This application claims priority to Chinese Patent Application No. 202210404273.7 filed on Apr. 18, 2022 which is incorporated by reference herein in its entirety.
The present invention relates to the field of refrigeration systems, in particular to a transport vehicle with a refrigeration system.
Transport vehicles with refrigeration systems are commonly used in cold-chain transportation, where the refrigeration systems of such vehicles usually operate in a cooling mode to preserve stored goods, such as food, medicines, and the like. However, such vehicles need to be operated in a heating mode when the ambient temperature is relatively low, e.g., −20° C., so as to keep the temperature of the goods in the container from getting too low. At this point, the solution commonly adopted is the hot-gas bypass heating mode, in which the superheated steam at the outlet of the compressor is directly bypassed to the heat exchanger in the container for heating. In order to enable the refrigerant in a reservoir located in the part of the circuit being bypassed to participate in the heating cycle, a small part of the superheated steam at the outlet of the compressor needs to be delivered to the reservoir to discharge the refrigerant remaining in the reservoir. However, this part of the refrigerant will have a cooling effect in the heat exchanger in the container, which counters part of the heating effect of the most bypassed steam, thus lowering the system efficiency.
The object of the present application is to solve or at least alleviate the problems existing in the prior art.
According to one aspect, a refrigeration system is provided, which comprises:
Optionally, in the refrigeration system, the control valve is closed in the cooling mode.
Optionally, in the refrigeration system, the control valve is opened when the hot-gas bypass heating mode is started, and is closed after a first delay time.
Optionally, in the refrigeration system, the first delay time is a fixed preset value; or
Optionally, in the refrigeration system, the refrigeration system comprises a three-way valve connected to the outlet of the compressor, wherein a first outlet of the three-way valve is connected to the first heat exchanger, a second outlet of the three-way valve is connected to the second heat exchanger, and the branch flow path extends from a flow path between the second outlet of the three-way valve and the second heat exchanger to the upper part of the reservoir.
Optionally, in the refrigeration system, the refrigeration system further comprises an sub-cooler heat exchanger, an inlet of the sub-cooler heat exchanger being connected to an liquid outlet of the reservoir, wherein the sub-cooler heat exchanger is integrated with the first heat exchanger to share the same fan;
Optionally, in the refrigeration system, the compressor is driven by a separate engine, and a suction pressure regulating valve and a gas-liquid separator are arranged upstream of the compressor.
According to another aspect, a transport vehicle with the refrigeration system according to the various embodiments is provided.
According to yet another aspect, a method for controlling a refrigeration system for use in a transport vehicle is provided, the refrigeration system being capable of operating in a cooling mode and a hot-gas bypass heating mode, wherein:
Optionally, the first delay time is a fixed preset value; or
The device and method according to the embodiments of the present invention can improve the efficiency of a refrigeration system in the hot-gas bypass heating mode.
With reference to the accompanying drawings, the disclosure of the present application will become easier to understand. Those skilled in the art would readily appreciate that these drawings are for the purpose of illustration, and are not intended to limit the protection scope of the present application. In addition, in the figures, similar numerals are used to denote similar components, where:
Referring first to
It is expected that by driving a portion (e.g., 2%-8%) of the refrigerant at the outlet of the compressor to pass through the reservoir 4, the refrigerant remaining in the reservoir 4 can be discharged. However, if the branch flow path 90 remains in operation, this portion of the refrigerant will have a cooling effect in the second heat exchanger 6, which will counter the heating function achieved by the most refrigerant that reaches the second heat exchanger 6 through bypassing, thus lowering system efficiency. Therefore, the control valve 9 can be closed after the refrigerant in the reservoir 4 has been discharged or substantially discharged, so as to avoid adverse effects on system efficiency and thus improve system efficiency. In some embodiments, the control valve 9 remains closed in the cooling mode so as to avoid reverse flow of the refrigerant. Therefore, it is not necessary to arrange a check valve on the branch flow path when the control valve 9 is arranged. Every time the hot-gas bypass heating mode is started, the control valve 9 is opened, and it is then closed after a first delay time. The first delay time can be configured according to experience, e.g., configured as a fixed preset value, such as 5 minutes, where this control strategy will be easy to operate and reliable. In other embodiments, the refrigeration system may also comprise a sensor that monitors the liquid level of the reservoir 4, where the first delay time is determined based on the liquid level of the reservoir. For example, the control valve 9 is closed after the liquid level in the reservoir 4 is below a certain value. In other embodiments, the first delay time may also be determined based on the state of the refrigerant at the fluid outlet 43 of or downstream of the reservoir 4. It should be appreciated that when liquid refrigerant is stored in the reservoir 4, the refrigerant flowing out from the fluid outlet 43 is liquid. As the refrigerant in the reservoir 4 is discharged, high-pressure steam supplied by the compressor will flow out directly from the fluid outlet 43 of the reservoir 4, at which point the control valve 9 can be closed. Therefore, in this embodiment, by means of pressure sensors and/or temperature sensors at the fluid outlet 43 of or downstream of the reservoir 4, the state of the refrigerant there can be determined, and the first delay time can then be determined. For example, superheat of the refrigerant is calculated based on the temperature and pressure at the fluid outlet 43 of or downstream of the reservoir 4, and the first delay time is determined based on the superheat of the refrigerant.
In some embodiments, the refrigeration system switches between the cooling mode and the hot-gas bypass heating mode by means of a three-way valve 2. The three-way valve 2 comprises an inlet 21 connected to the outlet 11 of the compressor, a first outlet 22 and a second outlet 23. In the cooling mode, the inlet 21 of the three-way valve 2 communicates with the first outlet 22, the first outlet 22 is further connected to the first heat exchanger 3, and the first heat exchanger 3 is connected to a first inlet 41 of the reservoir 4 via a first check valve 81, thus forming a refrigeration cycle. In the hot-gas bypass heating mode, the inlet 21 of the three-way valve 2 communicates with the second outlet 23, and the second outlet 23 of the three-way valve is connected to position A between the second heat exchanger 6 and the throttling element 5, thus bypassing the first heat exchanger 3, the reservoir 4 and the throttling element 5. A branch flow path 90 branches out from position B on the flow path between the second outlet 23 of the three-way valve and the second heat exchanger 6, and extends to a second inlet 42 of the reservoir 4 (or can be integrated with the first inlet 41). In addition, in some embodiments, the compressor 1 can be driven by a separate engine 10 via a transmission 101. The separate engine 10 can be a refrigeration system engine independent of the vehicle power engine that is arranged on the transport vehicle, capable of achieving frequency conversion of the compressor 1. A suction pressure regulating valve 8 and a gas-liquid separator 7 are also arranged upstream of the compressor 1. The gas-liquid separator 7 is used to prevent liquid refrigerant from entering the compressor. The suction pressure regulating valve 8 regulates the air inflow volume based on the compressor speed and load.
With continued reference to
Therefore, in the embodiment of
According to another aspect of the present invention, a transport vehicle with a refrigeration system according to the various embodiments is also provided.
According to yet another aspect of the present invention, a method of controlling various refrigeration systems according to the present invention is provided, the method comprising: in the hot-gas bypass heating mode, allowing a portion of the refrigerant leaving the outlet of the compressor to be delivered to the reservoir after passing through a branch flow path, such that the refrigerant stored in the reservoir passes through the throttling element and the second heat exchanger before returning to the inlet of the compressor; and closing the control valve on the branch flow path to cut off the branch flow path after a first delay time. In some embodiments, the first delay time is a fixed preset value, or the first delay time is determined based on the liquid level of the reservoir or on the temperature and/or pressure of the refrigerant at the outlet of or downstream of the reservoir.
The specific embodiments of the present application described above are merely intended to describe the principles of the present application more clearly, wherein various components are clearly shown or described to facilitate the understanding of the principles of the present invention. Those skilled in the art may, without departing from the scope of the present application, make various modifications or changes to the present application. Therefore, it should be understood that these modifications or changes should be included within the scope of patent protection of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202210404273.7 | Apr 2022 | CN | national |