REFRIGERATION CYCLE APPARATUS

Information

  • Patent Application
  • 20220389299
  • Publication Number
    20220389299
  • Date Filed
    June 25, 2021
    2 years ago
  • Date Published
    December 08, 2022
    a year ago
Abstract
There is provided a refrigeration cycle apparatus in which good lubricity can be achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP. The refrigeration cycle apparatus contains a refrigerating oil and a refrigerant composition containing a refrigerant containing trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
Description
TECHNICAL FIELD

The present disclosure relates to a refrigeration cycle apparatus.


BACKGROUND ART

In the related art, R410A has been frequently used as a refrigerant in refrigeration cycle apparatuses such as air conditioners. R410A is a two-component mixed refrigerant of difluoromethane (CH2F2; HFC-32 or R32) and pentafluoroethane (C2HF5; HFC-125 or R125), which is a pseudo-azeotropic composition.


However, R410A has a global warming potential (GWP) of 2088. From the viewpoint of increasing concern for global warming, R32 having a lower GWP of 675 has been more frequently used in recent years.


Therefore, for example, PTL 1 (International Publication No. 2015/141678) proposes various low-GWP mixture refrigerants as alternatives to R410A.


SUMMARY OF THE INVENTION
Technical Problem

However, it has not been studied that good lubricity in a refrigeration cycle apparatus is achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP.


In view of the foregoing, it is an object of the present disclosure to provide a refrigeration cycle apparatus in which good lubricity can be achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP.


Solution to Problem

A refrigeration cycle apparatus according to a first aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil. The refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration cycle apparatus according to a second aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′ C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line segments BD, CO, and OA);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and the line segments BD, CO, and OA are straight lines.


A refrigeration cycle apparatus according to a third aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:


point G (72.0, 28.0, 0.0),


point I (72.0, 0.0, 28.0),


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments IA, BD, and CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.


A refrigeration cycle apparatus according to a fourth aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′,


A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point N (68.6, 16.3, 15.1),


point K (61.3, 5.4, 33.3),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2-0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CG are straight lines.

    • A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0), and


point C (32.9, 67.1, 0.0),


or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)


the line segment MA′ is represented by coordinates (x, 0.0016x2-0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CG are straight lines.


A refrigeration cycle apparatus according to a sixth aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.


A refrigeration cycle apparatus according to a seventh aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point Q (62.8, 29.6, 7.6), and


point R (49.8, 42.3, 7.9),


or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.


A refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus according to the first aspect, wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:


point S (62.6, 28.3, 9.1),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2-0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.


A refrigeration cycle apparatus according to a ninth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
    • the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to a tenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
    • the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to an eleventh aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),


      wherein


when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,

    • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:


      point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),


      point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),


      point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),


      point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


      point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


      point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),


point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),


point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),


point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),


point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),


point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and

    • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


      point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),


      point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),


      point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


      point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and


      point W (0.0, 100.0-a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration cycle apparatus according to a twelfth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),


      wherein
    • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
    • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:


      point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),


      point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),


      point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


      point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


      point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
    • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


      point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),


      point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,-0.0105a2+0.8577a+33.177),


      point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and


      point W (0.0, 100.0-a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
    • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


      point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),


      point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),


      point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and


      point W (0.0, 100.0-a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
    • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


      point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),


      point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),


      point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


      point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and


      point W (0.0, 100.0-a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
    • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


      point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),


      point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),


      point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


      point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and


      point W (0.0, 100.0-a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).


Since each refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration cycle apparatus according to a thirteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane(R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf), wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


point I (72.0, 0.0, 28.0),


point J (48.5, 18.3, 33.2),


point N (27.7, 18.2, 54.1), and


point E (58.3, 0.0, 41.7),


or on these line segments (excluding the points on the line segment EI;


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments JN and EI are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to a fourteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′(39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to a fifteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to a sixteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+150.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to a seventeenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration cycle apparatus according to an eighteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:


point I (72.0, 28.0, 0.0),


point K (48.4, 33.2, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a nineteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32, wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:


point I (72.0, 28.0, 0.0),


point J (57.7, 32.8, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a twentieth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32, wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a twenty-first aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32, wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:


point M (47.1, 52.9, 0.0),


point N (38.5, 52.1, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a twenty-second aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32, wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (31.8, 49.8, 18.4),


point S (25.4, 56.2, 18.4), and


point T (34.8, 51.0, 14.2),


or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line.


Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a twenty-third aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,

    • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32, wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:


point Q (28.6, 34.4, 37.0),


point B″ (0.0, 63.0, 37.0),


point D (0.0, 67.0, 33.0), and


point U (28.7, 41.2, 30.1),


or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines. Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration cycle apparatus according to a twenty-fourth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-third aspect, wherein the refrigerating oil has a kinematic viscosity at 40° C. of 1 mm2/s or more and 750 mm2/s or less.


A refrigeration cycle apparatus according to a twenty-fifth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fourth aspect, wherein the refrigerating oil has a kinematic viscosity at 100° C. of 1 mm2/s or more and 100 mm2/s or less.


A refrigeration cycle apparatus according to a twenty-sixth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fifth aspect, wherein the refrigerating oil has a volume resistivity at 25° C. of 1.0×1012 Ω·cm or more.


A refrigeration cycle apparatus according to a twenty-seventh aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-sixth aspect, wherein the refrigerating oil has an acid number of 0.1 mgKOH/g or less.


A refrigeration cycle apparatus according to a twenty-eighth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-seventh aspect, wherein the refrigerating oil has an ash content of 100 ppm or less.


A refrigeration cycle apparatus according to a twenty-ninth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-eighth aspect, wherein the refrigerating oil has an aniline point of −100° C. or higher and 0° C. or lower.


A refrigeration cycle apparatus according to a thirtieth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-ninth aspect and includes a refrigerant circuit. The refrigerant circuit includes a compressor, a condenser, a decompressing unit, and an evaporator connected to each other through a refrigerant pipe. The working fluid for a refrigerating machine circulates through the refrigerant circuit.


A refrigeration cycle apparatus according to a thirty-first aspect is the refrigeration cycle apparatus according to any one of the first aspect to the thirtieth aspect, wherein a content of the refrigerating oil in the working fluid for a refrigerating machine is 5 mass % or more and 60 mass % or less.


A refrigeration cycle apparatus according to a thirty-second aspect is the refrigeration cycle apparatus according to any one of the first aspect to the thirty-first aspect, wherein the refrigerating oil contains at least one additive selected from an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator, an anti-wear agent, and a compatibilizer. A content of the additive is 5 mass % or less relative to a mass of the refrigerating oil containing the additive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating an example of a refrigerant circuit included in a refrigeration cycle apparatus.



FIG. 2 is a schematic view of an instrument used for a flammability test.



FIG. 3 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.



FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %.



FIG. 5 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).



FIG. 6 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).



FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).



FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).



FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).



FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).



FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).



FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).



FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).



FIG. 14 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).



FIG. 15 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.



FIG. 16 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.





DESCRIPTION OF EMBODIMENTS
(1) Refrigeration Cycle Apparatus

A refrigeration cycle apparatus contains a refrigerant composition described in Section (4) below and a refrigerating oil.


(2) Refrigerating Machine Oil

A refrigerating oil can improve the lubricity in the refrigeration cycle apparatus and can also achieve efficient cycle performance by performing a refrigeration cycle such as a refrigeration cycle together with a refrigerant composition.


Examples of the refrigerating oil include oxygen-containing synthetic oils (e.g., ester-type refrigerating oils and ether-type refrigerating oils) and hydrocarbon refrigerating oils. In particular, ester-type refrigerating oils and ether-type refrigerating oils are preferred from the viewpoint of miscibility with refrigerants or refrigerant compositions. The refrigerating oils may be used alone or in combination of two or more.


The kinematic viscosity of the refrigerating oil at 40° C. is preferably 1 mm2/s or more and 750 mm2/s or less and more preferably 1 mm2/s or more and 400 mm2/s or less from at least one of the viewpoints of suppressing the deterioration of the lubricity and the hermeticity of compressors, achieving sufficient miscibility with refrigerants under low-temperature conditions, suppressing the lubrication failure of compressors, and improving the heat exchange efficiency of evaporators. Herein, the kinematic viscosity of the refrigerating oil at 100° C. may be, for example, 1 mm2/s or more and 100 mm2/s or less and is more preferably 1 mm2/s or more and 50 mm2/s or less.


The refrigerating oil preferably has an aniline point of −100° C. or higher and 0° C. or lower. The term “aniline point” herein refers to a numerical value indicating the solubility of, for example, a hydrocarbon solvent, that is, refers to a temperature at which when equal volumes of a sample (herein, refrigerating oil) and aniline are mixed with each other and cooled, turbidity appears because of their immiscibility (provided in JIS K 2256). Note that this value is a value of the refrigerating oil itself in a state in which the refrigerant is not dissolved. By using a refrigerating oil having such an aniline point, for example, even when bearings constituting resin functional components and insulating materials for electric motors are used at positions in contact with the refrigerating oil, the suitability of the refrigerating oil for the resin functional components can be improved. Specifically, if the aniline point is excessively low, the refrigerating oil readily infiltrates the bearings and the insulating materials, and thus the bearings and the like tend to swell. On the other hand, if the aniline point is excessively high, the refrigerating oil does not readily infiltrate the bearings and the insulating materials, and thus the bearings and the like tend to shrink. Accordingly, the deformation of the bearings and the insulating materials due to swelling or shrinking can be prevented by using the refrigerating oil having an aniline point within the above-described predetermined range (−100° C. or higher and 0° C. or lower). If the bearings deform through swelling, the desired length of a gap at a sliding portion cannot be maintained. This may result in an increase in sliding resistance. If the bearings deform through shrinking, the hardness of the bearings increases, and consequently the bearings may be broken because of vibration of a compressor. In other words, the deformation of the bearings through shrinking may decrease the rigidity of the sliding portion. Furthermore, if the insulating materials (e.g., insulating coating materials and insulating films) of electric motors deform through swelling, the insulating properties of the insulating materials deteriorate. If the insulating materials deform through shrinking, the insulating materials may also be broken as in the case of the bearings, which also deteriorates the insulating properties. In contrast, when the refrigerating oil having an aniline point within the predetermined range is used as described above, the deformation of bearings and insulating materials due to swelling or shrinking can be suppressed, and thus such a problem can be avoided.


The refrigerating oil is used as a working fluid for a refrigerating machine by being mixed with a refrigerant composition. The content of the refrigerating oil relative to the whole amount of working fluid for a refrigerating machine is preferably 5 mass % or more and 60 mass % or less and more preferably 10 mass % or more and 50 mass % or less.


(2-1) Oxygen-containing synthetic oil


An ester-type refrigerating oil or an ether-type refrigerating oil serving as an oxygen-containing synthetic oil is mainly constituted by carbon atoms and oxygen atoms. In the ester-type refrigerating oil or the ether-type refrigerating oil, an excessively low ratio (carbon/oxygen molar ratio) of carbon atoms to oxygen atoms increases the hygroscopicity, and an excessively high ratio of carbon atoms to oxygen atoms deteriorates the miscibility with a refrigerant. Therefore, the molar ratio is preferably 2 or more and 7.5 or less.


(2-1-1) Ester-type refrigerating oil


Examples of base oil components of the ester-type refrigerating oil include dibasic acid ester oils of a dibasic acid and a monohydric alcohol, polyol ester oils of a polyol and a fatty acid, complex ester oils of a polyol, a polybasic acid, and a monohydric alcohol (or a fatty acid), and polyol carbonate oils from the viewpoint of chemical stability.


(Dibasic Acid Ester Oil)

The dibasic acid ester oil is preferably an ester of a dibasic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, or terephthalic acid, in particular, a dibasic acid having 5 to 10 carbon atoms (e.g., glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, or sebacic acid) and a monohydric alcohol having a linear or branched alkyl group and having 1 to 15 carbon atoms (e.g., methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, or pentadecanol). Specific examples of the dibasic acid ester oil include ditridecyl glutarate, di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethylhexyl) sebacate.


(Polyol Ester Oil)

The polyol ester oil is an ester synthesized from a polyhydric alcohol and a fatty acid (carboxylic acid), and has a carbon/oxygen molar ratio of 2 or more and 7.5 or less, preferably 3.2 or more and 5.8 or less.


The polyhydric alcohol constituting the polyol ester oil is a diol (e.g., ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, or 1,12-dodecanediol) or a polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerol, polyglycerol (glycerol dimer or trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, a sorbitol-glycerol condensate, a polyhydric alcohol such as adonitol, arabitol, xylitol, or mannitol, a saccharide such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, cellobiose, maltose, isomaltose, trehalose, sucrose, raffinose, gentianose, or melezitose, or a partially etherified product of the foregoing). One or two or more polyhydric alcohols may constitute an ester.


For the fatty acid constituting the polyol ester, the number of carbon atoms is not limited, but is normally 1 to 24. A linear fatty acid or a branched fatty acid is preferred. Examples of the linear fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, oleic acid, linoleic acid, and linolenic acid. The hydrocarbon group that bonds to a carboxy group may have only a saturated hydrocarbon or may have an unsaturated hydrocarbon. Examples of the branched fatty acid include 2-methylpropionic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2,3-trimethylbutanoic acid, 2,3,3-trimethylbutanoic acid, 2-ethyl-2-methylbutanoic acid, 2-ethyl-3-methylbutanoic acid, 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 4-ethylhexanoic acid, 2,2-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3,3-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2-propylpentanoic acid, 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 2,2-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2,6-dimethylheptanoic acid, 3,3-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3,5-dimethylheptanoic acid, 3,6-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4,6-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 5, 6-dimethylheptanoic acid, 6,6-dimethylheptanoic acid, 2-methyl-2-ethylhexanoic acid, 2-methyl-3-ethylhexanoic acid, 2-methyl-4-ethylhexanoic acid, 3-methyl-2-ethylhexanoic acid, 3-methyl-3-ethylhexanoic acid, 3-methyl-4-ethylhexanoic acid, 4-methyl-2-ethylhexanoic acid, 4-methyl-3-ethylhexanoic acid, 4-methyl-4-ethylhexanoic acid, 5-methyl-2-ethylhexanoic acid, 5-methyl-3-ethylhexanoic acid, 5-methyl-4-ethylhexanoic acid, 2-ethylheptanoic acid, 3-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 2,2,4,4-tetramethylpentanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, and 2,2-diisopropylpropanoic acid. One or two or more fatty acids selected from the foregoing may constitute an ester.


One polyhydric alcohol may be used to constitute an ester or a mixture of two or more polyhydric alcohols may be used to constitute an ester. The fatty acid constituting an ester may be a single component, or two or more fatty acids may constitute an ester. The fatty acids may be individual fatty acids of the same type or may be two or more types of fatty acids as a mixture. The polyol ester oil may have a free hydroxyl group.


Specifically, the polyol ester oil is more preferably an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol); further preferably an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol); and preferably an ester of neopentyl glycol, trimethylolpropane, pentaerythritol, di-(pentaerythritol), or the like and a fatty acid having 2 to 20 carbon atoms.


The fatty acid constituting such a polyhydric alcohol fatty acid ester may be only a fatty acid having a linear alkyl group or may be selected from fatty acids having a branched structure. A mixed ester of linear and branched fatty acids may be employed. Furthermore, two or more fatty acids selected from the above fatty acids may be used to constitute an ester.


Specifically, for example, in the case of a mixed ester of linear and branched fatty acids, the molar ratio of a linear fatty acid having 4 to 6 carbon atoms and a branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30. The total content of the linear fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester is preferably 20 mol % or more. The fatty acid preferably has such a composition that both of sufficient miscibility with a refrigerant and viscosity required as a refrigerating oil are achieved. The content of a fatty acid herein refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.


In particular, the refrigerating oil preferably contains an ester (hereafter referred to as a “polyhydric alcohol fatty acid ester (A)”) in which the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid, and the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the above ester is 20 mol % or more.


The polyhydric alcohol fatty acid ester (A) includes a complete ester in which all hydroxyl groups of a polyhydric alcohol are esterified, a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, and a mixture of a complete ester and a partial ester. The hydroxyl value of the polyhydric alcohol fatty acid ester (A) is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.


For the fatty acid constituting the polyhydric alcohol fatty acid ester (A), the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30. The total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is 20 mol % or more. In the case where the above conditions for the composition of the fatty acid are not satisfied, if difluoromethane is contained in the refrigerant composition, both of sufficient miscibility with the difluoromethane and viscosity required as a refrigerating oil are not easily achieved at high levels. The content of a fatty acid refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.


Specific examples of the fatty acid having 4 to 6 carbon atoms include butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid. Among them, a fatty acid having a branched structure at an alkyl skeleton, such as 2-methylpropionic acid, is preferred.


Specific examples of the branched fatty acid having 7 to 9 carbon atoms include 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 1,1,2-trimethylbutanoic acid, 1,2,2-trimethylbutanoic acid, 1-ethyl-1-methylbutanoic acid, 1-ethyl-2-methylbutanoic acid, octanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 3,5-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2-dimethylhexanoic acid, 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2-propylpentanoic acid, nonanoic acid, 2,2-dimethylheptanoic acid, 2-methyloctanoic acid, 2-ethylheptanoic acid, 3-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 2,2,4,4-tetramethylpentanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, and 2,2-diisopropylpropanoic acid.


The polyhydric alcohol fatty acid ester (A) may contain, as an acid constituent component, a fatty acid other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as long as the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10 and the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid.


Specific examples of the fatty acid other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms include fatty acids having 2 or 3 carbon atoms, such as acetic acid and propionic acid; linear fatty acids having 7 to 9 carbon atoms, such as heptanoic acid, octanoic acid, and nonanoic acid; and fatty acids having 10 to 20 carbon atoms, such as decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, and oleic acid.


When the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms are used in combination with fatty acids other than these fatty acids, the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is preferably 20 mol % or more, more preferably 25 mol % or more, and further preferably 30 mol % or more. When the content is 20 mol % or more, sufficient miscibility with difluoromethane is achieved in the case where the difluoromethane is contained in the refrigerant composition.


A polyhydric alcohol fatty acid ester (A) containing, as acid constituent components, only 2-methylpropionic acid and 3,5,5-trimethylhexanoic acid is particularly preferred from the viewpoint of achieving both necessary viscosity and miscibility with difluoromethane in the case where the difluoromethane is contained in the refrigerant composition.


The polyhydric alcohol fatty acid ester may be a mixture of two or more esters having different molecular structures. In this case, individual molecules do not necessarily satisfy the above conditions as long as the whole fatty acid constituting a pentaerythritol fatty acid ester contained in the refrigerating oil satisfies the above conditions.


As described above, the polyhydric alcohol fatty acid ester (A) contains the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as essential acid components constituting the ester and may optionally contain other fatty acids as constituent components. In other words, the polyhydric alcohol fatty acid ester (A) may contain only two fatty acids as acid constituent components or three or more fatty acids having different structures as acid constituent components, but the polyhydric alcohol fatty acid ester preferably contains, as an acid constituent component, only a fatty acid whose carbon atom (α-position carbon atom) adjacent to carbonyl carbon is not quaternary carbon. If the fatty acid constituting the polyhydric alcohol fatty acid ester contains a fatty acid whose α-position carbon atom is quaternary carbon, the lubricity in the presence of difluoromethane in the case where the difluoromethane is contained in the refrigerant composition tends to be insufficient.


The polyhydric alcohol constituting the polyol ester according to this embodiment is preferably a polyhydric alcohol having 2 to 6 hydroxyl groups.


Specific examples of the dihydric alcohol (diol) include ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol. Specific examples of the trihydric or higher alcohol include polyhydric alcohols such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerol, polyglycerol (glycerol dimer or trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerol condensates, adonitol, arabitol, xylitol, and mannitol; saccharides such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, and cellobiose; and partially etherified products of the foregoing. Among them, in terms of better hydrolysis stability, an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol) is preferably used; an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol) is more preferably used; and neopentyl glycol, trimethylolpropane, pentaerythritol, or di-(pentaerythritol) is further preferably used. In terms of excellent miscibility with a refrigerant and excellent hydrolysis stability, a mixed ester of pentaerythritol, di-(pentaerythritol), or pentaerythritol and di-(pentaerythritol) is most preferably used.


Preferred examples of the acid constituent component constituting the polyhydric alcohol fatty acid ester (A) are as follows:


(i) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 13 acids selected from 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, and 2-ethyl-3-methylbutanoic acid;


(ii) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 25 acids selected from 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2,2-dimethylhexanoic acid, 3,3-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2,3-trimethylpentanoic acid, 2,3,3-trimethylpentanoic acid, 2,4,4-trimethylpentanoic acid, 3,4,4-trimethylpentanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 2-propylpentanoic acid, 2-methyl-2-ethylpentanoic acid, 2-methyl-3-ethylpentanoic acid, and 3-methyl-3-ethylpentanoic acid; and


(iii) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 50 acids selected from 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 8-methyloctanoic acid, 2,2-dimethylheptanoic acid, 3,3-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 6,6-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2, 6-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3,5-dimethylheptanoic acid, 3,6-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4,6-dimethylheptanoic acid, 2-ethylheptanoic acid, 3-ethylheptanoic acid, 4-ethylheptanoic acid, 5-ethylheptanoic acid, 2-propylhexanoic acid, 3-propylhexanoic acid, 2-butylpentanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,4-trimethylhexanoic acid, 2,2,5-trimethylhexanoic acid, 2,3,4-trimethylhexanoic acid, 2,3,5-trimethylhexanoic acid, 3,3,4-trimethylhexanoic acid, 3,3, 5-trimethylhexanoic acid, 3,5,5-trimethylhexanoic acid, 4,4,5-trimethylhexanoic acid, 4,5,5-trimethylhexanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, 2,2,4,4-tetramethylpentanoic acid, 2,3,4,4-tetramethylpentanoic acid, 3,3,4,4-tetramethylpentanoic acid, 2,2-diethylpentanoic acid, 2,3-diethylpentanoic acid, 3,3-diethylpentanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 3-ethyl-2,2,3-trimethylbutyric acid, and 2,2-diisopropylpropionic acid.


Further preferred examples of the acid constituent component constituting the polyhydric alcohol fatty acid ester are as follows:


(i) a combination of 2-methylpropionic acid and 1 to 13 acids selected from 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, and 2-ethyl-3-methylbutanoic acid; (ii) a combination of 2-methylpropionic acid and 1 to 25 acids selected from 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2,2-dimethylhexanoic acid, 3,3-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2,3-trimethylpentanoic acid, 2,3,3-trimethylpentanoic acid, 2,4,4-trimethylpentanoic acid, 3,4,4-trimethylpentanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 2-propylpentanoic acid, 2-methyl-2-ethylpentanoic acid, 2-methyl-3-ethylpentanoic acid, and 3-methyl-3-ethylpentanoic acid; and (iii) a combination of 2-methylpropionic acid and 1 to 50 acids selected from 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 8-methyloctanoic acid, 2,2-dimethylheptanoic acid, 3,3-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 6,6-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2,6-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3,5-dimethylheptanoic acid, 3,6-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4,6-dimethylheptanoic acid, 2-ethylheptanoic acid, 3-ethylheptanoic acid, 4-ethylheptanoic acid, 5-ethylheptanoic acid, 2-propylhexanoic acid, 3-propylhexanoic acid, 2-butylpentanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,4-trimethylhexanoic acid, 2,2,5-trimethylhexanoic acid, 2,3,4-trimethylhexanoic acid, 2,3,5-trimethylhexanoic acid, 3,3,4-trimethylhexanoic acid, 3,3,5-trimethylhexanoic acid, 3,5,5-trimethylhexanoic acid, 4,4,5-trimethylhexanoic acid, 4,5,5-trimethylhexanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, 2,2,4,4-tetramethylpentanoic acid, 2,3,4,4-tetramethylpentanoic acid, 3,3,4,4-tetramethylpentanoic acid, 2,2-diethylpentanoic acid, 2,3-diethylpentanoic acid, 3,3-diethylpentanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 3-ethyl-2,2,3-trimethylbutyric acid, and 2,2-diisopropylpropionic acid.


The content of the polyhydric alcohol fatty acid ester (A) is 50 mass % or more, preferably 60 mass % or more, more preferably 70 mass % or more, and further preferably 75 mass % or more relative to the whole amount of the refrigerating oil. The refrigerating oil according to this embodiment may contain a lubricating base oil other than the polyhydric alcohol fatty acid ester (A) and additives as described later. However, if the content of the polyhydric alcohol fatty acid ester (A) is less than 50 mass %, necessary viscosity and miscibility cannot be achieved at high levels.


In the refrigerating oil according to this embodiment, the polyhydric alcohol fatty acid ester (A) is mainly used as a base oil. The base oil of the refrigerating oil according to this embodiment may be a polyhydric alcohol fatty acid ester (A) alone (i.e., the content of the polyhydric alcohol fatty acid ester (A) is 100 mass %). However, in addition to the polyhydric alcohol fatty acid ester (A), a base oil other than the polyhydric alcohol fatty acid ester (A) may be further contained to the degree that the excellent performance of the polyhydric alcohol fatty acid ester (A) is not impaired. Examples of the base oil other than the polyhydric alcohol fatty acid ester (A) include hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes, and alkylbenzenes; and esters other than the polyhydric alcohol fatty acid ester (A), such as polyol esters, complex esters, and alicyclic dicarboxylic acid esters, and oxygen-containing synthetic oils (hereafter, may be referred to as “other oxygen-containing synthetic oils”) such as polyglycols, polyvinyl ethers, ketones, polyphenyl ethers, silicones, polysiloxanes, and perfluoroethers.


Among them, the oxygen-containing synthetic oil is preferably an ester other than the polyhydric alcohol fatty acid ester (A), a polyglycol, or a polyvinyl ether and particularly preferably a polyol ester other than the polyhydric alcohol fatty acid ester (A). The polyol ester other than the polyhydric alcohol fatty acid ester (A) is an ester of a fatty acid and a polyhydric alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or dipentaerythritol and is particularly preferably an ester of neopentyl glycol and a fatty acid, an ester of pentaerythritol and a fatty acid, or an ester of dipentaerythritol and a fatty acid.


The neopentyl glycol ester is preferably an ester of neopentyl glycol and a fatty acid having 5 to 9 carbon atoms. Specific examples of the neopentyl glycol ester include neopentyl glycol di(3,5,5-trimethylhexanoate), neopentyl glycol di(2-ethylhexanoate), neopentyl glycol di(2-methylhexanoate), neopentyl glycol di(2-ethylpentanoate), an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylpentanoic acid, an ester of neopentyl glycol and 3-methylhexanoic acid.5-methylhexanoic acid, an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylhexanoic acid, an ester of neopentyl glycol and 3,5-dimethylhexanoic acid.4,5-dimethylhexanoic acid.3,4-dimethylhexanoic acid, neopentyl glycol dipentanoate, neopentyl glycol di(2-ethylbutanoate), neopentyl glycol di(2-methylpentanoate), neopentyl glycol di(2-methylbutanoate), and neopentyl glycol di(3-methylbutanoate).


The pentaerythritol ester is preferably an ester of pentaerythritol and a fatty acid having 5 to 9 carbon atoms. The pentaerythritol ester is, specifically, an ester of pentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.


The dipentaerythritol ester is preferably an ester of dipentaerythritol and a fatty acid having 5 to 9 carbon atoms. The dipentaerythritol ester is, specifically, an ester of dipentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.


When the refrigerating oil according to this embodiment contains an oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A), the content of the oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A) is not limited as long as excellent lubricity and miscibility of the refrigerating oil according to this embodiment are not impaired. When a polyol ester other than the polyhydric alcohol fatty acid ester (A) is contained, the content of the polyol ester is preferably less than 50 mass %, more preferably 45 mass % or less, still more preferably 40 mass % or less, even more preferably 35 mass % or less, further preferably 30 mass % or less, and most preferably 25 mass % or less relative to the whole amount of the refrigerating oil. When an oxygen-containing synthetic oil other than the polyol ester is contained, the content of the oxygen-containing synthetic oil is preferably less than 50 mass %, more preferably 40 mass % or less, and further preferably 30 mass % or less relative to the whole amount of the refrigerating oil. If the content of the polyol ester other than the pentaerythritol fatty acid ester or the oxygen-containing synthetic oil is excessively high, the above-described effects are not sufficiently produced.


The polyol ester other than the polyhydric alcohol fatty acid ester (A) may be a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, a complete ester in which all hydroxyl groups are esterified, or a mixture of a partial ester and a complete ester. The hydroxyl value is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.


When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain a polyol ester other than the polyhydric alcohol fatty acid ester (A), the polyol ester may contain one polyol ester having a single structure or a mixture of two or more polyol esters having different structures.


The polyol ester other than the polyhydric alcohol fatty acid ester (A) may be any of an ester of one fatty acid and one polyhydric alcohol, an ester of two or more fatty acids and one polyhydric alcohol, an ester of one fatty acid and two or more polyhydric alcohols, and an ester of two or more fatty acids and two or more polyhydric alcohols.


The refrigerating oil according to this embodiment may be constituted by only the polyhydric alcohol fatty acid ester (A) or by the polyhydric alcohol fatty acid ester (A) and other base oils. The refrigerating oil may further contain various additives described later. The working fluid for a refrigerating machine according to this embodiment may also further contain various additives. In the following description, the content of additives is expressed relative to the whole amount of the refrigerating oil, but the content of these components in the working fluid for a refrigerating machine is desirably determined so that the content is within the preferred range described later when expressed relative to the whole amount of the refrigerating oil.


To further improve the abrasion resistance and load resistance of the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment, at least one phosphorus compound selected from the group consisting of phosphoric acid esters, acidic phosphoric acid esters, thiophosphoric acid esters, amine salts of acidic phosphoric acid esters, chlorinated phosphoric acid esters, and phosphorous acid esters can be added. These phosphorus compounds are esters of phosphoric acid or phosphorous acid and alkanol or polyether-type alcohol, or derivatives thereof.


Specific examples of the phosphoric acid ester include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and xylenyldiphenyl phosphate.


Examples of the acidic phosphoric acid ester include monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate, dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid phosphate, diundecyl acid phosphate, didodecyl acid phosphate, ditridecyl acid phosphate, ditetradecyl acid phosphate, dipentadecyl acid phosphate, dihexadecyl acid phosphate, diheptadecyl acid phosphate, dioctadecyl acid phosphate, and dioleyl acid phosphate.


Examples of the thiophosphoric acid ester include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorothionate, cresyldiphenyl phosphorothionate, and xylenyldiphenyl phosphorothionate.


The amine salt of an acidic phosphoric acid ester is an amine salt of an acidic phosphoric acid ester and a primary, secondary, or tertiary amine that has a linear or branched alkyl group and that has 1 to 24 carbon atoms, preferably 5 to 18 carbon atoms.


For the amine constituting the amine salt of an acidic phosphoric acid ester, the amine salt is a salt of an amine such as a linear or branched methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, tetracosylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, dioleylamine, ditetracosylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecyl amine, trihexadecyl amine, triheptadecylamine, trioctadecylamine, trioleylamine, or tritetracosylamine. The amine may be a single compound or a mixture of two or more compounds.


Examples of the chlorinated phosphoric acid ester include tris(dichloropropyl) phosphate, tris(chloroethyl) phosphate, tris(chlorophenyl) phosphate, and polyoxyalkylene.bis[di(chloroaklyl)] phosphate. Examples of the phosphorous acid ester include dibutyl phosphite, dipentyl phosphite, dihexyl phosphite, diheptyl phosphite, dioctyl phosphite, dinonyl phosphite, didecyl phosphite, diundecyl phosphite, didodecyl phosphite, dioleyl phosphite, diphenyl phosphite, dicresyl phosphite, tributyl phosphite, tripentyl phosphite, trihexyl phosphite, triheptyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl phosphite, triundecyl phosphite, tridodecyl phosphite, trioleyl phosphite, triphenyl phosphite, and tricresyl phosphite. Mixtures of these compounds can also be used.


When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain the above-described phosphorus compound, the content of the phosphorus compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.02 to 3.0 mass % relative to the whole amount of the refrigerating oil (relative to the total amount of the base oil and all the additives). The above-described phosphorus compounds may be used alone or in combination of two or more.


The refrigerating oil and the working fluid for a refrigerating machine according to this embodiment may contain a terpene compound to further improve the thermal and chemical stability. The “terpene compound” in the present invention refers to a compound obtained by polymerizing isoprene and a derivative thereof, and a dimer to an octamer of isoprene are preferably used. Specific examples of the terpene compound include monoterpenes such as geraniol, nerol, linalool, citral (including geranial), citronellol, menthol, limonene, terpinerol, carvone, ionone, thujone, camphor, and borneol; sesquiterpenes such as farnesene, farnesol, nerolidol, juvenile hormone, humulene, caryophyllene, elemene, cadinol, cadinene, and tutin; diterpenes such as geranylgeraniol, phytol, abietic acid, pimaragen, daphnetoxin, taxol, and pimaric acid; sesterterpenes such as geranylfarnesene; triterpenes such as squalene, limonin, camelliagenin, hopane, and lanosterol; and tetraterpenes such as carotenoid.


Among these terpene compounds, the terpene compound is preferably monoterpene, sesquiterpene, or diterpene, more preferably sesquiterpene, and particularly preferably α-farnesene (3,7,11-trimethyldodeca-1,3,6,10-tetraene) and/or β-farnesene (7,11-dimethyl-3-methylidenedodeca-1,6,10-triene). In the present invention, the terpene compounds may be used alone or in combination of two or more.


The content of the terpene compound in the refrigerating oil according to this embodiment is not limited, but is preferably 0.001 to 10 mass %, more preferably 0.01 to 5 mass %, and further preferably 0.05 to 3 mass % relative to the whole amount of the refrigerating oil. If the content of the terpene compound is less than 0.001 mass %, an effect of improving the thermal and chemical stability tends to be insufficient. If the content is more than 10 mass %, the lubricity tends to be insufficient. The content of the terpene compound in the working fluid for a refrigerating machine according to this embodiment is desirably determined so that the content is within the above preferred range when expressed relative to the whole amount of the refrigerating oil.


The refrigerating oil and the working fluid for a refrigerating machine according to this embodiment may contain at least one epoxy compound selected from phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, allyloxirane compounds, alkyloxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters, and epoxidized vegetable oils to further improve the thermal and chemical stability.


Specific examples of the phenyl glycidyl ether-type epoxy compound include phenyl glycidyl ether and alkylphenyl glycidyl ethers. The alkylphenyl glycidyl ether herein is an alkylphenyl glycidyl ether having 1 to 3 alkyl groups with 1 to 13 carbon atoms. In particular, the alkylphenyl glycidyl ether is preferably an alkylphenyl glycidyl ether having one alkyl group with 4 to 10 carbon atoms, such as n-butylphenyl glycidyl ether, i-butylphenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycidyl ether, or decylphenyl glycidyl ether.


Specific examples of the alkyl glycidyl ether-type epoxy compound include decyl glycidyl ether, undecyl glycidyl ether, dodecyl glycidyl ether, tridecyl glycidyl ether, tetradecyl glycidyl ether, 2-ethylhexyl glycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, polyalkylene glycol monoglycidyl ether, and polyalkylene glycol diglycidyl ether.


Specific examples of the glycidyl ester-type epoxy compound include phenyl glycidyl ester, alkyl glycidyl esters, and alkenyl glycidyl esters. Preferred examples of the glycidyl ester-type epoxy compound include glycidyl-2,2-dimethyloctanoate, glycidyl benzoate, glycidyl acrylate, and glycidyl methacrylate.


Specific examples of the allyloxirane compound include 1,2-epoxystyrene and alkyl-1,2-epoxy styrenes.


Specific examples of the alkyloxirane compound include 1,2-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2-epoxynonane, 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2-epoxyhexadecane, 1,2-epoxyheptadecane, 1,1,2-epoxyoctadecane, 2-epoxynonadecane, and 1,2-epoxyeicosane.


Specific examples of the alicyclic epoxy compound include 1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, bis(3,4-epoxycyclohexylmethyl) adipate, exo-2,3-epoxynorbornane, bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate, 2-(7-oxabicyclo[4.1.0]hept-3-yl)-spiro(1,3-dioxane-5,3′-[7]oxabicyclo[4.1.0]heptane, 4-(1′-methylepoxyethyl)-1,2-epoxy-2-methylcyclohexane, and 4-epoxyethyl-1,2-epoxycyclohexane.


Specific examples of the epoxidized fatty acid monoester include esters of an epoxidized fatty acid having 12 to 20 carbon atoms and an alcohol having 1 to 8 carbon atoms, phenol, or an alkylphenol. In particular, butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl, and butyl phenyl esters of epoxystearic acid are preferably used.


Specific examples of the epoxidized vegetable oil include epoxy compounds of vegetable oils such as soybean oil, linseed oil, and cottonseed oil.


Among these epoxy compounds, phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, and alicyclic epoxy compounds are preferred.


When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain the above-described epoxy compound, the content of the epoxy compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.1 to 3.0 mass % relative to the whole amount of the refrigerating oil. The above-described epoxy compounds may be used alone or in combination of two or more.


The kinematic viscosity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) at 40° C. is preferably 20 to 80 mm2/s, more preferably 25 to 75 mm2/s, and most preferably 30 to 70 mm2/s. The kinematic viscosity at 100° C. is preferably 2 to 20 mm2/s and more preferably 3 to 10 mm2/s. When the kinematic viscosity is more than or equal to the lower limit, the viscosity required as a refrigerating oil is easily achieved. On the other hand, when the kinematic viscosity is less than or equal to the upper limit, sufficient miscibility with difluoromethane in the case where the difluoromethane is contained as a refrigerant composition can be achieved.


The volume resistivity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 1.0×1012 Ω·cm or more, more preferably 1.0×1013 Ω·cm or more, and most preferably 1.0×1014 Ω·cm or more. In particular, when the refrigerating oil is used for sealed refrigerating machines, high electric insulation tends to be required. The volume resistivity refers to a value measured at 25° C. in conformity with JIS C 2101 “Testing methods of electrical insulating oils”.


The water content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 200 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less relative to the whole amount of the refrigerating oil. In particular, when the refrigerating oil is used for sealed refrigerating machines, the water content needs to be low from the viewpoints of the thermal and chemical stability of the refrigerating oil and the influence on electric insulation.


The acid number of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 0.1 mgKOH/g or less and more preferably 0.05 mgKOH/g or less to prevent corrosion of metals used for refrigerating machines or pipes. In the present invention, the acid number refers to an acid number measured in conformity with JIS K 2501 “Petroleum products and lubricants—Determination of neutralization number”.


The ash content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 100 ppm or less and more preferably 50 ppm or less to improve the thermal and chemical stability of the refrigerating oil and suppress the generation of sludge and the like. The ash content refers to an ash content measured in conformity with JIS K 2272 “Crude oil and petroleum products—Determination of ash and sulfated ash”.


(Complex Ester Oil)

The complex ester oil is an ester of a fatty acid and a dibasic acid, and a monohydric alcohol and a polyol. The above-described fatty acid, dibasic acid, monohydric alcohol, and polyol can be used.


Examples of the fatty acid include the fatty acids mentioned in the polyol ester.


Examples of the dibasic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.


Examples of the polyol include the polyhydric alcohols in the polyol ester. The complex ester is an ester of such a fatty acid, dibasic acid, and polyol, each of which may be constituted by a single component or a plurality of components.


(Polyol Carbonate Oil)

The polyol carbonate oil is an ester of a carbonic acid and a polyol.


Examples of the polyol include the above-described diols and polyols.


The polyol carbonate oil may be a ring-opened polymer of a cyclic alkylene carbonate.


(2-1-2) Ether-Type Refrigerating Oil

The ether-type refrigerating oil is, for example, a polyvinyl ether oil or a polyoxyalkylene oil.


(Polyvinyl Ether Oil)

Examples of the polyvinyl ether oil include polymers of a vinyl ether monomer, copolymers of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and copolymers of a monomer having an olefinic double bond and a polyoxyalkylene chain and a vinyl ether monomer.


The carbon/oxygen molar ratio of the polyvinyl ether oil is preferably 2 or more and 7.5 or less and more preferably 2.5 or more and 5.8 or less. If the carbon/oxygen molar ratio is smaller than the above range, the hygroscopicity increases. If the carbon/oxygen molar ratio is larger than the above range, the miscibility deteriorates. The weight-average molecular weight of the polyvinyl ether is preferably 200 or more and 3000 or less and more preferably 500 or more and 1500 or less.


The pour point of the polyvinyl ether oil is preferably −30° C. or lower. The surface tension of the polyvinyl ether oil at 20° C. is preferably 0.02 N/m or more and 0.04 N/m or less. The density of the polyvinyl ether oil at 15° C. is preferably 0.8 g/cm3 or more and 1.8 g/cm3 or less. The saturated water content of the polyvinyl ether oil at a temperature of 30° C. and a relative humidity of 90% is preferably 2000 ppm or more.


The refrigerating oil may contain polyvinyl ether as a main component. In the case where HFO-1234yf is contained as a refrigerant, the polyvinyl ether serving as a main component of the refrigerating oil has miscibility with HFO-1234yf. When the refrigerating oil has a kinematic viscosity at 40° C. of 400 mm2/s or less, HFO-1234yf is dissolved in the refrigerating oil to some extent. When the refrigerating oil has a pour point of −30° C. or lower, the flowability of the refrigerating oil is easily ensured even at positions at which the temperature of the refrigerant composition and the refrigerating oil is low in the refrigerant circuit. When the refrigerating oil has a surface tension at 20° C. of 0.04 N/m or less, the refrigerating oil discharged from a compressor does not readily form large droplets of oil that are not easily carried away by a refrigerant composition. Therefore, the refrigerating oil discharged from the compressor is dissolved in HFO-1234yf and is easily returned to the compressor together with HFO-1234yf.


When the refrigerating oil has a kinematic viscosity at 40° C. of 30 mm2/s or more, an insufficient oil film strength due to excessively low kinematic viscosity is suppressed, and thus good lubricity is easily achieved. When the refrigerating oil has a surface tension at 20° C. of 0.02 N/m or more, the refrigerating oil does not readily form small droplets of oil in a gas refrigerant inside the compressor, which can suppress discharge of a large amount of refrigerating oil from the compressor. Therefore, a sufficient amount of refrigerating oil is easily stored in the compressor.


When the refrigerating oil has a saturated water content at 30° C./90% RH of 2000 ppm or more, a relatively high hygroscopicity of the refrigerating oil can be achieved. Thus, when HFO-1234yf is contained as a refrigerant, water in HFO-1234yf can be captured by the refrigerating oil to some extent. HFO-1234yf has a molecular structure that is easily altered or deteriorated because of the influence of water contained. Therefore, the hydroscopic effects of the refrigerating oil can suppress such deterioration.


Furthermore, when a particular resin functional component is disposed in the sealing portion or sliding portion that is in contact with a refrigerant flowing through the refrigerant circuit and the resin functional component is formed of any of polytetrafluoroethylene, polyphenylene sulfide, phenolic resin, polyamide resin, chloroprene rubber, silicon rubber, hydrogenated nitrile rubber, fluororubber, and hydrin rubber, the aniline point of the refrigerating oil is preferably set within a particular range in consideration of the adaptability with the resin functional component. By setting the aniline point in such a manner, for example, the adaptability of bearings constituting the resin functional component with the refrigerating oil is improved. Specifically, if the aniline point is excessively low, the refrigerating oil readily infiltrates bearings or the like, and the bearings or the like readily swell. On the other hand, if the aniline point is excessively high, the refrigerating oil does not readily infiltrate bearings or the like, and the bearings or the like readily shrink. Therefore, by setting the aniline point of the refrigerating oil within a particular range, the swelling or shrinking of the bearings or the like can be prevented. Herein, for example, if each of the bearings or the like deforms through swelling or shrinking, the desired length of a gap at a sliding portion cannot be maintained. This may increase the sliding resistance or decrease the rigidity of the sliding portion. However, when the aniline point of the refrigerating oil is set within a particular range as described above, the deformation of the bearings or the like through swelling or shrinking is suppressed, and thus such a problem can be avoided.


The vinyl ether monomers may be used alone or in combination of two or more. Examples of the hydrocarbon monomer having an olefinic double bond include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, α-methylstyrene, and various alkyl-substituted styrenes. The hydrocarbon monomers having an olefinic double bond may be used alone or in combination of two or more.


The polyvinyl ether copolymer may be a block copolymer or a random copolymer. The polyvinyl ether oils may be used alone or in combination of two or more.


A polyvinyl ether oil preferably used has a structural unit represented by general formula (1) below.




embedded image


(In the formula, R1, R2, and R3 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R5 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, le to R5 may be the same or different in each of structural units, and when m represents 2 or more in one structural unit, a plurality of R4O may be the same or different.)


At least one of R′, R2, and R3 in the general formula (1) preferably represents a hydrogen atom. In particular, all of R′, R2, and R3 preferably represent a hydrogen atom. In the general formula (1), m preferably represents 0 or more and 10 or less, particularly preferably 0 or more and 5 or less, further preferably 0. R5 in the general formula (1) represents a hydrocarbon group having 1 to 20 carbon atoms. Specific examples of the hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups; cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as a phenyl group, various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; and arylalkyl groups such as a benzyl group, various phenylethyl groups, and various methylbenzyl groups. Among the alkyl groups, the cycloalkyl groups, the phenyl group, the aryl groups, and the arylalkyl groups, alkyl groups, in particular, alkyl groups having 1 to 5 carbon atoms are preferred. For the polyvinyl ether oil contained, the ratio of a polyvinyl ether oil with R5 representing an alkyl group having 1 or 2 carbon atoms and a polyvinyl ether oil with R5 representing an alkyl group having 3 or 4 carbon atoms is preferably 40%:60% to 100%:0%.


The polyvinyl ether oil according to this embodiment may be a homopolymer constituted by the same structural unit represented by the general formula (1) or a copolymer constituted by two or more structural units. The copolymer may be a block copolymer or a random copolymer.


The polyvinyl ether oil according to this embodiment may be constituted by only the structural unit represented by the general formula (1) or may be a copolymer further including a structural unit represented by general formula (2) below. In this case, the copolymer may be a block copolymer or a random copolymer.




embedded image


(In the formula, R6 to R9 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)


The vinyl ether monomer is, for example, a compound represented by general formula (3) below.




embedded image


(In the formula, R1, R2, R3, R4, R5, and m have the same meaning as R1, R2, R3, R4, R5, and m in the general formula (1), respectively.)


Examples of various polyvinyl ether compounds corresponding to the above polyvinyl ether compound include vinyl methyl ether; vinyl ethyl ether; vinyl-n-propyl ether; vinyl-isopropyl ether; vinyl-n-butyl ether; vinyl-isobutyl ether; vinyl-sec-butyl ether; vinyl-tert-butyl ether; vinyl-n-pentyl ether; vinyl-n-hexyl ether; vinyl-2-methoxyethyl ether; vinyl-2-ethoxyethyl ether; vinyl-2-methoxy-1-methyl ethyl ether; vinyl-2-methoxy-propyl ether; vinyl-3,6-dioxaheptyl ether; vinyl-3,6,9-trioxadecyl ether; vinyl-1,4-dimethyl-3,6-dioxaheptyl ether; vinyl-1,4,7-trimethyl-3,6,9-trioxadecyl ether; vinyl-2,6-dioxa-4-heptyl ether; vinyl-2,6,9-trioxa-4-decyl ether; 1-methoxypropene; 1-ethoxypropene; 1-n-propoxypropene; 1-isopropoxypropene; 1-n-butoxypropene; 1-isobutoxypropene; 1-sec-butoxypropene; 1-tert-butoxyprop ene; 2-methoxypropene; 2-ethoxypropene; 2-n-propoxypropene; 2-isopropoxypropene; 2-n-butoxypropene; 2-isobutoxypropene; 2-sec-butoxypropene; 2-tert-butoxypropene; 1-methoxy-1-butene; 1-ethoxy-1-butene; 1-n-propoxy-1-butene; 1-isopropoxy-1-butene; 1-n-butoxy-1-butene; 1-isobutoxy-1-butene; 1-sec-butoxy-1-butene; 1-tert-butoxy-1-butene; 2-methoxy-1-butene; 2-ethoxy-1-butene; 2-n-propoxy-1-butene; 2-isopropoxy-1-butene; 2-n-butoxy-1-butene; 2-isobutoxy-1-butene; 2-sec-butoxy-1-butene; 2-tert-butoxy-1-butene; 2-methoxy-2-butene; 2-ethoxy-2-butene; 2-n-propoxy-2-butene; 2-isopropoxy-2-butene; 2-n-butoxy-2-butene; 2-isobutoxy-2-butene; 2-sec-butoxy-2-butene; and 2-tert-butoxy-2-butene. These vinyl ether monomers can be produced by a publicly known method.


The end of the polyvinyl ether compound having the structural unit represented by the general formula (1) can be converted into a desired structure by a method described in the present disclosure and a publicly known method. Examples of the group introduced by conversion include saturated hydrocarbons, ethers, alcohols, ketones, amides, and nitriles.


The polyvinyl ether compound preferably has the following end structures.




embedded image


(In the formula, R11, R21, and R31 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R41 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R51 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, and when m represents 2 or more, a plurality of R41O may be the same or different.)




embedded image


(In the formula, R61, R71, R81, and R91 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)




embedded image


(In the formula, R12, R22, and R32 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R42 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R52 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, and when m represents 2 or more, a plurality of R42O may be the same or different.)




embedded image


(In the formula, R62, R72, R82, and R92 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)




embedded image


(In the formula, R13, R23, and R33 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.)


The polyvinyl ether oil according to this embodiment can be produced by polymerizing the above-described monomer through, for example, radical polymerization, cationic polymerization, or radiation-induced polymerization. After completion of the polymerization reaction, a typical separation/purification method is performed when necessary to obtain a desired polyvinyl ether compound having a structural unit represented by the general formula (1).


(Polyoxyalkylene Oil)

The polyoxyalkylene oil is a polyoxyalkylene compound obtained by, for example, polymerizing an alkylene oxide having 2 to 4 carbon atoms (e.g., ethylene oxide or propylene oxide) using water or a hydroxyl group-containing compound as an initiator. The hydroxyl group of the polyoxyalkylene compound may be etherified or esterified. The polyoxyalkylene oil may contain an oxyalkylene unit of the same type or two or more oxyalkylene units in one molecule. The polyoxyalkylene oil preferably contains at least an oxypropylene unit in one molecule.


Specifically, the polyoxyalkylene oil is, for example, a compound represented by general formula (9) below.





R101—[(OR102)k—OR103]1  (9)


(In the formula, R101 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms, R102 represents an alkylene group having 2 to 4 carbon atoms, R103 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 10 carbon atoms, 1 represents an integer of 1 to 6, and k represents a number at which the average of k×1 is 6 to 80.)


In the general formula (9), the alkyl group represented by R101 and R103 may be a linear, branched, or cyclic alkyl group. Specific examples of the alkyl group include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, a cyclopentyl group, and a cyclohexyl group. If the number of carbon atoms of the alkyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms of the alkyl group is preferably 1 to 6.


The acyl group represented by R101 and R103 may have a linear, branched, or cyclic alkyl group moiety. Specific examples of the alkyl group moiety of the acyl group include various groups having 1 to 9 carbon atoms that are mentioned as specific examples of the alkyl group. If the number of carbon atoms of the acyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms of the acyl group is preferably 2 to 6.


When R101 and R103 each represent an alkyl group or an acyl group, R101 and R103 may be the same or different.


Furthermore, when 1 represents 2 or more, a plurality of R103 in one molecule may be the same or different.


When R101 represents an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms, the aliphatic hydrocarbon group may be a linear group or a cyclic group. Examples of the aliphatic hydrocarbon group having two bonding sites include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a cyclopentylene group, and a cyclohexylene group. Examples of the aliphatic hydrocarbon group having 3 to 6 bonding sites include residual groups obtained by removing hydroxyl groups from polyhydric alcohols such as trimethylolpropane, glycerol, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, and 1,3,5-trihydroxycyclohexane.


If the number of carbon atoms of the aliphatic hydrocarbon group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms is preferably 2 to 6.


R102 in the general formula (9) represents an alkylene group having 2 to 4 carbon atoms. Examples of the oxyalkylene group serving as a repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group. The polyoxyalkylene oil may contain an oxyalkylene group of the same type or two or more oxyalkylene groups in one molecule, but preferably contains at least an oxypropylene unit in one molecule. In particular, the content of the oxypropylene unit in the oxyalkylene unit is suitably 50 mol % or more.


In the general formula (9), 1 represents an integer of 1 to 6, which can be determined in accordance with the number of bonding sites of R101. For example, when R101 represents an alkyl group or an acyl group, 1 represents 1. When R101 represents an aliphatic hydrocarbon group having 2, 3, 4, 5, and 6 bonding sites, 1 represents 2, 3, 4, 5, and 6, respectively. Preferably, 1 represents 1 or 2. Furthermore, k preferably represents a number at which the average of k×1 is 6 to 80.


For the structure of the polyoxyalkylene oil, a polyoxypropylene diol dimethyl ether represented by general formula (10) below and a poly(oxyethylene/oxypropylene) diol dimethyl ether represented by general formula (11) below are suitable from the viewpoints of economy and the above-described effects. Furthermore, a polyoxypropylene diol monobutyl ether represented by general formula (12) below, a polyoxypropylene diol monomethyl ether represented by general formula (13) below, a poly(oxyethylene/oxypropylene) diol monomethyl ether represented by general formula (14) below, a poly(oxyethylene/oxypropylene) diol monobutyl ether represented by general formula (15) below, and a polyoxypropylene diol diacetate represented by general formula (16) below are suitable from the viewpoint of economy and the like.





CH3O—(C3H6O)h—CH3  (10)


(In the formula, h represents 6 to 80.)





CH3O—(C2H4O)i—C3H6O)j—CH3  (11)


(In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)





C4H9O—(C3H6O)h—H  (12)


(In the formula, h represents 6 to 80.)





CH3O—(C3H6O)h—H  (13)


(In the formula, h represents 6 to 80.)





CH3O—(C2H4P)i—(C3H6O)j—H  (14)


(In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)





C4H9O—(C2H4O)i—(C3H6O)j—H  (15)


(In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)





CH3COO—(C3H6O)h—COCH3  (16)


(In the formula, h represents 6 to 80.)


The polyoxyalkylene oils may be used alone or in combination of two or more.


(2-2) Hydrocarbon Refrigerating Oil

The hydrocarbon refrigerating oil that can be used is, for example, an alkylbenzene.


The alkylbenzene that can be used is a branched alkylbenzene synthesized from propylene polymer and benzene serving as raw materials using a catalyst such as hydrogen fluoride or a linear alkylbenzene synthesized from normal paraffin and benzene serving as raw materials using the same catalyst. The number of carbon atoms of the alkyl group is preferably 1 to 30 and more preferably 4 to 20 from the viewpoint of achieving a viscosity appropriate as a lubricating base oil. The number of alkyl groups in one molecule of the alkylbenzene is dependent on the number of carbon atoms of the alkyl group, but is preferably 1 to 4 and more preferably 1 to 3 to control the viscosity within the predetermined range.


The hydrocarbon refrigerating oil preferably circulates through a refrigeration cycle system together with a refrigerant. Although it is most preferable that the refrigerating oil is soluble with a refrigerant, for example, a refrigerating oil (e.g., a refrigerating oil disclosed in Japanese Patent No. 2803451) having low solubility can also be used as long as the refrigerating oil is capable of circulating through a refrigeration cycle system together with a refrigerant. To allow the refrigerating oil to circulate through a refrigeration cycle system, the refrigerating oil is required to have a low kinematic viscosity. The kinematic viscosity of the hydrocarbon refrigerating oil at 40° C. is preferably 1 mm2/s or more and 50 mm2/s or less and more preferably 1 mm2/s or more and 25 mm2/s or less.


These refrigerating oils may be used alone or in combination of two or more.


The content of the hydrocarbon refrigerating oil in the working fluid for a refrigerating machine may be, for example, 10 parts by mass or more and 100 parts by mass or less and is more preferably 20 parts by mass or more and 50 parts by mass or less relative to 100 parts by mass of the refrigerant composition.


(2-3) Additive

The refrigerating oil may contain one or two or more additives.


Examples of the additives include an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator such as a copper deactivator, an anti-wear agent, and a compatibilizer.


Examples of the acid scavenger that can be used include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, α-olefin oxide, and epoxidized soybean oil; and carbodiimides. Among them, phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and α-olefin oxide are preferred from the viewpoint of miscibility. The alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branched structure. The number of carbon atoms may be 3 or more and 30 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less. The total number of carbon atoms of the α-olefin oxide may be 4 or more and 50 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less. The acid scavengers may be used alone or in combination of two or more.


The extreme pressure agent may contain, for example, a phosphoric acid ester. Examples of the phosphoric acid ester that can be used include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, and acidic phosphorous acid esters. The extreme pressure agent may contain an amine salt of a phosphoric acid ester, a phosphorous acid ester, an acidic phosphoric acid ester, or an acidic phosphorous acid ester.


Examples of the phosphoric acid ester include triaryl phosphates, trialkyl phosphates, trialkylaryl phosphates, triarylalkyl phosphates, and trialkenyl phosphates. Specific examples of the phosphoric acid ester include triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethylphenyl diphenyl phosphate, diethylphenyl phenyl phosphate, propylphenyl diphenyl phosphate, dipropylphenyl phenyl phosphate, triethylphenyl phosphate, tripropylphenyl phosphate, butylphenyl diphenyl phosphate, dibutylphenyl phenyl phosphate, tributylphenyl phosphate, trihexyl phosphate, tri(2-ethylhexyl) phosphate, tridecyl phosphate, trilauryl phosphate, trimyristyl phosphate, tripalmityl phosphate, tristearyl phosphate, and trioleyl phosphate.


Specific examples of the phosphorous acid ester include triethyl phosphite, tributyl phosphite, triphenyl phosphite, tricresyl phosphite, tri(nonylphenyl) phosphite, tri(2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, triisooctyl phosphite, diphenylisodecyl phosphite, tristearyl phosphite, and trioleyl phosphite.


Specific examples of the acidic phosphoric acid ester include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, and isostearyl acid phosphate.


Specific examples of the acidic phosphorous acid ester include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, and diphenyl hydrogen phosphite. Among the phosphoric acid esters, oleyl acid phosphate and stearyl acid phosphate are suitably used.


Among amines used for amine salts of phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, or acidic phosphorous acid esters, specific examples of mono-substituted amines include butylamine, pentylamine, hexylamine, cyclohexylamine, octylamine, laurylamine, stearylamine, oleylamine, and benzylamine. Specific examples of di-substituted amines include dibutylamine, dipentylamine, dihexylamine, di cyclohexylamine, dioctylamine, dilaurylamine, di stearylamine, dioleylamine, dibenzylamine, stearyl.monoethanolamine, decyl.monoethanolamine, hexyl.monopropanolamine, benzyl. monoethanolamine, phenyl.monoethanolamine, and tolyl.monopropanolamine.


Specific examples of tri-substituted amines include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl.monoethanolamine, dilauryl.monopropanolamine, dioctyl.monoethanolamine, dihexyl.monopropanolamine, dibutyl.monopropanolamine, oleyl.diethanolamine, stearyl.dipropanolamine, lauryl.diethanolamine, octyl.dipropanolamine, butyl.diethanolamine, benzyl.diethanolamine, phenyl.diethanolamine, tolyl.dipropanolamine, xylyl.diethanolamine, triethanolamine, and tripropanolamine.


Examples of extreme pressure agents other than the above-described extreme pressure agents include extreme pressure agents based on organosulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, and methanesulfonates; extreme pressure agents based on thiophosphoric acid esters such as thiophosphoric acid triesters; extreme pressure agents based on esters such as higher fatty acids, hydroxyaryl fatty acids, polyhydric alcohol esters, and acrylic acid esters; extreme pressure agents based on organochlorine compounds such as chlorinated hydrocarbons, e.g., chlorinated paraffin and chlorinated carboxylic acid derivatives; extreme pressure agents based on fluoroorganic compounds such as fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, and fluorinated graphites; extreme pressure agents based on alcohols such as higher alcohols; and extreme pressure agents based on metal compounds such as naphthenic acid salts (e.g., lead naphthenate), fatty acid salts (e.g., lead fatty acid), thiophosphoric acid salts (e.g., zinc dialkyldithiophosphate), thiocarbamic acid salts, organomolybdenum compounds, organotin compounds, organogermanium compounds, and boric acid esters.


The antioxidant that can be used is, for example, a phenol-based antioxidant or an amine-based antioxidant. Examples of the phenol-based antioxidant include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis(4-methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, di-tert-butyl-p-cresol, and bisphenol A. Examples of the amine-based antioxidant include N,N′-diisopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, phenyl-α-naphthylamine, N,N′-di-phenyl-p-phenylenediamine, and N,N-di(2-naphthyl)-p-phenylenediamine. An oxygen scavenger that captures oxygen can also be used as the antioxidant.


The antifoaming agent that can be used is, for example, a silicon compound.


The oiliness improver that can be used is, for example, a higher alcohol or a fatty acid.


The metal deactivator such as a copper deactivator that can be used is, for example, benzotriazole or a derivative thereof.


The anti-wear agent that can be used is, for example, zinc dithiophosphate.


The compatibilizer is not limited, and can be appropriately selected from commonly used compatibilizers. The compatibilizers may be used alone or in combination of two or more. Examples of the compatibilizer include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizer is particularly preferably a polyoxyalkylene glycol ether.


The refrigerating oil may optionally contain, for example, a load-bearing additive, a chlorine scavenger, a detergent dispersant, a viscosity index improver, a heat resistance improver, a stabilizer, a corrosion inhibitor, a pour-point depressant, and an anticorrosive.


The content of each additive in the refrigerating oil may be 0.01 mass % or more and 5 mass % or less and is preferably 0.05 mass % or more and 3 mass % or less. The content of the additive in the working fluid for a refrigerating machine constituted by the refrigerant composition and the refrigerating oil is preferably 5 mass % or less and more preferably 3 mass % or less.


The refrigerating oil preferably has a chlorine concentration of 50 ppm or less and preferably has a sulfur concentration of 50 ppm or less.


(3) Refrigerant Circuit


FIG. 1 illustrates an example of a refrigerant circuit 10 included in an air conditioner 1 that is a refrigeration cycle apparatus.


The air conditioner 1 is an apparatus used for indoor cooling and/or heating through a vapor-compression refrigeration cycle operation. The air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, and a liquid-side connection pipe 9 and a gas-side connection pipe 8 that each connect the outdoor unit 2 and the indoor unit 3.


The refrigerant circuit 10 included in the air conditioner 1 includes a compressor 4, an outdoor heat exchanger 5, an expansion valve 6, and an indoor heat exchanger 7, which are connected to one another through the liquid-side connection pipe 9, the gas-side connection pipe 8, and other refrigerant pipes to constitute a compression refrigerant circuit. The air conditioner 1 includes a microcomputer, a memory, and the like and also includes a control unit configured to drive and control various actuators.


A working fluid for a refrigerating machine containing the refrigerant composition serving as a refrigerant and the refrigerating oil is enclosed in the refrigerant circuit 10.


(3-1) Indoor Unit

The indoor unit 3 is disposed on an indoor ceiling surface or wall surface. The indoor unit 3 is connected to the outdoor unit 2 through the liquid-side connection pipe 9 and the gas-side connection pipe 8 and constitutes a part of the refrigerant circuit 10. The refrigerant circuit 10 may include a plurality of indoor units 3 connected in parallel.


The indoor unit 3 includes the indoor heat exchanger 7 and an indoor fan 13.


The indoor heat exchanger 7 is not limited, and is constituted by, for example, a heat transfer tube and many fins. The indoor heat exchanger 7 functions as a refrigerant evaporator during cooling operation to cool indoor air and functions as a refrigerant condenser during heating operation to heat indoor air.


The indoor fan 13 sucks indoor air into the indoor unit 3 to cause heat exchange with the refrigerant in the indoor heat exchanger 7 and then generates air flow supplied to the interior as supply air. The indoor fan 13 includes an indoor fan motor.


(3-2) Outdoor Unit

The outdoor unit 2 is disposed outdoors and connected to the indoor unit 3 through the liquid-side connection pipe 9 and the gas-side connection pipe 8.


The outdoor unit 2 includes, for example, the compressor 4, the outdoor heat exchanger 5, an outdoor fan 12, the expansion valve 6, an accumulator 11, a four-way switching valve 10, a liquid-side shutoff valve 14, and a gas-side shutoff valve 15.


The compressor 4 is, for example, a positive-displacement compressor driven by a compressor motor. The compressor motor may be driven by, for example, receiving power supply through an inverter device (not illustrated).


The outdoor heat exchanger 5 is not limited, and is constituted by, for example, a heat transfer tube and many fins. The outdoor heat exchanger 5 functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.


The outdoor fan 12 sucks outdoor air into the outdoor unit 2 to cause heat exchange with the refrigerant in the outdoor heat exchanger 5 and then generates air flow discharged outdoors. The outdoor fan 12 includes an outdoor fan motor.


The expansion valve 6 can control the pressure of a refrigerant passing therethrough by adjusting the valve opening degree.


The accumulator 11 is disposed on the suction side of the compressor 4 between the four-way switching valve 10 and the compressor 4 and separates a liquid refrigerant and a gaseous refrigerant from each other.


The four-way switching valve 10 can switch the connection state between a cooling operation connection state in which the discharge side of the compressor 4 and the outdoor heat exchanger 5 are connected while the downstream side of the accumulator 11 and the gas-side shutoff valve 15 are connected and a heating operation connection state in which the discharge side of the compressor 4 and the gas-side shutoff valve 15 are connected while the downstream side of the accumulator 11 and the outdoor heat exchanger 5 are connected.


The liquid-side shutoff valve 14 and the gas-side shutoff valve 15 are valves disposed at connecting ports with outside apparatuses and pipes (specifically, the liquid-side connection pipe 9 and the gas-side connection pipe 8).


(3-3) Refrigeration Cycle

In the air conditioner 1, the four-way switching valve 10 is in a cooling operation connection state during cooling operation. A high-temperature and high-pressure refrigerant discharged from the compressor 4 is condensed at the outdoor heat exchanger 5 that functions as a refrigerant condenser, decompressed when passing through the expansion valve 6, and supplied to the gas side of the indoor unit 3 through the liquid-side connection pipe 9. The refrigerant that has been supplied to the indoor unit 3 is evaporated at the indoor heat exchanger 7 that functions as a refrigerant evaporator and sucked into the compressor 4 through the gas-side connection pipe 8 and the accumulator 11 of the outdoor unit 2.


In the air conditioner 1, the four-way switching valve 10 is in a heating operation connection state during heating operation. A high-temperature and high-pressure refrigerant discharged from the compressor 4 is sent to the gas side of the indoor unit 3 through the gas-side connection pipe 8. The refrigerant that has been sent to the indoor unit 3 is condensed at the indoor heat exchanger 7 that functions as a refrigerant condenser and sent to the expansion valve 6 of the outdoor unit 2 through the liquid-side connection pipe 9. The refrigerant decompressed when passing through the expansion valve 6 is evaporated at the outdoor heat exchanger 5 that functions as a refrigerant evaporator and sucked into the compressor 4 through the accumulator 11.


The refrigeration cycle apparatus is not limited. Examples of the refrigeration cycle apparatus include cooling apparatuses of room air conditioners, package air conditioners, refrigerators, car air conditioners, water heaters, dehumidifiers, freezers, cold stores, vending machines, showcases, chemical plants, and the like. In particular, the refrigeration cycle apparatus is preferably used in a refrigerating machine including a hermetic compressor. Each of the refrigerating oils according to this embodiment can be used for any of, for example, reciprocating compressors, rotary compressors, and centrifugal compressors. In these refrigerating machines, the refrigerating oil according to this embodiment is used as a working fluid for a refrigerating machine obtained by being mixed with the refrigerant composition.(4) Refrigerant and Refrigerant composition (4-1) Definition of terms


In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like. Note that the term “refrigerant” includes a mixture of a plurality of refrigerants.


In the present specification, the phase “refrigerant composition” includes a refrigerant itself (including a mixture of refrigerants) and other components, and is distinguished from a refrigerant itself (including a mixture of refrigerants). The “refrigerant composition” includes a composition that can be used to obtain the working fluid for a refrigerating machine by mixing at least with a refrigerating oil.


In the present specification, the phase “working fluid for a refrigerating machine” includes a composition including a refrigerant and a refrigerating oil, and is distinguished from the “refrigerant composition”. The phase “working fluid for a refrigerating machine” may be referred to as a “refrigeration oil-containing working fluid”.


It should be noted that the phase “composition comprising a refrigerant” can be used as a phase including at least those three embodiments of “refrigerant”, “refrigerant composition”, and “working fluid for a refrigerating machine (refrigeration oil-containing working fluid)”.


In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.


The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.


In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.


In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”


In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.


In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a refrigerant composition of the present disclosure in the heat exchanger of a refrigerant system.


(4-2) Use of Refrigerant

The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.


The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.


(4-3) Refrigerant Composition

The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.


The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.


(4-3-1) Water

The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.


(4-3-2) Tracer

A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.


The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.


The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.


Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.


The following compounds are preferable as the tracer.

  • FC-14 (tetrafluoromethane, CF4)
  • HCC-40 (chloromethane, CH3Cl)
  • HFC-23 (trifluoromethane, CHF3)
  • HFC-41 (fluoromethane, CH3Cl)
  • HFC-125 (pentafluoroethane, CF3CHF2)
  • HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
  • HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
  • HFC-143a (1,1,1-trifluoroethane, CF3CH3)
  • HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
  • HFC-152a (1,1-difluoroethane, CHF2CH3)
  • HFC-152 (1,2-difluoroethane, CH2FCH2F)
  • HFC-161 (fluoroethane, CH3CH2F)
  • HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)
  • HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)
  • HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
  • HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
  • HCFC-22 (chlorodifluoromethane, CHC1F2)
  • HCFC-31 (chlorofluoromethane, CH2ClF)
  • CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
  • HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
  • HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
  • HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
  • HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
  • HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)


The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.


(4-3-3) Ultraviolet Fluorescent Dye

The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.


The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.


Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.


(4-3-4) Stabilizer

The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.


The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.


Examples of stabilizers include nitro compounds, ethers, and amines.


Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.


Examples of ethers include 1,4-dioxane.


Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.


Examples of stabilizers also include butylhydroxyxylene and benzotriazole.


The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(4-3-5) Polymerization Inhibitor

The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.


The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.


Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.


The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(4-4) Refrigeration Oil—Containing Working Fluid

The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.


As the refrigeration oil contained in the refrigeration oil-containing working fluid, one kind of the refrigeration oil described in the column of (2) Refrigerating oil may be contained alone, or two or more kinds thereof may be contained. The refrigerating oil may contain the additives described in the column of (2-3) Additive.working fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machine Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.


In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.


(5-1) Refrigerant A

The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements

Preferable refrigerant A is as follows:


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′,


C′C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line CO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
    • When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:


      point G (72.0, 28.0, 0.0),


      point I (72.0, 0.0, 28.0),


      point A (68.6, 0.0, 31.4),


      point A′ (30.6, 30.0, 39.4),


      point B (0.0, 58.7, 41.3),


      point D (0.0, 80.4, 19.6),


      point C′ (19.5, 70.5, 10.0), and


      point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.

    • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
    • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


      point J (47.1, 52.9, 0.0),


      point P (55.8, 42.0, 2.2),


      point N (68.6, 16.3, 15.1),


      point K (61.3, 5.4, 33.3),


      point A′ (30.6, 30.0, 39.4),


      point B (0.0, 58.7, 41.3),


      point D (0.0, 80.4, 19.6),


      point C′ (19.5, 70.5, 10.0), and


      point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CG are straight lines.

    • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
    • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:


      point J (47.1, 52.9, 0.0),


      point P (55.8, 42.0, 2.2),


      point L (63.1, 31.9, 5.0),


      point M (60.3, 6.2, 33.5),


      point A′ (30.6, 30.0, 39.4),


      point B (0.0, 58.7, 41.3),


      point D (0.0, 80.4, 19.6),


      point C′ (19.5, 70.5, 10.0), and


      point (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CG are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0),


point M (60.3, 6.2, 33.5),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2), and


point T (35.8, 44.9, 19.3),


or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2-0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:


      point P (55.8, 42.0, 2.2),


      point L (63.1, 31.9, 5.0),


      point Q (62.8, 29.6, 7.6), and


      point R (49.8, 42.3, 7.9),


      or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:


      point S (62.6, 28.3, 9.1),


      point M (60.3, 6.2, 33.5),


      point A′(30.6, 30.0, 39.4),


      point B (0.0, 58.7, 41.3),


      point F (0.0, 61.8, 38.2), and


      point T (35.8, 44.9, 19.3), or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:


      point d (87.6, 0.0, 12.4),


      point g (18.2, 55.1, 26.7),


      point h (56.7, 43.3, 0.0), and


      point o (100.0, 0.0, 0.0),


      or on the line segments Od, dg, gh, and hO (excluding the points O and h);


the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hO and Od are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and it that connect the following 4 points:


point l (72.5, 10.2, 17.3),


point g (18.2, 55.1, 26.7),


point h (56.7, 43.3, 0.0), and


point i (72.5, 27.5, 0.0) or


on the line segments lg, gh, and il (excluding the points h and i);


the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),

    • the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hi and il are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:


point d (87.6, 0.0, 12.4),


point e (31.1, 42.9, 26.0),


point f (65.5, 34.5, 0.0), and


point O (100.0, 0.0, 0.0),


or on the line segments Od, de, and ef (excluding the points O and f);


the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and


the line segments fO and Od are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,

    • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:


      point l (72.5, 10.2, 17.3),


      point e (31.1, 42.9, 26.0),


      point f (65.5, 34.5, 0.0), and


      point i (72.5, 27.5, 0.0),


      or on the line segments le, ef, and il (excluding the points f and i);


the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment of is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments fi and it are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,

    • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:


      point a (93.4, 0.0, 6.6),


      point b (55.6, 26.6, 17.8),


      point c (77.6, 22.4, 0.0), and


      point O (100.0, 0.0, 0.0),


      or on the line segments Oa, ab, and bc (excluding the points O and c);


the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),


the line segment be is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segments cO and Oa are straight lines.

    • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
    • The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,

    • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:


      point k (72.5, 14.1, 13.4),


      point b (55.6, 26.6, 17.8), and


      point j (72.5, 23.2, 4.3),


      or on the line segments kb, bj, and jk;


the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),


the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segment jk is a straight line.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant A)

The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.


The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5 K


Degree of subcooling: 5 K


Compressor efficiency: 70%


Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.

















TABLE 1








Comp.
Comp.

Example

Comp.




Comp.
Ex. 2
Ex. 3
Example
2
Example
Ex. 4


Item
Unit
Ex. 1
O
A
1
A′
3
B























HFO-1132(E)
mass %
R410A
100.0
68.6
49.0
30.6
14.1
0.0


HFO-1123
mass %

0.0
0.0
14.9
30.0
44.8
58.7


R1234yf
mass %

0.0
31.4
36.1
39.4
41.1
41.3


GWP

2088
1
2
2
2
2
2


COP ratio
% (relative
100
99.7
100.0
98.6
97.3
96.3
95.5



to 410A)


Refrigerating
% (relative
100
98.3
85.0
85.0
85.0
85.0
85.0


capacity ratio
to 410A)


Condensation
° C.
0.1
0.00
1.98
3.36
4.46
5.15
5.35


glide


Discharge
% (relative
100.0
99.3
87.1
88.9
90.6
92.1
93.2


pressure
to 410A)


RCL
g/m3

30.7
37.5
44.0
52.7
64.0
78.6

























TABLE 2







Comp.

Example

Comp.
Comp.
Example
Comp.




Ex. 5
Example
5
Example
Ex. 6
Ex. 7
7
Ex. 8


Item
Unit
C
4
C′
6
D
E
E′
F
























HFO-1132(E)
mass %
32.9
26.6
19.5
10.9
0.0
58.0
23.4
0.0


HFO-1123
mass %
67.1
68.4
70.5
74.1
80.4
42.0
48.5
61.8


R1234yf
mass %
0.0
5.0
10.0
15.0
19.6
0.0
28.1
38.2


GWP

1
1
1
1
2
1
2
2


COP ratio
% (relative
92.5
92.5
92.5
92.5
92.5
95.0
95.0
95.0



to 410A)


Refrigerating
% (relative
107.4
105.2
102.9
100.5
97.9
105.0
92.5
86.9


capacity ratio
to 410A)


Condensation
° C.
0.16
0.52
0.94
1.42
1.90
0.42
3.16
4.80


glide


Discharge
% (relative
119.5
117.4
115.3
113.0
115.9
112.7
101.0
95.8


pressure
to 410A)


RCL
g/m3
53.5
57.1
62.0
69.1
81.3
41.9
46.3
79.0























TABLE 3







Comp.
Example
Example
Example
Example
Example




Ex. 9
8
9
10
11
12


Item
Unit
J
P
L
N
N′
K






















HFO-1132(E)
mass %
47.1
55.8
63.1
68.6
65.0
61.3


HFO-1123
mass %
52.9
42.0
31.9
16.3
7.7
5.4


R1234yf
mass %
0.0
2.2
5.0
15.1
27.3
33.3


GWP

1
1
1
1
2
2


COP ratio
% (relative
93.8
95.0
96.1
97.9
99.1
99.5



to 410A)


Refrigerating
% (relative
106.2
104.1
101.6
95.0
88.2
85.0


capacity ratio
to 410A)


Condensation
° C.
0.31
0.57
0.81
1.41
2.11
2.51


glide


Discharge
% (relative
115.8
111.9
107.8
99.0
91.2
87.7


pressure
to 410A)


RCL
g/m3
46.2
42.6
40.0
38.0
38.7
39.7
























TABLE 4







Example
Example
Example
Example
Example
Example
Example




13
14
15
16
17
18
19


Item
Unit
L
M
Q
R
S
S′
T























HFO-1132(E)
mass %
63.1
60.3
62.8
49.8
62.6
50.0
35.8


HFO-1123
mass %
31.9
6.2
29.6
42.3
28.3
35.8
44.9


R1234yf
mass %
5.0
33.5
7.6
7.9
9.1
14.2
19.3


GWP

1
2
1
1
1
1
2


COP ratio
% (relative
96.1
99.4
96.4
95.0
96.6
95.8
95.0



to 410A)


Refrigerating
% (relative
101.6
85.0
100.2
101.7
99.4
98.1
96.7


capacity ratio
to 410A)


Condensation
° C.
0.81
2.58
1.00
1.00
1.10
1.55
2.07


glide


Discharge
% (relative
107.8
87.9
106.0
109.6
105.0
105.0
105.0


pressure
to 410A)


RCL
g/m3
40.0
40.0
40.0
44.8
40.0
44.4
50.8




















TABLE 5







Comp.
Example
Example




Ex. 10
20
21


Item
Unit
G
H
I



















HFO-1132(E)
mass %
72.0
72.0
72.0


HFO-1123
mass %
28.0
14.0
0.0


R1234yf
mass %
0.0
14.0
28.0


GWP

1
1
2


COP ratio
% (relative
96.6
98.2
99.9



to 410A)


Refrigerating
% (relative
103.1
95.1
86.6


capacity ratio
to 410A)


Condensation glide
° C.
0.46
1.27
1.71


Discharge pressure
% (relative
108.4
98.7
88.6



to 410A)


RCL
g/m3
37.4
37.0
36.6

























TABLE 6







Comp.
Comp.
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 11
Ex. 12
22
23
24
25
26
Ex. 13
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R1234yf
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
91.4
92.0
92.8
93.7
94.7
95.8
96.9
98.0



to 410A)


Refrigerating
% (relative
105.7
105.5
105.0
104.3
103.3
102.0
100.6
99.1


capacity ratio
to 410A)


Condensation
° C.
0.40
0.46
0.55
0.66
0.75
0.80
0.79
0.67


glide


Discharge
% (relative
120.1
118.7
116.7
114.3
111.6
108.7
105.6
102.5


pressure
to 410A)


RCL
g/m3
71.0
61.9
54.9
49.3
44.8
41.0
37.8
35.1

























TABLE 7







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 14
27
28
29
30
31
32
Ex. 15
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
91.9
92.5
93.3
94.3
95.3
96.4
97.5
98.6



to 410A)


Refrigerating
% (relative
103.2
102.9
102.4
101.5
100.5
99.2
97.8
96.2


capacity ratio
to 410A)


Condensation
° C.
0.87
0.94
1.03
1.12
1.18
1.18
1.09
0.88


glide


Discharge
% (relative
116.7
115.2
113.2
110.8
108.1
105.2
102.1
99.0


pressure
to 410A)


RCL
g/m3
70.5
61.6
54.6
49.1
44.6
40.8
37.7
35.0

























TABLE 8







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 16
33
34
35
36
37
38
Ex. 17
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
92.4
93.1
93.9
94.8
95.9
97.0
98.1
99.2



to 410A)


Refrigerating
% (relative
100.5
100.2
99.6
98.7
97.7
96.4
94.9
93.2


capacity ratio
to 410A)


Condensation
° C.
1.41
1.49
1.56
1.62
1.63
1.55
1.37
1.05


glide


Discharge
% (relative
113.1
111.6
109.6
107.2
104.5
101.6
98.6
95.5


pressure
to 410A)


RCL
g/m3
70.0
61.2
54.4
48.9
44.4
40.7
37.5
34.8
























TABLE 9







Example
Example
Example
Example
Example
Example
Example


Item
Unit
39
40
41
42
43
44
45























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative
93.0
93.7
94.5
95.5
96.5
97.6
98.7



to 410A)


Refrigerating
% (relative
97.7
97.4
96.8
95.9
94.7
93.4
91.9


capacity ratio
to 410A)


Condensation
° C.
2.03
2.09
2.13
2.14
2.07
1.91
1.61


glide


Discharge
% (relative
109.4
107.9
105.9
103.5
100.8
98.0
95.0


pressure
to 410A)


RCL
g/m3
69.6
60.9
54.1
48.7
44.2
40.5
37.4
























TABLE 10







Example
Example
Example
Example
Example
Example
Example


Item
Unit
46
47
48
49
50
51
52























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative
93.6
94.3
95.2
96.1
97.2
98.2
99.3



to 410A)


Refrigerating
% (relative
94.8
94.5
93.8
92.9
91.8
90.4
88.8


capacity ratio
to 410A)


Condensation
° C.
2.71
2.74
2.73
2.66
2.50
2.22
1.78


glide


Discharge
% (relative
105.5
104.0
102.1
99.7
97.1
94.3
91.4


pressure
to 410A)


RCL
g/m3
69.1
60.5
53.8
48.4
44.0
40.4
37.3























TABLE 11







Example
Example
Example
Example
Example
Example


Item
Unit
53
54
55
56
57
58






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2


COP ratio
% (relative
94.3
95.0
95.9
96.8
97.8
98.9



to 410A)


Refrigerating
% (relative
91.9
91.5
90.8
89.9
88.7
87.3


capacity ratio
to 410A)


Condensation
° C.
3.46
3.43
3.35
3.18
2.90
2.47


glide


Discharge
% (relative
101.6
100.1
98.2
95.9
93.3
90.6


pressure
to 410A)


RCL
g/m3
68.7
60.2
53.5
48.2
43.9
40.2























TABLE 12







Example
Example
Example
Example
Example
Comp.


Item
Unit
59
60
61
62
63
Ex. 18






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
35.0
35.0
35.0
35.0
35.0
35.0


GWP

2
2
2
2
2
2


COP ratio
% (relative
95.0
95.8
96.6
97.5
98.5
99.6



to 410A)


Refrigerating
% (relative
88.9
88.5
87.8
86.8
85.6
84.1


capacity ratio
to 410A)


Condensation
° C.
4.24
4.15
3.96
3.67
3.24
2.64


glide


Discharge
% (relative
97.6
96.1
94.2
92.0
89.5
86.8


pressure
to 410A)


RCL
g/m3
68.2
59.8
53.2
48.0
43.7
40.1






















TABLE 13







Example
Example
Comp.
Comp.
Comp.


Item
Unit
64
65
Ex. 19
Ex. 20
Ex. 21





















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
40.0
40.0
40.0
40.0
40.0


GWP

2
2
2
2
2


COP ratio
% (relative
95.9
96.6
97.4
98.3
99.2



to 410A)


Refrigerating
% (relative
85.8
85.4
84.7
83.6
82.4


capacity ratio
to 410A)


Condensation
° C.
5.05
4.85
4.55
4.10
3.50


glide


Discharge
% (relative
93.5
92.1
90.3
88.1
85.6


pressure
to 410A)


RCL
g/m3
67.8
59.5
53.0
47.8
43.5

























TABLE 14







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
66
67
68
69
70
71
72
73
























HFO-1132(E)
mass %
54.0
56.0
58.0
62.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
41.0
39.0
37.0
33.0
41.0
39.0
37.0
35.0


R1234yf
mass %
5.0
5.0
5.0
5.0
7.0
7.0
7.0
7.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
95.1
95.3
95.6
96.0
95.1
95.4
95.6
95.8



to 410A)


Refrigerating
% (relative
102.8
102.6
102.3
101.8
101.9
101.7
101.5
101.2


capacity ratio
to 410A)


Condensation
° C.
0.78
0.79
0.80
0.81
0.93
0.94
0.95
0.95


glide


Discharge
% (relative
110.5
109.9
109.3
108.1
109.7
109.1
108.5
107.9


pressure
to 410A)


RCL
g/m3
43.2
42.4
41.7
40.3
43.9
43.1
42.4
41.6

























TABLE 15







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
74
75
76
77
78
79
80
81
























HFO-1132(E)
mass %
60.0
62.0
61.0
58.0
60.0
62.0
52.0
54.0


HFO-1123
mass %
33.0
31.0
29.0
30.0
28.0
26.0
34.0
32.0


R1234yf
mass %
7.0
7.0
10.0
12.0
12.0
12.0
14.0
14.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.0
96.2
96.5
96.4
96.6
96.8
96.0
96.2



to 410A)


Refrigerating
% (relative
100.9
100.7
99.1
98.4
98.1
97.8
98.0
97.7


capacity ratio
to 410A)


Condensation
° C.
0.95
0.95
1.18
1.34
1.33
1.32
1.53
1.53


glide


Discharge
% (relative
107.3
106.7
104.9
104.4
103.8
103.2
104.7
104.1


pressure
to 410A)


RCL
g/m3
40.9
40.3
40.5
41.5
40.8
40.1
43.6
42.9

























TABLE 16







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
82
83
84
85
86
87
88
89
























HFO-1132(E)
mass %
56.0
58.0
60.0
48.0
50.0
52.0
54.0
56.0


HFO-1123
mass %
30.0
28.0
26.0
36.0
34.0
32.0
30.0
28.0


R1234yf
mass %
14.0
14.0
14.0
16.0
16.0
16.0
16.0
16.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.4
96.6
96.9
95.8
96.0
96.2
96.4
96.7



to 410A)


Refrigerating
% (relative
97.5
97.2
96.9
97.3
97.1
96.8
96.6
96.3


capacity ratio
to 410A)


Condensation
° C.
1.51
1.50
1.48
1.72
1.72
1.71
1.69
1.67


glide


Discharge
% (relative
103.5
102.9
102.3
104.3
103.8
103.2
102.7
102.1


pressure
to 410A)


RCL
g/m3
42.1
41.4
40.7
45.2
44.4
43.6
42.8
42.1

























TABLE 17







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
90
91
92
93
94
95
96
97
























HFO-1132(E)
mass %
58.0
60.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
26.0
24.0
40.0
38.0
36.0
34.0
32.0
30.0


R1234yf
mass %
16.0
16.0
18.0
18.0
18.0
18.0
18.0
18.0


GWP

1
1
2
2
2
2
2
2


COP ratio
% (relative
96.9
97.1
95.4
95.6
95.8
96.0
96.3
96.5



to 410A)


Refrigerating
% (relative
96.1
95.8
96.8
96.6
96.4
96.2
95.9
95.7


capacity ratio
to 410A)


Condensation
° C.
1.65
1.63
1.93
1.92
1.92
1.91
1.89
1.88


glide


Discharge
% (relative
101.5
100.9
104.5
103.9
103.4
102.9
102.3
101.8


pressure
to 410A)


RCL
g/m3
41.4
40.7
47.8
46.9
46.0
45.1
44.3
43.5

























TABLE 18







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
98
99
100
101
102
103
104
105
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
36.0
38.0
42.0
44.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
44.0
42.0
38.0
36.0


R1234yf
mass %
18.0
18.0
18.0
18.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.7
96.9
97.1
97.3
95.1
95.3
95.7
95.9



to 410A)


Refrigerating
% (relative
95.4
95.2
94.9
94.6
96.3
96.1
95.7
95.4


capacity ratio
to 410A)


Condensation
° C.
1.86
1.83
1.80
1.77
2.14
2.14
2.13
2.12


glide


Discharge
% (relative
101.2
100.6
100.0
99.5
104.5
104.0
103.0
102.5


pressure
to 410A)


RCL
g/m3
42.7
42.0
41.3
40.6
50.7
49.7
47.7
46.8

























TABLE 19







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
106
107
108
109
110
111
112
113
























HFO-1132(E)
mass %
46.0
48.0
52.0
54.0
56.0
58.0
34.0
36.0


HFO-1123
mass %
34.0
32.0
28.0
26.0
24.0
22.0
44.0
42.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.1
96.3
96.7
96.9
97.2
97.4
95.1
95.3



to 410A)


Refrigerating
% (relative
95.2
95.0
94.5
94.2
94.0
93.7
95.3
95.1


capacity ratio
to 410A)


Condensation
° C.
2.11
2.09
2.05
2.02
1.99
1.95
2.37
2.36


glide


Discharge
% (relative
101.9
101.4
100.3
99.7
99.2
98.6
103.4
103.0


pressure
to 410A)


RCL
g/m3
45.9
45.0
43.4
42.7
41.9
41.2
51.7
50.6

























TABLE 20







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
114
115
116
117
118
119
120
121
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
40.0
38.0
36.0
34.0
32.0
30.0
28.0
26.0


R1234yf
mass %
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
95.5
95.7
95.9
96.1
96.4
96.6
96.8
97.0



to 410A)


Refrigerating
% (relative
94.9
94.7
94.5
94.3
94.0
93.8
93.6
93.3


capacity ratio
to 410A)


Condensation
° C.
2.36
2.35
2.33
2.32
2.30
2.27
2.25
2.21


glide


Discharge
% (relative
102.5
102.0
101.5
101.0
100.4
99.9
99.4
98.8


pressure
to 410A)


RCL
g/m3
49.6
48.6
47.6
46.7
45.8
45.0
44.1
43.4

























TABLE 21







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
122
123
124
125
126
127
128
129
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
24.0
22.0
20.0
18.0
44.0
42.0
40.0
38.0


R1234yf
mass %
22.0
22.0
22.0
22.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.9
95.2
95.4
95.6
95.8



to 410A)


Refrigerating
% (relative
93.0
92.8
92.5
92.2
94.3
94.1
93.9
93.7


capacity ratio
to 410A)


Condensation
° C.
2.18
2.14
2.09
2.04
2.61
2.60
2.59
2.58


glide


Discharge
% (relative
98.2
97.7
97.1
96.5
102.4
101.9
101.5
101.0


pressure
to 410A)


RCL
g/m3
42.6
41.9
41.2
40.5
52.7
51.6
50.5
49.5

























TABLE 22







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
130
131
132
133
134
135
136
137
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.0
96.2
96.4
96.6
96.8
97.0
97.2
97.5



to 410A)


Refrigerating
% (relative
93.5
93.3
93.1
92.8
92.6
92.4
92.1
91.8


capacity ratio
to 410A)


Condensation
° C.
2.56
2.54
2.51
2.49
2.45
2.42
2.38
2.33


glide


Discharge
% (relative
100.5
100.0
99.5
98.9
98.4
97.9
97.3
96.8


pressure
to 410A)


RCL
g/m3
48.5
47.5
46.6
45.7
44.9
44.1
43.3
42.5

























TABLE 23







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
138
139
140
141
142
143
144
145
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
20.0
18.0
16.0
44.0
42.0
40.0
38.0
36.0


R1234yf
mass %
24.0
24.0
24.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
95.3
95.5
95.7
95.9
96.1



to 410A)


Refrigerating
% (relative
91.6
91.3
91.0
93.2
93.1
92.9
92.7
92.5


capacity ratio
to 410A)


Condensation
° C.
2.28
2.22
2.16
2.86
2.85
2.83
2.81
2.79


glide


Discharge
% (relative
96.2
95.6
95.1
101.3
100.8
100.4
99.9
99.4


pressure
to 410A)


RCL
g/m3
41.8
41.1
40.4
53.7
52.6
51.5
50.4
49.4

























TABLE 24







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
146
147
148
149
150
151
152
153
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
34.0
32.0
30.0
28.0
26.0
24.0
22.0
20.0


R1234yf
mass %
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.3
96.5
96.7
96.9
97.1
97.3
97.5
97.7



to 410A)


Refrigerating
% (relative
92.3
92.1
91.9
91.6
91.4
91.2
90.9
90.6


capacity ratio
to 410A)


Condensation
° C.
2.77
2.74
2.71
2.67
2.63
2.59
2.53
2.48


glide


Discharge
% (relative
99.0
98.5
97.9
97.4
96.9
96.4
95.8
95.3


pressure
to 410A)


RCL
g/m3
48.4
47.4
46.5
45.7
44.8
44.0
43.2
42.5

























TABLE 25







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
154
155
156
157
158
159
160
161
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
18.0
16.0
14.0
42.0
40.0
38.0
36.0
34.0


R1234yf
mass %
26.0
26.0
26.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.9
98.2
98.4
95.6
95.8
96.0
96.2
96.3



to 410A)


Refrigerating
% (relative
90.3
90.1
89.8
92.1
91.9
91.7
91.5
91.3


capacity ratio
to 410A)


Condensation
° C.
2.42
2.35
2.27
3.10
3.09
3.06
3.04
3.01


glide


Discharge
% (relative
94.7
94.1
93.6
99.7
99.3
98.8
98.4
97.9


pressure
to 410A)


RCL
g/m3
41.7
41.0
40.3
53.6
52.5
51.4
50.3
49.3

























TABLE 26







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
162
163
164
165
166
167
168
169
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
32.0
30.0
28.0
26.0
24.0
22.0
20.0
18.0


R1234yf
mass %
28.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.7
96.9
97.2
97.4
97.6
97.8
98.0



to 410A)


Refrigerating
% (relative
91.1
90.9
90.7
90.4
90.2
89.9
89.7
89.4


capacity ratio
to 410A)


Condensation
° C.
2.98
2.94
2.90
2.85
2.80
2.75
2.68
2.62


glide


Discharge
% (relative
97.4
96.9
96.4
95.9
95.4
94.9
94.3
93.8


pressure
to 410A)


RCL
g/m3
48.3
47.4
46.4
45.6
44.7
43.9
43.1
42.4

























TABLE 27







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
170
171
172
173
174
175
176
177
























HFO-1132(E)
mass %
56.0
58.0
60.0
32.0
34.0
36.0
38.0
42.0


HFO-1123
mass %
16.0
14.0
12.0
38.0
36.0
34.0
32.0
28.0


R1234yf
mass %
28.0
28.0
28.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.2
98.4
98.6
96.1
96.2
96.4
96.6
97.0



to 410A)


Refrigerating
% (relative
89.1
88.8
88.5
90.7
90.5
90.3
90.1
89.7


capacity ratio
to 410A)


Condensation
° C.
2.54
2.46
2.38
3.32
3.30
3.26
3.22
3.14


glide


Discharge
% (relative
93.2
92.6
92.1
97.7
97.3
96.8
96.4
95.4


pressure
to 410A)


RCL
g/m3
41.7
41.0
40.3
52.4
51.3
50.2
49.2
47.3

























TABLE 28







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
178
179
180
181
182
183
184
185
























HFO-1132(E)
mass %
44.0
46.0
48.0
50.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.8
98.0
98.3
98.5
98.7



to 410A)


Refrigerating
% (relative
89.4
89.2
89.0
88.7
88.4
88.2
87.9
87.6


capacity ratio
to 410A)


Condensation
° C.
3.08
3.03
2.97
2.90
2.83
2.75
2.66
2.57


glide


Discharge
% (relative
94.9
94.4
93.9
93.3
92.8
92.3
91.7
91.1


pressure
to 410A)


RCL
g/m3
46.4
45.5
44.7
43.9
43.1
42.3
41.6
40.9

























TABLE 29







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
186
187
188
189
190
191
192
193
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
38.0
36.0
34.0
32.0
30.0
28.0
26.0
24.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.2
96.3
96.5
96.7
96.9
97.1
97.3
97.5



to 410A)


Refrigerating
% (relative
89.6
89.5
89.3
89.1
88.9
88.7
88.4
88.2


capacity ratio
to 410A)


Condensation
° C.
3.60
3.56
3.52
3.48
3.43
3.38
3.33
3.26


glide


Discharge
% (relative
96.6
96.2
95.7
95.3
94.8
94.3
93.9
93.4


pressure
to 410A)


RCL
g/m3
53.4
52.3
51.2
50.1
49.1
48.1
47.2
46.3

























TABLE 30







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
194
195
196
197
198
199
200
201
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
56.0
58.0
60.0


HFO-1123
mass %
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
98.3
98.5
98.7
98.9
99.2



to 410A)


Refrigerating
% (relative
88.0
87.7
87.5
87.2
86.9
86.6
86.3
86.0


capacity ratio
to 410A)


Condensation
° C.
3.20
3.12
3.04
2.96
2.87
2.77
2.66
2.55


glide


Discharge
% (relative
92.8
92.3
91.8
91.3
90.7
90.2
89.6
89.1


pressure
to 410A)


RCL
g/m3
45.4
44.6
43.8
43.0
42.3
41.5
40.8
40.2

























TABLE 31







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
202
203
204
205
206
207
208
209
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.6
96.8
97.0
97.2
97.4
97.6
97.8



to 410A)


Refrigerating
% (relative
88.4
88.2
88.0
87.8
87.6
87.4
87.2
87.0


capacity ratio
to 410A)


Condensation
° C.
3.84
3.80
3.75
3.70
3.64
3.58
3.51
3.43


glide


Discharge
% (relative
95.0
94.6
94.2
93.7
93.3
92.8
92.3
91.8


pressure
to 410A)


RCL
g/m3
53.3
52.2
51.1
50.0
49.0
48.0
47.1
46.2

























TABLE 32







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
210
211
212
213
214
215
216
217
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
30.0
32.0
34.0


HFO-1123
mass %
20.0
18.0
16.0
14.0
12.0
34.0
32.0
30.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
36.0
36.0
36.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.0
98.2
98.4
98.6
98.8
96.8
96.9
97.1



to 410A)


Refrigerating
% (relative
86.7
86.5
86.2
85.9
85.6
87.2
87.0
86.8


capacity ratio
to 410A)


Condensation
° C.
3.36
3.27
3.18
3.08
2.97
4.08
4.03
3.97


glide


Discharge
% (relative
91.3
90.8
90.3
89.7
89.2
93.4
93.0
92.6


pressure
to 410A)


RCL
g/m3
45.3
44.5
43.7
42.9
42.2
53.2
52.1
51.0

























TABLE 33







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
218
219
220
221
222
223
224
225
























HFO-1132(E)
mass %
36.0
38.0
40.0
42.0
44.0
46.0
30.0
32.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
20.0
18.0
32.0
30.0


R1234yf
mass %
36.0
36.0
36.0
36.0
36.0
36.0
38.0
38.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.3
97.5
97.7
97.9
98.1
98.3
97.1
97.2



to 410A)


Refrigerating
% (relative
86.6
86.4
86.2
85.9
85.7
85.5
85.9
85.7


capacity ratio
to 410A)


Condensation
° C.
3.91
3.84
3.76
3.68
3.60
3.50
4.32
4.25


glide


Discharge
% (relative
92.1
91.7
91.2
90.7
90.3
89.8
91.9
91.4


pressure
to 410A)


RCL
g/m3
49.9
48.9
47.9
47.0
46.1
45.3
53.1
52.0





















TABLE 34









Example
Example



Item
Unit
226
227





















HFO-1132(E)
mass %
34.0
36.0



HFO-1123
mass %
28.0
26.0



R1234yf
mass %
38.0
38.0



GWP

2
2



COP ratio
% (relative
97.4
97.6




to 410A)



Refrigerating
% (relative
85.6
85.3



capacity ratio
to 410A)



Condensation glide
° C.
4.18
4.11



Discharge pressure
% (relative
91.0
90.6




to 410A)



RCL
g/m3
50.9
49.8










These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′(30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point D (0.0, 80.4, 19.6),


point C′ (19.5, 70.5, 10.0),


point C (32.9, 67.1, 0.0), and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line segment CO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines,


the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.


The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.


The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.


The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.


The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.


Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:


point A (68.6, 0.0, 31.4),


point A′ (30.6, 30.0, 39.4),


point B (0.0, 58.7, 41.3),


point F (0.0, 61.8, 38.2),


point T (35.8, 44.9, 19.3),


point E (58.0, 42.0, 0.0) and


point O (100.0, 0.0, 0.0),


or on the above line segments (excluding the points on the line EO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and


the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and


the line segments BF, FO, and OA are straight lines, the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.


The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.


The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.


In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.


Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. In FIG. 2, reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.


Tables 35 and 36 show the results.













TABLE 35





Item
Unit
G
H
I




















WCF
HFO-1132(E)
mass %
72.0
72.0
72.0



HFO-1123
mass %
28.0
9.6
0.0



R1234yf
mass %
0.0
18.4
28.0











Burning velocity (WCF)
cm/s
10
10
10























TABLE 36





Item
Unit
J
P
L
N
N′
K























WCF
HFO-1132(E)
mass %
47.1
55.8
63.1
68.6
65.0
61.3



HFO-1123
mass %
52.9
42.0
31.9
16.3
7.7
 5.4



R1234yf
mass %
 0.0
 2.2
 5.0
15.1
27.3
33.3













Leak condition that
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


results in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping, −40°



C., 92%
C., 90%
C., 90%
C., 66%
C., 12%
C., 0%



release, liquid
release, liquid
release, gas
release, gas
release, gas
release, gas



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-1132(E)
mass %
72.0
72.0
72.0
72.0
72.0
72.0



HFO-1123
mass %
28.0
17.8
17.4
13.6
12.3
 9.8



R1234yf
mass %
 0.0
10.2
10.6
14.4
15.7
18.2














Burning velocity
cm/s
8 or less
8 or less
8 or less
9
9
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)









The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.


The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base,


when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:


point J (47.1, 52.9, 0.0),


point P (55.8, 42.0, 2.2),


point L (63.1, 31.9, 5.0)


point N (68.6, 16.3, 15.1)


point N′ (65.0, 7.7, 27.3) and


point K (61.3, 5.4, 33.3),


the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.


In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).


The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.


The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.


(5-2) Refrigerant B

The refrigerant B according to the present disclosure is


a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or


a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.


When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.


When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.


The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant B)

The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.





COP=(refrigerating capacity or heating capacity)/power consumption


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.



















TABLE 37







Comparative
Comparative











Example 1
Example 2
Comparative
Example
Example
Example
Example
Example
Comparative


Item
Unit
R410A
HFO-1132E
Example 3
1
2
3
4
5
Example 4

























HFO-1132E
mass %

100
80
72
70
68
65
62
60


(WCF)


HFO-1123
mass %

0
20
28
30
32
35
38
40


(WCF)


GWP

2088
1
1
1
1
1
1
1
1


COP ratio
% (relative
100
99.7
97.5
96.6
96.3
96.1
95.8
95.4
95.2



to R410A)


Refrigerating
% (relative
100
98.3
101.9
103.1
103.4
103.8
104.1
104.5
104.8


capacity ratio
to R410A)


Discharge
Mpa
2.73
2.71
2.89
2.96
2.98
3.00
3.02
3.04
3.06


pressure


Burning
cm/sec
Non-
20
13
10
9
9
8
8 or less
8 or less


velocity

flammable


(WCF)






















TABLE 38









Comparative
Comparative
Example
Example
Example


Item
Unit
Example 5
Example 6
7
8
9





HFO-1132E
mass %
50
48
47.1
46.1
45.1


(WCF)


HFO-1123
mass %
50
52
52.9
53.9
54.9


(WCF)


GWP

1
1
1
1
1


COP ratio
% (relative
94.1
93.9
93.8
93.7
93.6



to R410A)


Refrigerating
% (relative
105.9
106.1
106.2
106.3
106.4


capacity ratio
to R410A)


Discharge
Mpa
3.14
3.16
3.16
3.17
3.18


pressure












Leakage test
Storage/
Storage/
Storage/
Storage/
Storage/


conditions (WCFF)
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 92%
C., 92%
C., 92%
C., 92%
C., 92%



release, liquid
release, liquid
release, liquid
release, liquid
release, liquid



phase side
phase side
phase side
phase side
phase side













HFO-1132E
mass %
74
73
72
71
70


(WCFF)


HFO-1123
mass %
26
27
28
29
30


(WCFF)


Burning
cm/sec
8 or less
8 or less
8 or less
8 or less
8 or less


velocity


(WCF)


Burning
cm/sec
11
10.5
10.0
9.5
9.5


velocity


(WCFF)












ASHRAE flammability
2
2
2L
2L
2L


classification






















Comparative





Comparative
Comparative
Comparative
Example 10



Item
Unit
Example 7
Example 8
Example 9
HFO-1123







HFO-1132E
mass %
43
40
25
0



(WCF)



HFO-1123
mass %
57
60
75
100



(WCF)



GWP

1
1
1
1



COP ratio
% (relative
93.4
93.1
91.9
90.6




to R410A)



Refrigerating
% (relative
106.6
106.9
107.9
108.0



capacity ratio
to R410A)



Discharge
Mpa
3.20
3.21
3.31
3.39



pressure













Leakage test
Storage/
Storage/
Storage/




conditions (WCFF)
Shipping −40°
Shipping −40°
Shipping −40°




C., 92%
C., 92%
C., 90%




release, liquid
release, liquid
release, liquid




phase side
phase side
phase side














HFO-1132E
mass %
67
63
38




(WCFF)



HFO-1123
mass %
33
37
62



(WCFF)



Burning
cm/sec
8 or less
8 or less
8 or less
5



velocity



(WCF)



Burning
cm/sec
8.5
8 or less
8 or less



velocity



(WCFF)













ASHRAE flammability
2L
2L
2L
2L



classification










The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.


(5-3) Refrigerant C

The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements

Preferable refrigerant C is as follows:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:


point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),


point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),


point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),


point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),


point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),


point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),


point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and


point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),


point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:


point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),


point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and


point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.


The refrigerant C according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:


point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),


point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),


point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),


point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and


point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),


point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,-0.0105a2+0.8577a+33.177),


point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and


point W (0.0, 100.0-a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:


point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),


point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),


point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and


point W (0.0, 100.0-a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),


point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),


point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),


point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and


point W (0.0, 100.0-a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:


point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),


point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),


point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),


point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and


point W (0.0, 100.0-a, 0.0),


or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.


When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132(E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),


point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),


point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and


point o (100.0-a, 0.0, 0.0)


or on the straight lines oa, ab′, and b′c (excluding point o and point c);


if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),


point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),


point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and


point o (100.0-a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c); or


if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:


point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),


point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),


point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and


point o (100.0-a, 0.0, 0.0),


or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.


The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant C)

The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.





COP=(refrigerating capacity or heating capacity)/power consumption



















TABLE 39








Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Comp.
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7
Ex. 8
1


Item
Unit
Ex. 1
A
B
C
D′
G
I
J
K′

























HFO-1132(E)
Mass %
R410A
68.6
0.0
32.9
0.0
72.0
72.0
47.1
61.7


HFO-1123
Mass %

0.0
58.7
67.1
75.4
28.0
0.0
52.9
5.9


R1234yf
Mass %

31.4
41.3
0.0
24.6
0.0
28.0
0.0
32.4


R32
Mass %

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


GWP

2088
2
2
1
2
1
2
1
2


COP ratio
% (relative
100
100.0
95.5
92.5
93.1
96.6
99.9
93.8
99.4



to R410A)


Refrigerating
% (relative
100
85.0
85.0
107.4
95.0
103.1
86.6
106.2
85.5


capacity ratio
to R410A)

























TABLE 40







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Ex. 9
Ex. 10
Ex. 11
Ex. 12
Ex. 13
Ex. 14
Ex. 15
2


Item
Unit
A
B
C
D′
G
I
J
K′
























HFO-1132(E)
Mass %
55.3
0.0
18.4
0.0
60.9
60.9
40.5
47.0


HFO-1123
Mass %
0.0
47.8
74.5
83.4
32.0
0.0
52.4
7.2


R1234yf
Mass %
37.6
45.1
0.0
9.5
0.0
32.0
0.0
38.7


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
49
49
49
50
49
50


COP ratio
% (relative
99.8
96.9
92.5
92.5
95.9
99.6
94.0
99.2



to R410A)


Refrigerating
% (relative
85.0
85.0
110.5
106.0
106.5
87.7
108.9
85.5


capacity ratio
to R410A)
























TABLE 41







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Ex. 16
Ex. 17
Ex. 18
Ex. 19
Ex. 20
Ex. 21
3


Item
Unit
A
B
C = D′
G
I
J
K′























HFO-1132(E)
Mass %
48.4
0.0
0.0
55.8
55.8
37.0
41.0


HFO-1123
Mass %
0.0
42.3
88.9
33.1
0.0
51.9
6.5


R1234yf
Mass %
40.5
46.6
0.0
0.0
33.1
0.0
41.4


R32
Mass %
11.1
11.1
11.1
11.1
11.1
11.1
11.1


GWP

77
77
76
76
77
76
77


COP ratio
% (relative
99.8
97.6
92.5
95.8
99.5
94.2
99.3



to R410A)


Refrigerating
% (relative
85.0
85.0
112.0
108.0
88.6
110.2
85.4


capacity ratio
to R410A)























TABLE 42







Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Ex. 22
Ex. 23
Ex. 24
Ex. 25
Ex. 26
4


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
42.8
0.0
52.1
52.1
34.3
36.5


HFO-1123
Mass %
0.0
37.8
33.4
0.0
51.2
5.6


R1234yf
Mass %
42.7
47.7
0.0
33.4
0.0
43.4


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
99
100
99
100


COP ratio
% (relative
99.9
98.1
95.8
99.5
94.4
99.5



to R410A)


Refrigerating
% (relative
85.0
85.0
109.1
89.6
111.1
85.3


capacity ratio
to R410A)























TABLE 43







Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Ex. 27
Ex. 28
Ex. 29
Ex. 30
Ex. 31
5


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
37.0
0.0
48.6
48.6
32.0
32.5


HFO-1123
Mass %
0.0
33.1
33.2
0.0
49.8
4.0


R1234yf
Mass %
44.8
48.7
0.0
33.2
0.0
45.3


R32
Mass %
18.2
18.2
18.2
18.2
18.2
18.2


GWP

125
125
124
125
124
125


COP ratio
% (relative
100.0
98.6
95.9
99.4
94.7
99.8



to R410A)


Refrigerating
% (relative
85.0
85.0
110.1
90.8
111.9
85.2


capacity ratio
to R410A)























TABLE 44







Comp.
Comp.
Comp.
Comp.
Comp.
Ex.




Ex. 32
Ex. 33
Ex. 34
Ex. 35
Ex. 36
6


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
31.5
0.0
45.4
45.4
30.3
28.8


HFO-1123
Mass %
0.0
28.5
32.7
0.0
47.8
2.4


R1234yf
Mass %
46.6
49.6
0.0
32.7
0.0
46.9


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
149
150
149
150


COP ratio
% (relative
100.2
99.1
96.0
99.4
95.1
100.0



to R410A)


Refrigerating
% (relative
85.0
85.0
111.0
92.1
112.6
85.1


capacity ratio
to R410A)























TABLE 45







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 37
Ex. 38
Ex. 39
Ex. 40
Ex. 41
Ex. 42


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
24.8
0.0
41.8
41.8
29.1
24.8


HFO-1123
Mass %
0.0
22.9
31.5
0.0
44.2
0.0


R1234yf
Mass %
48.5
50.4
0.0
31.5
0.0
48.5


R32
Mass %
26.7
26.7
26.7
26.7
26.7
26.7


GWP

182
182
181
182
181
182


COP ratio
% (relative
100.4
99.8
96.3
99.4
95.6
100.4



to R410A)


Refrigerating
% (relative
85.0
85.0
111.9
93.8
113.2
85.0


capacity ratio
to R410A)























TABLE 46







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 43
Ex. 44
Ex. 45
Ex. 46
Ex. 47
Ex. 48


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
21.3
0.0
40.0
40.0
28.8
24.3


HFO-1123
Mass %
0.0
19.9
30.7
0.0
41.9
0.0


R1234yf
Mass %
49.4
50.8
0.0
30.7
0.0
46.4


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
198
199
198
200


COP ratio
% (relative
100.6
100.1
96.6
99.5
96.1
100.4



to R410A)


Refrigerating
% (relative
85.0
85.0
112.4
94.8
113.6
86.7


capacity ratio
to R410A)























TABLE 47







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 49
Ex. 50
Ex. 51
Ex. 52
Ex. 53
Ex. 54


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
12.1
0.0
35.7
35.7
29.3
22.5


HFO-1123
Mass %
0.0
11.7
27.6
0.0
34.0
0.0


R1234yf
Mass %
51.2
51.6
0.0
27.6
0.0
40.8


R32
Mass %
36.7
36.7
36.7
36.7
36.7
36.7


GWP

250
250
248
249
248
250


COP ratio
% (relative
101.2
101.0
96.4
99.6
97.0
100.4



to R410A)


Refrigerating
% (relative
85.0
85.0
113.2
97.6
113.9
90.9


capacity ratio
to R410A)























TABLE 48







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 55
Ex. 56
Ex. 57
Ex. 58
Ex. 59
Ex. 60


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
3.8
0.0
32.0
32.0
29.4
21.1


HFO-1123
Mass %
0.0
3.9
23.9
0.0
26.5
0.0


R1234yf
Mass %
52.1
52.0
0.0
23.9
0.0
34.8


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1


GWP

300
300
298
299
298
299


COP ratio
% (relative
101.8
101.8
97.9
99.8
97.8
100.5



to R410A)


Refrigerating
% (relative
85.0
85.0
113.7
100.4
113.9
94.9


capacity ratio
to R410A)






















TABLE 49







Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 61
Ex. 62
Ex. 63
Ex. 64
Ex. 65


Item
Unit
A = B
G
I
J
K′





















HFO-1132(E)
Mass %
0.0
30.4
30.4
28.9
20.4


HFO-1123
Mass %
0.0
21.8
0.0
23.3
0.0


R1234yf
Mass %
52.2
0.0
21.8
0.0
31.8


R32
Mass %
47.8
47.8
47.8
47.8
47.8


GWP

325
323
324
323
324


COP ratio
% (relative
102.1
98.2
100.0
98.2
100.6



to R410A)


Refrigerating
% (relative
85.0
113.8
101.8
113.9
96.8


capacity ratio
to R410A)

























TABLE 50







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 66
7
8
9
10
11
12
13
























HFO-1132(E)
Mass %
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
82.9
77.9
72.9
67.9
62.9
57.9
52.9
47.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
92.4
92.6
92.8
93.1
93.4
93.7
94.1
94.5



to R410A)


Refrigerating
% (relative
108.4
108.3
108.2
107.9
107.6
107.2
106.8
106.3


capacity ratio
to R410A)

























TABLE 51







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
14
15
16
17
Ex. 67
18
19
20
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
42.9
37.9
32.9
27.9
22.9
72.9
67.9
62.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
95.0
95.4
95.9
96.4
96.9
93.0
93.3
93.6



to R410A)


Refrigerating
% (relative
105.8
105.2
104.5
103.9
103.1
105.7
105.5
105.2


capacity ratio
to R410A)

























TABLE 52







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
21
22
23
24
25
26
27
28
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
57.9
52.9
47.9
42.9
37.9
32.9
27.9
22.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
93.9
94.2
94.6
95.0
95.5
96.0
96.4
96.9



to R410A)


Refrigerating
% (relative
104.9
104.5
104.1
103.6
103.0
102.4
101.7
101.0


capacity ratio
to R410A)

























TABLE 53







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 68
29
30
31
32
33
34
35
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
17.9
67.9
62.9
57.9
52.9
47.9
42.9
37.9


R1234yf
Mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
97.4
93.5
93.8
94.1
94.4
94.8
95.2
95.6



to R410A)


Refrigerating
% (relative
100.3
102.9
102.7
102.5
102.1
101.7
101.2
100.7


capacity ratio
to R410A)

























TABLE 54







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
36
37
38
39
Ex. 69
40
41
42
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
32.9
27.9
22.9
17.9
12.9
62.9
57.9
52.9


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
96.0
96.5
97.0
97.5
98.0
94.0
94.3
94.6



to R410A)


Refrigerating
% (relative
100.1
99.5
98.9
98.1
97.4
100.1
99.9
99.6


capacity ratio
to R410A)

























TABLE 55







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
43
44
45
46
47
48
49
50
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative
95.0
95.3
95.7
96.2
96.6
97.1
97.6
98.1



to R410A)


Refrigerating
% (relative
99.2
98.8
98.3
97.8
97.2
96.6
95.9
95.2


capacity ratio
to R410A)

























TABLE 56







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 70
51
52
53
54
55
56
57
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
7.9
57.9
52.9
47.9
42.9
37.9
32.9
27.9


R1234yf
Mass %
20.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
50
50
50
50
50
50
50


COP ratio
% (relative
98.6
94.6
94.9
95.2
95.5
95.9
96.3
96.8



to R410A)


Refrigerating
% (relative
94.4
97.1
96.9
96.7
96.3
95.9
95.4
94.8


capacity ratio
to R410A)

























TABLE 57







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
58
59
60
61
Ex. 71
62
63
64
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
97.2
97.7
98.2
98.7
99.2
95.2
95.5
95.8



to R410A)


Refrigerating
% (relative
94.2
93.6
92.9
92.2
91.4
94.2
93.9
93.7


capacity ratio
to R410A)

























TABLE 58







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
65
66
67
68
69
70
71
72
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
37.9
32.9
27.9
22.9
17.9
12.9
7.9
2.9


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
96.2
96.6
97.0
97.4
97.9
98.3
98.8
99.3



to R410A)


Refrigerating
% (relative
93.3
92.9
92.4
91.8
91.2
90.5
89.8
89.1


capacity ratio
to R410A)

























TABLE 59







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
73
74
75
76
77
78
79
80
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
95.9
96.2
96.5
96.9
97.2
97.7
98.1
98.5



to R410A)


Refrigerating
% (relative
91.1
90.9
90.6
90.2
89.8
89.3
88.7
88.1


capacity ratio
to R410A)

























TABLE 60







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
81
82
83
84
85
86
87
88
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
7.9
2.9
42.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
40.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
99.0
99.4
96.6
96.9
97.2
97.6
98.0
98.4



to R410A)


Refrigerating
% (relative
87.4
86.7
88.0
87.8
87.5
87.1
86.6
86.1


capacity ratio
to R410A)

























TABLE 61







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Unit
Ex. 72
Ex. 73
Ex. 74
Ex. 75
Ex. 76
Ex. 77
Ex. 78
Ex. 79
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
12.9
7.9
2.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
40.0
40.0
40.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative
98.8
99.2
99.6
97.4
97.7
98.0
98.3
98.7



to R410A)


Refrigerating
% (relative
85.5
84.9
84.2
84.9
84.6
84.3
83.9
83.5


capacity ratio
to R410A)




















TABLE 62







Comp.
Comp.
Comp.


Item
Unit
Ex. 80
Ex. 81
Ex. 82



















HFO-1132(E)
Mass %
35.0
40.0
45.0


HFO-1123
Mass %
12.9
7.9
2.9


R1234yf
Mass %
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1


GWP

50
50
50


COP ratio
% (relative
99.1
99.5
99.9



to R410A)


Refrigerating
% (relative
82.9
82.3
81.7


capacity ratio
to R410A)

























TABLE 63







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
89
90
91
92
93
94
95
96
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
70.5
65.5
60.5
55.5
50.5
45.5
40.5
35.5


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
93.7
93.9
94.1
94.4
94.7
95.0
95.4
95.8



to R410A)


Refrigerating
% (relative
110.2
110.0
109.7
109.3
108.9
108.4
107.9
107.3


capacity ratio
to R410A)

























TABLE 64







Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
97
Ex. 83
98
99
100
101
102
103
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
30.5
25.5
65.5
60.5
55.5
50.5
45.5
40.5


R1234yf
Mass %
5.0
5.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
96.2
96.6
94.2
94.4
94.6
94.9
95.2
95.5



to R410A)


Refrigerating
% (relative
106.6
106.0
107.5
107.3
107.0
106.6
106.1
105.6


capacity ratio
to R410A)

























TABLE 65







Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.


Item
Unit
104
105
106
Ex. 84
107
108
109
110
























HFO-1132(E)
Mass %
40.0
45.0
50.0
55.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
35.5
30.5
25.5
20.5
60.5
55.5
50.5
45.5


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.9
96.3
96.7
97.1
94.6
94.8
95.1
95.4



to R410A)


Refrigerating
% (relative
105.1
104.5
103.8
103.1
104.7
104.5
104.1
103.7


capacity ratio
to R410A)

























TABLE 66







Ex.
Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.


Item
Unit
111
112
113
114
115
Ex. 85
116
117
























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
55.0
10.0
15.0


HFO-1123
Mass %
40.5
35.5
30.5
25.5
20.5
15.5
55.5
50.5


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.7
96.0
96.4
96.8
97.2
97.6
95.1
95.3



to R410A)


Refrigerating
% (relative
103.3
102.8
102.2
101.6
101.0
100.3
101.8
101.6


capacity ratio
to R410A)

























TABLE 67







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
118
119
120
121
122
123
124
Ex. 86
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0


HFO-1123
Mass %
45.5
40.5
35.5
30.5
25.5
20.5
15.5
10.5


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.6
95.9
96.2
96.5
96.9
97.3
97.7
98.2



to R410A)


Refrigerating
% (relative
101.2
100.8
100.4
99.9
99.3
98.7
98.0
97.3


capacity ratio
to R410A)

























TABLE 68







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
125
126
127
128
129
130
131
132
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
50.5
45.5
40.5
35.5
30.5
25.5
20.5
15.5


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative
95.6
95.9
96.1
96.4
96.7
97.1
97.5
97.9



to R410A)


Refrigerating
% (relative
98.9
98.6
98.3
97.9
97.4
96.9
96.3
95.7


capacity ratio
to R410A)

























TABLE 69







Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
133
Ex. 87
134
135
136
137
138
139
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
45.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
25.0
25.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
100
100
100
100
100
100


COP ratio
% (relative
98.3
98.7
96.2
96.4
96.7
97.0
97.3
97.7



to R410A)


Refrigerating
% (relative
95.0
94.3
95.8
95.6
95.2
94.8
94.4
93.8


capacity ratio
to R410A)

























TABLE 70







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
140
141
142
143
144
145
146
147
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
15.5
10.5
5.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
30.0
30.0
30.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative
98.1
98.5
98.9
96.8
97.0
97.3
97.6
97.9



to R410A)


Refrigerating
% (relative
93.3
92.6
92.0
92.8
92.5
92.2
91.8
91.3


capacity ratio
to R410A)

























TABLE 71







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
148
149
150
151
152
153
154
155
























HFO-1132(E)
Mass %
35.0
40.0
45.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
15.5
10.5
5.5
35.5
30.5
25.5
20.5
15.5


R1234yf
Mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative
98.3
98.7
99.1
97.4
97.7
98.0
98.3
98.6



to R410A)


Refrigerating
% (relative
90.8
90.2
89.6
89.6
89.4
89.0
88.6
88.2


capacity ratio
to R410A)

























TABLE 72







Ex.
Ex.
Ex.
Ex.
Ex.
Comp.
Comp.
Comp.


Item
Unit
156
157
158
159
160
Ex. 88
Ex. 89
Ex. 90
























HFO-1132(E)
Mass %
35.0
40.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
30.5
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative
98.9
99.3
98.1
98.4
98.7
98.9
99.3
99.6



to R410A)


Refrigerating
% (relative
87.6
87.1
86.5
86.2
85.9
85.5
85.0
84.5


capacity ratio
to R410A)






















TABLE 73







Comp.
Comp.
Comp.
Comp.
Comp.


Item
Unit
Ex. 91
Ex. 92
Ex. 93
Ex. 94
Ex. 95





















HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
50.0
50.0
50.0
50.0
50.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100


COP ratio
% (relative
98.9
99.1
99.4
99.7
100.0



to R410A)


Refrigerating
% (relative
83.3
83.0
82.7
82.2
81.8


capacity ratio
to R410A)

























TABLE 74







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
161
162
163
164
165
166
167
168
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
63.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative
94.8
95.0
95.2
95.4
95.7
95.9
96.2
96.6



to R410A)


Refrigerating
% (relative
111.5
111.2
110.9
110.5
110.0
109.5
108.9
108.3


capacity ratio
to R410A)

























TABLE 75







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 96
169
170
171
172
173
174
175
























HFO-1132(E)
Mass %
50.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
23.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative
96.9
95.3
95.4
95.6
95.8
96.1
96.4
96.7



to R410A)


Refrigerating
% (relative
107.7
108.7
108.5
108.1
107.7
107.2
106.7
106.1


capacity ratio
to R410A)

























TABLE 76







Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
176
Ex. 97
177
178
179
180
181
182
























HFO-1132(E)
Mass %
45.0
50.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
23.1
18.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
10.0
10.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative
97.0
97.4
95.7
95.9
96.1
96.3
96.6
96.9



to R410A)


Refrigerating
% (relative
105.5
104.9
105.9
105.6
105.3
104.8
104.4
103.8


capacity ratio
to R410A)

























TABLE 77







Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
183
184
Ex. 98
185
186
187
188
189
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
23.1
18.1
13.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
15.0
15.0
15.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative
97.2
97.5
97.9
96.1
96.3
96.5
96.8
97.1



to R410A)


Refrigerating
% (relative
103.3
102.6
102.0
103.0
102.7
102.3
101.9
101.4


capacity ratio
to R410A)

























TABLE 78







Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.


Item
Unit
190
191
192
Ex. 99
193
194
195
196
























HFO-1132(E)
Mass %
35.0
40.0
45.0
50.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
20.0
20.0
20.0
20.0
25.0
25.0
25.0
25.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative
97.4
97.7
98.0
98.4
96.6
96.8
97.0
97.3



to R410A)


Refrigerating
% (relative
100.9
100.3
99.7
99.1
100.0
99.7
99.4
98.9


capacity ratio
to R410A)

























TABLE 79







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
197
198
199
200
Ex. 100
201
202
203
























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
10.0
15.0
20.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
38.1
33.1
28.1


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
150
150
150


COP ratio
% (relative
97.6
97.9
98.2
98.5
98.9
97.1
97.3
97.6



to R410A)


Refrigerating
% (relative
98.5
97.9
97.4
96.8
96.1
97.0
96.7
96.3


capacity ratio
to R410A)

























TABLE 80







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
204
205
206
207
208
209
210
211
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
10.0
15.0
20.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
33.1
28.1
23.1


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative
97.8
98.1
98.4
98.7
99.1
97.7
97.9
98.1



to R410A)


Refrigerating
% (relative
95.9
95.4
94.9
94.4
93.8
93.9
93.6
93.3


capacity ratio
to R410A)

























TABLE 81







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
212
213
214
215
216
217
218
219
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
18.1
13.1
8.1
3.1
28.1
23.1
18.1
13.1


R1234yf
Mass %
35.0
35.0
35.0
35.0
40.0
40.0
40.0
40.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative
98.4
98.7
99.0
99.3
98.3
98.5
98.7
99.0



to R410A)


Refrigerating
% (relative
92.9
92.4
91.9
91.3
90.8
90.5
90.2
89.7


capacity ratio
to R410A)

























TABLE 82







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
220
221
222
223
224
225
226
Ex. 101
























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0


HFO-1123
Mass %
8.1
3.1
23.1
18.1
13.1
8.1
3.1
18.1


R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
50.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative to
99.3
99.6
98.9
99.1
99.3
99.6
99.9
99.6



R410A)


Refrigerating
% (relative to
89.3
88.8
87.6
87.3
87.0
86.6
86.2
84.4


capacity ratio
R410A)




















TABLE 83







Comp.
Comp.
Comp.


Item
Unit
Ex. 102
Ex. 103
Ex. 104



















HFO-1132(E)
Mass %
15.0
20.0
25.0


HFO-1123
Mass %
13.1
8.1
3.1


R1234yf
Mass %
50.0
50.0
50.0


R32
Mass %
21.9
21.9
21.9


GWP

150
150
150


COP ratio
% (relative
99.8
100.0
100.2



to R410A)


Refrigerating
% (relative
84.1
83.8
83.4


capacity ratio
to R410A)

























TABLE 84







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
227
228
229
230
231
232
233
Ex. 105
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
55.7
50.7
45.7
40.7
35.7
30.7
25.7
20.7


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative
95.9
96.0
96.2
96.3
96.6
96.8
97.1
97.3



to R410A)


Refrigerating
% (relative
112.2
111.9
111.6
111.2
110.7
110.2
109.6
109.0


capacity ratio
to R410A)

























TABLE 85







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
234
235
236
237
238
239
240
Ex. 106
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
50.7
45.7
40.7
35.7
30.7
25.7
20.7
15.7


R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative
96.3
96.4
96.6
96.8
97.0
97.2
97.5
97.8



to R410A)


Refrigerating
% (relative
109.4
109.2
108.8
108.4
107.9
107.4
106.8
106.2


capacity ratio
to R410A)

























TABLE 86







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
241
242
243
244
245
246
247
Ex. 107
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
45.7
40.7
35.7
30.7
25.7
20.7
15.7
10.7


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative
96.7
96.8
97.0
97.2
97.4
97.7
97.9
98.2



to R410A)


Refrigerating
% (relative
106.6
106.3
106.0
105.5
105.1
104.5
104.0
103.4


capacity ratio
to R410A)

























TABLE 87







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
248
249
250
251
252
253
254
Ex. 108
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
40.7
35.7
30.7
25.7
20.7
15.7
10.7
5.7


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative
97.1
97.3
97.5
97.7
97.9
98.1
98.4
98.7



to R410A)


Refrigerating
% (relative
103.7
103.4
103.0
102.6
102.2
101.6
101.1
100.5


capacity ratio
to R410A)

























TABLE 88







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
255
256
257
258
259
260
261
262
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
10.0


HFO-1123
Mass %
35.7
30.7
25.7
20.7
15.7
10.7
5.7
30.7


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative
97.6
97.7
97.9
98.1
98.4
98.6
98.9
98.1



to R410A)


Refrigerating
% (relative
100.7
100.4
100.1
99.7
99.2
98.7
98.2
97.7


capacity ratio
to R410A)

























TABLE 89







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
263
264
265
266
267
268
269
270
























HFO-1132(E)
Mass %
15.0
20.0
25.0
30.0
35.0
10.0
15.0
20.0


HFO-1123
Mass %
25.7
20.7
15.7
10.7
5.7
25.7
20.7
15.7


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
200
200
200


COP ratio
% (relative
98.2
98.4
98.6
98.9
99.1
98.6
98.7
98.9



to R410A)


Refrigerating
% (relative
97.4
97.1
96.7
96.2
95.7
94.7
94.4
94.0


capacity ratio
to R410A)

























TABLE 90







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
271
272
273
274
275
276
277
278
























HFO-1132(E)
Mass %
25.0
30.0
10.0
15.0
20.0
25.0
10.0
15.0


HFO-1123
Mass %
10.7
5.7
20.7
15.7
10.7
5.7
15.7
10.7


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
45.0
45.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
200
200
200
200
200
200


COP ratio
% (relative
99.2
99.4
99.1
99.3
99.5
99.7
99.7
99.8



to R410A)


Refrigerating
% (relative
93.6
93.2
91.5
91.3
90.9
90.6
88.4
88.1


capacity ratio
to R410A)





















TABLE 91







Ex.
Ex.
Comp.
Comp.


Item
Unit
279
280
Ex. 109
Ex. 110




















HFO-1132(E)
Mass %
20.0
10.0
15.0
10.0


HFO-1123
Mass %
5.7
10.7
5.7
5.7


R1234yf
Mass %
45.0
50.0
50.0
55.0


R32
Mass %
29.3
29.3
29.3
29.3


GWP

200
200
200
200


COP ratio
% (relative
100.0
100.3
100.4
100.9



to R410A)


Refrigerating
% (relative
87.8
85.2
85.0
82.0


capacity ratio
to R410A)

























TABLE 92







Ex.
Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.


Item
Unit
281
282
283
284
285
Ex. 111
286
287
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
10.0
15.0


HFO-1123
Mass %
40.9
35.9
30.9
25.9
20.9
15.9
35.9
30.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
10.0
10.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

298
298
298
298
298
298
299
299


COP ratio
% (relative
97.8
97.9
97.9
98.1
98.2
98.4
98.2
98.2



to R410A)


Refrigerating
% (relative
112.5
112.3
111.9
111.6
111.2
110.7
109.8
109.5


capacity ratio
to R410A)

























TABLE 93







Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.


Item
Unit
288
289
290
Ex. 112
291
292
293
294
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
25.9
20.9
15.9
10.9
30.9
25.9
20.9
15.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative
98.3
98.5
98.6
98.8
98.6
98.6
98.7
98.9



to R410A)


Refrigerating
% (relative
109.2
108.8
108.4
108.0
107.0
106.7
106.4
106.0


capacity ratio
to R410A)

























TABLE 94







Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
295
Ex. 113
296
297
298
299
300
301
























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0


HFO-1123
Mass %
10.9
5.9
25.9
20.9
15.9
10.9
5.9
20.9


R1234yf
Mass %
15.0
15.0
20.0
20.0
20.0
20.0
20.0
25.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative
99.0
99.2
99.0
99.0
99.2
99.3
99.4
99.4



to R410A)


Refrigerating
% (relative
105.6
105.2
104.1
103.9
103.6
103.2
102.8
101.2


capacity ratio
to R410A)

























TABLE 95







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
302
303
304
305
306
307
308
309
























HFO-1132(E)
Mass %
15.0
20.0
25.0
10.0
15.0
20.0
10.0
15.0


HFO-1123
Mass %
15.9
10.9
5.9
15.9
10.9
5.9
10.9
5.9


R1234yf
Mass %
25.0
25.0
25.0
30.0
30.0
30.0
35.0
35.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative
99.5
99.6
99.7
99.8
99.9
100.0
100.3
100.4



to R410A)


Refrigerating
% (relative
101.0
100.7
100.3
98.3
98.0
97.8
95.3
95.1


capacity ratio
to R410A)




















TABLE 96









Ex.



Item
Unit
400




















HFO-1132(E)
Mass %
10.0



HFO-1123
Mass %
5.9



R1234yf
Mass %
40.0



R32
Mass %
44.1



GWP

299



COP ratio
% (relative
100.7




to R410A)



Refrigerating
% (relative
92.3



capacity ratio
to R410A)










The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %, a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, and the point (0.0, 100.0-a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);


if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B(0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).


Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 4, and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.


Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.


In FIG. 4, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 4, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 5, point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


The results are shown in Tables 97 to 104.















TABLE 97






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 6
Ex. 13
Ex. 19
Ex. 24
Ex. 29
Ex. 34























WCF
HFO-1132(E)
Mass %
72.0
60.9
55.8
52.1
48.6
45.4



HFO-1123
Mass %
28.0
32.0
33.1
33.4
33.2
32.7



R1234yf
Mass %
0.0
0.0
0.0
0
0
0



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9














Burning velocity (WCF)
cm/s
10
10
10
10
10
10





















TABLE 98






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 39
Ex. 45
Ex. 51
Ex. 57
Ex. 62






















WCF
HFO-1132(E)
Mass %
41.8
40
35.7
32
30.4



HFO-1123
Mass %
31.5
30.7
23.6
23.9
21.8



R1234yf
Mass %
0
0
0
0
0



R32
Mass %
26.7
29.3
36.7
44.1
47.8













Burning velocity (WCF)
cm/s
10
10
10
10
10






















TABLE 99






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 7
Ex. 14
Ex. 20
Ex. 25
Ex. 30
Ex. 35























WCF
HFO-1132(E)
Mass %
72.0
60.9
55.8
52.1
48.6
45.4



HFO-1123
Mass %
0.0
0.0
0.0
0
0
0



R1234yf
Mass %
28.0
32.0
33.1
33.4
33.2
32.7



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9














Burning velocity (WCF)
cm/s
10
10
10
10
10
10





















TABLE 100






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 40
Ex. 46
Ex. 52
Ex. 58
Ex. 63






















WCF
HFO-1132(E)
Mass %
41.8
40
35.7
32
30.4



HFO-1123
Mass %
0
0
0
0
0



R1234yf
Mass %
31.5
30.7
23.6
23.9
21.8



R32
Mass %
26.7
29.3
36.7
44.1
47.8













Burning velocity (WCF)
cm/s
10
10
10
10
10






















TABLE 101






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 8
Ex. 15
Ex. 21
Ex. 26
Ex. 31
Ex. 36























WCF
HFO-1132(E)
Mass %
47.1
40.5
37.0
34.3
32.0
30.3



HFO-1123
Mass %
52.9
52.4
51.9
51.2
49.8
47.8



R1234yf
Mass %
0.0
0.0
 0.0
 0.0
 0.0
 0.0



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9













Leak condition that
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


results in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 92%
C., 92%
C., 92%
C., 92%
C., 92%
C., 92%



release, liquid
release, liquid
release, liquid
release, liquid
release, liquid
release, liquid



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-1132(E)
Mass %
72.0
62.4
56.2
50.6
45.1
40.0



HFO-1123
Mass %
28.0
31.6
33.0
33.4
32.5
30.5



R1234yf
Mass %
0.0
0.0
 0.0
20.4
 0.0
 0.0



R32
Mass %
0.0
50.9
10.8
16.0
22.4
29.5














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 102






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 41
Ex. 47
Ex. 53
Ex. 59
Ex. 64






















WCF
HFO-1132(E)
Mass %
29.1
28.8
29.3
29.4
28.9



HFO-1123
Mass %
44.2
41.9
34.0
26.5
23.3



R1234yf
Mass %
 0.0
 0.0
0.0
0.0
0.0



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak condition that
Storage/
Storage/
Storage/
Storage/
Storage/


results in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 92%
C., 92%
C., 92%
C., 90%
C., 86%



release, liquid
release, liquid
release, liquid
release, gas
release, gas



phase side
phase side
phase side
phase side
phase side














WCFF
HFO-1132(E)
Mass %
34.6
32.2
27.7
28.3
27.5



HFO-1123
Mass %
26.5
23.9
17.5
18.2
16.7



R1234yf
Mass %
 0.0
 0.0
0.0
0.0
0.0



R32
Mass %
38.9
43.9
54.8
53.5
55.8













Burning velocity
cm/s
8 or less
8 or less
8.3
9.3
9.6


(WCF)


Burning velocity
cm/s
10
10
10
10
10


(WCFF)






















TABLE 103






Comp.
Comp.
Comp.
Comp
Comp.
Comp.


Item
Ex. 9
Ex. 16
Ex. 22
Ex. 27
Ex. 32
Ex. 37























WCF
HFO-1132(E)
Mass %
61.7
47.0
41.0
36.5
32.5
28.8



HFO-1123
Mass %
5.9
 7.2
 6.5
 5.6
 4.0
 2.4



R1234yf
Mass %
32.4
38.7
41.4
43.4
45.3
46.9



R32
Mass %
0.0
 7.1
11.1
14.5
18.2
21.9













Leak condition that
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


results in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 0%
C., 0%
C., 0%
C., 92%
C., 0%
C., 0%



release, gas
release, gas
release, gas
release, liquid
release, gas
release, gas



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-1132(E)
Mass %
72.0
56.2
50.4
46.0
42.4
39.1



HFO-1123
Mass %
10.5
12.6
11.4
10.1
 7.4
 4.4



R1234yf
Mass %
17.5
20.4
21.8
22.9
24.3
25.7



R32
Mass %
0.0
10.8
16.3
21.0
25.9
30.8














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 104






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 42
Ex. 48
Ex. 54
Ex. 60
Ex. 65






















WCF
HFO-1132(E)
Mass %
24.8
24.3
22.5
21.1
20.4



HFO-1123
Mass %
 0.0
 0.0
 0.0
 0.0
 0.0



R1234yf
Mass %
48.5
46.4
40.8
34.8
31.8



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak condition that
Storage/
Storage/
Storage/
Storage/
Storage/


results in WCFF
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°
Shipping −40°



C., 0%
C., 0%
C., 0%
C., 0%
C., 0%



release, gas
release, gas
release, gas
release, gas
release, gas



phase side
phase side
phase side
phase side
phase side














WCFF
HFO-1132(E)
Mass %
35.3
34.3
31.3
29.1
28.1



HFO-1123
Mass %
 0.0
 0.0
 0.0
 0.0
 0.0



R1234yf
Mass %
27.4
26.2
23.1
19.8
18.2



R32
Mass %
37.3
39.6
45.6
51.1
53.7













Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10


(WCFF)









The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098,0.0) and point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).


Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 105







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
0.026a2 − 1.7478a + 72.0
0.02a2 − 1.6013a + 71.105
 0.0135a2 − 1.4068a + 69.727


Approximate


expression


HFO-1123
−0.026a2 + 0..7478a + 28.0
−0.02a2 + 0..6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate


expression


R1234yf
0
0
0


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4



HFO-1123
31.5
30.7
27.6
27.6
23.9
21.8



R1234yf
0
0
0
0
0
0











R32
a
a



HFO-1132(E)
 0.0111a2 − 1.3152a + 68.986
 0.0061a2 − 0.9918a + 63.902



Approximate



expression



HFO-1123
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098



Approximate



expression



R1234yf
0
0



Approximate



expression




















TABLE 106







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5










R32
a
a
a


HFO-1132(E)
 0.026a2 − 1.7478a + 72.0
 0.02a2 − 1.6013a + 71.105
 0.0135a2 − 1.4068a + 69.727


Approximate


expression


HFO-1123
0
0
0


Approximate


expression


R1234yf
−0.026a2 + 0.7478a + 28.0
−0.02a2 + 0.6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4



HFO-1123
0
0
0
0
0
0



R1234yf
31.5
30.7
23.6
23.6
23.5
21.8











R32
x
x



HFO-1132(E)
 0.0111a2 − 1.3152a + 68.986
 0.0061a2 − 0.9918a + 63.902



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098



Approximate



expression










The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects


point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).


Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 4 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.


Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 107







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
47.1
40.5
37
37.0
34.3
32.0
32.0
30.3
29.1


HFO-1123
52.9
52.4
51.9
51.9
51.2
49.8
49.8
47.8
44.2


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
 0.0049a2 − 0.9645a + 47.1
 0.0243a2 − 1.4161a + 49.725
 0.0246a2 − 1.4476a + 50.184


Approximate


expression


HFO-1123
−0.0049a2 − 0.0355a + 52.9
−0.0243a2 + 0.4161a + 50.275
−0.0246a2 + 0.4476a + 49.816


Approximate


expression


R1234yf
0
0
0


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
47.8 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
29.1
28.8
29.3
29.3
29.4
28.9



HFO-1123
44.2
41.9
34.0
34.0
26.5
23.3



R1234yf
0
0
0
0
0
0











R32
a
a



HFO-1132(E)
 0.0183a2 − 1.1399a + 46.493
−0.0134a2 + 1.0956a + 7.13



Approximate



expression



HFO-1123
−0.0183a2 + 0.1399a + 53.507
 0.0134a2 − 2.0956a + 92.87



Approximate



expression



R1234yf
0
0



Approximate



expression




















TABLE 108







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
61.7
47.0
41.0
41.0
36.5
32.5
32.5
28.8
24.8


HFO-1123
5.9
7.2
6.5
6.5
5.6
4.0
4.0
2.4
0


R1234yf
32.4
38.7
41.4
41.4
43.4
45.3
45.3
46.9
48.5










R32
x
x
x


HFO-1132(E)
 0.0514a2 − 2.4353a + 61.7
 0.0341a2 − 2.1977a + 61.187
 0.0196a2 − 1.7863a + 58.515


Approximate


expression


HFO-1123
−0.0323a2 + 0.4122a + 5.9 
−0.0236a2 + 0.34a + 5.636
−0.0079a2 − 0.1136a + 8.702 


Approximate


expression


R1234yf
−0.0191a2 + 1.0231a + 32.4
−0.0105a2 + 0.8577a + 33.177
−0.0117a2 + 0.8999a + 32.783


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
24.8
24.3
22.5
22.5
21.1
20.4



HFO-1123
0
0
0
0
0
0



R1234yf
48.5
46.4
40.8
40.8
34.8
31.8











R32
x
x



HFO-1132(E)
−0.0051a2 + 0.0929a + 25.95
−1.892a + 29.443



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
 0.0051a2 − 1.0929a + 74.05
 0.892a + 70.557



Approximate



expression











FIGS. 4 to 14 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.


Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.


Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).












TABLE 109







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
68.6
55.3
48.4
48.4
42.8
37
37
31.5
24.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
31.4
37.6
40.5
40.5
42.7
44.8
44.8
46.6
48.5










R32
a
a
a


HFO-1132(E)
 0.0134a2 − 1.9681a + 68.6
 0.0112a2 − 1.9337a + 68.484
 0.0107a2 − 1.9142a + 68.305


Approximate


expression


HFO-1123
0
0
0


Approximate


expression


R1234yf
−0.0134a2 + 0.9681a + 31.4
−0.0112a2 + 0.9337a + 31.516
−0.0107a2 + 0.9142a + 31.695


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
24.8
21.3
12.1
12.1
3.8
0



HFO-1123
0
0
0
0
0
0



R1234yf
48.5
49.4
51.2
51.2
52.1
52.2











R32
a
a



HFO-1132(E)
 0.0103a2 − 1.9225a + 68.793
 0.0085a2 − 1.8102a + 67.1



Approximate



expression



HFO-1123
0
0



Approximate



expression



R1234yf
−0.0103a2 + 0.9225a + 31..207 
−0.0085a2 + 0.8102a + 32.9



Approximate



expression










Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.


Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).












TABLE 110







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
0
0
0
0
0
0
0
0
0


HFO-1123
58.7
47.8
42.3
42.3
37.8
33.1
33.1
28.5
22.9


R1234yf
41.3
45.1
46.6
46.6
47.7
48.7
48.7
49.6
50.4










R32
a
a
a


HFO-1132(E)
0
0
0


Approximate


expression


HFO-1123
 0.0144a2 − 1.6377a + 58.7
 0.0075a2 − 1.5156a + 58.199
 0.009a2 − 1.6045a + 59.318


Approximate


expression


R1234yf
−0.0144a2 + 0.6377a + 41.3
−0.0075a2 + 0.5156a + 41.801
−0.009a2 + 0.6045a + 40.682


Approximate


expression














Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7



















R32
26.7
29.3
36.7
36.7
44.1
47.8



HFO-1132(E)
0
0
0
0
0
0



HFO-1123
22.9
19.9
11.7
11.8
3.9
0



R1234yf
50.4
50.8
51.6
51.5
52.0
52.2











R32
a
a



HFO-1132(E)
0
0



Approximate



expression



HFO-1123
 0.0046a2 − 1.41a + 57.286
 0.0012a2 − 1.1659a + 52.95



Approximate



expression



R1234yf
−0.0046a2 + 0.41a + 42.714
−0.0012a2 + 0.1659a + 47.05



Approximate



expression










Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).












TABLE 111







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
0
0
0



HFO-1123
75.4
83.4
88.9



R1234yf
24.6
9.5
0










R32
a



HFO-1132(E)
0



Approximate



expression



HFO-1123
 0.0224a2 + 0.968a + 75.4



Approximate



expression



R1234yf
−0.0224a2 − 1.968a + 24.6



Approximate



expression










Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).












TABLE 112







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
32.9
18.4
0



HFO-1123
67.1
74.5
88.9



R1234yf
0
0
0










R32
a



HFO-1132(E)
−0.2304a2 − 0.4062a + 32.9



Approximate



expression



HFO-1123
 0.2304a2 − 0.5938a + 67.1



Approximate



expression



R1234yf
0



Approximate



expression










(5-4) Refrigerant D

The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein

    • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


      point I (72.0, 0.0, 28.0),


      point J (48.5, 18.3, 33.2),


      point N (27.7, 18.2, 54.1), and


      point E (58.3, 0.0, 41.7),


      or on these line segments (excluding the points on the line segment EI);


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′ (39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:


point a (71.1, 0.0, 28.9),


point c (36.5, 18.2, 45.3),


point f (47.6, 18.3, 34.1), and


point d (72.0, 0.0, 28.0),


or on these line segments;


the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:


point a (71.1, 0.0, 28.9),


point b (42.6, 14.5, 42.9),


point e (51.4, 14.6, 34.0), and


point d (72.0, 0.0, 28.0),


or on these line segments;


the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:


point g (77.5, 6.9, 15.6),


point i (55.1, 18.3, 26.6), and


point j (77.5. 18.4, 4.1),


or on these line segments;


the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:


point g (77.5, 6.9, 15.6),


point h (61.8, 14.6, 23.6), and


point k (77.5, 14.6, 7.9),


or on these line segments;


the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant D)

The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.


The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.

















TABLE 113







Comparative

Example

Example

Example




Example 13
Example
12
Example
14
Example
16


Item
Unit
I
11
J
13
K
15
L
























WCF
HFO-1132(E)
Mass %
72
57.2
48.5
41.2
35.6
32
28.9



R32
Mass %
0
10
18.3
27.6
36.8
44.2
51.7



R1234yf
Mass %
28
32.8
33.2
31.2
27.6
23.8
19.4















Burning Velocity (WCF)
cm/s
10
10
10
10
10
10
10























TABLE 114







Comparative

Example

Example





Example 14
Example
19
Example
21
Example


Item
Unit
M
18
W
20
N
22























WCF
HFO-1132(E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.6



R32
Mass %
 0.0
 5.0
10.0
14.5
18.2
27.6



R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.8













Leak condition that
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


results in WCFF
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°



C., 0%
C., 0%
C., 0%
C., 0%
C., 0%
C., 0%



release, on
release, on
release, on
release, on
release, on
release, on



the gas
the gas
the gas
the gas
the gas
the gas



phase side
phase side
phase side
phase side
phase side
phase side















WCF
HFO-1132(E)
Mass %
72.0
57.8
48.7
43.6
40.6
34.9



R32
Mass %
 0.0
 9.5
17.9
24.2
28.7
38.1



R1234yf
Mass %
28.0
32.7
33.4
32.2
30.7
27.0














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)




















TABLE 115







Example

Example




23
Example
25


Item
Unit
O
24
P




















WCF
HFO-1132
Mass %
22.6
21.2
20.5



(E)



HFO-1123
Mass %
36.8
44.2
51.7



R1234yf
Mass %
40.6
34.6
27.8











Leak condition

Storage,
Storage,
Storage,


that results

Shipping, −40°
Shipping, −40°
Shipping, −40°


in WCFF

C., 0% release,
C., 0% release,
C., 0% release,




on the gas
on the gas
on the gas




phase side
phase side
phase side












WCFF
HFO-1132
Mass %
31.4
29.2
27.1



(E)



HFO-1123
Mass %
45.7
51.1
56.4



R1234yf
Mass %
23.0
19.7
16.5











Burning Velocity (WCF)
cm/s
8 or less
8 or less
8 or less


Burning Velocity (WCFF)
cm/s
10  
10  
10  









The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 15 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.


The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 15 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.


Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of UFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5 K


Degree of subcooling: 5 K


Compressor efficiency: 70%


Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.

















TABLE 116








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
Mass %
R410A
81.6
0.0
63.1
0.0
48.2
0.0


R32
Mass %

18.4
18.1
36.9
36.7
51.8
51.5


R1234yf
Mass %

0.0
81.9
0.0
63.3
0.0
48.5


GWP

2088
125
125
250
250
350
350


COP Ratio
% (relative
100
98.7
103.6
98.7
102.3
99.2
102.2



to R410A)


Refrigerating
% (relative
100
105.3
62.5
109.9
77.5
112.1
87.3


Capacity Ratio
to R410A)
























TABLE 117







Comparative

Comparative

Example

Example




Example 8
Comparative
Example 10
Example
2
Example
4


Item
Unit
C
Example 9
C′
1
R
3
T























HFO-1132(E)
Mass %
85.5
66.1
52.1
37.8
25.5
16.6
8.6


R32
Mass %
0.0
10.0
18.2
27.6
36.8
44.2
51.6


R1234yf
Mass %
14.5
23.9
29.7
34.6
37.7
39.2
39.8


GWP

1
69
125
188
250
300
350


COP Ratio
% (relative
99.8
99.3
99.3
99.6
100.2
100.8
101.4



to R410A)


Refrigerating
% (relative
92.5
92.5
92.5
92.5
92.5
92.5
92.5


Capacity Ratio
to R410A)

























TABLE 118







Comparative

Example

Example
Comparative

Example




Example 11
Example
6
Example
8
Example 12
Example
10


Item
Unit
E
5
N
7
U
G
9
V
























HFO-1132(E)
Mass %
58.3
40.5
27.7
14.9
3.9
39.6
22.8
11.0


R32
Mass %
0.0
10.0
18.2
27.6
36.7
0.0
10.0
18.1


R1234yf
Mass %
41.7
49.5
54.1
57.5
59.4
60.4
67.2
70.9


GWP

2
70
125
189
250
3
70
125


COP Ratio
% (relative
100.3
100.3
100.7
101.2
101.9
101.4
101.8
102.3



to R410A)


Refrigerating
% (relative
80.0
80.0
80.0
80.0
80.0
70.0
70.0
70.0


Capacity Ratio
to R410A)

























TABLE 119







Comparative

Example

Example

Example
Example




Example 13
Example
12
Example
14
Example
16
17


Item
Unit
I
11
J
13
K
15
L
Q
























HFO-1132(E)
Mass %
72.0
57.2
48.5
41.2
35.6
32.0
28.9
44.6


R32
Mass %
0.0
10.0
18.3
27.6
36.8
44.2
51.7
23.0


R1234yf
Mass %
28.0
32.8
33.2
31.2
27.6
23.8
19.4
32.4


GWP

2
69
125
188
250
300
350
157


COP Ratio
% (relative
99.9
99.5
99.4
99.5
99.6
99.8
100.1
99.4



to R410A)


Refrigerating
% (relative
86.6
88.4
90.9
94.2
97.7
100.5
103.3
92.5


Capacity Ratio
to R410A)























TABLE 120







Comparative

Example

Example





Example 14
Example
19
Example
21
Example


Item
Unit
M
18
W
20
N
22






















HFO-1132(E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.5


R32
Mass %
0.0
5.0
10.0
14.5
18.2
27.6


R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.9


GWP

2
36
70
100
125
188


COP Ratio
% (relative
100.5
100.9
100.9
100.8
100.7
100.4



to R410A)


Refrigerating
% (relative
77.1
74.8
75.6
77.8
80.0
85.5


Capacity Ratio
to R410A)





















TABLE 121







Example

Example
Example




23
Example
25
26


Item
Unit
O
24
P
S




















HFO-1132(E)
Mass %
22.6
21.2
20.5
21.9


R32
Mass %
36.8
44.2
51.7
39.7


R1234yf
Mass %
40.6
34.6
27.8
38.4


GWP

250
300
350
270


COP Ratio
% (relative
100.4
100.5
100.6
100.4



to R410A)


Refrigerating
% (relative
91.0
95.0
99.1
92.5


Capacity Ratio
to R410A)

























TABLE 122







Comparative
Comparative
Comparative
Comparative
Example
Example
Comparative
Comparative


Item
Unit
Example 15
Example 16
Example 17
Example 18
27
28
Example 19
Example 20
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R1234yf
Mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


GWP

37
37
37
36
36
36
35
35


COP Ratio
% (relative
103.4
102.6
101.6
100.8
100.2
99.8
99.6
99.4



to R410A)


Refrigerating
% (relative
56.4
63.3
69.5
75.2
80.5
85.4
90.1
94.4


Capacity Ratio
to R410A)

























TABLE 123







Comparative
Comparative
Example
Comparative
Example
Comparative
Comparative
Comparative


Item
Unit
Example 21
Example 22
29
Example 23
30
Example 24
Example 25
Example 26
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R1234yf
Mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


GWP

71
71
70
70
70
69
69
69


COP Ratio
% (relative
103.1
102.1
101.1
100.4
99.8
99.5
99.2
99.1



to R410A)


Refrigerating
% (relative
61.8
68.3
74.3
79.7
84.9
89.7
94.2
98.4


Capacity Ratio
to R410A)

























TABLE 124







Comparative
Example
Comparative
Example
Example
Comparative
Comparative
Comparative


Item
Unit
Example 27
31
Example 28
32
33
Example 29
Example 30
Example 31
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


GWP

104
104
104
103
103
103
103
102


COP Ratio
% (relative
102.7
101.6
100.7
100.0
99.5
99.2
99.0
98.9



to R410A)


Refrigerating
% (relative
66.6
72.9
78.6
84.0
89.0
93.7
98.1
102.2


Capacity Ratio
to R410A)

























TABLE 125







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
Example 39
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


R32
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
25.0


R1234yf
Mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0
65.0


GWP

138
138
137
137
137
136
136
171


COP Ratio
% (relative
102.3
101.2
100.4
99.7
99.3
99.0
98.8
101.9



to R410A)


Refrigerating
% (relative
71.0
77.1
82.7
88.0
92.9
97.5
101.7
75.0


Capacity Ratio
to R410A)

























TABLE 126







Example
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Example


Item
Unit
34
Example 40
Example 41
Example 42
Example 43
Example 44
Example 45
35
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
60.0
70.0
10.0
20.0


R32
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
30.0
30.0


R1234yf
Mass %
55.0
45.0
35.0
25.0
15.0
5.0
60.0
50.0


GWP

171
171
171
170
170
170
205
205


COP Ratio
% (relative
100.9
100.1
99.6
99.2
98.9
98.7
101.6
100.7



to R410A)


Refrigerating
% (relative
81.0
86.6
91.7
96.5
101.0
105.2
78.9
84.8


Capacity Ratio
to R410A)

























TABLE 127







Comparative
Comparative
Comparative
Comparative
Example
Example
Example
Comparative


Item
Unit
Example 46
Example 47
Example 48
Example 49
36
37
38
Example 50
























HFO-1132(E)
Mass %
30.0
40.0
50.0
60.0
10.0
20.0
30.0
40.0


R32
Mass %
30.0
30.0
30.0
30.0
35.0
35.0
35.0
35.0


R1234yf
Mass %
40.0
30.0
20.0
10.0
55.0
45.0
35.0
25.0


GWP

204
204
204
204
239
238
238
238


COP Ratio
% (relative
100.0
99.5
99.1
98.8
101.4
100.6
99.9
99.4



to R410A)


Refrigerating
% (relative
90.2
95.3
100.0
104.4
82.5
88.3
93.7
98.6


Capacity Ratio
to R410A)

























TABLE 128







Comparative
Comparative
Comparative
Comparative
Example
Comparative
Comparative
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
39
Example 55
Example 56
Example 57
























HFO-1132(E)
Mass %
50.0
60.0
10.0
20.0
30.0
40.0
50.0
10.0


R32
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
45.0


R1234yf
Mass %
15.0
5.0
50.0
40.0
30.0
20.0
10.0
45.0


GWP

237
237
272
272
272
271
271
306


COP Ratio
% (relative
99.0
98.8
101.3
100.6
99.9
99.4
99.0
101.3



to R410A)


Refrigerating
% (relative
103.2
107.5
86.0
91.7
96.9
101.8
106.3
89.3


Capacity Ratio
to R410A)

























TABLE 129







Example
Example
Comparative
Comparative
Comparative
Example
Comparative
Comparative


Item
Unit
40
41
Example 58
Example 59
Example 60
42
Example 61
Example 62
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0


R32
Mass %
45.0
45.0
45.0
45.0
50.0
50.0
50.0
50.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
40.0
30.0
20.0
10.0


GWP

305
305
305
304
339
339
339
338


COP Ratio
% (relative
100.6
100.0
99.5
99.1
101.3
100.6
100.0
99.5



to R410A)


Refrigerating
% (relative
94.9
100.0
104.7
109.2
92.4
97.8
102.9
107.5


Capacity Ratio
to R410A)

























TABLE 130







Comparative
Comparative
Comparative
Comparative
Example
Example
Example
Example


Item
Unit
Example 63
Example 64
Example 65
Example 66
43
44
45
46
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
56.0
59.0
62.0
65.0


R32
Mass %
55.0
55.0
55.0
55.0
3.0
3.0
3.0
3.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
41.0
38.0
35.0
32.0


GWP

373
372
372
372
22
22
22
22


COP Ratio
% (relative
101.4
100.7
100.1
99.6
100.1
100.0
99.9
99.8



to R410A)


Refrigerating
% (relative
95.3
100.6
105.6
110.2
81.7
83.2
84.6
86.0


Capacity Ratio
to R410A)

























TABLE 131







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
47
48
49
50
51
52
53
54
























HFO-1132(E)
Mass %
49.0
52.0
55.0
58.0
61.0
43.0
46.0
49.0


R32
Mass %
6.0
6.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
45.0
42.0
39.0
36.0
33.0
48.0
45.0
42.0


GWP

43
43
43
43
42
63
63
63


COP Ratio
% (relative
100.2
100.0
99.9
99.8
99.7
100.3
100.1
99.9



to R410A)


Refrigerating
% (relative
80.9
82.4
83.9
85.4
86.8
80.4
82.0
83.5


Capacity Ratio
to R410A)

























TABLE 132







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
55
56
57
58
59
60
61
62
























HFO-1132(E)
Mass %
52.0
55.0
58.0
38.0
41.0
44.0
47.0
50.0


R32
Mass %
9.0
9.0
9.0
12.0
12.0
12.0
12.0
12.0


R1234yf
Mass %
39.0
36.0
33.0
50.0
47.0
44.0
41.0
38.0


GWP

63
63
63
83
83
83
83
83


COP Ratio
% (relative
99.8
99.7
99.6
100.3
100.1
100.0
99.8
99.7



to R410A)


Refrigerating
% (relative
85.0
86.5
87.9
80.4
82.0
83.5
85.1
86.6


Capacity Ratio
to R410A)

























TABLE 133







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
63
64
65
66
67
68
69
70
























HFO-1132(E)
Mass %
53.0
33.0
36.0
39.0
42.0
45.0
48.0
51.0


R32
Mass %
12.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
35.0
52.0
49.0
46.0
43.0
40.0
37.0
34.0


GWP

83
104
104
103
103
103
103
103


COP Ratio
% (relative
99.6
100.5
100.3
100.1
99.9
99.7
99.6
99.5



to R410A)


Refrigerating
% (relative
88.0
80.3
81.9
83.5
85.0
86.5
88.0
89.5


Capacity Ratio
to R410A)

























TABLE 134







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
71
72
73
74
75
76
77
78
























HFO-1132(E)
Mass %
29.0
32.0
35.0
38.0
41.0
44.0
47.0
36.0


R32
Mass %
18.0
18.0
18.0
18.0
18.0
18.0
18.0
3.0


R1234yf
Mass %
53.0
50.0
47.0
44.0
41.0
38.0
35.0
61.0


GWP

124
124
124
124
124
123
123
23


COP Ratio
% (relative
100.6
100.3
100.1
99.9
99.8
99.6
99.5
101.3



to R410A)


Refrigerating
% (relative
80.6
82.2
83.8
85.4
86.9
88.4
89.9
71.0


Capacity Ratio
to R410A)

























TABLE 135







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
79
80
81
82
83
84
85
86
























HFO-1132(E)
Mass %
39.0
42.0
30.0
33.0
36.0
26.0
29.0
32.0


R32
Mass %
3.0
3.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
58.0
55.0
64.0
61.0
58.0
65.0
62.0
59.0


GWP

23
23
43
43
43
64
64
63


COP Ratio
% (relative
101.1
100.9
101.5
101.3
101.0
101.6
101.3
101.1



to R410A)


Refrigerating
% (relative
72.7
74.4
70.5
72.2
73.9
71.0
72.8
74.5


Capacity Ratio
to R410A)

























TABLE 136







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
87
88
89
90
91
92
93
94
























HFO-1132(E)
Mass %
21.0
24.0
27.0
30.0
16.0
19.0
22.0
25.0


R32
Mass %
12.0
12.0
12.0
12.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
67.0
64.0
61.0
58.0
69.0
66.0
63.0
60.0


GWP

84
84
84
84
104
104
104
104


COP Ratio
% (relative
101.8
101.5
101.2
101.0
102.1
101.8
101.4
101.2



to R410A)


Refrigerating
% (relative
70.8
72.6
74.3
76.0
70.4
72.3
74.0
75.8


Capacity Ratio
to R410A)

























TABLE 137







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
95
96
97
98
99
100
101
102
























HFO-1132(E)
Mass %
28.0
12.0
15.0
18.0
21.0
24.0
27.0
25.0


R32
Mass %
15.0
18.0
18.0
18.0
18.0
18.0
18.0
21.0


R1234yf
Mass %
57.0
70.0
67.0
64.0
61.0
58.0
55.0
54.0


GWP

104
124
124
124
124
124
124
144


COP Ratio
% (relative
100.9
102.2
101.9
101.6
101.3
101.0
100.7
100.7



to R410A)


Refrigerating
% (relative
77.5
70.5
72.4
74.2
76.0
77.7
79.4
80.7


Capacity Ratio
to R410A)

























TABLE 138







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
103
104
105
106
107
108
109
110
























HFO-1132(E)
Mass %
21.0
24.0
17.0
20.0
23.0
13.0
16.0
19.0


R32
Mass %
24.0
24.0
27.0
27.0
27.0
30.0
30.0
30.0


R1234yf
Mass %
55.0
52.0
56.0
53.0
50.0
57.0
54.0
51.0


GWP

164
164
185
185
184
205
205
205


COP Ratio
% (relative
100.9
100.6
101.1
100.8
100.6
101.3
101.0
100.8



to R410A)


Refrigerating
% (relative
80.8
82.5
80.8
82.5
84.2
80.7
82.5
84.2


Capacity Ratio
to R410A)

























TABLE 139







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
111
112
113
114
115
116
117
118
























HFO-1132(E)
Mass %
22.0
9.0
12.0
15.0
18.0
21.0
8.0
12.0


R32
Mass %
30.0
33.0
33.0
33.0
33.0
33.0
36.0
36.0


R1234yf
Mass %
48.0
58.0
55.0
52.0
49.0
46.0
56.0
52.0


GWP

205
225
225
225
225
225
245
245


COP Ratio
% (relative
100.5
101.6
101.3
101.0
100.8
100.5
101.6
101.2



to R410A)


Refrigerating
% (relative
85.9
80.5
82.3
84.1
85.8
87.5
82.0
84.4


Capacity Ratio
to R410A)

























TABLE 140







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
119
120
121
122
123
124
125
126
























HFO-1132(E)
Mass %
15.0
18.0
21.0
42.0
39.0
34.0
37.0
30.0


R32
Mass %
36.0
36.0
36.0
25.0
28.0
31.0
31.0
34.0


R1234yf
Mass %
49.0
46.0
43.0
33.0
33.0
35.0
32.0
36.0


GWP

245
245
245
170
191
211
211
231


COP Ratio
% (relative
101.0
100.7
100.5
99.5
99.5
99.8
99.6
99.9



to R410A)


Refrigerating
% (relative
86.2
87.9
89.6
92.7
93.4
93.0
94.5
93.0


Capacity Ratio
to R410A)

























TABLE 141







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
127
128
129
130
131
132
133
134
























HFO-1132(E)
Mass %
33.0
36.0
24.0
27.0
30.0
33.0
23.0
26.0


R32
Mass %
34.0
34.0
37.0
37.0
37.0
37.0
40.0
40.0


R1234yf
Mass %
33.0
30.0
39.0
36.0
33.0
30.0
37.0
34.0


GWP

231
231
252
251
251
251
272
272


COP Ratio
% (relative
99.8
99.6
100.3
100.1
99.9
99.8
100.4
100.2



to R410A)


Refrigerating
% (relative
94.5
96.0
91.9
93.4
95.0
96.5
93.3
94.9


Capacity Ratio
to R410A)

























TABLE 142







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
135
136
137
138
139
140
141
142
























HFO-1132(E)
Mass %
29.0
32.0
19.0
22.0
25.0
28.0
31.0
18.0


R32
Mass %
40.0
40.0
43.0
43.0
43.0
43.0
43.0
46.0


R1234yf
Mass %
31.0
28.0
38.0
35.0
32.0
29.0
26.0
36.0


GWP

272
271
292
292
292
292
292
312


COP Ratio
% (relative
100.0
99.8
100.6
100.4
100.2
100.1
99.9
100.7



to R410A)


Refrigerating
% (relative
96.4
97.9
93.1
94.7
96.2
97.8
99.3
94.4


Capacity Ratio
to R410A)

























TABLE 143







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
143
144
145
146
147
148
149
150
























HFO-1132(E)
Mass %
21.0
23.0
26.0
29.0
13.0
16.0
19.0
22.0


R32
Mass %
46.0
46.0
46.0
46.0
49.0
49.0
49.0
49.0


R1234yf
Mass %
33.0
31.0
28.0
25.0
38.0
35.0
32.0
29.0


GWP

312
312
312
312
332
332
332
332


COP Ratio
% (relative
100.5
100.4
100.2
100.0
101.1
100.9
100.7
100.5



to R410A)


Refrigerating
% (relative
96.0
97.0
98.6
100.1
93.5
95.1
96.7
98.3


Capacity Ratio
to R410A)



















TABLE 144







Example
Example


Item
Unit
151
152


















HFO-1132(E)
Mass %
25.0
28.0


R32
Mass %
49.0
49.0


R1234yf
Mass %
26.0
23.0


GWP

332
332


COP Ratio
% (relative
100.3
100.1



to R410A)


Refrigerating Capacity
% (relative
99.8
101.3


Ratio
to R410A)









The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:


point I (72.0, 0.0, 28.0),


point J (48.5, 18.3, 33.2),


point N (27.7, 18.2, 54.1), and


point E (58.3, 0.0, 41.7),


or on these line segments (excluding the points on the line segment EI),


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and


the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:


point M (52.6, 0.0, 47.4),


point M′ (39.2, 5.0, 55.8),


point N (27.7, 18.2, 54.1),


point V (11.0, 18.1, 70.9), and


point G (39.6, 0.0, 60.4),


or on these line segments (excluding the points on the line segment GM),


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and


the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:


point O (22.6, 36.8, 40.6),


point N (27.7, 18.2, 54.1), and


point U (3.9, 36.7, 59.4),


or on these line segments,


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and


the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:


point Q (44.6, 23.0, 32.4),


point R (25.5, 36.8, 37.7),


point T (8.6, 51.6, 39.8),


point L (28.9, 51.7, 19.4), and


point K (35.6, 36.8, 27.6),


or on these line segments,


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and


the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (20.5, 51.7, 27.8),


point S (21.9, 39.7, 38.4), and


point T (8.6, 51.6, 39.8),


or on these line segments,


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and


the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


(5-5) Refrigerant E

The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).


The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein

    • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:


      point I (72.0, 28.0, 0.0),


      point K (48.4, 33.2, 18.4),


      point B′ (0.0, 81.6, 18.4),


      point H (0.0, 84.2, 15.8),


      point R (23.1, 67.4, 9.5), and


      point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:


point I (72.0, 28.0, 0.0),


point J (57.7, 32.8, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4),


point B′ (0.0, 81.6, 18.4),


point H (0.0, 84.2, 15.8),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:


point M (47.1, 52.9, 0.0),


point N (38.5, 52.1, 9.5),


point R (23.1, 67.4, 9.5), and


point G (38.5, 61.5, 0.0),


or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),


the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:


point P (31.8, 49.8, 18.4),


point S (25.4, 56.2, 18.4), and


point T (34.8, 51.0, 14.2),


or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:


point Q (28.6, 34.4, 37.0),


point B″ (0.0, 63.0, 37.0),


point D (0.0, 67.0, 33.0), and


point U (28.7, 41.2, 30.1),


or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c′ (56.7, 43.3, 0.0),


point d′ (52.2, 38.3, 9.5),


point e′ (41.8, 39.8, 18.4), and


point a′ (81.6, 0.0, 18.4),


or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),


the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and


the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c (77.7, 22.3, 0.0),


point d (76.3, 14.2, 9.5),


point e (72.2, 9.4, 18.4), and


point a′ (81.6, 0.0, 18.4),


or on the line segments cd, de, and ea′ (excluding the points c and a′);


the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:


point O (100.0, 0.0, 0.0),


point c′ (56.7, 43.3, 0.0),


point d′ (52.2, 38.3, 9.5), and


point a (90.5, 0.0, 9.5),


or on the line segments c′d′ and d′a (excluding the points c′ and a);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and


the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein

    • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and a0 that connect the following 4 points:


      point O (100.0, 0.0, 0.0),


      point c (77.7, 22.3, 0.0),


      point d (76.3, 14.2, 9.5), and


      point a (90.5, 0.0, 9.5),


      or on the line segments cd and da (excluding the points c and a);


the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, da, and a0 are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


(Examples of Refrigerant E)

The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.


The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.


A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Tables 145 and 146 show the results.














TABLE 145





Item
Unit
I
J
K
L





















WCF
HFO-1132(E)
mass %
72.0
57.7
48.4
35.5



HFO-1123
mass %
28.0
32.8
33.2
27.5



R32
mass %
0.0
9.5
18.4
37.0












Burning velocity (WCF)
cm/s
10
10
10
10























TABLE 146





Item
Unit
M
N
T
P
U
Q























WCF
HFO-
mass %
47.1
38.5
34.8
31.8
28.7
28.6



1132(E)



HFO-1123
mass %
52.9
52.1
51.0
49.8
41.2
34.4



R32
mass %
0.0
9.5
14.2
18.4
30.1
37.0













Leak condition
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


that results
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°


in WCFF
C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,
C., 92%, release,



on the liquid
on the liquid
on the liquid
on the liquid
on the liquid
on the liquid



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-
mass %
72.0
58.9
51.5
44.6
31.4
27.1



1132(E)



HFO-1123
mass %
28.0
32.4
33.1
32.6
23.2
18.3



R32
mass %
0.0
8.7
15.4
22.8
45.4
54.6














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)


Burning velocity
cm/s
10
10
10  
10  
10  
10  


(WCFF)









The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:


point I (72.0, 28.0, 0.0),


point K (48.4, 33.2, 18.4), and


point L (35.5, 27.5, 37.0);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and


the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),


it can be determined that the refrigerant has WCF lower flammability.


For the points on the line segment 1K, an approximate curve (x=0.025z2−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).


Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.


The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:


point M (47.1, 52.9, 0.0),


point P (31.8, 49.8, 18.4), and


point Q (28.6, 34.4, 37.0),


it can be determined that the refrigerant has ASHRAE lower flammability.


In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).


For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5K


Degree of subcooling: 5K


Compressor efficiency: 70%


Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.

















TABLE 147








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
mass %
R410A
90.5
0.0
81.6
0.0
63.0
0.0


HFO-1123
mass %

0.0
90.5
0.0
81.6
0.0
63.0


R32
mass %

9.5
9.5
18.4
18.4
37.0
37.0


GWP

2088
65
65
125
125
250
250


COP ratio
% (relative
100
99.1
92.0
98.7
93.4
98.7
96.1



to R410A)


Refrigerating
% (relative
100
102.2
111.6
105.3
113.7
110.0
115.4


capacity ratio
to R410A)























TABLE 148







Comparative
Comparative

Example

Comparative




Example 8
Example 9
Comparative
1
Example
Example 11


Item
Unit
O
C
Example 10
U
2
D






















HFO-1132(E)
mass %
100.0
50.0
41.1
28.7
15.2
0.0


HFO-1123
mass %
0.0
31.6
34.6
41.2
52.7
67.0


R32
mass %
0.0
18.4
24.3
30.1
32.1
33.0


GWP

1
125
165
204
217
228


COP ratio
% (relative
99.7
96.0
96.0
96.0
96.0
96.0



to R410A)


Refrigerating
% (relative
98.3
109.9
111.7
113.5
114.8
115.4


capacity ratio
to R410A)






















TABLE 149







Comparative

Example
Example
Comparative




Example 12
Comparative
3
4
Example 14


Item
Unit
E
Example 13
T
S
F





















HFO-1132(E)
mass %
53.4
43.4
34.8
25.4
0.0


HFO-1123
mass %
46.6
47.1
51.0
56.2
74.1


R32
mass %
0.0
9.5
14.2
18.4
25.9


GWP

1
65
97
125
176


COP ratio
% (relative
94.5
94.5
94.5
94.5
94.5



to R410A)


Refrigerating
% (relative
105.6
109.2
110.8
112.3
114.8


capacity ratio
to R410A)






















TABLE 150







Comparative

Example

Comparative




Example 15
Example
6
Example
Example 16


Item
Unit
G
5
R
7
H





















HFO-1132(E)
mass %
38.5
31.5
23.1
16.9
0.0


HFO-1123
mass %
61.5
63.5
67.4
71.1
84.2


R32
mass %
0.0
5.0
9.5
12.0
15.8


GWP

1
35
65
82
107


COP ratio
% (relative
93.0
93.0
93.0
93.0
93.0



to R410A)


Refrigerating
% (relative
107.0
109.1
110.9
111.9
113.2


capacity ratio
to R410A)






















TABLE 151







Comparative
Example
Example

Comparative




Example 17
8
9
Comparative
Example 19


Item
Unit
I
J
K
Example 18
L





















HFO-1132(E)
mass %
72.0
57.7
48.4
41.1
35.5


HFO-1123
mass %
28.0
32.8
33.2
31.2
27.5


R32
mass %
0.0
9.5
18.4
27.7
37.0


GWP

1
65
125
188
250


COP ratio
% (relative
96.6
95.8
95.9
96.4
97.1



to R410A)


Refrigerating
% (relative
103.1
107.4
110.1
112.1
113.2


capacity ratio
to R410A)





















TABLE 152







Comparative
Example
Example
Example




Example 20
10
11
12


Item
Unit
M
N
P
Q




















HFO-1132(E)
mass %
47.1
38.5
31.8
28.6


HFO-1123
mass %
52.9
52.1
49.8
34.4


R32
mass %
0.0
9.5
18.4
37.0


GWP

1
65
125
250


COP ratio
% (relative
93.9
94.1
94.7
96.9



to R410A)


Refrigerating
% (relative
106.2
109.7
112.0
114.1


capacity ratio
to R410A)

























TABLE 153







Comparative
Comparative
Comparative
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 22
Example 23
Example 24
14
15
16
Example 25
Example 26
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

35
35
35
35
35
35
35
35


COP ratio
% (relative
91.7
92.2
92.9
93.7
94.6
95.6
96.7
97.7



to R410A)


Refrigerating
% (relative
110.1
109.8
109.2
108.4
107.4
106.1
104.7
103.1


capacity ratio
to R410A)

























TABLE 154







Comparative
Comparative
Comparative
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 27
Example 28
Example 29
17
18
19
Example 30
Example 31
























HFO-1132(E)
mass %
90.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0


R32
mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

35
68
68
68
68
68
68
68


COP ratio
% (relative
98.8
92.4
92.9
93.5
94.3
95.1
96.1
97.0



to R410A)


Refrigerating
% (relative
101.4
111.7
111.3
110.6
109.6
108.5
107.2
105.7


capacity ratio
to R410A)

























TABLE 155







Comparative
Example
Example
Example
Example
Example
Comparative
Comparative


Item
Unit
Example 32
20
21
22
23
24
Example 33
Example 34
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
10.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

68
102
102
102
102
102
102
102


COP ratio
% (relative
98.0
93.1
93.6
94.2
94.9
95.6
96.5
97.4



to R410A)


Refrigerating
% (relative
104.1
112.9
112.4
111.6
110.6
109.4
108.1
106.6


capacity ratio
to R410A)

























TABLE 156







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 35
Example 36
Example 37
Example 38
Example 39
Example 40
Example 41
Example 42
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
15.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

102
136
136
136
136
136
136
136


COP ratio
% (relative
98.3
93.9
94.3
94.8
95.4
96.2
97.0
97.8



to R410A)


Refrigerating
% (relative
105.0
113.8
113.2
112.4
111.4
110.2
108.8
107.3


capacity ratio
to R410A)

























TABLE 157







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 43
Example 44
Example 45
Example 46
Example 47
Example 48
Example 49
Example 50
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0
60.0


R32
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


GWP

170
170
170
170
170
170
170
203


COP ratio
% (relative
94.6
94.9
95.4
96.0
96.7
97.4
98.2
95.3



to R410A)


Refrigerating
% (relative
114.4
113.8
113.0
111.9
110.7
109.4
107.9
114.8


capacity ratio
to R410A)

























TABLE 158







Comparative
Comparative
Comparative
Comparative
Comparative
Example
Example
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
Example 55
25
26
Example 56
























HFO-1132(E)
mass %
20.0
30.0
40.0
50.0
60.0
10.0
20.0
30.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0
55.0
45.0
35.0


R32
mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


GWP

203
203
203
203
203
237
237
237


COP ratio
% (relative
95.6
96.0
96.6
97.2
97.9
96.0
96.3
96.6



to R410A)


Refrigerating
% (relative
114.2
113.4
112.4
111.2
109.8
115.1
114.5
113.6


capacity ratio
to R410A)

























TABLE 159







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 57
Example 58
Example 59
Example 60
Example 61
Example 62
Example 63
Example 64
























HFO-1132(E)
mass %
40.0
50.0
60.0
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
25.0
15.0
5.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0


GWP

237
237
237
271
271
271
271
271


COP ratio
% (relative
97.1
97.7
98.3
96.6
96.9
97.2
97.7
98.2



to R410A)


Refrigerating
% (relative
112.6
111.5
110.2
115.1
114.6
113.8
112.8
111.7


capacity ratio
to R410A)

























TABLE 160







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
27
28
29
30
31
32
33
34
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
35.0
37.0
39.0
41.0


HFO-1123
mass %
60.0
58.0
56.0
54.0
61.0
59.0
57.0
55.0


R32
mass %
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0


GWP

14
14
14
14
28
28
28
28


COP ratio
% (relative
93.2
93.4
93.6
93.7
93.2
93.3
93.5
93.7



to R410A)


Refrigerating
% (relative
107.7
107.5
107.3
107.2
108.6
108.4
108.2
108.0


capacity ratio
to R410A)

























TABLE 161







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
35
36
37
38
39
40
41
42
























HFO-1132(E)
mass %
43.0
31.0
33.0
35.0
37.0
39.0
41.0
27.0


HFO-1123
mass %
53.0
63.0
61.0
59.0
57.0
55.0
53.0
65.0


R32
mass %
4.0
6.0
6.0
6.0
6.0
6.0
6.0
8.0


GWP

28
41
41
41
41
41
41
55


COP ratio
% (relative
93.9
93.1
93.2
93.4
93.6
93.7
93.9
93.0



to R410A)


Refrigerating
% (relative
107.8
109.5
109.3
109.1
109.0
108.8
108.6
110.3


capacity ratio
to R410A)

























TABLE 162







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
43
44
45
46
47
48
49
50
























HFO-1132(E)
mass %
29.0
31.0
33.0
35.0
37.0
39.0
32.0
32.0


HFO-1123
mass %
63.0
61.0
59.0
57.0
55.0
53.0
51.0
50.0


R32
mass %
8.0
8.0
8.0
8.0
8.0
8.0
17.0
18.0


GWP

55
55
55
55
55
55
116
122


COP ratio
% (relative
93.2
93.3
93.5
93.6
93.8
94.0
94.5
94.7



to R410A)


Refrigerating
% (relative
110.1
110.0
109.8
109.6
109.5
109.3
111.8
111.9


capacity ratio
to R410A)

























TABLE 163







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
51
52
53
54
55
56
57
58
























HFO-1132(E)
mass %
30.0
27.0
21.0
23.0
25.0
27.0
11.0
13.0


HFO-1123
mass %
52.0
42.0
46.0
44.0
42.0
40.0
54.0
52.0


R32
mass %
18.0
31.0
33.0
33.0
33.0
33.0
35.0
35.0


GWP

122
210
223
223
223
223
237
237


COP ratio
% (relative
94.5
96.0
96.0
96.1
96.2
96.3
96.0
96.0



to R410A)


Refrigerating
% (relative
112.1
113.7
114.3
114.2
114.0
113.8
115.0
114.9


capacity ratio
to R410A)

























TABLE 164







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
59
60
61
62
63
64
65
66
























HFO-1132(E)
mass %
15.0
17.0
19.0
21.0
23.0
25.0
27.0
11.0


HFO-1123
mass %
50.0
48.0
46.0
44.0
42.0
40.0
38.0
52.0


R32
mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
37.0


GWP

237
237
237
237
237
237
237
250


COP ratio
% (relative
96.1
96.2
96.2
96.3
96.4
96.4
96.5
96.2



to R410A)


Refrigerating
% (relative
114.8
114.7
114.5
114.4
114.2
114.1
113.9
115.1


capacity ratio
to R410A)

























TABLE 165







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
67
68
69
70
71
72
73
74
























HFO-1132(E)
mass %
13.0
15.0
17.0
15.0
17.0
19.0
21.0
23.0


HFO-1123
mass %
50.0
48.0
46.0
50.0
48.0
46.0
44.0
42.0


R32
mass %
37.0
37.0
37.0
0.0
0.0
0.0
0.0
0.0


GWP

250
250
250
237
237
237
237
237


COP ratio
% (relative
96.3
96.4
96.4
96.1
96.2
96.2
96.3
96.4



to R410A)


Refrigerating
% (relative
115.0
114.9
114.7
114.8
114.7
114.5
114.4
114.2


capacity ratio
to R410A)

























TABLE 166







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
75
76
77
78
79
80
81
82
























HFO-1132(E)
mass %
25.0
27.0
11.0
19.0
21.0
23.0
25.0
27.0


HFO-1123
mass %
40.0
38.0
52.0
44.0
42.0
40.0
38.0
36.0


R32
mass %
0.0
0.0
0.0
37.0
37.0
37.0
37.0
37.0


GWP

237
237
250
250
250
250
250
250


COP ratio
% (relative
96.4
96.5
96.2
96.5
96.5
96.6
96.7
96.8



to R410A)


Refrigerating
% (relative
114.1
113.9
115.1
114.6
114.5
114.3
114.1
114.0


capacity ratio
to R410A)









The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A″ (63.0, 0.0, 37.0),


point B″ (0.0, 63.0, 37.0), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 250 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A′ (81.6, 0.0, 18.4),


point B′ (0.0, 81.6, 18.4), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 125 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:


point O (100.0, 0.0, 0.0),


point A (90.5, 0.0, 9.5),


point B (0.0, 90.5, 9.5), and


point (0.0, 100.0, 0.0),


or on these line segments,


the refrigerant has a GWP of 65 or less.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point C (50.0, 31.6, 18.4),


point U (28.7, 41.2, 30.1), and


point D(52.2, 38.3, 9.5),


or on these line segments,


the refrigerant has a COP ratio of 96% or more relative to that of R410A.


In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).


The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.


The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point E (55.2, 44.8, 0.0),


point T (34.8, 51.0, 14.2), and


point F (0.0, 76.7, 23.3),


or on these line segments,


the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.


In the above, the line segment ET is represented by coordinates (−0.0547z2−0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).


The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.


The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:


point G (0.0, 76.7, 23.3),


point R (21.0, 69.5, 9.5), and


point H (0.0, 85.9, 14.1),


or on these line segments,


the refrigerant has a COP ratio of 93% or more relative to that of R410A.


In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).


The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.


The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.


In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.


The embodiments of the present disclosure have been described, but it should be understood that configurations and details can be modified in various ways without departing from the spirit and scope of the present disclosure as defined in the claims.


REFERENCE SIGNS LIST






    • 1 air conditioner (refrigeration cycle apparatus)


    • 4 compressor


    • 5 outdoor heat exchanger (condenser, evaporator)


    • 6 expansion valve (decompressing unit)


    • 7 indoor heat exchanger (evaporator, condenser)


    • 10 refrigerant circuit





CITATION LIST
Patent Literature



  • [PTL 1] International Publication No. 2015/141678


Claims
  • 1. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant contains trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • 2. The refrigeration cycle apparatus according to claim 1, wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • 3. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • 4. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • 5. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, AB, BD, DC′, C′C, and CJ that connect the following 9 points:
  • 6. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • 7. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • 8. The refrigeration cycle apparatus according to claim 1, whereinwhen the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • 9. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, andthe refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • 10. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, andthe refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • 11. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO−1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
  • 12. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
  • 13. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2−difluoroethylene (HFO−1132(E), difluoromethane(R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 14. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 15. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 16. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2−difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • 17. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2, 3, 3, 3-tetrafluoro-1-propene (R1234yf),
  • 18. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2−difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 19. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2−difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 20. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 21. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 22. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 23. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • 24. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has a kinematic viscosity at 40° C. of 1 mm2/s or more and 750 mm2/s or less.
  • 25. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has a kinematic viscosity at 100° C. of 1 mm2/s or more and 100 mm2/s or less.
  • 26. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has a volume resistivity at 25° C. of 1.0×1012 Ω·cm or more.
  • 27. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has an acid number of 0.1 mgKOH/g or less.
  • 28. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has an ash content of 100 ppm or less.
  • 29. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil has an aniline point of −100° C. or higher and 0° C. or lower.
  • 30. The refrigeration cycle apparatus according to claim 1, comprising: a refrigerant circuit which includes a compressor, a condenser, a decompressing unit, and an evaporator connected to each other through a refrigerant pipe and through which the working fluid for a refrigerating machine circulates.
  • 31. The refrigeration cycle apparatus according to claim 1, wherein a content of the refrigerating oil in the working fluid for a refrigerating machine is 5 mass % or more and 60 mass % or less.
  • 32. The refrigeration cycle apparatus according to claim 1, wherein the refrigerating oil contains at least one additive selected from an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator, an anti-wear agent, and a compatibilizer, anda content of the additive is 5 mass % or less relative to a mass of the refrigerating oil containing the additive.
Priority Claims (9)
Number Date Country Kind
2017-242183 Dec 2017 JP national
2017-242185 Dec 2017 JP national
2017-242186 Dec 2017 JP national
2017-242187 Dec 2017 JP national
PCT/JP2018/037483 Oct 2018 JP national
PCT/JP2018/038746 Oct 2018 JP national
PCT/JP2018/038747 Oct 2018 JP national
PCT/JP2018/038748 Oct 2018 JP national
PCT/JP2018/038749 Oct 2018 JP national
Continuation in Parts (3)
Number Date Country
Parent 16954631 Jun 2020 US
Child 17358406 US
Parent 16911816 Jun 2020 US
Child 16954631 US
Parent 16954651 Jun 2020 US
Child 16911816 US