The present technology is related to cryotherapy (e.g., cryoablation). In particular, some embodiments are related to cryotherapeutic systems configured for refrigerant recompression, refrigerant supply devices for cryotherapeutic systems, and cryotherapeutic methods including refrigerant recompression, among other devices, systems, and methods useful in the context of cryotherapy.
Many cryotherapeutic procedures include introducing a cryo-catheter into a patient (e.g., into the vasculature of a patient) and cooling a cryo-applicator of the cryo-catheter using refrigerant. In some cases, refrigerant introduced into the cryo-catheter is chilled and circulated through the cryo-applicator without expanding significantly. For example, the cryo-catheter can be thermally insulated proximal to the cryo-applicator such that chilled refrigerant circulated through the cryo-catheter does not readily absorb heat from nearby tissue until it reaches the cryo-applicator. In other cases, refrigerant, which can be chilled or not chilled, expands significantly within the cryo-catheter and drops in temperature and/or absorbs heat from nearby tissue due to the Joule-Thomson effect alone or in combination with increasing latent heat. For example, refrigerant can enter the cryo-catheter partially or entirely in liquid phase at high pressure, expand and/or vaporize by passing through an orifice within the cryo-applicator, and then exit the cryo-catheter in gas phase at low pressure. Cooling via refrigerant expansion can be particularly useful in relatively long and narrow cryo-catheters (e.g., most intravascular cryo-catheters). In such cryo-catheters, for example, refrigerant cooling potential in the form of high refrigerant pressure can usually be maintained more readily than refrigerant cooling potential in the form of low refrigerant temperature while refrigerant is en route to a distal cryo-applicator.
In conventional cryotherapeutic systems configured for cooling by refrigerant expansion, resulting expanded refrigerant is typically exhausted to the atmosphere or collected for disposal. For example, a conventional cryotherapeutic system can be configured to be connected to a hospital scavenging system that transports expanded refrigerant to a centralized location for disposal. Both releasing expanded refrigerant into the atmosphere and transporting expanded refrigerant to a centralized location deplete the supply of refrigerant available to the system. Accordingly, conventional cryotherapeutic systems are typically configured to be connected to refrigerant supply tanks that must frequently be replaced or recharged. Replacing or recharging refrigerant supply tanks, however, can be logistically challenging and costly. Furthermore, although larger refrigerant supply tanks often require replacement or recharging less frequently than smaller refrigerant supply tanks, larger refrigerant supply tanks are also typically more obtrusive and cumbersome to handle than smaller refrigerant supply tanks.
Conventional cryotherapeutic systems are usually only compatible with certain types of refrigerants. For example, many conventional cryotherapeutic systems are configured for use with nitrous oxide, which can be released into the atmosphere or collected for disposal with little or no concern for toxicity or environmental impact. While nitrous oxide is a useful refrigerant, other refrigerants can have more advantageous thermodynamic properties (e.g., greater latent heats of vaporization) than nitrous oxide. These other refrigerants, however, are potentially more harmful to the environment than nitrous oxide. Intentionally and non-incidentally releasing and/or disposing of such refrigerants is, in many cases, prohibited by regulations, inconsistent with accepted medical protocols, or both. Thus, many potentially useful types of refrigerants are not available for use in conventional cryotherapeutic systems configured to release expanded refrigerant into the atmosphere or to collect expanded refrigerant for disposal. This can limit the performance of such systems.
For the reasons stated above and for other reasons, whether or not expressly disclosed herein, there is a need for innovation in the field of cryotherapy. For example, there is a need for innovation with regard to devices, systems, and methods that reduce the need for replacing or recharging refrigerant supply tanks, that facilitate the use of additional types of refrigerants, and/or that have other advantages relative to conventional devices, systems, and/or methods.
Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present technology. For ease of reference, throughout this disclosure identical reference numbers may be used to identify identical or at least generally similar or analogous components or features.
Specific details of several embodiments of the present technology are described herein with reference to
Cryotherapeutic systems and associated devices, systems, and methods configured in accordance with embodiments of the present technology can have one or more advantageous features relative to the prior art. For example, a cryotherapeutic system in accordance with an embodiment of the present technology can be configured to reuse refrigerant rather than releasing refrigerant into the atmosphere or collecting refrigerant for disposal. The cryotherapeutic system can be configured to collect refrigerant from an exhaust lumen of a cryo-catheter, to recompress collected refrigerant, and to supply recompressed refrigerant to a supply lumen of the cryo-catheter or to the supply lumen of another cryo-catheter. In some embodiments, recompressing collected refrigerant includes condensing collected refrigerant such that recompressed refrigerant can be supplied to the supply lumen at least partially in liquid phase. Since refrigerant within the system is reused instead of released into the atmosphere or otherwise discarded outside of the system, the need to replace or recharge a supply tank can be mostly or entirely eliminated. Thus, long-term operation of the system can be less logistically challenging and/or less costly than long-term operation of many conventional cryotherapeutic systems. Furthermore, in some cases, since refrigerant can be generally contained within the system, the system can be used with types of refrigerants that are potentially more harmful to the environment than nitrous oxide, but that also have more advantageous thermodynamic properties than nitrous oxide. For example, in addition to nitrous oxide, the system can be used with suitable hydrofluorocarbons (e.g., difluoromethane), among other types of refrigerants.
The high-pressure line 106 can be configured to be operably connected to a supply lumen 112 of the cryo-catheter 102. Similarly, the low-pressure line 108 can be configured to be operably connected to an exhaust lumen 114 of the cryo-catheter 102. For example, the high-pressure line 106 and the low-pressure line 108 can include, respectively, a first coupler 116 and a second coupler 118 accessible from outside the console 104. The first coupler 116 can be configured to cooperatively engage a third coupler 120 of the supply lumen 112. The second coupler 118 can be configured to cooperatively engage a fourth coupler 122 of the exhaust lumen 114. The first and third couplers 116, 120 and the second and fourth couplers 118, 122 can be threaded, compression fit, barbed, or have other suitable cooperative features configured to form releasable fluidic connections. In other embodiments, the cryo-catheter 102 can be permanently connected to the console 104. For example, the first, second, third, and fourth couplers 116, 118, 120, 122 can be eliminated, and the high-pressure line 106 and the low-pressure line 108 can be integral extensions of the supply lumen 112 and the exhaust lumen 114, respectively. In still other embodiments, the first, second, third, and fourth couplers 116, 118, 120, 122 can have other suitable locations within the system 100 (e.g., separate from the console 104).
The cryo-catheter 102 can include an elongated shaft 124 having a proximal end portion 124a, a distal end portion 124b, and a main portion 124c therebetween. At or near the distal end portion 124b, the cryo-catheter 102 can include a cryo-applicator 126 attached to the shaft 124. The cryo-applicator 126 can include a cooling chamber 128 configured to receive refrigerant from the high-pressure line 106 via the supply lumen 112 and to return refrigerant to the low-pressure line 108 via the exhaust lumen 114. In some embodiments, the cooling chamber 128 is a balloon configured to compliantly, non-compliantly, and/or semi-compliantly expand when refrigerant is present within the cooling chamber 128. For example, the cooling chamber 128 can be configured to circumferentially expand to span the cross-sectional area of a blood vessel (e.g., a renal artery). Therapeutically effective cooling can be applied to a wall of the blood vessel via the cryo-applicator 126 (e.g., to cause neuromodulation or another desirable cryotherapeutic effect). In other embodiments, the cryo-applicator 126 can be an integral portion of the shaft 124 and/or the cooling chamber 128 can be non-expandable.
The supply lumen 112 and the exhaust lumen 114 can be positioned at least partially within the shaft 124. For example, the supply lumen 112 can extend from the third coupler 120 to the proximal end portion 124a, along the main portion 124c, and to an expansion orifice 130 of the cryo-applicator 126 within the cooling chamber 128. Similarly, the exhaust lumen 114 can extend from the fourth coupler 122 to the proximal end portion 124a, along the main portion 124c, and to an exhaust opening 132 of the cryo-applicator 126 within the cooling chamber 128. Refrigerant at relatively high pressure can flow from the high-pressure line 106, through the supply lumen 112, and to the expansion orifice 130, and then can expand within the cooling chamber 128 to cool the cryo-applicator 126. For example, refrigerant within the supply lumen 112 proximal to the expansion orifice 130 can be at least partially in liquid phase and vaporize at the expansion orifice 130 or elsewhere within the cooling chamber 128 to cool the cryo-applicator 126 by absorbing latent heat. In some cases, additional cooling can occur without phase change due to the Joule-Thomson effect. Expanded refrigerant at relatively low pressure can exit the cooling chamber 128 through the exhaust opening 132 and flow through the exhaust lumen 114 to the low-pressure line 108.
The console 104 can be configured to regulate the flow of refrigerant into the supply lumen 112 and/or out of the exhaust lumen 114, both of which can affect cooling activity within the cryo-applicator 126. In some embodiments, the high-pressure line 106 includes a supply valve 134 configured to open and close and thereby start and stop the flow of refrigerant toward the supply lumen 112. Similarly, the low-pressure line 108 can include an exhaust valve 136 configured to open and close and thereby start and stop the flow of refrigerant toward the recompression unit 110. The supply valve 134 and the exhaust valve 136 can also be configured to be partially open so as to vary the flow of refrigerant incrementally and/or infinitely within suitable ranges. In many cases, however, it can be advantageous to control the flow of refrigerant primarily or entirely via operation of the recompression unit 110. The recompression unit 110 can be operably connected to the high-pressure line 106 and the low-pressure line 108 and configured to increase the pressure of refrigerant moving from the low-pressure line 108 to the high-pressure line 106. In some cases, refrigerant moving through the recompression unit 110 at least partially condenses. In other cases, refrigerant moving through the recompression unit 110 can enter and exit the recompression unit 110 in the gas phase.
The high-pressure line 106, the low-pressure line 108, and the recompression unit 110 can be configured to define a portion of a closed loop when the high-pressure line 106 is operably connected to the supply lumen 112 and the low-pressure line 108 is operably connected to the exhaust lumen 114. The closed loop, for example, can extend between the recompression unit 110 and the cooling chamber 128 with a high-pressure portion on one side of the closed loop and a low-pressure portion on the other side of the closed loop. The high-pressure portion can include the high-pressure line 106 and the supply lumen 112, and the low-pressure portion can include the low-pressure line 108 and the exhaust lumen 114. In some embodiments, the high-pressure line 106, the supply lumen 112, and any other suitable components within the high-pressure portion are configured to carry liquid refrigerant. Similarly, the low-pressure line 108, the exhaust lumen 114, and any other suitable components within the low-pressure portion can be configured to carry gaseous refrigerant. For example, the cross-sectional area of refrigerant-carrying components along the low-pressure portion can be greater than the cross-sectional area of refrigerant-carrying components along the high-pressure portion to accommodate the greater volume of gaseous refrigerant relative to liquid refrigerant.
The high-pressure line 106, the low-pressure line 108, and the recompression unit 110 can be configured to contain a first volume of refrigerant. In some embodiments, the system 100 is configured to replenish the first volume of refrigerant to account for refrigerant loss (e.g., incidental refrigerant loss) from the first volume of refrigerant. For example, the system 100 can include a make-up reservoir 138 operably connected to the high-pressure line 106. The make-up reservoir 138 can be configured to contain a second volume of refrigerant sufficient to replace refrigerant loss (e.g., incidental refrigerant loss) from the first volume of refrigerant. Such refrigerant loss can occur, for example, when the supply lumen 112 is disconnected from the high-pressure line 106, when the exhaust lumen 114 is disconnected from the low-pressure line 108, or both (e.g., during exchange of the cryo-catheter 102). In some embodiments, the second volume of refrigerant is sufficient to replace refrigerant loss during use of the system 100 for a number of treatments (e.g., a number of cryotherapeutic renal neuromodulation treatments) from about 20 to about 1000, from about 40 to about 500, from about 60 to about 300, or within another suitable range. For example, the second volume of refrigerant can be sufficient to replace refrigerant loss during use of the system 100 for about 100 treatments.
The system 100 can include a make-up valve 140 operably connected to the closed loop at the high-pressure line 106. In other embodiments, the make-up reservoir 138 and the make-up valve 140 can be connected to the closed loop at another suitable point (e.g., at the low-pressure line 108 or at the recompression unit 110). The make-up valve 140 can be configured to regulate the flow of refrigerant from the second volume of refrigerant toward the first volume of refrigerant. For example, the make-up valve 140 can open as needed to replenish the first volume of refrigerant in response to refrigerant loss. Less frequently, the second volume of refrigerant can be replenished via a make-up port 142 of the system 100, which can be accessible from outside the console 104. In some cases, the console 104 alone or together with the cryo-catheter 102 can be provided to a user pre-filled with a suitable refrigerant (e.g., nitrous oxide or a hydrofluorocarbon refrigerant). In other cases, a service technician can introduce an initial charge of refrigerant (e.g., via the make-up port 142) when the system 100 is first installed.
The system 100 can be configured for manual or automatic control. For example, the supply valve 134, the exhaust valve 136, and the make-up valve 140 can be operated manually or automatically. In some embodiments, the system 100 includes a user interface 144, one or more sensors 146, a controller 148, and communication lines 150 operably connecting the user interface 144 and the sensors 146 to the controller 148. The system 100 can further include one or more actuators 152 operably connected to the supply valve 134, the exhaust valve 136, and/or the make-up valve 140 individually. The actuators 152 and the recompression unit 110 can be operably connected to the controller 148 via the communication lines 150. In other embodiments, some or all of the communication lines 150 can be eliminated and the user interface 144, the sensors 146, the actuators 152, and/or the recompression unit 110 can be configured to communicate with the controller 148 wirelessly. The controller 148 can include a processor (not shown) and memory (also not shown) and can be programmed with instructions (e.g., non-transitory instructions) corresponding to one or more suitable control algorithms. For example, the controller 148 can be configured to receive input from the user interface 144 and/or the sensors 146, and to control the actuators 152 and/or the recompression unit 110 based on the input. Furthermore, the controller 148 can be configured to receive input from the user interface 144 and/or the sensors 146 and to generate a display at the user interface 144 based on the input.
The sensors 146 can be configured to measure pressure, volume, temperature, mass flow rate, and/or other suitable parameters of refrigerant at one or more positions within the system 100. For example, individual sensors 146 can be operably coupled to the high-pressure line 106 and/or the low-pressure line 108 and configured to measure and/or monitor the first volume of refrigerant. Similarly, a sensor 146 can be operably connected to the make-up reservoir 138 and configured to measure and/or monitor the second volume of refrigerant. The controller 148 can be configured to receive an indication of refrigerant loss from the first volume of refrigerant and to open the make-up valve 140 (e.g., via an actuator 152) in response to the indication. The make-up valve 140 can be opened in a controlled manner (e.g., for a selected period of time and/or to a selected extent) to permit refrigerant from the second volume of refrigerant to flow into the first volume of refrigerant in a quantity sufficient to compensate for the detected refrigerant loss from the first volume of refrigerant.
In some cases, it can be useful for refrigerant supplied to the cryo-catheter 102 to be free or nearly free of moisture (e.g., liquid water and/or water vapor), particulates, and/or other contaminants. Moisture, for example, can freeze within the cryo-catheter 102 into ice particles, which, along with other types of particulates, can interfere with operation of the cryo-catheter 102. The system 100 can include a filter 154 configured to remove moisture, particulates, or both during refrigerant reprocessing. The filter 154 can be positioned at a point along the high-pressure line 106, at a point along the low-pressure line 108, or at another suitable position within the system 100. When the filter 154 is positioned at a point along the high-pressure line 106, the filter 154 can be configured to filter liquid refrigerant (e.g., to remove liquid-entrained particulates and/or liquid water). Similarly, when the filter 154 is positioned at a point along the low-pressure line 108, the filter 154 can be configured to filter gaseous refrigerant (e.g., to remove gas-entrained particulates and/or water vapor). In some embodiments, the filter 154 includes a molecular sieve (e.g., activated alumina) having a suitable pore size (e.g., 3A or 4A) alone or in combination with one or more other filtering components (e.g., an adsorbent material or a polymer membrane).
The portion of the closed loop defined by the high-pressure line 106, the low-pressure line 108, and the recompression unit 110 can be generally impermeable to moisture and/or refrigerant. For example, components within the console 104 configured to contain refrigerant can be constructed from generally moisture-impermeable and/or refrigerant-impermeable materials, such as certain metals or fluorinated polymers (e.g., polychlorotrifluoroethylene), and/or connected using generally moisture-impermeable and/or refrigerant-impermeable connections (e.g., welded connections). In some cases, the moisture permeability and/or refrigerant permeability of the supply lumen 112, the exhaust lumen 114, and/or other refrigerant-carrying components of the cryo-catheter 102 can be greater than the moisture permeability and/or refrigerant permeability of refrigerant-carrying components of the system 100 located within the console 104. The materials, construction techniques, and/or other features of the refrigerant-carrying components of the cryo-catheter 102, for example, can be selected to favor greater flexibility, lower cost, greater compactness, and/or other attributes over low moisture and/or refrigerant permeability. In some cases, the supply lumen 112 and the exhaust lumen 114 can be made of a polyimide or another suitable material with non-negligible moisture and/or refrigerant permeability. In other cases, components of the cryo-catheter 102 configured to contain refrigerant can be constructed from generally moisture-impermeable and/or refrigerant-impermeable materials, such as certain composites (e.g., metal-lined polymers) or fluorinated polymers (e.g., polychlorotrifluoroethylene).
The console 104 can be relatively durable and the cryo-catheter 102 can be at least partially disposable (e.g., after one, two, three, or another suitable number of treatments). Furthermore, in some embodiments, the console 104 is configured to store generally all refrigerant within the system 100 when the system 100 is not in use (e.g., overnight and/or between treatments) and/or when the cryo-catheter 102 is being replaced. In contrast, the cryo-catheter 102 can be configured to carry circulating refrigerant during a treatment, but, in some cases, not to store refrigerant before and after the treatment. Accordingly, refrigerant loss from the system 100 and/or introduction of moisture into the system 100 due to the moisture and/or refrigerant permeability of refrigerant-carrying components of the cryo-catheter 102 can be relatively low. The filter 154 and the make-up reservoir 138 can be configured, respectively, to remove this moisture contamination and to replace this refrigerant loss in addition, respectively, to removing moisture contamination and replacing refrigerant loss that can occur when the cryo-catheter 102 is detached from the console 104.
In some embodiments, the system 100 is configured to reduce or eliminate refrigerant loss associated with detaching the cryo-catheter 102 from the console 104. For example, the system 100 can be configured such that a relatively small percentage of refrigerant within the system 100 (e.g., a percentage from about 0.01% to about 5%, from about 0.1% to about 5%, from about 1% to about 5%, or within another suitable range) is within the cryo-catheter 102 at any given time. Thus, even if all refrigerant within the cryo-catheter 102 is lost when the cryo-catheter 102 is detached from the console 104, the percentage of lost refrigerant relative to total refrigerant within the system 100 can be relatively small. Furthermore, the console 104 can be configured to evacuate remaining refrigerant within the cryo-catheter 102 after a treatment. For example, after a treatment, the supply valve 134 can be closed and the recompression unit 110 can be used to draw out remaining refrigerant within the cryo-catheter 102. After the remaining refrigerant has been mostly or entirely evacuated, the exhaust valve 136 can be closed. The third coupler 120 can then be detached from the first coupler 116, the fourth coupler 122 can be detached from the second coupler 118, and the cryo-catheter 102 can be discarded. The system 100 can be configured to reduce or eliminate the intake of air into the high-pressure line 106 and the low-pressure line 108 during this process. Since air contains water vapor, this can be useful to help maintain refrigerant within the system 100 free or nearly free of moisture.
With reference again to
The system 200 can include a controller 218 operably connected to the sensors 146, the actuators 152, the recompression unit 110, and the user interface 144. In some embodiments, the system 200 has more than one operational mode implemented by the controller 218 (e.g., in response to a user-initiated command from the user interface 144 and/or an indication from one or more of the sensors 146). For example, the system 200 can operate in a first mode during a treatment and in a second mode when the system 200 is not in use. In the first mode, the system 200 can be configured to at least partially deplete a supply of refrigerant within the supply vessel 208 by supplying refrigerant from the supply vessel 208 to the supply lumen 112. Also in the first mode, the system 200 can be configured to receive refrigerant within the exhaust vessel 212 from the exhaust lumen 114 via the low-pressure line 210. In the second mode, the system 200 can be configured to at least partially replenish the supply of refrigerant within the supply vessel 208 with refrigerant from the exhaust vessel 212 via the recompression unit 110.
The first and second modes can be non-concurrent. For example, the system 200 can be configured to operate in the second mode between treatments and/or overnight when operation of the recompression unit 110 is less likely to be disruptive (e.g., due noise associated with operation of the recompression unit 110). In other embodiments, the system 200 can be configured to supply high-pressure refrigerant to the supply lumen 112 and to recompress exhausted refrigerant from the exhaust lumen 114 concurrently. The exhaust vessel 212 can have a capacity sufficient to contain exhausted refrigerant from a limited number of treatments, such as one treatment or one cycle of treatments (e.g., from about one treatment to about 20 treatments or a number of treatments performed during a single day of treatments). When the supply vessel 208 is configured to contain liquid refrigerant and the exhaust vessel 212 is configured to contain gaseous refrigerant, it can be desirable to store surplus refrigerant (e.g., a quantity of refrigerant greater than a quantity of refrigerant used for one treatment or one cycle of treatments) within the supply vessel 208 rather than within the exhaust vessel 212. This can be the case, for example, because refrigerant can be unduly voluminous in the gas phase and relatively compact in the liquid phase. The system 200 can include a check valve 219 downstream from the recompression unit 110, which can be configured to reduce or prevent migration of refrigerant from the high-pressure line 206 to the low-pressure line 210 (e.g., when the recompression unit 110 is not active). In some embodiments, the check valve 219 is within the recompression unit 110. For example, a positive displacement pump (not shown) within the recompression unit 110 can serve as the check valve 219.
The system 200 can include a make-up reservoir 220 removably connectable to the closed loop (e.g., at the high-pressure line 206, at the low-pressure line 210, or at another suitable position within the closed loop). The make-up reservoir 220 can be disposable or configured to be disconnected from the high-pressure line 206 and refilled (e.g., at a remote facility) after it is depleted of refrigerant. The make-up reservoir 220 and high-pressure line 206 can include cooperative coupler valves 222. In some embodiments, the high-pressure line 206 includes another coupler valve 222 configured to releasably connect to a coupler valve 222 of the supply lumen 112. Similarly, the low-pressure line 210 can include a coupler valve 222 configured to releasably connect to a coupler valve 222 of the exhaust lumen 114. One or both members of one or more of the pairs of cooperative coupler valves 222 can be configured to automatically open when coupled to the corresponding member of the pair and to automatically close when not coupled to the corresponding member of the pair. Accordingly, some or all of the coupler valves 222 can act as check valves that reduce refrigerant loss and/or entry of air into components of the system 200 when the make-up reservoir 220 and/or the cryo-catheter 202 are partially or fully disconnected from the console 204. Thus, if the cryo-catheter 202 is temporarily disconnected from the console 204, the coupler valves 222 of the supply lumen 112 and the exhaust lumen 114 can reduce refrigerant loss from the cryo-catheter 202 even when remaining refrigerant within the cryo-catheter 202 is not displaced (e.g., as described above). This can be useful, for example, when the cryo-catheter 202 is reusable. The coupler valves 222 can be threaded, compression fit, barbed, or have other suitable cooperative features.
In some embodiments, the high-pressure line 206 includes a shutoff valve 224 and a pressure-regulated valve 226 configured to control the flow of refrigerant from the make-up reservoir 220 to the supply vessel 208 or to another portion of the high-pressure line 206 downstream from the make-up reservoir 220. In other embodiments, the make-up reservoir 220 can be removably connected to the system 200 at the low-pressure line 210, and the low-pressure line 210 can include the shutoff valve 224 and the pressure-regulated valve 226. With reference again to
In some embodiments, the recompression unit 110 is configured to at least partially condense refrigerant moving through the recompression unit 110. The recompression unit 110 can include a first pump 300, a second pump 302, and a condenser 304 therebetween. The first pump 300 can be configured to pump gaseous refrigerant. For example, the first pump 300 can be configured to draw exhausted refrigerant into the recompression unit 110 and/or to raise the pressure of exhausted refrigerant to a pressure slightly below the saturation pressure of the type of refrigerant at room temperature or at an operating temperature of the recompression unit 110. The condenser 304 can be configured to at least partially condense refrigerant downstream from the first pump 300 (e.g., by extracting heat from refrigerant passing through the condenser 304). The second pump 302 can be a condensate pump configured to pump liquid refrigerant. For example, the second pump 302 can be configured to pressurize condensed refrigerant exiting the condenser 304 to at least a treatment pressure and to control the flow of refrigerant away from the recompression unit 110. In some cases, the second pump 302 can be a positive displacement pump configured to prevent backflow through the recompression unit 110.
Many variations of the recompression units 110, 400 are possible in accordance with embodiments of the present technology. For example, the first pump 300, the second pump 302, and/or the condenser 304 individually can include one or more stages. In some embodiments, the first pump 300, the second pump 302, and the condenser 304 have another suitable order within the recompression unit 110. Furthermore, the first pump 300, the second pump 302, or the condenser 304 can be eliminated.
At a fifth stage 1108, the refrigerant can be contained in the supply vessel 208 as a liquid at a relatively high pressure. In some cases, make-up refrigerant can be added to the supply vessel 208 to replace any refrigerant loss from the system 200. At a sixth stage 1110, the refrigerant can travel through the supply lumen 112 to the expansion orifice 130. The pressure of the refrigerant within the supply vessel 208 can be sufficiently high to generally maintain the refrigerant in liquid phase while it travels to the expansion orifice 130. At a seventh stage 1112, the refrigerant can travel through the expansion orifice 130 and into the cooling chamber 128. A sharp drop in pressure at the expansion orifice 130 can cause the refrigerant to vaporize, which can cool the cooling chamber 128 primarily due to the refrigerant absorbing its latent heat of vaporization. At an eighth stage 1114, the refrigerant in gaseous phase can exit the cooling chamber 128 via the exhaust opening 132. At a ninth stage 1116, the refrigerant can travel though the exhaust lumen 114 to the exhaust vessel 212. The refrigerant can then repeat the process beginning with the first stage 1100 if the system 200 is still in use or remain in the exhaust vessel 212 until the system 200 is restarted.
This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments of the present technology are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and/or functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, alternative embodiments may perform the steps in a different order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. While advantages associated with certain embodiments of the present technology may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. This disclosure and the associated technology encompass a wide variety of other embodiments not expressly shown or described herein.
Certain aspects of the present technology may take the form of computer-executable instructions, including routines executed by a controller or other data processor. In some embodiments, a controller or other data processor is specifically programmed, configured, or constructed to perform one or more of these computer-executable instructions. Furthermore, some aspects of the present technology may take the form of data (e.g., non-transitory data) stored or distributed on computer-readable media, including magnetic or optically readable or removable computer discs as well as media distributed electronically over networks. Data structures and transmissions of data particular to aspects of the present technology are encompassed within the scope of the present technology. The present technology also encompasses methods of both programming computer-readable media to perform particular steps and executing the steps.
Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “including,” “comprising” and the like are used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. Directional terms, such as “upper,” “lower,” “front,” “back,” “vertical,” and “horizontal,” may be used herein to express and clarify the relationship between various structures. It should be understood that such terms do not denote absolute orientation. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, component, or operation described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, components, and/or operations may be combined in any suitable manner based on this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3125096 | Antiles et al. | Mar 1964 | A |
3298371 | Lee | Jan 1967 | A |
3901241 | Allen, Jr. | Aug 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4275734 | Mitchiner | Jun 1981 | A |
4602624 | Naples et al. | Jul 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4764504 | Johnson et al. | Aug 1988 | A |
4976711 | Parins et al. | Dec 1990 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5190539 | Fletcher et al. | Mar 1993 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5417355 | Broussalian et al. | May 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5425364 | Imran | Jun 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5624392 | Saab | Apr 1997 | A |
5626576 | Janssen | May 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5758505 | Dobak, III et al. | Jun 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5807391 | Wijkamp | Sep 1998 | A |
5837003 | Ginsburg | Nov 1998 | A |
5860970 | Goddard et al. | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5868735 | Lafontaine | Feb 1999 | A |
5893885 | Webster et al. | Apr 1999 | A |
5902299 | Jayaraman | May 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5971979 | Joye et al. | Oct 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6024752 | Horn et al. | Feb 2000 | A |
6035657 | Dobak et al. | Mar 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6099524 | Lipson et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6161049 | Rudie et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6190356 | Bersin | Feb 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6237355 | Li | May 2001 | B1 |
6241722 | Dobak et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6283959 | Lalonde et al. | Sep 2001 | B1 |
6290696 | Lafontaine | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6355029 | Joye et al. | Mar 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6432102 | Joye et al. | Aug 2002 | B2 |
6451045 | Walker et al. | Sep 2002 | B1 |
6468297 | Williams et al. | Oct 2002 | B1 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6497703 | Korteling et al. | Dec 2002 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6514245 | Williams et al. | Feb 2003 | B1 |
6517533 | Swaminathan | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6527739 | Bigus et al. | Mar 2003 | B1 |
6537271 | Murray et al. | Mar 2003 | B1 |
6540734 | Newton et al. | Apr 2003 | B1 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6562034 | Edwards et al. | May 2003 | B2 |
6575933 | Wittenberger et al. | Jun 2003 | B1 |
6602247 | Lalonde | Aug 2003 | B2 |
6610083 | Keller et al. | Aug 2003 | B2 |
6616624 | Kieval | Sep 2003 | B1 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6648879 | Joye et al. | Nov 2003 | B2 |
6666858 | Lafontaine | Dec 2003 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6736835 | Pellegrino et al. | May 2004 | B2 |
6755823 | Lalonde | Jun 2004 | B2 |
6786901 | Joye et al. | Sep 2004 | B2 |
6824543 | Lentz | Nov 2004 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6875209 | Zvuloni et al. | Apr 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6905510 | Saab | Jun 2005 | B2 |
6908462 | Joye et al. | Jun 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6981382 | Lentz et al. | Jan 2006 | B2 |
7060062 | Joye et al. | Jun 2006 | B2 |
7081112 | Joye et al. | Jul 2006 | B2 |
7081115 | Taimisto | Jul 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7156840 | Lentz et al. | Jan 2007 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7221979 | Zhou et al. | May 2007 | B2 |
7306590 | Swanson | Dec 2007 | B2 |
7357797 | Ryba | Apr 2008 | B2 |
7381200 | Katoh et al. | Jun 2008 | B2 |
7390894 | Weinshilboum et al. | Jun 2008 | B2 |
7604631 | Reynolds | Oct 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7641679 | Joye et al. | Jan 2010 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7758571 | Saadat | Jul 2010 | B2 |
7778703 | Gross et al. | Aug 2010 | B2 |
7785289 | Rios et al. | Aug 2010 | B2 |
7861725 | Swanson | Jan 2011 | B2 |
7972327 | Eberl et al. | Jul 2011 | B2 |
8088125 | Lafontaine | Jan 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8140170 | Rezai et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8473067 | Hastings et al. | Jun 2013 | B2 |
8475441 | Babkin et al. | Jul 2013 | B2 |
8480664 | Watson et al. | Jul 2013 | B2 |
8663211 | Fourkas et al. | Mar 2014 | B2 |
8740895 | Mayse et al. | Jun 2014 | B2 |
8777943 | Mayse et al. | Jul 2014 | B2 |
20010021847 | Abboud et al. | Sep 2001 | A1 |
20020045893 | Lane et al. | Apr 2002 | A1 |
20020120258 | Lalonde | Aug 2002 | A1 |
20020165532 | Hill et al. | Nov 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20030036752 | Joye et al. | Feb 2003 | A1 |
20030050681 | Pianca et al. | Mar 2003 | A1 |
20030060762 | Zvuloni et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030088240 | Saadat | May 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030181897 | Thomas et al. | Sep 2003 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040024392 | Lewis et al. | Feb 2004 | A1 |
20040215186 | Cornelius et al. | Oct 2004 | A1 |
20050080409 | Young et al. | Apr 2005 | A1 |
20050187579 | Danek et al. | Aug 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050240117 | Zvuloni et al. | Oct 2005 | A1 |
20060084962 | Joye et al. | Apr 2006 | A1 |
20060095029 | Young et al. | May 2006 | A1 |
20060100618 | Chan et al. | May 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212027 | Marrouche et al. | Sep 2006 | A1 |
20060235375 | Littrup et al. | Oct 2006 | A1 |
20060247611 | Abboud et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20070093799 | Abboud et al. | Apr 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070185445 | Nahon et al. | Aug 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070299433 | Williams et al. | Dec 2007 | A1 |
20080208182 | Lafontaine et al. | Aug 2008 | A1 |
20080300584 | Lentz et al. | Dec 2008 | A1 |
20080300586 | Zvuloni | Dec 2008 | A1 |
20080306475 | Lentz et al. | Dec 2008 | A1 |
20080312644 | Fourkas et al. | Dec 2008 | A1 |
20080319513 | Pu et al. | Dec 2008 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090088735 | Abboud et al. | Apr 2009 | A1 |
20090182316 | Bencini | Jul 2009 | A1 |
20090182317 | Bencini | Jul 2009 | A1 |
20090209949 | Ingle et al. | Aug 2009 | A1 |
20090281533 | Ingle et al. | Nov 2009 | A1 |
20090287202 | Ingle et al. | Nov 2009 | A1 |
20090299355 | Bencini et al. | Dec 2009 | A1 |
20100049184 | George et al. | Feb 2010 | A1 |
20100069900 | Shirley et al. | Mar 2010 | A1 |
20100100087 | Mazzone et al. | Apr 2010 | A1 |
20100106148 | Joye et al. | Apr 2010 | A1 |
20100114269 | Wittenberger et al. | May 2010 | A1 |
20100125266 | Deem et al. | May 2010 | A1 |
20100130970 | Williams et al. | May 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100179526 | Lawrence | Jul 2010 | A1 |
20100179527 | Watson et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100198203 | Kuck et al. | Aug 2010 | A1 |
20100204687 | Abboud et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100234838 | Watson | Sep 2010 | A1 |
20100249766 | Saadat | Sep 2010 | A1 |
20100256621 | Babkin et al. | Oct 2010 | A1 |
20100280507 | Babkin et al. | Nov 2010 | A1 |
20110152855 | Mayse et al. | Jun 2011 | A1 |
20110263921 | Vrba et al. | Oct 2011 | A1 |
20110270238 | Rizq et al. | Nov 2011 | A1 |
20110282272 | Lafontaine | Nov 2011 | A1 |
20120029509 | Smith | Feb 2012 | A1 |
20120029511 | Smith et al. | Feb 2012 | A1 |
20120089047 | Ryba et al. | Apr 2012 | A1 |
20120123261 | Jenson et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120130345 | Levin et al. | May 2012 | A1 |
20120130360 | Buckley et al. | May 2012 | A1 |
20120130368 | Jenson | May 2012 | A1 |
20120136417 | Buckley et al. | May 2012 | A1 |
20120136418 | Buckley et al. | May 2012 | A1 |
20120143097 | Pike, Jr. | Jun 2012 | A1 |
20120150267 | Buckley et al. | Jun 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120253336 | Littrup et al. | Oct 2012 | A1 |
20130090650 | Jenson et al. | Apr 2013 | A1 |
20130123770 | Smith | May 2013 | A1 |
20130184696 | Fourkas et al. | Jul 2013 | A1 |
20130345688 | Babkin et al. | Dec 2013 | A1 |
20140046313 | Pederson et al. | Feb 2014 | A1 |
20140066914 | Lafontaine | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
4406451 | Sep 1995 | DE |
0655225 | May 1995 | EP |
0955012 | Nov 1999 | EP |
1129670 | Sep 2001 | EP |
1164963 | Jan 2002 | EP |
1389477 | Feb 2004 | EP |
1502553 | Feb 2005 | EP |
1559362 | Aug 2005 | EP |
2558016 | Feb 2013 | EP |
2598070 | Jun 2013 | EP |
2598071 | Jun 2013 | EP |
2608837 | Jul 2013 | EP |
228367 | Feb 1925 | GB |
1422535 | Jan 1976 | GB |
2289414 | Nov 1995 | GB |
718099 | Feb 1980 | SU |
1153901 | May 1985 | SU |
1329781 | Aug 1987 | SU |
1378835 | Mar 1988 | SU |
1771725 | Jun 1990 | SU |
WO-9525472 | Sep 1995 | WO |
WO-9725011 | Jul 1997 | WO |
WO-9736548 | Oct 1997 | WO |
WO-9900060 | Jan 1999 | WO |
WO-9905979 | Feb 1999 | WO |
WO-9927862 | Jun 1999 | WO |
WO-0122897 | Apr 2001 | WO |
WO-0164145 | Sep 2001 | WO |
WO-0170114 | Sep 2001 | WO |
WO-0200128 | Jan 2002 | WO |
WO-0204042 | Jan 2002 | WO |
WO-0207625 | Jan 2002 | WO |
WO-0207628 | Jan 2002 | WO |
WO-0213710 | Feb 2002 | WO |
WO-02058576 | Aug 2002 | WO |
WO-03020334 | Mar 2003 | WO |
WO-03061496 | Jul 2003 | WO |
WO-2005030072 | Apr 2005 | WO |
WO-2005038357 | Apr 2005 | WO |
WO-2005041748 | May 2005 | WO |
WO-0510528 | Nov 2005 | WO |
WO-2006041881 | Apr 2006 | WO |
WO-2006096272 | Sep 2006 | WO |
WO-2006124177 | Nov 2006 | WO |
WO-2007008954 | Jan 2007 | WO |
WO-2008131037 | Oct 2008 | WO |
WO-2011056684 | May 2011 | WO |
WO-2011082278 | Jul 2011 | WO |
WO-2011082279 | Jul 2011 | WO |
WO-2012016135 | Feb 2012 | WO |
WO-2012016137 | Feb 2012 | WO |
WO-2012058430 | May 2012 | WO |
WO-2013074683 | May 2013 | WO |
WO-2013106859 | Jul 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for International App. No. PCT/US2013/073177, mailed Jun. 27, 2014, 21 pages. |
European Search Report for European Application No. 13159256, Date Mailed: Oct. 17, 2013, 6 pages. |
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct—2011.php>. |
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>. |
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, http://www.prnewswire.com/news-releases/ardianr-receives-2010-europcr-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>. |
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>. |
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year.” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media—relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>. |
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. http://www.cxvascular.com/in-latest-news/interventional-news—latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>. |
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages. |
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page, <http://www.neurotechreports.com/pages/goldelectrodes09.html>. |
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages. |
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, http://pharmaceuticalintelligence.com/tag/vessix-vascular/>. |
“The Edison AwardsTM” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>. |
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages. |
“Vessix Renal Denervation System: So Advanced Its Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages. |
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages. |
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by vol. expansion in the rabbit.” Am J Physiol Regul lntegr Comp Physiol, vol. 274, 1998, 7 pages. |
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages. |
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages. |
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global Symplicity registry.” EuroIntervention, vol. 9, 2013, 9 pages. |
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldH eadlines—article&forceid=83002>. |
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages. |
Final Office Action; U.S. Appl. No. 12/827,700; mailed on Feb. 5, 2013, 61 pages. |
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, Col. 60, No. 14, 2012, 7 pages. |
Gertner, Jon, “Meet The Tech Duo That's Revitalizing The Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>. |
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997). |
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” Eurolntervention, vol. 9, 2013, 9 pages. |
Imimdtanz, “Medtronic awarded industry's highest honour for renal denervation system.” The official blog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>. |
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCl/36509>. |
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages. |
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages. |
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages. |
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages. |
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages. |
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989). |
Ormiston, John et al., “First-in-human use of the OneShotTM renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages. |
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages. |
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines—article&forceid=80880>. |
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages. |
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages. |
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages. |
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages. |
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages. |
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>. |
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages. |
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnIigHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages. |
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages. |
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages. |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,”Journal of the American College of Cardiology, 1999; 33; pp. 972-984. |
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), www.clinicaltrials.gov/ct2/show/NCT01390831. |
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages). |
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages). |
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003). |
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002). |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006). |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertenion, Mar. 2013, http://clinicaltrials.gov/ct2/show/NCT01628198. |
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages. |
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages. |
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages. |
Oz, Mehmet, Pressure Relief, TIME, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2103278,00.html>. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005. |
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages. |
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages. |
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages. |
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages. |
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968. |
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardian Electrophysiology, 2001, pp. 401-410. |
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140. |
Bello-Reuss, E. et al., “Effects of Acute Unilateral Renal Denervation in the Rat,” Journal of Clinical Investigation, vol. 56, Jul. 1975, pp. 208-217. |
Bello-Reuss, E. et al., “Effects of Renal Sympathetic Nerve Stimulation on Proximal Water and Sodium Reabsorption,” Journal of Clinical Investigation, vol. 57, Apr. 1976, pp. 1104-1107. |
Bhandari, A. and Ellias, M., “Loin Pain Hemaluria Syndrome: Pain Control with RFA to the Splanchanic Plexus,” The Pain Clinc, 2000, vol. 12, No. 4, pp. 323-327. |
Curtis, John J. et al., “Surgical Therapy for Persistent Hypertension After Renal Transplantation” Transplantation, 31:125-128 (1981). |
Dibona, Gerald F. et al., “Neural Control of Renal Function,” Physiological Reviews, vol. 77, No. 1, Jan. 1997, The American Physiological Society 1997, pp. 75-197. |
Dibona, Gerald F., “Neural Control of the Kidney—Past, Present and Future,” Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624. |
Janssen, Ben J.A. et al., “Effects of Complete Renal Denervation and Selective Afferent Renal Denervation on the Hypertension Induced by Intrenal Norepinephrine Infusion in Conscious Rats”, Journal of Hypertension 1989, 7: 447-455. |
Katholi, Richard E., “Renal Nerves in the Pathogenesis of Hypertension in Experimental Animals and Humans,” Am J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14. |
Krum, Henry et al., “Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Mulitcentre Safety and Proof-of Principle Cohort Study,” Lancet 2009; 373:1275-81. |
Krum, et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension.” New England Journal of Med, Aug. 2009, 361;9. |
Luippold, Gerd et al., “Chronic Renal Denervation Prevents Glomerular Hyperfiltration in Diabetic Rats”, Nephrol Dial Transplant, vol. 19, No. 2, 2004, pp. 342-347. |
Mahfoud et al. “Treatment strategies for resistant arterial hypertension” Dtsch Arztebl Int. 2011;108:725-731. |
Osborn, et al., “Effect of Renal Nerve Stimulation on Renal Blood Flow Autoregulation and Antinatriuresis During Reductions in Renal Perfusion Pressure,” Proceedings of the Society for Experimentla Biology and Medicine, vol. 168, 77-81, 1981. |
Page, I.H. et al., “The Effect of Renal Denervation on Patients Suffering From Nephritis,” Feb. 27, 1935;443-458. |
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30. |
Rocha-Singh, “Catheter-Based Sympathetic Renal Denervation,” Endovascular Today, Aug. 2009. |
Schlaich, M.P. et al., “Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implictions for an Old Concept,” Hypertension, 2009; 54:1195-1201. |
Schlaich, M.P. et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension,” N. Engl J Med 2009; 361(9): 932-934. |
Smithwick, R.H. et al., “Splanchnicectomy for Essential Hypertension,” Journal Am Med Assn, 1953; 152:1501-1504. |
Symplicity HTN-1 Investigators; Krum H, Barman N, Schlaich M, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911-917. |
Symplicity HTN-2 Investigators, “Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial”; Lancet, Dec. 4, 2010, vol. 376, pp. 1903-1909. |
USRDS United States Renal Data System 2003 Annual Data Report. |
Valente, John F. et al., “Laparoscopic Renal Denervation for Intractable ADPKD-Related Pain”, Nephrol Dial Transplant (2001) 16:160. |
Wagner, C.D. et al., “Very Low Frequency Oscillations in Arterial Blood Pressure After Autonomic Blockade in Conscious Dogs,” Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039. |
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al. |
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al. |
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al. |
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997). |
Dibona, G.F. “Sympathetic nervous system and kidney in hypertension.” Nephrol and Hypertension, 11: 197-200 (2002). |
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Intery Cardiac Electrophysiol, 2:285-292 (1998). |
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, 2003. |
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000). |
Han, Y.-M, et al., “Renal artery ebolization with diluted hot contrast medium: An experimental study.” J Vasc Intery Radio!, 12: 862-868 (2001). |
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994). |
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988). |
Huang et al., “Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats.” Hypertension 32 (1998) pp. 249-254. |
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001). |
Lee, S.J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999). |
Lustgarten, D.L.,et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999). |
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005. |
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011). |
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992). |
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006). |
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68. |
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf. |
Schauerte, P., et al. “Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation.” Circulation, 102:2774-2780 (2000). |
Solis-Herruzo et al., “Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome,” J. Hepatol. 5 (1987), pp. 167-173. |
Stella, A., et al., “Effects of reversible renal deneravation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986). |
Swartz, J.F., et al., “Radiofrequency endocardial cateheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993). |
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998). |
Weinstock, M., et al., “Renal denervation prevents sodium rentention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996). |
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. |
510K Summary of CryoGen Cryosurgery System, filed with FDA Jul. 3, 1997-approved Oct. 1, 1997, 1997, 5 pages. |
CO2/Gas Composite Regulator, Sep. 6, 2011, 2 pages. <http://www.genuineinnovations.com/composite-regulator.html>. |
CryoGen SS&E: HerOption Uterine Cryoblatin Therapy System, filed with FDA Aug. 15, 2000-approved Apr. 20, 2001,1999, 84 pages. |
International Search Report and Written Opinion dated Apr. 12, 2012, International Application No. PCT/US2011/057514, 15 pages. |
International Search Report and Written Opinion dated Apr. 13, 2012, International Application No. PCT/US2011/057502, 14 pages. |
International Search Report and Written Opinion dated Dec. 28, 2011, International Application No. PCT/US2011/057508, 12 pages. |
International Search Report and Written Opinion dated Feb. 14, 2012, International Application No. PCT/US2011/057504, 12 pages. |
International Search Report and Written Opinion dated Feb. 20, 2012, International Application No. PCT/US2011/057483, 11 pages. |
International Search Report and Written Opinion dated Feb. 23, 2012, International Application No. PCT/US2011/057490, 14 pages. |
International Search Report and Written Opinion dated Feb. 6, 2012, International Application No. PCT/US2011/057497, 12 pages. |
International Search Report and Written Opinion dated Jun. 13, 2013, International Application No. PCT/US2012/063411, 13 pages. |
International Search Report and Written Opinion dated Mar. 16, 2012, International Application No. PCT/US2011/057511, 16 pages. |
International Search Report and Written Opinion dated Mar. 9, 2012, International Application No. PCT/US2011/057523, 15 pages. |
Lura Harrison, Ph.D. et al., “Cryosurgical Ablation of the A-V Node-His Bundle—A New Method for Producing A-V Block,” Circulation, vol. 55, 1977 pp. 463-470. |
Medical Grade Gas Dispenser, Sep. 6, 2011, 1 page, <http://www.abd-inc.com/Frame-904990-page1namepage904990.html?refresh=1205442262133>. |
Sesia G. et al., “The use of nitrous oxide as a freezing agent in cryosurgery of the prostate,” International Surgery [Int Surg], vol. 53, 1970, pp. 82-90. |
Special Order Only Thermal Dilution Injector, Obsolete Product, Sep. 6, 2011, 1 page, <http://www.abd-inc.com/Frame-904990-page1nannepage904990.html?refresh=1205442262133>. |
Torre, Douglas, MD, “Alternate Cryogens for Cryosurgery,” J. Derm. Surgery, Jun. 1975, pp. 56-58. |
Voityna SV, “Cryocatheter-tourniquet,” Meditsinskaia Tekhnika [Med Tekh], vol. 6, 1976, pp. 47-48. |
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages. |
Miller, Reed, “Finding A Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages. |
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: ”Dubium Sapientiae Initium“ (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214. |
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450. |
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572. |
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages. |
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2011/046845, mailed Dec. 16, 2011, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20140163538 A1 | Jun 2014 | US |