacuum level. This feedback connection may be of mechanical, electrical, optical or other mechanism. The feedback system encompasses two areas. The first area is the feedback of the system based on the pressure actually in the wound site. The other feedback mechanism is based on the amount of temperature that is present in each area of the wound bed. The amount of temperature or suction actually in the wound bed is feed through a microprocessor that is programmed to optimal change the pressure reading to insure optimal wound healing. The amount of temperature or suction needed would be based on the sensor layer that was present on the dressing. This may also be a separate layer.
The invention envisions a complex system that because of the physics involved with the material in the wound site, foam, gauze, or a sponge that a pressure gradient would be established. This pressure gradient because of the complexity of the system would allow for various pressures to be set up in the wound site. Thus a system would be created where there were multiple pressures. For example in
The suction in the invention would be applied in a systematic way through a solenoid. This solenoid would open and close valves or other mechanisms that would allow distinct pressure setting to be present in the wound. This would be done through smaller tubes that would be feed to the wound bed and into the materials. Each area in the wound bed would have a sealed area that would enable the system to generate the pressure that was needed separate and distinct form other areas, cells, or divisions.
FIG. 2 of U.S. Provisional Application No. 60/430,827 depicts this system again. Here a clearer view of the separate areas with the separate pressures is seen. Each cell, division, or area can have a separate pressure and separate feedback mechanisms. Here again the canister system that collects fluids along with an overflow device and a bacteriological overflow hydrophobic filter is present. The purpose here again is to create a sub-atmospheric pressure that will assist in healing as well as removal of fluids.
FIG. 3 of U.S. Provisional Application No. 60/430,827 again depicts the system in a simpler form. Here present is the thermal sensing layer that shows visually the temperature of the underlying wound. These temperatures of the cells, areas, or divisions, are transmitted to a microprocessor where the temperatures are interpreted and then feedback occurs to the individual cells, divisions, or areas, via the suction source. This suction is transmitted via tubing and with a canister and overflow/bacterial tilter in place to the individual cells. Present is an occlusive layer if needed and a matrix material such as gauze foam or other material that wound distribute the suction across the wound bed.
FIG. 4 of U.S. Provisional Application No. 60/430,827 again shows the system in a simpler form. This form shows some of the areas depicted as A1 through A8 where the suction would be distributed. Here in this figure the arterial blood supply is shown with areas that lack sufficient blood now. The thermal layer that is depicted would show visually and also transmit to the microprocessor the temperature parameters so that the suction source can feedback the distinct areas.
FIG. 5 of U.S. Provisional Application No. 60/430,827 shows another new area of the invention, Here the thermal sensing layer has areas that expand in the presence of atmospheric pressure. This expansion of the “Mountains” is also an idea that could be applied to other cover dressing that were occlusive or semi-occlusive without a thermal sensing layer. They make distinct “Mountains” when exposed to normal atmospheric pressure. These mountains could vary in shape from pyramidal, cylindrical, square to virtual any shape that has a three dimensional form. The purpose of these mountains is to alert the clinician that there may be a leak in the wound ben or a distinct area. The dressing may have only one of these “mountains” or they may have as many as there area areas. When the dressing is under pressure at a low level say 5 mmHg to 50 mmHg of sub atmospheric pressure these “mountains” contract into the dressing and are not evident. When a leak should occur in the dressing or other event that compromises the negative pressure the “mountains” would climb or expand and this would alert the clinician that the dressing needs to be check for integrity.
FIG. 6 of U.S. Provisional Application No. 60/430,827 shows the another embodiment of the suction source for each area. A suction source is present along with a filter, tubing for connections, and a canister for overflow and a solenoid device. The solenoid is operated by the microprocessor that allows the suction source to adjust the pressure in each of the cells. Upon receiving instructions from an area that has a temperature setting the microprocessor would adjust the solenoid and allow for the proper pressure in an individual area such as A1 or A2. This would continue in a random, sequential, or orderly manner. The programming could also be that any emergency such as loss of pressure would override the microprocessor and attempt to bring the pressure to a proper stage. If this does not occur alarms could ring notifying the clinician that the dressing needs to be changed. The system that is depicted also shows the separate and individual tubing that transmits the suction to the distinct area. These area individual tubes that may combine together into larger tubing bundle (each tube still being distinct). The tubing's in the end portion are redistributed throughout the wound bed. Each area that needs to be controlled with need a separate and distinct suction source.
The invention that is shown in the patent is designed to respond to an individual wound on a micro level. Insuring that adequate blood flow occurs into the wound by the use of this invention of a thermal sensing layer, an occlusive layer, a matrix material that distributes the suction and separate and distinct areas, cells or divisions will provide optimal wound healing. This invention is set apart from prior art by its applications in a number of areas. Notably the cells, divisions, or areas are unique and allow a more tailored solution to an individual wound. Additionally, the use of the “mountain” concepts allows us to see if there are any leaks in the system.
The system will have built in alarms that show low pressure, any type of malfunction, and the reading may be via LED or analog gauges. Too high a pressure, canister full readings.
Another subject of this patent application is an improved process for healing wounds using reduced pressure. The invention using a unique system of a matrix material to form a skeleton that cells in the healing process can adhere to and begin to form new tissue. This tissue then continues to build upon itself and enters into the matrix and finally engulfs and assumes the matrix. The matrix is made of unique elements that allow for it to biodegrade so that it would not have to be removed from the wound.
The invention consists first of a suction appliance that is designed to reduce the pressure in the surrounding space. This reduction in pressure is transmitted to the wound site via tubing. The tubing may have several lumens too that other materials such as antibiotics or liquids or gases that promote healing or retard infectious growth can be introduced. The tubing then enters the matrix and can do so by several connection points, as shown in FIG. 3 of U.S. Provisional Application No. 60/407,783. The suction then enters the matrix and is distributed through the matrix to the wound site. The matrix is covered by a semi-occlusive material or occlusive material. This material is sealed to the wound either by an adhesive that is attached to the material or by a separate adhesive substance. Over the materials there can exist measurement devices that can measure the suction pressure in the wound site. There can be several of these devices. They are linked via a feedback mechanism to the pump to allow for variations in the suction appliance based on readings in the wound. A suction canister collects excess wound fluid.
This system improves upon other methodologies of healing wounds. A wound can be defined as a change in the integrity of the skin which would allows fluid, gases, and other materials to pass through below topical levels into the body or allow bodily fluids to pass through the skin to the outside atmosphere. The human and other conditions need to have a barrier in place to prevent a variety of trauma to the tissues and organs.
The matrix is the key element of this system. It consists of unique materials that are bio-degradable in the wound and the matrix wound not have to be removed. Alternatively the matrix can be made of several types of materials with the layer that has boundaries with the wound being biodegradable and absorbable and the other layers not absorbable. These “top” layers can be removed if needed with the bottom layer staying in the wound. The concept of this patent application and the matrix is to form a skeleton upon which the wound healing process can build. The various cells can adhere to the matrix and then tissue can grow from these initial cells and engulf the matrix. The matrix being absorbed into the body does not need to be removed. FIG. 2 of U.S. Provisional Application No. 60/407,783 shows 3 stages of tissue engulfing matrix. Multiple stages can occur.
The matrix material can be of a foam or a gauze or a sponge with the intent of having the various cells of the body enter the matrix and then begin to build tissue. The matrix should be of a material that conforms easily to the body and fills the cavity of the wound. A deeper wound may require a larger matrix than a smaller one. The matrix material needs to have sufficient properties to attract human cells as well the ability overtime to be absorbed back into the body. That is the matrix itself would be destroyed by the tissue or process of building the tissue over time.
The matrix may also have sections or zones established with separate systems in operation. Pictured in FIG. 4B of U.S. Provisional Application No. 60/407,783 is a 4 section system, each being controlled by the suction appliance and with a complete separate system.
The matrix can be a regular or irregular shape. The matrix could have a uniform appearance such as a system of spheres that are interconnected in multiple locations that appear uniform and at regularly spaced intervals. The matrix can also be irregular with a variety of shapes and patterns. The diameter of the wholes can be irregular or uniform. The thickness of the material in the matrix can be irregular or uniform.
This is an improvement over previous designs that required that any type of packing materials be removed from the wound. Another feature of the system is the multilumen tubing. This multilumen tubing would allow for the ingress of a variety of materials that were hostile to infections or invading organisms and complimentary to the healing process or new cellular growth. See FIG. 4 of U.S. Provisional Application No. 60/407,783. Pictured here is a 4 lumen tube that allows suction or a pressure differential to enter the matrix. Also show is ozone (O3) chlorine, and water to enter the matrix. More lumens could be added. The feedback mechanism for the pressure motoring will also allow for the introduction of various hostile/complementary materials into the wound site. This secondary feedback mechanism will monitor the growth of tissue in the matrix and the state of the wound and via microprocessor or other methodology programmed into the pump will release materials accordingly. (FIG. 4A of U.S. Provisional Application No. 60/407,783)
One role of reduced pressure is to remove the fluids that accumulate in the healing process and to provide a pressure differential to encourage cells to move into the matrix. The fluids can contain materials that help with the healing process as well as those that have outlived their usefulness. The reduced pressure may have to moved from connection site to connection site as pictured in FIG. 3 of U.S. Provisional Application No. 60/407,783. The proximity of the suction source to the wound is a variable that will change during the wound healing process. During healing the suction source may be needed to move closer or father away from the wound. This process of changing the suction location can be automatic or manual.
The system incorporates a variety of sensors that will detect the actual pressure differential in the wound and outside the wound (FIG. 1 of U.S. Provisional Application No. 60/407,783). It will also measure the pressure differential between the suction appliance and the actual readings in the wound. The feedback system will allow the suction appliance to increase or decrease the suction differential based on instruction from the user of the device. The feedback system is attached to all the sensors and then relays information to and from the sensors to the suction appliance which contains microprocessors that interpret the information and then increase or decrease suction accordingly.
The suction system can also be designed so that is integrated into the occlusive dressing. (FIG. 5 of U.S. Provisional Application No. 60/407,783) This integration will allow for suction to be created on the wound site by a variety of methods. Some of these methods can include venture suction, use of the body's movement to generate suction, use of wind, light, photons, or a transmitted energy source to create suction. The system can also be more traditional of a suction pump that creates a pressure differential by diaphragm, rotary vane or piston action. Either traditional or new ways of generating suction can be integrated into the occlusive dressing or the pump can be attached to the dressing but be a separate piece. The pump in either case would not need tubing to connect to the dressing. The suction generated by these devices will be small in terms of liter capacity. The device will have a valve system to capture these small amounts of suction into larger usable amounts. There will be a regulation system that will prevent the accumulation of too high of a suction level. (FIG. 5 of U.S. Provisional Application No. 60/407,783). With this system there would be no need for tubing as the suction device is directly attached to the wound.
This application is a divisional application of U.S. patent application Ser. No. 14/854,717, filed Sep. 15, 2015, which is a continuation of U.S. patent application Ser. No. 14/142,635, filed on Dec. 27, 2013, which is a continuation of U.S. patent application Ser. No. 13/302,175, filed on Nov. 22, 2011, now U.S. Pat. No. 8,628,505, which is a continuation of U.S. patent application Ser. No. 12/938,291, filed on Nov. 2, 2010, now U.S. Pat. No. 8,118,794, which is a continuation application of U.S. patent application Ser. No. 10/652,100, filed on Aug. 28, 2003, now U.S. Pat. No. 7,846,141, which claims the benefit of U.S. Provisional Patent Application No. 60/407,783, filed on Sep. 3, 2002, and U.S. Provisional Patent Application No. 60/430,827, filed on Dec. 4, 2002, the entirety of all five of which are hereby incorporated by reference and made a part of the present disclosure as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
765746 | Miner | Jul 1904 | A |
846674 | Funk | Jul 1907 | A |
1355679 | McConnell | Oct 1920 | A |
1355846 | Rannells | Oct 1920 | A |
1385346 | Taylor | Jul 1921 | A |
1480562 | Mock | Jan 1924 | A |
1585104 | Montgomery | May 1926 | A |
1732310 | Naibert | Dec 1929 | A |
1863534 | Odell | Jun 1932 | A |
1936129 | Fisk | Nov 1933 | A |
2122121 | Tillotson | Jun 1938 | A |
2232254 | Morgan | Feb 1941 | A |
2280915 | Johnson | Apr 1942 | A |
2338339 | La Mere et al. | Jan 1944 | A |
2366799 | Luisada | Jan 1945 | A |
2367690 | Purdy | Jan 1945 | A |
2547758 | Keeling | Apr 1951 | A |
2568933 | Robbins | Sep 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Aug 1955 | A |
3026874 | Stevens | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3026526 | Montrose | Mar 1962 | A |
3042041 | Jascalevich | Jul 1962 | A |
3217707 | Werding | Nov 1965 | A |
3238937 | Stein | Mar 1966 | A |
3286711 | MacLeod | Nov 1966 | A |
3315665 | MacLeod | Apr 1967 | A |
3334626 | Schimmel | Aug 1967 | A |
3367332 | Groves | Feb 1968 | A |
3465748 | Kravchenko | Sep 1969 | A |
3478736 | Roberts et al. | Nov 1969 | A |
3486504 | Austin, Jr. | Dec 1969 | A |
3568675 | Harvey | Mar 1971 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3610238 | Rich, Jr. | Oct 1971 | A |
3624821 | Henderson | Nov 1971 | A |
3682180 | McFarlane | Aug 1972 | A |
3712298 | Snowdon et al. | Jan 1973 | A |
3794035 | Brenner | Feb 1974 | A |
3809086 | Schachet et al. | May 1974 | A |
3826254 | Mellor | Jul 1974 | A |
3859989 | Spielberg | Jan 1975 | A |
3874387 | Barbieri | Apr 1975 | A |
3896810 | Akiyama | Jul 1975 | A |
3908664 | Loseff | Sep 1975 | A |
3938540 | Holbrook et al. | Feb 1976 | A |
3954105 | Nordby et al. | May 1976 | A |
3961625 | Dillon | Jun 1976 | A |
3988793 | Abitbol | Nov 1976 | A |
3993080 | Loseff | Nov 1976 | A |
RE29319 | Nordby et al. | Jul 1977 | E |
4080970 | Miller | Mar 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4112949 | Rosenthal et al. | Sep 1978 | A |
4117551 | Books et al. | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4149541 | Gammons et al. | Apr 1979 | A |
4169563 | Leu | Oct 1979 | A |
4172455 | Beaussant | Oct 1979 | A |
4178938 | Au | Dec 1979 | A |
4180074 | Murry et al. | Dec 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4212296 | Schaar | Jul 1980 | A |
4217894 | Franetzki | Aug 1980 | A |
4219019 | Coates | Aug 1980 | A |
4224941 | Stivala | Sep 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4250882 | Adair | Feb 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4266545 | Moss | May 1981 | A |
4275721 | Olson | Jun 1981 | A |
4297995 | Golub | Nov 1981 | A |
4316466 | Babb | Feb 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4398910 | Blake et al. | Aug 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4444548 | Andersen et al. | Apr 1984 | A |
4459139 | vonReis et al. | Jul 1984 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4469092 | Marshall et al. | Sep 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4524064 | Nambu | Jun 1985 | A |
4525166 | Leclerc | Jun 1985 | A |
4527064 | Anderson | Jul 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4538920 | Drake et al. | Sep 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4569674 | Phillips et al. | Feb 1986 | A |
4573965 | Russo | Mar 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4624656 | Clark et al. | Nov 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4655766 | Theeuwes et al. | Apr 1987 | A |
4681562 | Beck et al. | Jul 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4738249 | Linman | Apr 1988 | A |
4743232 | Kruger | May 1988 | A |
4753231 | Lang et al. | Jun 1988 | A |
4753536 | Spehar et al. | Jun 1988 | A |
4759354 | Quarfoot | Jul 1988 | A |
4764167 | Tu | Aug 1988 | A |
4765316 | Marshall | Aug 1988 | A |
4767026 | Keller | Aug 1988 | A |
4767943 | Adler et al. | Aug 1988 | A |
4770187 | Lash et al. | Sep 1988 | A |
4771919 | Ernst | Sep 1988 | A |
4778446 | Jensen | Oct 1988 | A |
4778456 | Lokken | Oct 1988 | A |
4792328 | Beck et al. | Dec 1988 | A |
4820265 | DeSatnick et al. | Apr 1989 | A |
4820284 | Hauri | Apr 1989 | A |
4826494 | Richmond et al. | May 1989 | A |
4834110 | Richard | May 1989 | A |
4836192 | Abbate | Jun 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4841962 | Berg et al. | Jun 1989 | A |
4846164 | Martz | Jul 1989 | A |
4851545 | Song et al. | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4917112 | Kalt | Apr 1990 | A |
4921488 | Maitz et al. | May 1990 | A |
4921492 | Schultz | May 1990 | A |
4925447 | Rosenblatt | May 1990 | A |
4931519 | Song et al. | Jun 1990 | A |
4936834 | Beck et al. | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4950483 | Ksander | Aug 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4969881 | Viesturs | Nov 1990 | A |
4972829 | Knerr | Nov 1990 | A |
4979944 | Luzsicza | Dec 1990 | A |
4990137 | Graham | Feb 1991 | A |
4997438 | Nipper | Mar 1991 | A |
5010115 | Grisoni | Apr 1991 | A |
5035884 | Song et al. | Jul 1991 | A |
5055195 | Trasch et al. | Oct 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5064653 | Sessions et al. | Nov 1991 | A |
5071409 | Rosenberg | Dec 1991 | A |
5073172 | Fell | Dec 1991 | A |
5080493 | McKown et al. | Jan 1992 | A |
5086764 | Gilman | Feb 1992 | A |
5100395 | Rosenberg | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5106362 | Gilman | Apr 1992 | A |
5106629 | Cartmell et al. | Apr 1992 | A |
5113871 | Viljanto et al. | May 1992 | A |
5115472 | Park et al. | May 1992 | A |
5115801 | Cartmell et al. | May 1992 | A |
5134994 | Say | Aug 1992 | A |
5141503 | Sewell, Jr. | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5160322 | Scheremet et al. | Nov 1992 | A |
5160328 | Cartmell et al. | Nov 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5178157 | Fanlo | Jan 1993 | A |
5181905 | Flam | Jan 1993 | A |
5184077 | Day et al. | Feb 1993 | A |
5195977 | Pollitt | Mar 1993 | A |
5197945 | Cole et al. | Mar 1993 | A |
5228431 | Giarretto | Jul 1993 | A |
5234419 | Bryant et al. | Aug 1993 | A |
5249709 | Duckworth et al. | Oct 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5263922 | Sova et al. | Nov 1993 | A |
5266326 | Barry et al. | Nov 1993 | A |
5266928 | Johnson | Nov 1993 | A |
5279550 | Habib et al. | Jan 1994 | A |
5279608 | Cherif Cheikh | Jan 1994 | A |
5307791 | Senoue et al. | May 1994 | A |
5328614 | Matsumura | Jul 1994 | A |
5333760 | Simmen et al. | Aug 1994 | A |
5336219 | Krantz | Aug 1994 | A |
5354261 | Clark | Oct 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5360398 | Grieshaber et al. | Nov 1994 | A |
5362543 | Nickerson | Nov 1994 | A |
5380280 | Peterson | Jan 1995 | A |
5380294 | Persson | Jan 1995 | A |
D357743 | Bilitz et al. | Apr 1995 | S |
5445604 | Lang | Aug 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
5456660 | Reich et al. | Oct 1995 | A |
5456745 | Rorefer et al. | Oct 1995 | A |
5462514 | Harris | Oct 1995 | A |
D364679 | Heaton et al. | Nov 1995 | S |
5480377 | Cartmell et al. | Jan 1996 | A |
5484427 | Gibbons | Jan 1996 | A |
5489280 | Russell | Feb 1996 | A |
5497788 | Inman et al. | Mar 1996 | A |
5498338 | Kruger et al. | Mar 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5536233 | Khouri | Jul 1996 | A |
5549584 | Gross | Aug 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5582596 | Fukunaga et al. | Dec 1996 | A |
5583114 | Barrows et al. | Dec 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5603946 | Constantine | Feb 1997 | A |
5609271 | Keller et al. | Mar 1997 | A |
5612050 | Rowe et al. | Mar 1997 | A |
5618556 | Johns et al. | Apr 1997 | A |
5636643 | Argenta | Jun 1997 | A |
5637080 | Geng | Jun 1997 | A |
5643189 | Masini | Jul 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5660823 | Chakrabarti et al. | Aug 1997 | A |
5662599 | Reich et al. | Sep 1997 | A |
5676650 | Grieshaber et al. | Oct 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5688225 | Walker | Nov 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5702356 | Hathman | Dec 1997 | A |
5704905 | Jensen et al. | Jan 1998 | A |
5713842 | Kay | Feb 1998 | A |
5716411 | Orgill et al. | Feb 1998 | A |
5717030 | Dunn et al. | Feb 1998 | A |
5733305 | Fleischmann | Mar 1998 | A |
5747064 | Burnett et al. | May 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5776193 | Kwan et al. | Jul 1998 | A |
5779657 | Daneshvar | Jul 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5795584 | Totakura et al. | Aug 1998 | A |
5810765 | Oda | Sep 1998 | A |
5827246 | Bowen | Oct 1998 | A |
5830176 | Mackool | Nov 1998 | A |
5830198 | Henniges et al. | Nov 1998 | A |
5830496 | Freeman | Nov 1998 | A |
5833646 | Masini | Nov 1998 | A |
5834007 | Kubota | Nov 1998 | A |
5840049 | Tumey et al. | Nov 1998 | A |
5840052 | Johns | Nov 1998 | A |
5857502 | Buchalter | Jan 1999 | A |
5868933 | Patrick et al. | Feb 1999 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5893368 | Sugerman | Apr 1999 | A |
5902256 | Benaron | May 1999 | A |
5911222 | Lawrence et al. | Jun 1999 | A |
5938626 | Sugerman | Aug 1999 | A |
5944703 | Dixon et al. | Aug 1999 | A |
5945115 | Dunn et al. | Aug 1999 | A |
5962010 | Greff et al. | Oct 1999 | A |
5964723 | Augustine | Oct 1999 | A |
5998472 | Berger et al. | Dec 1999 | A |
6010524 | Fleischmann | Jan 2000 | A |
6024731 | Seddon et al. | Feb 2000 | A |
6040493 | Cooke et al. | Mar 2000 | A |
6045541 | Matsumoto | Apr 2000 | A |
6071247 | Kennedy | Jun 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6075177 | Bahia et al. | Jun 2000 | A |
6113548 | deBoisblanc et al. | Sep 2000 | A |
6117111 | Fleischmann | Sep 2000 | A |
6117444 | Orgill et al. | Sep 2000 | A |
6124520 | Roberts | Sep 2000 | A |
6124521 | Roberts | Sep 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey | Nov 2000 | S |
6142982 | Hunt | Nov 2000 | A |
6143352 | Clark et al. | Nov 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6168788 | Wortham | Jan 2001 | B1 |
6168800 | Dobos et al. | Jan 2001 | B1 |
6174306 | Fleischmann | Jan 2001 | B1 |
6176307 | Danos et al. | Jan 2001 | B1 |
6183438 | Berguer | Feb 2001 | B1 |
6203563 | Fernandez | Mar 2001 | B1 |
6214332 | Askill et al. | Apr 2001 | B1 |
6225523 | Masini | May 2001 | B1 |
6250005 | Richards | Jun 2001 | B1 |
6252129 | Coffee | Jun 2001 | B1 |
6255552 | Cummings et al. | Jul 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6261283 | Morgan et al. | Jul 2001 | B1 |
6287521 | Quay et al. | Sep 2001 | B1 |
6325788 | McKay | Dec 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6348423 | Griffiths et al. | Feb 2002 | B1 |
6371976 | Vrzalik | Apr 2002 | B1 |
6391294 | Dettmar et al. | May 2002 | B1 |
6398761 | Bills et al. | Jun 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6402724 | Smith et al. | Jun 2002 | B1 |
6406447 | Thrash et al. | Jun 2002 | B1 |
6420622 | Johnston et al. | Jul 2002 | B1 |
6447802 | Sessions et al. | Sep 2002 | B2 |
6458109 | Henley | Oct 2002 | B1 |
6465708 | Augustine | Oct 2002 | B1 |
6471685 | Johnson | Oct 2002 | B1 |
6471982 | Lydon et al. | Oct 2002 | B1 |
6478781 | Urich et al. | Nov 2002 | B1 |
6482491 | Samuelsen et al. | Nov 2002 | B1 |
6486285 | Fujita | Nov 2002 | B2 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6491684 | Joshi et al. | Dec 2002 | B1 |
6495127 | Wallace et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
D469175 | Hall et al. | Jan 2003 | S |
D469176 | Hall et al. | Jan 2003 | S |
6509031 | Miller et al. | Jan 2003 | B1 |
6520982 | Boynton et al. | Feb 2003 | B1 |
6521251 | Askill et al. | Feb 2003 | B2 |
6528696 | Ireland | Mar 2003 | B1 |
6547467 | Quintero | Apr 2003 | B2 |
6553998 | Heaton et al. | Apr 2003 | B2 |
D475134 | Randolph | May 2003 | S |
6557704 | Randolph | May 2003 | B1 |
6566833 | Bartlett | May 2003 | B2 |
6571825 | Stacy | Jun 2003 | B2 |
6575940 | Levinson et al. | Jun 2003 | B1 |
6595949 | Shapiro | Jul 2003 | B1 |
6596704 | Court et al. | Jul 2003 | B1 |
6599262 | Masini | Jul 2003 | B1 |
D478659 | Hall et al. | Aug 2003 | S |
6607495 | Skalak et al. | Aug 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6627216 | Brandt et al. | Sep 2003 | B2 |
6629774 | Guruendeman | Oct 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6673028 | Argenta et al. | Jan 2004 | B1 |
6685681 | Lockwood | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
D488558 | Hall | Apr 2004 | S |
6730299 | Tayot et al. | May 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6787682 | Gilman | Sep 2004 | B2 |
6790438 | Constancis et al. | Sep 2004 | B1 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6855860 | Ruszczak et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6887228 | McKay | May 2005 | B2 |
6887263 | Bleam et al. | May 2005 | B2 |
6904631 | Vrzalik et al. | Jun 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6942634 | Odland | Sep 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6960181 | Stevens | Nov 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6988423 | Bolam et al. | Jan 2006 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood | Apr 2006 | B2 |
7037254 | O'Connor et al. | May 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7087806 | Scheinberg et al. | Aug 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7128719 | Rosenberg | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7129210 | Lowinger et al. | Oct 2006 | B2 |
7144390 | Hanningan et al. | Dec 2006 | B1 |
7169151 | Lytinas | Jan 2007 | B1 |
7182085 | Larsen et al. | Feb 2007 | B1 |
7182758 | McCraw | Feb 2007 | B2 |
7195624 | Lockwood | Mar 2007 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7214202 | Vogel et al. | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
7273054 | Heaton et al. | Sep 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7303757 | Schankereli et al. | Dec 2007 | B2 |
7316672 | Hunt et al. | Jan 2008 | B1 |
7322971 | Shehada | Jan 2008 | B2 |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7367342 | Butler | May 2008 | B2 |
7381211 | Zamierowski | Jun 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7396345 | Knighton et al. | Jul 2008 | B2 |
7410495 | Zamierowski | Aug 2008 | B2 |
7413570 | Zamierowski | Aug 2008 | B2 |
7413571 | Zamierowski | Aug 2008 | B2 |
7422576 | Boynton et al. | Sep 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7534927 | Lockwood et al. | May 2009 | B2 |
7553306 | Hunt et al. | Jun 2009 | B1 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7611500 | Lina et al. | Nov 2009 | B1 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7645253 | Gura et al. | Jan 2010 | B2 |
7670323 | Hunt et al. | Mar 2010 | B2 |
7678090 | Risk, Jr. | Mar 2010 | B2 |
7678102 | Heaton | Mar 2010 | B1 |
7699823 | Haggstrom et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7731702 | Byordi | Jun 2010 | B2 |
7763000 | Risk, Jr. et al. | Jul 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7811269 | Boynton et al. | Oct 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7867206 | Lockwood et al. | Jan 2011 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7886746 | Heaton et al. | Feb 2011 | B2 |
7896856 | Petrosenko et al. | Mar 2011 | B2 |
7896864 | Lockwood et al. | Mar 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7910791 | Coffey | Mar 2011 | B2 |
7927318 | Risk, Jr. et al. | Apr 2011 | B2 |
7942866 | Radi et al. | May 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7988680 | Lockwood et al. | Aug 2011 | B2 |
7998125 | Weston | Aug 2011 | B2 |
8012169 | Joshi | Sep 2011 | B2 |
8021348 | Risk, Jr. et al. | Sep 2011 | B2 |
8034037 | Adams et al. | Oct 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8062331 | Zamierowski | Nov 2011 | B2 |
8070773 | Zamierowski | Dec 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8097272 | Addison | Jan 2012 | B2 |
8100887 | Weston | Jan 2012 | B2 |
8118794 | Weston | Feb 2012 | B2 |
8123781 | Zamierowski | Feb 2012 | B2 |
8152785 | Vitaris | Apr 2012 | B2 |
8168848 | Lockwood et al. | May 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8216176 | Randolph | Jul 2012 | B2 |
8246592 | Lockwood et al. | Aug 2012 | B2 |
8282611 | Weston | Oct 2012 | B2 |
8303552 | Weston | Nov 2012 | B2 |
8348910 | Blott et al. | Jan 2013 | B2 |
8357188 | Boynton et al. | Jan 2013 | B2 |
8409157 | Haggstrom et al. | Apr 2013 | B2 |
8444612 | Patel et al. | May 2013 | B2 |
8460255 | Joshi et al. | Jun 2013 | B2 |
8540699 | Miller et al. | Sep 2013 | B2 |
8545464 | Weston | Oct 2013 | B2 |
8628505 | Weston | Jan 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8795243 | Weston | Aug 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8852149 | Weston et al. | Oct 2014 | B2 |
9211365 | Weston | Dec 2015 | B2 |
20010018602 | Augustine et al. | Aug 2001 | A1 |
20010031943 | Urie | Oct 2001 | A1 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20010043913 | Spaans et al. | Nov 2001 | A1 |
20010043943 | Coffey | Nov 2001 | A1 |
20010051178 | Blanchford et al. | Dec 2001 | A1 |
20020019602 | Gent | Feb 2002 | A1 |
20020040687 | van Der Lely et al. | Apr 2002 | A1 |
20020068913 | Fleischmann | Jun 2002 | A1 |
20020115952 | Johnson | Aug 2002 | A1 |
20020115954 | Worthley | Aug 2002 | A1 |
20020122771 | Holland et al. | Sep 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020151836 | Burden | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020169405 | Roberts | Nov 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020187182 | Kramer et al. | Dec 2002 | A1 |
20030009122 | Veras | Jan 2003 | A1 |
20030014025 | Allen et al. | Jan 2003 | A1 |
20030014786 | Meilland | Jan 2003 | P1 |
20030021775 | Freeman | Jan 2003 | A1 |
20030040478 | Drucker et al. | Feb 2003 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20030050594 | Zamierowski | Mar 2003 | A1 |
20030069535 | Shalaby | Apr 2003 | A1 |
20030069563 | Johnson | Apr 2003 | A1 |
20030093041 | Risk, Jr. et al. | May 2003 | A1 |
20030125646 | Whitlock | Jul 2003 | A1 |
20030143189 | Askill et al. | Jul 2003 | A1 |
20030144619 | Augustine | Jul 2003 | A1 |
20030199800 | Levin | Oct 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212359 | Butler | Nov 2003 | A1 |
20030219469 | Johnson et al. | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20040006319 | Lina et al. | Jan 2004 | A1 |
20040037897 | Benjamin et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040049187 | Burnett et al. | Mar 2004 | A1 |
20040064111 | Lockwood et al. | Apr 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040073152 | Karason et al. | Apr 2004 | A1 |
20040076662 | Riesinger | Apr 2004 | A1 |
20040078011 | Stevens | Apr 2004 | A1 |
20040087884 | Haddock et al. | May 2004 | A1 |
20040093026 | Weidenhagen et al. | May 2004 | A1 |
20040106888 | Lutri et al. | Jun 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040138602 | Rossen | Jul 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040220505 | Worthley | Nov 2004 | A1 |
20040241213 | Bray | Dec 2004 | A1 |
20040243073 | Lockwood | Dec 2004 | A1 |
20050012616 | Forster et al. | Jan 2005 | A1 |
20050015036 | Lutri et al. | Jan 2005 | A1 |
20050045461 | Sweetland et al. | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050090787 | Risk, Jr. et al. | Apr 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060094997 | Kurata | May 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20070004896 | Ito et al. | Jan 2007 | A1 |
20070014837 | Johnson et al. | Jan 2007 | A1 |
20070032755 | Walsh | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070141101 | Nugent et al. | Jun 2007 | A1 |
20080188820 | Joshi | Aug 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20090105671 | Daggar et al. | Apr 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090131888 | Joshi | May 2009 | A1 |
20090137973 | Karpowicz et al. | May 2009 | A1 |
20090204085 | Biggie et al. | Aug 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090299306 | Buan | Dec 2009 | A1 |
20090312723 | Blott et al. | Dec 2009 | A1 |
20100036367 | Krohn | Feb 2010 | A1 |
20100106114 | Weston et al. | Apr 2010 | A1 |
20100268198 | Buan et al. | Oct 2010 | A1 |
20100274207 | Weston | Oct 2010 | A1 |
20110028918 | Hartwell et al. | Feb 2011 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110054421 | Hartwell et al. | Mar 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20120041399 | Blott et al. | Feb 2012 | A1 |
20120053538 | Blott et al. | Mar 2012 | A1 |
20120109084 | Blott et al. | May 2012 | A1 |
20130138060 | Fleishchmann | May 2013 | A1 |
20130331822 | Patel et al. | Dec 2013 | A1 |
20130338613 | Haggstrom et al. | Dec 2013 | A1 |
20160058927 | Weston | Mar 2016 | A1 |
20180185558 | Weston | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2103033 | Nov 1992 | CA |
2115951 | Aug 1994 | CA |
2369022 | Oct 2000 | CA |
2432293 | Feb 2003 | CA |
561757 | Oct 1932 | DE |
847475 | Aug 1952 | DE |
2 809 828 | Sep 1978 | DE |
3 935 818 | May 1991 | DE |
4 012 232 | Oct 1991 | DE |
4 111 122 | Apr 1993 | DE |
2 950 4378 | Oct 1995 | DE |
198 44 355 | Apr 2000 | DE |
0 020 662 | Jul 1984 | EP |
0 355 186 | Feb 1990 | EP |
0 358 302 | Mar 1990 | EP |
0 512 543 | Nov 1992 | EP |
0 521 434 | Jan 1993 | EP |
0 541 251 | May 1993 | EP |
0 858 810 | Aug 1998 | EP |
0 888 141 | Jan 1999 | EP |
0 912 251 | May 1999 | EP |
0 782 421 | Jul 1999 | EP |
1 007 015 | Jun 2000 | EP |
1 029 585 | Aug 2000 | EP |
1 030 657 | Aug 2000 | EP |
1 088 589 | Apr 2001 | EP |
1 105 171 | Jun 2001 | EP |
1 105 180 | Jun 2001 | EP |
1 107 813 | Jun 2001 | EP |
0 564 502 | Jan 2002 | EP |
1 219 311 | Jul 2002 | EP |
0 853 950 | Oct 2002 | EP |
1 306 123 | Feb 2003 | EP |
1411874 | Apr 2004 | EP |
1 440 737 | Jul 2004 | EP |
1455701 | Mar 2006 | EP |
1507498 | Jul 2009 | EP |
2 111 804 | Oct 2009 | EP |
2 161 011 | Mar 2010 | EP |
1358456 | Jul 2010 | EP |
2 596 815 | May 2013 | EP |
1485613 | Jul 2014 | EP |
3 072 542 | Sep 2016 | EP |
2462956 | Mar 2017 | EP |
1587502 | May 2017 | EP |
1 163 907 | May 1958 | FR |
114754 | Apr 1918 | GB |
641061 | Aug 1950 | GB |
1224009 | Mar 1971 | GB |
1273342 | May 1972 | GB |
1549756 | Aug 1979 | GB |
2041756 | Sep 1980 | GB |
2195255 | Apr 1988 | GB |
2235877 | Mar 1991 | GB |
2288734 | Nov 1995 | GB |
2307180 | May 1997 | GB |
2329127 | Mar 1999 | GB |
2336546 | Jun 2000 | GB |
2344531 | Jun 2000 | GB |
2378392 | Feb 2003 | GB |
2415908 | Jan 2006 | GB |
2424582 | Oct 2006 | GB |
2435419 | Feb 2007 | GB |
H04-354722 | Dec 1992 | JP |
2003-165843 | Jun 2003 | JP |
240188 | Mar 1969 | RU |
1251912 | Aug 1986 | SU |
1762940 | Sep 1992 | SU |
WO 198001139 | Jun 1980 | WO |
WO 198002182 | Oct 1980 | WO |
WO 198401904 | May 1984 | WO |
WO 198704626 | Aug 1987 | WO |
WO 198905133 | Jun 1989 | WO |
WO 199010424 | Sep 1990 | WO |
WO 199011795 | Oct 1990 | WO |
WO 199100718 | Jan 1991 | WO |
WO 199116030 | Oct 1991 | WO |
WO 199209651 | Jun 1992 | WO |
WO 199219313 | Nov 1992 | WO |
WO 199220299 | Nov 1992 | WO |
WO 199306802 | Apr 1993 | WO |
WO 199309176 | May 1993 | WO |
WO 199309727 | May 1993 | WO |
WO 199420041 | Sep 1994 | WO |
WO 1994020133 | Sep 1994 | WO |
WO 1994023677 | Oct 1994 | WO |
WO 1995004511 | Feb 1995 | WO |
WO 199605873 | Feb 1996 | WO |
WO 1996021410 | Jul 1996 | WO |
WO 1996040174 | Dec 1996 | WO |
WO 1997003717 | Feb 1997 | WO |
WO 199718737 | May 1997 | WO |
WO 1997033922 | Sep 1997 | WO |
WO 1997042986 | Nov 1997 | WO |
WO 199806444 | Feb 1998 | WO |
WO 199913793 | Mar 1999 | WO |
WO 1999017698 | Apr 1999 | WO |
WO 1999030629 | Jun 1999 | WO |
WO 1999047097 | Sep 1999 | WO |
WO 1999065536 | Dec 1999 | WO |
WO 200007653 | Feb 2000 | WO |
WO 200021586 | Apr 2000 | WO |
WO 2000038752 | Jul 2000 | WO |
WO 200050143 | Aug 2000 | WO |
WO 200059424 | Oct 2000 | WO |
WO 2000061206 | Oct 2000 | WO |
WO 2000062827 | Oct 2000 | WO |
WO 2000064396 | Nov 2000 | WO |
WO 200119430 | Mar 2001 | WO |
WO 200134223 | May 2001 | WO |
WO 2001062312 | Aug 2001 | WO |
WO 2001066017 | Sep 2001 | WO |
WO 200185248 | Nov 2001 | WO |
WO 2002002079 | Jan 2002 | WO |
WO 2002038096 | May 2002 | WO |
WO 2002083046 | Oct 2002 | WO |
WO 2002094256 | Nov 2002 | WO |
WO 2002102864 | Dec 2002 | WO |
WO 2003005943 | Jan 2003 | WO |
WO 2003009796 | Feb 2003 | WO |
WO 2003018098 | Mar 2003 | WO |
WO 2003030966 | Apr 2003 | WO |
WO 2003045492 | Jun 2003 | WO |
WO 2003057070 | Jul 2003 | WO |
WO 2003057307 | Jul 2003 | WO |
WO 2003086232 | Oct 2003 | WO |
WO 2003092620 | Nov 2003 | WO |
WO 2003101508 | Dec 2003 | WO |
WO 2004018020 | Mar 2004 | WO |
WO 2004054632 | Jul 2004 | WO |
WO 2005009488 | Feb 2005 | WO |
WO 2005017000 | Feb 2005 | WO |
WO 2005018695 | Mar 2005 | WO |
WO 2005051461 | Jun 2005 | WO |
WO 2009111657 | Sep 2009 | WO |
Entry |
---|
International Standard ISO 10079-1, First Edition, May 15, 1991, in 2 pages. |
3M Health Care, “Controlling the Risk of Surgical Site Infections after Cardiovascular Procedures: The Importance of Providing a Sterile Surface”, Brochure, St. Paul, MN and London, Ontario, Canada, 1997, in 8 pages. |
“A Sensational Medical Discovery”, The British Journal of Nursing, Jul. 15, 1911, p. 42, in 1 page. |
Achterberg, V. et al., “Hydroactive dressings and serum proteins: an in vitro study,” Journal of Wound Care, vol. 5, No. 2, Feb. 1996, pp. 79-82, in 4 pages. |
Aeros, “Moblvac II,” 1 page, Aeros Instruments, Inc., Northbrook, IL Oct. 1988. |
Aeros, Aeros Instruments, Inc. 1111 Lakeside Dr., Gurnee, IL 60031. Aug. 1993. “Care-E-Vac”, in 2 pages. |
Aeros, Aeros Instruments, Inc. 3411 Commercial Ave., Northbrook, IL 60062. Oct. 1988. Part No. 1504-02 7M. “Instavac Aspirator”, in 1 page. |
Aeros, moblvac® III, Downloaded from internet Apr. 10, 2006. URL: http://www.aerosinstruments.com. |
Agarwala, S. et al., “Use of Mini-Vacuum Drains in Small Surgical Wounds”, Plastic and Reconstructive Surgery, Apr. 1998, vol. 101(5), pp. 1421-1422 (Correspondence), in 2 pages. |
Agrama, H.M. et al., “Functional Longevity of Intraperitoneal Drains”, Amer. Journ. of Surg., Sep. 1976, vol. 132, pp. 418-421, in 4 pages. |
Alexander, J., “Prevention of Wound Infections,” The American Journal of Surgery, Jul. 1976, pp. 59-63, vol. 132, USA. |
Alper, J.C. et al., “An Effective Dressing for a Large, Draining Abdominal Wound”, RN, Dec. 1988, pp. 24-25, in 2 pages. |
Alper, J.C. et al., “Moist Wound Healing under a Vapor Permeable Membrane”, Journ. of Amer. Acad. of Derm., Mar. 1983, vol. 8(3), pp. 347-353, in 7 pages. |
Alper, J., “Recent Advances in Moist Wound Healing,” Southern Medical Journal, Nov. 1986, pp. 1398-1404, vol. 79, No. 11, USA, in 7 pages. |
Argenta, L. et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience”, Ann Plas Surg, 1997, vol. 38, pp. 563-577 (Dec. 10, 1996), in 14 pages. |
Arnljots, B. et al., “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers,” Scandinavian Journal of Plastic and Reconstructive Surgery, 1985, vol. 19, pp. 211-213, in 3 pages. |
Article Excerpt, The Lancet, Jun. 14, 1952, pp. 1175-1176, in 2 pages. |
Arturson, M., “The Pathophysiology of Severe Thermal Injury”, JBCR, Mar./Apr. 1985, vol. 6(2), pp. 129-146, in 17 pages. |
Ashrafov, A.A. et al., “An Experimental and Clinical Validation for the Use of a Collagen Sponge for Treating the Suppurative-Inflammatory Complications of Wound Healing in Emergency Abdominal Surgery”, Klin Khir, 1993, vol. 1, PubMed, abstract downloaded from internet Apr. 28, 2006, 1 page. |
“Assessing the Patient with a Fistula or Draining Wounds”, Nursing, Jun. 1980, pp. 49-51, in 3 pages. |
Aubrey, D.A. et al., “Treatment of the Perineal Wound after Proctectomy by Intermittent Irrigation”, Arch. Surg., Oct. 1984, vol. 119, pp. 1141-1144, in 4 pages. |
Avocat, C. et al., “Nouvelle Presentation de Materiel Pour Drainage de Redon et Jost”, La Nouvelle Presse Medicale, Jun. 26, 1976, vol. 5(6), pp. 1644-1645 (in French), in 2 pages. |
Ayoub, M.H. et al., “A Study of Cutaneous and Intracompartmental Limb Pressures Associated with the Combined Use of Tourniquets and Plaster Casts”, Abstract., Proc. and Reports of Univ., Colleges, Councils, Assoc., and Societies, vol. 68-B:3, May 1986, p. 497, in 1 page. |
Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery, 1986, 4 pages. |
Bagautdinov, N.A. “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” in Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V.Ye. Volkov et al. (Chuvashia State University, Cheboksary, USSR 1986) pp. 94-96. |
Baldwin, J.F., Ed., The Columbus Medical Journal, Columbus , Ohio, 1887, vol. V., p. 561, in 1 page. |
Barbul, A. et al., Eds., Clinical and Experimental Approaches to Dermal and Epidermal Repair—Normal and Chronic Wounds, Progress in Clin. and Biol. Res., vol. 365, Proc. of the 3rd Intnl. Symp. on Tissue Repair, Miami, FL, Jan. 10-14, 1990, abstract, in 2 pages. |
Bar-El, Y. et al., “Potentially Dangerous Negative Intrapleural Pressures Generated by Ordinary Pleural Drainage Systems”, Chest, Feb. 2001, vol. 119(2), pp. 511-514. |
Barker, D.E. et al., “Vacuum Pack Technique of Temporary Abdominal Closure: A 7-Year Experience with 112 Patients”, Journal of Trauma: Injury and Critical Care, Feb. 2000, vol. 48(2), pp. 201-207, in 7 pages. |
Bascom, J., “Pilonidal Sinus”, Current Therapy in Colon and Rectal Surgery, 1990, pp. 1-8, in 8 pages. |
Benjamin, P.J., “Feculent Peritonitis: A Complication of Vacuum Drainage”, Br. J. Surg., 1980, vol. 67, pp. 453-454, in 2 pages. |
Berman, A. et al., “Closed Suction Drainage”, Orthopedics, Mar. 1990, vol. 13(3), pp. 310-314, in 5 pages. |
Berman, A. et al., “Comparison Between Intermittent (Spring-Loaded) and Continuous Closed Suction Drainage of Orthopedic Wounds: A Controlled Clinical Trial”, Orthopedics, Mar. 1990, vol. 13(3), in 9 pages. |
Besst, J.A., “Wound Healing—Intraoperative Factors”, Nursing Clinics of North America, Dec. 1979, vol. 14(4), pp. 701-712, in 7 pages. |
Betancourt, S., “A Method of Collecting the Effluent from Complicated Fistula of the Small Intestine,” Dept. of Surgery, Allegheny General Hospital, Pittsburgh, p. 375, USA, in 1 page. |
Bevan, D. et al., “Diverse and potent activities of HGF/SF in skin wound repair”, Journal of Pathology, vol. 203, 2004, pp. 831-838. |
Biblehimer, H., “Dealing With a Wound that Drains 1.5 Liters a Day,” RN, Aug. 1986, pp. 21-23, USA, in 5 pages. |
Bier, A., Hyperemia as a Therapeutic Agent, Ed. Dr. Gustavus M. Blech, A. Robertson & Co., Chicago 1905. (the entire reference has been submitted, but pp. 74-85 may be the most relevant). |
Birdsell, D.C., et al., The Theoretically Ideal Donor Site Dressing; Annals of Plastic Surgery, vol. 2, Jun. 1979; Gadgetry, Div. of Plastic Surgery, Foothills, Hospital, Calgary, Canada, 535-537. |
Bischoff, M. et al., “Vacuum-Sealing Fixation of Mesh Grafts”, Euro. Journ. Plast. Surg., Jul. 2003, vol. 26(4), pp. 189-190, abstract downloaded from internet Apr. 6, 2006, in 1 page. |
Blumberg, J. et al., “The Effect of Specific Compression on Soft-Tissue Response to Formalinized PVA (Ivalon) Sponge: A Critical Evaluation”, Annals Surg., Mar. 1960, vol. 151(3), pp. 409-418, in 10 pages. |
Bonnema, J. et al., “A Prospective Randomized Trial of High Versus Low Vacuum Drainage after Axillary Dissection for Breast Cancer”, Amer. Journ. Surg., Feb. 1997, vol. 173, pp. 76-79, in 4 pages. |
Boretos, J., “Cellular Polymers for Medical Use: The Vital Role of Porosity and Permeability,” Cellular Polymers, 1984, vol. 3, pp. 345-358, in 14 pages. |
Britton, B.J. et al., A Comparison Between Disposable and Non-Disposable Suction Drainage Units: A Report of a Controlled Trial, Br. J. Surg., 1979, vol. 66, pp. 279-280, in 5 pages. |
Broader, J.H. et al., “Management of the Pelvic Space after Proctectomy”, Br. J. Surg., 1974, vol. 62, pp. 94-97, in 4 pages. |
Brubacher, L., “To Heal a Draining Wound”, RN, Mar. 1982, pp. 30-35, USA, in 7 pages. |
Brummelkamp, W.H. et al., “High-vacuum drainage and primary perineal wound closure in abdominoperineal excision of the rectum”, The Netherlands Journal of Surgery, 1991, pp. 236-238, Netherlands. |
Bruno, P., “The Nature of Wound Healing: Implications for Nursing Practice”, Nursing Clinics of North American, Dec. 1979, vol. 14(4), pp. 667-682, in 9 pages. |
Bucalo, B. et al., “Inhibition of Cell Proliferation by Chronic Wound Fluid.” Wound Repair and Regeneration. Miami, 1993. pp. 181-186, in 6 pages. |
Burdette-Taylor, S.R., “Use of the Versatile One (V1) for Closed Suction Drainage to Stimulate Closure in Chronic Wounds in Home Care”, Case Study Presentation, 2003, in 2 pages. |
Bush, G.K., What is a Counter Irritant? Name Three and the Method of Applying Them , Brit. Journ. Nurs., Jun. 1934, p. 142, in 1 page. |
Calhoun, P. et al., “Pouching Management of Patients with Open Abdomen, Eviscerations and Bowel Fistulas”, Case Studies, Univ. of Miami/Jackson Memorial Medical Center, in 1 page. |
Candiani, P. et al., “Repair of a Recurrent Urethrovaginal Fistula with an Island Bulbocavernosus Musculocutaneous Flap”, Plastic and Reconstructive Surgery, Dec. 1993, pp. 1393-1394, in 2 pages. |
Carroll, P.L., The Principles of Vacuum and its Use in the Hospital Environment, 2nd Ed., 1986, in 30 pages. |
Chardak, W. et al., “Experimental Studies on Synthetic Substitutes for Skin and Their Use in the Treatment of Burns,” Annals of Surgery, vol. 155, No. 1, 1962, pp. 127-139, in 13 pages. |
Chariker, M.E. et al, “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery. Jun. 1989, pp. 59-63, vol. 34 USA. |
Chart: Influence of Wound Closure on Healing of Perineal Wound after Abdominoperineal Resection or Total Proctocolectomy, excerpt faxed Jan. 23, 2006, 1 page. |
Chua Patel, C.T. et al., “Vacuum-Assisted Closure”, AJN, Dec. 2000, vol. 100(12), pp. 45-49, in 6 pages. |
Clark, R. et al., The Molecular and Cellular Biology of Wound Repair, Chapter 1, 1988, in 31 pages. |
Cobb, J.P., “Why Use Drains?”, Br. J. Bone Joint Surg., Nov. 1990, vol. 72-B(6), pp. 993-995, in 3 pages. |
Cooper, D.M., “Optimizing Wound Healing”, Nursing Clinics of North America, Mar. 1990, vol. 25(1), pp. 163-179, in 10 pages. |
Cooper, D.M., “Postsurgical Nursing Intervention as an Adjunct to Wound Healing”, Nursing Clinics of North America, Dec. 1979, vol. 14(4), pp. 713-726, in 8 pages. |
Cooper, S. et al., “Topical Negative Pressure”, Commentary, International Journal of Dermatology, 2000, vol. 39, pp. 892-898, in 3 pages. |
Costunchenok, B.M., et al., Effect of Vacuum on Surgical Purulent Wounds, Vestnik Chirurgia 1986, Sep. 18-20, (in Russian with English translation). |
Cotton, P.B. et al., “Early Endoscopy of Oesophagus, Stomach, and Duodenal Bulb in patients with Haematemesis and Melaena”, Br. Med. Journ., Jun. 1973, vol. 2, pp. 505-509. |
Creative Medical Laboratories, “Instruction Manual”, Inc. P.O. Box 6347, Rochester, Minn. 55903. “TUGS” (Transportable Universal Gradient Suction), in 8 pages. |
Crisp, W.J. et al., “Granuflex Dressings for Closed Surgical Wounds Combined with Suction Drainage”, Annals of the Royal College of Surgeons of England, 1990, vol. 72, p. 76, in 2 pages. |
Cucuroos, Y.C., “Vacuum Drainage of Post Operative Wounds”, Kiev Army Hospital, Dept. of Hospital Surgery, Kiev medical University, pp. 64-65, in Russian with English translation, in 5 pages. |
Curtin, L.L., “Wound Management: Care and Cost—an Overview”, Nursing Management, Feb. 1984, vol. 15, pp. 22-25, in 4 pages. |
Davis, J.C. et al., Eds., “Chapter 1—Infection and Oxygen”, Problem Wounds: The Role of Oxygen, 1988, pp. 1-15. |
Davydov et al. “Pathogenic Mechanism of the Effect of Vacuum Therapy on the Course of the Wound Process” Dec. 1986. |
Davydov, Y. et al., “Pathogenic Mechanism of the Effect of Vacuum Therapy on the Course of the Wound Process”, Khirurgiya, Dec. 1990, No. 6, pp. 42-47, in Russian with English translation, in 15 pages. |
Davydov, et al., “Vacuum Therapy in the treatment of Acute Purulent Diseases of Soft Tissues and Purulent Wounds,” Vestnik Khirurgii, (Surgeon's Herald), Medicine Publishers, 1988. |
Davydov, Y.A., et al. Justifying the Usage of Force Early Secondary Sutures in treatment of Purulent Wounds by the Vacuum Therapy, Vestnik Chirurgia 1990, March Edition, 126-129 (in Russian with English translation). |
Davydov, Y.A., et al., Concept of Clinico-Biological Management of Wound Process in Treatment of Purulent Wounds with the Help of Vacuum Therapy, Vestnik Chirurgia 1991, February Edition, 132-135 (in Russian with English translation). |
Davydov, Y.A. et al., “The Bacteriological & Cytological Assessment of Vacuum Therapy of Purulent Wounds”, Vestnik Chirurgia 1988, October Edition 48-52 (in Russian with English translation). 1987. |
Davydov, Y.A. et al., “Vacuum Therapy in the Treatment of Purulent Lactational Mastitis”, Vestnik Chirurgia, Grexova 1986, September Edition, 66-70 (in Russian with English translation). |
Davydov, Yu A., et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 15-17. |
Davydov, Yu A., et al., “The Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 11-14. |
De Lange, M.Y. et al., “Vacuum-Assisted Closure: Indications and Clinical Experience”, Eur J Plast Surg, 2000, vol. 2, Feb. 9, 2000, pp. 178-182, in 5 pages. |
Dillon, R., “Treatment of Resistant Venous Stasis Ulcers and Dermatitis with the End-Diastolic Pneumatic Compression Boot”, Angiology—The Journal of Vascular Diseases, pp. 47-55, Jan. 1986, in 9 pages. |
Dilmaghani, A. et al., “A Method for Closed Irrigation and Suction Therapy in Deep Wound Infections,” Journal of Bone and Joint Surgery, 1969, vol. 51-A, No. 2, pp. 323-342, in 20 pages. |
Domkowski, P.W. et al., “Evaluation of Vacuum-Assisted Closure in the Treatment of Poststernotomy Mediastinitis”, Journ. of Thorac. and Cardiovascular Surg., Aug. 2003, vol. 126(2), pp. 386-390, in 5 pages. |
Doss, M. et al., “Vacuum-Assisted Suction Drainage Versus Conventional Treatment in the Management of Poststernotomy Osteomyelitis”, Euro. Journ. Cardio-Thoracic. Surg., vol. 22, 2002, pp. 934-938, in 4 pages. |
Draper, J., “Make the Dressing Fit the Wound”, Nursing Times, Oct. 9, 1985, pp. 32-35, in 4 pages. |
Dunbar, J.M., “State What You Have Learned Recently on the Up-to-Date Care of Wounds”, Brit. Journ. Nurs., Dec. 1941, p. 200, in 1 page. |
Dunlop, M.G. et al. “Vacuum Drainage of Groin Wounds after Vascular Surgery: A Controlled Trial”, Br. J. Surg., May 1990, vol. 77, pp. 562-563, in 2 pages. |
Eaglstein, W.H. et al., “Wound Dressings: Current and Future”, Clin, and Exper. Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds, 1991, pp. 257-265, in 5 pages. |
ECRI, Target Report, “Negative Pressure Wound Therapy for Chronic Wounds”, Jan. 24, 2006, pp. 1-7, downloaded from internet, in 7 pages. URL: http://www.target.ecri.org/summary/detail.aspx?dox_id=1155. |
Eisenbud, D.E., Modern Wound Management, Anadem Publishing, Chap. 16, 109-116, 2000. |
Ellingwood, F., “Ellingwood's Therapeutist”, Jun. 14, 1908, vol. 2(6), pp. 32-33, in 4 pages. |
Elwood, E.T. et al., “Negative-Pressure Dressings in the Treatment of Hidradenitis Suppurative”, Annals of Plastic Surgery, Jan. 2001, vol. 46(1), pp. 49-51, in 3 pages. |
Engdahl, O. et al., “Quantification of Aspirated Air Volume reduces Treatment Time in Pneumothorax”, Eur. Respir, J., 1990, vol. 3, pp. 649-652, in 6 pages. |
Engdahl, O. et al., “Treatment of Pneumothorax: Application of a Technique which Quantifies Air Flow Through the Chest Drain”, Adv. in Therapy, May/Jun. 1988, vol. 5(3), pp. 47-54. |
Erichsen, J.E., The Science and Art of Surgery, London: Longmans, Green, and Co., 1895, vol. 1, pp. 258-259, and 289, in 4 pages. |
Fabian, T.S., The Evaluation of Subatmospheric Pressure and Hyperbaric Oxygen in Ischemic Full-Thickness Wound Healing, Ischemic Full-Thickness Wound Healing, Dec. 2000, vol. 66(12), pp. 1136-1143, in 8 pages. |
Falanga, V., “Growth Factors and Chronic Wounds: The Need to Understand the Microenvironment.” Journal of Dermatology, vol. 19, pp. 667-672, 1992, in 6 pages. |
Fay, M.F., “Drainage Systems: Their Role in Wound Healing”, AORN Journal, Sep. 1987, vol. 46(3), pp. 442-455. |
Fellin, R., “Managing Decubitus Ulcers”, Nursing Management, Feb. 1984, pp. 29-30, in 2 pages. |
Fingerhut, A., et al., “Passive vs. Closed Suction drainage after Perineal Wound Closure Following Abdominoperineal Rectal Excision for Carcinoma”, Dis Colon Rectum, Sep. 1995, pp. 926-932, in 7 pages. |
Finley, J., “Practical Wound Management: A Manual of Dressing,” London, pp. 45, 127, 143, 149, 207, 1981, in 7 pages. |
Firlit, C.F. et al., “Surgical Wound Drainage: A Simple Device for Collection”, Journ. of Urology, Aug. 1972, vol. 108, p. 327, in 1 page. |
Fisher, J. et al., “A Technique for Skin Grafting Around Abdominal Wall Fistulas”, Annals of Plastic Surgery, vol. 11:6, Dec. 1983, pp. 563-564, in 2 pages. |
Flanagan, S. et al., “Optional Sump: Novel Use of Triple Lumen Closed Drainage System”, Anz. J. Surg., Nov. 2002, vol. 72(11), pp. 806-807, abstract downloaded from internet Nov. 30, 2003, in 1 page. |
Fleischmann, “Vacuum sealing: indication, technique, and results,” European Journal of Orthopaedic Surgery & Traumatology, vol. 5(1), 1995, pp. 37-40. |
Fleischmann, W. Acta Orthopaedical Belgica, “Treatment of Bone and Soft Tissue Defects in Infected Nonunion,” vol. 58, Suppl. I-1992, pp. 227-235, in 9 pages. |
Fleischmann, W. Unfall Chirurg, Springer-Variag, “Vakuumversiegelung zur Behandlung des Weichteilschadens bei offenen Frakturen,” (English abstract, no English translation), 1993, pp. 488-492. |
Fleischmann, W. Wund Forum Spezial, “Vakuumversiegelung zur Behandlung von Problemwunden” (with English translation: Vacuum Sealing for Treatment of Problematical Wounds), IHW '94, 6 pages. |
Flynn, M.E. et al., “Wound Healing Mechanisms”, Amer. Journ. of Nursing, Oct. 1982, 1544-1556, in 14 pages. |
Fox, J.W. et al., “The Use of Drains in Subcutaneous Surgical Procedures”, Amer. Journ. of Surg, Nov. 1976, vol. 132, pp. 673-674, in 2 pages. |
Fujimori, R. et al., “Sponge Fixation Method for Treatment of Early Scars,” From the Department of Dermatology in the Faculty Medicine, Kyoto University, vol. 42, No. 4, Oct. 1968, pp. 323-326, in 5 pages. |
Garcia-Rinaldi, R. et al., “Improving the Efficiency of Wound Drainage Catheters”, Amer. Journ. of Surg., Sep. 1975, vol. 130, pp. 372-373, in 2 pages. |
Gill, P., “What is a Counter-Irritant? Name Three and the Method of Applying Them”, Brit. Journ. Nurs., Jun. 1934, p. 142, in 1 page. |
Goddard, L., “Inflammation: Its Cause and Treatment”, Brit. Journ. Nurs., Jan. 1944, p. 2, in 1 page. |
Gogia, P., “The Biology of Wound Healing”, Ostomy/Wound Management. Nov.-Dec. 1992, pp. 12-20. |
Gouttefangeas, C. et al., “Functional T Lymphocytes Infiltrate Implanted Polyvinyl Alcohol Foams During Surgical Wound Closure Therapy”, Clin. Exp. Immunol., 2001, vol. 124, pp. 398-405, in 8 pages. |
Greene, M. A. et al., “Laparotomy Wound Closure with Absorbable Polyglycolic Acid Mesh”, Surgery, Gynecology and Obstetrics, Mar. 1993, vol. 176, pp. 213-218. |
Grishdevich, V. et al., “Postburn Facial Resurfacing with a Split Ascending Neck Flap”, Plastic and Reconstructive Surgery, Dec. 1993, pp. 1384-1391, in 8 pages. |
Grobmyer, S.R. et al., “High-Pressure Gradients Generated by Closed-Suction Surgical Drainage Systems”, Surg. Infect. (Larchmt), Autumn 2002, vol. 3(3), pp. 245-249, abstract downloaded Nov. 30, 2003, in 1 page. |
Grover, R. et al., “Recent Advances: Plastic Surgery”, Clinical Review, BMJ, Aug. 8, 1998, vol. 317, pp. 397-400, in 5 pages. |
Gwan-Nulla, D.N. et al., “Toxic Shock Syndrome Associated with the Use of the Vacuum-Assisted Closure Device”, Ann. Plast. Surg., Nov. 2001, vol. 47(5), pp. 552-554, in 3 pages. |
Hallstrom, B.R. et al., “Postoperative Course after Total Hip Arthroplasty: Wound Drainage versus No Drainage”, Orthopaedic Review, Jul. 1992, pp. 847-851, in 5 pages. |
“Hanbok för Hälso-Och Sjukvàrdsarbete Lokal Anvisning för Landstinget Sörmland”, Jan. 2001, in Swedish, downloaded from internet Aug. 14, 2001, in 7 pages. URL: http://www.landstinget.sormland.se. |
Hargens, A. et al., “Lower Body Negative Pressure to Provide Load Bearing in Space”, Aviation, Space and Environmental Medicine, Oct. 1991, pp. 934-937, in 4 pages. |
Hargens, A. et al., “Control of Circulatory Functions in Altered Gravitational Fields”, Space Physiology Laboratory Life Science Division, NASA Ames Research Center, Physiologist, Feb. 1992, vol. 35(1 Suppl):S80-3, in 4 pages. |
Harkiss, K., “Cheaper in the Long Run”, Community Outlook, Aug. 1985, pp. 19-22. |
Harle, A., “Schwachstellen herkommlicher Drainagen,”Z Orthop, vol. 127, 1989, pp. 513-517. |
Hartz, R.S. et al., “Healing of the Perineal Wound”, Arch. Surg., Apr. 1980, vol. 115, pp. 471-474, in 4 pages. |
Hay, J. et al., “Management of the Pelvic Space With or Without Omentoplasty after Abdominoperineal Resection for Carcinoma of the Rectum: a Prospective Multicenter Study”, Eur. J. Surg, 1997, abstract only, in 1 page. |
Hersle, K. et al., “Uses of Dextranomer Absorbent Pads After Cryosurgery of Cutaneous Malignancies”, The Journal of Dermatologic Surgery and Oncology, vol. 8, Jan. 1982, in 4 pages. |
Hilsabeck, J.R., “The Presacral Space as a Collector of Fluid Accumulations Following Rectal Anastomosis: Tolerance of Rectal Anastomosis to Closed Suction Pelvic Drainage”, Amer. Soc. of Colon and Rectal Surgeons, vol. 25(7), Oct. 1982, in 5 pages. |
Hilton, P., “Surgical Wound Drainage: A Survey of Practices among Gynaecologists in the British Isles”, Br. Journ. of Obstetrics and Gynaecology, Oct. 1988, vol. 95, pp. 1063-1069, in 7 pages. |
Hollis, H.W. et al., “A Practical Approach to Wound care in patients with Complex Enterocutaneous Fistulas”, Surg., Gyn. & Obs., Aug. 1985, vol. 161, pp. 179-181, in 3 pages. |
Hugh, T.B., “Abdominal Wound Drainage”, Med. Journ. of Australia, May 4, 1987, vol. 146, p. 505 (Correspondence), in 1 page. |
Hulten, L. et al., “Primary Closure of Perineal Wound after Proctocolectomy or Rectal Excision”, Acta Chir. Scand., 1971, vol. 137, pp. 467-469, in 3 pages. |
Hunt, T.K. et al., Eds., Fundamentals of Wound Management, Appleton-Century-Crofts/New York, 416-447, 1979, in 19 pages. |
Ilizarov, G.A., “The Tension-Stress Effect on the Genesis and Growth of Tissues: Part II. The Influence of the Rate and Frequency of Distribution”, Clinical Orthopaedics and Related Research, Feb. 1989, vol. 239, pp. 263-283, in 21 pages. |
Izmailov, S.G. et al., “Device for Treatment of wounds and Abdominal Cavity”, Contents, Surgery No. 8, 1997, downloaded from internet, in 1 page. URL: http://www.mediasphera.ru/surgery/97/8/e8-97ref.htm. |
Izmailov, S.G., “The Treatment of Eventrations with a Special Apparatus”, Abstracts, Surgery No. 1, 1997, downloaded from internet, in 1 page. URL: http://www.mediasphera.ru/surgery/97/1/el-97ref.htm. |
Jeter, K. et al., “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, Chapter 27, pp. 240-246, 1990, in 7 pages. |
Johnson, F.E., “An Improved Technique for Skin Graft Placement using a Suction Drain”, Surgery, Gynecology & Obstetrics, Dec. 1984, vol. 159(6), pp. 584-585, in 3 pages. |
Kazan Medical Institute Doctors, “A Gadget to Bring the Wound Edges Close”, Aug. 20, 1985, pp. 78-79 (in Russian with English translation), in 4 pages. |
KCI, Inc., “The V.A.C. System”, 2000-2001, Brochure, in 2 pages. |
Keen, W.W., Ed., “Surgery—Its Principles and Practice”, 1919, W. B. Saunders Company, p. 56, excerpt, in 2 pages. |
Keith, C.F., “Wound Management Following Head and Neck Surgery”, Nursing Clinics of North America, Dec. 1979, vol. 14(4), pp. 761-779, in 10 pages. |
Kennard, H.W., “Bier's Hyperaemia”, British Journal of Nursing, Mar. 20, 1909, p. 223, in 1 page. |
Khil'Kin, A.M. et al., “Use of a Collagen Hemostatic Sponge for the Experimental Closing of the Surface of a Liver Wound” (article in Russian), EKSP Khir Anesteziol, Nov.-Dec. 1974, vol. 6, pp. 38-41, citation cownloaded from the internet Apr. 24, 2006, in 1 page. URL:http://www.ncbi.nlm.nih.gov. |
The Kremlin Papers, “A Collection of Published Studies Complementing the Research and Innovation of Wound Care”, The Kremlin Papers—Perspectives in Wound Care, Russian Medical Journal, Vestnik Khirurgii, Blue Sky Publishing (2004), pp. 2-17, in 17 pages. |
Kim, S.H. et al., “Wangensteen Suction Drainage, Apparatus in Neurosurgical Practice”, Dept. of Neurosurgery, Yonsei University of College of Medicine, Seoul, Korea, 1975, pp. 159-160, abstract only (in Korean and English), in 2 pages. |
Klemp, P. et al., “Subcutaneous Blood Flow in Early Male Pattern Baldness”, Journal of Investigative Dermatology, 1989, pp. 725-726, in 2 pages. |
Kloth, L.C. et al., “Chapter 10—Adjunctive Interventions for Wound Healing”, Wound Healing Alternatives in Management, 3rd Ed., 2002, pp. 339-352, in 15 pages. |
Knight, M., “A Second Skin for Patients with Large Draining Wounds”, Nursing, Jan. 1976, p. 37, USA, in 1 page. |
Kohlman, P. et al, “Pouching Procedure to Collect Drainage From Around a Biliary Drainage Catheter,” Ostomy/Wound Management, Nov./Dec. 1991, vol. 37, pp. 47-50. |
Kostiuchenok, B. M., et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 3-4. |
Landes, R.R. et al., “An Improved Suction Device for Draining Wounds,” Arch. Surg., May 1972, vol. 104, p. 707, in 1 page. |
Landis, E.M. et al., “The Effects of Alternate Suction and Pressure on Blood Flow to the Lower Extremities”, Alternate Suction and Pressure, J Clin Invest. Sep. 1933, vol. 12(5), pp. 925-961. |
Lehrman, S., “The Not-So-Bald-Truth”, Science, Sep. 1992, p. 42, in 1 page. |
Letsou, G. et al., “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”, Journal of Cardiovascular Surgery 3, Toronto, Sep. 1989, pp. 634-639, in 6 pages. |
Linden, W. et al. “Randomized Trial of Drainage After Cholecystectomy”, Modern Operative Techniques, vol. 141, Feb. 1981, pp. 289-294, in 6 pages. |
Lockwood, C.B., “Aseptic Surgery, Drainage”, British Journal of Nursing, Mar. 26, 1904, p. 245, in 1 page. |
Lumley, J.S.P. et al., “The Physical and Bacteriological Properties of Disposable and Non-Disposable Suction Drainage Units in the Laboratory”, British Journal of Surgery, 1974, vol. 61, pp. 832-837, in 6 pages. |
Lundvall, J. et al., “Transmission of Externally Applied Negative Pressure to the Underlying Tissue: A Study on the Upper Arm of Man”, Acta Physiol. Scand. 1989, vol. 136, pp. 403-409, in 7 pages. |
Maddin, W. et al., “The Biological Effects of a Pulsed Electrostatic Field with Specific References to Hair: Electrotrichogenesis”, International Journal of Dermatology, vol. 29, Jul./Aug. 1990, pp. 446-450, in 5 pages. |
Magee, C. et al., “Potentiation of Wound Infection by Surgical Drains”, Amer. Journ. of Surg., May 1976, vol. 131, pp. 547-549, in 3 pages. |
Maitland, I. et al, “Suction Drainage”, Brit. J. Surg, Mar. 1970, vol. 57(3), pp. 195-197, in 5 pages. |
Mayo, C.W., “The One-Stage Combined Abdominoperineal Resection for Carcinoma of the Rectum, RectoSigmoid and Sigmoid”, Surgical Clinics of North America, Aug. 1939, Mayo Clinic No. 1011-1012, in 9 pages. |
McFarlane, R. M., “The Use of Continuous Suction Under Skin Flaps”, F.R.C.S.(c), vol. 1, 1958, pp. 77-86, in 10 pages. |
McGuire, S., “Drainage after Abdominal Section”, British Journal of Nursing, Dec. 15, 1903, pp. 447-449, in 3 pages. |
McLaughlan, J., “Sterile Microenvironment For Postoperative Wound Care”, The Lancet, pp. 503-504, Sep. 2, 1978, in 2 pages. |
Medela, Inc., Pleupump MK II, Aug. 14, 2001, Brochure (in German). 12 pages. |
Mendez-Eastman, S., Guidelines for Using Negative Pressure Wound Therapy, Advances in Skin & Wound Care, 14(6), Nov./Dec. 2001, 314-325. |
Mendez-Eastman, S., “When Wounds Won't Heal”, RN, Jan. 1998, pp. 2-7, in 7 pages. |
Meyer et al., Bier's Hyperemic Treatment, Fig. 69-70, 1908, p. 557, in 1 page. |
Meyer and Schmieden, Bier's Hyperemic Treatment, Published 1908 W. B. Saunders Company, 44-65. |
Meyer, M.D., et al., “In Surgery, Medicine and the Specialties A Manual of its Practical Application”, Bier's Hyperemic Treatment, Second Revised Edition, W.B. Saunders Company, 1909. |
Meyer, W. & Schmieden, V., Bier's Hyperemic Treatment, W B. Saunders Company 1908, (the entire reference has been submitted, but pp. 44-65 may be the most relevant). |
Miles, W., “Technique of the Radical Operation for Cancer of the Rectum”, The British Journal of Surgery, 2006, pp. 292-304, United Kingdom 1914-1915. |
Miles, W.E., A Method of Performing Abdominoperineal Excision for Carcinoma of the Rectum and of the Terminal Portion of the Pelvic Colon, The Lancet, Dec. 19, 1908, 1812-1813. |
Milsom, I. and A. Gustafsson, An Evaluation of a Post-Operative Vacuum Drainage System, Curr. Med. Res. Opin. (1979), 6, 160-164. |
Mitchell, R. et al., “Role of Stem Cells in Tissue Homeostasis”, Pocket Companion to Robbins and Cotran Pathologic Basis of Disease, Seventh Ed., 2006, in 1 page. |
Moloney, G. E., “Apposition and Drainage of Large Skin Flaps by Suction”, ANZ Journal of Surgery vol. 26, Issue 3, Feb. 1957, pp. 173-179. |
Morykwas, M. J., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997) 553-562, Dec. 10, 1996. |
Morykwas, M.J., et al., Effects of Varying Levels of Subatmospheric Pressure on the Rate of Granulation Tissue Formation in Experimental Wounds in Swine, Abs., Ann. Plast. Surg. 2001, 47: 547. |
Morykwas, Michael J., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation”, Ann Plast Surg 1997;38:553-562 (Dec. 10, 1996). |
Moserova, J. and E. Houskova, The Healing and Treatment of Skin Defects, 1989, 116-143. |
Moss, W., What is Cellulitis? Describe Some Forms of Treatment You Would Expect to be Used for Cellulitis of the Arm, Brit. Journ. Nurs., Nov. 1935, 282. |
Mulder, G.D., Ed., et al., Clinicians' Pocket Guide to Chronic Wound Repair, Wound Healing Publications, Spartanburg, SC, 1991, 54-55. |
Mullner, T., et al., The Use of Negative Pressure to Promote the Healing of Tissue Defects: A Clinical Trial Using the Vacuum Sealing Technique, Br. J. Plast. Surg., Apr. 1997, 51(1), 79, Abs. |
Musashaikhov, K.T., et al., The Course of Wound Healing under the Influence of Polyphepan in patients with Diabetes Mellitus, Abstracts, Surg. No. 5, 1997, Downloaded from internet, http://www.mediasphera.ru/surgery/97/5/e5-97ref.htm, 1 page. |
Nakayama et al., Ann. Plast. Surg., 26: 499-502 (1991), “A New Dressing Method for Free Skin Grafting in Hands.” |
Nakayama, Y. et al., “A New Method for the Dressing of Free Skin Grafts”, Plastic and Reconstructive Surgery, Dec. 1990, pp. 1216-1219. |
Nasser, A.N., The Use of the Mini-Flap Wound Suction Drain in maxillofacial Surgery, Annals of the Royal College of Surgeons of England, 1986, 68, 151-153. |
Navsaria, P.H., et al., Temporary Closure of Open Abdominal Wounds by the Modified Sandwich-Vacuum Pack Technique, Br. Journ. Surg., 2003, 90, 718-722. |
Nghiem, D.D., A Technique of Catheter insertion for Uncomplicated Peritoneal Dialysis, Surgery, Gynecology & Obstetrics, Dec. 1983, 157, 575-576. |
Nicholas, J.M., Options for Management of the Open Abdomen, Presentation from Emory University School of Medicine, 66 pgs. Invited Speaker American College of Surgeons 32nd Annual Spring Meeting, General Session 12—Presentation and Panel Discussion on The Open Abdomen in General Surgery—How Do You Close the Abdomen When You Can't—Boston Marriott Copley Place Hotel, Boston, MA Apr. 26, 2004. |
Nightingale, K., Making Sense of wound Drainage, Nursing time Jul. 5, 1989, 85(27), 40-42. |
Noblett, E.A., What is an Empyema? What Operations are Undertaken for its Relief, and What Have You to Say About the After-Nursing?, Brit. Journ. Nurs., Apr. 29, 1916, 375. |
Nursing75, “Wound Suction: Better Drainage with Fewer Problems”, Nursing, vol. 5, No. 10, Oct. 1975, pp. 52-55. |
O'Byrne, C., Clinical Detection and Management of Postoperative Wound Sepsis, Nursing Clinics of North American, Dec. 1979, 14(4), 727-741. |
Office Action dated Jun. 9, 2011 for U.S. Appl. No. 12/848,817 in 25 pages. |
Ohotskii, V.P., et al., Usage of Vacuum Suction During the Primary Surgical Debridement of Open Limb Injuries, Sovetskaya Medicina, 1973, January, 17-20 (in Russian with English translation). |
Olenius et al., “Mitotic Activity in Expanded Human Skin.” Plastic and Reconstructive Surgery. Feb. 1993. 213-215. |
Orgill, D., et al., Current Concepts and Approaches to Wound Healing, Critical Care Medicine, Sep. 1988, 16(9), 899-908. |
Orringer et al., “Management of Wounds in Patients with Complex Enterocutaneous Fistulas,” Surgery, Gynecology, & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
Oschsner, A.J., Surgical Diagnosis and Treatment, 1921, 11, 266-269. |
Parulkar, B.G., et al., Dextranomer Dressing in the Treatment of Infected Wounds and Cutaneous Ulcers, J. Postgrad. Med., 1985, 31(1), 28-33. |
Penman, M., What Are the Signs and Symptoms of Gallstones? What Instruments Would You have Ready for the Operation? How Would You Nurse a Case After Operation?, Brit. Journ. Nurs., Aug. 9, 1919, 88. |
Precision Medical, Power VAC+ Intermittent Aspirator, http://precisionmedical.com Downloaded from internet Apr. 10, 2006, 2 pages. |
Johnson, P., “The Use of Continuous Negative Pressure after Laryngectomy and Radical Neck Dissection”, Surgery, Gynecology & Obstetrics, Aug. 1956, pp. 244-246, USA. |
Raffl, A., “Use of Negative Pressure Under Skin Flaps After Radical Mastectomy”, Dept. of Surgery, State Univ. of N.Y., College of Medicine, Syracuse, NY, submitted for publication Apr. 1953, p. 1048, USA. |
Ramirez, O.M. et al., “Optimal Wound Healing under Op-Site Dressing”, Ideas and Innovations, Plast Reconstr Surg., vol. 73(3), pp. 474-475. |
Ranson, John H. M.D., “Safer Intraperitoneal Sump Drainage”, Surgery Gynecology and Obstetrics, pp. 841-842, 1973 vol. 137. |
Redon, H. and J. Troques, La Fermeture Sous Depression des Plaies Etendues, Academie de Chirurgie, Mar. 1954, 304-306. (in French). |
Reimann, D., et al., Successful Treatment Due to Vacuum Seal Technique of a Severe Scedosporium Apiospermum Skin Infection in a Renal Transplant Recipient, Nephrol. Dial. Transplant, 2004, 19 (1), 245-248. |
Richter, Treatment of Inflammatory Conditions of the Skin with Hot Baths, Brit. Journ. Nurs., Aug. 25, 1906, 149. |
Roberts, R.H., et al., Randomised Trial of Medinorm LVS and Surgivac Drainage System after Operations for Breast Cancer May 1999, Amer. Journ. Surg., Feb. 1997, 2 pgs. |
Robertson, “The Influence upon Wound Contraction of a Negative Interstitial Fluid Pressure Within Granulation Tissue,” Journal of Anatomy, 1969, vol. 105, No. 1, p. 189. |
Rosser, C.J., et al., A New Technique to Manage Perineal Wounds, Infections in Urology, Mar./Apr. 2000, 4 pgs. |
Royle, G.T. and B.J. Britton, Disposable Drains, Articles of the Royal College of Surgeons of England, (1984), vol. 66, 1 page. |
Russ and Fleischmann, Vakuumversiegelung, List of References (in English and German), 2000, 4 pgs. |
Sagi, A., Burn Hazard from Cupping—An Ancient Universal Medication Still in Practice, burns, 1988, 14(4), 323-325. |
Sames, C.P., Sealing of Wounds with Vacuum Drainage, Br. Med. Journ., Nov. 5, 1977, p. 1223, Correspondence. |
Sandahl, L., Slides at Geisinger Medical Center, Danville, PA, Apr. 10, 1990, Correspondence, 4 pages. |
Schaffer, D.B., Closed Suction Wound Drainage, Nursing97, Nov., Downloaded from internet www.springnet.com, 62-64. 1997. |
Schein et al., “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery, 1986, vol. 73, May, pp. 369-370. |
Schumann, D., Preoperative Measures to Promote Wound Healing, Nursing Clinics of North America, Dec. 1979, 14(4), 683-699. |
Schwab, P. et al., “Primary closure of the Perineal Wound After Proctectomy”, Mayo Clinic Proc., Mar. 1974, pp. 176-179, vol. 49, USA. |
Scott, F., “Babies in Bottles”, Advance for Respiratory Care Practitioners, Nov. 23, 1992, in 2 pages. |
Senyutovich, R.V., “Napkin Preventing Abdominal Contamination in Performance of Colonic Anastomosis”, Abstracts, Surgery No. 1, 1997, in 1 page. URL: http://www.mediasphera.ru/ surgery/97/1/el-97ref.htm. |
Shaer, W.D. et al., “Inexpensive Vacuum-Assisted Closure Employing a Conventional Disposable Closed-Suction Drainage System”, Plastic and Reconstructive Surgery, Jan. 2001, p. 292, in 1 page. |
Sheen, A.W., Some Experiences of Shell Wounds in the Present War, (excerpt), The British Journal of Nursing, Jan. 16, 1915, p. 42, in 1 page. |
Sheppard, M.D. et al., “Sealed Drainage of Wounds”, The Lancet, Jun. 14, 1952, pp. 1174-1176, in 3 pages. |
Smith, L. A. et al., “Vacuum Pack Technique of Temporary Abdominal Closure: A Four-Year Experience”, The American Surgeon, Dec. 1997, vol. 63(12), pp. 1102-1108, in 7 pages. |
Solovev et al., “The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract,” USSR Ministry of Health, S.M. Kirov Gorky State Medical Institute, 1987. (with English translation). |
Spahn, Slide presented at the WOCN meeting in Ontario, California, Sep. 2001. |
Spengler, M. et al, “Performance of Filtered Sump Wound Drainage Tubes”, Surgery, Gynecology & Obstetrics, Mar. 1982, pp. 333-336, vol. 54, USA, in 4 pages. |
Stewart, J., Ph.D., “Next generation products for wound management”, World Wide Wounds, Nov. 2002, in 13 pages. URL: http://www.worldwidewounds.com/2003/april/Stewart/Next-Generation-Products.html. |
Stewart, M. F. et al., “Cleaning v Healing”, Community Outlook, Aug. 1985, pp. 22-26, in 3 pages. |
Svedman, P., “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 3, 1983, pp. 532-534, in 3 pages. |
Svedman, P., A Dressing Allowing Continuous Treatment of a Biosurface, IRCS Med. Science: Biomed. Tech.; Clinic. Med.; Surg. and Transplantation, 1979, 7, p. 221. |
Svedman, P., et al., “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133, in 9 pages. |
Swanson, L., “Solving stubborn-wound problem could save millions, team says”, JAMC, Feb. 23, 1999, vol. 160(4), p. 556, in 1 page. |
Swift, S. et al, “Quorum Sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of LuxR1 Homologs AhyRI and AsaRI and Their Cognate N-Acylhomoserine Lactone Signal Molecules”, J. Bacteriol., 1997, vol. 179(17), pp. 5271-5281, in 12 pages. |
Taylor, V., “Meeting the Challenge of Fistulas & Draining Wounds”, Nursing, Jun. 1980, pp. 45-51, USA, in 7 pages. |
Teder, H. et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, 1990, vol. 3, pp. 399-407, in 9 pages. |
Tennant, C.E., “The Use of Hyperemia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of American Medical Association, May 8, 1915, pp. 1548-1549, in 2 pages. |
Tenta, L.T. et al., “Suction Drainage of Wounds of the Head and Neck”, Surg. Gyn. & Ob., Dec. 1989, vol. 169, p. 558, in 1 page. |
“The Bier Treatment”, The British Journal of Nursing, Jun. 6, 1908, p. 452, in 1 page. |
The British Journal of Nursing, Nov. 4, 1911, p. 368, in 1 page (title of article unknown). |
Thomas, S., “Wound Management and Dressings”, 1990, pp. 35-42. |
Tittel, K. et al., “Forum: VariDyne—Neue Standards in der Postoperative Wunddrainage” (New Standards in Postoperative Wound Drainage), Unfallchirurgie, 1988, vol. 14(2), pp. 104-107 (in German with English Translation), in 6 pages. |
Tribble, D., “An Improved Sump Drain-Irrigation Device of Simple Construction”, Archives of Surgery New York, pp. 511-513, 1972, vol. 105, in 4 pages. |
“Tuberculous Joints”, The Nursing Record & Hospital World, Apr. 28, 1894, p. 280, in 1 page. |
U.S. Appl. No. 11/491,578, filed Jul. 24, 2006, Title: Negative Pressure Protection System. |
U.S. Appl. No. 11/654,926, filed Jan. 17, 2007, Title: Container and Cover System. |
Brubacher, L. “The RN Magazine/University of California Continuing Education Curriculum; Examination on ‘To heal a draining wound’”, RN, Mar. 1982, p. 36, USA, in 1 page. |
Urschel, J. D. et al., “The Effect of Mechanical Stress on Soft and Hard Tissue Repair; A Review”, British Journal of Plastic Surgery, 1988, vol. 41, pp. 182-186, in 5 pages. |
Usupov, Y. N., et al., “Active Wound Drainage”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 8-10. |
Usypov, Y. N. and M.V. Ephfanov, Active Drainage of wounds, Dept. of Hospital Surgery, Army Medical Academy, Leningrad, Vestnik Chirurgia 1987, April Edition, 42-45 (in Russian with English translation). |
Valenta, A. L., “Using the Vacuum Dressing Alternative for Difficult Wounds”, AIN, Apr. 1994, pp. 44-45, in 2 pages. |
Van Heurn, L. W. E. et al., “Prospective Randomized Trial of High versus Low Vacuum Drainage after Axillary Lymphadenectomy”, British Journal of Surgery, 1995, vol. 82, pp. 931-932, in 4 pages. |
Van Way III, C.W., “Prevention of Suction-Induced Gastric Mucosal Damage in Dogs”, Critical Care Medicine, Aug. 1987, vol. 15(8), pp. 774-777, in 4 pages. |
Varley, G.W et al., “Wound Drains in Proximal Femoral Fracture Surgery: A Randomized Prospective Trial of 177 Patients”, J. R. Coll. Surg. Edinb., Dec. 1995, vol. 40, pp. 416-418, in 3 pages. |
Vijanto, J. et al., “Local Hyperalimentation of Open Wounds”, Br. J. Surg., 1976, vol. 63, pp. 427-430, in 4 pages. |
Warren, J.C. et al, Ed., “The International Text-Book of Surgery”, 1902, vol. 1, pp. 70-79, in 11 pages. |
Waymack, J. P. et al., “An evaluation of Aquaphor Gauze dressing in burned children”, Burns Include Therm Inj., Aug. 1986, vol. 12(6), pp. 443-438. |
Wayne, M.A., “Cook Pneumothorax Catheter Set, Wayne Pneumothorax Catheter Set”, Cook Critical Care, Cook Incorporated 1997, in 3 pages. |
Westaby, S. et al., “A Wound Irrigation Device”, The Lancet, Sep. 2, 1978, pp. 503-504, in 2 pages. |
Westaby, S., “Wound Care No. 11”, Nursing Times, Jul. 21, 1982, pp. 41-48, in 8 pages. |
Williams, J. et al., “Survey of the Use of Suction Drains in Head and Neck Surgery and Analysis of their Biomechanical Properties”, J. Otolaryngol., Feb. 2003, vol. 32(1), pp. 16-22, abstract downloaded from internet Nov. 30, 2003, in 1 page. |
“Windows on Medical Technology—Vacuum-Assisted Wound Closure for Chronic and Acute Wounds”, ECRI Health Technology Assessment Information Service, Oct. 2000, 38, pp. 1-21, in 25 pages. |
Witkowski, J.A. et al., Synthetic Dressings: Wound Healing in the '80s, Hospital Therapy, Nov. 1986, pp. 75-84, in 15 pages. |
Wolthuis, R. et al., “Physiological Effects of Locally Applied Reduced Pressure in Man,” Physiological Reviews, Jul. 1974, pp. 566-595 Vol. 54, No. 3, USA, in 30 pages. |
Wooding-Scott, M. et al, “No Wound is Too Big for Resourceful Nurses,” RN, Dec. 1988, pp. 22-25, USA, in 4 pages. |
Worth, M.H. et al., “The Effectiveness of Bacterial Filtration in Vented Wound Drains”, Journ. of Surg. Research, 1979, vol. 27, pp. 405-407, in 3 pages. |
Wu, P. et al., “In Vitro Assessment of Water Vapour Transmission of Synthetic Wound Dressings”, Biomaterials, 1995, vol. 16(3), pp. 171-175, in 5 pages. |
Wu, W.S. et al., “Vacuum therapy as an intermediate phase in wound closure: a clinical experience”, Eur J Past Surg, 2000, vol. 23, pp. 174-177. |
Wysocki, A. et al., “Wound Fluid form Chronic Leg Ulcers Contains Elevated Levels of Metalloproteinases MMP-2 and MMP-9”, The Society for Investigative Dermatology, Inc., Jul. 1993, pp. 64-68. |
Yukhtin, V.I. et al., “Surgical Treatment of Purulent Diseases of Soft tissues and Bones with the Use of Drainage-Bathing System”, Contents, Surg. No. 9, 1997, downloaded from internet, in 1 page. URL: http://www.mediasphera.ru/surgery/97/9/e9-97ref.htm. |
Zamierowski, D., Letter: “All Foam Sponges are not Equal in Vacuum Dressings,” British Journal of Plastic Surgery, 1999, 52, 78-81, p. 79, United Kingdom. |
Zhetimkarimov, D.S. et al., “The Applied Significance of Anatomic Peculiarities of Greater Omentum”, Contents, Surg. No. 6, 1997, downloaded from internet, in 1 page. URL: http://www.mediasphera.ru/surgery/97/6/e6-97ref.htm. |
Zivadinovic, G. et al., “Vacuum Therapy in the Treatment of Peripheral Blood Vessels”, Timocki Medicinski Glasnik (Conference Papers of the 5th Timok Medical Days, Majdanpek, 1986), Year XI, Zajecar, 1986, No. 3-4, with English translation, pp. 161-164, in 10 pages. |
Bush, G.K., “What is a Counter Irritant? Name Any That You Know and the Method of their Application,” The British Journal Nursing, Oct. 1927, p. 232. |
Davydov Y.A., et al. “Pathogenic Mechanism Of The Effect Of Vacuum Therapy On The Course Of The Wound Process,” Khirurgiya, No. 6, 1990, 7 pages. |
Fleischmann W., “Vacuum Sealing for Treatment of Problematical Wounds,” University Surgical Clinic and Polyclinic—Accident Surgery Department, WundForum Spezial-IHW, 1994, 4 pages. |
Meyer W., et al., “Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of its Practical Application,” 1908, 222 pages. |
Number | Date | Country | |
---|---|---|---|
20190224387 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
60430827 | Dec 2002 | US | |
60407783 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14854717 | Sep 2015 | US |
Child | 16372280 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14142635 | Dec 2013 | US |
Child | 14854717 | US | |
Parent | 13302175 | Nov 2011 | US |
Child | 14142635 | US | |
Parent | 12938291 | Nov 2010 | US |
Child | 13302175 | US | |
Parent | 10652100 | Aug 2003 | US |
Child | 12938291 | US |