Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
a,
7
b,
7
c show a top view onto three possible arrangements for optical function diagnostics.
Before the present invention will be explained on the basis of the drawings in the following, it is pointed to the fact that the same elements in the figures are provided with the same or similar reference numerals and that repeated description of these elements will be omitted.
On the layer sequence, a second contact layer 160 is deposited, which advantageously is part of a standard CMOS structure, just like the ILD layer 140, the IMD layer 160 and the first contact layer 145, which may e.g. be formed as a metal layer. According to the invention, the second contact layer 160 is opaque, comprises a metal, for example, and only partially covers the IMD layer 150. Onto the second contact layer 160, which serves as electrode of the OLED 100, an organic layer sequence 170 and a transparent conductor 180 are deposited such that the transparent conductor 180 and the second contact layer 160 are separated from each other. The transparent conductor 180 serves as transparent electrode of the OLED, and the first IMD layer 150 as substrate for the OLED 100. The OLED 100 thus includes the second contact layer 160, the organic layer sequence 170, and the transparent conductor 180. A transparent passivation layer 190 is provided for protection, and a lateral passivation 195 insulates the second contact layer 160 from the transparent conductor 180.
By applying a voltage to the OLED 100 (a corresponding circuit is not illustrated in the figure), a light signal 105, which may be reflected by an object 125 and may pass the passivation layer 190, the transparent conductor 180, the first IMD layer 150 and the ILD layer 140 as reflected light signal 105r, is generated in the organic layer sequence 170. The object 125 usually does not represent a part of the inventive apparatus, but an external object 125. The reflected light signal 105r finally generates, in the n well 115, charge carrier pairs of opposite polarity (see
In one embodiment, it is to be taken care that the photodetector 115 not be obscured by the second metal layer 160, if possible, so that as large as possible a part of the reflected light signal 105r reaches the photodetector 115. So as to avoid misinterpretations, the passivation layer 190 and/or the transparent conductor 180 comprises a non-specular surface, if possible, so that the reflected light signal 105r originates from the object 125 and not from a layer boundary in the reflex coupler.
Based on a signal from the OLED driver 220, the OLED 100 generates a light signal 105, which is reflected from the object 125, so that the reflected light signal 105r impinges on the CMOS photodetector 115 and generates an output signal 235 there. For example, the output signal 235 is sensed in form of a voltage drop at the resistor 233 and output to the input amplifier 240. The evaluation and control unit 250 obtains the output signal 235 amplified by the input amplifier 240 on the one hand and at the same time controls the OLED driver 220. Thus, the evaluation and control unit 250 may effect a change in the control of the OLED 100 in case of a detection of the object 125. For example, this may include an increase in intensity or a change of a pulse rate of the light signal 105. The evaluation and control unit 250 also is connected to the output 265 via the interface 260, so that the detection of the object 125 may be indicated in form of a signal. The entire circuit is supplied with electrical voltage by the current supply 270.
The shape and size shown are only exemplary and generally are adapted to a specific task. Here, it is advantageous that OLEDs can be deposited and structured in large-area manner without problems. Moreover, the underground, i.e. the part below the OLED 100, may be used for a circuit. Apart from a simple detection of the object 125, the distance and/or a change in the distance of the object 125 from the photodetector 115 can be determined from an intensity and/or a change in intensity, respectively. For example, a decrease in distance may be deduced from an increase in intensity, and conversely an increasing distance from a decrease in intensity. Depending on further tasks, OLEDs of various colors may also be employed. In the following, several further specific examples will be given.
By evaluating the time instants at which the photodetectors detect reflected signals, for example, movement of an object 125 or of various objects can be detected. Photodetectors with different spectral sensitivity, i.e. the photodetectors 5101, 5102, 5103 . . . and 5201, 5202, 5203 . . . in
The choice of the arrangement of the OLEDs as well as the coloring is done freely, and the OLEDs may be exchanged correspondingly in further embodiments. Likewise, the number of the OLEDs and their color, as well as the rectangular shape of the chip 650 are only exemplary and may vary in further embodiments. It is, however, advantageous if the photodetectors 1151, 1152, 1153, . . . are arranged as closely as possible to the various OLEDs, in order to obtain a similar spectral sensitivity for all colors. Here, an interference as a result of too small a distance should, however, be excluded. This embodiment may be used as a color sensor, i.e. various reflection properties of colored objects or substances with respect to color light may be detected in targeted manner, and thus objects or substances may be distinguished according to their color. For this application, it is particularly advantageous that OLEDs are available in many colors.
a,
7
b and 7c show possible sensor arrangements 700 for optical function diagnostics, such as photoplethysmography. Here, the dashed regions are photodetectors 1151, 1152, 1153, and the dark regions are OLEDs 1001, 1002, 1003, which may measure various functions due to their arrangements. Among these are, for example, measurements of flow properties with reference to amount and flow velocity of liquids and/or frequencies of pulsating liquids (for example blood). Using various colors, it is also possible to determine certain proportions of a liquid (for example a fluorescent proportion in a certain color) in targeted manner and detect their movement. The intensity of the detected radiation may thus also give an indication of a concentration of this proportion.
The embodiments of the present invention described with reference to the figures may, of course, also be combined and/or expanded. For example, in the reflex coupler, focusing the light signal 105 may be done via optics. This may, for example, be achieved by a lens or by a mirror system and would be advantageous in that the detector area 120 of the photodetector 115 can be chosen correspondingly smaller, nevertheless obtaining a sufficient amount of light.
In operation, the reflex coupler may use both analog and digitized signals. So as to be able to suppress external spurious effects for example of extraneous light in effective manner, it may be advantageous to use a fixed clocking or modulation.
The described embodiments for reflex couplers with integrated OLED offer the advantages already mentioned previously. These advantages included, in particular, a reduction in effort of construction and connection technology (AVT) for the integration and in costs. Moreover, the monolithic integration of light source, electrical insulator, lightguide and photodetector on a chip is easy to realize. Furthermore, standard CMOS layers/structures may be utilized as electrical insulator and lightguide. Thus, an improvement in insulation strength arises when using an SOI CMOS substrate, as well as a reduction in chip area. Finally, embodiments of the present invention offer the possibility of complex integration of a control circuit for the light emitter and readout electronics for the photodetector.
Various aspects of the present invention thus may finally be stated as follows:
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
102006040790.3-55 | Aug 2006 | DE | national |