The invention relates to a reference cell, in particular for use in conjunction with fibre optic probes.
Fibre optic probes have long been used to measure the properties of solutions. Such probes use optical fibres to transmit light to interact with the solution. The transmitted light is then picked up by the optical fibres and the characteristics of this received light will have been modified by the interaction with the solution. Analysis of this received light provides information on the characteristics of the solution. Fibre optic probes can be used in a wide range of applications.
An example of such a fibre optic probe is disclosed in U.S. Pat. No. 6,879,741, which probe comprises a handle, optical fibres extending from the handle and a sampling end positionable over the optical fibres. The sampling end comprises a releasably attached tube member having an open end and a closed end. The fibre optics extend from the handle into the sampling end through the open end of the tube member. The closed end of the tube member is provided with an optical window to enable light to pass to and from the optical fibres. In use, a tip is attached to the optical window. The tip comprises a further tubular member of substantially rectangular cross-section, which is open at two opposed sides perpendicular to the open and closed ends of the tube member. The wall of the further tubular member adjacent to the aforementioned optical window also comprises an optical window, whereas the opposed wall of the further tubular member comprises a reflector. In use, the tip end is inserted into a solution and the light emitted by the optical fibre is reflected by the reflector back towards the optical fibres after passing through the solution, thereby enabling the characteristics of the solution to be detected. The probe is calibrated by the knowledge of the user of the wavelength of light emitted by the optical fibres and the path length between the optical window and the reflector of the tip.
This type of fibre optic probe has established itself in the market place, in particular for use with corrosive or difficult to clean samples such as with biotech and medical analysis or petrochemical solutions, where it is quick and efficient. The probe does, however, suffer from the problem of limited accuracy and precision for certain applications as it is not possible to calibrate the probe in accordance with the mandated standards in the medical and pharmaceutical fields and so results cannot be validated.
The present invention therefore seeks to provide an accurate method to validate such a fibre optic probe that can be used to make validated measurements.
According to the invention, there is provided a reference cell for use with a fibre optic probe characterised in that said cell comprises a base wall, first and second opposed upstanding walls and further walls each having an optical window, which further walls are perpendicular to the said opposed upstanding walls and a top wall, which top wall is provided with a further optical window, which further optical window is adapted to permit transmission of light to and from a fibre optic probe, which walls define a chamber, wherein the chamber is provided with a reference material.
Preferably, the further walls are optical windows. Preferably the base wall comprises a reflector adapted to reflect incident light from a fibre optic probe back to the fibre optic probe. Preferably, the top wall comprises an attachment adapted to receive an emitting and receiving end of a fibre optic probe. Preferably, a sealable opening is provided to enable the reference material to be placed into the cell.
The method advantageously permits the use of standard fibre optic probes in conjunction with other optical equipment such as spectrophotometers, in situations where it is necessary that the path length, defined as the internal distance between opposite windows, together with the optical characteristics of the probe need to be validated.
An exemplary embodiment of the invention will now be described in greater detail with reference to the drawings, in which:
The reference tip 8 can be used in both a spectrophotometer and by a conventional fibre optic probe. Therefore, it is possible to create a reference cell for the fibre optic probe as the ability to use the tip in a spectrophotometer permits the manufacturer to validate the cell to the international standards required by standards bodies such as European Pharmacoepia. The calibration of a fibre-optic probe can then be validated in the laboratory in the analogous fashion to laboratory spectrophotometers and can thus be used in a wide range of medical applications where high levels of precision and accuracy are required.
Number | Date | Country | Kind |
---|---|---|---|
0802574.4 | Feb 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2009/000405 | 2/12/2009 | WO | 00 | 10/4/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/101418 | 8/20/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4375164 | Dodge et al. | Mar 1983 | A |
5173749 | Tell et al. | Dec 1992 | A |
5572031 | Cooper et al. | Nov 1996 | A |
6064488 | Brand et al. | May 2000 | A |
6886406 | Couet et al. | May 2005 | B1 |
20040086215 | Salerno et al. | May 2004 | A1 |
20080040062 | Kalar et al. | Feb 2008 | A1 |
Entry |
---|
Toptica Photonics, Herriott Type Cell Multipass Cell, Jan. 2004, Toptica Photonics AG. |
Number | Date | Country | |
---|---|---|---|
20110013182 A1 | Jan 2011 | US |