1. Field of the Invention
The present invention relates generally to a microstrip antenna for use on a weapons system to receive externally generated data. More specifically, the present invention relates to a reduced size microstrip antenna which receives GPS data and which is adapted for use on small diameter weapons systems such as a missile.
2. Description of the Prior Art.
There is currently a need for a miniature microstrip antenna which receives GPS (Global Positioning System) data for use on a small diameter weapons system such as a missile, a artillery shell, smart bomb or the like. The antenna needs to operate at the GPS L1 Band and have a center frequency of 1.575 circular polarization.
In the past, microstrip antennas have utilized an increase in the dielectric constant to decrease the physical size of the antenna. The limitations of utilizing a higher dielectric constant for the microstrip antenna include a narrowing of the frequency bandwidth and a increased sensitivity to frequency change. Other microstrip antenna designs have used in the center of the microstrip antenna that the electric field emanates around the slot which effectively increases the electrical length of the microstrip antenna. However, this increased electrical length results in a lowering of the frequency of operation of the antenna.
Accordingly, there is a need for a mircrostrip antenna which is substantially reduced in size, does not require a high dielectric constant and which operates in the GPS L1 Band.
The present invention overcomes some of the disadvantages of the past including those mentioned above in that it comprises a relatively simple in design yet highly effective and efficient miniaturized microstrip antenna which can receive GPS data provided by a satellite or other source for providing GPS data.
The reduced size GPS microstrip antenna operates at the GPS L Band which allows the microstrip antenna to receive GPS antenna. The GPS microstrip antenna also has a center frequency of 1.575 GHz, a frequency bandwidth of twenty megahertz and provides for right hand circular polarization.
The GPS microstrip antenna includes a pair of quarter-wavelength antennas which have a rectangular shape and are rotated ninety degrees from one another. The copper etched feed network for the antennas provides for a signal phase shift of ninety degrees.
The upper surface of the GPS microstrip antenna is fabricated from etched copper and is mounted on the upper surface an antenna dielectric substrate. The GPS microstrip antenna also has a feed dielectric substrate which is positioned below and in alignment with the antenna dielectric substrate. Sandwiched between the feed dielectric substrate and antenna dielectric substrate is the feed network. The ground plane is mounted on the bottom surface of the feed dielectric substrate.
Referring to
Referring to
The dielectric substrate 26 upon which quarter wavelength antennas 22 and 24 are mounted has a conical wedge shape as shown in
There is a feed dielectric substrate 36 positioned below dielectric substrate 26 which is in alignment with dielectric substrate 26. A ground plane 38 is mounted on the bottom surface of dielectric substrate 36.
Each dielectric substrate 26 and 36 has an overall width of 0.046 inches and may be fabricated from a laminate material RT/Duroid 6002 commercially available from Rogers Corporation of Rogers Conn. This material allows sufficient strength and physical and electrical stability to satisfy environmental requirements and is also easily mounted within a missile, smart bomb or other weapons which utilizes GPS microstrip antenna 20 to receive GPS carrier signals provided by a satellite.
The upper or top surface of microstrip antenna 20 has a layer of etched copper 40 mounted thereon which surrounds quarter wavelength antennas 22 and 24. There is a 0.050 inch three-sided gap 42 formed on three sides of each antenna 22 and 24 which is positioned such that one of the sides of gap 42 runs along the length of each of the quarter wavelength antennas 22 and 24 and two sides of gap 42 run along each side of the quarter wavelength antennas 22 and 24.
Each quarter wavelength antenna 22 and 24 is grounded to the ground plane 38 by eighteen vias or copper connecting plated through holes 44 which pass through dielectric substrates 26 and 36 in the manner shown in
Referring to
Each quarter wavelength antenna 22 and 24 also has a tuning tab 54 formed along the edge of the quarter wavelength antenna which is in proximity to the feed point 46 for the quarter wavelength antenna. The tuning tab 54 for each antenna 22 and 24 is utilized to fine tune the center frequency of 1.575 GHz for GPS microstrip antenna 20.
In operation, utilizing the two quarter-wavelength microstrip antennas 22 and 24 and feeding the antennas 22 and 24 ninety degrees out of phase with one another achieves circular polarization. The electric field vectors for the quarter wavelength microstrip antennas 22 and 24 are orthogonal to each other. Electromagnetic radiation emanates from the three-sided gap 42 formed on three sides of each antenna 22 and 24.
Referring to
From the foregoing, it is readily apparent that the present invention comprises a new, unique and exceedingly useful miniaturized microstrip antenna for receiving GPS carrier signals which constitutes a considerable improvement over the known prior art. Many modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims that the invention may be practiced otherwise than as specifically described.