In accordance with one aspect of the present invention, the space 26 is connected to a carbon dioxide removal or scavenging system, which maintains a very low concentration of carbon dioxide at the surface of the bath during idle periods, thereby greatly suppressing the reduction in developer effectiveness experienced in known developer systems. A rudimentary scavenging system is depicted in
In a relatively simple implementation of the present invention, during significant idle periods of the developer station 10, the motor 44 is run continuously, or intermittently with pre-established “on” and “off” time intervals. For example, a station operated only during one eight-hour work shift has a sixteen-hour idle period, whereas a workstation operated for two shifts would have an eight-hour idle period. Simply providing the scavenger recirculation system depicted in
The plate enters the bath from above the front edge 58 of the tank 14, is conveyed downwardly in an arcuate path through the bath, then captured for removal by the transport mechanism 20, above the bath level 70. During idle periods, the bath level remains substantially as shown at 70 in
The configuration shown in
As shown in
Also shown in
As a further preference for minimizing the encroachment of ambient air into space 26′, the four edges 92 of the removable cover 24a shown in
With reference again to
An optimized control system of the type shown in
One type of scavenger material suitable for use with the present invention, is a sodium hydroxide based absorbent available under the trademark DECARBITE from PW Perkins Co., Inc. of Woodstown, N.J. This particular material has a non-fibrous silicate to keep the particles from bonding in the presence of moisture that is formed as a byproduct of the absorption reaction.
Another suitable absorber is available under the SOFNOLIME trademark, as a soda lime absorbent formed by mixing calcium and sodium hydroxide, in the form of hard, porous, irregularly shaped granules. This is available from Molecular Products, Limited, Essex, U.K. The particle size is in the range of 8-12 mesh (1.0-2.5 mm) with an absorption capacity of more than 140 liters of carbon dioxide per kilogram of material.
A suitable carbon dioxide sensor is the Telaire 7000 series of indoor air quality monitors, available from the GE Industrial Sensing Division of the General Electric Company, headquartered in Billerica, Mass., U.S.A., which can measure carbon dioxide in the range of 0-10,000 ppm with a resolution of 1 ppm, having an accuracy of ±5 percent of the reading, with a maximum of plus or minus 50 ppm. Such sensors may requires a minimum of 1 mph air flow through the wand, which should be considered in the selection of the air handling motor for implementing the preferred embodiment.
In a conventional manner, a developer flow line 106 including a chemistry pump and filter 108, 110, maintain the strength of the developer bath, especially during operation, when the plates themselves carry some developer solution with them out of the tank 14, and as the solution needs replenishment due to the chemical reactions associated with a development of the coating.
According to this embodiment of the invention, the seal cover 102 has on its top surface, an extraction port 112 and a return port 114, to which are fluidly connected an extraction line 116 and a return line 118, respectively. An air pump 122 and a canister 122 of CO2 absorbing material are interpose between the extraction line. The continuous scavenging of the CO2 in the confined space 26 above the bath 16, can be achieved with modest volumetric flow rates, for example, with a small air pump that handles a few cubic feet per minute, and a canister having a size of approximately 3 inches in diameter and 8 inches long. These can easily be mounted on the top surface of the cover as well. Accordingly, all of the CO2 scavenging flow lines are carried on the cover 102. Also, the top of the cover includes a sensor port 124 through which a CO2 sensor 126 is situated in the space 26, and sends a signal through associated data line 128, to the CO2 monitor 130. Preferably, the monitor is supported externally of the processors, so the data line 128 penetrates a wall of the processor between the processor cover 24 and the seal cover 102.
One of only rudimentary skill in process control, could readily connect a manual switch to the air pump 120, either on the seal cover 102 if, for example, the pump is to be turned on for continuous scavenging flow over a uninterrupted period of time. Similarly, such person could readily connect a controller between the CO2 monitor 130 or the associated data line 128, and a logic device associated with air pump 120, to turn the pump on when the measured ppm is above a maximum threshold such as 100 ppm, and to turn the pump off when the measured ppm is below a minimum, such as 10 ppm.
The inventors performed a variety of tests to confirm the effectiveness of the inventive concept, using the Proteck PCX85 equipment depicted in
For Test I, a floating cover was put in place to protect the developer but no replenishment system was set up. Once the developer had reached the operating temperature an Anocoil 830-22 positive thermal plate imaged with a multi screen test image was processed. Along with the test plate a sample of the developer was taken to document its alkalinity through titration. All of the screen values on the plate were read with an ICI Dot Meter and the Background and Image were read with an X-Rite calorimeter. As a final test, a portion of both the image and the background were rubbed with black newspaper style ink. These areas were then rinsed with cold water and rubbed gently with a clean cotton cloth. The plate was then dried and the ink densities of both areas were read with the X-Rite colorimeter. These same tests were repeated every 24 hours until the process yielded an unacceptable plate. Once this portion of the test was complete the processor was drained, cleaned and charged with fresh T-8 developer.
For Test II, the floating cover was installed without the use of any replenishment system. However, this time the processor was fitted with the filter/scrubber system that removes carbon dioxide from the air. The air stream entered the front left corner of the developer section and exited on the back right side in the gum section. As a result the air was constantly being recirculated through the alkaline filter/scrubber. The same test as before was repeated until an unacceptable plate was produced. A comparison of the test results is shown below.
The condition of Table I represents the idle condition with floating anti-oxidation cover 72 as sold by the supplier of the Proteck equipment, without any operational carbon dioxide scavenger equipment connected to the space 26 between the floating cover 72 and the removable cover 24. Furthermore, no lip seal was provided at the feed slot 50, and no gasket seal was provided around the edges 92 of the removable cover 24. The pump was turned off for the entire test and the developer replenishment rate was set to 7 cc's per square foot of plate passed through the bath. Any excess loss of developer through evaporation was measured every day and replaced with deionized water.
Based on the dry ink results the test was stopped after day 4, the developer drained and the processor set up for Test II.
The processor was filled with T-8 solution and set to 70 degrees Fahrenheit. The pump was off initially and the developer replenishment rate was set to 7 cc's per square foot. Any excess loss of developer through evaporation was measured every day and replaced with deionized water. The canister contained 500 grams of Sofnolime scavenger material and the air flow rate was pumped at 0.5 cfm. The pump was then turned on and run for six days with the following results:
The L, a, and b values indicate standard color measurements of developed lithographic printing plates suitable for newspaper production. The “a” reading is most significant, with a value of −0.50 to −0.65 being most acceptable for Anocoil plates. It can be seen that in Test I by the second day the “a” value has exceeded the acceptance value and has deteriorated rapidly thereafter. In Test II the carbon dioxide scavenging system was operated substantially as shown in
In Test III, the CO2 removal system was operated continuously, without the floating cover in place, with an intermediate or bath cover as shown in
A second phase of testing was then undertaken. Prior to running the test the room was monitored overnight for levels of carbon dioxide and recorded without the absorber device running. On average the room was measured at 900 ppm. Then the absorber unit was installed with the inlet and exhaust on the front section of the processor and operated overnight with the CO2 measured. The absorber did make an impact on the levels, with the range being 250 ppm to 680 ppm. In an effort to lower the levels and to also minimize the fluctuations, the entry of the processor was sealed with plastic with a fine slit made to allow plates to be processed and a curtain was installed on the exit of the developer section to minimize the air flow out of the processor, in a manner shown in
Plates were run for six days with the background reading of the plate ranging from −0.54 to −0.60 on day six. The strength of the developer ranged from a titration of 12 on day 1 to 11.94 on day six. This is a good indication that the sodium hydroxide is not being depleted due to excess carbon dioxide levels in the open tank. The levels of CO2 averaged 60 ppm over the six day period. When multiple plates were run at a time, the CO2 would rise to 225 ppm and then drop to 40 ppm within 10 minutes. The background of the plate dry inked clean every day. The only replenishment added to the processor was to compensate for the drag out of the developer from the plates. This was also the case with any earlier testing. The test was stopped at this point.
The foregoing data suggest that any arbitrarily low concentration of carbon dioxide can be maintained, so long as the absorber material is replenished. The concentration can be maintained below a very effective maximum threshold, for example 100 ppm, or even 10 ppm, if the pump is intermittently operated based on the measurement and control system described above with respect to
In a preferred method of operation, the maximum concentration is maintained below 10 ppm, by operating the pump intermittently based on measured CO2 concentration. The test data indicate that this can be achieved with the pump on for about one tenth of the idle period, e.g., running about two minutes every 20 minutes of idle time. In the present context, operating the pump “continually” includes continuously, intermittently on a preset schedule, and nonuniformly under a control scheme that depends on a measured variable. As a practical guide for conditions in which the scavenging system is not continuously extracting, scavenging, and returning air flow, at each instance when the air flow through the scavenger device is initiated, the scavenging should continue until the CO2 concentration in the space above the bath is reduced by a factor of at least about ten.
Test IV shows that the CO2 concentration can be maintained well below 10 ppm, at essentially 0 ppm, for at least one week in a commercial developer, before the need for a canister change.
The test was performed over an eleven-day period, with the scavenging system operating continuously. Test IV shows that the “a” value associated with a plate run through the developer on each day, was at a commercially good value. Similarly, the pH remains substantially the same, at approximately 12.0 throughout the eleven-day period. Most importantly, from the initial condition of ambient CO2 at 1352 ppm at 2:30 pm on Day 1, the scavenging system reduced the CO2 concentration to zero parts per million by 2:35 pm that day and maintained zero parts per million through Day 9. During the subsequent two days, the concentration gradually rises to 45 ppm, whereupon the testing was stopped at 9 a.m. on Day 11. When the pump was turned off at 9:15 am on Day 11, the CO2 concentration increased over the ensuring two hours, up to 930 ppm.
It can be appreciated that the scavenging material could have lasted much longer if the system were controlled, in a manner analogous to a thermostat, such that the pump would cycle intermittently to maintain the CO2 concentration within a band of, for example zero to 5 or zero to 10 ppm.
Test IV was performed using the Proteck PSC 85 developing station with the bath cover shown in