The present invention relates to a refrigerant heat exchanger for a refrigerator constituting a refrigeration cycle or the like, especially to a plate-type refrigerant heat exchanger for transmitting heat between matters in the same or different state such as gas and liquid.
As described in Patent Document 1, a typical refrigerant heat exchanger includes a plate stack (in the document, plate package) disposed in a lower part of an interior space of a hollow container (in the document, tank) formed into a cylindrical shape. The plate stack includes a plurality of plates (in the document, heat exchange plates) disposed adjacent to one another. The plurality of plates is disposed along the vertical direction, so as to form a first inter-plate space substantially opening into the interior space and configured so that a medium can circulate upward from the lower space of the tank to the upper space, and a second inter-plate space closed against the interior space and configured to circulate a fluid to make the medium capable of vaporizing. An outlet flow path capable of discharging the vaporized medium is formed on an upper part of the plates. An outlet for discharging the vaporized medium is disposed on an upper part of the hollow container.
The plates include an upper part, an intermediate part, and a lower part from top toward bottom, and each part is formed to have a wavy corrugation including protrusions and recesses. Actual heat exchange between the plates is performed via the intermediate part and the lower part. The wavy corrugation of the intermediate part extends in various directions at different positions of the intermediate part. The wavy corrugation extends so that the wavy corrugations of adjacent two plates intersect with each other over the entire intermediate part. With the wavy corrugations extending as described above, the rigidity of the plates is enhanced, and heat is efficiently and reliably transmitted from the fluid to the medium.
In the refrigerant heat exchanger disclosed in Patent Document 1, the side end portions of the plates are disposed along the inner wall surface of the hollow container. Thus, the gap between the plates and the inner wall surface of the hollow container is reduced, and it is possible to reduce the size of the hollow container. However, the wavy corrugation formed on the plates is complex. Furthermore, a plate-shaped dissipation member is inserted into the center part of the plates, extending along the stacking direction of the plates. Accordingly, the structure of the plate stack is more complicated, which may increase the production costs.
In view of the above problem of typical art, an object of the present invention is to provide a refrigerant heat exchanger including plates with a simple configuration and being capable of suppressing an increase in the production costs.
A refrigerant heat exchanger according to some embodiments of the present invention comprises: a hollow container having a cylindrical shape; a plate stack disposed on an inner lower side of the hollow container, including plates each having a front side and a back side with a plurality of concavo-convex portions formed thereon which are stacked to form a first heat exchange flow passage through which a first refrigerant flows and a second heat exchange flow passage through which a second refrigerant flows; a supply pipe disposed in an interior space of the hollow container above the plate stack and configured to supply the first refrigerant to the plate stack; and a discharge pipe configured to exchange heat between the first refrigerant supplied from the supply pipe and the second refrigerant flowing through the plate stack and to discharge the first refrigerant. A lower side of the plates of the plate stack has a semi-circular shape along and adjacent to an inner wall surface of the hollow container. An upper side of the plates has a flattened shape having a greater curvature radius than a curvature radius of the semi-circular shape. A second introduction hole which extends in a plate-stacking direction and into which the second refrigerant is introduced is disposed in an upper portion of the plate stack, and a second lead-out hole which extends in the plate-stacking direction and from which the second refrigerant is led out is disposed in a lower portion of the plate stack. The second heat exchange flow passage is formed so as to extend and bend toward a side portion of the plates downward from the second introduction hole and to extend toward the second lead-out hole downward, in a view in the plate-stacking direction. The first heat exchange flow passage is formed so as to extend toward an end portion, with respect to a width direction, of the plates upward from the second lead-out hole, in the view in the plate-stacking direction.
According to the above refrigerant heat exchanger, the second heat exchange flow passage is configured to extend and bend toward the end portion of the plates downward from the second introduction hole, as seen in the plate-stacking direction, and to extend toward the second lead-out hole downward, while the first heat exchange flow passage is configured to extend toward the end portion, in the width direction, of the plates upward from the second lead-out hole, as seen in the plate-stacking direction. Thus, both of the first heat exchange flow passage and the second heat exchange flow passage have a simple structure. Accordingly, the structure of the refrigerant heat exchanger is simplified, and it is possible to provide a refrigerant heat exchanger capable of suppressing an increase in the production costs.
Further, according to some embodiments, the plate stack is configured such that, when the concavo-convex portions formed on respective adjacent plates are in contact with each other, the first heat exchange flow passage and the second exchange flow passage are formed by a corresponding valley between protruding portions of the adjacent concave-convex portions or by a corresponding groove inside a recessed portion.
In this case, if the concavo-convex portions are in contact when stacking adjacent plates, the corresponding first heat exchange flow passage and the second heat exchange flow passage are formed by the valley between the protruding portions of the adjacent concavo-convex portions and the grooves inside the recessed portions, which makes it possible to further facilitate production of the refrigerant heat exchanger.
Further, according to some embodiments, the second heat exchange flow passage comprises a condensing flow passage extending linearly toward the side portion of the plates downward and a discharge flow passage extending linearly toward the second lead-out hole downward. An inclination angle of an extending direction of the condensing flow passage is smaller than an inclination angle of an extending direction of the discharge flow passage.
In this case, the inclination angle of the extending direction of the condensing flow passage is smaller than the inclination of the extending direction of the discharge flow passage and thus the flow of the second medium supplied from the introduction hole is slow at first and gets faster in the second half. Thus, it is possible to enhance the effect to transmit heat to the first medium from the second medium, and to let the cooled second medium flow through the second lead-out hole quickly. Accordingly, it is possible to provide a refrigerant heat exchanger having a high heat-transmitting efficiency.
Further, according to some embodiments, a restriction concavo-convex portion for restricting downward movement of the second refrigerant supplied from the second introduction hole is formed below the second introduction hole formed on the plates.
In this case, the restriction concavo-convex portion for restricting downward movement of the second medium supplied from the second introduction hole is formed below the second introduction hole formed on the plate. Thus, when the plates are stacked, the restriction concavo-convex portion of a plate and the restriction concavo-convex portion of another plate come into contact and form an arc-shaped wall below the second introduction hole. Thus, it is possible to restrict downward movement of the second refrigerant supplied from the second introduction hole, and to force the flow of the second refrigerant from the second introduction hole to move outward in the width direction of the plate. Thus, it is possible to prevent in advance a flow of the second refrigerant with a low thermal conductivity that flows downward from the second introduction hole and flows into the second lead-out hole.
According to at least some embodiments of the present invention, it is possible to provide a refrigerant heat exchanger including plates with a simple configuration and being capable of suppressing an increase in the production costs.
Embodiments of the present invention will now be described with reference to
As shown in
The refrigerant heat exchanger 1 includes a hollow container 5 having a cylindrical shape and a circular cross section, a plate stack 10 housed in an inner lower section of the hollow container 5, a NH3 supply pipe 30 disposed in an interior space 5a of the hollow container 5 above the plate stack 10 for supplying the plate stack 10 with the NH3 refrigerant liquid, and a NH3 discharge pipe 40 for discharging a NH3 gas generated from heat exchange between the NH3 refrigerant liquid supplied from the NH3 supply pipe 30 and a CO2 gas refrigerant flowing through the plate stack 10.
The plate stack 10 is formed of a plurality of plate-shaped plates 11 stacked onto one another to have a substantially oval shape in a side view. The detail of the plate stack 10 will be described below specifically. A NH3 introduction opening 31 is formed on one side, in the width direction, of the upper part of a side wall 5c on one end side, in the axial direction, of the hollow container 5. The NH3 supply pipe 30 is inserted into the NH3 introduction opening 31. The NH3 supply pipe 30 includes a NH3 introduction pipe 32 inserted into the NH3 introduction opening 31, and a NH3 spray pipe 33 connected to the tip of the NH3 introduction pipe 32.
The NH3 spray pipe 33 is disposed substantially parallel along an upper wall 5b of the hollow container 5. As shown in
On the upper part of the side wall 5c of one end side of the hollow container 5, as shown in
A CO2 introduction opening 50 is disposed in the center part of the side wall 5c of the hollow container 5. A CO2 introduction pipe 51 is inserted into the CO2 introduction opening 50. The CO2 introduction pipe 51 is in communication with a CO2 introduction hole 13 formed inside the plate stack 10.
A CO2 lead-out opening 53 is formed on the side wall 5c on a side of the hollow container 5 below the CO2 introduction pipe 51. A CO2 lead-out pipe 54 is inserted into the CO2 lead-out opening 53. The CO2 lead-out pipe 54 is in communication with a CO2 lead-out hole 15 formed inside the plate stack 10.
The plates 11 forming the plate stack 10 are formed of sheet metal (e.g. stainless steel sheet). As shown in
As shown in
As shown in
The concavo-convex portions 17 include a plurality of recessed portions 18 extending linearly and inclined (at an inclination angle of approximately 25 degrees) diagonally to the upper right side, formed in a region excluding the lower right section on the surface of the plate 11′, and a plurality of protruding portions 19 extending linearly and diagonally to the upper right side having a greater inclination angle (approximately 60 degrees) than the recessed portions 18, formed in a region at the lower right section of the plate 11′. The plurality of recessed portions 18 are formed parallel to one another at a predetermined interval, and the plurality of protruding portions 19 are formed parallel to one another at a predetermined interval.
When the plate 11″ shown in
Furthermore, the second heat exchange flow passage 22 is formed on the front side of the plate 11″ shown in
The second heat exchange flow passage 22 includes a condensing flow passage 22a extending linearly toward the side portion of the plate 11″ downward and a discharge flow passage 22b extending linearly toward the CO2 lead-out hole 15 downward. Furthermore, the inclination angle in the extending direction of the condensing flow passage 22a is smaller than the inclination angle of the extending direction of the discharge flow passage 22b. Thus, the flow of the CO2 gas refrigerant supplied from the CO2 introduction hole 13 is slow at first, and then gets faster. Thus, it is possible to enhance the effect to transmit heat to the NH3 refrigerant liquid from the CO2 gas refrigerant, and to let the cooled CO2 refrigerant liquid flow through the CO2 lead-out hole 15 quickly. Accordingly, it is possible to provide a refrigerant heat exchanger 1 having a high heat-transmitting efficiency.
Further, a restriction concavo-convex portion 20′ for restricting downward movement of the CO2 gas refrigerant supplied from the CO2 introduction hole 13 is formed below the CO2 introduction hole 13 formed on the plate 11′ shown in
Further, a restricting concavo-convex portion 20″ is formed below the CO2 introduction hole 13 formed on the plate 11″ shown in
The above plates 11′, 11″ are integrated by connecting the outer peripheries of a plurality of plates 11′, 11″ by welding or the like while the plates 11′, 11′ are in a stacked state. The concavo-convex portions 17 are formed by press processing.
In the refrigerant heat exchanger 1 with the above configuration, the CO2 gas refrigerant supplied from the CO2 introduction pipe 51 flows through the second heat exchange flow passage 22 of the plates 11′, 11″, and exchanges heat with the NH3 liquid refrigerant flowing through the first heat exchange flow passage 21 to become the CO2 refrigerant liquid, before flowing out of the CO2 lead-out pipe 54 via the second heat exchange flow passage 22.
As described above, with the refrigerant heat exchanger 1, the second heat exchange flow passage 22 is configured to extend and bend toward the end portion, in the width direction, of the plates 11′, 11″ downward from the CO2 introduction pipe 51, as seen in the plate-stacking direction, and to extend toward the CO2 lead-out hole 15 downward, while the first heat exchange flow passage 21 is configured to extend toward the end portion, in the width direction, of the plates 11′, 11″ upward from the CO2 lead-out hole 15, as seen in the plate-stacking direction. Thus, both of the first heat exchange flow passage 21 and the second heat exchange flow passage 22 have a simple structure. Accordingly, the structure of the refrigerant heat exchanger 1 is simplified, and it is possible to provide a refrigerant heat exchanger 1 capable of suppressing an increase in the production costs.
Furthermore, when stacking adjacent plates 11′, 11″, the first heat exchange flow passage 21 and the second heat exchange flow passage 22 are formed by the valley between the protruding portions 19 of the adjacent concavo-convex portions 17 and the grooves inside the recessed portions 18, which makes it possible to further facilitate production of the refrigerant heat exchanger 1.
Furthermore, while the above described embodiment includes the NH3 spray pipe 33 having the short-axis spray pipe 33a extending and bending from the NH3 introduction pipe 32 and the long-axis spray pipe 33b extending and bending from an end portion of the short-axis spray pipe 33a (see
Number | Date | Country | Kind |
---|---|---|---|
2015-116447 | Jun 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/065002 | 5/20/2016 | WO | 00 |